
Stat 526 Assignment #10

Linear Mixed Models

READING - Faraway Chapters 10, 11 and 13

0. (5 pts) Name

1. (8 pts) A school superintendent is concerned about the development of technology skills for research
in high school. Since there are four high schools in his district, all of which go about this instruction
differently, he decided to assess if there were any differences across schools. He first compiled a
long list of “tech skills” and randomly selected four to be used in his study. He then randomly
selected 24 students from each school and assigned each to one of the four tasks so that there were
six students per task per school. Each student then performed the skill and was scored using a
0-100 numeric scale.

a) If a two-way ANOVA is to be used for the analysis, should it be treated as a fixed effects,
random effects, or mixed effects model? State the model you would use and its assumptions.

I’d consider “tech skills” to be random because there is a population of skills and the ones in
the study were randomly chosen. I’d consider school to be fixed since there are only these four
schools. The model is

Yijk = µ+ Schooli +Taskj + (SchoolTask)ij + εijk

where

Taski ∼ N(0, σT ), (SchoolTask)ij ∼ N(0, σST ), εijk ∼ N(0, σ)

and the random terms are all independent of each other.

b) Complete the following ANOVA table and determine which effects are significant at the α = .05
level. State your conclusions, making sure to estimate all variances and describing any
additional mean comparisons you’d like to perform.

Source DF SS MS F
School 3 222.0 74.000 4.93
Task 3 96.0 32.000 2.13
School × Task 9 135.0 15.000 2.67
Error 80 450.0 5.625

1. School effect :
- Hypothesis : H0 : School1 = · · · = School4 = 0. Because F ∗ > F(0.95,3,9) = 3.86, reject
H0 and conclude that there are school effects.

2. Task variance :
- Hypothesis : H0 : σ2

T = 0. Because F ∗ < F(0.95,3,9) = 3.86, we do not reject H0 and
conclude that there is no variance among the tasks.

3. Interaction variance :
- Hypothesis : H0 : σ2

ST = 0. Because F ∗ > F(0.95,9,80) = 2.00, we conclude that there is
significant interaction variance.



Estimates of the non-zero variances are: σ̂2 = MSE = 5.625 and σ̂2
ST = MSAB−MSE

n =
15−5.625

6 = 1.5625. These will change slightly if we remove the random task effect from the
model and refit. Currently, its estimate is 32−15

24 = 0.708. Because the School effects were found
significantly different, I’d also want to compare the school means to see where the differences
lie.

c) If the grand skill level of the high schools (average over the four schools) is of interest, describe
how one would construct a 95% confidence interval.

Let µ be the overall mean. Its estimate is the grand sample mean, whose expected value can be
expressed in terms of the model parameters
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use this standard error and 3 degrees of freedom to construct the 95% confidence interval for µ.

2. (15 pts) Nurse practitioners (NPs) are becoming the health partner choice for many Americans. A
group of researchers study the performance of NPs in three specialties (neonatal care, women’s
health and oncology). They randomly selected four cities, and recorded competency scores of four
nurses randomly selected within each specialty and city. The scores are on a continuous scale and
shown below:

City 1 City 2 City 3 City 4 Mean

Neonatal 71.5 58.9 68.5 64.8 59.1 67.1 77.2 75.2
72.9 67.9 71.2 74.2 62.2 62.5 84.7 67.3 69.075

Women’s 83.8 76.9 70.5 65.6 71.0 75.7 72.4 81.6
73.2 79.3 74.0 78.2 63.5 65.0 79.6 81.2 74.469

Oncology 77.0 82.7 80.4 79.6 62.3 81.6 91.5 89.4
90.4 85.3 66.5 79.8 64.3 88.6 84.5 94.3 81.138

76.650 72.775 68.575 81.575 74.894

a) State the linear mixed model that is appropriate for these data, as well as all the model
assumptions. Also make sure to specify why each factor in your model is either random or
fixed.

This study involves a 3× 4 factorial structure with n = 4. The researchers are interested in three
specialties (S) so I assume that specialty is a fixed factor. The cities (C) were randomly chosen
so I’d consider that a factor random. The model is

Yijk = µ+ Si +Cj + (SC)ij + εijk

where

Cj ∼ N(0, σC), (SC)ij ∼ N(0, σSC) and εijk ∼ N(0, σ)

The random terms are all independent of each other.
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b) Provide the estimates of the fixed effects in your model. Make sure to specify the parametriza-
tion restriction you are using.

Estimates will depend on the choice of parameter restriction. Here, I assume the sum of specialty
effects add to zero. Given that the study is balanced, the estimate µ̂ = 74.894 is the grand
sample mean and the specialty effect estimates are Ŝ1 = 69.075 − 74.894 = −5.819, Ŝ2 =
74.469− 74.894 = −0.425, and Ŝ3 = 81.138− 74.894 = 6.244.

c) Using the partial R output below, perform the appropriate F tests for the main effects and
interaction. For each test, make sure to specify the null and alternative hypotheses.

> aov(y ~ city*spec, exer)

Call:

aov(formula = y ~ city * spec, data = exer1)

Terms:

city spec city:spec Residuals

Sum of Squares 1105.6706 1168.3663 156.8438 1429.8875

1. Specialty effect :
- Hypothesis : H0 : S1 = S2 = S3 = 0. F ∗ = (1168.3663)/2)/(156.8438/6) = 22.3.
Because F ∗ > F(0.95,2,6) = 5.14, reject H0 and conclude that there are specialty effects.

2. City variance :
- Hypothesis : H0 : σ2

C = 0. F ∗ = (1105.6706/3)/(156.8438/6) = 14.1. Because F ∗ >
F(0.95,3,6) = 4.76, we reject H0 and conclude that there is variance among the cities.

3. Interaction variance :
- Hypothesis : H0 : σ2

SC = 0. F ∗ = (156.8438/6)/(1429.8875/36) = 0.66. Because
F ∗ < F(0.95,6,36) = 2.36, we conclude that there is no significant interaction variance.

d) Estimate the error variance and any other variances found significantly different from zero in
the previous part.

Estimates of the non-zero variances are: σ̂2 = MSE = 1429.8875/36 = 39.72 and σ̂2
C =

MSC−MSSC
bn = 1105.6706/3−156.8438/6

12 = 28.53. These would change slightly if we removed the
random interaction effect from the model (set it equal to 0). Its current estimate is −3.3946
using the ANOVA table.

e) Using the table summary and previous calculations, test whether there is a difference between
the average competency score for Neonatal care and for Women’s health. Use the 0.05
significance level. There is no need for an multiple comparison adjustment.

In this balanced design, the SE for a difference between two specialty means is
√
(2MSSC/(4 ∗

4)) =
√
2(26.1406)/16 = 1.808. Performing a t test, we get

t∗ =
74.469− 69.075

1.808
= 2.98

This is larger than t0.05,6 = 2.447 so we reject and conclude these two means are different.

f) Compute a 95% confidence interval for the average competency among the RN’s.

In this balanced situation, the grand mean uses the MSCity in the calculation of the SE. Thus
the confidence interval is

µ̂ ± t0.05,3

√
MSCity/48

74.894 ± 3.182
√
368.5569/48

74.894 ± 8.817
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g) Use your variance estimates from part d) to estimate 1) the correlation between two observa-
tions from the same city and specification, 2) the correlation between two observations from
the same city but different specifications, and 3) the correlation between two observations
from the same specification but different cities.

Two observations from the same city and specification will have covariance σ2
C + σ2

SC , two
observations from the same city but different specifications will have covariance σ2

C , and two
observations from the same specification but different cities will have covariance 0. This means
the correlations are estimated to be

r1 =
28.53+0

28.53+0+39.72 = 0.418 = r2 and r3 = 0

or

r1 =
28.53−3.39

28.53−3.39+39.72 = 0.388, r2 =
28.53

28.53−3.39+39.72 = 0.440, and r3 = 0

3. (12 pts) Faraway Chapter 11 Exercise 1

(a) From the plots it looks like we have a fairly linear trend over weeks but the rate of growth for mice
in the thiouracil group seems slower.
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(b) The following output summarizes the random coefficients model:

REML criterion at convergence: 878.7

Random effects:

Groups Name Variance Std.Dev. Corr

subject (Intercept) 32.50 5.700

weeks 14.14 3.760 -0.13

Residual 18.90 4.348

Number of obs: 135, groups: subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 52.8800 2.0938 23.9993 25.256 < 2e-16 ***

weeks 26.4800 1.2661 23.9984 20.915 < 2e-16 ***

treatthiouracil 4.7800 2.9610 23.9993 1.614 0.12

treatthyroxine -0.7943 3.2629 23.9993 -0.243 0.81

weeks:treatthiouracil -9.3700 1.7905 23.9984 -5.233 2.31e-05 ***

weeks:treatthyroxine 0.6629 1.9731 23.9984 0.336 0.74

Because of the restrictions, the intercept term represents the population intercept for the rats in the
control group. The interaction term for thiouracil and weeks represents the difference in population
slopes between the control mice and thiouracil mice. Finally the intercept random effect SD is describing
the variability in intercepts among the mice in a particular treatment.

c) The following ANOVA results show there is a significant difference among the slopes of the three
groups. Given that there are different slopes, there is no need to compare intercepts as the differences
between lines are not constant.

Type III Analysis of Variance Table with Satterthwaite’s method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

weeks 17209.2 17209.2 1 23.998 910.3211 < 2.2e-16 ***

treat 71.9 36.0 2 23.999 1.9027 0.171

weeks:treat 692.6 346.3 2 23.998 18.3181 1.479e-05 ***
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d) The residuals plots look quite reasonable suggesting the assumptions regarding the errors is reason-
able.
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e) Confidence intervals based on the bootstrap method are shown below. It appears the covariance
between the mouse-specific slope and intercept could be zero.

2.5 % 97.5 %

.sig01 3.6391893 7.9517699

.sig02 -0.5739647 0.3933097

.sig03 2.4647394 5.0482854

.sigma 3.6055153 5.0939648

(Intercept) 48.8566035 57.0808232

weeks 24.0628816 28.7067374

treatthiouracil -0.8910029 10.3918832

treatthyroxine -7.0401154 6.0875598

weeks:treatthiouracil -12.6413934 -5.5307281

weeks:treatthyroxine -3.1733891 4.1064249

To assess if the thyroxine group is significantly different from the control, we create a new trt variable
that takes the value 1 if thyroxine or control and 2 otherwise. We can then perform a likelihood ratio
test or F test between the two models. The output below shows there is little evidence of a difference.

F-test with Kenward-Roger approximation; computing time: 0.16 sec.

large : wt ~ weeks + treat + (1 + weeks | subject) + weeks:treat

small : wt ~ weeks * trt + (1 + weeks | subject)

stat ndf ddf F.scaling p.value

Ftest 0.0671 2.0000 23.0000 0.95833 0.9353

4. (10 pts) Faraway Chapter 13 Exercise 1

a) I believe the data do not provide this information. The variable smoke indicates the mother’s status
at the start of the study. If it instead represents the status at the beginning of each year, then the
answer is no, none of the mothers change their status. There are 350 children who’s mother did not
smoke and 187 children with mothers who did.

b) The following table breaks down the distribution of “wheeze years” by smoking status. There are a
slightly higher proportion of 0’s and 1’s in the non-smoking and slightly higher proportions of 2’s, 3’s,
and 4’s in the smoking group.

times

smoke 0 1 2 3 4

0 0.67714286 0.18571429 0.07142857 0.03428571 0.03142857

1 0.63101604 0.17112299 0.10160428 0.05882353 0.03743316
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c) Breaking things down this way, we find the proportion of children wheezing is always higher in the
smoking group, especially when the children were 8 and 9 years of age.
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d) Fitting a binomial to the 537 children using “wheeze years” as the response, we get the following
output:

Call: glm(cbind(V1, 4-V1) ~ smoke, family ="binomial", data=ohioc)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.82124 0.07719 -23.595 <2e-16 ***

smoke 0.27156 0.12334 2.202 0.0277 *

Null deviance: 1045.3 on 536 degrees of freedom

Residual deviance: 1040.5 on 535 degrees of freedom

AIC: 1337.9

We can see that the deviance suggests poor fit. With m = 4 for each observation, asymptotics may
be questionable. However, we know that these counts do not arise from Bernoulli trials as they 1) are
all from the same subject (not independent) and 2) possibly varying p across years. Given the poor fit
of the model, we cannot draw any definitive conclusions regarding maternal smoking. If, for example,
we considered the quasibinomial distribution, the statistical significance of the smoking effect would
disappear.

e) If we account for the possible correlation among observations and allow for the probability to vary
over time and smoking status, we get the following output:

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 2.058848 0.6352806

Fixed effects: resp ~ smoke * age

Value Std.Error DF t-value p-value

(Intercept) -2.7946368 0.14450555 1609 -19.339305 0.0000

smoke 0.3932561 0.23805479 535 1.651956 0.0991
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age -0.2237722 0.05588650 1609 -4.004048 0.0001

smoke:age 0.1089708 0.08961638 1609 1.215970 0.2242

Number of Observations: 2148

Number of Groups: 537

The interaction is not significant so we can look at the main effects. There is a general decreases of
roughly 20% (exp{−0.224}) in the odds of wheezing each year (P = 0.0001) and the smoking group
has greater odds of wheezing although that is not significant.

f) If we use Gaussian quadrature, the results are quite similar in terms of significance and parameter
estimates.

Formula: resp ~ smoke * age + (1 | id)

AIC BIC logLik deviance df.resid

1604.7 1633.1 -797.4 1594.7 2143

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 4.694 2.167

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.12840 0.22286 -14.038 <2e-16 ***

smoke 0.46204 0.28556 1.618 0.1057

age -0.21637 0.08656 -2.500 0.0124 *

smoke:age 0.10533 0.13849 0.761 0.4469

i) The probabilities are relatively small for this data set so the distributions are skewed to the right.
This means the GEE results should find generally larger probabilities than with GLMM and that is
played out. Notice how much larger the intercept is for the GEE results.

Call:

geeglm(formula = resp ~ smoke * age, family = binomial, data = ohio,

id = id, corstr = "ar1")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -1.92477 0.12070 254.312 <2e-16 ***

smoke 0.28877 0.19138 2.277 0.1313

age -0.14780 0.05984 6.101 0.0135 *

smoke:age 0.08355 0.09167 0.831 0.3621

Correlation structure = ar1

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 1.022 0.1254

Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.4914 0.06799

Number of clusters: 537 Maximum cluster size: 4

The general conclusions here are similar to the GLMMs. The age effect is not as strong here but
reasonably close. We can see that the AR(1) correlation is roughly 0.5, suggesting someone already
wheezing is likely to continue to wheeze.

j) Overall, we should trust the GLMM/GEE results more than the GLM results. The GLM model does
not fit well and the results from GLMM explain why. There are changes in the probability of wheezing
by age and the observations are correlated.
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library(faraway)

library(ggplot2)

ggplot(ratdrink,aes(x=weeks, y=wt, linetype=treat, group=subject))+geom_line()

ggplot(ratdrink,aes(x=weeks, y=wt, group=subject))+geom_line() + facet_wrap(~treat)

library(lmerTest)

mod3 = lmer(wt~weeks*treat + (1+weeks|subject),ratdrink)

summary(mod3)

anova(mod3)

plot(fitted(mod3),residuals(mod3),xlab="Y-hat", ylab="Residual")

qqnorm(residuals(mod3))

confint(mod3,method="boot")

mod3ml = lmer(wt~weeks*treat + (1+weeks|subject),REML=F,ratdrink)

ratdrink$trt = factor(ifelse(ratdrink$treat=="thyroxine" | ratdrink$treat=="control",1,2))

mod4ml = lmer(wt~weeks*trt + (1+weeks|subject),REML=F,ratdrink)

library(pbkrtest)

KRmodcomp(mod3ml,mod4ml)

##### Problem #4

library(dplyr)

ohio1 = ohio %>% group_by(id,smoke) %>% summarize(times=sum(resp)) %>% xtabs(formula=~smoke+times)

prop.table(ohio1,1)

ohio %>% group_by(id,smoke) %>% summarize(times=sum(resp)) %>% xtabs(formula=~times+age+smoke)

###Create time plot - the crude way

ohio2 = xtabs(~age+resp+smoke,ohio)

x1=c(prop.table(ohio2[,,1],1)[,2])

x2=c(prop.table(ohio2[,,2],1)[,2])

plot(c(-2,-1,0,1),x1,type="b",las=1,ylim=c(min(x1,x2),max(x1,x2))

,xlab="Age",ylab="Proportion")

lines(c(-2,-1,0,1),x2,lty=3,type="b")

####Get data set in binomial format

library(plyr)

ohioc = ddply(ohio, .(id,smoke), function(x) sum(x[,1]))

mod1 = glm(cbind(V1,4-V1) ~ smoke,family="binomial",ohioc)

summary(mod1)

###Fitting a GLMM

library(MASS)

mod2a = glmmPQL(resp~smoke*age, random=~1|id, family=binomial,ohio)

summary(mod2a)

library(lme4)

mod2b = glmer(resp~ smoke*age+(1|id), nAGQ=25, family=binomial,ohio)

summary(mod2b)

library(geepack)

mod3 = geeglm(resp~smoke*age,id=id, family=binomial,corstr="ar1",ohio)

summary(mod3)
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