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Random Variable (r.v.)|

e Random variables are the numerical outcomes of random
events

— examples:
x humber of heads in a coin flipping experiment
* quality score of a batch of products

— Plays an important role in statistical theory

— Source of randomness: measurement error, sampling, treat-
ment variation...

e Random is not arbitrary.
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Characterize the randomness|

Cumulative Distribution Function of r.v. X

o ['x(t) = P(X <1t).

e Properties
— limi o Fx(t) =1 and limyy oo Fix(t) =0
— F'x is non-decreasing

— F'x is right-continuous

e Immediate result
— Pla< X <b) = Fx(b) — Fx(a)
— P(X = a) = Fx(a) — limyy, Fx (1)
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Types of CDF

Step function — discrete random variable

0.50

probability

Piece-wise constant function, with countable-many jump points
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Types of CDF

Continuously differentiable function — continuous random vari-
able

10

0.8 -

0.6 1
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0.2 1

0.0 1

Smoothly increasing function
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Discrete Random Variable|

e Jump points: xz1,...,2n,...
e Jump heights: pq,...,pn,..., with > p, =1

e Probability Mass function (PMF): Pr(X = x;) = p;

Expected value of h(X):

Eh(X) =) pih(z;),
given 3> p;lh(z;)| < oo.

Mean value of X, i.e., E(X) measures the average outcomes. It
reflects the center of the distribution given the dispersion of the
distribution is under control.

For example: X with PMF Pr(X = n) = 3/[n?xn?] for all non-zero
integer n doesn’'t have a mean.

1-5



Unifrom Discrete Distribution

P(X = x;) = constant

e Equal-chance outcomes

e Counting problem: P(X € A) = |A|/|X|
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Bernoulli-related Distributions

P(X=1)=pand P(X=0)=1-p
related distribution
e repeated Bernoulli experiment with the same p
e Binomial/ Negative Binomial/ Geometric distributions

e Closeness under addition
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Poisson Distribution

P(X =n)= )\”e_/\/n! for all non-negative integer n

e Closeness under addition

e Used to model rare events: how many 100-year floods can
occur during 100 years?

e Used to model point processes: how many customers within
a time interval
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Continuous Random Variable|

e Pr(X =2x2)=0 for any x
e Pr(X exte)>0if Fyy(z) #0

o Pr(X € [a,b]) = Fx(b) — Fx(a) = [? Fi (t)dt

e probability density function (pdf) fx(t) = F%(t).

Expected value of h(X)

ER(X) = [ h(®)fx (D)t
given [|h(t)|fx (t)dt < oo.

Example: Cauchy r.v. with pdf fy(z) = 1/[x(1 4 z2)] for all

r € R doesn’'t have a mean.
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Normal Distribution

1

fx(x) = Nor exp(—(x — p)?/20%)

e Mean is p and variance is o2

e Bell shaped distribution density curve

e One of the most commonly used distribution to model ran-
dom noise

e Closeness to addition (even without independence)
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x: distribution

Definition: the sum of k independent squared standard normal
random variables

e distribution of non-negative values

e the definition can generalized to non-integer k

e Mean is k£ and variance is 2k

e Often relates to the inferences about variance parameters

e reduces to exponential distribution if k =2
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t distribution

Definition:
__ N(0,12)

t
’ X3/ k

for indep normal and chi-square variables

e reduce to Cauchy distribution if k=1
e reduce to Normal distribution if £k = oo

e Similar bell shaped distribution as Normal, but totally differ-
ent tail behavior

e Commonly used for making inference about mean parameters
under unknown variance.
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F _distribution

Definition:

o X/m
m.n — 2
X7/M

Y

for two indep chi-square variables

e Relationship to t distribution Fy j = t2

e Commonly used for making inference about fitting or variance
comparison
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Multiple Variables I

Given d random r.v.s Xq,..., Xy

e Joint CDF F(tq1,...,ty) = Pr(X; <t; for all 7)
e Joint pdf f(t1,...,ty) = 04F/dt1...0ty

e Joint pmf p(tq,...,ty) = Pr(X; =t; for all i)
e Expected value

Eh(Xq,..., X)) = /h(tl,...,td)f(tl,...,td)dtl . dty

e Coherence between joint and marginal distribution definitions

e Conditional distribution = joint distribution / marginal dis-
tribution

P, plpgts s ma) = F (@12 [ F (@it T )
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Independence and Covariance

e Independence: f(t1,t2) = f(t1) x f(tp) or
f(t1,t2) o< g(t1) X h(t2)

e Covariance: Cov(X1, X5) = E{[X1 — E(X)]IH[X> — E(X2)]}

e Var(Xq1) = Cov(Xq1,Xq)

e Correlation: Cor(Xq1,X5) = C’ov(Xl,XQ)/\/VaT(Xl)Var(XQ)

o Cor(Xq1,X>) = =41 means X1 = aX> + b for non-zero a

e Independence implies O covariance

e 0 covariance doesn't imply independence. E.g. f(x1,x2)
exp{—\/x% 4+ :13%}
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Sum of Variables

o X1 —Xo=X1+(—X>2)
o E(}X;) =Y E(X;)

o Var(¥Y X;) = X Var(X;) + 23« Cov(Xy, Xj)
e Sample mean of i.i.d. rv.'s X;p X =0, 1X;

o E(X) = E(X))

o Var(X) = var(X;)/n
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Large sample properties

Sample mean of i.i.d. r.v.’'s X;: X =y, LX,

e Law of Large Numbers:
If E(X;) = p, then as n increases, X converges (stochasti-
cally) towards pu.

e Sample mean is a good guess for population mean, when n is
large; t distribution become normal distribution as k increases

e Central Limit Theory
If E(X;) = p and Var(X;) = o2, then as n increases, the
distribution of /n(X — u)/o converges to the distribution of
N(0,12).

e probability calculation about X can be approximated by CLT:
X ~ N(p,02/n)
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Vector/Matrix Form |

Random Vector X = (X1,...,X,)"

o H(X)=(E(X1),...,E(Xp)

e Covariance Matrix Cov(X,Y) = E{[X —E(X)][Y -E(Y)]'} =
[Cov(X;, Y))]i j

o Var(X) = Cov(X, X)
Vector/Matrix form handles linear combination well

o FH(AX) = AFE(X) where A is constant matrix or row

e Cov(AX,BY) = ACov(X,Y)B' where A and B are constant
matrix or row

e Recovers results in previous slides
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'Multivariate Normal Distribution N(u,X)

X € RY with pdf

f(z) = (2m)~¥?[det()] "2 exp{~(z — p) "= (= — p)/2}

e E(X)=1p
e Cov(X)=X

e Any marginal or conditional distributions are still normal dis-
tributions

e For Normal distributions, no correlation = independence (since
O covariance leads to a proper factorization of the pdf)

e Connect to x2 distribution: if X ~ N(0,c21;), then X ' X/o2 =
,
Xd
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Multivariate Normal Distribution N(M,Z)l

Any linear mapping of an multivariate normal r.v. is still

normally distributed
AX 4+ b~ N(Au+ b, AZAT)

What is the distribution of sample mean of i.i.d.
normal r.v.'s?

AX and BX are independent iff AXB' =0

univariate
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\ Distribution of sample mean/variance of iid normall

Let X4, ..., X, beiid normal r.v.s following N (u, 02) distribution.
Then what is the joint distribution of sample mean X and sample
variance S22 =Y (X; — X)2/(n—1)?

Ans: ()X ~ N(p,02/n), (i)(n—1)S?/0? ~ x2_; and (iii) X and
S2 are independent
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Higher level understanding

e L inear projection from data to the parameter space

e Orthogonal (hence independent) decomposition of data vec-
tor

e Similar results appear in more complicated settings (e.qg., re-
gression models)
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‘Chapter Review|

Characterization of randomness
Different type of distributions

Mean, variance, expected value
Normal and Normal related distribution

Multivariate Normal distributions
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