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Random Variable (r.v.)

• Random variables are the numerical outcomes of random

events

– examples:

∗ number of heads in a coin flipping experiment

∗ quality score of a batch of products

– Plays an important role in statistical theory

– Source of randomness: measurement error, sampling, treat-

ment variation...

• Random is not arbitrary.
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Characterize the randomness

Cumulative Distribution Function of r.v. X

• FX(t) = P (X ≤ t).

• Properties

– limt→∞ FX(t) = 1 and limt→−∞ FX(t) = 0

– FX is non-decreasing

– FX is right-continuous

• Immediate result

– P (a < X ≤ b) = FX(b)− FX(a)

– P (X = a) = FX(a)− limt↑a FX(t)
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Types of CDF

Step function – discrete random variable

Piece-wise constant function, with countable-many jump points
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Types of CDF

Continuously differentiable function – continuous random vari-

able

Smoothly increasing function
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Discrete Random Variable

• Jump points: x1,...,xn,...

• Jump heights: p1,...,pn,..., with
∑

pi = 1

• Probability Mass function (PMF): Pr(X = xi) = pi

Expected value of h(X):

Eh(X) =
∑

pih(xi),

given
∑

pi|h(xi)| < ∞.

Mean value of X, i.e., E(X) measures the average outcomes. It

reflects the center of the distribution given the dispersion of the

distribution is under control.

For example: X with PMF Pr(X = n) = 3/[n2π2] for all non-zero

integer n doesn’t have a mean.
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Unifrom Discrete Distribution

P (X = xi) = constant

• Equal-chance outcomes

• Counting problem: P (X ∈ A) = |A|/|X |
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Bernoulli-related Distributions

P (X = 1) = p and P (X = 0) = 1− p

related distribution

• repeated Bernoulli experiment with the same p

• Binomial/ Negative Binomial/ Geometric distributions

• Closeness under addition
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Poisson Distribution

P (X = n) = λne−λ/n! for all non-negative integer n

• Closeness under addition

• Used to model rare events: how many 100-year floods can

occur during 100 years?

• Used to model point processes: how many customers within

a time interval

1-8



Continuous Random Variable

• Pr(X = x) = 0 for any x

• Pr(X ∈ x± ϵ) > 0 if F ′
X(x) ̸= 0

• Pr(X ∈ [a, b]) = FX(b)− FX(a) =
∫ b
a F ′

X(t)dt

• probability density function (pdf) fX(t) = F ′
X(t).

Expected value of h(X)

Eh(X) =
∫

h(t)fX(t)dt,

given
∫
|h(t)|fX(t)dt < ∞.

Example: Cauchy r.v. with pdf fX(x) = 1/[π(1 + x2)] for all

x ∈ R doesn’t have a mean.
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Normal Distribution

fX(x) =
1√
2πσ

exp(−(x− µ)2/2σ2)

• Mean is µ and variance is σ2

• Bell shaped distribution density curve

• One of the most commonly used distribution to model ran-

dom noise

• Closeness to addition (even without independence)
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χ2
k distribution

Definition: the sum of k independent squared standard normal

random variables

• distribution of non-negative values

• the definition can generalized to non-integer k

• Mean is k and variance is 2k

• often relates to the inferences about variance parameters

• reduces to exponential distribution if k = 2
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t distribution

Definition:

tk =
N(0,12)√

χ2
k/k

for indep normal and chi-square variables

• reduce to Cauchy distribution if k = 1

• reduce to Normal distribution if k = ∞

• Similar bell shaped distribution as Normal, but totally differ-

ent tail behavior

• Commonly used for making inference about mean parameters

under unknown variance.
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F distribution

Definition:

Fm,n =
χ2
m/m

χ2
n/n

for two indep chi-square variables

• Relationship to t distribution F1,k = t2k

• Commonly used for making inference about fitting or variance

comparison
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Multiple Variables

Given d random r.v.s X1, ..., Xd

• Joint CDF F (t1, . . . , td) = Pr(Xi ≤ ti for all i)

• Joint pdf f(t1, . . . , td) = ∂dF/∂t1 . . . ∂td

• Joint pmf p(t1, . . . , td) = Pr(Xi = ti for all i)

• Expected value

Eh(X1, ..., Xd) =
∫

h(t1, . . . , td)f(t1, . . . , td)dt1 . . . dtd

• Coherence between joint and marginal distribution definitions

• Conditional distribution = joint distribution / marginal dis-
tribution

f(x1, . . . , xp|xp+1, . . . , xd) = f(x1, . . . , xd)/f(xp+1, . . . , xd)
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Independence and Covariance

• Independence: f(t1, t2) = f(t1)× f(t2) or

f(t1, t2) ∝ g(t1)× h(t2)

• Covariance: Cov(X1, X2) = E{[X1 − E(X1)]}{[X2 − E(X2)]}

• V ar(X1) = Cov(X1, X1)

• Correlation: Cor(X1, X2) = Cov(X1, X2)/
√
V ar(X1)V ar(X2)

• Cor(X1, X2) = ±1 means X1 = aX2 + b for non-zero a

• Independence implies 0 covariance

• 0 covariance doesn’t imply independence. E.g. f(x1, x2) ∝
exp{−

√
x21 + x22}
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Sum of Variables

• X1 −X2 = X1 + (−X2)

• E(
∑

Xi) =
∑

E(Xi)

• V ar(
∑

Xi) =
∑

V ar(Xi) + 2
∑

i̸=j Cov(Xi, Xj)

• Sample mean of i.i.d. r.v.’s Xi: X̄ =
∑n

i=1
1
nXi

• E(X̄) = E(Xi)

• V ar(X̄) = var(Xi)/n
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Large sample properties

Sample mean of i.i.d. r.v.’s Xi: X̄ =
∑n

i=1
1
nXi

• Law of Large Numbers:

If E(Xi) = µ, then as n increases, X̄ converges (stochasti-

cally) towards µ.

• Sample mean is a good guess for population mean, when n is

large; t distribution become normal distribution as k increases

• Central Limit Theory

If E(Xi) = µ and V ar(Xi) = σ2, then as n increases, the

distribution of
√
n(X̄ − µ)/σ converges to the distribution of

N(0,12).

• probability calculation about X̄ can be approximated by CLT:

X̄ ≈ N(µ, σ2/n)
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Vector/Matrix Form

Random Vector X = (X1, . . . , Xd)
⊤

• E(X) = (E(X1), . . . , E(Xd))
′

• Covariance Matrix Cov(X,Y ) = E{[X−E(X)][Y −E(Y )]⊤} =

[Cov(Xi, Yj)]i,j

• V ar(X) = Cov(X,X)

Vector/Matrix form handles linear combination well

• E(AX) = AE(X) where A is constant matrix or row

• Cov(AX,BY ) = ACov(X,Y )B⊤ where A and B are constant

matrix or row

• Recovers results in previous slides
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Multivariate Normal Distribution N(µ,Σ)

X ∈ Rd with pdf

f(x) = (2π)−d/2[det(Σ)]−1/2 exp{−(x− µ)⊤Σ−1(x− µ)/2}

• E(X) = µ

• Cov(X) = Σ

• Any marginal or conditional distributions are still normal dis-

tributions

• For Normal distributions, no correlation = independence (since

0 covariance leads to a proper factorization of the pdf)

• Connect to χ2 distribution: if X ∼ N(0, σ2Id), then X⊤X/σ2 =

χ2
d

1-19



Multivariate Normal Distribution N(µ,Σ)

• Any linear mapping of an multivariate normal r.v. is still

normally distributed

• AX + b ∼ N(Aµ+ b, AΣA⊤)

• What is the distribution of sample mean of i.i.d. univariate

normal r.v.’s?

• AX and BX are independent iff AΣB⊤ = 0
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Distribution of sample mean/variance of iid normal

Let X1, ..., Xn be iid normal r.v.s following N(µ, σ2) distribution.

Then what is the joint distribution of sample mean X̄ and sample

variance S2 =
∑
(Xi − X̄)2/(n− 1)?

Ans: (i)X̄ ∼ N(µ, σ2/n), (ii)(n− 1)S2/σ2 ∼ χ2
n−1 and (iii) X̄ and

S2 are independent
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Higher level understanding

• Linear projection from data to the parameter space

• Orthogonal (hence independent) decomposition of data vec-

tor

• Similar results appear in more complicated settings (e.g., re-

gression models)
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Chapter Review

• Characterization of randomness

• Different type of distributions

• Mean, variance, expected value

• Normal and Normal related distribution

• Multivariate Normal distributions
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