HOMEWORK#1

Due on 12PM (noon) May 22

Please email your homework (scanned handwritten solution or typed solution) to my email address with subject "HW 1 of NCKU course"

- 1. If $X_i \sim N(\mu, i * \sigma^2)$ for some unknown μ and $\sigma^2 > 0$, for i = 1, ..., n. Define $\overline{X} = \sum X_i/n$ and $S^2 = \sum (X_i \overline{X})^2/(n-1)$.
 - What is the distribution of \overline{X} ? Does it converge to μ ? (Note that X_i 's have different variance, hence Law of Large Number doesn't hold here)
 - Define a weighted average $\bar{X}_w = \sum c_i X_i$ where $c_i = (1/i) / \sum_{i=1}^n (1/i)$. What is distribution of $\bar{X}_w = \sum c_i X_i$? What is the its MSE as an estimator of μ ?
 - Please compare \bar{X} and \bar{X}_w . Which one is a better estimation of μ .
 - Show that \bar{X}_w is independent to S^2 (Hint: show that \bar{X}_w is independent to $X_i \bar{X}$ for any i)
- 2. Let X_i (i = 1, ..., n) be random variables following $Bin(m, p_0)$ distribution, where p_0 is known but m is an unknown parameter
 - Design a consistent estimator for m
 - Define an approximate confidence interval for m based on central limit theory
- 3. Given **one** observation $X \sim \text{Unif}(\theta, \theta + 1)$, one wants to test $H_0: \theta \leq 0$ vs $H_1: \theta > 0$
 - Please design a reasonable reject region
 - For your reject region, please derive the corresponding power function $\beta(\theta)$.
- 4. An experiment tries to compare the typing efficiency of two keyboards denoted by A and B. One typist uses the keyboards on six different manuscripts, denoted by 1-6.

Let y be the amout of time used to type up a manuscript. Note that y depends on keyboard, manuscript, whether the manuscript has already been typed, and experimental error. Let μ_A and μ_B denote the effects of keyboard A and B respectively, τ_i the effect of manuscript i for i = 1, 2, 3, 4, 5, 6 and ϵ denotes the experimental error. Let α_l denote the learning effect. We are interested in estimating the difference between μ_B and μ_A . Consider a design as follows:

$$1.A - B; 2.B - A; 3.A - B; 4.B - A; 5.A - B; 6.A - B.$$

(For the 1st manuscript, the typist tries keyboard A first, then tries keyboard B.) The statistical model for the amount of time for 1st manuscript with keyboard A, denotes by y_{1A} is

$$y_{1A} = \gamma + \mu_A + \tau_1 + \epsilon_{1A},$$

and the model for the amount of time used for 1st manuscript with keyboard B is

$$y_{1B} = \gamma + \mu_B + \tau_1 + \alpha_l + \epsilon_{1B},$$

where γ is some constant value.

- Is α_l positive or negative? Why it is not included in first model?
- Write down the statistical models for the other runs.
- Is $(\sum_{i=1}^{6} y_{iA} \sum_{i=1}^{6} y_{iB})/6$ a good estimate for $\mu_A \mu_B$
- Please propose a better design.