

HOMEWORK#2

DUE ON MIDNIGHT DEC 31

Please email your homework (scanned handwritten solution or typed solution) to my email address with subject "HW 2 of NCKU course"

1. An experiment tries to compare the typing efficiency of two keyboards denoted by A and B . One typist uses the keyboards on six different manuscripts, denoted by 1-6.

Let y be the amount of time used to type up a manuscript. Note that y depends on keyboard, manuscript, whether the manuscript has already been typed, and experimental error. Let μ_A and μ_B denote the effects of keyboard A and B respectively, τ_i the effect of manuscript i for $i = 1, 2, 3, 4, 5, 6$ and ϵ denotes the experimental error. Let α_l denote the learning effect. We are interested in estimating the difference between μ_B and μ_A . Consider a design as follows:

$$1.A - B; 2.B - A; 3.A - B; 4.B - A; 5.A - B; 6.A - B.$$

(For the 1st manuscript, the typist tries keyboard A first, then tries keyboard B.) The statistical model for the amount of time for 1st manuscript with keyboard A, denotes by y_{1A} is

$$y_{1A} = \gamma + \mu_A + \tau_1 + \epsilon_{1A},$$

and the model for the amount of time used for 1st manuscript with keyboard B is

$$y_{1B} = \gamma + \mu_B + \tau_1 + \alpha_l + \epsilon_{1B},$$

where γ is some constant value.

- Is α_l positive or negative? Why it is not included in first model?
 - Write down the statistical models for the other runs.
 - Is $(\sum_{i=1}^6 y_{iA} - \sum_{i=1}^6 y_{iB})/6$ a good estimate for $\mu_A - \mu_B$
 - Please propose a better design.
2. A 2^{5-2} design is defined by $\mathbf{D} = \mathbf{AC}$, $\mathbf{E} = \mathbf{BC}$.
 - Find its defining words and resolution.
 - In the course of the analysis of this experiment, it is thought that factor \mathbf{E} and all interactions involving \mathbf{E} are negligible. In addition to estimating the four main effects, there are still three degrees of freedom left. What two-factor interactions can be estimated with these three degrees of freedom? Here an effect is considered to be estimable, if it does not alias with any same-order or lower-order interaction effects.
 3. Consider a linear regression model with one x variable and no intercept, i.e., $Y = \beta X + \epsilon$, where the noise satisfying $\text{var}(\epsilon) = \sigma^2$. Given observations $(x_1, y_1), \dots, (x_n, y_n)$

- (a) What is the least square estimation of β ? That is to solve the minimization of $\sum(y_i - x_i\beta)^2$ w.r.t. β .
- (b) What is mean and variance of your estimation?
- (c) Given a new $x_{n+1} = 10$. What is your prediction for y_{n+1} ? what is the mean and variance of the prediction?