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Statistical Modeling

• Statistical inferences aim to learn the underlying distribution

of data

• Make some mathematical assumptions on the distribution of

the observations

• For random observations based on different subjects, usually

we assume

X1, . . . , Xn ∼ f independently, and f ∈ F ,

where F is a set of candidate distributions, any distribution

outside F will not be considered

• Search a distribution in F as the plausible truth.

• Tradeoff between flexibility and solvability
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Parametric vs Nonparametric Modelings

• Parametric Model: the cardinality of F is not bigger or equiv-

alent to Rd for some fixed dimension d.

• Nonparametric Model: the cardinality of F is equivalent to

Rd where dimension d = ∞ or d → ∞.

• This course mostly focuses on parametric modeling

• d Dimensional Parametric Model: F = {fθ; θ ∈ Θ ⊂ Rd}

• θ is called parameter, it may or may not have an actual

meaning

• Identifiablity and Re-parametrization

• Finding the plausible truth distribution in F boils down to

finding the plausible truth θ.
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Point Estimation of the Parameter

Goal: We want to estimate the value of θ (or more generally,

ϕ(θ) for some known function ϕ).

Definition: A point estimation is any function of data θ̂n :=

θ̂(X1, . . . , Xn) ∈ Rd

There are infinite possible estimators and the question is: can

we find a good estimator?

We need certain measure to determine the quality of an estima-

tor.
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Accuracy Measure

Assume the statistical modeling is correct, and the true param-

eter is θ∗.(what if not?) This assumption will be used for the

whole course unless otherwise stated

• Mean Squared Error (MSE): E(θ̂n − θ∗)2

=
∫
(θ̂(x1, . . . , xn)− θ∗)2

∏n
i=1 fθ∗(xi)dx1 . . . dxn

• Bias: Eθ̂n − θ∗ =
∫
θ̂(x1, . . . , xn)

∏n
i=1 fθ∗(xi)dx1 . . . dxn − θ∗

• Variance: V ar(θ̂(X1, . . . , Xn))

• MSE = Bias*Bias+Variance

• An accurate estimator requires: small MSE, bias and variance
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• MSE, bias and variance are functions over parameter space

Θ

• Unbiased Estimator: if the bias is constant 0.

• Trade-off between bias and variance

• Example: θ̂ = aY for estimating µ = E(Y )

• It is common to find the least-variance estimator among all

unbiased estimators
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Correctness Measure

• Consistent estimator: as n increases to infinity, θ̂n → θ∗ for

all possible value θ∗ ∈ Θ

• The estimation procedure is correct: one can obtain the truth

if inifnite data are given.

• If θ̂n is consistent for θ, then ϕ(θ̂) is consistent for ϕ(θ) for

any continuous function ϕ

• If MSE converges to 0, then consistency holds.

• By LLN,

– Sample mean X̄ is consistent for population mean µ

– Sample variance S2 is consistent for population variance

σ2
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LLN-based estimation

• µk := E(Xk) can be consistently estimated by [
∑n

i=1(Xi)
k]/n

for all k = 1,2, . . ....

• If the parameter of interest can be formulated by µk’s, i.e.,

θ = ϕ(µ1, µ2, . . .), then we estimate

θ̂ = ϕ(
n∑

i=1

(Xi)/n,
n∑

i=1

(Xi)
2/n, . . .)

• Consistent is ensured

• Drawback 1: ϕ may not be unique

• Drawback 2: The estimator may be unreasonable.

Example: Xi ∼ Unif [0, θ] has an estimator θ̂ = 2X̄ which

maybe smaller than max(Xi)
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loss function-based estimation

We design a loss function L(X, θ) which measures how good the

distribution fθ fits data X.

θ̂ = argmin
θ∈Θ

n∑
i=1

L(Xi, θ)

• MLE: choose L to be the likelihood function, L(x, θ) = − log fθ(x)

• Optimization problem

• Other choices are used, for the sake of better robustness or

faster optimization.

• Quick exercise
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Maximum Likelihood Estimation

Why likelihood function is a good choice?

θ̂ = argmin
θ∈Θ

n∑
i=1

L(Xi, θ)

⇔ 0 =
1

n

∑ ∂L(Xi, θ̂)

∂θ
≈ E

∂L(X, θ̂)

∂θ

Furthermore,

E
∂L(X, θ∗)

∂θ
= −

∫
∂ log fθ∗(x)

∂θ
fθ∗(x)dx

= −
∫ 1

fθ∗(x)

∂fθ∗(x)

∂θ
fθ∗(x)dx = −

∫
∂fθ∗(x)

∂θ
dx

= −
∂
∫
fθ∗(x)dx

∂θ
= 0
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Maximum Likelihood Estimation

Under proper conditions

• MLE is consistent

• MLE is almost the most efficient (sort of smallest MSE)

• MLE has a CLT type results

√
n(θ̂ − θ∗) ≈ N(0, τ2)

for some τ2.
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Interval Estimation

In order to incorporate accuracy information into the estimation.

Wide intervals mean loose estimations, while narrow intervals

mean accurate estimations

• A data dependent interval [l(X1, . . . , Xn), u(X1, . . . , Xn)]

• Confidence Interval (C.I.) P (θ∗ ∈ [l(X1, . . . , Xn), u(X1, . . . , Xn)]) ≥
1− α

• 1− α is the confidence level

• larger α leads to wider interval, in general.

• Long-run frequency justification
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Designing C.I. for ϕ(θ)

• pivotal quantity for ϕ(θ): A function g such that g(X1, . . . , Xn, ϕ(θ∗))
has a fixed distribution that doesn’t depend on θ∗

• No matter what is the true parameter, g follows a distribution

Gn

• For this distribution, there always exist some constants g1
and g2 such that

Pr(g1 ≤ Gn ≤ g2) ≥ 1− α

• Equivalently

Pr(g1 ≤ g(X1, . . . , Xn, ϕ(θ
∗)) ≤ g2) ≥ 1− α

• g1 ≤ g(X1, . . . , Xn, ϕ(θ∗)) ≤ g2 means ϕ(θ∗) ∈ {ϕ : g1 ≤
g(X1, . . . , Xn, ϕ) ≤ g2}.
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Designing C.I. for ϕ(θ)

Combining all above together, we have that

Pr(ϕ(θ∗) ∈ {ϕ : g1 ≤ g(X1, . . . , Xn, ϕ) ≤ g2}) ≥ 1− α,

i.e., {ϕ : g1 ≤ g(X1, . . . , Xn, ϕ) ≤ g2} is the 1− α C.I. for ϕ(θ)
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Example z-C.I.

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ20) with

known σ20 and unknown µ

• pivotal quantity:
√
n(X̄ − µ∗)/σ0

• pivotal distribution: standard normal distribution

• choices of g1, g2 = ±z1−α/2 (not unique choices)

• {µ : |
√
n(X̄ − µ)/σ0| ≤ z1−α/2} = X̄ ± z1−α/2σ0/

√
n
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Example t-C.I.

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ2) with

unknown σ20 and unknown µ. Want a C.I. for µ

• pivotal quantity:
√
n(X̄−µ∗)/S, where S =

√
S2 is the sample

standard deviation

• pivotal distribution: tn−1 distribution

• choices of g1, g2 = ±tn−1,1−α/2 (not unique choices)

• {µ : |
√
n(X̄ − µ)/S| ≤ tn−1,1−α/2} = X̄ ± tn−1,1−α/2S/

√
n
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Example χ2-C.I.

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ2) with

unknown σ20 and unknown µ. Want a C.I. for σ2

• pivotal quantity: (n− 1)S2/σ∗2

• pivotal distribution: χ2
n−1 distribution

• choices of g1, g2 = χ2
n−1,α/2, χ

2
n−1,1−α/2 (not unique choices)

• {σ2 : χ2
n−1,α/2 ≤ (n− 1)S2/σ2 ≤ χ2

n−1,1−α/2}
= [(n− 1)S2/χ2

n−1,1−α/2, (n− 1)S2/χ2
n−1,α/2]
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Pivotal quantity for local/scale parameter

• θ is a location parameter if X ∼ fθ implies that X − θ ∼ f0

• X can be represented as Z+θ where Z follow some reference
distribution

• θ is a scale parameter if X ∼ fθ implies that X/θ ∼ f0

• X can be represented as Zθ where Z follow some reference
distribution

• (θ1, θ2) is location and scale parameters X can be represented
as θ2Z + θ1 where Z follow some reference distribution

• Example: µ and σ2 of the normal family, 1/λ of the expo-
nential family, 1/β for Gamma distribution family
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Pivotal quantity for local/scale parameter

• θ is a location parameter, then (any statistic about data cen-

ter) −θ is a pivotal quantity, such as X̄−θ or (median of data)−
θ

• θ is a scale, then (any statistic about data dispersion) /θ is

a pivotal quantity, such as S/θ or (IQR of data)/θ or

(Range of data)/θ

• (θ1, θ2) is location and scale parameters, then

– ((any statistic about data center) - θ)/(any statistic about

data dispersion) is a pivotal quantity for θ1

– (any statistic about data dispersion) / θ2 is a pivotal quan-

tity for θ2
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Example C.I. for exponential distribution

Observe X1, . . . , Xn. Assume they come from a exponential dis-

tribution fλ(x) = λ exp−λx

• pivotal quantity: S/(1/λ)

• what is the pivotal distribution? and the corresponding g1, g2?

• Use simulation: when n = 10, α = 5%, g1, g2 ≈ 0.37,1.51

• {λ : 0.37 ≤ S/(1/λ) ≤ 1.51} = [0.37/S,1.51/S]
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Designing Approximate C.I.

C.I. requires a probability statement while CLT gives an approx-

imation for probability. So we aim to use CLT to construct C.I.

Example: Observe X1, . . . , Xn. Assume they come from a Bernoulli

distribution with unknown p.

• Consider
√
n(X̄ − p∗)/

√
p∗(1− p∗)

• Is it a pivotal quantity? Ans: No, even its range depends on

p∗

• By CLT:
√
n(X̄ − p∗)/

√
p∗(1− p∗) ≈ N(0,1), this implies that

Pr(zα/2 ≤
√
n(X̄ − p∗)/

√
p∗(1− p∗) ≤ z1−α/2) ≈ 1− α

• Approximate C.I. {p : |
√
n(X̄ − p)/

√
p(1− p)| ≤ z1−α/2}
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• Hate to solve a quadratic function? Add an additional ap-

proximation

• if we have a consistent estimator p̂ such as X̄, i.e.,√
p∗(1− p∗)/

√
p̂(1− p̂) → 1

• Combine the above with CLT:
√
n(X̄−p∗)/

√
p̂(1− p̂) ≈ N(0,1).

• Repeat the previous procedure, we get an approximate C.I.

{p : |
√
n(X̄−p)/

√
p̂(1− p̂)| ≤ z1−α/2} = X̄±z1−α/2

√
p̂(1− p̂)/n

2-21



General Result of C.I. of mean

Observe X1, . . . , Xn. Assume they come from a distribution fθ
with unknown θ. We need a C.I. for the mean of this distribution

• Denote true mean µ∗ and the true standard deviation is σ(θ∗)

• we have a consistent estimator θ̂

• By CLT:
√
n(X̄−µ∗)/σ(θ̂) ≈

√
n(X̄−µ∗)/σ(θ∗) ≈ N(0,1), this

implies that Pr(zα/2 ≤
√
n(X̄ − µ∗)/σ(θ̂) ≤ z1−α/2) ≈ 1− α

• Approximate C.I. {µ : |
√
n(X̄ − µ)/σ(θ̂)| ≤ z1−α/2} = X̄ ±

z1−α/2σ(θ̂)/
√
n

• Exercise: C.I. for mean of Poisson or exponential modelings
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Wald C.I.

Observe X1, . . . , Xn. Assume they come from a distribution fθ
with unknown θ.

• Let θ̂ be the MLE estimation

• θ̂ is consistent

•
√
n(θ̂ − θ∗) ≈ N(0, τ2(θ∗))

• Thus
√
n(θ̂ − θ∗)/τ(θ̂) ≈

√
n(θ̂ − θ∗)/τ(θ∗) ≈ N(0,1), this im-

plies that Pr(zα/2 ≤
√
n(θ̂ − θ∗)/τ(θ̂) ≤ z1−α/2) ≈ 1− α

• Approximate C.I. θ̂ ± z1−α/2τ(θ̂)/
√
n

• Most used C.I. for a general statistical modeling
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Designing Bootstrapping C.I.

Observe X1, . . . , Xn. Assume they come from a distribution fθ
with unknown θ. Assume that we have a good consistent esti-

mator θ̂ for θ, based on which we want to construct a C.I. But

we have difficulties to derive the (approximate) distribution of θ̂

• To find a valide confidence interval [θ̂ − a, θ̂ + b] for some

constants a, b, i.e., Pr(θ∗ ∈ [θ̂ − a, θ̂ + b]) = 1− α.

• Eqivalently

Pr(θ̂ ∈ [θ∗ − b, θ∗ + a]) = 1− α

• If we know the distribution of θ̂ (which changes w.r.t. θ∗),
then one can determine a and b (which also depends on θ∗)
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Use simulation to determine the distribution of θ̂

• Sample X
(b)
1 , . . . , X

(b)
n ∼ fθ∗ for b = 1, . . . , B with very large B

(Bootstrapping samples)

• θ̂(b) = θ̂(X(b)
1 , . . . , X

(b)
n ) for b = 1, . . . , B (Bootstrapping esti-

mates)

• θ̂(b) are iid samples follow the same distribution about which

we want to know.

• Let [θ∗ − b, θ∗ + a] be the lower/upper sample quantiles of

θ̂(b)’s.

Unfortunately, the above procedure requires that we know θ∗
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Parametric Bootstrapping

Repeat the above procedure with some other θ̃, which is close
to θ∗. The a, b values obtained under θ̃ should be close to the
a, b values under θ∗.

An immediate choice θ̃ = θ̂ = θ̂(X1, . . . , Xn), since it is consistent.

Bootstrapping Procedure:

• Sample X
(b)
1 , . . . , X

(b)
n ∼ fθ̂ for b = 1, . . . , B with very large B

(Bootstrapping samples)

• θ̂(b) = θ̂(X(b)
1 , . . . , X

(b)
n ) for b = 1, . . . , B (Bootstrapping esti-

mates)

• Let [θ̂−b, θ̂+a] be the lower/upper sample quantiles of θ̂(b)’s.

• That is, we first sort all θ̂b, then θ̂−b = θ̂(⌊B∗α/2⌋) and θ̂+a =
θ̂(⌈B∗(1−α/2)⌉)

• So, the final C.I. is [2θ̂ − θ̂(⌈B∗(1−α/2)⌉),2θ̂ − θ̂(⌊B∗α/2⌋)]

2-26



Last Thinking

For the same statistical problem, there may exist several different

valid C.I. formulas. To obtain an accurate C.I. (i.e., narrow

interval), can we compute all possible intervals and then pick

the narrowest one?

For example, both z and t C.I.s can be applied to normal with

a known variance problem. Given a data set, can we compute

both z and t C.I.s and then use the narrower one for statistical

inferences?
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Chapter Review

• Statistical Modeling

• Point estimations and its evaluation

• Two popular point estimations

• Confidence Interval

• Three popular confidence intervals
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