
Stat 526 Assignment #11

Nonparametric Regression and Additive Models

READING - Faraway Chapters 14 and 15

0. (5 pts) Name

1. (7 pts) Faraway Chapter 13 Exercise 2

a) Since the number remains constant over the years, I decided to plot the percent of individuals in
each category. That way we can directly compare the boys and girls. The response categories are
1=never used, 2=used no more than once a month, and 3=used more than once a month. Although
the book says there were 117 boys, the data set has counts for only 116.

In both cases, we see a steady increase in the percent of 3’s and decline in 1’s. For the girls there is
also an increase in 2’s but for the boys it is rather constant, especially for the last three to four years.
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b) Getting the data into long form is required in order to fit the GLMMs. Below is the summary of the
model fit with sex and year (numeric) and their interaction in the model. We could consider a random
coefficients model, but I just included ID as a random effect here.

Generalized linear mixed model fit by maximum likelihood (Adaptive

Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod]

Formula: outcome1 ~ factor(sex) * yr + (1 | id)

AIC BIC logLik deviance df.resid

1004.4 1029.7 -497.2 994.4 1175

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 8.182 2.86

Number of obs: 1180, groups: id, 236



Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.3953 0.5267 -8.345 < 2e-16 ***

factor(sex)2 -1.5934 0.7341 -2.171 0.030 *

yr 0.8645 0.1127 7.671 1.7e-14 ***

factor(sex)2:yr 0.1553 0.1623 0.957 0.339

Girls are less likely to use marijuana than boys (β̂ = −1.6, P = 0.03). This can also be seen in the
percentage bar chart above. The percent of blue and green in each year is always larger for the boys
than for girls. There is a strong year effect but it does not look like this linear rate varies across sex.

c) If we remove sex from the model, we also remove the interaction. The following summarizes the
test of whether we can remove sex from the model. The results suggest we need to leave sex in the
model.

> anova(mod1,mod2)

Models:

mod2: outcome1 ~ yr + (1 | id)

mod1: outcome1 ~ factor(sex) * yr + (1 | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

mod2 3 1006.7 1021.9 -500.35 1000.71

mod1 5 1004.4 1029.7 -497.18 994.35 6.3575 2 0.04164 *

d) If we treat year as a factor variable and also include the interaction, we run into some warnings
about convergence. This is not surprising given that this model would be the saturated GLM model.
If we drop the interaction term, the model converges. Here are those results.

Generalized linear mixed model fit by maximum likelihood (Adaptive

Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod]

Formula: outcome1 ~ factor(sex) + year + (1 | id)

AIC BIC logLik deviance df.resid

997.3 1032.8 -491.6 983.3 1173

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 8.456 2.908

Number of obs: 1180, groups: id, 236

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.3823 0.5053 -8.673 < 2e-16 ***

factor(sex)2 -1.0642 0.4583 -2.322 0.0202 *

yearY77 1.7245 0.4122 4.184 2.87e-05 ***

yearY78 3.0575 0.4235 7.220 5.19e-13 ***

yearY79 3.5087 0.4320 8.122 4.58e-16 ***

yearY80 4.2049 0.4494 9.357 < 2e-16 ***

The difference between boys and girls is still there. As far as the year effects, we see they are increasing
over time, which we should expect. The fit of this model has BIC 1032.8. The BIC for the model
treating year as numeric is 1023.6. This suggest it is reasonable to treat year as numeric.
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e) Finally, the GEE fit is shown below. I did not include the interaction and treated year as numeric.

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.28017 0.21715 110.262 <2e-16 ***

factor(sex)2 -0.48838 0.23373 4.366 0.0367 *

yr 0.47172 0.04435 113.134 <2e-16 ***

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 0.9571 0.08275

Correlation: Structure = exchangeable Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.4143 0.05796

We see that girls still have a lower probability of using marijuana but the effect is not as strong. This
is expected as the mean of the marginal distribution will be pulled more out into the tail compared to
the median.

2. (7 pts) A client is interested in predicting the number of Canada thistle seeds that germinate
under different conditions. She collects seeds from 20 different locations and randomly assigns
a proportion of them from each location to each of the conditions. Because she randomly chose
these locations, she is debating between a GEE and GLMM analysis. Describe the differences
between these two approaches and how she should choose between them.

The GEE analysis will focus on the population mean and the GLMM analysis will focus on the population
median (conditional mean). If she is interested in developing a model to predict the proportion at a
given site, the GLMM model would be more appropriate. If interested is a general prediction over sites,
the GEE would be acceptable.

3. (7 pts) Faraway Chapter 14 Exercise 1

a) A plot of the data is shown below on the left. Clearly the spread in gambling increases with income.
b) When fitting a kernel smoother to the data, the resulting curve is somewhat S-shaped.
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c) When we use a smoothing spline, the effective degrees of freedom is 2 and the resulting curve looks
very linear. When the df is increased to 6, we begin to see more of the S-shape again. I do not think
the automatic choice is effective here.
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d) The loess fit is shown below. It suggests a slight curvature. e) When you add a confidence band,
we see a linear model may be reasonable. The only reason one may consider something else is that
the gambling amount cannot be negative.
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4. (8 pts) Faraway Chapter 14 Exercise 2

a) Education runs from 0 to 18 years. To more clearly see all the incomes, I added jitter around the
years of education. There is still some overplotting but we clearly see that a majority of the sample
had at least 8 years of education. When using the log of income, we can more clearly see that the
most common years are 12 (high school), 13, 14, 16 (college) and 18 and there is a positive correlation
between the two variables.
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b) The effective degrees of freedom are roughly 18.5. The fit appears too sensitive to some of the
outlying values. After about 5 years, the fit looks quite linear. When fit on the log scale, the default
choice looks more reasonable but maybe a little too wiggly.
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c) The default loess fit is strongly influenced by some early large values which makes the plot look
somewhat quadratic. I do not think this is a good fit. The fit to log income on other hand looks very
good.
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d) Because of the large outlying values in the early years, the median does a much better describing the
trend. The trend suggests fitting a a linear or quadratic model to log(y) and then back-transforming
using exp.
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5. (8 pts) Faraway Chapter 15 Exercise 1

a) The scatterplots in general show a positive relationship. The on exception is height, which has an
outlier but otherwise very little association.
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b) In fitting the linear model, we find one observation (Case 42) that is reasonably influential. This
is the very short individual (less than 3 ft tall) and the value may be a typo. Removing that case
leaves Case 39 near the border of being overly influential. Case 39 has very large weight, adipos, neck,
abdomin, thigh, biceps, hip, and knee. I’ll take this individual out but it is debatable whether to do
this. After that, the remaining values appear to behave well.
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Removing insignificant variables using the step and drop1 functions, my final model is

Call: lm(formula = siri ~ age + adipos + chest + abdom + wrist, data = fatr)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.45616 6.10750 -0.893 0.372548

age 0.08740 0.02301 3.799 0.000184 ***

adipos 0.56174 0.23768 2.363 0.018891 *

chest -0.22329 0.09406 -2.374 0.018374 *

abdom 0.75948 0.07708 9.854 < 2e-16 ***

wrist -2.26525 0.39321 -5.761 2.51e-08 ***

Residual standard error: 4.279 on 244 degrees of freedom

Multiple R-squared: 0.7391,Adjusted R-squared: 0.7338

F-statistic: 138.3 on 5 and 244 DF, p-value: < 2.2e-16

It has an R2 of almost 74% with abdominen being the most signficant.

c) Fitting an additive model to the full data set is shown below prior to insignificant values being
removed. The key difference is that hip is significant and adipos chest are not.

Formula:

siri ~ s(age) + s(weight) + s(height) + s(adipos) + s(neck) +

s(chest) + s(abdom) + s(hip) + s(thigh) + s(knee) + s(ankle) +

s(biceps) + s(forearm) + s(wrist)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.1508 0.2432 78.75 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(age) 5.470 6.620 2.163 0.042241 *

s(weight) 1.000 1.000 0.224 0.636773

s(height) 1.000 1.000 0.132 0.716415

s(adipos) 2.355 3.052 0.870 0.488354

s(neck) 1.669 2.103 2.520 0.101446

s(chest) 1.000 1.000 0.465 0.496235

s(abdom) 6.693 7.545 14.803 < 2e-16 ***

s(hip) 7.470 8.287 2.582 0.007360 **

s(thigh) 1.000 1.000 0.962 0.327671

s(knee) 1.452 1.785 0.357 0.578946

s(ankle) 2.843 3.503 0.863 0.598646

s(biceps) 4.746 5.763 2.427 0.047747 *

s(forearm) 1.000 1.000 1.935 0.165612

s(wrist) 1.768 2.219 7.617 0.000396 ***

R-sq.(adj) = 0.787 Deviance explained = 82.1%

GCV = 17.756 Scale est. = 14.904 n = 252
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d) The model identifies the same influential cases but the impact is reduced because of the relaxation of
linearity. In other words, the transformation is able to adjust and fit these cases well thereby reducing
their influence on the model. Below are several of the transformation plots. The most influential
variable is again abdomen.
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e) The additive model is using all the cases while the linear regression model involved eliminating two
unusual cases. Whether we include or exclude those them, the explained variation is about 82%, which
is much better.

f) Regardless of whether all cases are used or not, the two most nonlinear transformations are biceps
and hip. The test for hip using all the cases is shown below. It should not be made linear. If anything
a quadratic relationship may be more appropraite.

> anova(mod1,mod1a,test="F")

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 205.12 3152.8

2 213.49 3433.4 -8.3676 -280.63 2.2502 0.02329 *

6. (8 pts) Faraway Chapter 15 Exercise 3

a) For many of the predictors, 0’s are impossible so I replaced the 0’s with NA. This was done for
insulin, diastolic, bmi, glucose, diabetes, age and triceps. Note that a 0 for pregnant can be possible.
The plots below are for insulin before and after this switch. You can see that there is a more obvious
shift in insulin values for the two responses.
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The cases that are complete are those without any NAs. There are 393 of them. I took a random
sample of 100 complete cases and used the others for training. The following model results:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.711809 1.350832 -7.190 6.50e-13 ***

age 0.038369 0.022774 1.685 0.0920 .

diabetes 1.016323 0.462683 2.197 0.0281 *

bmi 0.059708 0.029770 2.006 0.0449 *

insulin -0.001338 0.001585 -0.844 0.3987

triceps 0.012411 0.019543 0.635 0.5254

diastolic -0.003051 0.013438 -0.227 0.8204

glucose 0.040522 0.006946 5.834 5.42e-09 ***

pregnant 0.091280 0.066345 1.376 0.1689

(375 observations deleted due to missingness)

This model correctly predicts 68 of the 78 0’s and 16 of the 22 1’s in the test sample. However, 375
of the cases are not used in the training sample due to missingness.

When I step down through models be removing the least significant, I end up with the following model:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.803923 0.688768 -12.782 < 2e-16 ***

diabetes 0.929599 0.296107 3.139 0.00169 **

bmi 0.089136 0.014569 6.118 9.47e-10 ***

glucose 0.033887 0.003364 10.074 < 2e-16 ***

pregnant 0.138111 0.027349 5.050 4.42e-07 ***

(11 observations deleted due to missingness)

This model uses all but 11 cases in the training set but its prediction is quite similar predicting 66 of
the 78 0’s correctly and 17 of the 22 1’s.

When I fit a GAM usng all the predictors, I end up with a model that predicts 65 of the 78 0’s and 16
of the 22 1’s. The reduced GAM is

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7715 0.1077 -7.162 7.94e-13 ***

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(age) 3.163 3.938 41.97 1.88e-08 ***
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s(diabetes) 2.302 2.889 16.77 0.000983 ***

s(glucose) 4.897 5.906 108.14 < 2e-16 ***

R-sq.(adj) = 0.328 Deviance explained = 28.7%

UBRE = -0.028103 Scale est. = 1 n = 668

This model predicts 66 of the 78 of the 0’s correctly and 16 of the 1’s. These results are all basically
the same. To better assess the models, it would be good to consider some sort of cross-validation were
the complete cases were split into say 5 folds and this procedure used for each of the folds.

############## Problem 1 ################

library(faraway)

head(potuse,n=30)

## Creating summary data set: 3 outcomes for each of 5 years by sex

sex = c(rep(rep(c("boys","girls"),3),5))

outcome = factor(c(rep(c(1,1,2,2,3,3),5)))

year = c(rep(76,6),rep(77,6),rep(78,6),rep(79,6),rep(80,6))

cnt = c(c(xtabs(count~sex+year.76,potuse)),c(xtabs(count~sex+year.77,potuse)),

c(xtabs(count~sex+year.78,potuse)),c(xtabs(count~sex+year.79,potuse)),

c(xtabs(count~sex+year.80,potuse)))

library(tigerstats)

perc = c(c(rowPerc(xtabs(count~sex+year.76,potuse))[,c(1:3)]),c(rowPerc(xtabs(count~sex+year.77,potuse))[,c(1:3)]),

c(rowPerc(xtabs(count~sex+year.78,potuse))[,c(1:3)]),c(rowPerc(xtabs(count~sex+year.79,potuse))[,c(1:3)]),

c(rowPerc(xtabs(count~sex+year.80,potuse))[,c(1:3)]))

year = c(rep(76,6),rep(77,6),rep(78,6),rep(79,6),rep(80,6))

parta = data.frame(year,cnt,sex,outcome,perc)

## Creating the bar graphs

library(ggplot2)

ggplot(data=parta, aes(x=year, y=cnt, fill=outcome))+geom_bar(stat="identity")+facet_grid(~sex)

ggplot(data=parta, aes(x=year, y=perc, fill=outcome))+geom_bar(stat="identity")+facet_grid(~sex)

## Getting the data into long format

##Filter out the zero counts

potuse1 = filter(potuse, count!=0)

potuse1= data.matrix(potuse1)

##There are 68 non-zero sequences (39 for sex=1 and 29 for sex=2)

##There are 116+120=236 total individuals

##Now create individual row for each subject

partb = matrix(0,nrow=236,ncol=7)

cnt=1

for(i in 1:length(potuse1[,1])){

for(j in 1:potuse1[i,7]){

partb[cnt,] = c(cnt,potuse1[i,c(1:6)])

cnt=cnt+1

}

}

partb = data.frame(partb)

##Now convert wide table into tall table using plyr and tidyr

library(plyr)

partb = rename(partb,c("X1"="id","X2"="sex","X3"="Y76","X4"="Y77","X5"="Y78","X6"="Y79","X7"="Y80"))

library(tidyr)

partb_long <- gather(partb, year, outcome, Y76:Y80, factor_key=TRUE)

partb_long = partb_long[with(partb_long,order(id,year)),]

partb_long$yr = rep(1:5,236)

partb_long$outcome1 = ifelse(partb_long$outcome==1,0,1)

library(lme4)

mod1 = glmer(outcome1~factor(sex)*yr+(1 | id), nAGQ=20, family="binomial", partb_long)

mod1a = glmer(outcome1~factor(sex)+yr+(1 | id), nAGQ=20, family="binomial", partb_long)

mod2 = glmer(outcome1~yr+(1 | id), nAGQ=20,family="binomial", partb_long)
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summary(mod1)

anova(mod1,mod2)

mod3 = glmer(outcome1~factor(sex)*year+(1 | id), nAGQ=20,family="binomial", partb_long)

mod3a = glmer(outcome1~factor(sex)+year+(1 | id), nAGQ=20,family="binomial", partb_long)

summary(mod3a)

library(geepack)

mod4 = geeglm(outcome1~factor(sex)+yr, family="binomial", id=id,

corstr="exchangeable",partb_long)

########### Exercise #3

library(faraway)

library(ggplot2)

ggplot(teengamb, aes(x=income, y=gamble))+geom_point()

library(sm)

with(teengamb, sm.regression(income,gamble,h=h.select(income,gamble)))

smooth.spline(teengamb$income,teengamb$gamble)

with(teengamb, {

plot(gamble~income,col=gray(0.5))

lines(smooth.spline(income,gamble),lty=2,col="red",lwd=2)

})

with(teengamb, {

plot(gamble~income,col=gray(0.5))

lines(smooth.spline(income,gamble,df=6),lty=2,col="red",lwd=2)

})

with(teengamb, {

plot(gamble~income,col=gray(0.5))

f = loess(gamble~income)

ford = order(f$x)

lines(f$x[ford],f$fitted[ford],lty=2,col="red")

})

ggplot(teengamb, aes(x=income, y=gamble))+ geom_point(alpha=0.25) +

geom_smooth(method="loess", span=0.75)

########### Exercise #4

ggplot(uswages, aes(x=jitter(educ), y=wage))+geom_point()

ggplot(uswages, aes(x=jitter(educ), y=log(wage)))+geom_point()

smooth.spline(uswages$educ,uswages$wage)

with(uswages, {

plot(wage~jitter(educ),col=gray(0.5))

lines(smooth.spline(educ,wage),lty=2,col="red",lwd=1.5)

})

smooth.spline(uswages$educ,log(uswages$wage))

with(uswages, {

plot(log(wage)~jitter(educ),col=gray(0.5))

lines(smooth.spline(educ,log(wage)),lty=2,col="red",lwd=1.5)

})

with(uswages, {

plot(wage~jitter(educ),col=gray(0.5))

f = loess(wage~educ)

ford = order(f$x)

lines(f$x[ford],f$fitted[ford],lty=2,col="red")

})
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with(uswages, {

plot(log(wage)~jitter(educ),col=gray(0.5))

f = loess(log(wage)~educ)

ford = order(f$x)

lines(f$x[ford],f$fitted[ford],lty=2,col="red")

})

wagemean = sapply(split(uswages$wage,uswages$educ),mean)

wagemedian = sapply(split(uswages$wage,uswages$educ),median)

plot(wagemean,type="b",las=1,ylab="wage",xlab="Education")

lines(wagemedian,col="red")

####Exercise #5

head(fat)

par(mfrow=c(3,5),mar=c(2.75,4.5,0.5,0.5),

mgp=c(1.5,.5,0),cex.lab=0.8,cex.axis=0.8)

attach(fat)

plot(age,siri,cex=0.9,las=1)

plot(weight,siri,cex=0.9)

plot(height,siri,cex=0.9)

plot(adipos,siri,cex=0.9)

plot(neck,siri,cex=0.9)

plot(chest,siri,cex=0.9)

plot(abdom,siri,cex=0.9)

plot(hip,siri,cex=0.9)

plot(thigh,siri,cex=0.9)

plot(knee,siri,cex=0.9)

plot(ankle,siri,cex=0.9)

plot(biceps,siri,cex=0.9)

plot(forearm,siri,cex=0.9)

plot(wrist,siri,cex=0.9)

par(mfrow=c(1,1),mar=c(5.1,4.1,4.1,2.1),

mgp=c(3,1,0),cex.lab=1,cex.axis=1)

mod1 = lm(siri~age+weight+height+adipos+neck+chest+abdom+hip+thigh+knee+ankle+biceps+forearm+wrist,fat)

plot(mod1)

fatr = fat[-c(39,42),]

mod1 = lm(siri~age+weight+height+adipos+neck+chest+abdom+hip+thigh+knee+ankle+biceps+forearm+wrist,fatr)

plot(mod1)

mod2 = step(mod1,fatr)

drop1(mod2,test="F")

mod2a = lm(siri~age+adipos+neck+chest+abdom+hip+wrist,fatr)

drop1(mod2a,test="F")

mod2a = lm(siri~age+adipos+chest+abdom+hip+wrist,fatr)

drop1(mod2a,test="F")

mod2a = lm(siri~age+adipos+chest+abdom+wrist,fatr)

drop1(mod2a,test="F")

summary(mod2a)

library(mgcv)

library(faraway)

mod1 = gam(siri~s(age)+s(weight)+s(height)+s(adipos)+s(neck)+

s(chest)+s(abdom)+s(hip)+s(thigh)+s(knee)+s(ankle)+

s(biceps)+s(forearm)+s(wrist),data=fat)

summary(mod1)

plot(mod1,residuals=TRUE)

plot(residuals(mod1)~predict(mod1),xlab="Predicted",ylab="Residual")

mod1a = gam(siri~s(age)+s(weight)+s(height)+s(adipos)+s(neck)+
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s(chest)+s(abdom)+hip+s(thigh)+s(knee)+s(ankle)+

s(biceps)+s(forearm)+s(wrist),data=fat)

anova(mod1,mod1a,test="F")

####Exercise #6

library(faraway)

attach(pima)

str(pima)

library(ggplot2)

ggplot(pima, aes(y=insulin, x=as.factor(test))) + geom_boxplot() + labs(x="Test result")

detach(pima)

pima1 = pima

pima1$insulin[pima1$insulin==0] = NA

attach(pima1)

ggplot(pima1, aes(y=insulin, x=as.factor(test))) + geom_boxplot() + labs(x="Test result")

pima1$diastolic[pima1$diastolic==0] = NA

pima1$triceps[pima1$triceps==0] = NA

pima1$bmi[pima1$bmi==0] = NA

pima1$diabetes[pima1$diabetes==0] = NA

pima1$age[pima1$age==0] = NA

pima1c = na.omit(pima1)

pima1i = pima1[!complete.cases(pima1),]

set.seed(612)

bc = sample(nrow(pima1c),100)

pima1test = pima1c[bc,]

head(pima1test)

pima1training = rbind(pima1c[-bc,],pima1i)

mod2 = glm(test~age+diabetes+bmi+insulin+triceps+diastolic+glucose+pregnant,family=binomial,pima1training)

summary(mod2)

bc1 = predict(mod2,pima1test,type="response")

bc1p = as.numeric(bc1 > 0.5)

xtabs(~bc1p+pima1test$test)

## Remove diastolic

mod2r = glm(test~age+diabetes+bmi+glucose+pregnant,family=binomial,pima1)

summary(mod2r)

## Remove age

mod2r = glm(test~diabetes+bmi+glucose+pregnant,family=binomial,pima1)

summary(mod2r)

bc1 = predict(mod2r,pima1test,type="response")

bc1p = as.numeric(bc1 > 0.5)

xtabs(~bc1p+pima1test$test)

###Fitting a gam

mod1 = gam(test~s(age)+s(diabetes)+s(bmi)+s(insulin)+s(triceps)+

s(diastolic)+s(glucose)+s(pregnant),family=binomial,pima1training)

bc1 = predict(mod1,pima1test,type="response")

bc1p = as.numeric(bc1 > 0.5)

xtabs(~bc1p+pima1test$test)

summary(mod1)

mod1r = gam(test~s(age)+s(diabetes)+s(glucose),family=binomial,pima1training)

summary(mod1r)
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bc1 = predict(mod1r,pima1test,type="response")

bc1p = as.numeric(bc1 > 0.5)

xtabs(~bc1p+pima1test$test)
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