Applied Linear
Statistical Models

Fifth Edition

Michael H. Kutner

Emory Uriversity

Christopher J. Nachtsheim

University of Minnesota

John Neter
University of Georgia

William Li - :

University of Minnesota

McGraw-Hill
Irwin
Boston Burr Ridge, IL  Dubugue, 1A Madison, WI  New York San Francisco St Louis

Bangkok Bogotd Caracas Kuala Lumpur Lisbon London Madnd Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taper Toronto



The McGraw-Hill Companies

McGraw-Hill
Irwin

APPLIED LINEAR STATISTICAL MODELS

Published by McGraw-Hill/Irwin, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY, 10020. Copyright ©) 2005, 1996, 1990, 1983, 1974 by The McGraw-Hill Compan
Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOC0987654
ISBN 0-07-238688-6

Editorial director: Brent Gordon

Executive editor:  Richard T. Hercher, Jr.
Editorial assistant: Lee Stone

Senior marketing manager: Douglas Reiner
Media producer:  Elizabeth Mavetz

Project manager:  Jim Labeots

Production supervisor: Gina Hangos

Lead designer: FPam Verros

Supplement producer: Matthew Perry

Senior digital content specialist: Brian Nacik
Cover design:  Kiera Pohl

Typeface: 10/12 Times Roman

Compositor:  Interactive Composition Corporation
Printer:  R. R. Donnelley

Library of Congress Cataloging-in-Publication Data

Kutner, Michael H.
Applied linear statistical models.—5th ed. / Michael H. Kutner ... [et al.].
p- cm. — (McGraw-Hill/Irwin series Operations and decision sciences)

Rev. ed. of: Applied linear regression models. 4th ed. c2004.

Includes bibliographical references and index.

ISBN 0-07-238688-6 (acid-free paper)

1. Regression analysis. 2. Mathematical statistics. 1. Kutner, Michael H. Applied linear

regression models. 1L Title. IIL Series.
QA278.2.K87 2005
519.5'36—dc22 2004052447

www.mhhe.com



To
Nancy, Michelle, Allison,

. Maureen, Abigael, Andrew, Henry G.,
Dorothy, Ron, David, "
Dezhong, Chenghua, Xu

ies,



Preface

Linear statistical models for regression, analysis of variance, and experimental design are
widely used today in business administration, economics, engineering, and the social, health,
and biological sciences. Successful applications of these models require a sound understand-
ing of both the underlying theory and the practical problems that are encountered in using
the models in real-life situations. While Applied Linear Statistical Models, Fifth Edition, is
basically an applied book, it seeks to blend theory and applications effectively, avoiding the
extremes of presenting theory in isolation and of giving elements of applications without
the needed understanding of the theoretical foundations.
The fifth edition differs from the fourth in a number of important respects.

In the area of regression analysis (Parts I-III):

1. We have reorganized the chapters for better clarity and flow of topics. Material from
the old Chapter 15 on normal correlation models has been integrated throughout the
text where appropriate. Much of the material is now found in an expanded Chapter
2, which focuses on inference in regression analysis. Material from the old Chapter 7
pertaining to polynomial and interaction regression models and from old Chapter 11
on quantitative predictors has been integrated into a new Chapter 8 called, “Models
for Quantitative and Qualitative Predictors.” Material on model] validation from old
Chapter 10 is now fully integrated with updated material on model selection in a new
Chapter 9 entitled, “Building the Regression Model I: Model Selection and Validation.”

2. We have added material on important techniques for data mining, including regression
trees and neural network models in Chapters 11 and 13, respectively.

3. The chapter on logistic regression (Chapter 14) has been extensively revised and
expanded to include a more thorough treatment of logistic, probit, and complemen-
tary log-log models, logistic regression residuals, model selection, model assessment,
logistic regression diagnostics, and goodness of fit tests. We have also developed new
material on polytomous (multicategory) nominal logistic regression models and poly-
tomous ordinal logistic regression models.

4. We have expanded the discussion of model selection methods and criteria. The Akaike
information criterion and Schwarz Bayesian criterion have been added, and a greater
emphasis is placed on the use of cross-validation for model selection and validation.

In the areas pertaining to the design and analysis of experimental and observational studies
(Parts IV-VI):

5. In the previous edition, Chapters 16 through 25 emphasized the analysis of variance,
and the design of experiments was not encountered formally until Chapter 26. We
have completely reorganized Parts IV-VI, emphasizing the design of experimental and
observational studies from the start. In a new Chapter 15, we provide an overview of
the basic concepts and planning approaches used in the design of experimental and
observational studies, drawing in part from material from old Chapters 16, 26, and
27. Fundamental concepts of experimental design, including the basic types of factors,
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treatments, experimental units, randomization, and blocking are described in detail.
This is followed by an overview of standard experimental designs, as well as the basic
types of observational studies, including cross-sectional, retrospective, and prospective
studies. Each of the design topics introduced in Chapter 15 is then covered in greater
detail in the chapters that follow. We emphasize the importance of good statistical
design of scientific studies, and make the point that proper design often leads to a
simple analysis. We note that the statistical analysis techniques used for observational
and experimental studies are often the same, but the ability to “prove” cause-and-effect
requires a carefully designed experimental study.

. Previously, the planning of sample sizes was covered.in Chapter 26. We now present

material on planning of sample sizes in the relevant chapter, rather than devoting a
single, general discussion to this issue.

. We have expanded and updated our coverage (Section 24.2) on the interpretation of

interaction plots for multi-factor studies.

. We have reorganized and expanded the material on repeated measures designs in Chap-

ter 27. In particular, we introduce methods for handling the analysis of factor effects
when interactions between subjects and treatments are important, and when interactions
between factors are important.

. We have added material on the design and analysis of balanced incomplete block

experiments in Section 28.1, including the planning of sample sizes. A new appendix
(B.15) has been added that provides standard balanced incomplete block designs.

We have added new material on robust product and process design experiments in
Chapter 29, and illustrate its use with a case study from the automotive industry. These
experiments are frequently used in industrial studies to identify product or process
designs that exhibit low levels of variation.

The remaining changes pertain to both regression analysis (Parts I-III) and the design and
analysis of experimental and observational studies (Parts TV-VI):

11.

12.

13.

We have made extensive revisions to the problem material. Problem data sets are
generally larger and more challenging, and we have included a large number of new
case data sets in Appendix C. In addition, we have added a new category of chapter
exercises, called Case Studies. These are open-ended problems that require students,
given an overall objective, to carry out complete analyses of the various case data sets in
Appendix C. They are distinct from the material in the Problems and Projects sections,
which frequently ask students to simply carry out specific analytical procedures.

We have substantially expanded the amount of graphic presentation, including much
greater use of scatter plot matrices, three-dimensional rotating plots, three-dimensional
response surface and contour plots, conditional effects plots, and main effects and
interaction plots. -

Throughout the text, we have made extensive revisions in the exposition on the basis
of classroom experience to improve the clarity of the presentation.

We have included in this book not only the more conventional topics in regression and

design, but also topics that are frequently slighted, though important in practice. We devote
three chapters (Chapters 9—11) to the model-building process for regression, including
computer-assisted selection procedures for identifying good subsets of predictor variables
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The Student Solutions Manual and all of the data files on the compact disk can also be
downloaded from the book’s website at: www.mhhe.com/kutnerALSM5e. A list of errata
for the book as well as some useful, related links will also be maintained at this address.

A book such as this cannot be written without substantial assistance from numerous
persons. We are indebted to the many contributors who have developed the theory and
practice discussed in this book. We also would like to acknowledge appreciation to our stu-
dents, who helped us in a variety of ways to fashion the method of presentation contained
herein. We are grateful to the many users of Applied Linear Statistical Models and Applied
Linear Regression Models, who have provided us with comments and suggestions based
on their teaching with these texts. We are also indebted to Professors James E. Holstein,
University of Missouri, and David L. Sherry, University of West Florida, for their review of
Applied Linear Statistical Models, First Edition; to Professors Samuel Kotz, University of
Maryland at College Park, Ralph P. Russo, University of Iowa, and Peter F. Thall, The George
Washington University, for their review of Applied Linear Regression Models, First Edition;
to Professors John S. Y Chiu, University of Washington, James A. Calvin, University of
Iowa, and Michael F. Driscoll, Arizona State University, for their review of Applied Linear
Statistical Models, Second Edition; to Professor Richard Anderson-Sprecher, University
of Wyoming, for his review of Applied Linear Regression Models, Second Edition; and to
Professors Alexander von Eye, The Pennsylvania State University, Samuel Kotz, University
of Maryland at College Park, and John B. Willett, Harvard University, for their review of
Applied Linear Statistical Models, Third Edition; to Professors Jason Abrevaya, Univer-
sity of Chicago, Frank Alt, University of Maryland, Vitoria Chen, Georgia Tech, Rebecca
Doerge, Purdue University, Mark Henry, Clemson University, Jim Hobert, University of
Florida, Ken Koehler, Iowa State University, Chii-Dean Lin, University of Massachussets
Ambherst, Mark Reiser, Arizona State University, Lawrence Ries, University of Missouri
Columbia, and Ehsan Soofi, University of Wisconsin Milwaukee, for their reviews of
Applied Linear Regression Models, Third Edition, or Applied Linear Statistical Models,
Fourth Edition. These reviews provided many important suggestions, for which we are
most grateful.

In addition, valuable assistance was provided by Professors Richard K. Burdick,
Arizona State University, R. Dennis Cook, University of Minnesota, W. J. Conover, Texas
Tech University, Mark E. Johnson, University of Central Florida, Dick DeVeaux, Williams
College, and by Drs. Richard I. Beckman, Los Alamos National Laboratory, Ronald L.
Iman, Sandia National Laboratories, Lexin Li, University of California Davis, and Brad
Jones, SAS Institute, We are most appreciative of their willing help. We are also indebted
to the 88 participants in a survey concerning Applied Linear Regression Models, Second
Edition, the 76 participants in a survey concerning Applied Linear Statistical Models, Third
Edition, and the 73 participants in a survey concerning Applied Linear Regression Models,
Third Edition, or Applied Linear Statistical Models, Fourth Edition. Helpful suggestions
were received in these surveys, for which we are thankful.

Weiyong Zhang and Vincent Agboto assisted us diligently in the development of new
problem material, and Lexin Li and Yingwen Dong helped prepare the revised Instructor
Solutions Manual and Student Solutions Manual under considerable time pressure. Amy
Hendrickson provided much-needed LaTeX expertise. George Cotsonis assisted us dili-
gently in preparing computer-generated plots and in checking analysis results. We are most
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grateful to these persons for their invaluable help and assistance. We also wish to thank
the various members of the Carlson Executive MBA Program classes of 2003 and 2004;
notably Mike Ohmes, Trevor Bynum, Baxter Stephenson, Zakir Salyani, Sanders Marvin,
Trent Spurgeon, Nate Ogzawalla, David Mott, Preston McKenzie, Bruce DeJong, and Tim
Kensok, for their contributions of interesting and relevant case study data and materials.

Finally, our families bore patiently the pressures caused by our commitment to complete
this revision. We are appreciative of their understanding.

Michael H. Kutner
Christopher J. Nachtsheim
John Neter

William Li
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Chapter

Linear Regression with One
Predictor Variable

Regression analysis is a statistical methodology that utilizes the relation between two or
more quantitative variables so that a response or outcome variable can be predicted from
the other, or others. This methodology is widely used in business, the social and behavioral
sciences, the biological sciences, and many other disciplines. A few examples of applications
are:

1. Sales of a product can be predicted by utilizing the relationship between sales and amount
of advertising expenditures.

2. The performance of an employee on a job can be predicted by utilizing the relationship
between performance and a battery of aptitude tests.

3. The size of the vocabulary of a child can be predicted by utilizing the relationship
between size of vocabulary and age of the child and amount of education of the parents.

4. The length of hospital stay of a surgical patient can be predicted by utilizing the rela-
tionship between the time in the hospital and the severity of the operation.

In Part I we take up regression analysis when a single predictor variable is used for
predicting the response or outcome variable of interest. In Parts II and III, we consider
regression analysis when two or more variables are used for making predictions. In this
chapter, we consider the basic ideas of regression analysis and discuss the estimation of the
parameters of regression models containing a single predictor variable.

1.1 Relations between Variables

The concept of a relation between two variables, such as between family income and family
expenditures for housing, is a familiar one. We distinguish between a functional relation
and a statistical relation, and consider each of these in turn.

Functional Relation between Two Variables

A functional relation between two variables is expressed by a mathematical formula. If X
denotes the independent variable and Y the dependent variable, a functional relation is
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of the form:
Y= f(X)

Given a particular value of X, the function f indicates the corresponding value of Y.

Consider the relation between dollar sales (¥) of a product sold at a fixed price and number
of units sold (X). If the selling price is $2 per unit, the relation is expressed by the equation:

Y=2X

This functional relation is shown in Figure 1.1. Number of units sold and dollar sales during
three recent periods (while the unit price remained constant at $2) were as follows:

Number of Dollar
Period Units Sold Sales
1 75 $150
2 25 50
3 130 260

These observations are plotted also in Figure 1.1. Note that all fall directly on the lifle of
functional relationship. This is characteristic of all functional relations.

Statistical Relation between Two Variables

Example 1

A statistical relation, unlike a functional relation, is not a perfect one. In general, the
observations for a statistical relation do not fall directly orrthe curve of relationship.

Performance evaluations for 10 employees were obtained at midyear and at year-end.
These data are plotted in Figure 1.2a. Year-end evaluations are taken as the dependent or
response variable Y , and midyear evaluations as the independent, explanatory, or predictor
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variable X . The plotting is done as before. For instance, the midyear and year-end perfor-
mance evaluations for the first employee are plotted at X = 90, Y = 94.

Figure 1.2a clearly suggests that there is a relation between midyear and year-end evalua-
tions, in the sense that the higher the midyear evaluation, the higher tends to be the year-end
evaluation. However, the relation is not a perfect one. There is a scattering of points, sug-
gesting that some of the variation in year-end evaluations is not accounted for by midyear
performance assessments. For instance, two employees had midyear evaluations of X = 80,
yet they received somewhat different year-end evaluations. Because of the scattering of
points in a statistical relation, Figure 1.2a is called a scatter diagram or scatter plot. In
statistical terminology, each point in the scatter diagram represents a trial or a case.

In Figure 1.2b, we have plotted a line of relationship that describes the statistical relation
between midyear and year-end evaluations. It indicates the general tendency by which year-
end evaluations vary with the level of midyear performance evaluation. Note that most of
the points do not fall directly on the line of statistical relationship. This scattering of points
around the line represents variation in year-end evaluations that is not associated with
midyear performance evaluation and that is usually considered to be of a random nature.
Statistical relations can be highly useful, even though they do not have the exactitude of a
functional relation.

Figure 1.3 presents data on age and level of a steroid in plasma for 27 healthy females
between 8 and 25 years old. The data strongly suggest that the statistical relationship is
curvilinear (not linear). The curve of relationship has also been drawn in Figure 1.3. It
implies that, as age increases, steroid level increases up to a point and then begins to level
off. Note again the scattering of points around the curve of statistical relationship, typical
of all statistical relations.
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FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in. Healthy Females Aged 8 to 25.
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1.2 Regression Models and Their Uses

Historical Origins

Regression analysis was first developed by Sir Francis Galton in the latter part of the
19th century. Galton had studied the relation between heights of parents and children and
noted that the heights of children of both tall and short parents appeared to “revert” or
“regress” to the mean of the group. He considered this tendency to be a regression to
“mediocrity.” Galton developed a mathematical description of this regression tendency, the
precursor of today’s regression models.

The term regression persists to this day to describe statistical relations between variables.

Basic Concepts

A regression model is a formal means of expressing the two essential ingredients of a
statistical relation:

1. Atendency of the response variable Y to vary with the predictor variable X in a systematic
fashion.
2. A scattering of points around the curve of statistical relationship.

These two characteristics are embodied in a regression model by postulating that:

1. There is a probability distribution of ¥ for each level of X.
2. The means of these probability distributions vary in some systematic fashion with X.

W Consider again the performance evaluation example in Figure 1.2. The year-end evaluation Y
————— istreated in a regression model as arandom variable. For each level of midyear performance
evaluation, there is postulated a probability distribution of Y. Figure 1.4 shows such a
probability distribution for X = 90, which is the midyear evaluation for the first employee.
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FIGURE 1.4
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The actual year-end evaluation of this employee, ¥ = 94, is then viewed as a random
selection from this probability distribution.

Figure 1.4 also shows probability distributions of Y for midyear evaluation levels X = 50
and X = 70. Note that the means of the probability distributions have a systematic relation
to the level of X. This systematic relationship is called the regression function of Y on X.
The graph of the regression function is called the regression curve. Note that in Figure 1.4
the regression function is slightly curvilinear. This would imply for our example that the in-
crease in the expected (mean) year-end evaluation with an increase in midyear performance
evaluation is retarded at higher levels of midyear performance.

Regression models may differ in the form of the regression function (linear, curvilinear),
in the shape of the probability distributions of ¥ (symmetrical, skewed), and in other ways.
Whatever the variation, the concept of a probability distribution of Y for any given X is the
formal counterpart to the empirical scatter in a statistical relation. Similarly, the regression
curve, which describes the relation between the means of the probability distributions
of Y and the level of X, is the counterpart to the general tendency of ¥ to vary with X
systematically in a statistical relation.

Regression Models with More than One Predictor Variable. Regression models may
contain more than one predictor variable. Three examples follow.

1. In an efficiency study of 67 branch offices of a consumer finance chain, the response
variable was direct operating cost for the year justended. There were four predictor variables:
average size of loan outstanding during the year, average number of loans outstanding, total
number of new loan applications processed, and an index of office salaries.

2. In a tractor purchase study, the response variable was volume (in horsepower) of
tractor purchases in a sales territory of a farm equipment firm. There were nine predictor
variables, including average age of tractors on farms in the territory, number of farms in the
territory, and a quantity index of crop production in the territory.

3. Inamedical study of short children, the response variable was the peak plasma growth
hormone level. There were 14 predictor variables, including age, gender, height, weight,
and 10 skinfold measurements.

The model features represented in Figure 1.4 must be extended into further dimensions
when there is more than one predictor variable. With two predictor variables X; and X,
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for instance, a probability distribution of ¥ for each (X;, X,) combination is assumed
by the regression model. The systematic relation between the means of these probability
distributions and the predictor variables X; and X is then given by a regression surface.

Construction of Regression Models

Selection of Predictor Variables. Since reality must be reduced to manageable propor-
tions whenever we construct models, only a limited number of explanatory or predictor
variables can—or should—be included in a regression model for any situation of interest.
A central problem in many exploratory studies is therefore that of choosing, for a regres-
sion model, a set of predictor variables that is “good” in some sense for the purposes of
the analysis. A major consideration in making this choice is the extent to which a chosen
variable contributes to reducing the remaining variation in Y after allowance is made for
the contributions of other predictor variables that have tentatively been included in the
regression model. Other considerations include the importance of the variable Y5 a causal
agent in the process under analysis; the degree to which observations on the variable can
be obtained more accurately, or quickly, or economically than on competing variables; and
the degree to which the variable can be controlled. In Chapter 9, we will discuss procedures
and problems in choosing the predictor variables to be included in the regression model.

Functional Form of Regression Relation. The choice of the functional form of the
regression relation is tied to the choice of the predictor variables. Sometimes, relevant theory
may indicate the appropriate functional form. Learning theory, for instance, may indicate
that the regression function relating unit production cost to the number of previous times the
item has been produced should have a specified shape with particular asymptotic properties.

More frequently, however, the functional form of the regression relation is not known in
advance and must be decided upon empirically once the data have been collected. Linear
or quadratic regression functions are often used as satisfactory first approximations to
regression functions of unknown nature. Indeed, these simple types of regression functions
may be used even when theory provides the relevant functional form, notably when the
known form is highly complex but can be reasonably approximated by a linear or quadratic
regression function. Figure 1.5a illustrates a case where the complex regression function

FIGURE 1.5 Uses of Linear Regression Functions to Approximate Complex Regression
Functions—Bold Line Is the True Regression Function and Dotted Line Is the Regression
Approximation.

(a) Linear Approximation (b) Piecewise Linear Approximation
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may be reasonably approximated by a linear regression function. Figure 1.5b provides an
example where two linear regression functions may be used “piecewise” to approximate a
complex regression function.

Scope of Model. In formulating a regression model, we usually need to restrict the cov-
erage of the model to some interval or region of values of the predictor variable(s). The
scope is determined either by the design of the investigation or by the range of data at hand.
For instance, a company studying the effect of price on sales volume investigated six price
levels, ranging from $4.95 to $6.95. Here, the scope of the model is limited to price levels
ranging from near $5 to near $7. The shape of the regression function substantially outside
this range would be in serious doubt because the investigation provided no evidence as to
the nature of the statistical relation below $4.95 or above $6.95.

Uses of Regression Analysis

Regression analysis serves three major purposes: (1) description, (2) control, and (3) predic-
tion. These purposes are illustrated by the three examples cited earlier. The tractor purchase
study served a descriptive purpose. In the study of branch office operating costs, the main
purpose was administrative control; by developing a usable statistical relation between cost
and the predictor variables, management was able to set cost standards for each branch office
in the company chain. In the medical study of short children, the purpose was prediction.
Clinicians were able to use the statistical relation to predict growth hormone deficiencies
in short children by using simple measurements of the children.

The several purposes of regression analysis frequently overlap in practice. The branch
office example is a case in point. Knowledge of the relation between operating cost and
characteristics of the branch office not only enabled management to set cost standards for
each office but management could also predict costs, and at the end of the fiscal year it
could compare the actual branch cost against the expected cost.

Regression and Causality

The existence of a statistical relation between the response variable ¥ and the explanatory or
predictor variable X does not imply in any way that ¥ depends causally on X. No matter how
strong is the statistical relation between X and Y, no cause-and-effect pattern is necessarily
implied by the regression model. For example, data on size of vocabulary (X) and writing
speed (Y') for a sample of young children aged 5-10 will show a positive regression relation.
This relation does not imply, however, that an increase in vocabulary causes a faster writing
speed. Here, other explanatory variables, such as age of the child and amount of education,
affect both the vocabulary (X) and the writing speed (Y). Older children have a larger
vocabulary and a faster writing speed.

Even when a strong statistical relationship reflects causal conditions, the causal condi-
tions may act in the opposite direction, from ¥ to X. Consider, for instance, the calibration
of a thermometer. Here, readings of the thermometer are taken at different known tempera-
tures, and the regression relation is studied so that the accuracy of predictions made by using
the thermometer readings can be assessed. For this purpose, the thermometer reading is the
predictor variable X, and the actual temperature is the response variable Y to be predicted.
However, the causal pattern here does not go from X to Y, but in the opposite direction: the
actual temperature (1) affects the thermometer reading (X).
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These examples demonstrate the need for care in drawing conclusions about causal
relations from regression analysis. Regression analysis by itself provides no information
about causal patterns and must be supplemented by additional analyses to obtain insights
about causal relations.

Use of Computers

Because regression analysis often entails lengthy and tedious calculations, computers are
usually utilized to perform the necessary calculations. Almost every statistics package for
computers contains a regression component. While packages differ in many details, their
basic regression output tends to be quite similar.

After an initial explanation of required regression calculations, we shall rely on computer
calculations for all subsequent examples. We illustrate computer output by presenting output
and graphics from BMDP (Ref. 1.1), MINITAB (Ref. 1.2), SAS (Ref. 1.3), SPSS (Ref. 1 .4),
SYSTAT (Ref. 1.5), IMP (Ref. 1.6), S-Plus (Ref. 1.7), and MATLAB (Ref. 1'8)2,.

1.3 Simple Linear Regression Model with Distribution
of Error Terms Unspecified

Formal Statement of Model
In Part I we consider a basic regression model where there is only one predictor variable
and the regression function is linear. The model can be stated as follows:
Yi=PBo+ BiXi + & (1.7)
where:

Y; is the value of the response variable in the /th trial

Bo and B, are parameters

X, is a known constant, namely, the value of the predictor variable in the ith trial

& is a random error term with mean E({g;} = 0 and variance 0%{g;} = 0%; ¢; and ¢; are

uncorrelated so that their covariance is zero (i.e., o{g;, £;} =0 forall i, j; i # j)

i=1,...,n

Regression model (1.1) is said to be simple, linear in the parameters, and linear in the
predictor variable. It is “simple” in that there is only one predictor variable, “linear in the
parameters,” because no parameter appears as an exponent or is multiplied or divided by
another parameter, and “linear in the predictor variable,” because this variable appears only

in the first power. A model that is linear in the parameters and in the predictor variable is
also called a first-order model.

Important Features of Model

1. The response Y; in the /th trial is the sum of two components: (1) the constant term
Bo + B1X; and (2) the random term £;. Hence, Y; is a randgm variable.

2. Since Efg;} = 0, it follows from (A.13c) in Appendix A that:
E{Y;} = E{fo+ B Xi + &} = Bo+ B Xi + Efe;i} = o + B X;
Note that By + B: X; plays the role of the constant a in (A.13c).
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Example

Thus, the response ¥;, when the level of X in the ith trial is X;, comes from a probability
distribution whose mean is:

E{Y;} = o+ B Xi (1.2)
We therefore know that the regression function for model (1.1) is:
E{Y}=po+ HiX (1.3)

since the regression function relates the means of the probability distributions of ¥ for given
X 10 the level of X.

3. The response Y; in the ith trial exceeds or falls short of the value of the regression
function by the error term amount ¢;.

4. The error terms &; are assumed to have constant variance o2. It therefore follows that
the responses ¥; have the same constant variance:

o?{¥;} = o? (1.4)
since, using (A.16a), we have:
o*{fo + B X; + &} = 0 {e;} = 0”
Thus, regression model (1.1) assumes that the probability distributions of ¥ have the same

variance o2, regardless of the level of the predictor variable X.

5. The error terms are assumed to be uncorrelated. Since the error terms ¢; and ¢; are
uncorrelated, so are the responses Y; and Y.

6. In summary, regression model (1.1) implies that the responses ¥; come from proba-
bility distributions whose means are E{Y;} = By + B; X; and whose variances are o2, the
same for all levels of X . Further, any two responses ¥; and ¥; are uncorrelated.

A consultant for an electrical distributor is studying the relationship between the number
of bids requested by construction contractors for basic lighting equipment during a week
and the time required to prepare the bids. Suppose that regression model (1.1) is applicable
and is as follows:

Y, =954+21X; +¢

where X is the number of bids prepared in a week and Y is the number of hours required to
prepare the bids. Figure 1.6 contains a presentation of the regression function:

E{Y}=95+21X

Suppose that in the ith week, X; = 45 bids are prepared and the actual number of hours
required is ¥; = 108. In that case, the error term value is &; = 4, for we have

E{Y;} = 9.5+ 2.1(45) = 104
and
Y, =108 =104 +4

Figure 1.6 displays the probability distribution of ¥ when X = 45 and indicates from
where in this distribution the observation ¥; = 108 came. Note again that the error term ¢;
is simply the deviation of ¥; from its mean value E{Y;}.
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Number of Bids Prepared

Figure 1.6 also shows the probability distribution of ¥ when X = 25. Note that this
distribution exhibits the same variability as the probability distribution when X = 45, in
conformance with the requirements of regression model (1.1).

Meaning of Regression Parameters

Example

The parameters By and B in regression model (1.1) are called regression coefficients. 5
is the slope of the regression line. It indicates the change in the mean of the probability
distribution of Y per unitincrease in X. The parameter fg is the Y intercept of the regression
line. When the scope of the model includes X = 0, f, gives the mean of the probability
distribution of ¥ at X = 0. When the scope of the model does not cover X = 0, By does
not have any particular meaning as a separate term in the regression model.

Figure 1.7 shows the regression function:
E{Y}=95+2.1X

for the electrical distributor example. The slope §; = 2.1 indicates that the preparation of
one additional bid in a week leads to an increase in the mean of the probability distribution
of Y of 2.1 hours.

The intercept Bo = 9.5 indicates the value of the regression function at X = 0. However,
since the linear regression model was formulated to apply to weeks where the number of
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bids prepared ranges from 20 to 80, By does not have any intrinsic meaning of its own
here. If the scope of the model were to be extended to X levels near zero, a model with
a curvilinear regression function and some value of By different from that for the linear
regression function might well be required.

Alternative Versions of Regression Model

Sometimes it is convenient to write the simple linear regression model (1.1) in somewhat
different, though equivalent, forms. Let X, be a constant identically equal to 1. Then, we
can write (1.1) as follows:

Yi=FXo+ B X +& where Xy = 1 (1.5)

This version of the model associates an X variable with each regression coefficient.
An alternative modification is to use for the predictor variable the deviation X; — X
rather than X;. To leave model (1.1) unchanged, we need to write:

Y, =B+ BiX;i —X)+ B X+
= (Bo+ B X) + Bi(X; — X) +&
=65+ B (X — X)+ &
Thus, this alternative model version is:
Y =B+ Bu(Xi — X) +e (1.6)
where:
Bo = B+ B X (1.6a)

We use models (1.1), (1.5), and (1.6) interchangeably as convenience dictates.

1.4 Data for Regression Analysis

Ordinarily, we do not know the values of the regression parameters So and 8, in regression
model (1.1), and we need to estimate them from relevant data. Indeed, as we noted earlier, we
frequently do not have adequate a priori knowledge of the appropriate predictor variables
and of the functional form of the regression relation (e.g., linear or curvilinear), and we
need to rely on an analysis of the data for developing a suitable regression model.

Data for regression analysis may be obtained from nonexperimental or experimental
studies. We consider each of these in turn.

Observational Data

Observational data are data obtained from nonexperimental studies. Such studies do not
control the explanatory or predictor variable(s) of interest. For example, company officials
wished to study the relation between age of employee (X) and number of days of illness
last year (¥). The needed data for use in the regression analysis were obtained from per-
sonnel records. Such data are observational data since the explanatory variable, age, is not
controlled.

Regression analyses are frequently based on observational data, since often it is not
feasible to conduct controlled experimentation. In the company personnel example just
mentioned, for instance, it would not be possible to control age by assigning ages to persons.
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A major limitation of observational data is that they often do not provide adequate infor-
mation about cause-and-effect relationships. For example, a positive relation between age of
employee and number of days of illness in the company personnel example may not imply
that number of days of illness 1s the direct result of age. It might be that younger employees
of the company primarily work indoors while older employees usually work outdoors, and
that work location is more directly responsible for the number of days of illness than age.

Whenever a regression analysis is undertaken for purposes of description based on ob-
servational data, one should investigate whether explanatory variables other than those con-
sidered in the regression model might more directly explain cause-and-effect relationships.

Experimental Data

Frequently, it is possible to conduct a controlled experiment to provide data from which the
regression parameters can be estimated. Consider, for instance, an insurance company that
wishes to study the relation between productivity of its analysts in processing glaims and
length of training. Nine analysts are to be used in the study. Three of them will be selected
at random and trained for two weeks, three for three weeks, and three for five weeks.
The productivity of the analysts during the next 10 weeks will then be observed. The data
so obtained will be experimental data because control is exercised over the explanatory
variable, length of training.

When control over the explanatory variable(s) is exercised through random assignments,
as in the productivity study example, the resulting experimental data provide much stronger
information about cause-and-effect relationships than do observational data. The reason is
that randomization tends to balance out the effects of any other variables that might affect
the response variable, such as the effect of aptitude of the employee on productivity.

In the terminology of experimental design, the length of training assigned to an analystin
the productivity study example is called a rreatment. The analysts to be included in the study
are called the experimental units. Control over the explanatory variable(s) then consists of
assigning a treatment to each of the experimental units by means of randomization.

Completely Randomized Design

The most basic type of statistical design for making randomized assignments of treatments to
experimental units (or vice versa) is the completely randomized design. With this design, the
assignments are made completely at random. This complete randomization provides that all
combinations of experimental units assigned to the different treatments are equally likely,
which implies that every experimental unit has an equal chance to receive any one of the
treatments.

A completely randomized design is particularly useful when the experimental units are
quite homogeneous. This design s very, flexible; it accommodates any number of treatments
and permits different sample sizes for different treatments. Its chief disadvantage is that,
when the experimental units are heterogeneous, this design is not as efficient as some other
statistical designs.

-

1.5 Overview of Steps in Regreséion Analysis

The regression models considered in this and subsequent chapters can be utilized either
for observational data or for experimental data from a completely randomized design.
(Regression analysis can also utilize data from other types of experimental designs, but
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FIGURE 1.8
Typical
Strategy for
Regression
Analysis.

Simple Linear Regression

the regression models presented here will need to be modified.) Whether the data are
observational or experimental, it is essential that the conditions of the regression model be
appropriate for the data at hand for the model to be applicable.

We begin our discussion of regression analysis by considering inferences about the re-
gression parameters for the simple linear regression model (1.1). For the rare occasion
where prior knowledge or theory alone enables us to determine the appropriate regression
model, inferences based on the regression model are the first step in the regression analysis.
In the usual situation, however, where we do not have adequate knowledge to specify the
appropriate regression model in advance, the first step is an exploratory study of the data,
as shown 1n the fiowchart in Figure 1.8. On the basis of this initial exploratory analysis,
one or more preliminary regression models are developed. These regression models are
then examined for their appropriateness for the data at hand and revised, or new models
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are developed, until the investigator is satisfied with the suitability of a particular regres-
sion model. Only then are inferences made on the basis of this regression model, such as
inferences about the regression parameters of the model or predictions of new observations.

We begin, for pedagogic reasons, with inferences based on the regression model that is
finally considered to be appropriate. One must have an understanding of regression models
and how they can be utilized before the issues involved in the development of an appropriate
regression model can be fully explained.

1.6 Estimation of Regression Function

The observational or experimental data to be used for estimating the parameters of the
regression function consist of observations on the explanatory or predictor variable X and
the corresponding observations on the response variable Y. For each trial, there is an X
observation and a Y observation. We denote the (X, Y) observations for the first trial as
(X1, Y1), for the second trial as (X5, ¥»), and in general for the ith trial as (X;, ¥;), where
i=1,...,n.

In a small-scale study of persistence, an experimenter gave three subjects a very difficult
task. Data on the age of the subject (X) and on the number of attempts to accomplish the
task before giving up (Y) follow:

Example

Subject i: 1 2 3
Age X;: 20 55 30
Number of attempts Y;: 5 12 10

In terms of the notation to be employed, there were n = 3 subjects in this study, the
observations for the first subject were (X, Y1) = (20, 5), and similarly for the other
subjects.

Method of Least Squares

To find “good” estimators of the regression parameters By and §;, we employ the method
of least squares. For the observations (X;, Y;) for each case, the method of least squares
considers the deviation of Y; from its expected value:

Y — (Bo+ B XD) (1.7)

In particular, the method of least squares requires that we consider the sum of the » squared
deviations. This criterion is denoted by Q:

Q=2 (¥~ bo—HiX:) (1.8)

i=l1

According to the method of least squares, the estimators of By and B; are those values
by and b,, respectively, that minimize the criterion Q for the given sample observations
(Xl7 Yl)7 (X27 YZ)a LEEE] (Xn: Yn)'
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FIGURE 1.9 Illustration of Least Squares Criterion Q for Fit of a Regression Line—Persistence Study
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Example Figure 1.9a presents the scatter plot of the data for the persistence study example and the

regression line that results when we use the mean of the responses (9.0) as the predictor
and ignore X:

Y =9.0+0(X)

Note that this regression line uses estimates by = 9.0 and »; = 0, and that ¥ denotes
the ordinate of the estimated regression line. Clearly, this regression line is not a good
fit, as evidenced by the large vertical deviations of two of the ¥ observations from the
corresponding ordinates ¥ of the regression line. The deviation for the first subject, for
which (X, Y1) = (20, 5), is:

I -+ 5,X))=5-[904+020)]=5-90=—-4
The sum of the squared deviations for the three cases is:
0 = (5-9.0* + (12— 9.0)* + (10 — 9.0> = 26.0
Figure 1.9b shows the same data with the regression line:
¥ =281+ .177X

The fit of this regression line is clearly much better. The vertical deviation for the first case
now is:

Y —(bg+ 5, X)) =5—-[2.814+.17720)] =5 - 6.35=—1.35
and the criterion Q is much reduced:
Q = (5 —6.35) + (12 — 12.55)2 + (10 — 8.12)> = 5.7

Thus, a better fit of the regression line to the data corresponds to a smaller sum Q.
The objective of the method of least squares is to find estimates by and b; for By and gy,
respectively, for which Q is a minimum. In a certain sense, to be discussed shortly, these
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estimates will provide a “good” fit of the linear regression function. The regression line in
Figure 1.9b is, in fact, the least squares regression line.

LeastSquares Estimators. The estimators bp and b, that satisfy the least squares criterion
can be found in two basic ways:

1. Numerical search procedures can be used that evaluate in a systematic fashion the least
squares criterion Q for different estimates by and b, until the ones that minimize Q are
found. This approach was illustrated in Figure 1.9 for the persistence study example.

2. Analytical procedures can often be used to find the values of by and b, that minimize
Q. The analytical approach is feasible when the regression model is not mathematically
complex.

Using the analytical approach, it can be shown for regression model (1.1) that the values
by and b, that minimize Q for any particular set of sample data are given by the followmg
simultaneous equations:

d Yi=nbo+b Yy X (1.9a)
N XiYi=k) Xi+bh Yy X; (1.9b)

Equations (1.9a) and (1.9b) are called normal equations; by and b, are called point esti-
mators of By and B, respectively.
The normal equations (1.9) can be solved simultaneously for by and b;:
(X = X)(Y: - )
(X — X)?

= (X h-nYx)=7-bX (1.10b)

where X and Y are the means of the X; and the Y; observations, respectively. Computer
calculations generally are based on many digits to obtain accurate values for by and b, .

by = (1.10a)

Comment

The normal equations (1.9) can be derived by calculus. For given sample observations (X;, Y;), the
quantity Q in (1.8) is a function of By and ;. The values of B and B, that minimize Q can be derived
by differentiating (1.8) with respect to Sy and §,. We obtain:

80

== —2§ Y — Bo — Bi X;

ETN (Y; — Bo— Bi Xi)

kY

—2 X;(Y; — X;

K E Y; — o — Bi Xi)
We then set these partial derivatives equal to zero, using by and b; to denote the particular values of
Bo and B; that minimize Q: . .

—23 (% —bo—biXp) = 0

—2) " X;(¥i —bo— b X;) = 0
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Simplifying, we obtain:

> Wi—bo—biX) =0

i=I
D XY —bo— by X;) =0
i=I

Expanding, we have:

ZYi—nb()—bIZXi=0
ZX,—Y,——bOZX,-—b,ZX,?=O

from which the normal equations (1.9) are obtained by rearranging terms.
A test of the second partial derivatives will show that a minimum is obtained with the least squares
estimators by and by . |

Properties of Least Squares Estimators. An important theorem, called the Gauss-
Markov theorem, states:

Under the conditions of regression model (1.1), the least squares
estimators by and b, in (1.10) are unbiased and have minimum (1.1mn
variance among all unbiased linear estimators.

This theorem, provenin the next éhapter, states first that by and b, are unbiased estimators.
Hence:

E{bo} = By E{bi} =B

so that neither estimator tends to overestimate or underestimate systematically.
Second, the theorem states that the estimators by and b; are more precise (i.e., their
sampling distributions are less variable) than any other estimators belonging to the class of

unbiased estimators that are linear functions of the observations Y, ..., Y,. The estimators
by and by are such linear functions of the ¥;. Consider, for instance, b, . We have from (1.10a):
y _ X = R = F)
‘ S(X; — X)?

It will be shown in Chapter 2 that this expression is equal to:

by = Y (X — X)Y; _ ZkiYi

Y (X - X)?
where:
(L Xi-X
X - X)?

Since the k; are known constants (because the X; are known constants), b, is a linear
combination of the ¥; and hence is a linear estimator.
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In the same fashion, it can be shown that by is a linear estimator. Among all linear
estimators that are unbiased then, by and b, have the smallest variability in repeated samples
in which the X levels remain unchanged.

The Toluca Company manufactures refrigeration equipment as well as many replacement
parts. In the past, one of the replacement parts has been produced periodically in lots of
varying sizes. When a cost improvement program was undertaken, company officials wished
to determine the optimum lot size for producing this part. The production of this part involves
setting up the production process (which must be done no matter what is the lot size) and
machining and assembly operations. One key input for the model to ascertain the optimum
lot size was the relationship between lot size and labor hours required to produce the lot.
To determine this relationship, data on lot size and work hours for 25 recent production
runs were utilized. The production conditions were stable during the six-month period in
which the 25 runs were made and were expected to continue to be the same during the
next three years, the planning period for which the cost improvement programtwas being
conducted.

Table 1.1 contains a portion of the data on lot size and work hours in columns 1 and
2. Note that all lot sizes are multiples of 10, a result of company policy to facilitate the
administration of the parts production. Figure 1.10a shows a SYSTAT scatter plot of the
data. We see that the lot sizes ranged from 20 to 120 units and that none of the production
runs was outlying in the sense of being either unusually small or large. The scatter plot also
indicates that the relationship between lot size and work hours is reasonably linear. We also
see that no observations on work hours are unusually small or large, with reference to the
relationship between lot size and work hours.

To calculate the least squares estimates by and b; in (1.10), we require the deviations
X; — X and ¥; — Y. These are given in columns 3 and 4 of Table 1.1. We also require
the cross-product terms (X; — X)(¥; — ¥) and the squared deviations (X; — X)?; these
are shown in columns 5 and 6. The squared deviations (¥; — ¥)? in column 7 are for
later use.

TABLE 1.1 Data on Lot Size and Work Hours and Needed Calculations for Least Squares Estimates—Toluca

Company Example.
(M 2) 3) @ ) 6) @
Lot Work
Run Size Hours
i X; Y; X-X  Y%-Y (K-X)%N-7) (X-X* (¥-Y)
1 80 399 10 .86.72 867.2 100 7,520.4
2 30 121 —40 —191.28 7,651.2 1,600 36,588.0
3 50 221 —20 - —91.28 1,825.6 400 8,332.0
23 40 244 =30 —68.28 2,048.4 900 4,662.2
24 80 342 10 29.72 2972 . 100 8833
25 70 323 0 10.72 0.0 0 114.9
- Total 1,750 7,807 0 0 70,690 19,800 307,203
Mean 70.0 312.28
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FIGURE 1.10
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The regression equation is
Y =62.4 + 3.567 X

Predictor Coef Stdev t-ratio P
Constant 62.37 26.18 2.38 0.026
X 3.5702 0.3470 10.29 0.000
s = 48.82 R-sq = 82.2} R-sq(adj) = 81.4%

We see from Table 1.1 that the basic quantities needed to calculate the least squares
estimates are as follows:

> (X — X)(¥; — ¥) = 70,690
D (X — X)* = 19,800
X =700
¥ =312.28
Using (1.10) we obtain:

p LXK~ B —F) _ 70,690
TS -X%)? 19,800

by =Y — b X = 312.28 — 3.5702(70.0) = 62.37

= 3.5702

Thus, we estimate that the mean number of work hours increases by 3.57 hours for each
additional unit produced in the lot. This estimate applies to the range of lot sizes in the
data from which the estimates were derived, namely to lot sizes ranging from about 20 to
about 120.

Figure 1.11 contains a portion of the MINITAB regression output for the Toluca Company
example. The estimates by and b, are shown in the column labeled Coef, corresponding to
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the lines Constant and X, respectively. The additional information shown in Figure 1.11
will be explained later.

Point Estimation of Mean Response

Example

Estimated Regression Function. Given sample estimators by and b, of the parameters
in the regression function (1.3):

E{Y}=po+ B X

we estimate the regression function as follows:

Y =by+bX (1.12)
where ¥ (read Y hat) is the value of the estimated regression function at the level X of the
predictor variable.

We call a value of the response variable a response and E{Y} the mean respgnse. Thus,
the mean response stands for the mean of the probability distribution of ¥ corresponding
to the level X of the predictor variable. ¥ then is a point estimator of the mean response
when the level of the predictor variable is X. It can be shown as an extension of the Gauss-
Markov theorem (1.11) that Y is an unbiased estimator of E{Y}, with minimum variance
in the class of unbiased linear estimators.

For the cases in the study, we will call IA’,-:

Yi=bo+bX, i=1,...,n (1.13)

the fitted value for the ith case. Thus, the fitted value ¥; is to be viewed in distinction to the
observed value Y;.

For the Toluca Company example, we found that the least squares estimates of the regression
coefficients are:

by = 62.37 b, = 3.5702
Hence, the estimated regression function is:
Y = 62.37 + 3.5702X

This estimated regression function is plotted in Figure 1.10b. It appears to be a good
description of the statistical relationship between lot size and work hours.

To estimate the mean response for any level X of the predictor variable, we simply
substitute that value of X in the estimated regression function. Suppose that we are interested
in the mean number of work hours required when the lot size is X = 65; our point estimate is:

H

¥ = 62.37 + 3.5702(65) = 294.4

Thus, we estimate that the mean number of work hours required for production runs of
X = 65 units is 294.4 hours. We interpret this to mean that if many lots of 65 units are
produced under the conditions of the 25 runs on which the estimated regression function is
based, the mean labor time for these lots is about 294 hours. Of course, the labor time for
any one lot of size 65 is likely to fall above or below the mean response because of inherent
variability in the production system, as represented by the error term in the model.
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TABLE 1.2
Fitted Values, M @ (3) @ ®)
Residual ) Estimated
esieuas, an Lot Work Mean Squared
Squared . S
Residuals Run Size Hours Response Residual Residual
Tolen i X Y; 7 Yi—fi=e  (h—V)2=¢
oluca
Company 1 80 399 34798 51.02 2,603.0
Example. 2 30 121 169.47 —48.47 2,349.3
3 50 221 240.88 —19.88 395.2
23 40 244 205.17 38.83 1,507.8
24 80 342 347.98 -5.98 35.8
25 70 323 312.28 10.72 1149
Total 1,750 7,807 7,807 0 54,825
Fitted values for the sample cases are obtained by substituting the appropriate X values
into the estimated regression function. For the first sample case, we have X, = 80. Hence,
the fitted value for the first case is:
¥ = 62.37 +3.5702(80) = 347.98
This compares with the observed work hours of ¥, = 399. Table 1.2 contains the observed
and fitted values for a portion of the Toluca Company data in columns 2 and 3, respectively.
Alternative Model (1.6). 'When the alternative regression model (1.6):
Yi =B85+ Bu(Xi — X) + ¢
is to be utilized, the least squares es_timator b, of B remains the same as before. The least
squares estimator of §; = fo + p1X becomes, from (1.10b):
Hence, the estimated regression function for alternative model (1.6) is:
Y=Y +b(X—-X) (1.15)
In the Toluca Company example, ¥ = 312.28 and X = 70.0 (Table 1.1). Hence, the
estimated regression function in alternative form is:
¥ =312.28 4+ 3.5702(X — 70.0)
For the first lot in our example, X; = 80; hence, we estimate the mean response to be:
¥, = 312.28 + 3.5702(80 — 70.0) = 347.98
which, of course, is identical to our earlier result.
Residuals

The ith residual is the difference between the observed value Y; and the corresponding fitted
value ¥;. This residual is denoted by ¢; and is defined in general as follows:

€ = Y, - i;i (1'16)
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For regression model (1.1), the residual ¢; becomes:
e =Y, —(bo+bhX))=Y,—by— b X; (1.16a)

The calculation of the residuals for the Toluca Company example is shown for a portion
of the data in Table 1.2. We see that the residual for the first case is:

e =Y, — ¥ =399 — 347.98 = 51.02

The residuals for the first two cases are illustrated graphically in Figure 1.12. Note in
this figure that the magnitude of a residual is represented by the vertical deviation of the Y;
observation from the corresponding point on the estimated regression function (i.e., from
the corresponding fitted value ¥;).

We need to distinguish between the model error term value ¢; = ¥; — E{Y;} and the
residual ¢, = ¥; — ¥;. The former involves the vertical deviation of ¥; from the unknown
true regression line and hence is unknown. On the other hand, the residual is the vertical
deviation of ¥; from the fitted value ¥; on the estimated regression line, and it is known.

Residuals are highly useful for studying whether a given regression model is appropriate
for the data at hand. We discuss this use in Chapter 3.

Properties of Fitted Regression Line

The estimated regression line (1.12) fitted by the method of least squares has a nurnber of
properties worth noting. These properties of the least squares estimated regression function
do not apply to all regression models, as we shall see in Chapter 4.

1. The sum of the residuals is zero:
H
- Y =0 1.17)
i=1

Table 1.2, column 4, illustrates this property for the Toluca Company example. Rounding
errors may, of course, be present in any particular case, resulting in a sum of the residuals
that does not equal zero exactly.

2. The sum of the squared residuals, > eiZ, is a minimum. This was the requirement to
be satisfied in deriving the least squares estimators of the regression parameters since the
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criterion Q in (1.8) to be minimized equals 3 e? when the least squares estimators by and
b, are used for estimating B¢ and ;.

3. The sum of the observed values ¥; equals the sum of the fitted values Y

S h=31, (1.18)
i=1 i=l1

This property is illustrated in Table 1.2, columns 2 and 3, for the Toluca Company example.
It follows that the mean of the fitted values ¥; is the same as the mean of the observed
values Y;, namely, Y.

4. The sum of the weighted residuals is zero when the residual in the ith trial is weighted
by the level of the predictor variable in the ith trial:

> Xie; =0 (1.19)
i=1

5. A consequence of properties (1.17) and (1.19)is that the sum of the weighted residuals
is zero when the residual in the i th trial is weighted by the fitted value of the response variable
for the ith trial:

> Ve =0 (1.20)
i=1
6. The regression line always goes through the point (X, ¥).

Comment

The six properties of the fitted regression line follow directly from the least squares normal equa-
tions (1.9). For example, property 1 in (1.17) is proven as follows:

Yo=Y Hi—b-bX)=) Yi—nbo—bi )y X

=0 by the first normal equation (1.9a)
Property 6, that the regression line always goes through the point (X, ¥), can be demonstrated
easily from the alternative form (1.15) of the estimated regression line. When X = X, we have: -
P =7+b(X-X)=F+b(X-X)=7 n

1.7 Estimation of Error Terms Variance o2

The variance o2 of the error terms &; in regression model (1.1) needs to be estimated to
obtain an indication of the variability of the probability distributions of Y. In addition, as
we shall see in the next chapter, a variety of inferences concerning the regression function
and the prediction of Y require an estimate of o2

Point Estimator of o
To lay the basis for developing an estimator of o2 for regression model (1.1), we first
consider the simpler problem of sampling from a single population.

Single Population. We know that the variance o2 of a single population is estimated by
the sample variance s2. In obtaining the sample variance s2, we consider the deviation of
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an observation ¥; from the estimated mean Y, square it, and then sum all such squared
deviations:

> (¥ -1y

i=1
Such a sum is called a sum of squares. The sum of squares is then divided by the degrees
of freedom associated with it. This number is » — 1 here, because one degree of freedom is
lost by using ¥ as an estimate of the unknown population mean p. The resulting estimator
is the usual sample variance:

52 = ELI(Y,-—Y)Z
n—1
which is an unbiased estimator of the variance o2 of an infinite population. The sample
variance is often called a mean square, because a sum of squares has been divided by the
appropriate number of degrees of freedom. »

Regression Model. The logic of developing an estimator of o2 for the regression model is
the same as for sampling from a single population. Recall in this connection from (1.4) that
the variance of each observation ¥; for regression model (1.1)is o2, the same as that of each
error term &;. We again need to calculate a sum of squared deviations, but must recognize
that the ¥; now come from different probability distributions with different means that
depend upon the level X;. Thus, the deviation of an observation ¥; must be calculated
around its own estimated mean ¥;. Hence, the deviations are the residuals:

Y, — f’i =€
and the appropriate sum of squares, denoted by SSE, is:
n n
SSE = Z(Y,- —- Py = Ze,? (1.21)
i=1 i=1

where SSE stands for error sum of squares or residual sum of squares.

The sum of squares SSE has n — 2 degrees of freedom associated with it. Two degrees
of freedom are lost because both fy and 8, had to be estimated in obtaining the estimated
means ¥;. Hence, the appropriate mean square, denoted by MSE or s2, is:

SSE Y% —Y)r e
n—2 n—2 T n-2

where MSE stands for error mean square or residual mean square.
It can be shown that MSE is an unbiased estimator of o2 for regression model (1. 1)

E{MSE} = o2 (1.23)

An estimator of the standard deviation o is simply s = +/MSE, the positive square root of
MSE.

s2 — MSE = {(1.22)

We will calculate SSE for the Toliica Company example’by (1.21). The residuals were
obtained earlier in Table 1.2, column 4. This table also shows the squared residuals in
column 5. From these results, we obtain:

SSE = 54,825
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Since 25 — 2 = 23 degrees of freedom are associated with SSE, we find:

54,825
2

52 = MSE = =2.384

Finally, a point estimate of o, the standard deviation of the probability distribution of Y for
any X, 18 s = /2,384 = 48.8 hours.

Consider again the case where the lot size is X = 65 units. We found earlier that the
mean of the probability distribution of ¥ for this lot size is estimated to be 294.4 hours.
Now, we have the additional information that the standard deviation of this distribution is
estimated to be 48.8 hours. This estimate is shown in the MINITAB output in Figure 1.11,
labeled as s. We see that the variation in work hours from lot to lot for lots of 65 units is
quite substantial (49 hours) compared to the mean of the distribution (294 hours).

1.8 Normal Error Regression Model

Model

No matter what may be the form of the distribution of the error terms g; (and hence of the
Y;), the least squares method provides unbiased point estimators of Sy and §; that have
minimum variance among all unbiased linear estimators. To set up interval estimates and
make tests, however, we need to make an assumption about the form of the distribution of
the ¢;. The standard assumption is that the error terms ¢; are normally distributed, and we
will adopt it here. A normal error term greatly simplifies the theory of regression analysis
and, as we shall explain shortly, is justifiable in many real-world situations where regression
analysis is applied.

The normal error regression model is as follows:
Yi =0+ B Xi+e (1.24)
where:

Y; is the observed response in the ith trial

X is a known constant, the level of the predictor variable in the ith trial
Bo and B, are parameters

&; are independent N (0, o'2)

i=1,...,n

Comments

1. The symbol N(0, o2) stands for normally distributed, with mean 0 and variance o2

2. The normal error model (1.24) is the same as regression model (1.1) with unspecified error
distribution, except that model (1.24) assumes that the errors &; are normally distributed.

3. Because regression model (1.24) assumes that the errors are normally distributed, the assump-
tion of uncorrelatedness of the & in regression model (1.1) becomes one of independence in the

normal error model. Hence, the outcome in any one trial has no effect on the error term for any other
trial—as to whether it is positive or negative, small or large.
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4. Regression model (1.24) implies that the ¥; are independent normal random variables, with
mean E{Y;} = By + B X; and variance o2. Figure 1.6 pictures this normal error model. Each of the
probability distributions of ¥ in Figure 1.6 is normally distributed, with constant variability, and the
regression function is linear.

5. The normality assumption for the error terms is justifiable in many situations because the error
terms frequently represent the effects of factors omitted from the model that affect the response to
some extent and that vary at random without reference to the variable X. For instance, in the Toluca
Company example, the effects of such factors as time lapse since the last production run, particular
machines used, season of the year, and personnel employed could vary more or less at random from
run to run, independent of lot size. Also, there might be random measurement errors in the recording
of Y, the hours required. Insofar as these random effects have a degree of mutual independence, the
composite error term ¢&; representing all these factors would tend to comply with the central limit
theorem and the error term distribution would approach normality as the number of factor effects
becomes large.

A second reason why the normality assumption of the error terms is frequently justifiable is that
the estimation and testing procedures to be discussed in the next chapter are based on the ¢ distribution
and are usually only sensitive to large departures from normality. Thus, unless the departures from
normality are serious, particularly with respect to skewness, the actual confidence coefficients and
risks of errors will be close to the levels for exact normality. |

Estimation of Parameters by Method of Maximum Likelihood

FIGURE 1.13
Densities for
Sample
Observations
for Two
Possible Values
of : Yy = 250,
Y, = 265,

Y; = 259,

When the functional form of the probability distribution of the error terms is specified,
estimators of the parameters By, i, and o2 can be obtained by the method of maximum
likelihood. Essentially, the method of maximum likelihood chooses as estimates those values
of the parameters that are most consistent with the sample data. We explain the method of
maximum likelihood first for the simple case when a single population with one parameter
is sampled. Then we explain this method for regression models.

Single Population. Consider a normal population whose standard deviation is known
to be o = 10 and whose mean is unknown. A random sample of n = 3 observations is
selected from the population and yields the results ¥; = 250, ¥, = 265, Y3 = 259. We
now wish to ascertain which value of 1 is most consistent with the sample data. Consider
1 = 230. Figure 1.13a shows the normal distribution with & = 230 and o = 10; also shown
there are the locations of the three sample observations. Note that the sample observations

=230 pn =259
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4

i 31, no B
@ b




28 Part One Simple Linear Regression

would be in the right tail of the distribution if © were equal to 230. Since these are unlikely
occurrences, p = 230 is not consistent with the sample data.

Figure 1.13b shows the population and the locations of the sample data if & were equal
to 259. Now the observations would be in the center of the distribution and much more
likely. Hence, p = 259 is more consistent with the sample data than u = 230.

The method of maximum likelihood uses the density of the probability distribution at
Y; (i.e., the height of the curve at Y;) as a measure of consistency for the observation ¥;.
Consider observation ¥; in our example. If ¥ is in the tail, as in Figure 1.13a, the height of
the curve will be small. If ¥, is nearer to the center of the distribution, as in Figure 1.13b,
the height will be larger. Using the density function for a normal probability distribution
in (A.34) in Appendix A, we find the densities for Y}, denoted by f;, for the two cases of

1 in Figure 1.13 as follows: x
1 1 /250 — 230 2}
= 230: = exp| — = ———) | =.005399
# = 7o p[ 2( 10 >
1 1 /250 — 259\ 2
= 259: = exp| — = [ — 2 | =.026609
# "= o p[ 2 ( 10 > ]

The densities for all three sample observations for the two cases of w are as follows:

=230 p =259

fi .005399 .026609
f .000087 .033322
f3 .000595 .039894

The method of maximum likelihood uses the product of the densities (i.e., here, the
product of the three heights) as the measure of consistency of the parameter value with
the sample data. The product is called the likelihood value of the parameter value p and
is denoted by L (w). If the value of u is consistent with the sample data, the densities will
be relatively large and so will be the product (i.e., the likelihood value). If the value of
is not consistent with the data, the densities will be small and the product L(u) will be
small.

For our simple example, the likelihood values are as follows for the two cases of u:

L(p = 230) = .005399(.000087)(.000595) = .279x 10~°
L1 = 259) = .026609(.033322)(.039894) = .0000354

Since the likelihood value L(x = 230) is a very small number, it is shown in scientific
notation, which indicates that there are nine zeros after the decimal place before 279. Note
that L (i = 230) is much smaller than L(u = 259), indicating that i = 259 is much more
consistent with the sample data than u = 230.

The method of maximum likelihood chooses as the maximum likelihood estimate that
value of p for which the likelihood value is largest. Just as for the method of least squares,
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there are two methods of finding maximum likelihood estimates: by a systematic numerical
search and by use of an analytical solution. For some problems, analytical solutions for the
maximum likelihood estimators are available. For others, a computerized numerical search
must be conducted.

For our example, an analytical solution is available. It can be shown that for a normal
population the maximum likelihood estimator of . is the sample mean ¥ . In our example,
Y = 258 and the maximum likelihood estimate of w therefore is 258. The likelihood value
of u =258 is L(u = 258) = .0000359, which is slightly larger than the likelihood value
of .0000354 for p = 259 that we had calculated earlier.

The product of the densities viewed as a function of the unknown parameters is called
the likelihood function. For our example, where o = 10, the likelihood function is:

-] A ol 45)]
W= "man) ™ 2\ 10 ®72\T10 ),

[ 1/259—p\?
X exp| — =

:(50%)

Figure 1.14 shows a computer plot of the likelihood function for our example. It is based
on the calculation of likelihood values L(u) for many values of . Note that the likelihood
values at ;. = 230 and p = 259 correspond to the ones we determined earlier. Also note
that the likelihood function reaches a maximum at p = 258.

The fact that the likelihood function in Figure 1.14 is relatively peaked in the neigh-
borhood of the maximum likelihood estimate ¥ =258 is of particular interest. Note, for
instance, that for © =250 or u =266, the likelihood value is already only a little more
than one-half as large as the likelihood value at . —=258. This indicates that the max-
imum likelihood estimate here is relatively precise because values of . not near the maxi-
mum likelihood estimate ¥ =258 are much less consistent with the sample data. When the
likelihood function is relatively flat in a fairly wide region around the maximum likelihood
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estimate, many values of the parameter are almost as consistent with the sample data as the
maximum likelihood estimate, and the maximum likelihood estimate would therefore be
relatively imprecise.

Regression Model. The concepts just presented for maximum likelihood estimation of
a population mean carry over directly to the estimation of the parameters of normal error
regression model (1.24). For this model, each Y; observation is normally distributed with
mean B + B X; and standard deviation o. To illustrate the method of maximum likelihood
estimation here, consider the earlier persistence study example on page 15. For simplicity,
let us suppose that we know ¢ = 2.5. We wish to determine the likelihood value for the
parameter values fy = 0 and B, = .5. For subject 1, X; = 20 and hence the mean of the
probability distribution would be 8y + g1 X; = 0+ .5(20) = 10.0. Fignre 1.15a shows
the normal distribution with mean 10.0 and standard deviation 2.5. Note that the observed
value ¥; = 5 is in the left tail of the distribution and that the density there is relatively small.
For the second subject, X; = 55 and hence By + 81 X2 = 27.5. The normal distribution with
mean 27.5 is shown in Figure 1.15b. Note that the observed value ¥, = 12 is most unlikely
for this case and that the density there is extremely small. Finally, note that the observed
value Y3 = 10 is also in the left tail of its distribution if 8y = 0 and 8, = .5, as shown in
Figure 1.15c¢, and that the density there is also relatively small.

FIGURE 1.15 Densities for Sample Observations if fy = 0 and ; = 5—Persistence Study Example.
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Figure 1.15d combines all of this information, showing the regression function E{Y'} =
0 + .5X, the three sample cases, and the three normal distributions. Note how poorly the
regression line fits the three sample cases, as was also indicated by the three small density
values. Thus, it appears that Sy = 0 and 8, = .5 are not consistent with the data.

We calculate the densities (i.e., heights of the curve) in the usual way. For ¥, = 5,
X, = 20, the normal density is as follows when 8y = O and 8, = .5:

14

1 1/5-10.0\°

The other densities are f, = .7175 x 10~° and f3 = .021596, and the likelihood value of
Bo = 0 and B, = .5 therefore is:

fi

o
R

L(Bo =0, fi = .5) = .021596(.7175 x 10~°)(.021596) = .3346 x 10,

In general, the density of an observation ¥; for the normal error regression model (1.24)
is as follows, utilizing the fact that E{Y;} = Bo + B, X; and 02{Y;} = 0%

1 (Y —Bo—BiXi 2]
f,—ma exp[ 2( - > (1.25)

The likelihood function for n observations Y;, Ys, ..., ¥, is the product of the individual
densities in (1.25). Since the variance o2 of the error terms is usually unknown, the likelihood
function is a function of three parameters, fo, B, and o

n

1 1
Lo, B = [ oy exp[ ~ 55 (= o= ﬁlx,-)z]

i=1
1 1 &
= Quody e"P[ T oo ;(Y —Po— ﬁlx,-)z] (1.26)

The values of Bo, Bi, and o? that maximize this likelihood function are the maximum
likelihood estimators and are denoted by Bo, B1,and 62, respectively. These estimators can
be found analytically, and they are as follows: ;

Parameter Maximum Likelihood Estimator
Bo . Bo=by sameas(1.10b)
B . B1=b, sameas (1.10a) (1.27)
o2 62 = (Y = ¥i)?
n

Thus, the maximum likelihood estimators of §y and 8, are the same estimators as those
provided by the method of least squares. The maximum likelihood estimator 62 is biased,
and ordinarily the unbiased estimator MSE as given in (1.22) is used. Note that the unbi-

ased estimator MSE or s differs but slightly from the maximum likelihood estimator &2,



32 Part One Simple Linear Regression

Example

especially if # is not small:

s* = MSE = 2 (1.28)

For the persistence study example, we know now that the maximum likelihood estimates of
Bo and B, are by =2.81 and b; = .177, the same as the least squares estimates in Figure 1.9b.

Comments

1. Since the maximum likelihood estimators B¢ and B, are the same as the least squares estimators

by and b, they have the properties of all least squares estimators:

a. They are unbiased.

b. They have minimum variance among all unbiased linear estimators.

In addition, the maximum likelihood estimators bg and b, for the normal error regression model

(1.24) have other desirable properties:

¢. They are consistent, as defined in (A.52).

d. They are sufficient, as defined in (A.53).

e. They are minimum variance unbiased; that is, they have minimum variance in the class of all
unbiased estimators (linear or otherwise).

Thus, for the normal error model, the estimators by and b; have many desirable properties.

2. We find the values of B, B, and o that maximize the likelihood function L in (1.26) by taking
partial derivatives of L with respect to By, B, and o2, equating each of the partials to zero, and
solving the system of equations thus obtained. We can work with log, L, rather than L, because
both L and log, L are maximized for the same values of By, By, and 0%

n

o 1
5108,0% ~ o= (X~ Bo— FiX) (1.29)

log, L = ——g— log, 27 —

Partial differentiation of the logarithm of the likelihood function is much easier; it yields:

d(log, L t

_(%Eo—zzﬁg Y — Bo— Bi X2)

d(log, L t

—(%El"zzgg X; (Y — o — BiX0)

d(log, L) n 1

Ta07 = 207 208 2T Fo = A"

We now set these partial derivatives equal to zero, replacing o, Bi, and o2 by the estimators Bo,
B:, and 62. We obtain, after some simplification:

> —po—BiX) =0 (1.30a)

> X (¥~ Bo— BiX) =0 (1.30b)

2T~ Bo~ B X _

n

&? (1.30c)




Formulas (1.30a) and (1.30b) are identical to the earlier least squares normal equations (1.9), and
formula (1.30c) is the biased estimator of o2 given earlier in (1.27). |

Chapter 1  Linear Regression with One Predictor Variable 33

1.1.
1.2,
1.3.
1.4.
1.5.
1.6.
L.7.
1.8

BMDP New System 2.0. Statistical Solutions, Inc.
MINITAB Release 13. Minitab Inc. :
SAS/STAT Release 8.2. SAS Institute, Inc. i
SPSS 11.5 for Windows. SPSS Inc.

SYSTAT 10.2. SYSTAT Software, Inc. i
JMP Version 5. SAS Institute, Inc. é
S-Plus 6 for Windows. Insightful Corporation. |
MATLAB 6.5. The MathWorks, Inc.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.
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1.9.

Refer to the sales volume example on page 3. Suppose that the number of units sold is measured
accurately, but clerical errors are frequently made in determining the dollar sales. Would the
relation between the number of units sold and dollar sales still be a functional one? Discuss.

The members of a health spa pay annual membership dues of $300 plus a charge of $2 for each
visit to the spa. Let ¥ denote the dollar cost for the year for a member and X the number of §
visits by the member during the year. Express the relation between X and ¥ mathematically. |
Is it a functional relation or a statistical relation?
Experience with a certain type of plastic indicates that a relation exists between the hardness
(measured in Brinell units) of items molded from the plastic (¥) and the elapsed time since ter-
mination of the molding process (X). Itis proposed to study this relation by means of regression
analysis. A participant in the discussion objects, pointing out that the hardening of the plastic
“is the result of a natural chemical process that doesn’t leave anything to chance, so the relation
must be mathematical and regression analysis is not appropriate.” Evaluate this objection.
In Table 1.1, the lot size X is the same in production runs 1 and 24 but the work hours Y differ. i
What feature of regression model (1.1) is illustrated by this?
When asked to state the simple linear regression model, a student wrote it as follows: E{Y;} =
Bo + BiX;: + &. Do you agree?
Consider the normal error regression model (1.24). Suppose that the parameter value$ are
Bo=200,8,=5.0,andoc = 4. =
a. Plot this normal error regression model in the fashion of Figure 1.6. Show the distributions
of Y for X = 10, 20, and 40.
b. Explain the meaning of the parameters Sy and B;. Assume that the scope of thé model )
includes X = 0. i
In a simulation exercise, regression model (1.1) applies with g, = 100, 8; = 20, and 02 = 25. :
An observation on Y will be made for X = 5.
a. Can you state the exact probability that ¥ will fall between 195 and 2057 Explain. i
b. If the normal error regression model (1.24) is applicable, can you now state the exact prob- i
ability that ¥ will fall between 195 and 2057 If so, state it. )
In Figure 1.6, suppose another ¥ observation is obtained at X = 45. Would E{Y} for this new
observation still be 1047 Would the Y value for this new case again be 1087

A student in accounting enthusiastically declared: “Regression is a very powerful tool. We can
isolate fixed and variable costs by fitting a linear regression model, even when we have no data
for small lots.” Discuss.
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1.10.

112,

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

An analyst in a large corporation studied the relation between current annual salary (¥) and
age (X) for the 46 computer programmers presently employed in the company. The analyst
concluded that the relation is curvilinear, reaching a maximum at 47 years. Does this imply
thar the salary for a programmer increases until age 47 and then decreases? Explain.

. The regression function relating production output by an employee after taking a training

program (Y) to the production output before the training program (X) is E{Y} = 20+ .95X,
where X ranges from 40 to 100. An observer concludes that the training program does not raise
production output on the average because f; is not greater than 1.0. Comment.

In a study of the relationship for senior citizens between physical activity and frequency of
colds, participants were asked to monitor their weekly time spent in exercise over a five-year
period and the frequency of colds. The study demonstrated that a negative statistical relation
exists between time spent in exercise and frequency of colds. The investigator concluded that
increasing the time spent in exercise is an effective strategy for reducing the frequency of colds
for senior citizens.

a. Were the data obtained in the study observational or experimental data?

b. Comment on the validity of the conclusions reached by the investigator.

c. Identify two or three other explanatory variables that might affect both the time spent in
exercise and the frequency of colds for senior citizens simultaneously.

d. How might the study be changed so that a valid conclusion about causal relationship between
amount of exercise and frequency of colds can be reached?

Computer programmers employed by a software developer were asked to participate in a month-

long training seminar. During the seminar, each employee was asked to record the number of

hours spent in class preparation each week. After completing the seminar, the productivity level

of each participant was measured. A positive linear statistical relationship between participants’

productivity levels and time spent in class preparation was found. The seminar leader concluded

that increases in employee productivity are caused by increased class preparation time.

a. Were the data used by the seminar leader observational or experimental data?

b. Comment on the validity of the conclusion reached by the seminar leader.

c. Identify two or three alternative variables that might cause both the employee productivity
scores and the employee class participation times to increase (decrease) simultaneously.

d. How might the study be changed so that a valid conclusion about causal relationship between
class preparation time and employee productivity can be reached?

Refer to Problem 1.3. Four different elapsed times since termination of the molding process

(treatments) are to be studied to see how they affect the hardness of a plasiic. Sixteen batches

(experimental units) are available for the study. Each treatment is to be assigned to four exper-

imental units selected at random. Use a table of random digits or a random number generator

to make an appropriate randomization of assignments.

The effects of five dose levels are to be studied in a completely randomized design, and 20

experimental units are available. Each dose level is to be assigned 1o four experimental units

selected at random. Use a table of random digits or a random number generator to make an

appropriate randomization of assignments.

Evaluate the following statement: “For the least squares method to be fully valid, it is required

that the distribution of ¥ be normal.”

A person states that by and b; in the fitted regression function (1.13) can be estimated by the

method of least squares. Comment.

According to (1.17), Z ¢; = 0 when regression model (1.1) is fitted to a set of n cases by the

method of least squares. Is it also true that y | & = 0? Comment.
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Grade point average. The director of admissions of a small college selected 120 students at
random from the new freshman class in a study to determine whether a student’s grade point
average (GPA) at the end of the freshman year (¥') can be predicted from the ACT testscore (X).
The results of the study follow. Assume that first-order regression model (1.1) is appropriate.

i 1 2 3 118 119 120

Xi: 21 14 28 28 16 28
Yi: 3.897 3.885 3.778 . 3.914 1.860 2.948

a. Obtain the least squares estimates of S and B, and state the estimated regression function.

b. Plot the estimated regression function and the data.Does the estimated regression function
appear to fit the data well?

c. Obtain a point estimate of the mean freshman GPA for students with ACT test score X = 30.

d. What is the point estimate of the change in the mean response when the entrance test gcore
increases by one point?

Copier maintenance. The Tri-City Office Equipment Corporation sells an imported copier on
a franchise basis and performs preventive maintenance and repair service on this copier. The
data below have been collected from 45 recent calls on users to perform routine preventive
maintenance service; for each call, X is the number of copiers serviced and Y is the total
number of minutes spent by the service person. Assume that first-order regression model (1.1)
is appropriate.

i 1 2 3 43 44 45
X 2 4 3 . 2 4 5
Yt 20 60 46 . 27 61 77

a. Obtain the estimated regression function.
b. Plot the estimated regression function and the data. How well does the estimated regression
function fit the data?

c. Interpret by in your estimated regression function. Does b provide any relevant information
here? Explain.

d. Obtain a point estimate of the mean service time when X = 5 copiers are serviced.

Airfreight breakage. A substance used in biological and medical research is shipped by air-
freight to users in cartons of 1,000 ampules. The data below, involving 10 shipments, were
collected on the number of times the carton was transferred from one aircraft 1o another over
the shipment route (X) and the number of ampules found to be broken upon arrival (¥). Assume
that first-order regression model (1.1) is appropriate.

i 1 2 3 . 4 5 6 7 8 9 10
Xi: 1 0 2 0 3 1 0 1 2 0
Yi: 16 9 17 12 22 13 8 15 19 11

a. Obtain the estimated regression function. Plot the estimated regression function and the
data. Does a linear regression function appear to give a good fit here?

b. Obtain a point estimate of the expected number of broken ampules when X = 1 transfer is
made.
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1.22.

1.23.

*1.24.

*1.25.

1.26.

*1.27.

c. Estimate the increase in the expected number of ampules broken when there are 2 transfers
as compared to 1 transfer.

d. Verify that your fitted regression line goes through the point (X, 7).

Plastic hardness. Refer to Problems 1.3 and 1.14. Sixteen batches of the plastic were made,
and from each batch one test item was molded. Each test item was randomly assigned to one of
the four predetermined time levels, and the hardness was measured after the assigned elapsed
time. The results are shown below; X is the elapsed time in hours, and Y is hardness in Brinell
units. Assume that first-order regression model (1.1) is appropriate.

i 1 2 3 14 15 16
Xi: 16 16 16 40 40 40
Y 199 205 196 248 253 246

a. Obtain the estimated regression function. Plot the estimated regression function and the
data. Does a linear regression function appear to give a good fit here?

b. Obtain a point estimate of the mean hardness when X = 40 hours.

c¢. Obtain a point estimate of the change in mean hardness when X increases by 1 hour.
Refer 1o Grade point average Problem 1.19.

a. Obtain the residuals ¢;. Do they sum to zero in accord with (1.17)?

b. Estimate o2 and o. In what units is o expressed?

Refer to Copier maintenance Problem 1.20.

a. Obtain the residuals ¢; and the sum of the squared residuals ) 2. What is the relation
between the sum of the squared residuals here and the quantity Q in (1.8)?

b. Obtain point estimates of o2 and o. In what units is o expressed?
Refer to Airfreight breakage Problem 1.21.

a. Obtain the residual for the first case. What is its relation to £;?

b. Compute )  e? and MSE. What is estimated by MSE?

Refer to Plastic hardness Problem 1.22.

a. Obtain the residuals ¢;. Do they sum to zero in accord with (1.17)?
b. Estimaie o2 and ¢ In what units is o expressed?

Muscle mass. A person’s muscle mass is expected to decrease with age. To explore this rela-
tionship in women, a nutritionist randomly selected 15 women from each 10-year age group,
beginning with age 40 and ending with age 79. The results follow; X is age, and Y is a measure
of muscle mass. Assume that first-order regression model (1.1) is appropriate.

i 1 2 3 . 58 59 60
Xi: 43 41 47 . 76 72 76
75 106 106 97 56 70 74

a. Obtain the estimated regression function. Plot the estimated regression function and the data.
Does a linear regression function appear to give a good fit here? Does your plot support the
anticipation that muscle mass decreases with age?

b. Obtain the following: (1) a point estimate of the difference in the mean muscle mass for
women differing in age by one year, (2) a point estimate of the mean muscle mass for women
aged X = 60 years, (3) the value of the residual for the eighth case, (4) a point estimate of o2,
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Crime rate. A criminologist studying the relationship between level of education-and crime
rate in medium-sized U.S. counties collected the following data for a random sample of 84 coun-
ties; X is the percentage of individuals in the county having at least a high-school diploma, and
Y is the crime rate (crimes reported per 100,000 residents) last year. Assume that first-order
regression model (1.1) is appropriate.

i: 1 2 3 en 82 83 84
Xiz 74 82 81 . 88 83 76
Y 8,487 8,179 8,362 8,040 6,981 7,582

a. Obtain the estimated regression function. Plot the estimated regression function and the
data. Does the linear regression function appear to give a good fit here? Discuss.

b. Obtain point estimates of the following: (1) the difference in the mean crime rate for two
counties whose high-school graduation rates differ by one percentage point, (2) the mean
crime rate last year in counties with high school graduation percentage X = 80, (3) &),
4) o>

Exercises

1.29.

1.30.

1.31.

1.32.
1.33.

1.34.
1.35.

1.36.
1.37.

1.38.

1.39.

Refer to regression model (1.1). Assume that X = 0 is within the scope of the model. What is

the implication for the regression function if 8y = 0 so that the model is ¥; = B; X; + &;? How

would the regression function plot on a graph?

Refer to regression model (1.1). What is the implication for the regression function if 8; = 0

so that the model is ¥; = By + &;? How would the regression function plot on a graph?

Refer to Plastic hardness Problem 1.22. Suppose one test item was molded from a single

batch of plastic and the hardness of this one item was measured at 16 different points in time.

Would the error term in the regression model for this case still reflect the same effects as for

the experiment initially described? Would you expect the error terms for the different points in

time to be uncorrelated? Discuss. .

Derive the expression for b; in (1.102) from the normal equations in (1.9).

(Calculus needed.) Refer_to the regression model ¥; = Bo + ¢; in Exercise 1.30. Derive the

least squares estimator of By for this model.

Prove that the least squares estimator of 8, obtained in Exercise 1.33 is unbiased.

Prove the result in (1.18) — that the sum of the Y observations is the same as the sum of the

fitted values.

Prove the result in (1.20) — that the sum of the residuals weighted by the fitted values is zero.

Refer to Table 1.1 for the Toluca Company example. When asked to present a point estimate

of the expected work hours for Iot sizes of 30 pieces, a persén gave the estimate 202 because

this is the mean number of work hours in the three runs of size 30 in the study. A critic states

that this person’s approach “throws away” most of the data in the study because cases with lot

sizes other than 30 are ignored. Comment.

In Airfreight breakage Problem 1.21, the least squares estimates are by = 10.20 andb; =4.00,

and Z &2 = 17.60. Evaluate the least squares criterion Q in (1.8) for the estimates (1) by =9,

by =3;(2) by =11, b, =5. Is the criterion Q larger for these estimates than for the least squares

estimates?

Two observations on Y were obtained at each of three X levels, namely, at X = 5, X =10, and

X =15.

a. Show that the least squares regression line fitted to the three points (5, ¥1), (10, ¥5), and
(15, 13), where ¥;, ¥», and ¥; denote the means of the ¥ observations at the three X levels,
is identical to the least squares regressjon line fitted to the original six cases.
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1.40.

141.

1.42.

b. In this study, could the error term variance o2 be estimated without fitting a regression line?
Explain.

In fitting regression model (1.1), it was found that observation ¥; fell directly on the fitted

regression line (i.e., ¥; = ¥:). If this case were deleted, would the least squares regression line

fitted to the remaining n — 1 cases be changed? [Hint: What is the contribution of case i to the

least squares criterion Q in (1.8)7]

(Calculus needed.) Refer to the regression model Y¥; = 8, X;+¢;,i = 1, ..., n, inExercise 1.29.

a. Find the least squares estimator of g,.

b. Assume that the error terms ¢; are independent N (0, 02) and that ¢ is known. State the
likelihood function for the » sample observations on ¥ and obtain the maximum likelihood
estimator of 8. Is it the same as the least squares estimator?

P
-

c. Show that the maximum likelihood estimator of 8; is unbiased.

Typographical errors. Shown below are the number of galleys for a manuscript (X) and the
dollar cost of correcting typographical errors (¥) in arandom sample of recent orders handled by
a firm specializing in technical manuscripts. Assume that the regression model ¥; = 8, X; + &
is appropriate, with normally distributed independent error terms whose variance is 02 = 16.

i 1 2 3 4 5 6
Xi: 7 12 4 14 25 30
Y;: 128 213 75 250 446 540

a. State the likelihood function for the six ¥ observations, for o2 = 16. 3

b. Evaluate the likelihood function for 8, = 17, 18, and 19. For which of these g; values is
the likelihood function largest?

c. The maximum likelihood estimator is by = >, X;¥:/ Y, X?. Find the maximum likelihood
estimate. Are your results in part (b) consistent with this estimate?

d. Using a computer graphics or statistics package, evaluate the likelihood function for values
of B between B; = 17 and B, = 19 and plot the function. Does the point at which the
likelihood function is maximized correspond to the maximum likelihood estimate found in
part (¢)?

Projects

1.43.

Refer to the CDI data set in Appendix C.2. The number of active physicians in a CDI (¥) is

expected to be related to total population, number of hospital beds, and total personal income.

Assume that first-order regression model (1.1) is appropriate for each of the three predictor

variables.

a. Regress the number of active physicians in turn on each of the three predictor variables.
State the estimated regression functions.

b. Plot the three estimated regression functions and data on separate graphs. Does a linear
regression relation appear to provide a good fit for each of the three predictor variables?

c. Calculate MSE for each of the three predictor variables. Which predictor variable leads to
the smallest variability around the fitted regression line?

1.44. Refer to the CDI data set in Appendix C.2.

a. For each geographic region, regress per capita income m a CDI (¥) against the per-
centage of individuals in a county having at least a bachelor’s degree (X). Assume that
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first-order regression model (1.1) is appropriate foreach region. State the estimated regres-
sion functions.

Are the estimated regression functions similar for the four regions? Discuss.

Calculate MSE for each region. Is the variability around the fitted regression line approxi-
mately the same for the four regions? Discuss.

1.45. Refer to the SENIC data set in Appendix C.1. The average length of stay in a hospital (¥) is
anticipated to be related to infection risk, available facilities and services, and routine chest
X-ray ratio. Assume that first-order regression model (1.1) is appropriate for each of the three

1.46.

1.47.

predictor variables. ¥

a.

I

Regress average length of stay on each of the three predictor variables. State the estimated
regression functions.

. Plot the three estimated regression functions and data on separate graphs. Does a linear

relation appear to provide a good fit for each of the three predictor variables?

. Calculate MSE for each of the three predictor variables. Which predictor variable leads to

the smallest variability around the fitted regression line?

Refer to the SENIC data set in Appendix C.1.

a.

For each geographic region, regress average length of stay in hospital (¥') against infection
risk (X). Assume that first-order regression model (1.1) is appropriate for each region. State
the estimated regression functions.

Are the estimated regression functions similar for the four regions? Discuss.

c. Calculate MSE for each region. Is the variability around the fitted regression line approxi-

mately the same for the four regions? Discuss.

Refer to Typographical errors Problem 1.42. Assume that first-order regression model (1.1)
is appropriate, with normally distributed independent error terms whose variance is 02 = 16,

a.
b.

C.

State the likelihood function for the six observations, for o2 = 16.

Obtain the maximum likelihood estimates of £y and 8, using (1.27).

Using a computer graphics-or statistics package, obtain a three-dimensional plot of the
likelihood function for values of By between Sy = —10 and B, = 10 and for values of
Bi1 between B; = 17 and B) = 19. Does the likelihood appear to be maximized by the
maximum likelihood estimates found in part (b)?



Chapter

Inferences in Regression
and Correlation Analysis

In this chapter, we first take up inferences concerning. the regression parameters fy and
Bi, considering both interval estimation of these parameters and tests about them. We then
discuss interval estimation of the mean E{Y} of the probability distribution of Y, for given
X, prediction intervals for a new observation Y, confidence bands for the regression line,
the analysis of variance approach to regression analysis, the general linear test approach,
and descriptive measures of association. Finally, we take up the correlation coefficient, a
measure of association between X and ¥ when both X and Y are random variables.

Throughout this chapter (excluding Section 2.11), and in the remainder of Part I unless
otherwise stated, we assume that the normal error vegression model (1.24) is applicable.
This model is:

Yi=PB+6Xi+s& 2.1
where:
Bo and B, are parameters

X; are known constants
&; are independent N (0, 0'2)

2.1 Inferences Concerning B,

40

Frequently, we are interested in drawing inferences about g, the slope of the regression
line in model (2.1). For instance, a market research analyst studying the relation between
sales (¥) and advertising expenditures (X) may wish to obtain an interval estimate of
because it will provide information as to how many additional sales dollars, on the average,
are generated by an additional dollar of advertising expenditure.

At times, tests concerning f; are of interest, particularly one of the form:

HOZ ﬁl =0
Ha: ﬁl 75 0



FIGURE 2.1
Regression
Model (2.1)

when 8, = 0.
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V-
i

The reason for interest in testing whether or not 8; = 0 is that, when 8; = 0, there is no
linear association between Y and X. Figure 2.1 illustrates the case when 8; = 0. Note that
the regression line is horizontal and that the means of the probability distributions of ¥ are
therefore all equal, namely:

E{Y} =B+ (O)X =po

For normal error regression model (2.1), the condition B, = 0 implies even more than
no linear association between ¥ and X . Since for this model all probability distributions of
Y are normal with constant variance, and since the means are equal when 8; = 0, it follows
that the probability distributions of Y are identical when §; = 0. This is shown in Figure 2.1.
Thus, 8, = 0 for the normal error regression model (2.1) implies not only that there is no
linear association between ¥ and X but also that there is no relation of any type between
Y and X, since the probability distributions of Y are then identical at all levels of X.

Before discussing inferences concerning ﬁl further, we need to consider the sampling
distribution of b, the point estimator of S;.

Sampling Distribution of b,

The point estimator b; was given in (1.10a) as follows:

X =X)¥ - Y)
Y (Xi — X)?
The sampling distribution of b, refers to the different values of b, that would be obtained

with repeated sampling when the levels of the predictor variable X are held constant from
sample to sample.

bl = - (2.2)

H

For normal error régression model (2.1), the sampling distribution

of by is normal, with mean and variance: (23)
Efb} = B . (2.3a)

2
ol{b} = (2.3b)

S (X — X)?

To show this, we need to recognize that b, is a linear combination of the observations ;.
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b, as Linear Combination of the ¥;. It can be shown that b, as defined in (2.2), can be
expressed as follows:

=> kY (2.4)
where:
X;— X
k; = m (2.4a)

Observe that the k; are a function of the X; and therefore are fixed quantities since the X;
are fixed. Hence, b, is a linear combination of the ¥; where the coefficiefits are solely a

function of the fixed X;.
The coefficients k; have a number of interesting properties that will be used later:
> k=0 ) (2.5)
> kX =1 (2.6)
K= W 2.7)
Comments

1. To show that b; is a linear combination of the ¥; with coefficients k;, we first prove:
Y E-XE-D =) X - DY, (28)
This follows since:

Y XKi-DE-D=) X-D¥-> X-D7

But Y (X; —X)Y =¥ > (Xi — X) = Osince > _(X; — X) = 0, Hence, (2.8) holds.
We now express b; using (2.8) and (2.4a):

Y& =REG-D) _ S&K-D% .
W= TS & —xr S K —X7 =D k¥,

2. The proofs of the properties of the k; are direct. For example, property (2.5) follows because:

X, — X 1 - _ 0
2 k=2 [Z(x X)Z] BT DD v e

Similarly, property (2.7) follows because:

2 i_X g 1 S\2 1
> K= Z[Z(x X)Z] T - ]2Z<Xf—X> =S & —%p

(X —X)?
||

Normality. We return now to the sampling distribution of b, for the normal error regres-
sion model (2.1). The normality of the sampling distribution of b; follows at once from the
fact that b, is a linear combination of the ¥;. The ¥; are independently, normally distributed
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according to model (2.1), and (A.40) in Appendix A states that a linear combination of
independent normal random variables is normally distributed.

Mean. The unbiasedness of the point estimator b, stated earlier in the Gauss-Markov
theorem (1.11), is easy to show:

Elb) = E{} k¥i} =Y KEX) =3 k(o + i X))
= ﬁozki + B Z?(iXi
By (2.5) and (2.6), we then obtain E{b,} = .

Variance. The variance of by can be derived readily. We need only remember that the
Y; are independent random variables, each with variance o2, and that the k; are constants.
Hence, we obtain by (A.31): L

o*b} =D k¥ } = Y Kot
=) Ko*=0"» K
— 0’2—_1—_
Yo (X — X)?
The last step follows from (2.7).

Estimated Variance. We can estimate the variance of the sampling distribution of b;:
2

2
hl=—=———==
o= o —xy
by replacing the parameter 2 with MSE, the unbiased estimator of o'2:
MSE
) = ————— 2.9
s“{b1} SO — %) (2.9)

The point estimator s%{b, } is an unbiased estimator of o2{b,}. Taking the positive square
root, we obtain s{b, }, the point estimator of o {b,}.

Comment

We stated in theorem (1.11) that b; has minimum variance among all unbiased linear estimators of

the form:
H
" Bi=> a¥

where the ¢; are arbitrary constants. We now prove this. Since B, is required to be unbiased, the

following must hold: i )
) =E{Y an} = aEm=p

Now E{Y;} = By + B1X: by (1.2), so the above condition becomes:

EB=>) clfo+BX)=Fo Yy ci+h Y aXi=p
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For the unbiasedness condition to hold, the ¢; must follow the restrictions:

ZCi:O ZC,—X,-=1

Now the variance of 8, is, by (A.31):

SCPiy=> do’ty=0") &

Let us define ¢; = k; +d;, where the k; are the least squares constants in (2.4a) and the d; are arbitrary
constants. We can then write:

CBy=0") d=0) (k+d) =o (Zkz +Zd3+22{<’,—d,—)

Weknow thata? > k? = o2 {b,} from our proof above. Further, Y _ k;d; = 0because of the restrictions
on the k; and ¢; above:

Zkidi = Zki(ci — ki)
=) ak—» K
X, —X 1
= Zci [Z(Xi _X)z] - S (X — X)?

_ ZCiXi—XZCi _ 1 _
Y —X)2 X —X2?

Hence, we have:
o*{B} = o*{bi) +Uzzd,-2

Note that the smallest value of » . d? is zero. Hence, the variance of 8, is at a minimum when
Zdlz = 0. But this can only occur if all d; = 0, which implies ¢; = k;. Thus, the least squares
estimator b; has minimum variance among all unbiased linear estirnators. ||

Sampling Distribution of (b; — 1) /s{b}
Since b; is normally distributed, we know that the standardized statistic (b; — B1)/o{b1}
is a standard normal variable. Ordinarily, of course, we need to estimate o {b;} by s{b;},
and hence are interested in the distribution of the statistic (b; — B1)/s{b:}. When a statistic
is standardized but the denominator is an estimated standard deviation rather than the true
standard deviation, it is called a studentized statistic. An important theorem in statistics
states the following about the studentized statistic (b; — B1)/s{b,}:

bl _ﬁl
s{br}

is distributed as 7 (n — 2) for regression model (2.1) (2.10)

Intuitively, this result should not be unexpected. We know that if the observations Y;
come from the same normal population, (¥ — ) /s{¥} follows the ¢ distribution with n — 1
degrees of freedom. The estimator b;, like ¥, is a linear combination of the observations ;.
The reason for the difference in the degrees of freedom is that two parameters (S and §;)
need to be estimated for the regression model; hence, two degrees of freedom are lost here.



Chapter 2 Inferences in Regression and Correlation Analysis 45

Comment
We can show that the studentized statistic (b; — B1)/s{b;)} is distributed as ¢ with n — 2 degrees of
freedom by relying on the following theorem:

For regression model (2.1), SSE /o2 is distributed as x2 withn —2

” 211
degrees of freedom and is independent of b, and b;. ( )
First, let us rewrite (b; — B1)/s{b1} as follows:

by — B - s{b}
ofb;} ~ olbi}

The numerator is a standard normal variable z. The nature of the denominator can be seen by first

considering:
MSE SSE
s3biy Y .(X:i—X)* MSE n—2
o2{b} = o? T T o2 L
>X:i—X)?

_ _SSE x2(n—2)
B E)) n—2
where the symbol ~ stands for “is distributed as.” The last step follows from (2.11). Hence, we have:

b—p1 z

s{b1} [x2(n —2)
) n—2

But by theorem (2.11), z and x? are independent since z is a function of b; and b; is independent of
SSE/o? ~ x2. Hence, by (A.44), it follows that:

by — B
~tn—2)
s{b1}
This result places us in a position to readily make inferences concerning g;. o

Confidence Interval for g,

Since (b, — B,)/s{b,} follows a t distribution, we can make the following probability
statement:

Plt(a/Zin—=2) < (i —Bu/stbi} <t —a/2in =)} =1—-a  (2.12)

Here, t (¢2/2; n — 2) denotes the («/2)100 percentile of the ¢ distribution with # — 2 degrees
of freedom. Because of the symmetry of the ¢ distribution around its mean 0, it follows that:

te/2;n -2y =—t(1 —a/2;n —2) (2.13)
Rearranging the inequalities ‘i'n (2.12) and using (2.13), we obtain:
P{b —1(1 —a/2n—Dsiby} < pi < by +1(1 —a/Zn —Dsib}} =1 —a
’ - (2.14)
Since (2.14) holds for all possible values of 8;, the 1 — ¢ confidence limits for 8, are:

b £t(1 —a/2;n—2)s{b} (2.15)
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Example

TABLE 2.1
Results for
Toluca
Company
Example
Obtained in
Chapter 1.

FIGURE 2.2
Portion of
MINITAB
Regression
Output—
Toluca
Company
Example.

Consider the Toluca Company example of Chapter 1. Management wishes an estimate of
B with 95 percent confidence coefficient. We summarize in Table 2.1 the needed results
obtained earlier. First, we need to obtain s{b,}:

MSE 2,384

b)) = - = = .12040
S = SSx %7 T 19800

s{by} = .3470

This estimated standard deviation is shown in the MINITAB output in Figure 2.2 in the
column labeled Stdev corresponding to the row labeled X. Figure 2.2 repeats the MINITAB
output presented earlier in Chapter 1 and contains some additional results that we will utilize
shortly. .

For a 95 percent confidence coefficient, we require £(.975; 23). From Table B.2in Ap-
pendix B, we find £ (.975;23) = 2.069. The 95 percent confidence interval, by (2.15), thenis:

3.5702 — 2.069(.3470) < B, < 3.5702 + 2.069(.3470)
2.85 < B, <4.29

Thus, with confidence coefficient .95, we estimate that the mean number of work hours
increases by somewhere between 2.85 and 4.29 hours for each additional unit in the lot.

Comment

In Chapter 1, we noted that the scope of a regression model is restricted ordinarily to some range of
values of the predictor variable. This is particularly important to keep in mind in using estimates of
the slope B;. In our Toluca Company example, a linear regression model appeared appropriate for
lot sizes between 20 and 120, the range of the predictor variable in the recent past. It may not be

n=25 X =70.00
by = 62.37 by-=3.5702
Y =62.37 + 3.5702X SSE = 54,825
S(Xi — X)? =19,800 MSE = 2,384

S — V)2 = 307,203

The regression equation is
Y =62.4 + 3.57 X

Predictor Coef Stdev t-ratio P
Constant 62.37 26.18 2.38 0.026
X 3.5702 0.3470 10.29 0.000
s = 48.82 R-sq = 82.2} R-sq(adj) = 81.4}

Analysis of Variance

SOURCE DF S8 MS F P
Regression 1 252378 252378 105.88 0.000
Error 23 54825 2384

Total 24 307203
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reasonable to use the estimate of the slope to infer the effect of lot size on number of work hours far
outside this range since the regression relation may not be linear there. |

¥

Since (b; — B1)/s{b,} is distributed as ¢ with n — 2 degrees of freedom, tests concerning
By can be set up in ordinary fashion using the ¢ distribution.

Two-Sided Test A cost analyst in the Toluca Company is interested in testing, using
regression model (2.1), whether or not there is a linear association between work hours and
lot size, i.e., whether or not 8; = 0. The two alternatives then are:

Hp: p1 =0

H,: 51 #0
The analyst wishes to control the risk of a Type I error at @ = .05. The conclusion H, could
be reached at once by referring to the 95 percent confidence interval for ; constructed

earlier, since this interval does not include 0.
An explicit test of the alternatives (2.16) is based on the test statistic:

«_ b
1=
s{b}
The decision rule with this test statistic for controlling the level of significance at « is:
If|t*]| <t(1 — a/2;n — 2), conclude Hy
If |t*] > t(1 — a/2;n — 2), conclude H,
For the Toluca Company example, where o = .05, bl = 3.5702, and s{b,} = .3470, we
require £(.975; 23) = 2.069. Thus, the decision rule for testing alternatives (2.16) is:
If |t*] < 2.069, conclude H,
If |£7| > 2.069, conclude H,

Since |t*] = |3.5702/.3470] = 10.29 > 2.069, we conclude H,, that 8; # O or that
there is a linear association between work hours and lot size. The value of the test statistic,
t* = 10.29, is shown in the MINITAB output in Figure 2.2 in the column labeled t-ratio
and the row labeled X. ,

The two-sided P-value for the sample outcome is obtained by first finding the one-
sided P-value, P{r(23) > r* = 10.29}. We see from Table B.2 that this probability is
less than .0005. Many statistical calculators and computer packages will provide the actual
probability; it is almost 0, denoted by 0+. Thus, the two-sided P-value is 2(0+) = 0+.
Since the two-sided P-value is less than the specified level of significance & = .05, we
could conclude H, directly. The MINITAB output in Figure 2.2 shows the P-value in the
column labeled p, corresponding to the row labeled X. It is shown as 0.000.

(2.16)

(2.17)

(2.18)

Comment
When the test of whether or not 8; = 0 leads to the conclusion that 8; # 0, the association between
Y and X is sometimes described to be a linear statistical association. - |

One-Sided Test Suppose the analyst had wished to test whether or not 8, is positive,
controlling the level of significance at &« = .05. The alternatives then would be:

Ho: 1 <0
H;:B >0
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and the decision rule based on test statistic (2.17) would be:

Ift* <t(1 —a;n —2), conclude Hy
Ift* > t(1 —a;n — 2), conclude H,

Fora = .05, we require £ (.95; 23) = 1.714. Since t* = 10.29 > 1.714, we would conclude
H,, that B, is positive.

This same conclusion could be reached directly from the one-sided P-value, which was
noted in Example 1 to be 0+. Since this P-value is less than .05, we would conclude H,.

Comments

1. The P-value is sometimes called the observed level of significance.

£
>

2. Many scientific publications commonly report the P-value together with the value of the test
statistic. In this way, one can conduct a test at any desired level of significance o by comparing the
P-value with the specified level o.

3. Users of statistical calculators and computer packages need to be careful to ascertain whether
one-sided or two-sided P-values are reported. Many commonly used labels, such as PROB or P, do
not reveal whether the P-value is one- or two-sided.

4. Occasionally, it is desired to test whether or not 8; equals some specified nonzero value Bio,
which may be a historical norm, the value for a comparable process, or an engineering specification.
The alternatives now are:

Hy: By = B 219)
Hy: B # Bio
and the appropriate test statistic is:
b1 — Bo
= 2.20
s{b1} (2.20)

The decision rule to be employed here still is (2.18), but it is now based on #* defined in (2.20).
Note that test statistic (2.20) simplifies to test statistic (2.17) when the test involves Hy: 8; =
Bro=0. [ |

2.2 Inferences Concerning By

Asnoted in Chapter 1, there are only infrequent occasions when we wish to make inferences
concerning Sy, the intercept of the regression line. These occur when the scope of the model
includes X = 0.

Sampling Distribution of by
The point estimator by was given in (1.10b) as follows:
by=Y-bX (2.21)

The sampling distribution of b refers to the different values of by that would be obtained
with repeated sampling when the levels of the predictor variable X are held constant from
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sample to sample.

For regression model (2.1), the sampling distribution of by

is normal, with mean and variance: (2.22)
Ebo} = fo (2.22a)

1 X?
(o4 {bo} =0 [ m] (Z.ZZb)

The normality of the sampling distribution of by follows because by, like by, is a linear
combination of the observations ;. The results for the mean and variance of the sampling
distribution of by can be obtained in similar fashion as those for b,.

An estimator of o2{b} is obtained by replacing o2 by its point estimator MSE:

XZ

1
52
{bo} = MSE [ ] 2.23
The positive square root, s{by}, is an estimator of o {by}.
Sampling Distribution of (by — Bo)/s{bo}
Analogous to theorem (2.10) for by, a theorem for by states:
bo —
0 7 1}30 is distributed as ¢ (n — 2) for regression model (2.1) (2.24)
s{by

Hence, confidence intervals for ¢ and tests concerning By can be set up in ordinary fashion,
using the ¢ distribution.

Confidence Interval for B,
The 1 — « confidence limits for S are obtained in the same manner as those for 8, derived
earlier. They are:
bot1t(1 —a/2; n — 2)s{bo} (2.25)

As noted earlier, the scope of the model for the Toluca Company example does not extend to
lot sizes of X = 0. Hence, the regression parameter S, may not have intrinsic meaning here.
If, nevertheless, a 90 percent confidence interval for 5, were desired, we would proceed by
finding 7 (.95; 23) and s{b}. From Table B.2, we find 7 (.95; 23) = 1.714. Using the earlier
results summarized in Table 2.1, we obtain by (2.23):

1 x? 1 (70.00)2
bo} = MSE —_—| = 27384 | — = 685.34
o [ Z(X X)Z] [25 + 19,800 ] 685.3

Example

or:
s{bo} = 26.18
The MINITAB output in Figure 2.2 shows this estimated standard deviation in the column

labeled Stdev and the row labeled Constant. -
The 90 percent confidence interval for g is:

62.37 — 1.714(26.18) < By < 62.37 + 1.714(26.18)
17.5 < Bo < 107.2
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We caution again that this confidence interval does not necessarily provide meaningful
information. For instance, it does not necessarily provide information about the “setup”
cost (the cost incurred in setting up the production process for the part) since we are not
certain whether a linear regression model is appropriate when the scope of the model is
extended to X = 0.

2.3 Some Considerations on Making Inferences Concerning

Bo and B,

Effects of Departures from Normality e

If the probability distributions of Y are not exactly normal but do not depart seriously,
the sampling distributions of by and b; will be approximately normal, and the use of the
t distribution will provide approximately the specified confidence coefficient or level of
significance. Even if the distributions of Y are far from normal, the estimators by and b,
generally have the property of asymptotic normality—their distributions approach normality
under very general conditions as the sample size increases. Thus, with sufficiently large
samples, the confidence intervals and decision rules given earlier still apply even if the
probability distributions of ¥ depart far from normality. For large samples, the ¢ value is,
of course, replaced by the z value for the standard normal distribution.

Interpretation of Confidence Coefficient and Risks of Errors

Since regression model (2.1) assumes that the X; are known constants, the confidence
coefficient and risks of errors are interpreted with respect to taking repeated samples in
which the X observations are kept at the same levels as in the observed sample. For instance,
we constructed a confidence interval for B, with confidence coefficient .95 in the Toluca
Company example. This coefficient is interpreted to mean that if many independent samples
are taken where the levels of X (the lot sizes) are the same as in the data set and a 95 percent
confidence interval is constructed for each sample, 95 percent of the intervals will contain
the true value of B;.

Spacing of the X Levels
Inspection of formulas (2.3b) and (2.22b) for the variances of b; and bg, respectively,
indicates that for given n and o2 these variances are affected by the spacing of the X
levels in the observed data. For example, the greater is the spread in the X levels, the larger
is the quantity > (X; — X)? and the smaller is the variance of b;. We discuss in Chapter 4
how the X observations should be spaced in experiments where spacing can be controlled.

Power of Tests

The power of tests on fy and B, can be obtained from Appendix Table B.5. Consider, for
example, the general test concerning f; in (2.19):

Hy: B = Bio
H,: B # Bio
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for which test statistic (2.20) is employed:

. by — Bio
s{b}

and the decision rule for level of significance « is given in (2.18):

If|t*] <t(1 — a/2;n — 2), conclude Hy
If |t*] > #(1 — &/2;n — 2), conclude H,

The power of this test is the probability that the decision rule will lead to conclusion H,
when H, in fact holds. Specifically, the power is given by:

Power = P{|t*| > t(1 —a/2;n —2) | &} N (2.26)

where § is the noncentrality measure—i.e., a measure of how far the true value of B is from

Bio:

1B1 — Biol
d=—r—— 2.27
o{b1} (2.27)
Table B.5 presents the power of the two-sided ¢ testfor ¢ = .05 and ¢ = .01, for various
degrees of freedom df. To illustrate the use of this table, let us return to the Toluca Company
example where we tested:

Hy: 1 =Bro=0
Hy: B1# Bio=0

Suppose we wish to know the power of the test when 8, = 1.5. To ascertain this, we need
to know o2, the variance of the error terms. Assume, based on prior information or pilot
data, that a reasonable planning value for the unknown variance is 02 = 2,500, so o2{b;}
for our example would be:

o? 2,500

20} = __ = — 1263
) = SR T % T 19,800

oro{b} = .3553. Then § = |1.5— 0] = .3553 = 4.22. We enter Table B.5 for ¢ = .05 (the
level of significance used in the test) and 23 degrees of freedom and interpolate linearly
between 6 = 4.00 and § = 5.00. We obtain:
H
422 -4.00
97 + 500 = 4,00 (1.00 — .97) = .9766

Thus, if B; = 1.5, the probability would be about .98 that we would be led to conclude
H, (B # 0). In other words, if 8, = 1.5, we would be almost certain to conclude that there
is a linear relation between work hours and lot size.

The power of tests concerning 8, canbe obtained from Table B.5 in completely analogous
fashion. For one-sided tests, Table B.5 should be entered so that one-half the level of
significance shown there is the level of significance of the one-sided test.
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2.4 Interval Estimation of E{Y}}

A common objective in regression analysis is to estimate the mean for one or more prob-
ability distributions of Y. Consider, for example, a study of the relation between level of
piecework pay (X) and worker productivity (¥). The mean productivity at high and medium
levels of piecework pay may be of particular interest for purposes of analyzing the bene-
fits obtained from an increase in the pay. As another example, the Toluca Company was
interested in the mean response (imean number of work hours) for a range of lot sizes for
purposes of finding the optimum lot size.

Let X}, denote the level of X for which we wish to estimate the mean responé'a. X, may
be a value which occurred in the sample, or it may be some other value of the predictor
variable within the scope of the model. The mean response when X = X}, is denoted by
E{Y,}. Formula (1.12) gives us the point estimator ¥, of E{Y,}:

¥, = bo + by Xs ’ (2.28)
We consider now the sampling distribution of ¥;,.

Sampling Distribution of ¥},

The sampling distribution of ¥;,, like the earlier sampling distributions discussed, refers to
the different values of ¥}, that would be obtained if repeated samples were selected, each
holding the levels of the predictor variable X constant, and calculating Y, for each sample.

For normal error regression model (2.1), the sampling distribution of

¥, is normal, with mean and variance: (2.29)
E(f)} = E{Yy) (2.29a)
. 1 (X —X)?
2 _ 2|
R (2.29b)

NormalitAy. The normality of the sampling distribution of ¥, follows directly from the
fact that Y}, like bg and b, is a linear combination of the observations Y;.

Mean. Note from (2.29a) that ¥, is an unbiased estimator of E{¥;}. To prove this, we
proceed as follows:

E(¥;} = E{bo+ b1 X)) = E{bo} + X4E{b1} = o+ B X
by (2.3a) and (2.22a).

Variance. Note from (2.29b) that the variability of the sampling distribution of ¥}, is
affected by how far X, is from X, through the term (X, — X)2. The further from X is
X}, the greater is the quantity (X, — X)? and the larger is the variance of ¥},. An intuitive
explanation of this effect is found in Figure 2.3. Shown there are two sample regression
lines, based on two samples for the same set of X values. The two regression lines are
assumed to go through the same (X, ) point to isolate the effect of interest, namely, the
effect of variation in the estimated slope b; from sample to sample. Note that at X, near
X, the fitted values f/l for the two sample regression lines are close to each other. At X5,
which is far from X, the situation is different. Here, the fitted values ¥, differ substantially.



FIGURE 2.3
Effect on ¥, of
Variation in b,
from Sample to
Sample in Two
Samples with
Same Means ¥
and X.
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Thus, variation in the slope b; from sample to sample has 2 much more pronounced effect
on f’h for X levels far from the mean X than for X levels near X. Hence, the variation in the
f’h values from sample to sample will be greater when X, is far from the mean than when
X}, 1s near the mean.

YVhen MSE is substituted for o2 in (2.29b), we obtain s2{¥}}, the estimated variance
of ¥:

(Xn — X)?
(X — X))

The estimated standard deviation of ¥, is then s{¥}}, the positive square root of sz{f’h}.

s2{P,) = MSE[I (2.30)

Comments

1. When X;, = 0, the variance of ¥} in (2.29b) reduces to the variance of by in (2.22b). Slmﬂarly,
s2{¥;} in (2.30) reduces to s2{bg} in (2.23). The reason is that ¥, = by when X, = O since ¥, =
bo + b, Xy,

2. Toderive o2(;}, we first show that b; and ¥ are uncorrelated and, hence, for regression model
(2.1), independent:

o{P,b,} =0 (2.31)

where o {¥, b;} denotes the covariance between ¥ and b;. We begin with the definitions:

7=y (%)Y b= kY,

where k; is as defined in (2.4a). We now use (A.32), with @; = 1/n and ¢; = k;; remember that the
Y; are independent random variables:

-

2
of¥,b} = Z <%> kio*(Yi} = % Zk,-

But we know from (2.5) that Z k; = 0. Hence, the covariance is 0.
Now we are ready to find the variance of ¥;. We shall use the estimator in the alternative form (1.15):

(¥} = oY + by (X, — X))
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Since ¥ and b; are independent and X, and X are constants, we obtain:
o {Fh} = oX{F} + (Xi — X)’02{b1)
Now o2{by} is given in (2.3b), and:

oy} o®

02[)7} = —
n n
Hence:
2 2
2069 _ 9 2 o
a [Yh} = n + (Xh X) Z(X, — X)Z
which, upon a slight rearrangement of terms, yields (2.29b). |
Sampling Distribution of (¥, — E{Ys})/s{¥n} "

Since we have encountered the ¢ distribution in each type of inference for regression
model (2.1) up to this point, it should not be surprising that:

”’_{75{}”’} is distributed as 7 (n — 2) for regression model (2.1) (2.32)
Svin

Hence, zall inferences concerning E{Y}} are carried out in the usual fashion with the ¢
distribution. We illustrate the construction of confidence intervals, since in practice these
are used more frequently than tests.

Confidence Interval for E{Y,}
A confidence interval for E{Y}} is constructed in the standard fashion, making use of the ¢

distribution as indicated by theorem (2.32). The 1 — « confidence limits are:
¥y 1 — /2 n — 2)s{¥) (2.33)

Returning to the Toluca Company example, let us find a 90 percent confidence interval for
E{Y;} when the lot size is X}, = 65 units. Using the earlier results in Table 2.1, we find the
point estimate ¥,

Example 1

¥i = 62.37 4 3.5702(65) = 294.4
Next, we need to find the estimated standard deviation s{¥,}. We obtain, using (2.30):

sHY,} = 2,384 [% + (65—1_9,%)90—)2] = 98.37
s{¥,} = 9.918
For a 90 percent confidence coefficient, we require z(.95; 23) = 1.714. Hence, our confi-
dence interval with confidence coefficient .90 is by (2.33):
294.4 — 1.714(9.918) < E{Y,,} < 294.4 + 1.714(9.918)
2714 < E{Y,} <3114
We conclude with confidence coefficient .90 that the mean number of work hours required

when lots of 65 units are produced is somewhere between 277.4 and 311.4 hours. We see
that our estimate of the mean number of work hours is moderately precise.
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Suppose the Toluca Company wishes to estimate E{Y},} for lots with X; = 100 units with
a 90 percent confidence interval. We require:

¥, = 62.37 + 3.5702(100) = 419.4
R 1 (100 —70.00)2
2 = _— —_———— =
2 (¥,) = 2,384 [ 55+ 15,800 ] 203.72
s{¥,} = 14.27

£(.95;23) = 1.714

Hence, the 90 percent confidence interval is:

419.4 — 1.714(14.27) < E{Y,)} < 419.4 + 1.714(14.27)
394.9 < E{¥,} < 443.9 N

Note that this confidence interval is somewhat wider than that for Example 1, since the

X, level here (X, = 100) is substantially farther from the mean X = 70.0 than the X,
level for Example 1 (X, = 65).

Comments

1.

Since the X; are known constants in regression model (2.1), the interpretation of confidence
intervals and risks of errors in inferences on the mean response is in terms of taking repeated
samples in which the X observations are at the same levels as in the actual study. We noted this
same point in connection with inferences on 8y and g, .

. We see from formula (2.29b) that, for given sample results, the variance of ¥ is smallest when

X;, = X. Thus, in an experiment to estimate the mean response at a particular level X, of the
predictor variable, the precision of the estimate will be greatest if (everything else remaining equal)
the observations on X are spaced so that X = X,,.

The usual relationship between confidence intervals and tests applies in inferences concerning the
mean response. Thus, the two-sided confidence limits (2.33) can be utilized for two-sided tests
concerning the mean response at X;. Alternatively, a regular decision rule can be set up.

The confidence limits (2.33) for a mean response E{Y,} are not sensitive to moderate departures
from the assumption that the error terms are normally distributed, Indeed, the limits are not sensitive
to substantial departures from normality if the sample size is large. This robustness in estimating
the mean response is related to the robustness of the confidence limits for By and B;, noted earlier.
Confidence limits (2.33) apply when a single mean response is to be estimated from the study. We
discuss in Chapter 4 how to proceed when several mean responses are to be estimated from the
same data. |

H

2.5 Prediction of New Observation

We consider now the prediction of a new observation Y corresponding to a given level X of
the predictor variable. Three illustrations where prediction ofa new observation is needed
follow.

I. In the Toluca Company example, the next lot to be produced consists of 100 units and

management wishes to predict the number of work hours for this particular lot.
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2. An economist has estimated the regression relation between company sales and number
of persons 16 or more years old from data for the past 10 years. Using a reliable de-
mographic projection of the number of persons 16 or more years old for next year, the
economist wishes to predict next year’s company sales.

3. An admissions officer at a university has estimated the regression relation between
the high school grade point average (GPA) of admitted students and the first-year college
GPA. The officer wishes to predict the first-year college GPA for an applicant whose
high school GPA is 3.5 as part of the information on which an admissions decision will
be based.

The new observation on Y to be predicted is viewed as the result of a new trial, inde-
pendent of the trials on which the regression analysis is based. We denote the leyel of X
for the new trial as X}, and the new observation on Y as Yjew). Of course, We assume
that the underlying regression model applicable for the basic sample data continues to be
appropriate for the new observation.

The distinction between estimation of the mean response E{Y}}, discussed in the pre-
ceding section, and prediction of a new response Yjew), discussed now, is basic. In the
former case, we estimate the mean of the distribution of Y. In the present case, we predict
an individual outcome drawn from the distribution of Y. Of course, the great majority of
individual outcomes deviate from the mean response, and this must be taken into account
by the procedure for predicting Yy mew)-

Prediction Interval for Y,ewy when Parameters Known

To illustrate the nature of a prediction interval for a new observation Y} (v in as simple a
fashion as possible, we shall first assume that all regression parameters are known. Later
we drop this assumption and make appropriate modifications.

Suppose that in the college admissions example the relevant parameters of the regression
model are known to be:

Bo = .10 B = .95
E{Y} = .10+ .95X
o=.12

The admissions officer is considering an applicant whose high school GPA is X, = 3.5.
The mean college GPA for students whose high school average is 3.5 is:

E(Yy)} = .10+ .95(3.5) = 3.425

Figure 2.4 shows the probability distribution of Y for X, = 3.5. Its meanis E{Y;,} = 3.425,
and its standard deviation is ¢ = .12. Further, the distribution is normal in accord with
regression model (2.1).

Suppose we were to predict that the college GPA of the applicant whose high school
GPA is X;, = 3.5 will be between:

E{Y,} £ 30
3.425 + 3(.12)
so that the prediction interval would be:

3.065 < Yipow) < 3.785
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[«——————Prediction Limijts —————

997
-] 1 —
3.425 - 30 E{Y,} = 3.425 3425 + 30 Y
Probability Distribution of Y when X, = 3.5 8

Since 99.7 percent of the area in a normal probability distribution falls within three standard
deviations from the mean, the probability is .997 that this prediction interval will give a
correct prediction for the applicant with high school GPA of 3.5. While the prediction limits
here are rather wide, so that the prediction is not too precise, the prediction interval does
indicate to the admissions officer that the applicant is expected to attain at least a 3.0 GPA
in the first year of college.

The basic idea of a prediction interval is thus to choose a range in the distribution of ¥
wherein most of the observations will fall, and then to declare that the next observation will
fall in this range. The usefulness of the prediction interval depends, as always, on the width
of the interval and the needs for precision by the user.

In general, when the regression parameters of normal error regression model (2.1) are
known, the 1 — ¢ prediction limits for Yjmew) are:

EY} £z — /20 (2.34)

In centering the limits around E{Y},}, we obtain the narrowest interval consistent with the
specified probability of a correct prediction.

Prediction Interval for Yyew) When Parameters Unknown

When the regression parameters are unknown, they must be estimated. The mean of the
distribution of Y is estimated by ?h, as usual, and the variance of the distribution of Y
is estimated by MSE. We cannot, however, simply use the prediction limits (2.34) with
the parameters replaced by the corresponding point estimators. The reason is illustrated
intuitively in Figure 2.5. Shown there are two probability distributions of ¥, corresponding to
the upper and lower limits of a confidence interval for E{Y}}. In other words, the distribution
of Y could be located as far left as the one shown, as far right as the other one shown, or
anywhere in between. Since we do not know the mean E{Y,} and only estimate it by a
confidence interval, we cannot be certain of the location of the distribution of Y.

Figure 2.5 also shows the prediction limits for each of the two probability distribu-
tions of Y presented there. Since we cannot be certain of the location of the distribution
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FIGURE 2.5
Prediction of
¥ nnewy When
Parameters
Unknown.

Prediction Prediction
[—— Limits —> [e—— Limits ——>|
if E{Y,} Here if E{Y;} Here

l l

S N . S

l«—— Confidence Limits for £{Y;} ——>!

of Y, prediction limits for ¥;ewy clearly must take account of two elements, as shown in
Figure 2.5:

1. Variation in possible location of the distribution of Y.
2. Variation within the probability distribution of Y.

Prediction limits for a new observation Y, e, at a given level X, are obtained by means
of the following theorem:

2

Yh(new) - Yh

(pred) is distributed as ¢ (n — 2) for normal error regression model (2.1) (2.35)
s{pre

Note that the studentized statistic (2.35) uses the point estimator ¥, in the numerator rather
than the true mean E{Y},} because the true mean is unknown and cannot be used in making a
prediction. The estimated standard deviation of the prediction, s{pred}, in the denominator
of the studentized statistic will be defined shortly.

From theorem (2.35), it follows in the usual fashion that the 1 — « prediction limits for
a new observation Y.y are (for instance, compare (2.35) to (2.10) and relate ¥, to by and
Yigew to Br):

¥, £ t(1 — a/2; n — 2)s{pred} (2.36)

Note that the numerator of the studentized statistic (2.35) represents how far the new
observation Y ey will deviate from the estimated mean ¥, based on the original 7 cases in
the study. This difference may be viewed as the prediction error, with ¥, serving as the best
point estimate of the value of the new observation Y pew. The variance of this prediction
error can be readily obtained by utilizing the independence of the new observation ¥}, pew) and
the original n sample cases on which ¥, is based. We denote the variance of the prediction
error by o2{pred}, and we obtain by (A.31b):

o*{pred} = > (Yipew — i} = 0* (Yhgow} +0*{a} = 0* +o*(7h}  (2.37)
Note that o ?{pred} has two components:

1. The variance of the distribution of Y at X = X}, namely ol
2. The variance of the sampling distribution of ¥}, namely o2{¥}}.
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An unbiased estimator of o%{pred} is:
s*{pred} = MSE + s*(¥},} (2.38)

which can be expressed as follows, using (2.30):

R 2V
Ly Kn=X) ] (2.38a)

2 — — —_—
s“{pred} = MSE [1 + ” + S = )2

The Toluca Company studied the relationship between lot size and work hours primarily
to obtain information on the mean work hours required for different lot sizes for use in
determining the optimum lot size. The company was also interested, however, to see whether
the regression relationship is useful for predicting the required work hours for individual
lots. Suppose that the next 1ot to be produced consists of X, = 100 units and that a 90 percent
prediction interval is desired. We require ¢ (.95; 23) = 1.714. From earlier work, we have:

¥, =4194  sH¥,} =203.72  MSE = 2,384
Using (2.38), we obtain:

s*{pred} = 2,384 4 203.72 = 2,587.72
s{pred} = 50.87

Hence, the 90 percent prediction interval for Yj,mewy is by (2.36):

419.4 — 1.714(50.87) < Yjoowy < 419.4 + 1.714(50.87)
332.2 < ¥joewy < 506.6

With confidence coefficient .90, we predict that the number of work hours for the next
production run of 100 units will be somewhere between 332 and 507 hours.

This prédiction interval is rather wide and may not be too useful for planning worker
requirements for the next lot. The interval can still be useful for control purposes, though.
For instance, suppose that the actual work hours on the next lot of 100 units were 550 hours.
Since the actual work hours fall outside the prediction limits, management would have an
indication that a change in the production process may have occurred and would be alerted
to the possible need for remedial action. i

Note that the primary reason for the wide prediction interval is the large lot-to-lot vari-
ability in work hours for any given lot size; MSE = 2,384 accounts for 92 percent of
the estimated prediction variance s*{pred} = 2,587.72. It may be that the large lot-to-lot
variability refiects other factors that affect the required number of work hours besides lot
size, such as the amount of experience of employees assigned to the lot production. If so, a
multiple regression model incorporating these other factors might lead to much more pre-
cise predictions. Alternatively, a designed experiment could be conducted to determine the
main factors leading to the large lot-to-lot variation. A quality improvement program would
then use these findings to achieve more uniform performance, for example, by additional
training of employees if inadequate training accounted for much of the variability.
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Comments

1. The 90 percent prediction interval for ¥y mew) obtained in the Toluca Company example is wider
than the 90 percent confidence interval for £{Y,} obtained in Example 2 on page 55. The reason is
that when predicting the work hours required for a new lot, we encounter both the variability in #;
from sample to sample as well as the lot-to-lot variation within the probability distribution of ¥.

2. Formula (2.38a) indicates that the prediction interval is wider the further X, is from X. The
reason for this is that the estimate of the mean f’h, as noted earlier, is less precise as X}, is located
farther away from X.

3. The prediction limits (2.36), unlike the confidence limits (2.33) for a mean response E{Y}},
are sensitive to departures from normality of the error terms distribution. In Chapter 3, we discuss
diagnostic procedures for examining the nature of the probability distribution of the error terms, and
we describe remedial measures if the departure from normality is serious. e

4, The confidence coefficient for the prediction limits (2.36) refers to the taking of repeated
samples based on the same set of X values, and calculating prediction limits for Yjmey) for each
sample.

5. Prediction limits (2.36) apply for a single prediction based on the sample data. Next, we discuss
how to predict the mean of several new observations at a given X}, and in Chapter 4 we take up how
to make several predictions at different X levels.

6. Prediction intervals resemble confidence intervals. However, they differ conceptually. A confi-
dence interval represents an inference on a parameter and is an interval that is intended to cover the
value of the parameter. A prediction interval, on the other hand, is a statement about the value to be
taken by a random variable, the new observation Yxpew)- ||

Prediction of Mean of m New Observations for Given X,

Occasionally, one would like to predict the mean of m new observations on Y for a given
level of the predictor variable. Suppose the Toluca Company has been asked to bid on a
contract that calls for m = 3 production runs of X, = 100 units during the next few months.
Management would like to predict the mean work hours per lot for these three runs and
then convert this into a prediction of the total work hours required to fill the contract.

We denote the mean of the new Y observations to be predicted as ¥ h(new)- It can be shown
that the appropriate 1 — « prediction limits are, assuming that the new Y observations are

independent:
¥, £1(1 — o/2; n — 2)s{predmean} (2.39)
where:
s*{predmean} = MTSE + s2(¥} (2.39a)
or equivalently:

(2.39b)

1 1 Xp — X)?
s?{predmean} = MSE [— + (X = X) ]
m

n T - X7
Note from (2.392) that the variance s*{predmean} has two components:

1. The variance of the mean of m observations from the probability distribution of Y at
X =X,
2. The variance of the sampling distribution of ¥,.
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In the Toluca Company example, let us find the 90 percent prediction interval for the mean
number of work hours ¥, (ew) 10 three new production runs, each for X; = 100 units. From
previous work, we have:

¥, = 4194 s2(¥y} = 203.72
MSE = 2384  1(.95;23) = 1.714

Hence, we obtain:
2,384

s*{predmean} =
s{predmean} = 31.60
The prediction interval for the mean work hours per lot then is:

419.4 — 1.714(31.60) < Yjewy < 419.4 + 1.714(31.60)
365.2 f Yh(new) f 473.6
Note that these prediction limits are narrower than those for predicting the work hours
for a single lot of 100 units because they involve a prediction of the mean work hours for
three lots.

We obtain the prediction interval for the total number of work hours for the three lots by
multiplying the prediction limits for ¥jmewy by 3:

1,095.6 = 3(365.2) < Total work hours <3(473.6) = 1,420.8

Thus, it can be predicted with 90 percent confidence that between 1,096 and 1,421 work
hours will be needed to fill the contract for three lots of 100 units each.

8

Comment

The 90 percent prediction interval for ¥jew), obtained for the Toluca Company example above, is
narrower than that obtained for ¥, mew) on page 59, as expected. Furthermore, both of the prediction in-
tervals are wider than the 90 percent confidence interval for E{Y}} obtained in Example 2 on page 55—
also as expected. |

2.6 Confidence-Band for Regression Line

At times we would like to obtain a confidence band for the entire regression line E{Y} =
Bo + B1X. This band enables us to see the region in which the entire regression line lies. It
is particularly useful for determining the appropriateness of a fitted regression functlon as
we explain in Chapter 3.

The Working-Hotelling 1 — « conﬁdence band for the regression line for regression
model (2.1) has the following two boundary values at any level Xj,:

7 + Ws{f3) (2.40)

where:

P

W2=2F(1 —a:2,n—2) (2.40a)

and ¥, and s{¥,} are defined in (2.28) and (2.30), respectively. Note that the formula
for the boundary values is of exactly the same form as formula (2.33) for the confidence
limits for the mean response at X,,, except that the ¢ multiple has been replaced by the W
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Example

FIGURE 2.6
Confidence
Band for
Regression
Line—Toluca
Company
Example.

multiple. Consequently, the boundary points of the confidence band for the regression line
are wider apart the further X, is from the mean X of the X observations. The W multiple
will be larger than the ¢ multiple in (2.33) because the confidence band must encompass
the entire regression line, whereas the confidence limits for E{Y,} at X, apply only at the
single level X,

We wish to determine how precisely we have been able to estimate the regression function
for the Toluca Company example by obtaining the 90 percent confidence band for the
regression line. We illustrate the calculations of the boundary values of the confidence band
when X;, = 100. We found earlier for this case:

¥n=4194  s{¥,}=1427

We now require:
W2 =2F(1 —a; 2, n—2) = 2F(.90; 2, 23) = 2(2.549) = 5.098
W =2.258

Hence, the boundary values of the confidence band for the regression line at X, = 100 are
419.4 + 2.258(14.27), and the confidence band there is:

387.2 < Bo+ P Xy <4516 for X;, =100

In similar fashion, we can calculate the boundary values for other values of X by
obtaining ¥, and s{¥;} for each X, level from (2.28) and (2.30) and then finding the
boundary values by means of (2.40). Figure 2.6 contains a plot of the confidence band for
the regression line. Note that at X, = 100, the boundary values are 387.2 and 451.6, as we
calculated earlier.

We see from Figure 2.6 that the regression line for the Toluca Company example has
been estimated fairly precisely. The slope of the regression line is clearly positive, and the
levels of the regression line at different levels of X are estimated fairly precisely except for
small and large lot sizes.

500
450
400
350
300
250
200
150

100

[0 N T RS EUNN R RN R R R
20 30 40 50 60 70 80 90 100 110

Lot Size X

Hours Y




Chapter 2 Inferences in Regression and Correlation Analysis 63

Comments

1. The boundary values of the confidence band for the regression line in (2.40) define a hyperbola,
as may be seen by replacing V), and s{Y}} by their definitions in (2.28) and (2.30), respectively:

1 x—x? 17
bo+ by X + WA/MSE [—+ ( ) ] (2.41)

n Z(Xi - X)Z

2. The boundary values of the confidence band for the regression line at any value X} often are
not substantially wider than the confidence limits for the mean response at that single X, level. In
the Toluca Company example, the ¢ multiple for estimating the mean response at X, = 100 with a
90 percent confidence interval was £(.95; 23) = 1.714. This compares with the W multiple for the
90 percent confidence band for the entire regression line of W = 2.258. With the somewhat wider
limits for the entire regression line, one is able to draw conclusions about any and all mean responses
for the entire regression line and not just about the mean response at a given X level. Some uses of
this broader base for inference will be explained in the next two chapters. )

3. The confidence band (2.40) applies to the entire regression line over all real-numbered values
of X from —oo to co. The confidence coefficient indicates the proportion of time that the estimating
procedure will yield a band that covers the entire line, in a long series of samples in which the X
observations are kept at the same level as in the actual study.

In applications, the confidence band is ignored for that part of the regression line which is not
of interest in the problem at hand. In the Toluca Company example, for instance, negative lot sizes
would be ignored. The confidence coefficient for a limited segment of the band of interest is somewhat
higher than 1 — &, so 1 — « serves then as a lower bound to the confidence coefficient.

4. Some alternative procedures for developing confidence bands for the regression line have been
developed. The simplicity of the Working-Hotelling confidence band (2.40) arises from the fact that
it is a direct extension of the confidence limits for a single mean response in (2.33). |

2.7 Analysis of Variance Approach to Regression Analysis

We now have developed the basic regression model and demonstrated its major uses. At
this point, we consider the regression analysis from the perspective of analysis of variance.
This new perspective will not enable us to do anything new, but the analysis of variance
approach will come into its own when we take up multiple regression models and other
types of linear statistical models.

Partitioning of Total Sum of Squares

Basic Notions. The analysis of variance approach is based on the partitioning of sums
of squares and degrees of freedom associated with the response variable Y. To explain the
motivation of this approach, consider again the Toluca Company example. Figure 2.7a shows
the observations Y; for the first two production runs presented in Table 1.1. Disregarding
the lot sizes, we see that there is variation in the number of work hours ¥;, as in all statistical
data. This variation is conventionally measured in terms of the-deviations of the ¥; around
their mean ¥:

Y,— Y (2.42)
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FIGURE 2.7 Ylustration of Partitioning of Total Deviations ¥; — Y—Toluca Company Example (not drawn to
scale; only observations Y; and Y, are shown).

Hours
~I

(@) (b) ©

Total Deviations ¥, — ¥ Deviations Y; — )A’, Deviations )A’,--— Y

>

Lot Size Lot Size Lot Size

These deviations are shown by the vertical lines in Figure 2.7a. The measure of total
variation, denoted by SSTO, is the sum of the squared deviations (2.42):

SSTO = (Y, —¥)? (2.43)

Here SSTO stands for total sum of squares. If all Y; observations are the same, SSTO = 0.
The greater the variation among the ¥; observations, the larger is SS7O. Thus, SSTO for
our example is a measure of the uncertainty pertaining to the work hours required for a lot,
when the lot size is not taken into account.

When we utilize the predictor variable X, the variation reflecting the uncertainty con-
cerning the variable Y is that of the Y; observations around the fitted regression line:

Y, —¥; (2.44)

These deviations are shown by the vertical lines in Figure 2.7b. The measure of variation
in the ¥; observations that is present when the predictor variable X is taken into account is
the sum of the squared deviations (2.44), which is the familiar SSE of (1.21):

SSE = (Y; — 1.y’ (2.45)

Again, SSE denotes error sum of squares. If all Y; observations fall on the fitted regression
line, SSE = 0. The greater the variation of the ¥; observations around the fitted regression
line, the larger is SSE.

For the Toluca Company example, we know from earlier work (Table 2.1) that:

SSTO = 307,203 SSE = 54,825

What accounts for the substantial difference between these two sums of squares? The
difference, as we show shortly, is another sum of squares:

SSR=" (¥; - ¥) (2.46)
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where SSR stands for regression sum of squares. Note that SSR is a sum of squared deviations,
the deviations being:

¥, —-¥ (2.47)

These deviations are shown by the vertical lines in Figure 2.7c. Each deviation is simply the
difference between the fitted value on the regression line and the mean of the fitted values
Y. (Recall from (1.18) that the mean of the fitted values ¥; is ¥.) If the regression line is
horizontal so that ¥; — ¥ = 0, then SSR = 0. Otherwise, SSR is positive.

SSR may be considered a measure of that part of the variability of the ¥; which is
associated with the regression line. The larger SSR is in relation to SSTO, the greater is the
effect of the regression relation in accounting for the total variation in the ¥; observations.

For the Toluca Company example, we have:

SSR = S§STO — SSE = 307,203 — 54,825 = 252,378

which indicates that most of the total variability in work hours is accounted for by the
relation between lot size and work hours.

Formal Development of Partitioning. The total deviation ¥; — ¥, used in the measure of
the total variation of the observations ¥; without taking the predictor variable into account,
can be decomposed into two components:

>
>

i—¥=0%-7+Y -7 (2.48)
N—— N—— N’
Total Deviation Deviation
deviation of fitted around
regression fitted
value regression
around mean line

The two components are:

1. The deviation of the fitted value ¥; around the mean Y.
2. The deviation of the observation ¥; around the fitted regression line.

Figure é.7 shows this decomposition for observation Y; by the broken lines.
It is a remarkable property that the sums of these squared deviations have the same
relationship:

DE-TP=) TH-1’+> (- FY (2.49)
or, using the notation in (2.43), (2.45),‘and (2.46):
- SSTO =SSR+ SSE (2.50)

To prove this basic result in the analysis of variance, we proceed as follows:
Y G-1Y=>I(F -0+ ¥ - PP
=Y IF - 1)+ (% — B +2(F — 1Y% — 7))
=Y Ti-7V+) G-0Y+2) (Bi—-1( 1)
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The last term on the right equals zero, as we can see by expanding it:
2y B - -T)y=2> K@ - -2 ¥ -1)

The first summation on the right equals zero by (1.20), and the second equals zero by (1.17).
Hence, (2.49) follows.

Comment
The formulas for SSTO, SSR, and SSE given in (2.43), (2.45), and (2.46) are best for computational

accuracy. Alternative formulas that are algebraically equivalent are available. One that is useful for
deriving analytical results is:

SSR = b? Z(X,— —X)? e (2.51)
[ |

Breakdown of Degrees of Freedom
Corresponding to the partitioning of the total sum of squares SSTO, there is a partitioning
of the associated degrees of freedom (abbreviated df). We have n — 1 degrees of freedom
associated with SSTO. One degree of freedom is lost because the deviations Y; = ¥ are
subject to one constraint: they must sum to zero. Equivalently, one degree of freedom is
lost because the sample mean Y is used to estimate the population mean.

SSE, as noted earlier, has n — 2 degrees of freedom associated with it. Two degrees of
freedom are lost because the two parameters f, and §; are estimated in obtaining the fitted
values ¥;.

SSR has one degree of freedom associated with it. Although there are n deviations ¥; — ¥,
all fitted values ¥; are calculated from the same estimated regression line. Two degrees of
freedom are associated with a regression line, corresponding to the intercept and the slope
of the line. One of the two degrees of freedom is lost because the deviations ¥; — Y are
subject to a constraint: they must sum to zero.

Note that the degrees of freedom are additive:

n—1=14+®m-2)
For the Toluca Company example, these degrees of freedom are:

Mean Squares

A sum of squares divided by its associated degrees of freedom is called a mean square
(abbreviated MS). For instance, an ordinary sample variance is a mean square since a sum
of squares, S (¥; — ¥)?, is divided by its associated degrees of freedom, n — 1. We are
interested here in the regression mean square, denoted by MSR:

MSR = SSTR =SSR (2.52)

and in the error mean square, MSE, defined earlier in (1.22):

SSE

MSE =
n—2

(2.53)
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For the Toluca Company example, we have SSR = 252,378 and SSE = 54,825. Hence:
252,378

MSR = = 252,378
Also, we obtained earlier:
54,825

MSE = = 2,384
Comment
The two mean squares MSR and MSE do not add to

SSTO _ 307,203 — 12,800

n—1 24
Thus, mean squares are not additive. y |

Analysis of Variance Table

TABLE 2.2
ANOVA Table
for Simple
Linear
Regression.

Basic Table. The breakdowns of the total sum of squares and associated degrees of
freedom are displayed in the form of an analysis of variance table (ANOVA table) in
Table 2.2. Mean squares of interest also are shown. In addition, the ANOVA table contains
a column of expected mean squares that will be utilized shortly. The ANOVA table for the
Toluca Company example is shown in Figure 2.2. The columns for degrees of freedom and
sums of squares are reversed in the MINITAB output.

Modified Table. Sometimes an ANOVA table showing one additional element of decom-
position is utilized. This modified table is based on the fact that the total sum of squares
can be decomposed into two parts, as follows:

SSTO =) (Y, — ¥y’ =) ¥} —n¥?
In the modified ANOVA table, the total uncorrected sum of squares, denoted by SSTOU,
is defined as:

SSTOU = " ¥} (2.54)
and the correction for the mean sum of squares, denoted by SS(correction for mean), is
defined as: .

SS(correction for mean) = n¥? (2.55)

Table 2.3 shows the general format of this modified ANOVA table. While both types of
ANOVA tables are widely used, we shall usually utilize the basic type of table.

!

Source of - )

Variation ss df JMS E{MS}
Regression ~ SSR=3(%;i—7)2. 1 MSR=51$R 2o BEEKi— XY
Error SSE=3(Y,— %) n-2  MSE= n5552 2

Total SSTO = S (Y;— V)2 n—1
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TABLE 2.3
Modified
ANOVA Table
for Simple
Linear
Regression.

Source of .
Variation s df Ms

. 2 SSR.
Regression SSR=3(Y;i - V) 1 MSR = =

- E
Error SSE=3(Y; — 1) n—2 MSE = n—S—S-
Total SSTO = S(V;— V)2 n—1
Correction for mean SS(correction 1
for mean) = nY?

Total, uncorrected SSTOU = Y7 n o

Expected Mean Squares

In order to make inferences based on the analysis of variance approach, we need to know
the expected value of each of the mean squares. The expected value of a mean square is the
mean of its sampling distribution and tells us what is being estimated by the mean square.
Statistical theory provides the following results:

E{MSE} = o? (2.56)
E{MSR} = o” + 7 Y (X: — X)* (2.57)

The expected mean squares in (2.56) and (2.57) are shown in the analysis of variance table
in Table 2.2. Note that result (2.56) is in accord with our earlier statement that MSE is an
unbiased estimator of o2,

Two important implications of the expected mean squares in (2.56) and (2.57) are the
following:

1. The mean of the sampling distribution of MSE is o2 whether or not X and Y are linearly
related, 1.e., whether or not 8, = 0.

2. The mean of the sampling distribution of MSR is also o2 when B, =0. Hence, when
B1 =0, the sampling distributions of MSR and MSE are located identically and MSR and
MSE will tend to be of the same order of magnitude.

On the other hand, when B; # 0, the mean of the sampling distribution of MSR is
greater than o2 since the term B2 Y (X; — X)? in (2.57) then must be positive. Thus,
when B; # 0, the mean of the sampling distribution of MSR is located to the right of that
of MSE and, hence, MSR will tend to be larger than MSE.

This suggests that a comparison of MSR and MSE is useful for testing whether or not
B1=0. If MSR and MSE are of the same order of magnitude, this would suggest that 8, = 0.
On the other hand, if MSR is substantially greater than MSE, this would suggest that 8; # 0.
This indeed is the basic idea underlying the analysis of variance test to be discussed next.

Comment

The derivation of (2.56) follows from theorem (2.11), which states that SSE/o? ~ x2(n — 2)
for regression model (2.1). Hence, it follows from property (A.42) of the chi-square distribution
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{SSE}__n_

E{ SSE } E{MSE} = o*

To find the expected value of MSR, we begin with (2.51):

SSR=1b]Y (X — XY’

that:

or that:

Now by (A.15a), we have:
o’ (b} = E{b} } — (E{b1})* (2.58)
We know from (2.3a) that E£{b,;} = B, and from (2.3b) that:
2 L
2 o
b= —=——==
o’(br} Z(X" Xy
Hence, substituting into (2.58), we obtain:

o2
E{p?) = e

{ } Z( X; — X)Z + ﬁ I
It now follows that:

E{SSR} = E{b}} ) (Xi = X)* =0+ B} Y (Xi ~ X’
Finally, E{MSR} is:

E{MSR)} = E{ }_a +B1 Y (X —X)?

]
F Test of B, =0 versus B; #0

The analysis of variance approach provides us with a battery of highly useful tests for
regression models (and other linear statistical models). For the simple linear regression
case considered here, the analysis of variance provides us with a test for:
Ho: ﬁl =0
H,: B, #0
Test Statistic. The test statistic for the analysis of variance approach is denoted by F*.
As just mentioned, it compares MSR and MSE in the following fashion:
¢ MSR
F*= — 2.60
- VSE (2.60)

The earlier motivation, based on the expected mean squares in Table 2.2, suggests that large
values of F** support H, and values of F* near 1 support Hy. In other words, the appropriate
test is an upper-tail one.

(2.59)

Sampling Distribution of F*. In order to be able to construct a statistical decision rule
and examine its properties, we need to know the sampling distribution of F*. We begin by
considering the sampling distribution of F* when Hy (8, = 0) holds. Cochran’s theorem
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will be most helpful in this connection. For our purposes, this theorem can be stated as
follows:

If all » observations ¥; come from the same normal distribution with
mean . and variance o2, and SSTO is decomposed into k sums of
squares SS,, each with degrees of freedom df,, then the SS,/o? terms
are independent x? variables with df, degrees of freedom if:

(2.61)

k
der =n-—1
r=1 _;f

Note from Table 2.2 that we have decomposed SSTO into the two sums of squares SSR
and SSE and that their degrees of freedom are additive. Hence:

If B, = 0 so that all ¥; have the same mean ;. = By and the same
variance o2, SSE/c? and SSR/o? are independent x? variables.

Now consider test statistic F*, which we can write as follows:

SSR  SSE
o2 g2  MSR

F*z - =
1 n—2 MSE

But by Cochran’s theorem, we have when Hy holds:

LX) | X*-2)

F
1 n—2

when H, holds

where the x? variables are independent. Thus, when Hp holds, F* is the ratio of two
independent x? variables, each divided by its degrees of freedom. But this is the definition
of an F random variable in (A.47).

We have thus established that if Hy holds, F* follows the F distribution, specifically the
F(1, n — 2) distribution.

When H, holds, it can be shown that F* follows the noncentral F distribution, a complex
distribution that we need not consider further at this time.

Comment
Even if B # 0, SSR and SSE are independent and SSE/c? ~ x?2. However, the condition that both
SSR/c? and SSE/o? are x? random variables requires 8 = 0. [

Construction of Decision Rule. Since the test is upper-tail and F* is distributed as
F(1, n — 2) when Hp holds, the decision rule is as follows when the risk of a Type I error
is to be controlled at ¢:

If F* < F(1 —a;1,n —2), conclude H,

IfF*> F(1 —a;1,n —2), conclude H, (2.62)

where F(1 — a; 1, n — 2) is the (1 — ) 100 percentile of the appropriate F distribution.
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For the Toluca Company example, we shall repeat the earlier test on S, this time using the
F test. The alternative conclusions are:

Hy: 81 =0

Hy: pr #0
As before, let = .05. Since n = 25, we require F(.95; 1,23) = 4.28. The decisionrule is:

If F* < 4.28, conclude H,
If F* > 4.28, conclude H,

We have from earlier that MSR = 252,378 and MSE = 2,384. Hence, F* is:
252,378
T 2,384

Since F* = 105.9 > 4.28, we conclude H,, that 8; # O, or that there}is a linear
association between work hours and lot size. This is the same result as when the ¢ test was
employed, as it must be according to our discussion below.

The MINITAB output in Figure 2.2 on page 46 shows the F* statistic in the column
labeled F. Next to it is shown the P-value, P{F (1, 23) > 105.9}, namely, 0+, indicating
that the data are not consistent with 8; = 0.

%

=105.9

Equivalence of F Test and ¢ Test. For a given o level, the F test of 8 = O versus B; # 0
is equivalent algebraically to the two-tailed ¢ test. To see this, recall from (2.51) that:

SSR=b}» (X; — X’

Thus, we can write:

e SSR+1 b2y (X — X)?
SSE+~ (n—2) MSE
But since s%{b,} = MSE/ > (X; — X)?, we obtain:
= (i)
F’”= = 1 = = (t”:)2 2.63)
s2{b} s{bi} ¢
The last step follows because the ¢* statistic for testing whether or not 8, = 0is by (2.17):
b
=
s{b1}

In the Toluca Company example, we just calculated that F* = 105.9. From earlier work,
we have t* = 10.29 (see Figure 2.2). We thus see that (10.29)? = 105.9.

Corresponding to the relation between £* and F*, we have the following relation between
the required percentiles of the ¢ and F distributions for the tests: [t(1 — a/2; n — 2)]? =
F(1 —a; 1,n —2). In our tests on B, these percentiles were [£(.975; 23)]* = (2.069)% =
4.28 = F(.95; 1, 23). Remember that the ¢ test is two-tailed<whereas the F testis one-tailed.

Thus, at any given « level, we can use either the ¢ test or the F test for testing ; = 0
versus B; # 0. Whenever one test leads to Hy, so will the other, and correspondingly for H,,.
The ¢ test, however, is more flexible since it can be used for one-sided alternatives involving
B1(< =) 0 versus B, (> <) 0, while the F test cannot.
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2.8 General Linear Test Approach

Full Model

The analysis of variance test of B; = 0 versus 8, # 0 is an example of the general test for
a linear statistical model. We now explain this general test approach in terms of the simple
linear regression model. We do so at this time because of the generality of the approach
and the wide use we shall make of it, and because of the simplicity of understanding the
approach in terms of simple linear regression.

The general linear test approach involves three basic steps, which we now describe in
turn.

e

We begin with the'model considered to be appropriate for the data, which in this context is
called the full or unrestricted model. For the simple linear regression case, the full model is
the normal error regression model (2.1):

Y =po+ B Xi+e  Full model (2.64)

We fit this full model, either by the method of least squares or by the method of maximum
likelihood, and obtain the error sum of squares. The error sum of squares is the sum of the
squared deviations of each observation Y; around its estimated expected value. In this
context, we shall denote this sum of squares by SSE(F) to indicate that it is the error sum
of squares for the full model. Here, we have:

SSE(F) =) [¥i— (o +bi X)) =) (i - ¥i)* = SSE (2:65)

Thus, for the full model (2.64), the error sum of squares is simply SSE, which measures the
variability of the Y; observations around the fitted regression line.

Reduced Model

Next, we consider Hy. In this instance, we have:
HO: ﬁl = 0
Ha: ﬁl 75 0

The model when Hy holds is called the reduced or restricted model. When B; =0,
model (2.64) reduces to:

(2.66)

Y, =By +s; Reduced model (2.67)

We fit this reduced model, by either the method of least squares or the method of
maximum likelihood, and obtain the error sum of squares for this reduced model, denoted
by SSE(R). When we fit the particular reduced model (2.67), it can be shown that the least
squares and maximum likelihood estimator of 8, is ¥. Hence, the estimated expected value
for each observation is by = ¥, and the error sum of squares for this reduced model is:

SSE(R) = Z(Y,- — bp)* = Z(Y,- — ¥)? = SSTO (2.68)
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The logic now is to compare the two error sums of squares SSE(F) and SSE(R). It can be
shown that SSE(F) never is greater than SSE(R):

SSE(F) < SSE(R) (2.69)

The reason is that the more parameters are in the model, the better one can fit the data
and the smaller are the deviations around the fitted regression function. When SSE(F) is
not much less than SSE(R), using the full model does not account for much more of the
variability of the ¥; than does the reduced model, in which case the data suggest that the
reduced model is adequate (i.e., that Hy holds). To put this another way, when SSE(F) is
close to SSE(R), the variation of the observations around the fitted regression function for
the full model is almost as great as the variation around the fitted regression function for
the reduced model. In this case, the added parameters in the full model reaily do not help to
reduce the variation in the ¥; about the fitted regression function. Thus, a small difference
SSE(R) — SSE(F) suggests that Hj holds. On the other hand, a large difference suggests that
H, holds because the additional parameters in the model do help to reduce substantially the
variation of the observations ¥; around the fitted regression function.
The actual test statistic is a function of SSE(R) — SSE(F), namely:

_ SSE(R) — SSE(F)  SSE(F)
dfr — dfr - dfr

which follows the F distribution when Hy holds. The degrees of freedom dfz and dfr are

those associated with the reduced and full model error sums of squares, respectively. Large

values of F* lead to H, because a large difference SSE(R) — SSE(F) suggests that H,, holds.
The decision rule therefore is:

If F* < F(1 — a;dfg — df¥, dfr), conclude H,
If F* > F(1 — a;dfg — dfr, dff),conclude H,

F* (2.70)

2.71)

For testing whether or not 8; = 0, we therefore have:

SSE(R) = SSTO SSE(F) = SSE

dfr=n—1 dfr =n—2
so that we obtain when substifuting into (2.70):
SSTO—SSE~~ SSE  SSR = SSE _ MSR

*

T W-0)-wm-2 n-2 1 n-2 MSE
which is identical to the analysis of variance test statistic (2.60).

-

The general linear test approach can be used for highly complex tests of linear statistical
models, as well as for simple tests. The basic steps in summary form are:

1. Fit the full model and obtain the error sum of squares SSE(F).
2. Fit the reduced model under Hy and obtain the error sum of squares SSE(R).
3. Use test statistic (2.70) and decision rule (2.71).
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2.9 Descriptive Measures of Linear Association between X and Y

We have discussed the major uses of regression analysis—estimation of parameters and
means and prediction of new observations—without mentioning the “degree of linear
association” between X and Y, or similarterms. The reason is that the usefulness of estimates
or predictions depends upon the width of the interval and the user’s needs for precision,
which vary from one application to another. Hence, no single descriptive measure of the
“degree of linear association” can capture the essential information as to whether a given
regression relation is useful in any particular application.

Nevertheless, there are times when the degree of linear association is of interest in its
own right. We shall now briefly discuss two descriptive measures that are /frequently used
in practice to describe the degree of linear association between X and ¥

Coefficient of Determination

We saw earlier that SS70O measures the variation in the pbservations Y;, or the uncertainty in
predicting ¥, when no account of the predictor variable X is taken. Thus, SS70 is a measure
of the uncertainty in predicting ¥ when X is not considered. Similarly, SSE measures the
variation in the ¥; when a regression model utilizing the predictor variable X is employed.
A natural measure of the effect of X in reducing the variation in Y, i.e., in reducing the
uncertainty in predicting Y, is to express the reduction in variation (SS70O — SSE = SSR)
as a proportion of the total variation:

SSR SSE
2 = — = 1 e 2.7
R SSTO SSTO 2.72)
The measure R? is called the coefficient of determination. Since 0 < SSE < SSTO, it
follows that:

0<R*<1 (2.72a)

We may interpret R? as the proportionate reduction of total variation associated with
the use of the predictor variable X. Thus, the larger R? is, the more the total variation of
Y is reduced by introducing the predictor variable X. The limiting values of R? occur as
follows:

1. When all observations fall on the fitted regression line, then SSE = 0 and R? = 1.
This case is shown in Figure 2.8a. Here, the predictor variable X accounts for all variation
in the observations Y;.

2. When the fitted regression line is horizontal so that b, = 0 and 7, =7, then SSE =
SSTO and R? = 0. This case is shown in Figure 2.8b. Here, there is no linear association
between X and Y in the sample data, and the predictor variable X is of no help in reducing
the variation in the observations ¥; with linear regression.

In practice, R? is not likely to be 0 or 1 but somewhere between these limits. The closer
it is to 1, the greater is said to be the degree of linear association between X and Y.
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(@ R2=1 (b) R =0

Y= by + b X

|
For the Toluca Company example, we obtained SSTO = 307,203 and SSR = 252,378.
Hence:
, 252,378
307203

Thus, the variation in work hours is reduced by 82.2 percent when lot size is considered.

The MINITAB output in Figure 2.2 shows the coefficient of determination R? labeled
as R-sq in percent form. The output also shows the coefficient R—sq(adj), which will be
explained in Chapter 6.

Limitations of R?

We noted that no single measure will be adequate for describing the usefulness of a regres-
sion model for different applications. Still, the coefficient of determination is widely used.
Unfortunately, it is subject to serious misunderstandings. We consider now three common
misunderstandings:

Misonderstanding 1. A high coefficient of determination indicates that useful
predictions can be made. This is not necessarily correct. In the Toluca Company
example, we saw that the coefficient of determination was high (R? = .82). Yet the
90 percent prediction interval for the next lot, consisting of 100 units, was wide (332
to 507 hours) and not precise enough to permit management to schedule workers
effectively.

Misunderstanding 2. A high coefficient of determination indicates that the estimated
regression line is a good fit-Again, this is not necessarily correct. Figure 2.9a shows
a scatter plot where the coefficient of determination is high (R? = .69). Yet a linear
regression function would not be a good fit since the regression relation is curvilinear.
Misunderstanding 3. A coefficient of determination near Zero indicates that X and Y
are not related. This also is not necessarily correct. Figure 2.9b shows a scatter plot
where the coefficient of determination between X and ¥ is R? = .02. Yet X and ¥ are
strongly related; however, the relationship between the two variables is curvilinear.
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FIGURE 2.9
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Misunderstanding 1 arises because R? measures only a relative reduction from SSTO
and provides no information about absolute precision for estimating a mean response or
predicting a new observation. Misunderstandings 2 and 3 arise because R? measures the
degree of linear association between X and Y, whereas the actual regression relation may
be curvilinear.

Coefficient of Correlation

Example

A measure of linear association between Y and X when both ¥ and X are random is the
coefficient of correlation. This measure is the signed square root of R%:

r=+vR2 (2.73)

A plus or minus sign is attached to this measure according to whether the slope of the fitted
regression line is positive or negative. Thus, the range of ris: —1 <r < 1.

For the Toluca Company example, we obtained R? = .822. Treating X as a random variable,
the correlation coefficient here is:

r=++/.822 = .907

The plus sign is affixed since b, is positive. We take up the topic of correlation analysis in
more detail in Section 2.11.

Comments

1. The value taken by R? in a given sample tends to be affected by the spacing of the X observations.
Thisis implied in (2.72). SSE is not affected systematically by the spacing of the X; since, for regression
model (2.1), 62{¥;} = o? at all X levels. However, the wider the spacing of the X; in the sample
when b; # 0, the greater will tend to be the spread of the observed ¥; around ¥ and hence the greater
SSTO will be. Consequently, the wider the X; are spaced, the higher R? will tend to be.

2. The regression sum of squares SSR is often called the “explained variation” in ¥, and the residual
sum of squares SSE is called the “unexplained variation.” The coefficient R? then is interpreted in terms
of the proportion of the total variation in ¥ (SSTO) which has been “explained” by X. Unfortunately,
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this terminology frequently is taken literally and, hence, misunderstood. Remember that in a regression
model there is no implication that ¥ necessarily depends on X in a causal or explanatory sense.

3. Regression models do not contain a parameter to be estimated by R? or r. These are simply
descriptive measures of the degree of linear association between X and Y in the sample observations
that may, or may not, be useful in any instance. |

2.10 Considerations in Applying Regression Analysis

We have now discussed the major uses of regression analysis—to make inferences about
the regression parameters, to estimate the mean response for a given X, and to predict
a new observation Y for a given X. It remains to make a few cautionary remarks about
implementing applications of regression analysis.

1. Frequently, regression analysis is used to make inferences for the future. For jnstance,
for planning staffing requirements, a school board may wish to predict future enrollments by
using a regression model containing several demographic variables as predictor variables.
In applications of this type, it is important to remember that the validity of the regression
application depends upon whether basic causal conditions in the period ahead will be similar
to those in existence during the period upon which the regression analysis is based. This
caution applies whether mean responses are to be estimated, new observations predicted,
or regression parameters estimated.

2. In predicting new observations on Y, the predictor variable X itself often has to be
predicted. For instance, we mentioned earlier the prediction of company sales for next year
from the demographic projection of the number of persons 16 years of age or older next
year. A prediction of company sales under these circumstances is a conditional prediction,
dependent upon the correctness of the population projection. It is easy to forget the condi-
tional nature of this type of prediction.

3. Another caution deals with inferences pertaining to levels of the predictor variable
that fall outside the range of observations. Unfortunately, this situation frequently occurs
in practice. A company that predicts its sales from a regression relation of company sales
to disposable personal income will often find the level of disposable personal income of
interest (e.g., for the year ahead) to fall beyond the range of past data. If the X level does
not fall far beyond this range, one may have reasonable confidence in the application of the
regression analysis. On the other hand, if the X level falls far beyond the range of past data,
extreme caution should be exercised since one cannot be sure that the regression function
that fits the past data is appropriate over the wider range of the predictor variable.

4. A statistical test that leads to the conclusion that 8, # 0 does not establish a cause-
and-effect relation between the predictdr and response variables. As we noted in Chapter 1,
with nonexperimental data both the X and Y variables may be simultaneously influenced by
other variables not in the regression model. On the other hand, the existence of a regression
relation in controlled experiments is often good evidence of a cause-and-effect relation.

5. We should note again that frequently we wish to estimate several mean responses
or predict several new observations for different levels of the predictor variable, and that
special problems arise in this case. The confidence coefficients for the limits (2.33) for
estimating a mean response and for the prediction limits (2.36) for a new observation apply
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only for a single level of X for a given sample. In Chapter 4, we discuss how to make
multiple inferences from a given sample.

6. Finally, when observations on the predictor variable X are subject to measurement
errors, the resulting parameter estimates are generally no longer unbiased. In Chapter 4, we
discuss several ways to handle this situation.

2.11 Normal Correlation Models

Distinction between Regression and Correlation Model

The normal error regression model (2.1), which has been used throughout this chapter
and which will continue to be used, assumes that the X values are known constants. As a
consequence of this, the confidence coefficients and risks of errors refer to repeated sampling
when the X values are kept the same from sample to sample.

Frequently, it may not be appropriate to consider the X values as known constants. For
instance, consider regressing daily bathing suit sales by a department store on mean daily
temperature. Surely, the department store cannot control daily temperatures, so it would not
be meaningful to think of repeated sampling where the temperature levels are the same from
sample to sample. As a second example, an analyst may use a correlation model for the two
variables “height of person” and “weight of person” in a study of a sample of persons, each
variable being taken as random. The analyst might wish to study the relation between the
two variables or might be interested in making inferences about weight of a person on the
basis of the person’s height, in making inferences about height on the basis of weight, or in
both.

Other examples where a correlation model, rather than a regression model, may be
approptiate are:

1. To study the relation between service station sales of gasoline, and sales of auxiliary
products.

2. To study the relation between company net income determined by generally accepted
accounting principles and net income according to tax regulations.

3. To study the relation between blood pressure and age in human subjects.

The correlation model most widely employed is the normal correlation model. We discuss
it here for the case of two variables.

Bivariate Normal Distribution

The normal correlation model for the case of two variables is based on the bivariate normal
distribution. Let us denote the two variables as Y; and Y>. (We do not use the notation X and
Y here because both variables play a symmetrical role in correlation analysis.) We say that
Yy and Y, are jointly normally distributed if the density function of their joint distribution
is that of the bivariate normal distribution.
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Density Function. The density function of the bivariate normal distribution is as follows:

fn, X)) =

SRR, e
—  —exp{ —
20102 1_‘0122 2(1—-p122) a1

Y, — Y2 — Y2 — 2\
_2p12( 1 M1>< 2 Mz>+< 2 I/«2> }}
01 02 02

Note that this density function involves five parameters: 1, (2, 01, 02, p12. We shall explain
the meaning of these parameters shortly. First, let us consider a graphic representation of
the bivariate normal distribution.

Figure 2.10 contains a SYSTAT three-dimensional plot of a bivariate normal probability
distribution. The probability distribution is a surface in three-dimensional space. For every
pair of (¥, Y,) values, the density f (Y, Y,) represents the height of the surface at that
point. The surface is continuous, and probability corresponds to volume under the surface.

(2.74)

Marginal Distributions. If Y; and Y, are jointly normally distributed, it can be shown
that theif marginal distributions have the following characteristics:

The marginal distribution of Y; is normal with mean g,

and standard deviation o (2.75a)
1 1/ —wm >2}
YW=—exp| —=| ———
Ay \/Z_nal P [ 2 < o1
H
The marginal distribution of ¥, is normal with mean u,
and standard deviation o5: (2.75b)

ERNETSS)
270, P 2 o ”

Thus, when Y; and Y; are jointly normally distributed, each of the two variables by itself
is normally distributed. The converse, however, is not generally true; if ¥, and Y, are each
normally distributed, they need not be jointly normally distributed in accord with (2.74).

f(Ys) =
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Meaning of Parameters. The five parameters of the bivariate normal density func-
tion (2.74) have the following meaning:

1. w1 and o, are the mean and standard deviation of the marginal distribution of Y.
2. uo and o, are the mean and standard deviation of the marginal distribution of Y>.

3. pi2 is the coefficient of correlation beiween the random variables Y, and Y,. This
coefficient is denoted by p{Y1, Y>} in Appendix A, using the correlation operator notation,
and defined in (A.25a):

o
pi2 = p{¥y, Yo} = —— (2.76)
ag102
Here, 0; and o, as just mentioned, denote the standard deviations of Y; apd-Y>, and oy,
denotes the covariance o {Y), Y2} between Y; and ¥; as defined in (A.21):

o =o{l, L2} = E{(Y1 — p) (Y2 — 12)} (2.77)
Note that o3 = o3; and P12 = P21-

If ¥; and Y are independent, o2 = 0 according to (A.28) so that p; = 0. If'Y; and
Y, are positively related—that is, Y tends to be large when Y, is large, or small when
Y, is small— oy3 is positive and so is pio. On the other hand, if ¥; and ¥, are negatively
related—that is, Y| tends to be large when Y is small, or vice versa— o2 is negative and so
is p12. The coefficient of correlation p; can take on any value between —1 and 1 inclusive.
It assumes 1 if the linear relation between Y, and Y; is perfectly positive (direct) and —1 if
it is perfectly negative (inverse).

Conditional Inferences

As noted, one principal use of a bivariate correlation model is to make conditional inferences
regarding one variable, given the other variable. Suppose Y| represents a service station’s
gasoline sales and Y5 its sales of auxiliary products. We may then wish to predict a service
station’s sales of auxiliary products Y,, given that its gasoline sales are ¥, = $5,500.

Such conditional inferences require the use of conditional probability distributions, which
we discuss next.

Conditional Probability Distribution of ¥;. The density function of the conditional
probability distribution of ¥; for any given value of ¥; is denoted by f(¥,}Y;) and defined
as follows:

f(Y2)
where f (Y1, ¥,) is the joint density function of ¥; and Y», and f,(Y>) is the marginal density

function of Y,. When Y; and Y, are jointly normally distributed according to (2.74) so that
the marginal density function f>(Y>) is given by (2.75b), it can be shown that:

FIY) = (2.78)

The conditional probability distribution of ¥, for any given
value of Y; is normal with mean oz + B,2¥> and standard
deviation oy and its density function is: (2.79)

1 1 (Y —oup— Bt
(Y, |Yy) = ex [-—(»—-—————
Fnir, V2o P 2 o2
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The parameters o2, Bi2, and oyp of the conditional probability distributions of ¥; are
functions of the parameters of the joint probability distribution (2.74), as follows:

g
ap = pi — uzplzé (2.80a)
Bu=pa_ (2.80b)
‘712|2 =o2(1 - ph) (2.80¢)

The parameter o2 is the intercept of the line of regression of ¥ on Y5, and the parameter
B12 is the slope of this line. Thus we find that the conditional distribution of Y, given Y, is
equivalent to the normal error regression model (1.24).

Conditional Probability Distributions of ¥,. The random variables Y; and ¥, pLay sym-
metrical roles in the bivariate normal probability distribution (2.74). Hence, it follows:

The conditional probability distribution of Y, for any given
value of Y; is normal with mean o) + B2,Y, and standard
deviation o), and its density function is: (2.81)

L [_ 1 <Y2 — o1 —ﬁzmﬂ
27 og) 2 o1

The parameters o)y, B21, and oy of the conditional probability distributions of Y, are
functions of the parameters of the joint probability distribution (2.74), as follows:

fXally) =

o = 2 — mpugﬁ (2.82a)
1
B = p1 2 (2.82b)
o1
022|1 = 022 (l — plzz) (2.82¢)

Important Characteristics of Conditional Distributions. Three important characteris-
tics of the conditional probability distributions of ¥; are normality, linear regression, and
constant variance. We take up each of these in turn. )

1. The conditional probability distribution of ¥, for any given value of ¥, is normal.
Imagine that we slice a bivariate normal distribution vertically at a given value of Y5, say,
at ¥;,. That is, we slice it parallel to the ¥, axis. This slicing is shown in Figure 2.11. The
exposed cross section has the shape of a normal distribution, and after being scaled so that
its area is 1, it portrays the conditional probability distribution of Y, given that ¥, = ¥j5.

This property of normality holds no matter what the value Yj, is. Thus, whenever we
slice the bivariate normal distribution parallel to the ¥ axis, we-obtain (after proper scaling)
a normal conditional probability distribution.

2. The means of the conditional probability distributions of Y; fall on a straight line, and
hence are a linear function of Y5:

EN|Y,} =agp + pi2Ys (2.83)
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Here, o2 is the intercept parameter and f;; the slope parameter. Thus, the relation between
the conditional means and ¥; is given by a linear regression function.

3. All conditional probability distributions of ¥; have the same standard deviation oy;.
Thus, no matter where we slice the bivariate normal distribution parallel to the Y; axis,
the resulting conditional probability distribution (after scaling to have an area of 1) has the
same standard deviation. Hence, constant variances characterize the conditional probability
distributions of Y;.

Equivalence to Normal Error Regression Model. Suppose that we select a random
sample of observations (Y;, Y2) from a bivariate normal population and wish to make
conditional inferences about Y7, given Y,. The preceding discussion makes it clear that the
normal error regression model (1.24) is entirely applicable because:

1. The Y, observations are independent.
2. The Y, observations when Y, is considered given or fixed are normally distributed with
mean E{Y;|Y;} = 12 + B12Y2 and constant variance of,.

Use of Regression Analysis. In view of the equivalence of each of the conditional bivariate
normal correlation models (2.81) and (2.79) with the normal error regression model (1.24),
all conditional inferences with these correlation models can be made by means of the
usual regression methods. For instance, if a researcher has data that can be appropriately
described as having been generated from a bivariate normal distribution and wishes to make
inferences about Y,, given a particular value of Y;, the ordinary regression techniques will
be applicable. Thus, the regression function of Y, on Y; can be estimated by means of (1.12),
the slope of the regression line can be estimated by means of the interval estimate (2.15),
a new observation Y, given the value of Y7, can be predicted by means of (2.36), and so
on. Computer regression packages can be used in the usual manner. To avoid notational
problems, it may be helpful to relabel the variables according to regression usage: ¥ = Y5,
X =Y. Of course, if conditional inferences on Y; for given values of Y, are desired, the
notafion correspondences wouldbe: ¥ =Y, X = Y.
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Can we still use regression model (2.1) if ¥} and Y; are not bivariate normal? It can be
shown that all results on estimation, testing, and prediction obtained from regression model
(2.1) apply if ¥, = Y and ¥, = X are random variables, and if the following conditions
hold:

1. The conditional distributions of the ¥;, given X;, are normal and independent, with
conditional means By + B; X; and conditional variance 2.
2. The X; are independent random variables whose probability distribution g(X;) does not

involye the parameters fBq, By, 02

These conditions require only that regression model (2.1) is appropriate for each condi-
tional distribution of ¥;, and that the probability distribution of the X; does not involve the
regression parameters. If these conditions are met, all earlier results on estimation, testing,
and prediction still hold even though the X; are now random variables. The major modi-
fication occurs in the interpretation of confidence coefficients and specified risks of error.
When X is random, these refer to repeated sampling of pairs of (X;, Y;) values, where the
X; values as well as the ¥; values change from sample to sample. Thus, in our bathing suit
sales illustration, a confidence coefficient would refer to the proportion of correct interval
estimates if repeated samples of n days” sales and temperatures were obtained and the
confidence interval calculated for each sample. Another modification occurs in the test’s
power, which is different when X is a random variable.

Comments

1. The notation for the parameters of the conditional correlation models departs somewhat from
our previous notation for regression models. The symbol ¢ is now used to denote the regression
intercept. The subscript 1|2 to & indicates that ¥, is regressed on Y. Similarly, the subscript 2|1 to o
indicates that ¥» is regressed on ¥;. The symbol B;, indicates that it is the slope in the regression of Y
on Y,, while By, is the slope in the regression of ¥, on ). Finally, o), is the standard deviation of the
conditional probability distributions of ¥, for any given ¥}, while oyz is the standard deviation of the
conditional probability distributions of ¥; for any given Y,.

2. Two distinct regressions are involved in a bivariate normal model, that of ¥; on ¥, when Y5 is
fixed and that of ¥, on Y| when Y, is fixed. In general, the two regression lines are not the same. For
instance, the two slopes B, and B;; are the same only if 01 = 03, as can be seen from (2.80b) and
(2.82b).

3. When interval estimates for the conditional correlation models are obtained, the confidence
coefficient refers to repeated samples where pairs of observations (¥;, ¥5) are obtained from the
bivariate normal distribution. |

Inferences on Correlation Coefficients

A principal use of the bivariate normal correlation model is to study the relationship between
two variables. In a bivariate normal model, the parameter o), provides information about
the degree of the linear relationship between the two variables Y} and ¥>.

Point Estimator of p;;. The maximum likelihood estimator of p);, denoted by ryy, is
given by:

Y — KX — Ya)
(S — 712 Y (Y — ¥2)2] 2

(2.84)

Fiz2 =
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Example

This estimator is often called the Pearson product-moment correlation coefficient. It is a
biased estimator of p,2 (unless p;; = 0 or 1), but the bias is small when # is large.
It can be shown that the range of ry; is:

“l<rp<l1 (2.85)

Generally, values of 712 near 1 indicate a strong positive (direct) linear association be-
tween Y, and ¥, whereas values of 7|; near —1 indicate a strong negative (indirect) linear
association. Values of r;, near 0 indicate little or no linear association between Y; and Y,.

Test whether p;; = 0. When the population is bivariate normal, it is frequently desired
to test whether the coefficient of correlation is zero:
Hy: pi2 =0
Ha: P12 75 0
The reason for interest in this test is that in the case where Y; and Y, are jointly normally
distributed, o1, = O implies that ¥; and Y, are independent.

We can use regtession procedures for the test since {2.80b) implies that the following
alternatives are equivalent to those in (2.86):

o
(2.86)

Hy: =0
0 bo (2.86a)
Hy: B #0
and (2.82b) implies that the following alternatives are also equivalent to the ones in (2.86):
Hy: =0
0 P (2.86b)
Hal /321 75 0

It can be shown that the test statistics for testing either (2.86a) or (2.86b) are the same
and can be expressed directly in terms of ry,:

=2V 2 (2.87)

If Hy holds, t* follows the ¢ (n — 2) distribution. The appropriate decision rule to control
the Type I error at « is:

If|t*] <t(1 — @/2;n — 2), conclude Hy
If|t*] > t(1 — «/2;n — 2), conclude H,
Test statistic (2.87) is identical to the regression #* test statistic (2.17).

(2.88)

A national o1l company was interested in the relationship between its service station gasoline
sales and its sales of auxiliary products. A company analyst obtained a random sample of
23 of ifs service stations and obtained average monthly sales data on gasoline sales (Y;)
and comparable sales of its auxiliary products and services (¥2). These data (not shown)
resulted in an estimated correlation coefficient r1; = .52. Suppose the analyst wished to test
whether or not the association was positive, controlling the level of significance at & = .05.
The alternatives would then be:

Hy:pi2 <0
Hy:piz >0
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and the decision rule based on test statistic (2.87) would be:
Iftr* <t(l— a;n — 2),conclude Hy
Ift* > t(1 — a;n — 2), conclude H,
For «« = .05, we require #(.95; 21) = 1.721. Since:
52421
= ——=2.79
v/1 — (.52)2
is greater than 1.721, we would conclude H,, that p;2 > 0. The P-value for this test is .006.

Interval Estimation of p;; Using the 7’ Transformation. Because the sampling distri-
bution of »2 is complicated when p;; # 0, interval estimation of p;, is usually carried
out by means of an approximate procedure based on a transformation. This transformation,

known as the Fisher z transformation, is as follows: .
1 1
Z = ~log, (T2 (2.89)
2 1- Y2

When 7 is large (25 or more is a useful rule of thumb), the distribution of z’ is approximately
normal with approximate mean and variance:

1 1
E(Z) = ¢ = > log, (-2 (2.90)
2 11— pr2

1
n—3

Note that the transformation from r; to ' in (2.89) is the same as the relation in (2.90)
between p;2 and E{z’} = ¢. Also note that the approximate variance of z’ is a known
constant, depending only on the sample size n.

Table B.8 gives paired values for the left and right sides of (2.89) and (2.90), thus elim-
inating the need for calculations. For instance, if 12 or p,; equals .25, Table B.8 indicates
that ' or ¢ equals .2554, and vice versa. The values on the two sides of the transformation
always have the same sign. Thus, if (5 or p;2 is negative, a minus sign is attached to the
value in Table B.8. For instance, if r» = —.25, 7/ = —.2554.

oy = (2.97)

Interval Estimate. When the sample size is large (n > 25), the standardized statistic:

7=t

o (2.92)

is approximately a standard nofmal variable. Therefore, approximate 1 —« confidence limits
for ¢ are:

7+ z(1 - /Dol - (2.93)

where z(1 — «/2) is the (1 — ¢/2)100 percentile of the standard normal distribution. The
1 — « confidence limits for p,; are then obtained by transforming the limits on ¢ by means
of (2.90).
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Example

An economist investigated food purchasing patterns by households in a midwestern city.
Two hundred households with family incomes between $40,000 and $60,000 were selected
to ascertain, among other things, the proportions of the food budget expended for beef and
poultry, respectively. The economist expected these to be negatively related, and wished to
estimate the coefficient of correlation with a 95 percent confidence interval. Some supporting
evidence suggested that the joint distribution of the two variables does not depart markedly
from a bivariate normal one.

The point estimate of p;, was rj2 = —.61 (data and calculations not shown). To obtain
an approximate 95 percent confidence interval estimate, we require:

7 = —.7089 whenr;; = —.61 (from Table B.8)
o1} = = 07125 =
G 00-3

z(.975) = 1.960

Hence, the confidence limits for ¢, by (2.93), are —.7089 £1.960(.07125), and the approx-
imate 95 percent confidence interval is:

—.849 < ¢ < —.569
Using Table B.8 to transform back to o2, we obtain:
—.69 < pp, <-—.51

This confidence interval was sufficiently precise to be useful to the economist, confirming
the negative relation and indicating that the degree of linear association is moderately high.

Comments

1. Asusual, a confidence interval for p;, can be employed to test whether or not p;, has a specified
value—say, .5—by noting whether or not the specified value falls within the confidence limits.

2. It can be shown that the square of the coefficient of correlation, namely p,zz, measures the

relative reduction in the variability of ¥, associated with the use of variable ¥;. To see this, we noted
earlier in (2.80c) and (2.82c) that:

on =0t (1—ph) (2.94a)
(722“ = 02,2(1 — p,zz) (2.94b)
We can rewrite these expressions as follows:
o?—o?
Pl = —'T”% (2.95a)
g
o2 — o2
phy = 2 (2.95b)
o3

The meaning of p%, is now clear. Consider first (2.95a). pZ, measures how much smaller relatively is
the variability in the conditional distributions of Y}, for any given level of Y3, than is the variability
in the marginal distribution of ¥,. Thus, p%, measures the relative reduction in the variability of ¥,
associated with the use of variable ¥,. Correspondingly, (2.95b) shows that p,z2 also measures the
relative reduction in the variability of ¥, associated with the use of variable ¥;.
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It can be shown that;
0<ph<l (2.96)

The limiting value pfz = 0 occurs when Y; and ¥; are independent, so that the variances of each
variable in the conditional probability distributions are then no smaller than the variance in the
marginal distribution. The limiting value p%, = 1 occurs when there is no variability in the conditional
probability distributions for each variable, so perfect predictions of either variable can be made from
the other.

3. The interpretation of pZ, as measuring the relative reduction in the conditional variances as
compared with the marginal variance is valid for the case of a bivariate normal population, but not
for many other bivariate populations. Of course, the interpretation implies nothing in a causal sense.

4. Confidence limits for pfz can be obtained by squaring the respective confidence limits for pj3,
provided the latter limits do not differ in sign. |

Spearman Rank Correlation Coefficient >

At times the joint distribution of two random variables Y, and Y, differs considerably from
the bivariate normal distribution (2.74). In those cases, transformations of the variables Y,
and Y, may be sought to make the joint distribution of the transformed variables approx-
imately bivariate normal and thus permit the use of the inference procedures about p;,
described earlier.

When no appropriate transformations can be found, a nonparametric rank correlation
procedure may be useful for making inferences about the association between ¥, and ¥,. The
Spearman rank correlation coefficient is widely used for this purpose. First, the observations
on Y; (ie, Y1, ..., ¥,1) are expressed in ranks from 1 to n. We denote the rank of ¥;; by
R;;. Similarly, the observations on Y5 (i.e., Y12,. .., Y,2) are ranked, with the rank of ¥;,
denoted by R;;. The Spearman rank correlation coefficient, to be denoted by rg, is then
defined as the ordinary Pearson product-moment correlation coefficient in (2.84) based on
the rank data:

_ Y (Rii — R)(Riz — Ry)
= = = 2
[S (R = RS (R — Ro)?]Y
Here R, is the mean of the ranks R;; and R, is the mean of the ranks R;,. Of course, since
the ranks R;; and R;, are the integers 1, ..., n, it follows that R, = Ry = (n +1)/2.

Like an ordinary correlation coefﬁcient, the Spearman rank correlation coefficient takes
on values between —1 and 1 inclusive:

(2.97)

—-1l<r<l (2.98)

H

The coefficient rs equals 1 when the ranks for Y 1 are identical to those for Y», that is, when
the case with rank 1 for Y; also has rank 1 for ¥,, and so on. In that case, there is perfect
association between the ranks for the two variables. The coefficient 75 equals —1 when the
case with rank 1 for ¥, has rank n for Y>, the case with rank 2 for ¥; has rank n — 1 for
Y5, and so on. In that event, there is perfect inverse association between the ranks for the
two variables. When there is little, if any, association between the ranks of ¥; and Y>, the
Spearman rank correlation coefficient tends to have a value near zero.
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Example

TABLE 2.4
Data on
Population and
Expenditures
and Their
Ranks—Sales
Marketing
Example.

The Spearman rank correlation coefficient can be used fo test the alternatives:

Hy: There is no association between Y and Y, (2.99)

H,: There is an association between Y; and Y, )
A two-sided test is conducted here since H, includes either positive or negative association.
When the alternative H, is:

H,: There is positive (negative) association between Y; and Y, (2.100)

an upper-tail (lower-tail) one-sided test is conducted.

The probability distribution of rs under Hj is not difficult to obtain. It is based on the
condition that, for any ranking of Y}, all rankings of Y, are equally hkely when there is no
association between Y and Y. Tables have been prepared and are presented in specialized
texts such as Reference 2.1. Computer packages generally do not present the probability
distribution of g under Hy but give only the two-sided P-value. When the sample size #
exceeds 10, the test can be carried out approximately by using test statistic (2.87):

oo Tovn =2 (2.101)
1—r2

based on the ¢ distribution with n — 2 degrees of freedom.

A market researcher wished to examine whether an association exists between population
size (Y;) and per capita expenditures for a new food product (¥2). The data for a random
sample of 12 test markets are given in Table 2.4, columns 1 and 2. Because the distributions of
the variables do not appear to be approximately normal, a nonparametric test of association
is desired. The ranks for the variables are given in Table 2.4, columns 3 and 4. A computer
package found that the coefficient of simple correlation between the ranked data in columns
3 and 4 is rg = .895. The alternatives of interest are the two-sided ones in (2.99). Since n

) @ 3 @
Per Capita
Test Population Expenditure
Market. (in thousands) (dollars)

i ' Ya Yiz Rin Riz

1 29 127 1 2

2 435 214, 8 N

3 86 133 3 4

4 1,090 :208 11 10

5 219 153 7 6
6 503 184 ‘9. 8

7 47 130 -2, 3
8 3 524; 217 12 12
9 185 14% 6: 5
10 98 154 5 7
11 952 194 10 9

12 89 103 4 1
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exceeds 10 here, we use test statistic (2.101):
o 895122 _
V1 - (895)?
For o« = .01, we require 7 (.995; 10) = 3.169. Since |t*| = 6.34 > 3.169, we conclude H,,

that there is an association between population size and per capita expenditures for the food
product. The two-sided P-value of the test is .00008.

6.34

Comments

1. Incase of ties among some data values, each of the tied values is given the average of the ranks
involved.

2. Itis interesting to note that had the data in Table 2.4 been analyzed by assuming the bivariate
normal distribution assumption (2.74) and test statistic (2.87), then the strength of the association
would have been somewhat weaker. In particular, the Pearson product-moment correlation coefficient
is riz = .674, with £* = .674+/10/+/1 — (.674)> = 2.885. Our conclusion would hhve been to
conclude Hy, that there is no association between population size and per capita expenditures for the
food product. The two-sided P-value of the test is .016.

3. Another nonparametric rank procedure similar to Spearman’s s is Kendall’s 7. This statistic
also measures how far the rankings of ¥; and ¥, differ from each other, but in a somewhat different
way than the Spearman rank correlation coefficient. A discussion of Kendall’s 7 may be found in
Reference 2.2. |
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Press, 1990.
Problems 2.1. A student working on a summer internship in the economic research department of a large

corporation studied the relation between sales of a product (¥, in million dollars) and population
(X, m million persons) in the firm’s 50 marketing districts. The normal error regression model
(2.1) was employed. The student first wished to test whether or not a linear association between
Y and X existed. The student accessed a simple linear regression program and obtained the
following information on the regression coefficients:

<

95 Percent
Parameter Estimated Value Confidence Limits
Intercept 7.'431 19 -1.18518 16.0476
Slope 755048 .452886 1.05721

a. The student concluded from these results that there is a linear association between Y and
X. Is the conclusion warranted? What is the implied level of significance?

b. Someone questioned the negative lower confidence limit for the intercept, pointing out that
dollar sales cannot be negative even if the population in a district is zero. Discuss.
2.2. Inatest of the alternatives Hy: 81 < O versus H,: B; > 0, an analyst concluded Hy. Does this
conclusion imply that there is no linear association between X and Y ? Explain.
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2.3.

24.

*2.5.

*2.6.

2.7

A member of a student team playing an interactive marketing game received the following
computer output when studying the relation between advertising expenditures (X) and sales
(Y) for one of the team’s products:

Estimated regression equation: ¥ = 350.7 — .18X
Two-sided P-value for estimated slope: .91

The student stated: “The message I get here is that the more we spend on advertising this

product, the fewer units we sell’” Comment.

Refer 1o Grade point average Problem 1.19.

a. Obtain a 99 percent confidence interval for 8. Interpret your confidence interval. Does it
include zero? Why might the director of admissions be interested in whether }he confidence
interval includes zero? -

b. Test, using the test statistic £*, whether or not a limear association exists between student’s
ACT score (X) and GPA at the end of the freshman year (Y). Use a level of significance of
.01. State the alternatives, decision rule, and conclusion.

c. What is the P-value of your test in part (b)? How does it support the conclusion reached in
part (b)?

Refer to Copier maintenance Problem 1.20.

a. Estimaie the change in the mean service time when the number of copiers serviced increases
by one. Use a 90 percent confidence interval. Interpret your confidence interval.

b. Conduct a ¢ test to determine whether or not there is a linear association between X and Y
here; control the « risk at .10. State the alternatives, decision rule, and conclusion. What is
the P-value of your test?

c. Are your results in parts (a) and (b) consistent? Explain.

d. The manufacturer has suggested that the mean required time should not increase by more
than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to
decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error
at .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

e. Does by give any relevant information here about the “start-up” time on calls—i.e., about
the time required before service work is begun on the copiers at a customer location?

Refer to Airfreight breakage Problem 1.21.

a. Estimate B; with a 95 percent confidence interval. Interpret your interval estimate.

b. Conductaz test to decide whether or not there is a linear association between number of times
a carton is transferred (X) and number of broken ampules (Y). Use a level of significance
of .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

c. Bo represents here the mean number of ampules broken when no transfers of the shipment
are made—i.e., when X = 0. Obtain a 95 percent confidence interval for 8, and interpret it.

d. A consultant has suggested, on the basis of previous experience, that the mean number of
broken ampules should not exceed 9.0 when no transfers are made. Conduct an appropriate
test, using o = .025. State the alternatives, decision rule, and conclusion. What is the
P-value of the test?

e. Obtain the power of your test in part (b) if actually 8; = 2.0. Assume o {b;} = .50. Also
obtain the power of your test in part (d) if actually By = 11. Assume o {bg} = .75.

Refer to Plastic hardness Problem 1.22.

a. Estimate the change in the mean hardness when the elapsed time increases by one hour. Use
a 99 percent confidence interval. Interpret your interval estimate.
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b. The plastic manufacturer has stated that the mean hardness should increase by 2 Brinell
units per hour. Conduct a two-sided test to decide whether this standard is being satisfied;
use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of
the test?

c. Obtain the power of your test in part (b) if the standard actually is being exceeded by
.3 Brinell units per hour. Assume o {b;} = .1.

2.8. Refer to Figure 2.2 for the Toluca Company example. A consultant has advised that an increase
of one unit in lot size should require an increase of 3.0 in the expected number of work hours
for the given production item.

a. Conduct a test to decide whether or not the increase in the expected number of work hours
in the Toluca Company equals this standard. Use o = .05. State the alternatives, decision
rule, and conclusion.

b. Obtain the power of your testin part (a) if the consultant’s standard actually is being exceeded
by .5 hour. Assume o{b;} = .35. N

c. Why is F* = 105.88, given in the printout, not relevant for the test in part (2)?

2.9. Refer to Figure 2.2. A student, noting that s{b} is furnished in the printout, asks why s{¥;} is
not also given. Discuss.
2.10. For each of the following questions, explain whether a confidence interval for a mean response
or a prediction interval for a new observation is appropriate.

a. What will be the humidity level in this greenhouse tomorrow when we set the temperature
level at 31°C?

b. How much do families whose disposable income is $23,500 spend, on the average, for meals
away from home?

c. How many kilowatt-hours of electricity will be consumed next month by commercial and
industrial users in the Twin Cities service area, given that the index of business activity for
the area remains at its present level?

2.11. A person asks if there is a difference between the “mean response at X = X;” and the “mean
of m new observations at X = Xj,.” Reply.

2.12. Can o?{pred} in (2.37) be brought increasingly close to 0 as n becomes large? Is this also the
case for 62{¥}} in (2.29b)? What is the implication of this difference?

2.13. Refer to Grade point average Problem 1.19.

a. Obtain a 95 percent interval estimate of the mean freshman GPA for students whose ACT
test score is 28. Interpret your confidence interval.

b. Mary Jones obtained a score of 28 on the entrance test. Predict her freshman GPA using a
95 percent prediction interval. Interpret your prediction interval.

c. Is the prediction interval in part (b) wider than the confidence interval in part (a)? Should it
be?

d. Determine the boundary values of the 95 percent confidence band for the regression line
when X; = 28. Is your-confidence band wider at this point than the confidence interval in
part (2)? Should it be?

#2.14. Refer to Copier maintenance Problem 1.20.

a. Obtain a 90 percent confidente interval for the mean Service time on calls in which six
copiers are serviced. Interpret your confidence interval.

b. Obtain a 90 percent prediction interval for the service time on the next call in which six
copiers are serviced. Is your prediction interval wider than the corresponding confidence
interval in part (a)? Should it be?
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*2.15.

2.16.

2.117.

2.18.

2.19.

2.20.

2.21.

2.22.

c. Management wishes to estimate the expected service time per copier on calls in which six
copiers are serviced. Obtain an appropriate 90 percent confidence interval by converting the
interval obtained in part (a). Interpret the converted confidence interval.

d. Determine the boundary values of the 90 percent confidence band for the regression line
when X, = 6. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

Refer to Airfreight breakage Problem 1.21.

a. Because of changes in airline routes, shipments may have to be transferred more frequently
than in the past. Estimate the mean breakage for the following numbers of transfers: X = 2,
4. Use separate 99 percent confidence intervals. Interpret your results.

b. The next shipment will entail two transfers. Obtain a 99 percent prediction interval for the
number of broken ampules for this shipment. Interpret your prediction interval.

c. In the next several days, three independent shipments will be made, each entailing two
transfers. Obtain a 99 percent prediction interval for the mean number of ampules broken in
the three shipments. Convert this interval into a 99 percent prediction interval for the total
number of ampules broken in the three shipments.

d. Determine the boundary values of the 99 percent confidence band for the regression line
when X, = 2 and when X}, = 4. I's your confidence band wider at these two points than the
corresponding confidence intervals in part (2)? Should it be?

Refer to Plastic hardness Problem 1.22.

a. Obtain a 98 percent confidence interval for the mean hardness of molded items with an
elapsed time of 30 hours. Interpret your confidence interval.

b. Obtain a 98 percent prediction interval for the hardness of a newly molded test item with
an elapsed time of 30 hours.

c. Obtain a 98 percent prediction interval for the mean hardness of 10 newly molded test items,
each with an elapsed time of 30 hours.

d. Is the prediction interval in part (c) narrower than the one in part (b)? Should it be?

e. Determime the boundary values of the 98 percent confidence band for the regression line
when X, = 30. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

An analyst fitted normal error regression model (2.1) and conducted an F test of 8; = 0 versus

Bi # 0. The P-value of the test was .033, and the analyst concluded H,: B # 0. Was the

level used by the analyst greater than or smaller than .0337 ¥ the « level had been .01, what

would have been the appropriate conclusion?

For conducting statistical tests concerning the parameter 8;, why is the r test more versatile

than the F test?

When testing whether or not 8; = 0, why is the F test a one-sided test even though H, includes

both B < O and B; > 07 [Hint: Refer to (2.57).]

A student asks whether R? is a point estimator of any parameter in the normal error regression

model (2.1). Respond.

A value of R? near 1 is sometimes interpreted to imply that the relation between ¥ and X is

sufficiently close so that suitably precise predictions of ¥ can be made from knowledge of X.

Is this implication a necessary consequence of the definition of R??

Using the normal error regression model (2.1) in an engineering safety experiment, a researcher

found for the first 10 cases that R? was zero. Is it possible that for the complete set of 30 cases

R? will not be zero? Could R? not be zero for the first 10 cases, yet equal zero for all 30 cases?

Explain.
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2.23. Refer to Grade point average Problem 1.19.

a.
b.

€.

Set up the ANOVA table.

What is estimated by MSR in your ANOVA table? by MSE? Under what condition do MSR
and MSE estimate the same quantity?

. Conduct an F test of whether or not 8; = 0. Control the « risk at .01. State the alternatives,

decision rule, and conclusion.

. What is the absolute magnitude of the reduction in the variation of ¥ when X is introduced

into the regression model? What is the relative reduction? What is the name of the latter
measure?

Obtain r and attach the appropriate sign.

f. Which measure, R? or r, has the more clear-cut operational interpretation? Explain.
#2.24. Refer to Copier maintenance Problem 1.20.

a. Setup the basic ANOVA table in the format of Table 2.2. Which elements of your table are ad-
ditive? Also set up the ANOVA table in the format of Table 2.3. How do the two tabjes differ?

b. Conduct an F test to determine whether or not there is a linear association between time
spent and number of copiers serviced; use & = .10. State the alternatives, decision rule, and
conclusion.

c. By how much, relatively, is the total variation in number of minutes spent on a call reduced
when the number of copiers serviced is introduced into the analysis? Is this a relatively small
or large reduction? What is the name of this measure?

d. Calculate r and attach the appropriate sign.

e. Which measure, r or RZ, has the more clear-cut operational interpretation?

#2.25. Refer to Airfreight breakage Problem 1.21.

a. Set up the ANOVA table. Which elements are additive?

b. Conduct an F test to decide whether or not there is a linear association between the number
of times a carton is transferred and the number of broken ampules; control the « risk at .05.
State the alternatives, decision rule, and conclusion.

c. Obtain the £* statistic for the test in part (b) and demonstrate numerically its equivalence to
the F* statistic obtained in part (b).

d. Calculate R? and r. What proportion of the variation in ¥ is accounted for by introducing

- X into the regression model?
2.26. Refer to Plastic hardness Problem 1.22.

a. Set up the ANOVA table. .

b. Test by means of an F test whether or not there is a linear association between the hardness
of the plastic and the elapsed time. Use o = .01. State the alternatives, decision rule, and
conclusion.

c. Plot the deviations ¥; — ¥; again§t X; on a graph. Plot the deviations ¥; — ¥ against X;
on another graph, using the same scales as for the first graph. From your two graphs, does
SSE or SSR appear to be the larger component of SSTO? What does this imply about the
magnitude of R??

d. Calculaie R? and r.

%2.27. Refer to Muscle mass Problem 1.‘27. .

a.

Conduct a test to decide whether or not there is a negative linear association between amount
of muscle mass and age. Control the risk of Type I error at.05. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?
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b.

C.

The two-sided P-value for the test whether By = 0 is 0+. Can it now be concluded
that by provides relevant information on the amount of muscle mass at birth for a female
child?

Estimate with a 95 percent confidence mterval the difference in expected muscle mass for
women whose ages differ by one year. Why is it not necessary to know the specific ages to
make this estimate?

¥2.28. Refer to Muscle mass Problem 1.27.

*2.29.

2.30.

231.

2.32.

a.

Obtain a 95 percent confidence interval for the mean muscle mass for women of age 60.
Interpret your confidence interval.

. Obtain a 95 percent prediction interval for the muscle mass of a woman whose age is 60. Is

the prediction interval relatively precise?

. Determine the boundary values of the 95 percent confidence band foraﬂig‘regression line

when X, = 60. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

Refer to Muscle mass Problem 1.27.

a.

€.

Plot the deviations ¥; — ¥; against X; on one graph. Plot the deviations ¥; — ¥ against X;
on another graph, using the same scales as in the first graph. From your two graphs, does
SSE or SSR appear to be the larger component of SSTO? What does this imply about the
magnitude of R??

. Set up the ANOVA table.
. Test whether or not 8; = 0 using an F test with ¢ = .05. State the alternatives, decision

rule, and conclusion.

. What proportion of the total variation in muscle mass remains “unexplained” when age is

introduced into the analysis? Is this proportion relatively small or large?
Obtain R? and r.

Refer to Crime rate Problem 1.28.

a.

b.

Test whether or not there is a linear association between crime rate and percentage of high
school graduates, using a ¢ test with o = .01. State the alternatives, decision rule, and
conclusion. What is the P-value of the test?

Estimate By with a 99 percent confidence interval. Interpret your interval estimate.

Refer to Crime rate Problem 1.28

a
b.

d.

Set up the ANOVA table.

Carry out the test in Problem 2.30a by means of the F test. Show the numerical equivalence
of the two test statistics and decision rules. Is the P-value for the F test the same as that for
the ¢ test?

. By how much is the total variation in crime rate reduced when percentage of high school

graduates is introduced into the analysis? Is this a relatively large or small reduction?
Obtain r.

Refer to Crime rate Problems 1.28 and 2.30. Suppose that the test in Problem 2.30a is to be
carried out by means of a general linear test.

a.
b.

State the full and reduced models.

Obtain (1) SSE(F), (2) SSE(R), (3) dfr. (4) dfz, (5) test statistic F* for the general linear
test, (6) decision rule.

. Arethe test statistic F* and the decision rule for the general lmear test numerically equivalent

to those in Problem 2.30a?



2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

2.41.

*2.42.
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Indeveloping empirically a cost function from observed data on a complex chemical experiment,
an analyst employed normal error regression model (2.1). B, was interpreted here as the cost
of setting up the experiment. The analyst hypothesized that this cost should be $7.5 thousand
and wished to test the hypothesis by means of a general linear test.

a. Indicate the alternative conclusions for the test.
b. Specify the full and reduced models.

c. Without additional information, can you tell what the quantity dfg —dfr in test statistic (2.70)
will equal in the analyst’s test? Explain.

Refer to Grade poimt average Problem 1.19.

a. Would it be more reasonable to consider the X; as known constants or as random variables
here? Explain.

b. If the X; were considered to be random variables, would this have any effect on prediction
intervals for new applicants? Explain.

Refer to Copier maintenance Problems 1.20 and 2.5. How would the meaning of the &onfidence
coefficient in Problem 2.5a change if the predictor variable were considered a random variable
and the conditions on page 83 were applicable?

A management trainee in a production department wished to study the relation between weight
of rough casting and machining time to produce the finished block. The trainee selected castings
so that the weights would be spaced equally apart in the sample and then observed the corre-
sponding machining times. Would you recommend that a regression or a correlation model be
used? Explain.

A social scientist stated: “The conditions for the bivariate normal distribution are so rarely met
in my experience that I feel much safer using a regression model.” Comment.

A student was investigating from a large sample whether variables Y; and Y> follow a bivariate
normal distribution. The student obtained the residuals when regressing ¥; on Y2, and also
obtained the residuals when regressing ¥, on Yi, and then prepared a normal probability plot
for each set of residuals. Do these two normal probability plots provide sufficient information
for determining whether the two variables follow a bivariate normal distribution? Explain.
For the bivariate normal distribution with parameters y; = 50, u2 = 100, oy = 3, 03 = 4, and
prz = .80.

a. State the characteristics of the marginal distribution of Y;.
b. State the characteristics of the conditional distribution of ¥, when ¥; = 55.
c. State the characteristics of the conditional distribution of ¥; when Y, = 95.

Explain whether any of the following would be affected if the bivariate normal model 2.74)
were employed instead of the normal error regression model (2.1) with fixed levels of the
predictor variable: (1) point estimates of the regression coefficients, (2) confidence limits for
the regression coefficients, (3) interpretation of the confidence coefficient.

Refer to Plastic hardness Problem 1.22. A student was analyzing these data and received the
following standard query from the interactive regression and correlation computer package:

CALCULATE CONFIDENCE INTERVAL FOR POPULATION CORRELATION COEFFI-
CIENT RHO? ANSWER Y OR N. Would a “yes” response lead to meaningful information
here? Explain. . "

Property assessments. The data that follow show assessed value for property tax purposes
(Y), in thousand dollars) and sales price (¥2, in thousand dollars) for a sample of 15 parcels
of land for industrial development sold recently in “arm’s length” transactions in a tax district.
Assume that bivariate normal model (2.74) is appropriate here.
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243.

*2.44,

2.45.

2.46.

*2.47.

i 1 2 3 ces 13 14 15
Yn: 13.9 16.0 10.3 14.9 12.9 15.8
Yia: 28.6 34.7 21.0 . 35.1 30.0 36.2

a. Plot the data in a scatter diagram. Does the bivariate normal model appear to be appropriate
here? Discuss.

b. Calculate r;,. What parameter is estimated by r;;? What is the interpretation of this
parameter?

c. Test whether or not Y| and ¥; are statistically independent in the population, using test statis-
tic (2.87) and level of significance .01. State the alternatives, decision rule, and conclusion.

d. To test pj2 = .6 versus pj # .6, would it be appropriate to use test statistic (2.87)?

Contract profitability. A cost analyst for a drilling and blasting contractor‘g;(amined 84 con-

tracts handled in the last two years and found that the coefficient of correlation between value

of contract (¥7) and profit contribution generated by the contract (¥5) is rj; = .61. Assume

that bivariate normal model (2.74) applies.

a. Test whether or not ¥; and ¥, are statistically independent in the population; use & = .05.
State the alternatives, decision rule, and conclusion.

b. Estimate p;, with a 95 percent confidence interval.

c. Convertthe confidence interval inpart (b) toa 95 percent confidence interval for p,. Interpret
this interval estimate.

Bid preparation. A building construction consultant studied the relationship between cost of
bid preparation (¥}) and amount of bid (¥3) for the consulting firm’s clients. In a sample of
103 bids prepared by clients, rj2 = .87. Assume that bivariate normal model (2.74) applies.

a. Test whether or not pj; = 0; control the risk of Type I error at .10. State the alternatives,
decision rule, and conclusion. What would be the implication if pj; = 0?

b. Obtain a 90 percent confidence interval for pjo. Interpret this interval estimate.

c. Convert the confidence interval in part (b) to a 90 percent confidence interval for p,zz.

Water flow. An engineer, desiring to estimate the coefficient of correlation pj; between rate

of water flow at point A in a stream (Y;) and concurrent rate of flow at point B (¥2), obtained

ri2 = .83 in a sample of 147 cases. Assume that bivariate normal model (2.74) is appropriate.

a. Obtain a 99 percent confidence interval for p;2.

b. Convert the confidence interval in part (a) to a 99 percent confidence interval for p2,.

Refer to Property assessments Problem 2.42. There is some question as to whether or not

bivariate model (2.74) is appropriate.

a. Obtain the Spearman rank correlation coefficient rg.

b. Test by means of the Spearman rank correlation coefficient whether an association exists
between property assessments and sales prices using test statistic (2.101) with ¢ = .01.
State the alternatives, decision rule, and conclusion.

¢. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
Problem 2.42?

Refer to Muscle mass Problem 1.27. Assume that the normal bivariate model (2.74) is

appropriate.

a. Compute the Pearson product-moment correlation coefficient ;5.

b. Test whether muscle mass and age are statistically independent in the population; use
o« = .05. State the alternatives, decision rule, and conclusion.
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c. The bivariate normal model (2.74) assumption is possibly inappropriate here. Compute the
Spearman rank correlation coefficient, rs.

d. Repeat part (b), this time basing the test of independence on the Spearman rank correlation
computed in part (c) and test statistic (2.101). Use o = .05. State the alternatives, decision
rule, and conclusion.

e. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
parts (c) and (d)?

2.48. Refer to Crime rate Problems 1.28, 2.30, and 2.31. Assume that the normal bivariate model
(2.74) is appropriate.
a. Compute the Pearson product-moment correlation coefficient ry,.
b. Test whether crime rate and percentage of high school graduates are statistically independent
in the population; use & = .01. State the alternatives, decision rule, and conclusion.
c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
2.31b and 2.30a, respectively? i
2.49. Refer 1o Crime rate Problems 1.28 and 2.48. The bivariate normal model (2.74) assumption
is possibly inappropriate here.
a. Compute the Spearman rank correlation coefficient rg.
: b. Test by means of the Spearman rank correlation coefficient whether an association exists
between crime rate and percentage of high school graduates using test statistic (2.101) and
a level of significance .01. State the alternatives, decision rule, and conclusion.
c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
Problems 2.48a and 2.48b, respectively?
Exercises 250. Derive the property in (2.6) for the k;.
2.51. Show that by as defined in (2.21) is an unbiased estimator of B.
2.52. Derive the expression in (2.22b) for the variance of by, making use of (2.31). Also explain how
variance (2.22b) is a special case of variance (2.29b).
2.53. (Calculus needed.)
a. Obtain the likelihood function for the sample observations Yy, ..., ¥, given Xy, ..., X,, if
the conditions on page 83 apply.
b. Obtain the maximum likelihood estimators of By, 81, and o2. Are the estimators of Bo and
B the same as those in (1.27) when the X; are fixed?
2.54. Suppose that normal error regression model (2.1) is applicable except that the error variance
is not constant; rather the variance is larger, the larger is X. Does 8; = O still imply that there
is no linear association between X and Y? That there is no association between X and Y?
Explain. :
2.55. Derive the expression for SSR in (2.51).
2.56. Inasmall-scale regression study, five observations on ¥ were obtained corresponding to X = 1,

4,10, 11, and 14. Assume that o = .6, Sy = 5, and 8, = 3.

a. What are the expected values of MSR and MSE here? ~

b. For determining whether or not a regression relation exists, would it have been better or
worse to have made the five observations at X = 6, 7, 8, 9, and 10? Why? Would the

same answer apply if the principal purpose were to estimate the mean response for X = 8?
Discuss.
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2.57.

2.58.

2.59.

2.60.
2.61.

The normal error regression model (2.1) is assumed to be applicable.

a. When testing Hy: 8y = 5 versus H,: 81 # 5 by means of a general linear test, what is the
reduced model? What are the degrees of freedom dfg?

b. When testing Hy: Bo = 2, 8 = 5 versus H,: not both o = 2 and 8, = 5 by means of a
general linear test, what is the reduced model? What are the degrees of freedom dfz?

The random variables ¥, and Y follow the bivariate normal distribution in (2.74). Show that if

piz =0, Y| and Y, are independent random variables.

(Calculus needed.)

a. Obtain the maximum likelihood estimators of the parameters of the bivariate normal distri-
bution in (2.74).

b. Using the results in part (a), obtain the maximum likelihood estimators of the parameters of
the conditional probability distribution of Y| for any value of Y5 in (2.80).

c. Show that the maximum likelihood estimators of ¢ and By, obtained in part (b) are the
same as the least squares estimators (1.10) for the regression coefficients in the simple linear
regression model.

Show that test statistics (2.17) and (2.87) are equivalent.

Show that the ratio SSR/SSTO is the same whether Y, is regressed on Y, or ¥; is regressed on
Y. [Hint: Use (1.10a) and (2.51).] )

Projects

2.62.

2.63.

2.64.

2.65.

2.66.

Refer to the CDI data set in Appendix C.2 and Project 1.43. Using R? as the criterion, which
predictor variable accounts for the largest reduction in the variability in the number of active
physicians?

Refer to the CDI data set in Appendix C.2 and Project 1.44. Obtain a separate interval estimate

of B, for each region. Use a 90 percent confidence coefficient in each case. Do the regression

lines for the different regions appear to have similar slopes?

Refer to the SENIC data set in Appendix C.1 and Project 1.45. Using R? as the criterion, which

predictor variable accounts for the largest reduction in the variability of the average length of

stay?

Refer to the SENIC data set in Appendix C.1 and Project 1.46. Obtain a separate interval

estimate of B; for each region. Use a 95 percent confidence coefficient in each case. Do the

regression lines for the different regions appear to have similar slopes?

Five observations on Y are to be taken when X = 4, 8, 12, 16, and 20, respectively. The true

regression function is E{Y} = 20 + 4X, and the ¢; are independent N (0, 25).

a. Generate five normal random numbers, with mean 0 and variance 25. Consider these random
numbers as the error terms for the five Y observationsat X = 4, 8, 12, 16, and 20 and calculate
Yy, Y3, Y3, Y4, and Ys. Obtain the least squares estimates by and by when fitting a straight
line to the five cases. Also calculate ¥}, when X, = 10 and obtain a 95 percent confidence
mterval for E{Y},} when X,, = 10.

b. Repeat part (a) 200 times, generating new random numbers each time.

c. Make a frequency distribution of the 200 estimates b,. Calculate the mean and standard
deviation of the 200 estimates b;. Are the results consistent with theoretical expectations?

d. What proportion of the 200 confidence intervals for E{Y;} when X; = 10 include E{¥};}?
Is this result consistent with theoretical expectations?
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2.67. Refer to Grade point average Problem 1.19.

a. Plot the data, with the least squares regression line for ACT scores between 20 and 30
superimposed.

b. On the plot in part (a), superimpose a plot of the 95 percent confidence band for the true
regression line for ACT scores between 20 and 30. Does the confidence band suggest that
the true regression relation has been precisely estimated? Discuss.

2.68. Refer to Copier maintenance Problem 1.20.

a. Plot the data, with the least squares regression line for numbers of copiers serviced between
1 and 8 superimposed.

b. On the plot in part (a), superimpose a plot of the 90 percent confidence band for the true
regression line for numbers of copiers serviced between 1 and 8. Does the confidence band
suggest that the true regression relation has been precisely estimated? Discuss.



Chapter

Diagnostics and
Remedial Measures -~

%

When a regression model, such as the simple linear regression model (2.1), is considered
for an application, we can usually not be certain in advance that the model is appropriate
for that application. Any one, or several, of the features of the model, such as linearity
of the regression function or normality of the error terms, may not be appropriate for the
particular data at hand. Hence, it is important to examine the aptness of the model for the
data before inferences based on that model are undertaken. In this chapter, we discuss some
simple graphic methods for studying the appropriateness of a model, as well as some formal
statistical tests for doing so. We also consider some remedial techniques that can be helpful
when the data are not in accordance with the conditions of regression model (2.1). We
conclude the chapter with a case example that brings together the concepts and methods
presented in this and the earlier chapters.

While the discussion in this chapter is in terms of the appropriateness of the simple
linear regression model (2.1), the basic principles apply to all statistical models discussed
in this book. In later chapters, additional methods useful for examining the appropriateness
of statistical models and other remedial measures will be presented, as well as methods for
validating the statistical model.

3.1 Diagnostics for Predictor Variable

100

We begin by considering some graphic diagnostics for the predictor variable. We need
diagnostic information about the predictor variable to see if there are any outlying X values
that could influence the appropriateness of the fitted regression function. We discuss the
role of influential cases in detail in Chapter 10. Diagnostic information about the range and
concentration of the X levels in the study is also useful for ascertaining the range of validity
for the regression analysis.

Figure 3.1a contains a simple doz plot for the lot sizes in the Toluca Company example
in Figure 1.10. A dot plot is helpful when the number of observations in the data set is not
large. The dot plot in Figure 3.1a shows that the minimum and maximum lot sizes are 20
and 120, respectively, that the lot size levels are spread throughout this interval, and that
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FIGURE 3.1 MINITAB and SYGRAPH Diagnostic Plots for Predictor Variable—Toluca Company Example.
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there are no lot sizes that are far outlying, The dot plot also shows that in a number of cases
several runs were made for the same lot size.

A second useful diagnostic for the predictor variable is a sequence plot. Figure 3.1b
contains a time sequence plot of the lot sizes for the Toluca Company example. Lot size is
here plotted against production run (i.e., against time sequence). The points in the plot are
connected to show more effectively the time sequence. Sequence plots should be utilized
whenever data are obtained in a sequence, such as over time or for adjacent geographic
areas. The sequence plot in Figure 3.1b contains no special pattern. If, say, the plot had
shown that smaller lot sizes had been utilized early on and larger lot sizes later on, this
information could be very helpful for subsequent diagnostic studies of the aptness of the
fitted regression model. - -

Figures 3.1c and 3.1d contain two other diagnostic plots that present information similar
to the dot plot in Figure 3.1a. The stem-and-leaf plot in Figure 3.1c provides information
similar to a frequency histogram. By displaying the last digits, this plot also indicates here
that all lot sizes in the Toluca Company example were multiples of 10. The letter M in the
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SYGRAPH output denotes the stem where the median is located, and the letter H denotes
the stems where the first and third quartiles (hinges) are located.

The box plor in Figure 3.1d shows the minimum and maximum lot sizes, the first and
third quartiles, and the median lot size. We see that the middle half of the lot sizes range
from 50 to 90, and that they are fairly symmetrically distributed because the median is
located in the middle of the central box. A box plot is particularly helpful when there are
many observations in the data set.

3.2 Residuals

Direct diagnostic plots for the response variable ¥ are ordinarily not too usefit in regression
analysis because the values of the observations on the response variable are a function of
the level of the predictor variable. Instead, diagnostics for the response variable are usually
carried out indirectly through an examination of the residuals.

The residual ¢;, as defined in (1.16), is the difference between the observed value ¥; and
the fitted value IA/,

e=Y ¥, 3.1

The residual may be regarded as the observed error, in distinction to the unknown true error
&; in the regression model:

g =Y; — E{Y;} (3-2)

For regression model (2.1), the error terms &; are assumed to be independent normal
random variables, with mean 0 and constant variance o 2. If the model is appropriate for the
data at hand, the observed residuals e; should then reflect the properties assumed for the &;.
This is the basic idea underlying residual analysis, a highly useful means of examining the
aptness of a statistical model.

Properties of Residuals

Mean. The mean of the n residuals e; for the simple linear regression model (2.1) is,
by (1.17):
e= ;ﬁ =0 3.3)
n
where e denotes the mean of the residuals. Thus, since e is always 0, it provides no infor-
mation as to whether the true errors ¢; have expected value Efg;} = 0.

Variance. The variance of the » residuals e; is defined as follows for regression
model (2.1):

2 _ Z(ei_é)z_ Zelz _ SSE
T n=2 T n=2 n-=2

If the model is appropriate, MSE is, as noted earlier, an unbiased estimator of the variance

of the error terms o2.

S

— MSE (3-4)

Nonindependence. TheAresiduals ¢; are not independent random variables because they
involve the fitted values ¥; which are based on the same fitted regression function. As
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a result, the residuals for regression model (2.1) are subject to two constraints. These
are constraint (1.17)—that the sum of the ¢; must be 0—and constraint (1.19)—that the
products X;e; must sum to 0.

Whenthe sample size is large in comparison to the number of parameters in the regression
model, the dependency effect among the residuals ¢; is relatively unimportant and can be
ignored for most purposes.

semistudentized Residuals

At times, it is helpful to standardize the residuals for residual analysis. Since the standard
deviation of the error terms ¢; is o, which is estimated by +/MSE, it is natural to consider
the following form of standardization:

% € — € €;
6, = — = ——
" JMSE /MSE

If /MSE were an estimate of the standard deviation of the residual ¢;, we woufd call ef
a studentized residual. However, the standard deviation of e; is complex and varies for
the different residuals e;, and +/MSE is only an approximation of the standard deviation

. of ¢;. Hence, we call the statistic €] in (3.5) a semistudentized residual. We shall take
up studentized residuals in Chapter 10. Both semistudentized residuals and studentized
residuals can be very helpful in identifying outlying observations.

(3.5)

Departures from Model to Be Studied by Residuals

We shall consider the use of residuals for examining six important types of departures from
the simple linear regression model (2.1) with normal errors:

The regression function is not linear,

The error terms do not have constant variance.

The error terms are not independent.

The model fits all but one or a few outlier observations.

The error terms are not normally distributed.

One or several important predictor variables have been omitted from the model.

IS o

3.3 Diagnostics for Residuals

LN

We take up now some informal diagnostic plots of residuals to provide information on
whether any of the six types of departures from the simple linear regression model (2.1)
just mentioned are present. The following plots of residuals (or semistudentized residuals)
will be utilized here for this purpose: '

Plot of residuals against predictor variable.

Plot of absolute or squared residuals against p'redictor variable.
Plot of residuals against fitted values. .

Plot of residuals against time or other sequence.

. Plots of residuals against omitted predictor variables.

Box plot of residuals.

Normal probability plot of residuals.

NowswNe
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FIGURE 3.2 MINITAB and SYGRAPH Diagnostic Residual Plots—Toluca Company Example.
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Figure 3.2 contains, for the Toluca Company example, MINITAB and SYGRAPH plots
of the residuals in Table 1.2 against the predictor variable and against time, a box plot, and
anormal probability plot. All of these plots, as we shall see, support the appropriateness of
regression model (2.1) for the data.

We turn now to consider how residual analysis can be helpful in studying each of the six
departures from regression model (2.1).

Nonlinearity of Regression Function

Whether a linear regression function is appropriate for the data being analyzed can be
studied from a residual plot against the predictor variable or, equivalently, from a residual
plot against the fitted values. Nonlinearity of the regression function can also be studied
from a scatter plot, but this plot is not always as effective as a residual plot. Figure 3.3a



FIGURE 3.3
Scatter Plot
and Residual
Plot
Ilustrating
Nonlinear
Regression
Function—
Transit
Example.

TABLE 3.1
Number of
Maps
Distributed
and Increase in
Ridership—
Transit
Example.
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contains a scatter plot of the data and the fitted regression line for a study of the relation
between maps distributed and bus ridership in eight test cities. Here, X is the number of
bus transit maps distributed free to residents of the city at the beginning of the test period
and Y is the increase during the test period in average daily bus ridership during nonpeak
hours. The original data and fitted values are given in Table 3.1, columns 1, 2, and 3. The
plot suggests strongly that a linear regression function is not appropriate.

Figure 3.3b presents a plot_of the residuals, shown in Table 3.1, column 4, against the
predictor variable X. The lack of fit of the linear regression function is even more strongly
suggested by the residual plot against X in Figure 3.3b than by the scatter plot. Note that
the residuals depart from 0 in a systematic fashion; they are negative for smaller X values,
positive for medium-size X values, and negative again for large X values.

In this case, both Figures 3.3a and 3.3b point out the lack of linearity of the regression
function. In general, however, the residual plot is to be preferred, because it has some
important advantages over the scatter plot. First, the residual plot can easily be used for
examining other facets of the aptness of the model. Second, there are occasions when the
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FIGURE 3.4
Prototype
Residual Plots.
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scaling of the scatter plot places the Y; observations close to the fitted values ¥;, for instance,
when there is a steep slope. It then becomes more difficult to study the appropriateness of
a linear regression function from the scatter plot. A residual plot, on the other hand, can
clearly show any systematic pattern in the deviations around the fitted regression line under
these conditions.

Figure 3.4a shows a prototype situation of the residual plot against X when a linear
regression model is appropriate. The residuals then fall within a horizontal band centered
around O, displaying no systematic tendencies to be positive and negative. This is the case
in Figure 3.2a for the Toluca Company example.

Figure 3.4b shows a prototype situation of a departure from the linear regression model
that indicates the need for a curvilinear regression function. Here the residuals tend to vary
in a systematic fashion between being positive and negative. This is the case in Figure 3.3b
for the transit example. A different type of departure from linearity would, of course, lead
to a picture different from the prototype pattern in Figure 3.4b.

Comment

A plot of residuals against the fitted values ¥ provides equivalent information as a plot of residuals
against X for the simple linear regression model, and thus is not needed in addition to the residual plot
against X. The two plots provide the same information because the fitted values ¥; are a linear function
of the values X; for the predictor variable. Thus, only the X scale values, not the basic pattern of the
plotted points, are affected by whether the residual plot is against the X; or the P;. For curvilinear
regression and multiple regression, on the other hand, separate plots of the residuals against the fitted
values and against the predictor variable(s) are usually helpful. |
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Nonconstancy of Error Variance

FIGURE 3.5
Residual Plots
Tlustrating
Nonconstant
Error
Variance.

Plots of the residuals against the predictor variable or against the fitted values are not only
helpful to study whether a linear regression function is appropriate but also to examine
whether the variance of the error terms is constant. Figure 3.5a shows a residual plot against
age for a study of the relation between diastolic blood pressure of healthy, adult women (¥)
and their age (X). The plot suggests that the older the woman is, the more spread out the
residuals are. Since the relation between blood pressure and age is positive, this suggests
that the error variance is larger for older women than for younger ones.

The prototype plot in Figure 3.4a exemplifies residual plots when the error term variance
is constant. The residual plot in Figure 3.2a for the Toluca Company example is of this type,
suggesting that the error terms have constant variance here.

Figure 3.4c shows a prototype picture of residual plots when the error variance increases
with X. In many business, social science, and biological science applications, departures
from constancy of the error variance tend to be of the “megaphone” type shown in Fig-
ure 3.4c, as in the blood pressure example in Figure 3.5a. One can also encounter error
variances decreasing with increasing levels of the predictor variable and occasionally vary-
ing in some more complex fashion.

Plots of the absolute values of the residuals or of the squared residuals against the pre-
dictor variable X or against the fitted values ¥ are also useful for diagnosing nonconstancy
of the error variance since the signs of the residuals are not meaningful for examining the
constancy of the error variance. These plots are especially useful when there are not many
cases in the data set because plotting of either the absolute or squared residuals places all of
the information on changing magnitudes of the residuals above the horizontal zero line so
that one can more readily see whether the magnitude of the residuals (irrespective of sign)
is changing with the level of X or ¥.

Figure 3.5b contains a plot of the absolute residuals against age for the blood pressureé
example. This plot shows more clearly that the residuals tend to be larger in absolute
magnitude for older-aged women.
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FIGURE 3.6
Residual Plot
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Presence of Outliers

Outliers are extreme observations. Residual outliers can be identified from residual plots
against X or ¥, as well as from box plots, stem-and-leaf plots, and dot plots of the residu-
als. Plotting of semistudentized residuals is particularly helpful for distinguishing outlying
observations, since it then becomes easy to identify residuals that lie many standard devi-
ations from zero. A rough rule of thumb when the number of cases is large is to consider
semistudentized residuals with absolute value of four or more to be outliers. We shall take
up more refined procedures for identifying outliers in Chapter 10.

The residual plot in Figure 3.6 presents semistudentized residuals and contains one
outlier, whichis circled. Note that this residual represents an observation almost six standard
deviations from the fitted value.

Outliers can create great difficulty. When we encounter one, our first suspicion is that
the observation resulted from a mistake or other extraneous effect, and hence should be
discarded. A major reason for discarding it is that under the least squares method, a fitted
line may be pulled disproportionately toward an outlying observation because the sum of
the squared deviations is minimized. This could cause a misleading fit if indeed the outlying
observation resulted from a mistake or other extraneous cause. On the other hand, outliers
may convey significant information, as when an outlier occurs because of an interaction
with another predictor variable omitted from the model. A safe rule frequently suggested is
to discard an outlier only if there is direct evidence that it represents an error in recording,
a miscalculation, a malfunctioning of equipment, or a similar type of circumstance.

Comment

When a linear regression model is fitted to a dita set with a small number of cases and an outlier is
present, the fitted regression can be so distorted by the outlier that the residual plot may improperly
suggest a lack of fit of the linear regression model, in addition to flagging the outlier. Figure 3.7
illustrates this situation. The scatter plot in Figure 3.7a presents a situation where all observations
except the outlier fall around a straight-line statistical relationship. When a linear regression function
is fitted to these data, the outlier causes such a shift in the fitted regression line as to lead to a systematic
pattern of deviations from the fitted line for the other observations, suggesting a lack of fit of the linear
regression function. This is shown by the residual plot in Figure 3.7b. |

Nonindependence of Error Terms

Whenever data are obtained in a time sequence or some other type of sequence, such as
for adjacent geographic areas, it is a good idea to prepare a sequerice plot of the residuals.
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The purpose of plotting the residuals against time or in some other type of sequence is to
see if there is any correlation between error terms that are near each other in the sequence.
Figure 3.8a contains a time sequence plot of the residuals in an experiment to study the
relation between the diameter of a weld (X) and the shear strength of the weld (Y): An
evident correlation between the error terms stands out. Negative residuals are associated
mainly with the early trials, and pos1t1ve residuals with the later trials. Apparently, some
effect connected with time was present, such as learning by the welder or a gradual change
in the welding equipment, so the shear strength tended to be greater in the later welds
because of this effect. . .

A prototype residual plot showing a time-related trend effect is presented in Figure 3.4d,
which portrays a linear time-related trend effect, as in the welding example. It is sometimes
useful to view the problem of nonindependence of the error terms as one in which an
important variable (in this case, time) has been omitted from the model. We shall discuss
this type of problem shortly.
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Another type of nonindependence of the error terms is illustrated in Figure 3.8b. Here
the adjacent error terms are also related, but the resulting pattern is a cyclical one with no
trend effect present.

When the error terms are independent, we expect the residuals in a sequence plot to
fluctate in a more or less random pattern around the base line 0, such as the scattering
shown in Figure 3.2b for the Toluca Company example. Lack of randomness can take the
form of too much or too little alternation of points around the zero line. In practice, there is
Tittle concern with the former because it does not arise frequently. Too little alternation, in
contrast, frequently occurs, as in the welding example in Figure 3.8a.

e
Comment
When the residuals are plotted against X, as in Figure 3.3b for the transit example, the scatter may not
appear to be random. For this plot, however, the basic problem is probably not lack of independence
of the error terms but a poorly fitting regression function. This, indeed, is the situation portrayed in
the scatter plot in Figure 3.3a. ' |

Nonnormality of Error Terms
As we noted eatlier, small departures from normality do not create any serious problems.
Major departures, on the other hand, should be of concern. The normality of the error terms
can be studied informally by examining the residuals in a variety of graphic ways.

Distribution Plots. A box plor of the residuals is helpful for obtaining summary informa-
tion about the symmetry of the residuals and about possible outliers. Figure 3.2c contains
a box plot of the residuals in the Toluca Company example. No serious departures from
symmetry are suggested by this plot. A histogram, dot plot, or stem-and-leaf plot of the
residuals can also be helpful for detecting gross departures from normality. However, the
number of cases in the regression study must be reasonably large for any of these plots to
convey reliable information about the shape of the distribution of the error terms.

Comparison of Frequencies. Another possibility when the number of cases is reasonably
large s to compare actual frequencies of the residuals against expected frequencies under
normality. For example, one can determine whether, say, about 68 percent of the residuals
¢; fall between =/ MSE or about 90 percent fall between +1.645+/MSE. When the sample
size is moderately large, corresponding z values may be used for the comparison.

Toillustrate this procedure, we again consider the Toluca Company example of Chapter 1.
Table 3.2, column 1, repeats the residuals from Table 1.2. We see from Figure 2.2 that
+MSE = 48.82. Using the ¢ distribution, we expect under normality about 90 percent of
the residuals to fall between +£(.95; 23)/MSE = =+1.714(48.82), or between —83.68
and 83.68. Actually, 22 residuals, or 88 percent, fall within these limits. Similarly, under
normality, we expect about 60 percent of the residuals to fall between —41.89 and 41.89.
The actual percentage here is 52 percent. Thus, the actual frequencies here are reasonably
consistent with those expected under normality.

Normal Probability Plot. Still another possibility is to prepare a normal probability plot
of the residuals. Here each residual is plotted against its expected value under normality.
A plot that is nearly linear suggests agreement with normality, whereas a plot that departs
substantially from linearity suggests that the error distribution is not normal.

Table 3.2, column 1, contains the residuals for the Toluca Company example. To find
the expected values of the ordered residuals under normality, we utilize the facts that (1)
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Residuals and
Expected
Values under
Normality—
Toluca
Company
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m 2 3
Expected
Run Residual Rank Value under
i € k Normality
1 51.02 22 51.95
2 —48.47 5 ~44.10
3 -19.88 10 ~14.76
23 38.83 19 31.05
24 —5.98 13 0
25 10.72 17 19.93

L
the expected value of the error terms for regression model (2.1) is zero and (2) the standard

deviation of the error terms is estimated by +/MSE. Statistical theory has shown that for a
normal random variable with mean 0 and estimated standard deviation / MSE, a good ap-
proximation of the expected value of the kth smallest observation in a random sample of  is:

k—.375
\/MSE[z< P T >] 3.6)
where z(A) as usual denotes the (A)100 percentile of the standard normal distribution.

Using this approximation, let us calculate the expected values of the residuals under
normality for the Toluca Company example. Colurnn 2 of Table 3.2 shows the ranks of
the residuals, with the smallest residual being assigned rank 1. We see that the rank of the
residual for run 1, e; = 51.02, is 22, which indicates that this residual is the 22nd smallest
among the 25 residuals. Hence, for this residual k = 22. We found earlier (Table 2.1) that
MSE = 2,384. Hence:

k—.375 22-.375 21.625
= = = .8564
n+.25 25+ .25 25.25
so that the expected value of this residual under normality is:

\/2.384[2(.8564)] = /2,384(1.064) = 51.95

Similarly, the expected value of the residual for run 2, e; = —48.47, is obtained by noting
that the rank of this residual is k = 5; in other words, this residual is the fifth smallest one
among the 25 residuals. Hence, we require (k — .375)/(n +.25) = (5— .375)/(254.25) =
.1832, so that the expected value of this residual under normality is:

1/2,384[z(.1832)] = 1/2,384(—.9032) = —44.10

Table 3.2, column 3, contains the expected values under the assumption of normality
for a portion of the 25 residuals. Figure 3.2d presents a plot of the residuals against their
expected values under normality. Note that the points in Figure 3.2d fall reasonably close to
a straight line, suggesting that the distribution of the error terms does not depart substantially
from a normal distribution.

Figure 3.9 shows three normal probability plots when the distribution of the error terms
departs substantially from normality. Figure 3.9a shows a normal probability plot when
the error term distribution is highly skewed to the right. Note the concave-upward shape
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FIGURE 3.9 Normal Probability Plots when Error Term Distribution Is Not Normal.
(2) Skewed Right (b) Skewed Left (©) Symmetrical with Heavy Tails
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of the plot. Figure 3.9b shows a normal probability plot when the error term distribution
is highly skewed to the left. Here, the pattern is concave downward. Finally, Figure 3.9¢
shows a normal probability plot when the distribution of the error terms is symmetrical but
has heavy tails; in other words, the distribution has higher probabilities in the tails than
a normal distribution. Note the concave-downward curvature in the plot at the left end,
corresponding to the plot for a left-skewed distribution, and the concave-upward plot at the
right end, corresponding to a right-skewed distribution.

Comments

1. Many compuier packages will prepare normal probability plots, either automatically or at the
option of the user. Some of these plots utilize semistudentized residuals, others omit the factor ~/MSE
in (3.6), but neither of these variations affect the nature of the plot.

2. For continuous data, ties among the residuals should occur only rarely. If two residuals do have
the same value, a simple procedure is to use the average rank for the tied residuals for calculating the
carresponding expected values. n

Difficulties in Assessing Normality. The analysis for model departures with respect to
normality is, in many respects, more difficult than that for other types of departures. In the
first place, random variation can be particularly mischievous when studying the nature of
a probability distribution unless the sample size is quite large. Even worse, other types of
departures can and do affect the distribution of the residuals. For instance, residuals may
appear to be not normally distributed because an inappropriate regression function is used or
because the error variance is not constant. Hence, it is usually a good strategy to investigate

these other types of departures first, before concerning oneself with the normality of the
error terms.

Omiission of Important Predictor Variables

Residuals should also be plotted against variables omitted from the model that might have
important effects on the response. The time variable cited earlier in the welding example is
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an illustration. The purpose of this additional analysis is to determine whether there are
any other key variables that could provide important additional descriptive and predictive
power to the model.

As another example, in a study to predict output by piece-rate workers in an assembling
operation, the relation between output (Y) and age (X) of worker was studied for a sample
of employees. The plot of the residuals against X, shown in Figure 3.10a, indicates no
ground for suspecting the appropriateness of the linearity of the regression function or the
constancy of the error variance. Since machines produced by two companies (A and B) are
used in the assembling operation and could have ar effect on output, residual plots against
X by type of machine were undertaken and are shown in Figures 3.10b and 3.10c. Note
that the residuals for Company A machines tend to be positive, while those for Company B
machines tend to be negative. Thus, type of machine appears to have a definite effect on
productivity, and output predictions may turn out to be far superior when this variable is
added to the model.
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While this second example dealt with a qualitative variable (type of machine}), the resid-
val analysis for an additional quantitative variable is analogous. The residuals are plotted
against the additional predictor variable to see whether or not the residuals tend to vary
systematically with the level of the additional predictor variable.

Comment

We do not say that the original model is “wrong” when it can be improved materially by adding one or
more predictor variables. Only a few of the factors operating on any response variable Y in real-world
situations can be included explicitly in a regression model. The chief purpose of residual analysis in
identifying other importani predictor variables is therefore to test the adequacy of the model and see
whether it could be improved materially by adding one or more predictor variables. n

Some Final Comments P

1. We discussed model departures one at a time. In actuality, several types of departures
may occur together. For instance, a linear regression function may be a poor fit and the
variance of the error terms may not be constant. In these cases, the prototype patterns of
Figure 3.4 can still be useful, but they would need to be combined into composite patterns.

2. Although graphic analysis of residuals is only an informal method of analysis, in
many cases it suffices for examining the aptness of a model.

3. The basic approach to residual analysis explained here applies not only to simple
linear regression but also to more complex regression and other types of statistical models.

4. Several types of departures from the simple linear regression model have been identi-
fied by diagnostic tests of the residuals. Model misspecification due to either nonlinearity or
the omission of important predictor variables tends to be serious, leading to biased estimates
of the regression parameters and error variance. These problems are discussed further in
Section 3.9 and Chapter 10. Nonconstancy of error variance tends to be less serious, leading
to less efficient estimates and invalid error variance estimates. The problem is discussed in
depth in Section 11.1. The presence of outliers can be serious for smaller data sets when
their influence is large. Influential outliers are discussed further in Section 10.4. Finally, the
nonindependence of error terms results in estimators that are unbiased but whose variances
are seriously biased. Alternative estimation methods for correlated errors are discussed in
Chapter 12.

3.4  Overview of Tests Involving Residuals

Graphic analysis of residuals is inherently subjective. Nevertheless, subjective analysis of a
variety of interrelated residual plots will frequently reveal difficulties with the model more
clearly than particular formal tests. There are occasions, however, when one wishes to put
specific questions to a test. We now briefly review some of the relevant tests.

Most statistical tests require independent observations. As we have seen, however, the
residuals are dependent. Fortunately, the dependencies become quite small for large samples,
so that one can usually then ignore them.

Tests for Randomness

A runs test is frequently used to test for lack of randomness in the residuals arranged in time
order. Another test, specifically designed for lack of randomness in least squares residuals,
is the Durbin-Waison test. This test is discussed in Chapter 12.
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Tests for Constancy of Variance

When a residual plot gives the impression that the variance may be increasing or decreasing
in a systematic manner related to X or E{Y}, a simple test is based on the rank correlation
between the absolute values of the residuals and the corresponding values of the predictor
variable. Two other simple tests for constancy of the error variance—the Brown-Forsythe
test and the Breusch-Pagan test-—are discussed in Section 3.6.

Tests for Outliers

A simple test for identifying an outlier observation involves fitting a new regression line to
the other n — 1 observations. The suspect observation, which was not used in fitting the new
line, can now be regarded as a new observation. One can calculate the probability that in
observations, a deviation from the fitted line as great as that of the outlier will be obtained
by chance. If this probability is sufficiently small, the outlier can be rejected as not having
come from the same population as the other n — 1 observations. Otherwise, the outlierhis
retained. We discuss this approach in detail in Chapter 10.

Many other tests to aid in evaluating outliers have been developed. These are discussed
in specialized references, such as Reference 3.1.

Tests for Normality

Goodness of fit tests can be used for examining the normality of the error terms. Forinstance,
the chi-square test or the Kolmogorov-Smirnov test and its modification, the Lilliefors test,
can be employed for testing the normality of the error terms by analyzing the residuals.
A simple test based on the normal probability plot of the residuals will be taken up in
Section 3.5.

Comment

The runs test, rank correlation, and goodness of fit tests are commonly used statistical procedures and
are discussed in many basic statistics texts. n

3.5 Correlation Test for Normality

Example

In addition to visually assessing the approximate linearity of the points plotted in a nor-
mal probability plot, a formal test for normality of the error terms can be conducted by
calculating the coefficient of correlation (2.74) between the residuals e; and their expected
values under normality. A high value of the correlation coefficient is indicative of normality.
Table B.6, prepared by Looney and Gulledge (Ref. 3.2), contains critical values (percentiles)
for various sample sizes for the distribution of the coefficient of correlation between the
ordered residuals and their expected values under normality when the error terms are nor-
mally distributed. If the observed coefficient of correlation is at least as large as the tabled
value, for a given « level, one can conclude that the error terms are reasonably normally
distributed.

For the Toluca Company example in Table 3.2, the coefficient of correlation between the
ordered residuals and their expected values under normality is .991. Controlling the « risk
at .05, we find from Table B.6 that the critical value for n = 25 is .959. Since the observed
coefficient exceeds this level, we have support for our earlier conclusion that the distribution
of the error terms does not depart substantially from a normal distribution.
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Comment

The correlation test for normality presented here is simpler than the Shapiro-Wilk iest (Ref. 3.3),
which can be viewed as being based approximately also on the coefficient of correlation between the
ordered residuals and their expected values under normality. ]

3.6 Tests for Constancy of Error Variance

We present two formal tests for ascertaining whether the error terms have constant variance:
the Brown-Forsythe test and the Breusch-Pagan test.

Brown-Forsythe Test

o
The Brown-Forsythe test, a modification of the Levene test (Ref. 3.4), does no{}depend
on normality of the error terms. Indeed, this test is robust against serious departures from
normality, in the sense that the nominal significance level remains approximately correct
when the error terms have equal variances even if the distribution of the error terms is
far from normal. Yet the test is still relatively efficient when the error terms are normally
distributed. The Brown-Forsythe test as described is applicable to simple linear regression
when the variance of the error terms either increases or decreases with X, as illustrated in
the prototype megaphone plot in Figure 3.4c. The sample size needs to be large enough so
that the dependencies among the residuals can be ignored.

The test is based on the variability of the residuals. The larger the error variance, the
larger the variability of the residuals will tend to be. To conduct the Brown-Forsythe test, we
divide the data set into two groups, according to the level of X, so that one group consists
of cases where the X level is comparatively low and the other group consists of cases where
the X level is comparatively high. If the error variance is either increasing or decreasing
with X, the residuals in one group will tend to be more variable than those in the other
group. Equivalently, the absolute deviations of the residuals around their group mean will
tend w0 be larger for one group than for the other group. In order to make the test more
robust, we utilize the absolute deviations of the residuals around the median for the group
(Ref. 3.5). The Brown-Forsythe test then consists simply of the two-sample 7 test based on
test statistic (A.67) to determine whether the mean of the absolute deviations for one group
differs significantly from the mean absolute deviation for the second group.

Although the distribution of the absolute deviations of the residuals is usually not normal,
it has been shown that the ¢* test statistic still follows approximately the ¢ distribution when
the variance of the error terms is constant and the sample sizes of the two groups are not
extremely small.

We shall now use e;; to denote the ith residual for group 1 and e;; to denote the ith
residual for group 2. Also we shall use n; and n, to denote the sample sizes of the two
groups, where:

n=n+n; (3.7)

Further, we shall use &; and &, to denote the medians of the residuals in the two groups.
The Brown-Forsythe test uses the absolute deviations of the residuals around their group
median, 1o be denoted by d;; and d,:

diy = len — & dip = ey — & (3.8)
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TABLE 3.3
Calculations
for Brown-
Forsythe Test
for Constancy
of Error
Variance—
Toluca
Company
Example.
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With this notation, the two-sample ¢ test statistic (A.67) becomes:
g di—dy
BET T 1

Sa/— 4+ —
ni Ha

3.9)

where d; and d, are the sample means of the d; and d;,, respectively, and the pooled variance
52 in (A.63) becomes:

E Yo(dn —d)* + > (din — d)?

n—2
We denote the test statistic for the Brown-Forsythe test by 13 .
If the error terms have constant variance and rn; and n, are not extremely small, ¢}
follows approximately the ¢ distribution with n — 2 degrees of freedom. Large absolute
values of 73 indicate that the error terms do not have constant variance. )

(3.9a)

We wish to use the Brown-Forsythe test for the Toluca Company example to determine
whether or not the error term variance varies with the level of X. Since the X levels are
spread fairly wniformly (see Figure 3.1a), we divide the 25 cases into two groups with
approximately equal X ranges. The first group consists of the 13 runs with lot sizes from
20 to 70. The second group consists of the 12 runs with lot sizes from 80 to 120. Table 3.3

Group 1 o
(1 @ ® @
Lot Residual . B
i Run Size en da (dh — ch)?
1 14 20 ~20.77 89 1,929.41
2 2 30 ~48.47 28.59 263.25
12 12 70 ~60.28 40.40 19.49
13 25 70 10.72 130/60 202.07
Total . 582.60 12,566.6
& =-19.88 d; =44.815
Group 2
(1) @ & @ ®
kot Residual
i Run Size €2 H 'd,'z: (dz — d'z)z
1 1 80 51.02 :53.70 -637.56
2 8 80 4.02 6.70 -473.06
11 20 110 —34.09- 31.41 - 876
12 7 120 55.21  57:89 866.71
Total 341:40 9,610.2
& =268 d;=28450 ‘
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presents a portion of the data for each group. In columns 1 and 2 are repeated the lot sizes
and residuals from Table 1.2. We see from Table 3.3 that the median residualis &; = —19.88
for group 1 and &, = —2.68 for group 2. Column 3 contains the absolute deviations of the
residuals around their respective group medians. For instance, we obtain:

diy = e — & =|—20.77 — (—19.88)| = .89

d; = le;z — &) =151.02 — (—2.68)| = 53.70
The means of the absolute deviations are obtained in the usual fashion:

- 582.60 - 34140
d = 13 = 44.815 d, =
e

Finally, column 4 contains the squares of the deviations of the d;, and d;; around their
respective group means. For instance, we have:

= 28.450

(dn —d))? = (.89 — 44.815)? = 1,929.41
(di2 — d2)* = (53.70 — 28.450) = 637.56

We are now ready to calculate test statistic (3.9):

2 12,5666 +9,6102

= 964.21
252
s =31.05
44,815 — 28.
g, = 815 — 28.450 132

1 1

31.054/ — + —

0 13 + 12

To control the « risk at .05, we require (.975; 23) = 2.069. The decision rule therefore is:

If 5| < 2.069, conclude the error variance is constant

If |t5 7| > 2.069, conclude the error variance is not constant

Since |t; ] = 1.32 < 2.069, we conclude that the error variance is constant and does not
vary with the level of X. The two-sided P-value of this test is .20.

Comments

1. If the data set contains many cases, the two-sample ¢t test for constancy of error variance can
be conducted after dividing the cases into three or four groups, according to the level of X, and using
the two extreme groups.

2. A robust test for constancy of the error variance is desirable because nonnormality and lack of
constant variance often go hand in hand. For example, the distribution of the error terms may become
increasingly skewed and hence more variable with increasing levels of X. |

Breusch-Pagan Test

A second test for the constancy of the error variance is the Breusch-Pagan test (Ref. 3.6).
This test, a large-sample test, assumes that the error terms are independent and normally
distributed and that the variance of the error term &;, denoted by crl?, is related to the level
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of X in the following way:
log, o7 = o + 11 X; (3.10)

Note that (3.10) implies that o7 either increases or decreases with the level of X, depending
on the sign of ;. Constancy of error variance corresponds to y; = 0. The testof Hy: yy =0
versus H,: y # Ois carried out by means of regressing the squared residuals e? against X;
in the usval manner and obtaining the regression sum of squares, to be denoted by SSR*.
The test statistic X2p is as follows:

SSR* SSE\?
X2 = — <T> 3.11)

where SSR* is the regression sum of squares when regressing e? on X and SSE is the etror
sum of squares when regressing ¥ on X. If Hp: y; = O holds and » is reasonably large,
X2, follows approximately the chi-square distribution with one degree of freedom. Large
values of X2, lead to conclusion H,, that the error variance is not constant.

To conduct the Breusch-Pagan test for the Toluca Company example, we regress the squared
residuals in Table 1.2, column 5, against X and obtain SSR* = 7,896,128. We know from
Figure 2.2 that SSE = 54,825. Hence, test statistic (3.11) is:

7,896,128 54,825\ 2
Xpp = —— +< s >=.821

Example

To control the « risk at .05, we require x?(.95; 1) = 3.84. Since X2, = .821 < 3.84, we
conclude Hy, that the error variance is constant. The P-value of this test is .64 so that the
data are quite consistent with constancy of the error variance.

Comments

1. The Breusch-Pagan test can be modified to allow for different relationships beiween the error
variance and the level of X than the one in (3.10).

2. Test statistic (3.11) was developed independently by Cook and Weisberg (Ref. 3.7), and the test is
sometimes referred to as the Cook-Weisberg test. |

3.7 F Test for Lack of Fit

We next take up a formal test for determining whether a specific type of regression function
adequately fits the data. We illustrate this test for ascertaining whether a linear regression
function is a good fit for the data.

-

Assumptions

The lack of fit test assumes that the observations Y for given X are (1) independent and
(2) normally distributed, and that (3) the distributions of Y-have the same variance o,
The lack of fit test requires repeat, observations at one or more X levels. In nonexperi-
mental data, these may occur fortuitously, as when in a productivity study relating workers’
output and age, several workers of the same age happen to be included in the study. In an

experiment, one can assure by design that there are repeat observations. For instance, in an
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Example

TABLE 3.4
Data and
Analysis of
Variance
Table—Bank
Example.

experiment on the effect of size of salesperson bonus on sales, three salespersons can be
offered a particular size of bonus, for each of six bonus sizes, and their sales then observed,

Repeat trials for the same level of the predictor variable, of the type described, are called
replications. The resulting observations are called replicates.

Inan experiment involving 12 similar but scattered suburban branch offices of a commercial
bank, holders of checking accounts at the offices were offered gifts for setting up money
market accounts. Mimmum initial deposits in the new money market account were specified
to qualify for the gifi. The value of the gift was directly proportional to the specified
minimum deposit. Various levels of minimum deposit and related gift values were used in
the experiment in order to ascertain the relation between the specified minimum deposit
and gift value, on the one hand, and number of accounts opened at the office, on'the other,
Altogether, six levels of minimum deposit and proportional gift value were used, with two
of the branch offices assigned at random to each level. One branch office had a fire during
the period and was dropped from the study. Table 3.4a contains the results, where X is the
amount of minimum deposit and Y is the number of new money market accounts that were
opened and qualified for the gift during the test period.
A linear regression function was fitted in the usual fashion; it is:

¥ = 50.72251 + .48670X

The analysis of variance table also was obtained and is shown in Table 3.4b. A scatter plot,
together with the fitted regression line, is shown in Figure 3.11. The indications are strong
that a linear regression function is inappropriate. To test this formally, we shall use the
general linear test approach described in Section 2.8.

(a) Data
Size of Size of
Minimum Number Minimum Number
Deposit of New Deposit of New
Branch (dollars) Accounts Branch (dollars) Accounts
i X; Y; i Xi Y;
1 125 160 7 75 42
2 100 112 8 175 124
3 200 124 9 125 150
4 75 28 10 200 104
5 150 152 11 100 136
6 175 156
(b) ANOVA Table
Source of
Variation ALY df Ms
Regression 5,141.3 1 5,141.3
Error 14,741.6 9 1,638.0

Total 19,882.9 10



FIGURE 3.11
Scatter Plot
and Fitted
Regression
Line—Bank
Example.

TABLE 3.5
Data Arranged
by Replicate
Number and
Minimum
Deposit—Bank
Example.

Notation

Full Model
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s
3 . . 4
g .
3 125 . ¢ o
Y [
Z ~
S 75k Y =507 + .49X
g
E . I )
3
zZ 50 100 150 200
Size of Minimum Deposit
Size of Minimum Deposit (dollars) ~
j=1 j=2 j=3 j=4 j=5 j=6
Replicate X; =75 X;=100 X3=125 X;=150 Xs=175 Xs =200
i=1 28 112 160 152 156 124
i=2 42 136 150 124 104
s Mean 7,- 35 124 155 152 140 114

First, we need to modify our notation to recognize the existence of replications at some levels
of X. Table 3.5 presents the same data as Table 3.4a, but in an arrangement that recognizes
the replicates. We shall denote the different X levels in the study, whether or not replicated
observations are present, as X, ..., X.. For the bank example, ¢ = 6 since there are six
minimum deposit size levels in the study, for five of which there are two observations and
for one there is a single observation. We shall let X; = 75 (the smallest minimum deposit
level), X, = 100, ..., X¢ = 200. Further, we shall denote the number of replicates for the
jthlevel of X as n;; for our example, ny = ny = n3 = ns = ng = 2 and ny = 1. Thus, the
total number of observations » is given by:

[4
n = E nj
=1

We shall denote the observed value of the response variable for the ith replicate for
the jth level of X by Y;;, where i = 1, ..., n;, j = 1, ..., c. For the bank example
(Table 3.5), Yy, = 28, Y5y = 42, Y, = 112, and so on. Finally, we shall denote the
mean of the Y observations at the level X ='X; by ¥;. Thus, ¥; = (28 +42)/2 = 35 and
Y, =152/1=152.

(3.12)

The general linear test approach begins with the specification of the full model. The full
model used for the lack of fit test makes the same assumptions as the simple linear regression
model (2.1) except for assuming a linear regression relation, the subject of the test. This
full model is:

Y;j=p;j+¢&;  Full model (3.13)
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where:

{4 ; are parameters j =1,..., ¢
&i; are independent N (0, 0%)

Since the error terms have expectation zero, it follows that:
E{Y,;) = 3.14)

Thus, the parameter p; (j = 1, ..., ¢) is the mean response when X = X ;.

The full model (3.13) is like the regression model (2.1) in stating that each response
Y is made up of two components: the mean response when X = X; and a randem error
term. The difference between the two models is that in the full model (3.13) there are no
restrictions on the means (1 ;, whereas in the regression model (2. 1) the mean responses are
linearly related to X (i.e., E{Y} = By + B1 X).

To fit the full model to the data, we require the least squares or maximum likelihood
estimators for the parameters g ;. It can be shown that these estimators of 4 j are simply the
sample means Y;:

=Y (3.15)

Thus, the estimated expected value for observation ¥;; is Y, and the error sum of squares
for the full model therefore is:

SSE(F) =Y ) (¥ — ¥;)* = SSPE (3.16)
j i

In the context of the test for lack of fit, the full model error sum of squares (3.16) is called
the pure error sum of squares and is denoted by SSPE.

Note that SSPE is made up of the sums of squared deviations at each X level. At level
X = X, this sum of squared deviations is:

> -1 (3.17)

These sums of squares are then added over all of the X levels (j = 1, ..., ¢). For the bank
example, we have:

SSPE = (28 — 35) + (42 — 35)? 4 (112 — 124) + (136 — 124) + (160 — 155)?
+ (150 — 155)% + (152 — 152)? + (156 — 140)% + (124 — 140)?
+ (124 — 114)? + (104 — 114)?
= 1,148

Note that any X level with no replications makes no contribution to SSPE because 17,- =Yy
then. Thus, (152 — 152)2 = 0 for j = 4 in the bank example.

The degrees of freedom associated with SSPE can be obtained by recognizing that the
sum of squared deviations (3.17) at a given level of X is like an ordinary total sum of squares
based on n observations, which has n — 1 degrees of freedom associated with it. Here, there
are n; observations when X = X;; hence the degrees of freedom are n; — 1. Just as SSPE
is the sum of the sums of squares (3.17), so the number of degrees of freedom associated
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with SSPE is the sum of the component degrees of freedom:

dfFZZ(nj‘“l)':an‘—C:n—C (3.18)
j j

For the bank example, we have dfr = 11 — 6 = 5. Note that any X level with no replications
makes no contribution to dfy because n; — 1 = 1 — 1 = 0 then, just as such an X level
makes no contribution to SSPE.

Reduced Model

Test Statistic

The general linear test approach next requires consideration of the reduced model under
Hy. For testing the appropriateness of a linear regression relation, the alternatives are:

Ho: E{Y} = Bo+ Bi X

3.19)
H,: E{Y} # Bo+ i X (
Thus, Hp postulates that p; in the full model (3.13) is linearly related to X ;: .
wj=Po+ BiX;
The reduced model under H therefore is:
Y,] = ﬂo + ﬂlX] =+ Eij Reduced model (3.20)

Note that the reduced model is the ordinary simple linear regression model (2.1), with the
subscripts modified to recognize the existence of replications. We know that the estimated
expected value for observation Y;; with regression model (2.1) is the fitted value ¥;;:

Yij = bo+b1X; (3.21)

Hence, the error sum of squares for the reduced model is the usual error sum of squares SSE:

SSE(R) =Y > [V — (bo + by X))’

=3 (¥ - ¥y)* = SSE (3.22)
We also know that the degrees of freedom associated with SSE(R) are:
de =n-2

For the bank example, we have from Table 3.4b:
SSE(R) = SSE = 14,741.6
dfy =9
:
The general linear test statistic (2.’;0):
+ _ SSE(R) — SSE(F) _ SSE(F)
dfs — dfr Codfr -

here becomes:
SSE— SSPE SSPE

T -2~ (m-0 n—c

*

(3.23)
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The difference between the two error sums of squares is called the lack of fit sum of squares

here and is denoted by SSLF:
SSLF = SSE — SSPE (3.29
We can then express the test statistic as follows:
P SSLF  SSPE
T ¢—2 n-c
MSLF
el 3.25
MSPE ( )
where MSLF denotes the lack of fit mean square and MSPE denotes the pure error mean
g

square.
We know that large values of F* lead to conclusion H, in the general linear test. Decision

rule (2.71) here becomes:
IfF* < F(1—a;c—2,n— c),conclude Hy
: (3.26)
IfF* > F(1—oa;c—2,n—c),conclude H,

For the bank example, the test statistic can be constructed easily from our earlier results:
SSPE = 1,148.0 n—c=11-6=5
SSE = 14,741.6
SSLF = 14,741.6 — 1,148.0 = 13,593.6 c—2=6-2=4
_ 13,5936 | 1,148.0

F* :
4 5
3,398.4
= = 14.8
229.6 4.80

If the level of significance is to be o = .01, we require F(.99;4,5) = 11.4. Since
F*=14.80 > 11.4, we conclude H,, that the regression function is not linear, This, of
course, accords with our visual impression from Figure 3.11. The P-value for the test is
.006.

ANOVA Table

The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in
fact, decomposed the error sum of squares SSE into two components:

SSE = SSPE + SSLF (3.27)
This decomposition follows from the identity:
Y[j sl ?,'j = Yij - ivj + ivj — fij (3.28)
N — —— ——
Error Pure error Lack of fit
deviation deviation deviation

This identity shows that the error deviations in SSE are made up of a pure error component
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y3 = 160,
X3 = 125 in the bank example.



FIGURE 3.12
[llustration of
Decomposition
of Exror
Deviatjon

Yy — Yij—
Bank
Example.
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V3 =160

160 o c r®
ure error deviation) 5 = Y;5 — V. _
(3 ) 13~ Y3 v, = 155

. (lack of fit deviation) 43 = ¥ — ¥;54 | [ 113~ Y13 = 48 (error deviation)
130 F

100
Y= 50.72251 + .48670X
1 1 1 1

0 75 100 125 150 X k
Size of Minimum Deposit (dollars)

Number of New Accounts

When (3.28) is squared and summed over all observations, we obtain (3.27) since the
cross-product sum equals zero:

ZZ(YH - I?ij)z = ZZ(YU ~¥)" + ZZ(YJ ~ by’ (3.29)

SSE = SSPE + SSLF

Note from (3.29) that we can define the lack of fit sum of squares directly as follows:

SSLF =Y > "(¥; - ¥i;)? (3.30)

Since all Y;; observations at the level X; have the same fitted value, which we can denote
by Y;, we can express (3.30) equivalently as:

SSLF =Y " n;(¥; - ¥;) (3.30a)

7

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression
function is appropriate, then the means ¥; will be near the fitted values f/j calculated from
the estimated linear regression function and SSLF will be small. On the other hand, if the
linear regression function is not appropriate, the means ¥; will not be near the fitted values
calculated from the estimated linear regression function, as in Figure 3.11 for the bank
example, and SSLF will be large.

Formula (3.30a) also indicates why ¢ — 2 degrees of freedom are associated with SSLF.
There are c means ¥; in the sum of squares, and two degrees of freedom are lost in estimating
the parameters fo and B, of the lingar regression function to obtain the fitted values f/,-.

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains
the general ANOVA table, including the decomposition of SSE just explained and the
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank
example.
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TABLE 3.6
General
ANOVA Table
for Testing
Lack of Fit of
Simple Linear
Regression
Function and
ANOVA
Table—Bank
Example.

(a) ﬁenei‘él

‘Source of . :
Variation ss df Ms
) .oy SSR
Regression SSR=3_3(Y;; =) 1 MSR = —=
. SSE
Error SSE= 30 5(Yi — Vi) n-2  MsE=——
= - SSLF
Lack of fit SSLF=YYF; -y c-2  MSlF= ==
= . SSPE .
Pureerror  SSPE=Y3(Yy—F)?  n—c  MSPE= al
Total SSTO=3(Y; -2 n-1
(b) Bank Example .
Source of '
Variation 55 df Ms
Regression 51413 1 5,141.3
Error 14,741.6 9 #1,638.0
Lack of fit 13,593.6 4 3,398.4
Pure-erfor 1,148.0 5 229.6
Total 19,882.9 10
Comments

1. Asshown by the bank example, not all levels of X need have repeat observations for the F test
for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient.

2. Itcan be shown that the mean squares MSPE and MSLF have the following expectations when
testing whether the regression function is linear:

E{MSPE) = 0 (3.31)

[ — (Bo+ B X))

E{MSLF) = o2 + 2n 2
P

(3.32)

The reason for the term “pure error” is that MSPE is always an unbiased estimator of the error term
variance o2, no matter what is the true regression function. The expected value of MSLF alsois o2 if
the regression function is linear, because 1; = fo+ B; X ; then and the second term in (3.32) becomes
zero. On the other hand, if the regression function is not linear, 11; # fo + B1X; and E{MSLF} will
be greater than o2, Hence, a value of F* near 1 accords with a linear regression function; large values
of F* indicate that the regression function is not linear.

3. The terminology “error sum of squares” and “error mean square” is not precise when the
regression function under test in Hy is not the true function since the error sum of squares and error
mean square then reflect the effects of both the lack of fit and the variability of the error terms. We
continue to use the terminology for consistency and now use the term “pure error” to identify the
variability associated with the error term only.
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4. Suppose that prior to any analysis of the appropriateness of the model, we had fitted a linear
regression model and wished to test whether or not 8; = 0 for the bank example (Table 3.4b). Test
statistic (2.60) would be:

* LT - —_
B = s = 1380 = M
For o =.10, F(.90; 1, 9) =3.36, and we would conclude Hy, that 8, =0 or that there is no linear
association between minimum deposit size (and value of gift) and number of new accounts. A conclu-
sion that there is no relation between these variables would be improper, however. Such an inference
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re-
gression function is not linear. This illustrates the importance of always examining the appropriateness
of a model before any inferences are drawn.

5. The general linear test approach just explained can be used to test the appropriateness of other
regression functions. Only the degrees of freedom for SSLF will need be modified. In general, c — p
degrees of freedom are associated with SSLF, where p is the number of parameters in the regression
function. For the test of a simple linear regression function, p = 2 because there are two paranjeters,
Bo and By, in the regression function.

6. The alternative H, in (3.19) includes all regression functions other than a linear one. For
instance, it includes a quadratic regression function or a logarithmic one. If H, is concluded, a study
of residuals can be helpful in identifying an appropriate function.

7. When we conclude that the employed model in Hy is appropriate, the usual practice is to use
the error mean square MSE as an estimator of 2 in preference to the pure error mean square MSPE,
since the former contains more degrees of freedom.

8. Observations at the same level of X are genuine repeats only if they involve independent trials
with respect to the error term. Suppose that in a regression analysis of the relation between hardness
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among
other things, random errors in the measurement of hardness by the analyst and effects of uncontrolled
production factors, which vary at random from specimen to specimen and affect hardness. If the
analyst takes iwo readings on the hardness of a specimen, this will not provide a genuine replication
because the effects of random variation in the production factors are fixed in any given specimen.
For genuine replications, different specimens with the same carbon content (X) would have to be
measured by the analyst so that all the effects covered in the error term could vary at random from
one repeated observation to the next.

9. When no replications are present in a data set, an approximate test for lack of fit can be
conducted if there are some cases at adjacent X levels for which the mean responses are quite close to
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the test for
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this and
related procedures for conducting a test for lack of fit when no replicates are present may be found in
Reference 3.8.

3.8 Overview of Remedial Measures

If the simple linear regression model (2.1) is not appropriate for a data set, there are two
basic choices:

-
P

1. Abandon regression model (2.1) and develop and use a more appropriate model.
2. Employ some transformation on the data so that regression model (2.1) is appropriate
for the transformed data.
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Each approach has advantages and disadvantages. The first approach may entail a more
complex model that could yield better insights, but may also lead to more complex proce-
dures for estimating the parameters. Successful use of transformations, on the other hand,
leads to relatively simple methods of estimation and may involve fewer parameters than
a complex model, an advantage when the sample size is small. Yet transformations may
obscure the fundamental interconnections between the variables, though at other times they
may illuminate them.

We consider the use of transformations in this chapter and the use of more complex
models in later chapters. First, we provide a brief overview of remedial measures.

Nonlinearity of Regression Function

When the regression function is not linear, a direct approach is to modlfy regression
model (2.1) by altering the nature of the regression function. For instance, a quadratic
regression function might be used:

E(Y}=fo+ BiX + B X°

or an exponential regression function:

E{Y} = BBy

In Chapter 7, we discuss polynomial regression functions, and in Part ITI we take up nonlinear
regression functions, such as an exponential regression function.

The transformation approach employs a transformation to linearize, at least approxi-
mately, a nonlinear regression function. We discuss the use of transformations to linearize
regression functions in Section 3.9.

When the nature of the regression function is not known, exploratory analysis that does
not require specifying a particular type of function is often useful. We discuss exploratory
regression analysis in Section 3.10.

Nonconstancy of Error Variance

When the error variance is not constant but varies in a systematic fashion, a direct approach
is to modify the model to allow for this and use the method of weighted least squares to
obtain the estimators of the parameters. We discuss the use of weighted least squares for
this purpose in Chapter 11.

Transformations can also be effective in stabilizing the variance. Some of these are
discussed in Section 3.9.

Nonindependence of Error Terms

When the error terms are correlated, a direct remedial measure is to work with a mode] that
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial
transformation that is often helpful is to work with first differences, a topic also discussed
in Chapter 12.

Nonnormality of Error Terms
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately,
itis often the case that the same transformation that helps stabilize the variance is also helpful
in approximaiely normalizing the error terms. It is therefore desirable that the transformation
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for stabilizing the error variance be utilized first, and then the residuals studied to see if
serious departures from normality are still present. We discuss transformations to achieve
approximate normality in Section 3.9.

Omission of Important Predictor Variables

When residual analysis indicates that an important predictor variable has been omitted from
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss
multiple regression analysis in which two or more predictor variables are utilized.

Outlying Observations

When outlying observations are present, as in Figure 3.7a, use of the least squares and
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis-
tortions in the estimated regression function. When the outlying observations do not repre-
sent recording errors and should not be discarded, it may be desirable to use aniestimation
procedure that places less emphasis on such outlying observations. We discuss one such
robust estimation procedure in Chapter 11.

3.9 Transformations

We now consider in more detail the use of transformations of one or both of the original
variables before carrying out the regression analysis. Simple transformations of either the
response variable Y or the predictor variable X, or of both, are often sufficient to make the
simple linear regression model appropriate for the transformed data.

Transformations for Nonlinear Relation Only

Example

We first consider transformations for linearizing a nonlinear regression relation when the
distribution of the error terms is reasonably close to a normal distribution and the error
terms have approximately constant variance. In this situation, transformations on X should
be attempted. The reason why transformations on ¥ may not be desirable here is that a
transformation on ¥, such as ¥’ = +/¥, may materially change the shape of the distribution
of the’error terms from the normal distribution and may also lead to substantially differing
error term variances.

Figure 3.13 contains some prototype nonlinear regression relations with constant error
variance and also presents some simple transformations on X that may be helpful to lin-
earize the regression relationship without affecting the distributions of Y. Several alternative
transformations may be tried. Scatter plots and residual plots based on each transformation
should then be prepared and analyzed, to decide which transformation is most effective.

Data from an experiment on the effect of number of days of training received (X) on
performance (Y) in a battery of simulated sales situations are presented in Table 3.7,
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in
Figure 3.14a. Clearly the regression relation appears to be curvilinear, so the simple linear
regression model (2.1) does not seenrto be appropriate. Since the variability at the different
X levels appears to be fairly constant, we shall consider a transformation on X. Based on
the prototype plotin Figure 3.13a, we shall consider initially the square root transformation
X' = +/X. The transformed values are shown in column 3 of Table 3.7.
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FIGURE 3.13
Prototype
Nonlinear
Regression
Patterns with

Constant Error

Variance and
Simple Trans-
formations

of X.

TABLE 3.7
Use of Square
Root Transfor-
mation of X to
Linearize
Regression
Relation—
Sales Training
Example.

Prototype Regression Pattern Transformations of X

@ X'=logo X X=X
()] X=X  X'=exp(X)
i
© X=1X X'=exp(—X)
¢} @ 3)
Sales Days of Performance
Trainee Training Score
i Xi yi X; =:‘\/ Xi
1 5 42.5 70711
2 5 50.6 70711
3 1.0 68:5 1.00000
4 1.0 80.7 1.00000
5 1.5 89.0 1.22474
6. 15 99.6 1.22474
7 2.0 105.3 1.41421
8 2.0 111:8 1.41421
9 25 1123 1.58114
10 2.5 125.7 1.58114

In Figure 3.14b, the same data are plotted with the predictor variable transformed to
X’ = +/X. Note that the scatter plot now shows a reasonably linear relation. The variability
of the scatter at the different X levels is the same as before, since we did not make a
transformation on Y.

To examine further whether the simple linear regression model (2.1) is appropriate now,
we fit it to the transformed X data. The regression calculations with the transformed X data
are carried out in the usual fashion, except that the predictor variable now is X’. We obtain
the following fitted regression function:

¥ =—-10.33 + 83.45X’

Figure 3.14c contains a plot of the residuals against X’. There is no evidence of lack of
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of
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FIGURE 3.14 Scatter Plots and Residual Plots—Sales Training Example.
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the residuals. No sirong indications of substantial departures from normality are indicated
by this plot. This conclusion is supported by the high coefficient of correlation between the
ordered residuals and their expected values under normality, .979. For o = .01, Table B.6
shows that the critical value is .879, so the observed coefficient is substantially larger
and supports the reasonableness of normal error terms. Thus, the simple linear regression
model (2.1) appears to be appropriaté here for the transformed data.

The fitted regression function in the original units of X can easily be obtained, if desired:

¥ = —10.33 + 83.45VX
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FIGURE 3.15
Prototype
Regression
Patterns with
Unequal Error
Variances and
Simple Trans-
formations

of Y.

Prototype Regression Pattern

(@ (®) S)f
Transformations on Y
Y=y
Y'=logyo Y
y'=1/Y

Note: A simultaneous transformation on X may also be helpful or necessary.

Comment

At times, it may be helpful to introduce a constant into the transformation. For example, if some of
the X data are near zero and the reciprocal transformation is desired, we can shift the origin by using
the transformation X' = 1/(X + k), where k is an appropriately chosen constant. ]

Transformations for Nonnormality and Unequal Error Variances

Example

Unequal error variances and nonnormality of the error terms frequently appear together.
To remedy these departures from the simple linear regression model (2.1), we need a
transformation on Y, since the shapes and spreads of the distributions of Y need to be
changed. Such a transformation on ¥ may also at the same time help to linearize a curvilinear
regression relation. At other times, a simultaneous transformation on X may be needed to
obtain or maintain a linear regression relation.

Frequently, the nonnormality and unequal variances departures from regression
model (2.1) take the form of increasing skewness and increasing variability of the distribu-
tions of the error terms as the mean response E{Y} increases. For example, in a regression
of yearly household expenditures for vacations (¥) on household income (X), there will
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation
expenditures) for high-income households than for low-income households, who tend to
consistently spend much less for vacations. Figure 3.15 contains some prototype regression
relations where the skewness and the error variance increase with the mean response E{Y}.
This figure also presents some simple transformations on Y that may be helpful for these
cases. Several alternative transformations on ¥ may be tried, as well as some simultaneous
transformations on X. Scatter plots and residual plots should be prepared to determine the
most effective transformation(s).

Data on age (X) and plasma level of a polyamine (¥) for a portion of the 25 healthy
children in a study are presented in columnns 1 and 2 of Table 3.8. These data are plotted in
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well
as the greater variability for younger children than for older ones.



TABLE 3.8
Use of
Logarithmic
Transforma-
tion of Y to
Linearize
Regression
Relation and
Stabilize Error
Variance—
Plasma Levels
Example.
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m €] N E))
Child Age Plasma Level L _
i X; Yi Y; =logy, ¥i
0 (newborn) 13.44 1.1284
2 0 (newbomn) 12.84 1.1086
3 0 (newborn) 11.91 1.0759
4 0 (newborn) 20.09 1.3030
5 0 (newbomn) 15.60 1.1931
6 1.0 10.11 1.0048
7 1.0 11.38 1.0561
19 3.0 6.90 .8388
20 3.0 6.77 .8306 L
21 4.0 4.86 .6866
22 4.0 5.10 7076
23 4.0 5.67 .7536
24 4.0 5.75 7597 -
25 . 40 6.23 7945,

On the basis of the prototype regression pattern in Figure 3.15b, we shall first try the
logarithmic transformation ¥’ = log,, Y. The transformed Y values are shown in column 3
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the
transformation not only has led to a reasonably linear regression relation, but the variability
at the different levels of X also has become reasonably constant.

To further examine the reasonableness of the transformation Y’ = log,, Y, we fitted the
simple linear regression model (2.1) to the transformed ¥ data and obtained:

¥ =1.135 - .1023X

A plot of the residuals against X is shown in Figure 3.16c, and a normal probability plot of
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered
residuals and their expected values under normality is .981. For @ = .05, Table B.6 indicates
that the critical value is .959 so that the observed coefficient supports the assumption of
normality of the error terms. All of this evidence supports the appropriateness of regression
model (2.1) for the transformed Y data.

H

-

Comments

1. At dmes it may be desirable to introduce a constani into a ransformation of Y, such as when
Y may be negative. For instance, the logarithmic transformation to shift the origin in ¥ and make all
Y observations positive would be ¥’ = logo(Y + k), where k is an appropriately chosen constant.

2. When unequal error variances are present but the regression relation is linear, a transformation
on ¥ may not be sufficient. While such a wransformation may stabilize the error variance, it will also
change the linear relationship to a curvilinear one. A wansformation on X may therefore also be
required. This case can also be handled by using weighted least squares, a procedure explained in
Chapter 11. ’
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The difference between the two error sums of squares is called the lack of fit sum of squares

here and is denoted by SSLF*:
SSLF = SSE — SSPE (3.29
We can then express the test statistic as follows:
. SSLF SSPE
T c-=2 n—c
MSLF
= — 3.25
MSPE ( )
where MSLF denotes the lack of fit mean square and MSPE denotes the pure error mean
P

square.
We know that large values of F* lead to conclusion H,, in the general linear test. Decision

rule (2.71) here becomes:
fF* < F(—a;¢c—2,n— c), conclude H
), GO o (3.26)
fF*> F(—o;¢c—2,n—c),conclude H,

For the bank example, the test statistic can be constructed easily from our earlier results:
SSPE = 1,148.0 n—c=11-6=5
SSE = 14,741.6
SSLF = 14,741.6 — 1,148.0 = 13,593.6 c—2=6—-2=4
_13,593.6  1,1480

F* :
4 5
3,398.4
= oo = 1480

If the level of significance is to be ¢ = .01, we require F(.99;4,5) = 11.4. Since
F* =14.80 > 11.4, we conclude H,, that the regression function is not linear. This, of
course, accords with our visual impression from Figure 3.11. The P-value for the test is
.006.

ANOVA Table

The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in
fact, decomposed the error sum of squares SSE into two components:

SSE = SSPE + SSLF (3.27)
This decomposition follows from the identity:
Yij— Yy = Y~ ¥ + ¥~ ¥ (3.28)
Error Pure error Lack of fit
deviation deviation deviation

This identity shows that the error deviations in SSE are made up of a pure error component
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y3 = 160,
X3 = 125 in the bank example.
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of Error
Deviation
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Example.
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When (3.28) is squared and summed over all observations, we obtain (3.27) since the
cross-product sum equals zero:

PR OED IV RS NI DIPD (T (VNP

SSE = SSPE + SSLF

Note from (3.29) that we can define the lack of fit sum of squares directly as follows:

SSLF =Y "(¥; — ¥;)° (3.30)

Since all ¥;; observations at the level X; have the same fitted value, which we can denote
by Y;, we can express (3.30) equivalently as:

SSLF = " n;(¥; — ¥;) (3.30a)
i

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression
function is appropriate, then the means ¥; will be near the fitted values ¥; calculated from
the estimated linear regression function and SSLF will be small. On the other hand, if the
linear regression function is not appropriate, the means ¥; will not be near the fitted values
calculated from the estimated linear regression function, as in Figure 3.11 for the bank
example, and SSLF will be large.

Formula (3.30a) also indicates why ¢ — 2 degrees of freedom are associated with SSLF.
There are ¢ means ¥ in the sum of squares, and two degrees of freedom are lost in estimating
the parameters Sy and B, of the linear regression function to obtain the fitted values I?j.

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains
the general ANOVA table, including the decomposition of SSE just explained and the
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank
example.
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TABLE 3.6
General
ANOVA Table
for Testing
Lack of Fit of
Simple Linear
Regression
Function and
ANOVA
Table—Bank
Example.

. (a) Geﬁel_'al
Source of -
Variation ss df Ms
. et s oy SSR
Regression SSR=3_3"(V;; ~ V) 1 MSR = —=
: . . SSE
Error: SSE = ZZ(Y“' — ?,‘,’) n—2 MSE = m
. - SSLF
Lack of fit SSLF = ZZ(Y, - ?,',')2 c—2 MSLF = 2
o L o SSPE
Pure error SSPE=3"3"(Y;; = ¥)) n-c MSPE = —— st
Total SSTO'="3 (Vi — V2 n—1
(b) Bank Example »
Source of L
Variation 55 df MS
Regression 5,141.3 T ,5,141.3
Error 14,741.6 9 71,638.0°
tack'of fit_ 13,593.6 4 3,398.4
Pure-error 1,148.0 5 229.6
Total 19,882.9 10
Comments

1. Asshown by the bank example, not all levels of X need have repeat observations for the F test
for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient.

2. Itcan be shown that the mean squares MSPE and MSLF have the following expectations when
testing whether the regression function is linear:

E{MSPE) = ¢

Fir e — N2
E{MSLF} = o’ + an[“q Cg+ ﬂIXJ)]

(3.31)

(3.32)

The reason for the term “pure exror” is that MSPE is always an unbiased estimator of the error term
variance o2, no matter whatis the true regression function. The expected value of MSLF also is o2 if
the regression function is linear, because u; = Bo+ B1 X ; then and the second term in (3.32) becomes
zero. On the other hand, if the regression function is not linear, 1; # Bo + B1X; and E{MSLF} will
be greater than o2. Hence, a value of F* near 1 accords with a linear regression function; large values
of F* indicate that the regression function is not linear.

3. The terminology “error sum of squares” and “error mean square” is not precise when the
regression function under test in Hy is not the true function since the error sum of squares and error
mean square then reflect the effects of both the lack of fit and the variability of the error terms. We
continue to use the terminology for consistency and now use the term “pure error” to ideniify the
variability associated with the error term only.
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4. Suppose that prior to any analysis of the appropriaieness of the model, we had fitted a linear
regression model and wished to test whether or not g; = 0 for the bank example (Table 3.4b). Test
statistic (2.60) would be:

o MSR 5,413
~ MSE ~ 1,638.0

For o =.10, F(.90; 1, 9) =3.36, and we would conclude Hy, thai 8y =0 or that there is no linear
association between minimum deposit size (and value of gift) and number of new accounts. A conclu-
sion that there is no relation between these variables would be improper, however. Such an inference
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re-
gression function is not linear. This illusirates the importance of always examining the appropriateness
of a model before any inferences are drawn.

=3.14

5. The general linear test approach just explained can be used to iest the appropriateness of other
regression functions. Only the degrees of freedom for SSLF will need be modified. In general, ¢ — p
degrees of freedom are associated with SSLF, where p is the number of parameters in thegegression
function. For the test of a simple linear regression function, p = 2 because there are iwo parameters,
Bo and B, in the regression function.

6. The alternative H, in (3.19) includes all regression functions other than a linear one. For
instance, it includes a quadratic regression function or a logarithmic one. If H,, is concluded, a study
of residuals can be helpful in ideniifying an appropriate function.

7. When we conclude that the employed model in Hy is appropriate, the usual practice is to use
the error mean square MSE as an estimaior of o2 in preference io the pure error mean square MSPE,
since the former contains more degrees of freedom.

8. Observations at the same level of X are genuine repeats only if they involve independent irials
with respect to the error term. Suppose that in a regression analysis of ihe relation between hardness
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among
other things, random errors in the measurement of hardness by the analyst and effects of unconirolled
production factors, which vary at random from specimen to specimen and affect hardness. If the
analyst takes two readings on the hardness of a specimen, this will not provide a genuine replication
because the effects of random variation in the production factors are fixed in any given specimen.
For genuine replications, different specimens with the same carbon content (X) would have o be
measured by the analyst so that all the effects covered in the error term could vary at random from
one repeated observation to the next

9. When no replications are present in a data set, an approximaie tesi for lack of fit can be
conducted if there are some cases at adjacent X levels for which the mean responses are quite close o
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the ‘test for
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this and
related procedures for conducting a test for lack of fit when no replicates are present may be found in
Reference 3.8. L

H

3.8 Overview of Remedial Measures

If the simple linear regression model (2.1) is not appropriate for a data set, there are two
basic choices: - -

1. Abandon regression model (2.1) and develop and use a more appropriate model.
2. Employ some transformation on the data so that regression model (2.1) is appropriate
for the transformed data.
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Each approach has advantages and disadvantages. The first approach may entail a more
complex model that could yield better insights, but may also lead to more complex proce-
dures for estimating the parameters. Successful use of transformations, on the other hand,
leads to relatively simple methods of estimation and may involve fewer parameters than
a complex model, an advantage when the sample size is small. Yet transformations may
obscure the fundamental interconnections between the variables, though at other times they
may illuminate them.

We consider the use of transformations in this chapter and the use of more complex
models in later chapters. First, we provide a brief overview of remedial measures.

Nonlinearity of Regression Function ]
When the regression function is not linear, a direct approach is to moﬂ‘i% regression
model (2.1) by altering the nature of the regression function. For instance, a quadratic
regression function might be used:

E{Y} = Bo+ Bi X + B X*

or an exponential regression function:

E{Y} = BBy

In Chapter 7, we discuss polynomial regression functions, and in Part I1I we take up nonlinear
regression functions, such as an exponential regression function.

The transformation approach employs a transformation to linearize, at least approxi-
mately, a nonlinear regression function. We discuss the use of transformations to linearize
regression functions in Section 3.9.

When the nature of the regression function is not known, exploratory analysis that does
not require specifying a particular type of function is often useful. We discuss exploratory
regression analysis in Section 3.10.

Nonconstancy of Error Variance
When the error variance is not constant but varies in a systematic fashion, a direct approach
is to modify the model to allow for this and use the method of weighted least squares to
obtain the estimators of the parameters. We discuss the use of weighted least squares for
this purpose in Chapter 11.
Transformations can also be effective in stabilizing the variance. Some of these are
discussed in Section 3.9.

Nonindependence of Error Terms

When the error terms are correlated, a direct remedial measure is to work with a model that
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial
transformation that is often helpful is to work with first differences, a topic also discussed
in Chapter 12.

Nonnormality of Error Terms
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately,
itis often the case that the same transformation that helps stabilize the variance is also helpful
in approximately normalizing the error terms. Itis therefore desirable that the transformation
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for stabilizing the error variance be utilized first, and then the residuals studied to see if
serious departures from normality are still present. We discuss transformations to achieve
approximate normality in Section 3.9.

Omission of Important Predictor Variables

When residual analysis indicates that an important predictor variable has been omitted from
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss
multiple regression analysis in which two or more predictor variables are utilized.

Outlying Observations

When outlying observations are present, as in Figure 3.7a, use of the least squares and
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis-
tortions in the estimated regression function. When the outlying observations do not repre-
sent recording errors and should not be discarded, it may be desirable to use anestimation
procedure that places less emphasis on such outlying observations. We discuss one such
robust estimation procedure in Chapter 11.

3.9 Transformations

We now consider in more detail the use of transformations of one or both of the original
variables before carrying out the regression analysis. Simple transformations of either the
response variable Y or the predictor variable X, or of both, are often sufficient to make the
simple linear regression model appropriate for the transformed data.

Transformations for Nonlinear Relation Only

Example

We first consider transformations for linearizing a nonlinear regression relation when the
distribution of the error terms is reasonably close to a normal distribution and the error
terms have approximately constant variance. In this situation, transformations on X should
be attempted. The reason why transformations on ¥ may not be desirable here is that a
transformation on ¥, such as ¥’ = +/Y, may materially change the shape of the distribution
of the-error terms from the normal distribution and may also lead to substantially differing
error term variances.

Figure 3.13 contains some prototype nonlinear regression relations with constant error
variance and also presents some simple transformations on X that may be helpful to lin-
earize the regression relationship without affecting the distributions of Y. Several alternative
transformations may be tried. Scatter plots and residual plots based on each transformation
should then be prepared and analyzed to decide which transformation is most effective.

¥

Data from an experiment or the effect of number of days of training received (X) on
performance (¥) in a battery of simulated sales situations are presented in Table 3.7,
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in
Figure 3.14a. Clearly the regression relation appears to be-curvilinear, so the simple linear
regression model (2.1) does not seem, to be appropriate. Since the variability at the different
X levels appears to be fairly constant, we shall consider a transformation on X. Based on
the prototype plot in Figure 3.13a, we shall consider initially the-squate root transformation
X' = +/X. The transformed values are shown in column 3 of Table 3.7.
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FIGURE 3.13 Prototype Regression Pattern Transformations of X
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9 25 112.3 1.58114,

10 .25 125.7 1.58114

In Figure 3.14b, the same data are plotted with the predictor variable transformed to
X' = +/X. Note that the scatter plot now shows a reasonably linear relation. The variability
of the scatter at the different X levels is the same as before, since we did not make a

transformation on Y.

To examine further whether the simple linear regression model (2.1) is appropriate now,
we fit it to the transformed X data. The regression calculations with the transformed X data
are carried out in the usual fashion, except that the predictor variable now is X’. We obtain
the following fitted regression function:

¥ = —10.33 + 83.45X’

Figure 3.14c contains a plot of the residuals against X’. There is no evidence of lack of
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of
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Scatter Plots and Residual Plots—Sales Training Examnple.

(a) Scatter Plot

(I

30
0

6.6

2.2 r

—6.6F

-11.0

Days

(c) Residual Plot against VX

0.6

Performance

Residual

(b) Scatter Plot against VX
140
®
118
® ®
®
96 |-
®
741
®
521
i
30 i i ; | 3
0.6 0.8 1.0 1.2 1.4 1.6
X
(d) Normal Probability Plot
10
® @
5 L
e e
®
O i
o ©
-5} @
®
-10l® L IR 1 i
-10 -5 0 5 10 .
Expected

131

the residuals. No strong indications of substantial departures from normality are indicated
by this plot. This conclusion is supported by the high coefficient of correlation between the
ordered residuals and their expected values under hormality, .979. For « = .01, Table B.6
shows that the critical value is .879, so the observed coefficient is substantially larger
and supports the reasonableness of normal error terms. Thus, the simple linear regression
model (2.1) appears to be appropriate hére for the transformed data.

The fitted regression function in the original units of X can easily be obtained, if desired:

¥ = —10.33 + 83.45VX
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FIGURE 3.15
Prototype
Regression
Patterns with
Unequal Error
Variances and
Simple Trans-
formations

of Y.
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Note: A simultaneous transformation on X may also be helpful or necessary.

Comment

At times, it may be helpful to introduce a constant into the transformation. For example, if some of
the X data are near zero and the reciprocal transformation is desired, we can shift the origin by using
the transformation X’ = 1 /(X + k), where k is an appropriately chosen constant. n

Transformations for Nonnormality and Unequal Error Variances

Example

Unequal error variances and nonnormality of the error terms frequently appear together.
To remedy these departures from the simple linear regression model (2.1), we need a
transformation on Y, since the shapes and spreads of the diswributions of ¥ need to be
changed. Such a rransformation on Y may also at the same time help to linearize acurvilinear
regression relation. At other times, a simultaneous transformation on X may be needed io
obtain or mainiain a linear regression relation.

Frequently, the nonnormality and unequal variances departures from regression
model (2.1) take the form of increasing skewness and increasing variability of the distribu-
tions of the error terms as the mean response E{Y} increases. For example, in a regression
of yearly household expenditures for vacaiions (¥) on household income (X), there will
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation
expenditures) for high-income households than for low-income households, who tend to
consistently spend much less for vacations. Figure 3.15 contains some prototype regression
relations where the skewness and the error variance increase with the mean response E{Y}.
This figure also presents some simple transformations on Y thar may be helpful for these
cases. Several alternative iransformations on ¥ may be tried, as well as some simuitaneous
transformations on X. Scatter plots and residual plots should be prepared to determine the
most effective wansformation(s).

Data on age (X) and plasma level of a polyamine (Y) for a portion of the 25 healthy
children in a study are presented in columns 1 and 2 of Table 3.8. These data are ploited in
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well
as the greater variability for younger children than for older ones.
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(M 2 3
Child Age Plasma Level

i X; Y; Y,-' = |Og-|0 Yi

1 0 (newborn) 13.44 1.1284

2 0 (newborn) 12.84 1.1086

3 0 (newbom) 11.91 1.0759

4 0 (newborn) 20.09 1.3030

5 0 (newborn) 15.60 1.1931

6 1.0 10.11 1.0048

7 1.0 11.38 1.0561
19 3.0 6.90 .8388
20 3.0 6.77 .8306
21 4.0 4.86 6866
22 4.0 5.10 7076 b
23 4.0 5.67 7536
24 4.0 5.75 7597
25 4.0 6.23 .7945

On the basis of the prototype regression pattern in Figure 3.15b, we ghall first try the
logarithmic transformation ¥’ = log,, Y. The transformed ¥ values are shown in column 3
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the
transformation not only has led to a reasonably linear regression relation, but the variability
at the different levels of X also has become reasonably constant.

To further examine the reasonableness of the transformation Y’ = log,, Y, we fitted the
simple linear regression model (2.1) to the transformed Y data and obtained:

¥ =1.135 — .1023X

A plot of the residuals against X is shown in Figure 3.16¢, and a normal probability plot of
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered
residuals and their expected values under normality is .981. For o = .05, Table B.6 indicates
that the critical value is .959 so that the observed coefficient supports the assumption of
normality of the error terms. All of this evidence supports the appropriateness of regression
model (2.1) for the transformed Y data.

Comments i

1. At times it may be desirablé io introduce a constani inio a ransformation of ¥, such as when
Y may be negative. For instance, the logarithmic transformation to shift the origin in ¥ and make all
Y observations positive would be ¥’ = log;o(¥ + k), where k is an appropriately dhosen constant.

2. When unequal error variances are present but ihe regression relation is linear, a transformation
on Y may not be sufficient. While such a iransformation may stabilize the error variance, it will also
change the linear relationship to a curvilinear one. A transformation on X may therefore also be
required. This case can also be handled by using weighted least squares, a procedure explained in
Chapter 11. ) u
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FIGURE 3.16 Scatter Plots and Residual Plots—Plasma Levels Example.

(@) Scatter Plot (b) Scatter Plot with V' = log,o Y
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Box-Cox Transformations

It is often difficult to determine from diagnostic plots, such as the one in Figure 3.16a for
the plasma levels example, which transformation of ¥ is most appropriate for correcting
skewness of the distributions of error terms, unequal error variances, and nonlinearity of the
regression function. The Box-Cox procedure (Ref. 3.9) automatically identifies a transfor-
mation from the family of power transformations on Y. The family of power transformations
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is of the form:
Y =Y (3.33)

where A is a parameter to be determined from the data. Note that this family encompasses
the following simple transformations:

A=2 Y =Y?
A=.5 Y =Y
A=0 Y =log Y (by definition) (3.34)
1
A=—5 Y = —
VY
1
A=-10 Y ==
Y L

The normal error regression model with the response variable a member of the family of
power transformations in (3.33) becomes:

Y} =Po+BXi+& (3.35)

Note that regression model (3.35) includes an additional parameter, A, which needs to be
estimated. The Box-Cox procedure uses the method of maximum likelihood to estimate A,
as well as the other parameters fo, B, and o 2. In this way, the Box-Cox procedure identifies
2., the maximum likelihood estimate of A to use in the power transformation.

Since some statistical software packages do not automatically provide the Box-Cox max-
imum likelihood estimate 3. for the power transformation, a simple procedure for obtaining
). using standard regression software can be employed instead. This procedure involves a
numerical search in a range of potential A values; for example, A = —2, A = ~1.75, ...,
, = 1.75, A = 2. For each A value, the Yi’\ observations are first standardized so that the
magnitude of the error sum of squares does not depend on the value of A:

A
Wi:{Kl(Yi 1) A#0

.36
Ka(log, ¥;) 1=0 (3-36)

where:

[y

n 1/n
K, = (H Y) (3.36a)
i=1

1

BT

(3.36b)
Note that K is the geometric mean of the Y; obst;rvations.

Once the standardized observations W; have been obtained for a given A value, they are
regressed on the predictor variable X-and the error sum of squares SSE is obtained. It can be
shown that the maximum likelihood estjmate A is that value of A for which SSE is a minimum.

If desired, a finer search can be conducted in the neighborhood of the A value that
minimizes SSE. However, the Box-Cox procedure ordinarily is used only to provide a guide
for selecting a transformation, so overly precise results are not needed. In any case, scatter
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Example

TABLE 3.9
Box-Cox
Results—
Plasma Levels
Example.

FIGURE 3.17
SAS-JMP
Box-Cox
Results—
Plasma Levels
Example.

and residual plots should be uvtilized to examine the appropriateness of the transformation
identified by the Box-Cox procedure.

Table 3.9 contains the Box~Cox results for the plasma levels example. Selected values of 2,
ranging from —1.0 to 1.0, were chosen, and for each chosen A the transformation (3.36)
was made and the linear regression of W on X was fitted. For instance, for A = .5, the
transformation W; = K, (\/7 ; — 1) was made and the linear regression of W on X was fitted.
For this fitted linear regression, the error sum of squares is SSE = 48.4. The transformation
that leads to the smallest value of SSE corresponds to A = —.5, for which SSE = 30.6.

Figure 3.17 contains the SAS-JMP Box-Cox results for this example. It consists of a
plot of SSE as a function of A. From the plot, it is clear that a power value near A = —.50
is indicated. However, SSE as a function of A is fairly stable in the rangesffom near 0 to
—1.0, so the earlier choice of the logarithmic transformation Y’ = log,, Y for the plasma
levels example, corresponding to A = 0, is not unreasonable according to the Box-Cox
approach. One reason the logarithmic transformation was chosen here is because of the
ease of interpreting it. The use of logarithms to base 10xather than natural logarithms does
not, of course, affect the appropriateness of the logarithmic transformation.

Comments

1. Atiimes, theoretical or a priori considerations can be uiilized to help in choosing an appropriate
transformation. For example, when the shape of the scatter in a study of the relation between price of a
commodity (X) and quantity demanded (Y') is that in Figure 3.15b, economists may prefer logarithmic
wransformations of both ¥ and X because the slope of the regression line for the transformed variables
then measures the price €elasticity of demand. The slope is then commonly interpreted as showing the
percent change in quantity demanded per 1 percent change in price, where it is understood that the
changes are in opposite directions.

A -SSE A
1.0 78.0 =l
7 57.8 =4
.5 48.4. ~5
3 41.4 =6
A 364 —7
0 '34.5 -9
-10

60
40 \

20

SSE
T

0 1 | 1 I } TR
-1.5-10-05 0 5 1.0 15 20

A
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Similarly, scientists may prefer logarithmic transformations of both ¥ and X when studying the
relation between radioactive decay (Y) of a substance and time (X) for a curvilinear relation of the
type illusirated in Figure 3.15b because the slope of the regression line for the iransformed variables
then measures the decay rate.

2. Aftera ransformation has been tentatively selected, residual plots and other analyses described
earlier need to be employed to ascertain thai the simple linear regression model (2.1) is appropriaie
for the wransformed data.

3. When wansformed models are employed, the estimators by and by obtained by least squares
have the least squares properties with respect to the transformed observations, not the original ones.

4. The maximum likelihood estimate of A with the Box-Cox procedure is subject io sampling
variability. In addition, the error sum of squares SSE is ofien fairly stable in a neighborhood around the
estimate. It is therefore ofien reasonable to use a nearby A value for which the power transformation
is easy to understand. For example, use of A = 0 instead of the maximum likelihood estimate
X = .13 or use of A = —.5 instead of A = —.79 may facilitate understanding without sacrificing
much in terms of the effectiveness of the transformation. To determine the reasonablengss of using
an easier-to-understand value of A, one should examine the flainess of the likelihood function in
the neighborhood of A, as we did in the plasma levels example. Alternatively, one may consiruct an
approximate confidence interval for A; the procedure for constructing such an interval is discussed in
Reference 3.10.

5. When the Box-Cox procedure leads 1o a A value near 1, no iransformation of ¥ may be needed.
]

3.10 Exploration of Shape of Regression Function

Scatter plots often indicate readily the nature of the regression function. For instance,
Figure 1.3 clearly shows the curvilinear nature of the regression relationship between steroid
level and age. At other times, however, the scatter plot is complex and it becomes difficult to
see the nature of the regression relationship, if any, from the plot. In these cases, it is helpful
to explore the nature of the regression relationship by fitting a smoothed curve without any
constraints on the regression function. These smoothed curves are also called nonparametric
regression curves. They are useful not only for exploring regression relationships but also
for confirming the nature of the regression function when the scatter plot visually suggests
the nature of the regression relationship.

Many smoothing methods have been developed for obtaining smoothed curves for time
series data, where the X; denote time periods that are equally spaced apart. The method of
moving averages uses the mean of the Y observations for adjacent time periods to obtain
smoothed values. For example, the mean of the ¥ values for the first three time periods
in the time series might constitute the, first smoothed value corresponding to the middle
of the three time periods, in qther words, corresponding to time period 2. Then the mean
of the Y values for the second, third, and fourth time periods would constitute the second
smoothed value, corresponding to the middle of these three time periods, in other words,
corresponding to time period 3, and so on. Special procedures are required for obtaining
smoothed values at the two ends of the time series. The larger the successive neighborhoods
used for obtaining the smoothed values, the smoother the curve will be.

The method of running medians is similar to the method of moving averages, except
that the median is used as the average measure in order to reduce the influence of outlying
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observations. With this method, as well as with the moving average method, successive
smoothing of the smoothed values and other refinements may be undertaken to provide a
suitable smoothed curve for the time series. Reference 3.11 provides a good introduction
to the running median smoothing method.

Many smoothing methods have also been developed for regression data when the X
values are not equally spaced apart. A simple smoothing method, band regression, divides
the data set into a number of groups or “bands” consisting of adjacent cases according to
their X levels. For each band, the median X value and the median Y value are calculated,
and the points defined by the pairs of these median values are then connected by straight
lines. For example, consider the following simple data set divided into three groups:

e
Median Median

X Y X Y

2.0 13.1
2.7 144

3.4 15.7
3.7 14.9
4.5 16.8 4.5 16.8
5.0 17.1
5.2 16.9 555 17.35
59 17.8 ) ’

The three pairs of medians are then plotted on the scatter plot of the data and connected by
straight lines as a simple smoothed nonparametric regression curve.

Lowess Method

The lowess method, developed by Cleveland (Ref. 3.12), is a more refined nonparametric
method than band regression. It obtains a smoothed curve by fitting successive linear re-
gression functions in local neighborhoods. The name lowess stands for locally weighted
regression scaiter plot smoothing. The method is similar to the moving average and running
median methods in that it uses a neighborhood around each X value to obtain a smoothed
Y value corresponding to that X value. It obtains the smoothed ¥ value at a given X by
fitting a linear regression to the data in the neighborhood of the X value and then using the
fitted value at X as the smoothed value. To illustrate this concretely, let (X, ¥;,) denote the
sample case with the smallest X value, (X5, ;) denote the sample case with the second
smallest X value, and so on. If neighborhoods of three X values are used with the lowess
method, then a linear regression would be fitted to the data:

X, ) (X2, 12) (X3,Y3)

The fitted value at X, would constitute the smoothed value corresponding to X,. Another
linear regression would be fitted to the data:

(X2, Y2) (X3,Y3) (Xa, Ya)
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and the fitted value at X3 would constitute the smoothed value corresponding to Xs.
Smoothed values at each end of the X range are also obtained by the lowess procedure.

The lowess method uses a number of refinements in obtaining the final smoothed values
to improve the smoothing and to make the procedure robust to outlying observations.

1. The linear regression is weighted to give cases further from the middle X level in each
neighborhood smaller weights.

2. To make the procedure robust to outlying observations, the linear regression fitting is
repeated, with the weights revised so that cases that had large residuals in the first fitting
receive smaller weights in the second fitting.

3. To improve the robustness of the procedure further, step 2 is repeated one or more
times by revising the weights according to the size of the residuals in the latest fitting.

To implement the lowess procedure, one must choose the size of the successive neigh-
borhoods to be used when fitting each linear regression. One must also choose the ’Weight
function that gives less weight to neighborhood cases with X values far from each center
X level and another weight function that gives less weight to cases with large residuals.
Finally, the number of iterations to make the procedure robust must be chosen.

In practice, two iterations appear to be sufficient to provide robustness. Also, the weight
functions suggested by Cleveland appear to be adequate for many circumstances. Hence,
the primary choice to be made for a particular application is the size of the successive
neighborhoods. The larger the size, the smoother the function but the greater the danger
that the smoothing will lose essential features of the regression relationship. It may require
some experimentation with different neighborhood sizes in order to find the size that best
brings out the regression relationship. We explain the lowess method in detail in Chapter 11
in the context of multiple regression. Specific choices of weight functions and neighborhood
sizes are discussed there.

Figure 3.18a contains a scatter plot based on a study of research quality at 24 research
laboratories. The response variable is a measure of the quality of the research done at the
laboratory, and the explanatory variable is a measure of the volume of research performed
at the labgratory. Note that it is very difficult to tell from this scatter plot whether or not a
relationship exists between research quality and quantity. Figure 3.18b repeats the scatter
plot and also shows the lowess smoothed curve. The curve suggests that there might be
somewhat higher research quality for medium-sized laboratories. However, the scatter is
great so that this suggested relationship should be considered only as a possibility. Also,
because any particular measures of research quality and quantity are so limited, other
measures should be considered to see if these corroborate the relationship suggested in
Figure 3.18b. :

-

Use of Smoothed Curves to Confirm Fitted Regression Function

Smoothed curves are useful not only in the exploratory stages,when a regression model is
selected but they are also helpful in confirming the regression function chosen. The proce-
dure for confirmation is simple: The smoothed curve is plotted together with the confidence
band for the fitted regression function. If the smoothed curve falls within the confidence
band, we have supporting evidence of the appropriateness of the fitted regression function.
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FIGURE 3.18
MINITAB
Scatter Plot
and Lowess
Smoothed
Curve—
Research
Laboratories
Example.

FIGURE 3.19
MINITAB
Lowess Curve
and Confidence
Band for
Regression
Line—Toluca
Company
Example.

Example
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Figure 3.19a repeats the scatter plot for the Toluca Company example from Figure 1.10a
and shows the lowess smoothed curve. It appears that the regression relation is linear or
possibly slightly curved. Figure 3.19b repeats the confidence band for the regression line
from Figure 2.6 and shows the lowess smoothed curve. We see that the smoothed curve falls
within the confidence band for the regression line and thereby supports the appropriateness
of a linear regression function.

Comments
1. Smoothed curves, such as the lowess curve, do not provide an analytical expression for the
funciional form of the regression relationship. They only suggesi the shape of the regression curve.
2. Thelowess procedure is notrestricted to fitting linearregression functions in each neighborhood.
Higher-degree polynomiials can also be utilized with this method.
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3. Smoothed curves are also useful when examining residual plots to ascertain whether the resid-
vals (or the absolute or squared residuals) follow some relationship with X or Y.

4. References 3.13 and 3.14 provide good introductions to other nonparameiric methods in re-
gression analysis. o

3.11 Case Example—Plutonium Measurement

TABLE 3.10
Basic Data—
Plutonium
Measurement
Example.

Some environmental cleanup work requires that nuclear materials, such as plutonium 238,
be located and completely removed from a restoration site. When plutonium has become
mixed with other materials in very small amounts, detecting its presence can be a difficult
task. Even very small amounts can be traced, however, because plutonium emits subatomic
particles—alpha particles—that can be detected. Devices that are used to detect plutonium
record the intensity of alpha particle strikes in counts per second (#/sec). The regression rela-
tionship between alpha counts per second (the response variable) and plutonium actikity (the
explanatory variable) is then used to estimate the activity of plutonium in the material under
study. This use of a regression relationship involves inverse prediction [i.e., predicting plu-
tonium activity (X) from the observed alpha count (Y)], a procedure discussed in Chapter 4.

The task here is to estimate the regression relationship between alpha counts per second
and plutonium activity. This relationship varies for each measurement device and must be
established precisely each time a different measurement device is used. It is reasonable to
assume here that the level of alpha counts increases with plutonium activity, but the exact
nature of the relationship is generally unknown.

In a study to establish the regression relationship for a particular measurement device,
four plutonium standards were used. These standards are aluminum/plutonium rods con-
taining a fixed, known level of plutonium activity. The levels of plutonium activity in the
four standards were 0.0, 5.0, 10.0, and 20.0 picocuries per gram (pCi/g). Each standard was
exposed to the detection device from 4 to 10 times, and the rate of alpha strikes, measured
as counts per second, was observed for each replication. A portion of the data is shown
in Table 3.10, and the data are plotted as a scatter plot in Figure 3.20a. Notice that, as
expected, the strike rate tends to increase with the activity level of plutonium. Notice also
that nonzero strike rates are recorded for the standard containing no plutonium. This results
from background radiation and indicates that a regression model with an intercept term is
required here.

Plutonium - Alpha Count
Case Activity Rate
(pCi/g) .  (#/seb)
1 20 Ta50
2 0 004 ’
3. 10 069
22 0 002
23 5 049
24 o .106
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FIGURE 3.20
SAS-JMP
Scatter Plot
and Lowess
Smoothed
Curve—
Plutonium
Measurement
Example.
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As an initial step to examine the nature of the regression relationship, a lowess smoothed
curve was obtained; this curve is shown in Figute 3.20b. We see that the regression rela-
tionship may be linear or slightly curvilinear in the range of the plutonium activity levels
included in the study. We also see that one of the readings taken at 0.0 pCi/g (case 24) does not
appear to fit with the rest of the observations. An examination of laboratory records revealed
that the experimental conditions were not properly maintained for the last case, and it was
therefore decided that case 24 should be discarded. Note, incidentally, how robust the lowess
smoothing process was here by assigning very little weight to the outlying observation.

A linear regression function was fitted next, based on the remaining 23 cases. The SAS-
JMP regression output is shown in Figure 3.21a, a plot of the residuals against the fitted
values is shown in Figure 3.21b, and a normal probability plot is shown in Figure 3.21c.
The JMP output uses the label Model to denote the regression component of the analysis
of variance; the label C Total stands for corrected total. We see from the regression output
that the slope of the regression line is not zero (F* = 228.9984, P-value = .0000) so thata
regression relationship exists. We also see from the flared, megaphone shape of the residual
plot that the error variance appears to be increasing with the level of plutonium activity.
The normal probability plot suggests nonnormality (heavy tails), but the nonlinearity of the
plot is likely to be related (at least in part) to the unequal error variances. The existence of
nonconstant variance is confirmed by the Breusch-Pagan test statistic (3.11):

X2, =23.29 > x2(.95;1) = 3.84

The presence of nonconstant variance clearly requires remediation. A number of ap-
proaches could be followed, including the use of weighted least squares discussed in Chap-
ter 11. Often with count data, the error variance can be stabilized through the use of a
square root transformation of the response variable. Since this is just one in a range of
power transformations that might be useful, we shall use the Box-Cox procedure to suggest
an appropriate power transformation. Using the standardized variable (3.36), we find the
maximum likelihood estimate of A to be A = .65. Because the likelihood function is fairly
flat in the neighborhood of A = .65, the Box-Cox procedure supports the use of the square
root transformation (i.e., use of A = .5). The results of fitting a linear regression function
when the response variable is ¥’ = /Y are shown in Figure 3.22a.
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FIGURE 3.21 SAS-JMP Regression Output and Diagnostic Plots for Untransformed Data—Plutonjum
Measurement Example.
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(a) Regression Output

Term Estimate std Error t Ratio  Prob>t]
Intercept 0.0070331 0.0036 1.95 0.0641
Plutonium 0.005537 0.00037 15.13 0.0000
Source DF  Sum of Squares  Mean Square F Ratio
Model 1 0.03619042 0.036190  228.9984
Error 21 0.00331880 0.000158 Prob>F
C Total 22 0.03950922 0.0000
Source DF  Sum of Squares  Mean Square F Ratio
Lack of Fit 2 0.00016811 0.000084 0.5069
Pure Error 19 0.00315069 0.000166 Prob>F
Total Error 21 0.00331880 0.6103 L
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At this point a new problem has arisen. Although the residual plot in Figure 3.22b shows
that the error variance appears to be more stable and the points in the normal probability
plot in Figure 3.22¢ fall roughly on a straight line, the residual plot now suggests that ¥’
is nonlinearly related to X. This concern is confirmed by the lack of fit test statistic (3.25)
(F* = 10.1364, P-value = .0010). Of course, this result is not completely unexpected,
since Y was linearly related to. X.

To restore a linear relation with the transformed Y variable, we shall see if a square root
transformation of X will lead to a satisfactory linear fit. The regression results when re-
gressing ¥’ = /Y on X’ = +/X are presented in Figure 3.23. Notice from the residual plot
in Figure 3.23b that the square root transformation of the predictor variable has eliminated
the lack of fit. Also, the normal probability plot of the residuals in Figure 3.23¢ appears
to be satisfactory, and the correlation test (r = .986) supports the assumption of normally
distributed error terms (the interpolated critical value in Table B.6 for « = .05 and n = 23
is .9555). However, the residual plot suggests that some nonconstancy of the error variance
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FIGURE 3.22
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SAS-JMP Regression Output and Diagnostic Plots for Transformed Response
Variable—Plutonium Measurement Example.

(a) Regression Output

Term Estimate std Error tRatio  Prob>|t|
Intercept 0.0947596 0.00957 9.91 0.0000
Plutonium  0.0133648 0.00097 13.74 0.0000
Source DF Sum of Squares Mean Square F Ratio
Model 1 0.21084655 0.210847 188.7960
Error 21 0.02345271 0.001117 Prob>F
C Total 22 0.23429926 0.0000
Source DF Sum of Squares Mean Square F Ratio T
Lack of Fit 2 0.01210640 0.006053 10.1364
Pure Error 19 0.01134631 0.000597 Prob>F
Total Error 21 0.02345271 0.0010
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may still remain; but if so, it does not appear to be substantial. The Breusch-Pagan test statis-

tic (3.11) is X2, = 3.85, which corresponds to a P-value of .05, supporting the conclusion

from the residual plot that the nonconstancy of the error variance is not substantial.
Figure 3.23d contains a SYSTAT plot of the confidence band (2.40) for the fitted regres-

sion line:

" = 0730 + .0573X’

We see that the regression line has been estimated fairly precisely. Also plotted in this figure
is the lowess smoothed curve. This smoothed curve falls entirely within the confidence band,
supporting the reasonableness of a linear regression relation between Y’ and X’. The lack of
fit test statistic (3.25) now is F* = 1.2868 (P-value = .2992), also supporting the linearity
of the regression relating ¥’ = /Y to X’ = v/ X.
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Variables—Plutonium Measurement Example.
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Problems

3.1.

3.2.

3.3.

Distinguish between (1) residual and semistudentized residual, (2) Ef¢g;) =0 and € =0,

(3) error term and residual.

Prepare a prototype residual plot for each of the following cases: (1) error variance decreases

with X; (2) true regression function is U shaped, but a linear regression function is fitted.

Refer o Grade point average Problem 1.19.

a. Prepare a box plot for the ACT scores X;, Are there any noteworthy features in this plot?

b. Prepare a dot plot of the residuals. What information does this plot provide?

c. Plot the residual ¢; against ihe fitied values ¥;. What departures from regression model (2.1)
can be swudied from this plot? What are your findings?

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlaiion
between the ordered residuals and their expected values under normality Test the reason-
ableness of the normality assumption here usmg Table B.6 and ¢ = .05. What do you
conclude?

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with
the level of X . Divide the data into the two groups, X < 26, X > 26, and use « = .01. State
the decision rule and conclusion. Does your conclusion support your preliminary findings
inpart (c)?
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Information is given below for each student on two variables not included in the model,
namely, intelligence test score (X5) and high school class rank percentile (X3). (Note that
larger class rank percentiles indicate higher standing in the class, €.g., 1% is near the bottom
of the class and 99% is near the top of the class.) Plot the residuals against X, and X5 on
separate graphs to ascertain whether the model can be improved by including either of these
variables. What do you conclude?

i 1 2 3 ... 118 119 120
X 122 132 119 ... 140 111 110
X2 99 7N 75 ... 97 65 85

*3 4. Refer to Copier maintenance Problem 1.20.

*3.5.

a.

b.

[¢]

o]

h.

Prepare a dot plot for the number of copiers serviced X;. What information is provided by
this plot? Are there any outlying cases with respect to this variable? —
The cases are given in time order. Prepare a time plot for the number of copiers serviced.
‘What does your plot show?

Prepare a stem-and-leaf plot of ithe residuals. Are there any noteworthy features in this plot?
Prepare residual plois of ¢; versus ; and ¢; versus X; on separaie graphs. Do these plots
provide the same informaiion? What departures from regression model (2.1) can be studied
from these plois? State your findings.

. Prepare a normal probability plot of ihe residuals. Also obtain the coefficient of correlation

beiween the ordered residuals and their expecied values under normality. Does the normality

assummption appear to be ienable here? Use Table B.6 and o = .10.

Prepare a time plot of the residuals to ascertain whether the error terms are correlated over

time. What is your conclusion?

Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether

or not the error variance varies with the level of X. Use o = .05. State the alternatives,

decision rule, and conclusion.

Information is given below on two variables not included in the regression model, namely,

mean operational age of copiers serviced on the call (X,, in monihs) and years of experience

of the service person making the call (X3). Plot the residuals against X7 and X3 on separate
" graphs to ascertain whether the model can be improved by including either or both of these

variables. Whai do you conclude?

i 1 2 3 143 44 45
X2 20 19 27 28 26 33
X3: 4 5 4 3 3 6

H

Refer to Airfreight break;ge Problem 1.21.

a.

Prepare a dot plot for the number of ransfers X;. Does the distribution of number of iransfers
appear to be asymmetrical?

b. The cases are given in iime order. Prepare a time plot for the number of wansfers. Is any

systematic pattern evident in your plot? Discuss.

. Obtain the residuals ¢; and prepare a siem-and-leaf plot of the residuals. What information

is provided by your ploi?
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d.

Plot the residuals e; against X; to ascertain whether any departures from regression
model (2.1) are evident. What is your conclusion?

Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation
between the ordered residuals and their expected values under normality to ascertain whether
the normality assumption is reasonable here. Use Table B.6 and « = .01. What do you
conclude?

f. Prepare a time plot of the residuals. What information is provided by your plot?

Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether
or not the error variance varies with the level of X. Use o = .10. State the alternatives,
decision rule, and conclusion. Does your conclusion support your preliminary findings in
part (d)?

3.6. Refer to Plastic hardness Problem 1.22. S

a.

b.

Obtain the residuals ¢; and prepare a box plot of the residuals. What information is provided
by your plot?

Plot the residuals ¢; against the fitted values ¥; to ascertain whether any departures from
regression model (2.1) are evident. State your findings.

Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation
between the ordered residuals and their expected values under normality. Does the normality
assumption appear to be reasonable here? Use Table B.6 and o = .05.

Compare the frequencies of the residuals against the expected frequencies under normality,
using the 25th, 50th, and 75th percentiles of the relevant ¢ distribution. Is the information
provided by these comparisons consistent with the findings from the normal probability plot
in part (c)?

Use the Brown-Forsythe test to determine whether or not the exror variance varies with the
level of X. Divide the data into the two groups, X < 24, X > 24, and use o = .05. State
the decision rule and conclusion. Does your conclusion support your preliminary findings
in part (b)?

*3.7. Refer to Muscle mass Problem 1.27.

7

a.

b.

Prepare a stem-and-leaf plot for the ages X;. I's this plot consistent with the random selection
of women from each 10-year age group? Explain.

Obtain the residuals e; and prepare a dot plot of the residuals. What does your plot show?

c. Plot the residuals ¢; against ¥; and also against X; on separate graphs to ascertain whether

any departures from regression model (2.1) are evident. Do the two plots provide the same
information? State your conclusions.

Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation
between the ordered residuals and their expected values under normality to ascertain whether
the normality assumptionis tenable here. Use Table B.6 and & = .10. What do you conclude?
Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether
or not the error variance varies with the level of X. Use ¢ = .01. State the alternatives,
decision rule, and conclusion. Is your conclusion consistent with your preliminary findings
in part (c)?

3.8. Refer to Crime rate Problem 1.28.

a.

b.

Prepare a stem-and-leaf plot for the percentage of individuals in the county having at least
a high school diploma X;. What information does your plot provide?

Obtain the residuals ¢; and prepare a box plot of the residuals. Does the distribution of the
residuals appear to be symmetrical?
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3.12.
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c. Make a residual plot of ¢; versus ¥;. What does the plot show?

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation
between the ordered residuals and their expected values under normality. Test the reason-
ableness of the normality assumption using Table B.6 and o = .05. What do you conclude?

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with
the level of X. Divide the data into the two groups, X < 69, X > 69, and use o = .05, State
the decision rule and conclusion. Does your conclusion support your preliminary findings
in part (c)?

Electricity consumption. An economist studying the relation between household €lectricity

consumption (Y) and number of rooms in the home (X) employed linear regression model (2.1)

and obtained the following residuals:

it 1 2 3 4 5 6 7 8 9 10
X 2 3 4 5 6 7 8 9 10 1
6 32 29 -1.7 -20 -23 -12 -9 8 .7 5

Plot the residuals e; against X;. What problem appears to be present here? Might a transforma-
tion alleviate this problem?

Per capita earnings. A sociologist employed linear regression model (2.1) to relate per capita
earnings (Y) to average number of years of schooling (X) for 12 cities. The fitted values ¥; and
the semistudentized residuals e} follow.

i 1 2 3 10 11 12
¥;: 9.9 9.3 10.2 15.6 11.2 131
e: -1.12 .81 —.76 —3.78 74 .32

a. Plot the semistudentized residuals against the fitted values. What does the plot suggest?

b. How many semistudentized residuals are outside +1 standard deviation? Approximately
how many would you expect to see if the normal error model is appropriate?

Drug concentration. A pharmacologist employed linear regression model (2.1) to study the

relation between the concentration of a drug in plasma (¥) and the log-dose of the drug (X).

The residuals and log-dose levels follow.

i 1 2 3 4 5 6 7 8 9
Xi: -1 0 1 -1 0 1 -1 0 1
€: 5 21 —-3.4 3 -1.7 4.2 —.6 2.6 —4.0

H

a. Plot the residuals ¢; against X;. What conclusions do you draw from the plot?

b. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether
or not the error variance varies with log-dose of the drug (X). Use a = .05. State the
alternatives, decision rule, and conclusion. Does your conclusion support your preliminary
findings in part (a)? :

A student does not understand why the sum of squares defined in (3.16) is called a pure error

sum of squares “since the formula looks like one for an ordinary sum of squares.” Explain.
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*3.13.

3.14.

3.15.

3.16.

*3.17.

Refer to Copier maintenance Problem 1.20.

a. What are the alternative conclusions when testing for lack of fit of a linear regression
function?

b. Perform the test indicated in part (2). Control the risk of Type I error at .05. State the decision
rule and conclusion.

c. Does the test in part (b) detect other departures from regression model (2.1), such as lack
of constant variance or lack of normality in the error terms? Could the results of the test of
lack of fit be affected by such departures? Discuss.

Refer to Plastic hardness Problem 1.22.

a. Perform the F test 1o determine whether or not there is lack of fit of a linear regression
function; use & = .01. State the alternatives, decision rule, and conclusion. -

b. Is there any advantage of having an equal number of replications at each ofthe X levels? Is
there any disadvantage?

c. Does the test in part (a) indicate what regression function is appropriate when it leads to the
conclusion that the regression function is not linear? How would you proceed?

Solution concentration. A chemist studied the concentrafion of a solution (¥') over time (X).

Fifteen identical solutions were prepared. The 15 solutions were randomly divided into five

sets of three, and the five sets were measured, respectively, after 1, 3, 5, 7, and 9 hours. The

results follow.

it 1 2 3 .13 14 15
X 9 9 9 U 1 1
Ve 07 .09 08 .. 284 257 3.10

a. Fit a linear regression function.

b. Perform the F test to determine whether or not there is lack of fit of a linear regression
function; use o = .025. State the alternatives, decision rule, and conclusion.

c. Does the test in part (b) indicate what regression function is appropriate when it leads to the
conclusion that lack of fit of a linear regression function exists? Explain.

Refer to Solution concentration Problem 3.15.

a. Preparea scatter plot of the data. What transformation of Y might you try, using the prototype
patterns in Figure 3.15 to achieve constant variance and linearity?

b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power
transformation. Evaluate SSE for A = —.2,—.1,0,.1,.2. What transformation of Y is
suggested?

c. Use the transformation Y’ = log;, ¥ and obtain the estimated linear regression function for
the transformed data.

d. Plot the estimated regression line and the transformed data. Does the regression line appear
to be a good fit to the transformed data?

e. Obtainthe residuals and plot them against the fitted values. Also prepare a normal probability
plot. What do your plots show?

f. Express the estimated regression function in the original units,

Sales growth. A marketing researcher studied annual sales of a product that had been introduced

10 years ago. The data are as follows, where X is the year (coded) and Y is sales in thousands



3.18.

Chapter 3  Diagnostics and Remedial Measures 151

of units:
i 1 2 3 4 5 6 7 8 9 10
X;: 0 1 2 3 4 5 6 7 8 9

Y 928 135 162 178 221 232 283 300 374 395

a. Prepare a scatter plot of the data. Does a linear relation appear adequate here?

b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power transfor-
mation of Y. Evaluate SSE for A = .3, 4, .5, .6, .7. What transformation of ¥ is suggested?

c. Use the transformation ¥’ = +/Y and obtain the estimated linear regression function for the
transformed data.

d. Plot the estimated regression line and the transformed data. Does the regression line appear
to be a good fit to the transformed data?

e. Obtain the residuals and plot them against the fitted values. Also prepare a normal probability
plot. What do your plots show?

f. Express the estimated regression function in the original units.

Production time. In a manufacturing study, the production times for 111 recent production
runs were obtained. The table below lists for each run the production time in hours (Y’) and the
production lot size (X).

It 1 2 3 109 110 111

Xi: 15 9 7 12 9 15
Yi: 14.28 8.80 12.49 - 16.37 1145 15.78

a. Prepare a scatter plot of the data. Does a linear relation appear adequate here? Would a
transformation on X or Y be more appropriate here? Why?
b. Use the transformation X’ = +/X and obtain the estimated linear regression function for the
transformed data.
c. Plot the estimated regression line and the transformed data. Does the regression line appear
to be a good fit to the transformed data?
. "Obtain the residuals and plot them against the fitted values. Also prepare a normal probability
plot. What do your plots show?

(=N

e. Express the estimated regression function in the original units.

Exercises

3.19.

3.20.

3.21.
3.22.

A student fitted a linear regression function for a class assignment. The student ploited ‘the
residuals e; agamst Y; and found a positive relation. When the residuals were plotted against
the fitted values ¥;, the student found no relation. How could this difference arise? Which is
the more meaningful plot?

If the error terms in a regression model are independent N (0, %), what can be said about the
error terms after transformation X’ = 1/ X isused? Is the situation the same after transformation
Y' = 1/Y is used? ’ -

Derive the result in (3.29). .

Using (A.70), (A.41), and (A.42), show that E{MSPE} = ¢? for normal error regression
model (2.1).
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3.23.

A linear regression model with intercept fo = O is under consideration. Data have been
obtained that contain replications. State the full and reduced models for testing the appro-
priateness of the regression function under consideration. What are the degrees of freedom
associated with the full and reduced models if n = 20 and ¢ = 10?

Projects

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

Blood pressure. The following data were obtained in a study of the relation between diastolic
blood pressure (Y) and age (X) for boys 5 to 13 years old.

it 1 2 3 4 5 6 7 8

Xi: 5 8 11 7 13 12 12 6 o
o

Yi: 63 67 74 64 75 69 920 60

a. Assuming normal error regression model (2.1) is appropriate, obtain the estimated regression
function and plot the residuals e; against X;. What does your s residual plot show?

b. Omit case 7 from the data and obtain the estimated regression function based on the remaining
seven cases. Compare this estimated regression function to that obtained in part (a). What
can you conclude about the effect of case 7?

c. Using your fitted regression function in part (b), obtain a 99 percent prediction interval for
a new Y observation at X = 12. Does observation ¥; fall outside this prediction interval?
What is the significance of this?

Refer io the CDI data set in Appendix C.2 and Project 1.43. Foreach of the three fitted regression
models, obtain the residuals and prepare a residual plot against X and a normal probability plot.
Summarize your conclusions. Is linear regression model (2.1) more appropriate in one case than
in the others?

Refer to the CDI data set in Appendix C.2 and Project 1.44. For each geographic region, obtain
the residuals and prepare a residual plot against X and a normal probability plot. Do the four
regions appear to have similar error variances? What other conclusions do you draw from your
plots?

Refer to the SENIC data set in Appendix C.1 and Project 1.45.

a. For each of the three fitted regression models, obtain the residuals and prepare a residual plot
against X and a normal probability plot. Summarize your conclusions. Is linear regression
model (2.1) more apt in one case than in the others?

b. Obtain the fitted regression function for the relation between length of stay and infection
risk after deleting cases 47 (X47 = 6.5, Y47 = 19.56) and 112 (X412 = 5.9, Yo = 17.94).
From this fitted regression function obtain separate 95 percent prediction intervals for new
Y observations at X = 6.5 and X = 5.9, respectively. Do observations Yy; and Y, fall
outside these prediction intervals? Discuss the significance of this.

Refer to the SENIC data set in Appendix C.1 and Project 1.46. For each geographic region,

obtain the residuals and prepare a residual plot against X and a normal probability plot. Do the

four regions appear to have similar error variances? What other conclusions do you draw from
your plots?

Refer to Copier maintenance Problem 1.20.

a. Divide the data into four bands according to the number of copiers serviced (X). Band 1
ranges from X = .5 to X = 2.5; band 2 ranges from X = 2.5 to X = 4.5; and so forth.
Determine the median value of X and the median value of Y in each of the bands and develop
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the band smooth by connecting the four pairs of medians by straight lines on a scatter plot
of the data. Does the band smooth suggest that the regression relation is linear? Discuss.

b. Obtain the 90 percent confidence band for the true regression line and plot it on the scatter
plot prepared in part (a). Does the band smooth fall entirely inside the confidence band?
What does this tell you about the appropriateness of the linear regression function?

c. Create a series of six overlapping neighborhoods of width 3.0 beginning at X =.5. The
first neighborhood will range from X = .5 to X = 3.5; the second neighborhood will range
from X = 1.5 to X = 4.5; and so on. For each of the six overlapping neighborhoods, fita
linear regression function and obtain the fitted value ¥, at the center X, of the nei ghborhood.
Develop a simplified version of the lowess smooth by connecting the six (X, ¥.) pairs by
straight lines on a scatter plot of the data. In what ways does your simplified lowess smooth
differ from the band smooth obtained in part (a)?

Refer to Sales growth Problem 3.17.

a. Divide the range of the predictor variable (coded years) into five bands of width 2.0, as
follows: Band 1 ranges from X = —.5to X = 1.5; band 2 ranges from X = 1.5to X =8.5;
and so on. Determine the median value of X and the median value of Y in each band and
develop the band smooth by connecting the five pairs of medians by straight lines on a
scatter plot of the data. Does the band smooth suggest that the regression relation is linear?
Discuss.

b. Create a series of seven overlapping neighborhoods of width 3.0 beginning at X = —.5. The
first neighborhood will range from X = —.5to X = 2.5; the second neighborhood will range
from X = .5 to X = 3.5; and so on. For each of the seven overlapping neighborhoods, fita
linear regression function and obtain the fitted value ¥, at the center X, of the neighborhood.
Develop a simplified version of the lowess smooth by connecting the seven (X, ¥;) pairs
by straight lines on a scatter plot of the data.

c. Obtain the 95 percent confidence band for the true regression line and plot it on the plot
prepared in part (b). Does the simplified lowess smooth fall entirely within the confidence
band for the regression line? What does this tell you about the appropriateness of the linear
regression function?

Case
Studies

331.

3.32.

Refer to the Real estate sales data set in Appendix C.7. Obtain a random sample of 200 cases
from the 522 cases in this data set. Using the random sample, build a regression model to
predict sales price (Y) as a function of finished square feet (X). The analysis should include an
assessment of the degree to which the key regression assumptions are satisfied. If the regression
assumptions are not met, include and justify appropriate remedial measures. Use the final modé€l
to predict sales price for two houses that are about to come on the market: the first has X = 1100
finished square feet and the second has X = 4900 finished square feet. Assess the strengths
and weaknesses of the final model.

Refer to the Prostate cancer data set in Appgndix C.5. Build aregression model to predict PSA
level (Y) as a function of cancer yolume (X). The analysis should include an assessment of
the degree to which the key regression assumptions are satisfied. If the regression assumptions
are not met, include and justify appropriate remedial measures. Use the final model to estimate
mean PSA level for a patient whose cancer volume is 20 cc. Assess the strengths and weaknesses
of the final model. ‘ i

I
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Chapter

Simultaneous Inferences
and Other Topicsin .-
Regression Analysis

In this chapter, we take up a variety of topics in simple linear regression analysis. Several

of the topics pertain to how to make simultaneous inferences from the same set of sample
observations.

4.1 Joint Estimation of By and

Need for joint Estimation

154

A market research analyst conducted a study of the relation between level of advertising
expenditures (X) and sales (Y). The study included six different levels of advertising ex-
penditures, one of which was no advertising (X = 0). The scatter plot suggested a linear
relationship in the range of the advertising expenditures levels studied. The analyst now
wishes to draw inferences with confidence coefficient .95 about both the intercept S and the
slope B,. The analyst could use the methods of Chapter 2 to construct separate 95 percent
confidence intervals for B and B;. The difficulty is that these would not provide 95 percent
confidence that the conclusions for both fy and 8, are correct. If the inferences were indepen-
dent, the probability of both being correct would be (.95)2, or only .9025. The inferences are
not, however, independent, coming as they do from the same set of sample data, which makes
the determination of the probability of both inferences being correct much more difficult.
Analysis of data frequently requires a series of estimates (or tests) where the analyst
would like to have an assurance about the correctness of the entire set of estimates (or tests).
We shall call the set of estimates (or tests) of interest the family of estimates (or tests). In our
illustration, the family consists of twoestimates, for B, and 8. We then distinguish between a
statement confidence coefficient and a family confidence coefficient. A statement confidence
coefficient is the familiar type of confidence coefficient discussed earlier, which indicates the
proportion of correct estimates that are obtained when repeated samples are selected and the
specified confidence interval is calculated for each sample. A family confidence coefficient,
on the other hand, indicates the proportion of families of estimates that are entirely correct
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when repeated samples are selected and the specified confidence intervals for the entire
family are calculated for each sample. Thus, a family confidence coefficient corresponds to
the probability, in advance of sampling, that the entire family of statements will be correct.

To illustrate the meaning of a family confidence coefficient further, consider again the
joint estimation of 8y and B,. A family confidence coefficient of, say, .95 would indicate here
that if repeated samples are selected and interval estimates for both B, and B, are calculated
for each sample by specified procedures, 95 percent of the samples would lead to a family
of estimates where both confidence intervals are correct. For 5 percent of the samples, either
one or both of the interval estimates would be incorrect.

A procedure that provides a family confidence coefficient when estimating both o and §,
is often highly desirable since it permits the analyst to weave the two separate results together
into an integrated set of conclusions, with an assurance that the entire set of estimates is
correct. We now discuss one procedure for constructing simultaneous confidence intervals
for By and B, with a specified family confidence coefficient—the Bonferroni proccidure.

Bonferroni Joint Confidence Intervals

The Bonferroni procedure for developing joint confidence intervals for By and B, with a
specified family confidence coefficient is very simple: each statement confidence coefficient
is adjusted to be higher than 1 — « so that the family confidence coefficient is at least 1 — .
The procedure is a general one that can be applied in many cases, as we shall see, not just
for the joint estimation of Sy and ;.

We start with ordinary confidence limits for By and f; with statement confidence coef-
ficients 1 — o each. These limits are:

bo £ t(1 — o/2;n — 2)s{bo}
by £1(1 —a/2;n — 2)s{b}
We first ask what is the probability that one or both of these intervals are incorrect. Let A;

denote the event that the first confidence interval does not cover fo, and let A, denote the
event that the second confidence interval does not cover ;. We know:

PA) =« P(A) =«
Probability theorem (A.6) gives the desired probability:
P(AUAy) = P(A) + P(A) — P(A NAy)
Next, we use complementation property (A.9) to obtain the probability that both intervals
are correct, denoted by P(A1 N A3):
PA, NA)=1— P4, UAZ? =1-P(A))— P(A4))+P(AiNA4) (41)

Note from probability properties (A.9) and (A.10) that A; N A, and A, U A, are comple-
mentary events:

1-P(AUA) =P(AUAy) = PA, NA,)

Finally, we use the fact that P(A; NA;)>0 to obtain from (4.1) the Bonferron
inequality:

PA NA)>1—P(A)— P(Ay) (4.2)
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which for our situation is:
P(A]ﬂAz)Zl—Ol—Ol:].—ZOI (4.23)

Thus, if By and B, are separately estimated with, say, 95 percent confidence intervals, the
Bonferroni inequality guarantees us a family confidence coefficient of at least 90 percent
that both intervals based on the same sample are correct.

We can easily use the Bonferroni inequality (4.2a) to obtain a family confidence coeffi-
cient of at least 1 — « for estimating S and B,. We do this by estimating o and §, separately
with statement confidence coefficients of 1 — «/2 each. This yields the Bonferroni bound
1—-a/2—a/2 = 1—«. Thus, the | — ¢ family confidence limits for o and B, for regression

model (2.1) by the Bonferroni procedure are: -~
i

bo % Bs{bo} by £ Bs{bi} 4.3)

where:
B=1t(1—-a/4,n—2) (4.3a)

and bg, by, s{bo}, and s{b,} are defined in (1.10), (2.9), and (2.23). Note that a statement
confidence coefficient of 1 — /2 requires the (1 = «/4)100 percentile of the ¢ distribution
for a two-sided confidence interval.

For the Toluca Company example, 90 percent family confidence intervals for By and §
require B = t(1 — .10/4; 23) = 1(.975; 23) = 2.069. We have from Chapter 2:

bo = 62.37 s{bo} = 26.18
b, =3.5702  s{b} = .3470

Hence, the respective confidence limits for By and B, are 62.37 +2.069(26.18) and
3.5702 £ 2.069(.3470), and the joint confidence intervals are:

8.20 < o < 1165
2.85 < f, < 4.29

Thus, we conclude that ; is between 8.20 and 116.5 and B, is between 2.85 and 4.29.
The family confidence coefficient is at least .90 that the procedure leads to correct pairs of
interval estimates.

Comments

1. We reiterate that the Bonferroni 1 — « family confidence coefficient is actually a lower bound
on the true (but often unknown) family confidence coefficient. To the extent that incorrect interval
estimates of By and B; tend to pair up in the family, the families of statements will tend to be correct
more than (1 — «)100 percent of the time. Because of this conservative nature of the Bonferroni
procedure, family confidence coefficients are frequently specified at lower levels (e.g., 90 percent)
than when a single estimate is made.

2. The Bonferroni inequality (4.2a) can easily be extended to g simultaneous confidence intervals
with family confidence coefficient 1 — ¢:

p(ﬂA,) >1—ga (4.9
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Thus, if g interval estimates are desired with family confidence coefficient 1 — «, constructing each
interval estimate with statement confidence coefficient 1 — ¢/ g will suffice.

3. For a given family confidence coefficient, the larger the number of confidence intervals in the
family, the greater becomes the multiple B, which may make some or all of the confidence intervals
too wide to be helpful. The Bonferroni technique is ordinarily most useful when the number of
simultaneous estimates is not too large.

4. Tt is not necessary with the Bonferroni procedure that the confidence intervals have the same
statement confidence coefficient. Different statement confidence coefficients, depending on the impor-
tance of each estimate, can be used. For instance, in our earlier illustration Sy might be estimated with
a 92 percent confidence interval and B, with a 98 percent confidence interval. The family confidence
coefficient by (4.2) will still be at least 90 percent.

5. Joint confidence intervals can be used directly for testing. To illustrate this use, an industrial
engineer working for the Toluca Company theorized that the regression function should have an
intercept of 30.0 and a slope of 2.50. Although 30.0 falls in the confidence interval for 8y, 2.50 does
not fall in the confidence interval for g;. Thus, the engineer’s theoretical expectations are not correct
at the @ = .10 family level of significance.

6. The estimators by and b; areusually correlated, but the Bonferroni simultaneous confidence lim-
its in (4.3) only recognize this correlation by means of the bound on the family confidence coefficient.

v It can be shown that the covariance between by and b is:

oibg, b1} = —Xo0{b;} (4.5)

Note that if X is positive, by and b; are negatively correlated, implying that if the estimate b; is too
high, the estimate by is likely to be too low, and vice versa.

In the Toluca Company example, X = 70.00; hence the covariance between bg and b; is negative.
This implies that the estimators by and b; here tend to err in opposite directions. We expect this intu-
itively. Since the observed points (X;, Y;) fall in the first quadrant (see Figure 1.10a), we anticipate
that if the slope of the fitted regression line is too steep (b; overestimates f;), the intercept is most
likely to be too low (by underestimates fo), and vice versa.

When the independent variable is X; — X, as in the alternative model (1.6), b and b, are uncor-
related according to (4.5) because the mean of the X; — X observations is zero. |

4.2 Simultaneous Estimation of Mean Responses

Often the mean responses at a number of X levels need to be estimated from the same
sample data. The Toluca Company, for instance, needed to estimate the mean number
of work hours for lots of 30, 65, and 100 units in its search for the optimum lot size. We
already know how to estimate the mean response for any one level of X with given statement
confidence coefficient. Now we shall discuss two procedures for simultaneous estimation
of a number of different mean responses with a family confidence coefficient, so that there
is a known assurance of all of the estimates of mean responses being correct. These are the
Working-Hotelling and the Bonferrorii procedures. ‘

The reason why a family confidence coefficient is needed for estimating several mean
responses even though all estimates are based on the same fitted regression line is that
the separate interval estimates of E{Y}} at the different X, levels need not all be correct
or all be incorrect. The combination of sampling errors in by and b; may be such that



158 Part One Simple Linear Regression

the interval estimates of E{Y;} will be correct over some range of X levels and incorrect
elsewhere.

Working-Hotelling Procedure

Example

The Working-Hotelling procedure is based on the confidence band for the regression line
discussed in Section 2.6. The confidence band in (2.40) contains the entire regression line and
therefore contains the mean responses at all X levels. Hence, we can use the boundary values
of the confidence band at selected X levels as simultaneous estimates of the mean responses
at these X levels. The family confidence coefficient for these simultaneous estimates will
be at least 1 — & because the confidence coefficient that the entire confidence band for the
regression line is correctis 1 — a.

The Working-Hotelling procedure for obtaining simultaneous conﬁden’é’." intervals for
the mean responses at selected X levels is therefore simply to use the boundary values in
(2.40) for the X levels of interest. The simultaneous confidence limits for g mean responses
E{Y;} for regression model (2.1) with the Working-Hotelling procedure therefore are:

Y, £ Ws{¥,} (4.6)
where: i
W2=2F(1—-wa;2.n—2) (4.6a)
and ¥, and s{¥,} are defined in (2.28) and (2.30), respectively.

For the Toluca Company example, we require a family of estimates of the mean number
of work hours at the following lot size levels: X, = 30, 65, 100. The family confidence
coefficient is to be .90. In Chapter 2 we obtained ¥, and s{¥,} for X;, = 65 and 100. In
similar fashion, we can obtain the needed results for lot size X;, = 30. We summarize the
results here:

Xh ?h S{?h}

30 169.5 16.97
65 294.4 9.918
100 419.4 14.27

For a family confidence coefficient of .90, we require F(.90; 2, 23) = 2.549. Hence:
W? =2(2.549) = 5.098 W =2.258

We can now obtain the confidence intervals for the mean number of work hours at X, = 30,
635, and 100:

131.2 = 169.5 — 2.258(16.97) < E{Y3} < 169.5 + 2.258(16.97) = 207.8
272.0 = 294.4 — 2.258(9.918) < E{Y,} < 294.4 + 2.258(9.918) = 316.8
387.2 = 419.4 — 2.258(14.27) < E{Y,} < 419.4 + 2.258(14.27) = 451.6

With family confidence coefficient .90, we conclude that the mean number of work hours
required is between 131.2 and 207.8 for lots of 30 parts, between 272.0 and 316.8 for lots
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of 65 parts, and between 387.2 and 451.6 for lots of 100 parts. The family confidence
coefficient .90 provides assurance that the procedure leads to all correct estimates in the
family of estimates.

Bonferroni Procedure

Example

The Bonferroni procedure, discussed earlier for simultaneous estimation of By and 8, is
a completely general procedure. To construct a family of confidence intervals for mean
responses at different X levels with this procedure, we calculate in each instance the usual
confidence limits for a single mean response E{Y:} in (2.33), adjusting the statement con-
fidence coefficient to yield the specified family confidence coefficient.

When E{Y,} is to be estimated for g levels X, with family confidence coefficient 1 — ¢,
the Bonferroni confidence limits for regression model (2.1) are:

Yu £ Bs{¥s}  @n

where:

B=1t(1—-«/f2g;n—2) (4.7a)
and g is the number of confidence intervals in the family.

For the Toluca Company example, the Bonferroni simultaneous estimates of the mean
number of work hours for lot sizes X, = 30, 65, and 100 with family confidence coefficient
.90 require the same data as with the Working-Hotelling procedure. In addition, we require
B =1[1 — .10/2(3); 23] = £(.9833; 23) = 2.263.

We thus obtain the following confidence intervals, with 90 percent family confidence
coefficient, for the mean number of work hours for lot sizes X;, = 30, 65, and 100:

131.1 = 169.5 — 2.263(16.97) < E{Y:} < 169.5 + 2.263(16.97) = 207.9
272.0 = 294.4 — 2.263(9.918) < E{Y,} < 294.4 + 2.263(9.918) = 316.8
387.1 = 419.4 — 2.263(14.27) < E{Y}} < 419.4 + 2.263(14.27) = 451.7

Comments

1. In this instance the Working-Hotelling confidence limits are slightly tighter than, or the same
as, the Bonferroni limits. In other cases where the number of statements is small, the Bonferroni
limits may be tighter. For larger families, the Working-Hotelling confidence limits will always be
the tighter, since W in (4.6a) stays the same for any number of statements in the family whereas B
in (4.7a) becomes larger as the number of statements increases. In practice, once the family confi-
dence coefficient has been decided upon, one can calculate the W and B multiples to determine which
procedure leads to tighter confidence limits!

2. Both the Working-Hotellifig and Bonferroni procedures provide lower bounds to the actual
family confidence coefficient. .

3. Thelevelsof the predictor variable for which the mean response is to be estimated are sometimes
not known in advance. Instead, the levels‘of interest are determined’as the analysis proceeds. This was
the case in the Toluca Company example, where the lot size levels of interest were determined after
analyses relating to other factors affecting the optimum Iot size were completed. In such cases, it is
better to use the Working-Hotelling procedure because the family for this procedure encompasses all
possible levels of X. |
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4.3 Simultaneous Prediction Intervals for New Observations

Example

Now we consider the simultaneous predictions of g new observations on Y in g indepen-
dent trials at g different levels of X. Simultaneous prediction intervals are frequently of
interest. For instance, a company may wish to predict sales in each of its sales regions from
a regression relation between region sales and population size in the region.

Two procedures for making simultaneous predictions will be considered here: the Scheffé
and Bonferroni procedures. Both utilize the same type of limits as those for predicting a
single observation in (2.36), and only the multiple of the estimated standard deviation is
changed. The Scheffé procedure uses the £ distribution, whereas the Bonferroni procedure
uses the z distribution. The simultaneous prediction limits for g predictions \2/‘@11;1:1 the Scheffé
procedure with family confidence coefficient 1 — o are: )

¥, & Ss{pred} (4.8)
where: )
S?=gF(l—a;g,n—2) (4.8a)

and s{pred} is defined in (2.38). With the Bonfeﬁoni procedure, the 1 — o simultaneous
prediction limits are:

¥, + Bs{pred} (4.9
where:
B=1(1-«a/2g;,n—-2) (4.9a)

The S and B multiples can be evaluated in advance to see which procedure provides tighter
prediction limits.

The Toluca Company wishes to predict the work hours required for each of the next two
lots, which will consist of 80 and 100 units. The family confidence coefficient is to be
95 percent. To determine which procedure will give tighter prediction limits, we obtain the
S and B multiples:

82 = 2F(95; 2,23) = 2(3.422) = 6.844 S =2616
B = t[1 — .05/2(2); 23] = 1(.9875; 23) = 2.398

We see that the Bonferroni procedure will yield somewhat tighter prediction limits. The
needed estimates, based on earlier results, are (calculations not shown):

X h s{pred}  Bs{pred}
80 348.0 49.91 119.7
100 419.4 50.87 122.0

The simultaneous prediction limits for the next two lots, with family confidence coefficient
. .95, when X, = 80 and 100 then are:

228.3 = 348.0 — 119.7 < Yiguewy < 348.0 4 119.7 = 467.7
297.4 = 419.4 — 122.0 < Yigewy < 419.4 4 122.0 = 541.4
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With family confidence coefficient at least .95, we can predict that the work hours for the
next two production runs will be within the above pair of limits. As we noted in Chapter 2, the
prediction limits are very wide and may not be too useful for planning worker requirements.

Comments

1. Simultaneous prediction intervals for g new observations on Y at g different levels of X with
a 1—q« family confidence coefficient are wider than the corresponding single prediction intervals
of (2.36). When the number of simultaneous predictions is not large, however, the difference in the
width is only moderate. For instance, a single 95 percent prediction interval for the Toluca Company
example would utilize a t multiple of 1 (.975; 23) = 2.069, which is only moderately smaller than the
multiple B = 2.398 for two simultaneous predictions.

2. Note that both the B and S multiples for simultaneous predictions become larger as g increases.
This contrasts with simultaneous estimation of mean responses where the B multiple becomes larger
but not the W muitiple. When g is large, both the B and S muitiples for simultaneous predictions
may become so large that the prediction intervals will be too wide to be useful. Other sthwitaneous
estimation techniques might then be considered, as discussed in Reference 4.1. ]

4.4 Regression through Origin

Model

Inferences

Sometimes the regression function is known to be linear and to go through the origin at
(0, 0). This may occur, for instance, when X is units of output and Y is variable cost, so ¥
is zero by definition when X is zero. Another example is where X is the number of brands
of beer stocked in a supermarket in an experiment (including some supermarkets with no
brands stocked) and Y is the volume of beer sales in the supermarket.

The normal error model for these cases is the same as regression model (2.1) except that
Bo=0:

Yi=8X;+s (4.10)
wherer

B, is a parameter N
X; are known constants
&; are independent N (0, 0'?)

The regression function for model (4.10) is:
¥
- E{Y}=8X (4.11)
which is a straight line through the origin, with $lope ;.

- P

The least squares estimator of B, in r(;,gression model (4.10) is obtained by minimizing:

Q=> (Yi— BiXy)’ (4.12)
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Example

TABLE 4.1
Confidence
Limits for
Regression
through
Origin.

with respect to ). The resulting normal equation is:
Y XY —b X) =0 (4.13)
leading to the point estimator:

XY
XX
The estimator b, in (4.14) is also the maximum likelihood estimator for the normal error

regression model (4;10).
The fitted value Y; for the ith case is:

by (4.14)

¥i =bX, (4.15)

and the ith residual is defined, as usual, as the difference between the observed and fitted
values:

s

=Y, -Y, =Y —bX; (4.16)
An unbiased estimator of the error variance o2 for regression model (4.10) is:

Y —¥)r e

2
— MSE = -
s n—1 n—1

4.17)

The reason for the denominator n — 1 is that only one degree of freedom is lost in estimating
the single parameter in the regression function (4.11).

Confidence limits for 8, E{Y),}, and a new observation Y}, ew) for regression model (4.10)
are shown in Table 4.1. Note that the r multiple has n — 1 degrees of freedom here, the
degrees of freedom associated with MSE. The results in Table 4.1 are derived in analogous
fashion to the earlier results for regression model (2.1). Whereas for model (2.1) with an
intercept we encounter terms (X; — X)? or (X;, — X)?, here we find X? and X? because of
the regression through the origin.

The Charles Plumbing Supplies Company operates 12 warehouses. In an attempt to tighten
procedures for planning and control, a consultant studied the relation between number of
work units performed (X) and total variable labor cost (Y) in the warehouses during a test
period. A portion of the data is given in Table 4.2, columns 1 and 2, and the observations
are shown as a scatter plot in Figure 4.1.

Estimate of Estimated Variance Confidence Limits
MSE
B s2{b} = X7 by + ts{b;} (4.18)
X2MSE
E{Yp} s2{Pp} = Zh X2 P % ts{Ph} (4.19)
XZ
Yhinew) s?{pred} = MSE (1 + 5 ')’(2) ¥, & ts{pred} (4.20)

where: t = ¢(1 —a/2;n—1)
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Origin—
‘Warehouse
Example.

FIGURE 4.1
Scatter Plot
and Fitted .~
Regression
through
Origin—
‘Warehouse
Example.
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M 03] 3) “4) ® 6)
Work Variable
Units Labor Cost
Warehouse Performed (dollars)

i Xi Y XYy X? 7 €
1 20 114 2,280 400 9371 20.29
196 921 180;516 38,416  918.31 2.69
3 115 560 64,400 13,225 53881  21.19
10 147 " 670 98,490 21,609 68874 —18.74
11 182 828 150,696 33,124 85272 —24.72
12 160 762 121,920 25,600  749.64  12.36
Total 1,359 6,390 894,714 190,963 6,367.28 | 22.72
1000 -
800 |-
8
v}
5 600
G
P
_‘-: 400 - N
S 7= 4.685X
200 -
| | 1 !
0 50 100 150 200

Work Units Performed

Model (4.10) for regression through the origin was employed since Y involves variable
costs only and the other conditions of the model appeared to be satisfied as well. From
Table 4.2, columns 3 and 4, we have > X;Y; = 894,714 and }_ X? = 190,963. Hence:

2 XY 894714
Y X? T 190,963
and the estimated regression function is:

¥

- ¥ =4.68527X

b, = 4.68527

In Table 4.2, the fitted values are shown in column 5, the residuals in column 6. The fitted
regression line is plotted in Figure 4.1 and it appears to be a good fit.

An interval estimate of B, is desired with a 95 percent confidence coefficient. By squaring
the residuals in Table 4.2, column 6, and then summing them, we obtain (calculations not
shown):

Soe2 24516

2 = MSE =
s n—1 11

= 223.42
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From Table 4.2, column 4, we have Y X? = 190,963. Hence:

MSE 223.42
) = —— = ——0 =.0011700 b} = .034205
S = 5% = 150,963 st}
For a 95 percent confidence coefficient, we require £(.975; 11) = 2.201. The confidence
limits, by (4.18) in Table 4.1, are 4.68527 + 2.201(.034205). The 95 percent confidence
interval for B, therefore is:

461 < B, <4.76

Thus, with 95 percent confidence, it is estimated that the mean variable labor cost increases
by somewhere between $4.61 and $4.76 for each additional work unit performegds™

Important Cautions for Using Regression through Origin

In using regression-through-the-origin model (4.10), the residuals must be interpreted with
care because they do not sum to zero usually, as may be seen in Table 4.2, column 6, for
the warehouse example. Note from the normal equation (4.13) that the only constraint on
the residuals is of the form ) X;e; = 0. Thus, in a residual plot the residuals will usually
not be balanced around the zero line.

Anotherimportant caution for regression through the origin is that the sum of the squared
residuals SSE = ) e? for this type of regression may exceed the total sum of squares
SSTO = 3 (¥; — Y)2. This can occur when the data form a curvilinear pattern or a linear
pattern with an intercept away from the origin. Hence, the coefficient of determination
in (2.72), R? = 1 — SSE/SSTO, may turn out to be negative. Consequently, the coefficient
of determination R? has no clear meaning for regression through the origin.

Like any other statistical model, regression-through-the-origin model (4.10) needs to be
evaluated for aptness. Even when it is known that the regression function must go through
the origin, the function may not be linear or the variance of the error terms may not be
constant. In many other cases, one cannot be sure in advance that the regression line goes
through the origin. Hence, it is generally a safe practice not to use regression-through-the-
origin model (4.10) and instead use the intercept regression model (2.1). If the regression
line does go through the origin, by with the intercept model will differ from O only by a
small sampling error, and unless the sample size is very small use of the intercept regression
model (2.1) has no disadvantages of any consequence. If the regression line does not go
through the origin, use of the intercept regression model (2.1) will avoid potentially serious
difficulties resulting from forcing the regression line through the origin when this is not
appropriate.

Comments

1. Ininterval estimation of E{Y;} or prediction of Yy ey, With regression through the origin, note
that the intervals (4.19) and (4.20) in Table 4.1 widen the further X, is from the origin. The reason
is that the value of the true regression function is known precisely at the origin, so the effect of the
sampling error in the slope b; becomes increasingly important the farther X, is from the origin.

2. Since with regression through the origin only one parameter, 8y, must be estimated for regression
function (4.11), simultaneous estimation methods are not required to make a family of statements
about several mean responses. For a given confidence coefficient 1 — ¢, formula (4.19) in Table 4.1
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can be used repeatedly with the given sample results for different levels of X to generate a family of
statements for which the family confidence coefficient is still 1 — ¢.

3. Some statistical packages calculate R? for regression through the origin according to (2.72)
and hence will sometimes show a negative value for R2. Other statistical packages calculate R? using
the total uncorrected sum Of squares SSTOU in (2.54). This procedure avoids obtaining a negative
coefficient but lacks any meaningful interpretation.

4. The ANOVA tables for regression through the origin shown in the output for many statistical
packages are based on SSTOU = " Y2, SSRU = ™77 = b2 3" X2, and SSE = Y (¥; — by X:)%
where SSRU stands for the uncorrected regression sum of squares. It can be shown that these sums of
squares are additive: SSTOU = SSRU + SSE. u

4.5 Effects of Measurement Errors

|8
In our discussion of regression models up to this point, we have not explicitly considered
the presence of measurement errors in the observations on either the response variable Y
or the predictor variable X. We now examine briefly the effects of measurement errors in
. the observations on the response and predictor variables.

Measurement Errors in Y

When random measurement errors are present in the observations on the response variable
Y, no new problems are created when these errors are uncorrelated and not biased (positive
and negative measurement errors tend to cancel out). Consider, for example, a study of
the relation between the time required to complete a task (¥) and the complexity of the
task (X). The time to complete the task may not be measured accurately because the person
operating the stopwatch may not do so at the precise instants called for. As long as such
measurement errors are of a random nature, uncorrelated, and not biased, these measurement
errors are simply absorbed in the model error term &. The model error term always reflects
the composite effects of a large number of factors not considered in the model, one of which
now would be the random variation due to inaccuracy in the process of measuring Y.

Measurement Errors in X

Unfortunately, a different situation holds when the observations on the predictor variable
X are subject to measurement errors. Frequently, to be sure, the observations on X are
accurate, with no measurement errors, as when the predictor variable is the price of a product
in different stores, the number of variables int different optimization problems, or the wage
rate for different classes of employees. At other times, however, measurement errors may
enter the value observed for the predictor variable, for ipstance, when the predictor variable
is pressure in a tank, temperature in an oven, speed of a production line, or reported age of
a person. ‘ °

We shall use the last illustration in our development of the nature of the problem. Suppose
we are interested in the relation between employees’ piecework earnings and their ages.
Let X; denote the true age of the ith employee and X the age reported by the employee
on the employment record. Needless to say, the two are not always the same. We define the
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measurement error §; as follows:
G =X'-X (4.21)
The regression model we would like to study is:
Yi=6+hXit+e& (4.22)

However, we observe only X7, so we must replace the true age X; in (4.22) by the reported
age X7, using (4.21):

Yi = Bo+ fi(X] - &) + & (4.23)
We can now rewrite (4.23) as follows: o
Y = Bo+ BiX! + (8 — B18) (4.249)

Model (4.24) may appear like an ordinary regression model, with predictor variable X*
and error term & — B,8, but it is not. The predictor variable observation X7 is a random
variable, which, as we shall see, is correlated with the error term g; — B,§;.

Intuitively, we know that & — p,8; is not independent of X} since (4.21) constrains
X7 — §; to equal X;. To determine the dependence formally, let us assume the following
simple conditions:

E{8} =0 (4.25a)
Ele}=0 (4.25b)
E{8e} =0 (4.25¢)

Note that condition (4.25a) implies that E{X}} = E{X; + §;} = X;, so that in our example
the reported ages would be unbiased estimates of the true ages. Condition (4.25b) is the usnal
requirement that the model error terms g; have expectation 0, balancing around the regression
line. Finally, condition (4.25¢) requires that the measurement etror §; not be correlated with
the model error &;; this follows because, by (A.21a), o'{8;, &;} = E{6;€:} since E{5;} =
E{g;} = 0 by (4.252) and (4.25b).

We now wish to find the covariance between the observations X and the random terms
& — f18; in model (4.24) under the conditions in (4.25), which imply that E{X}} = X; and
Ele; — pi&;i} =0

o{X7, & — Bi&i} = E{IX7 — E{X{})l(ei — &) — Ele; — B1&i}1}
= E{(X] - X)) (& — Bi6)}
= E{8i(&; — B16)}
= E {8&; — pi8}}
Now E{8;¢;} = Oby (4.25¢), and E{8?} = 0{8;} by (A.152) because E{§;} = 0 by (4.25z).
We therefore obtain:

o{X}, & — B8} = —B1o*{5;] (4.26)

This covariance is not zero whenever there is a linear regression relation between X and Y.
If we assume that the response ¥ and the random predictor variable X* follow a bivariate
normal distribution, then the conditional distribution of the Y, i = 1,...n, given X7,
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i = 1,...n, are normal and independent, with conditional mean E{Y;|X;} = B + By X}
and conditional variance o},x.. Furthermore, it can be shown that g} = g,[03/ (0% + o)1,
where o2 is the variance of X and o} is the variance of Y. Hence, the least squares slope
estimate from fitting ¥ on X™ is not an estimate of B, but is an estimate of B} < .
The resulting estimated regression coefficient of B will be too small on average, with the
magnitude of the bias dependent upon the relative sizes of 0% and 0. If 02 is small relative
to a}{, then the bias would be small; otherwise the bias may be substantial. Discussion
of possible approaches to estimating f; that are obtained by estimating these unknown
variances 02 and o will be found in specialized texts such as Reference 4.2.

Another approach is to use additional variables that are known to be related to the true
value of X but not to the errors of measurement 8. Such variables are called inszrumental
variables because they are used as an instrument in studying the relation between X and
Y. Instrumental variables make it possible to obtain consistent estimators of the regression
parameters. Again, the reader is referred to Reference 4.2. 5

Comment

What, it may be asked, is the distinction between the case when X is a random variable, considered in
Chapter 2, and the case when X is subject to random measurement exrrors, and why are there special
problems with the latter? When X is a random variable, the observations on X are not under the
control of the analyst and will vary at random from trial to trial, as when X is the number of persons
entering a store in a day. If this random variable X is not subject to measurement etrors, however, it
can be accurately ascertained for a given trial. Thus, if there are no measurement errors in counting the
number of persons entering a store in a day, the analyst has accurate information to study the relation
between number of persons entering the store and sales, even though the levels of number of persons
entering the store that actually occur cannot be controlled. If, on the other hand, measurement errors
are present in the observed number of persons entering the store, a distorted picture of the relation
between number of persons and sales will occur because the sales observations will frequently be
matched against an incorrect number of persons. ]

Berkson Model

There is one situation where measurement errors in X are no problem. This case was first
noted by Berkson (Ref. 4.3). Frequently, in an experiment the predictor variable is set at
a target value. For instance, in an experiment on the effect of room temperature on word
processor productivity, the temperature may be set at target levels of 68° F, 70°F, and 72° F,
according to the temperature control on the thermostat. The observed temperature X} is
fixed here, whereas the actual temperature X; is a random variable since the thermostat fmay
not be completely accurate. Similar situations exist when water pressure is set according to
a gauge, or employees of specified ages according to their employment records are selected
for a study. -

In all of these cases, the observation X is a fixed quantity, whereas the unobserved true
value X; is a random variable. The measurement error is, as before:

S =X —X; (4.27)

Here, however, there is n0 constraint on the relation between X} and §;, since X} is a fixed
quantity. Again, we assume that £{5;} = 0.
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Model (4.24), which we obtained when replacing X; by X} — §;, is still applicable for
the Berkson case:

Y, = Bo+ B X + (&i — Brd) (4.28)

The expected value of the error term, E{g; — B,6;}, is zero as before under conditions (4.253)
and (4.25b), since Ef{g;} = 0 and E{5;} = 0. However, &; — ,6; is now uncorrelated with
X}, since X} is a constant for the Berkson case. Hence, the following conditions of an
ordinary regression model are met:

1. The error terms have expectation zero.
2. The predictor variable is a constant, and hence the error terms are not correlated with it,

Thus, least squares procedures can be applied for the Berkson case without modiﬁcétion,
and the estimators by and by will be unbiased. If we can make the standard normality and
constant variance assumptions for the errors g; — B 8;, the usual tests and interval estimates
can be utilized. .

4.6 Inverse Predictions

At times, a regression model of ¥ on X is used to make a prediction of the value of X which
gave rise to a new observation Y. This is known as an inverse prediction. We illustrate
inverse predictions by two examples:

1. A trade association analyst has regressed the selling price of a product () on its cost
(X) for the 15 member firms of the association. The selling price Y} (new) for another firm
not belonging to the trade association is known, and it is desired to estimate the cost X ew)
for this firm.

2. A regression analysis of the amount of decrease in cholesterol level (¥') achieved
with a given dosage of a new drug (X) has been conducted, based on observations for
50 patients. A physician is treating a new patient for whom the cholesterol level should
decrease by the amount Y ew)- It is desired to estimate the appropriate dosage level X, ew)
to be administered to bring about the needed cholesterol decrease Y ew)-

In inverse predictions, regression model (2.1) is assumed as before:

Yi=PFo+piXi+& (4.29)
The estimated regression function based on n observations is obtained as usuval:
P =by+b X (4.30)

A new observation Yjew) becomes available, and it is desired to estimate the level Xjew)
that gave rise to this new observation. A natural point estimator is obtained by solving (4.30)
for X, given Yynew):

ry) Yx new) b
Rhoowy = —‘#—“ bi #0 (4.31)

where X hmewy denotes the point estimator of the new level Xjevy. Figure 4.2 contains
a representation of this point estimator for an example to be discussed shortly. It can be
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shown that the estimator X h(new) 18 the maximum likelihood estimator of X (evy for normal
error regression model (2.1).
Approximate 1 — o confidence limits for Xpmevwy are:

K pewy £ (1 — /23 n — 2)s{predX} (4.32)

where:

s*{predX} =

5 W2
MSE [1 1 M] (4.32a)

b% n Z(X i X )2
A medical researcher studied a new, quick method for measuring low concentration of
galactose (sugar) in the blood. Twelve samples were used in the study containing known
concentrations (X), with three samples at each of four different levels. The measured
concentration (Y) was then observed for each sample. Linear regression model (2.1) was
fitted with the following results:

n=12 by=-.100 b, =1.017 MSE = 0272
s{b,} = .0142 X =5.500 Y =5.492 (X —X)2=135
- ¥ =-.100+1.017X

The data and the estimated regression line are plotted in Figure 4.2.

The researcher first wished to make sure that there is a linear association between the
two variables. A test of Hy: B; =0 versus H,: B, #0, utilizing test statistic t* = by /s{b,} =
1.017/.0142=171.6, was conducted for & = .05. Since 1(.975; 10) = 2.228 and |t*| =
71.6 > 2.228, it was concluded that ) # O, or that a linear association exists between the
measured concentration and the actual concentration.

The researcher now wishes to use the regression relation 10 ascertain the actual con-
centration Xjmew) for a new patient for whom the quick procedure yielded a measured
concentration of Yy geny =6.52. It is desired to estimate Xjmewy by means of a 95 percent

Y

—_
[=]
T

¥=~-.100 + 1.017X

Measured Galactose Concentration

Xn

(new) .
! L 1 :/ i |

0 2 4 6 8 10 X
Actual Galactose Concentration
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confidence interval. Using (4.31) and (4.32a), we obtain:

. 6.52 — (—.100)
X1 new) ~— —— = 6.509
i(pew) 1.017
0272 1 (6.509 — 5.500)%
2 dX1 = — —_— | = .0287
s predX} = 017y [ izt 135

so that s {predX'} = .1694. We require 1(.975; 10) = 2.228, and using (4.32) we obtain the
confidence limits 6,509 £ 2.228(.1694). Hence, the 95 percent confidence interval is:

6.13 < Xh(new) < 6.89 P
Thus, it can be concluded with 95 percent confidence that the actual galactose concentration
for the patient is between 6.13 and 6.89. This is approximately a 6 percent error, which
is considered reasonable by the researcher.

¥

Comments

1. The inverse prediction problem is also known as a calibration problem since it is applicable
when inexpensive, quick, and approximate measurements (Y') are related to precise, often expensive,
and time-consuming measurements (X) based on » observations. The resulting regression mode] is
then used to estimate the precise measurement Xy ey fol @ new approximate measurement Y gew).
We illustrated this use in the calibration example.

2. The approximate confidence interval (4.32) is appropriate if the quantity:

[t(1 — /2, n — 2)1’MSE
B2y (X~ X)?

(4.33)

is small, say less than .1. For the calibration example, this quantity is:

(2.228)2(.0272)

oreass) 07

so that the approximate confidence interval is appropriate here.

3. Simultaneous prediction intervals based on g different new observed measurements Yagmew)s
with a 1 — o family confidence coefficient, are easily obtained by using either the Bonferroni or the
Scheffé procedures discussed in Section 4.3. The value of (1 — ¢¢/2; # — 2) in (4.32) is replaced by
either B=t(1 —a/2g;n—2) or S = [gF(1 —a; g, n — 2)]V2

4. Theinverse prediction problem has aroused controversy among statisticians. Some statisticians
have suggested that inverse predictions should be made in direct fashion by regressing X on Y. This
regression is called inverse regression. u

4.7 Choice of X Levels

When regression data are obtained by experiment, the levels of X at which observations
on Y are to be taken are under the control of the experimenter. Among other things, the
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experimenter will have to consider:

1. How many levels of X should be investigated?

2. What shall the two extreme levels be?

3. How shall the other levels of X, if any, be spaced?

4. How many observations should be taken at each level of X7

There is no single answer to these questions, since different purposes of the regression
analysis lead to different answers. The possible objectives in regression analysis are varied,
as we have noted earlier. The main objective may be to estimate the slope of the regression
line or, in some cases, to estimate the intercept. In many cases, the main objective is to
predict one or more new observations or to estimate one or more mean responses. When
the regression function is curvilinear, the main objective may be to locate the maximum or
minimum mean response. At still other times, the main purpose is to determine the nature
of the regression function.

To illustrate how the purpose affects the design, consider the variances of bg, by, ¥, andk
for predicting Y}, new), Which were developed earlier for regression model (2.1):

1 X’
7 o2{bo} = o* [Z + —Z—m] (4.34)
0,2
) &y
O'Z{Yh} = O’2 [% + %ﬁi] (4.36)
st — oty Ly o EF
o“{pred} = o [1 + . + X, _}-()2] (4.37)

If the main purpose of the regression analysis is to estimate the slope 8, the variance of b,
is minimized if $"(X; — X)? is maximized. This is accomplished by using two levels of X,
at the two extremes for the scope of the model, and placing half of the observations at each
of the two levels. Of course, if one were not sure of the linearity of the regression function,
one would be hegitant to use only two levels since they would provide no information about
possible departures from linearity. If the main purpose is to estimate the intercept o, the
number and placement of levels does not affect the variance of by as long as X = 0. On the
other hand, to estimate the mean response or to predict a new observation at the level X,
the relevant variance is minimized by using X levels so that X = Xj,.

Although the number and spacing of X levels depends very much on the major purpose
of the regression analysis, the general advice given by D. R. Cox is still relevant:

Use two levels when the object is primarily to examine whether or not . .. (the predictor
variable) . . . has an effect and in which direction that effect is. Use three levels whenever a
description of the response curve by its slope and curvature is Iikely to be adequate; this
should cover most cases. Use four levels if further examination of the shape of the response
curve is important. Use more than four levels when it is required to estimate the detailed
shape of the response curve, or when the curve is expected to rise to an asymptotic value, or
in general to show features not adequately described by slope and curvature. Except in these
Tast cases it is generally satisfactory to use equally spaced levels with equal numbers of
observations per level (Ref. 4.4).

op

A
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Problems 4.1. When joint confidence intervals for B and §; are developed by the Bonferroni method with
a family confidence coefficient of 90 percent, does this imply that 10 percent of the time the
confidence interval for B will be incorrect? That 5 percent of the time the confidence interval
for B will be incorrect and 5 percent of the time that for 8; will be incorrect? Discuss.

4.2. Refer to Problem 2.1. Suppose the student combines the two confidence inter¥als into a confi-
dence set. What can you say about the family confidence coefficient for this set?

*4.3, Refer to Copier maintenance Problem 1.20.
a. Will by and b tend to err in the same direction or in opposite directions here? Explain.

b. Obtain Bonferroni joint confidence intervals for B and B, using a 95 percent family confi-
dence coefficient.

c. A consultant has suggested that By should be 0 and 8; should equal 14.0. Do your joint

confidence intervals in part (b) support this view?
*4,4, Refer to Airfreight breakage Problem 1.21.

a. Will by and b; tend to eir in the same direction or in opposite directions here? Explain.

b. Obtain Bonferroni joint confidence intervals for B, and B, using a 99 percent family confi-
dence coefficient. Interpret your confidence intervals.

4.5. Refer to Plastic hardness Problem 1.22.

a. Obtain Bonferroni joint confidence intervals for By and 8, using a 90 percent family con-

fidence coefficient. Interpret your confidence intervals.

b. Are by and b positively or negatively correlated here? Is this reflected in your joint confi-
dence intervals in part (a)?

c. What is the meaning of the family confidence coefficient in part (a)7
*4.6. Refer to Muscle mass Problem 1.27.
a. Obtain Bonferroni joint confidence intervals for By and B, using a 99 percent family confi-
dence coefficient. Interpret your confidence intervals.
b. Will by and b, tend to err in the same direction or in opposite directions here? Explain.
c. A researcher has suggested that Sy should equal approximately 160 and that 8, should be
between —1.9 and —1.5. Do the joint confidence intervals in part (a) support this expectation?
*4.7. Refer to Copier maintenance Problem 1.20.
a. Estimate the expected number of minutes spent when there are 3, 5, and 7 copiers to be

serviced, respectively. Use interval estimates with a 90 percent family confidence coefficient
based on the Working-Hotelling procedure.

b. Two service calls for preventive maintenance are scheduled in which the numbers of copiers
to be serviced are 4 and 7, respectively. A family of prediction intervals for the times to
be spent on these calls is desired with a 90 percent family confidence coefficient. Which
procedure, Scheffé or Bonferroni, will provide tighter prediction limits here?

c. Obtain the family of prediction intervals required in part (b), using the more efficient
procedure.
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*4 8. Refer to Airfreight breakage Probiem 1.21.
a. Itis desired to obtain interval estimates of the mean number of broken ampules when there

49.

*4.10.

4.12.

are 0, 1, and 2 transfers for a shipment, using a 95 percent family confidence coefficient.
Obtain the desired confidence intervals, using the Working-Hotelling procedure.

. Are the confidence intervals obtained in part (a) more efficient than Bonferroni intervals

here? Explain.

. The next three shipments will make 0, 1, and 2 transfers, respectively. Obtain prediction

intervals for the number of broken ampules for each of these three shipments, using the
Scheffé procedure and a 95 percent family confidence coefficient.

. Would the Bonferroni procedure have been more efficient in developing the prediction

intervals in part (c)? Explain.

Refer to Plastic hardness Probilem 1.22.

a.

Management wishes to obtain interval estimates of the mean hardness when the elapsed time
is 20, 30, and 40 hours, respectively. Calcuiate the desired confidence intervals}. using the
Bonferroni procedure and a 90 percent family confidence coefficient. What is the meaning
of the family confidence coefficient here?

Is the Bonferroni procedure employed in part (a) the most efficient one that could be
employed here? Explain.

. The next two test items will be measured after 30 and 40 hours of elapsed time, respectively.

Predict the hardness for each of these two items, using the most efficient procedure and a
90 percent family confidence coefficient.

Refer to Muscle mass Problem 1.27.

a.

d.

The nutritionist is particularly interested in the mean muscle mass for women aged 45, 55, and
65. Obtain joint confidence intervals for the means of interest using the Working-Hotelling
procedure and a 95 percent family confidence coefficient.

. Is the Working-Hotelling procedure the most efficient one to be employed in part (a)?

Explain.

. Three additional women aged 48, 59, and 74 have contacted the nutritionist. Predict the

muscle mass for each of these three women using the Bonferroni procedure and a 95 percent

family confidence coefficient.

Subsequently, the nutritionist wishes to predict the muscle mass for a fourth woman aged
"64, with a family confidence coefficient of 95 percent for the four predictions. Will the three

prediction intervals in part (c) have to be recalculated? Would this also be true if the Scheffé

procedure had been used in constructing the prediction intervals? ’

. Abehavioral scientist said, “I am never sure whether the regression line goes through the origin.

Hence, I will not use such a model.” Comment.

Typographical errors. Shown below are the number of galleys for a manuscript (X) and
the total dollar cost of correcting typographical errors (Y) in a random sample of recent orders
handled by a firm specializing in technical manuscripts. Since Y involves variable costs only, an
analyst wished to determine whether regression-through-the-origin model (4.10) is appropriate
for studying the relation between the two variablés.

i 1 2 3 4° 5 6 7 g 9 10 11 12

X;: 7 12 10 10- 14 25 30 25 18 10 4 6
vii 128 213 191 178 250 446 540 457 324 177 75 107

a. Fit regression model (4.10) and state the estimated regression function.
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4.13.

4.14.

4.15.

*4.16.

*4.17.

4.18.

4.19.

b. Plot the estimated regression function and the data. Does a linear regression function through
the origin appear to provide a good fit here? Comment.

c. In estimating costs of handling prospective orders, management has used a standard of
$17.50 per galley for the cost of correcting typographical errors. Test whether or not this
standard should be revised; use o« = .02. State the alternatives, decision rule, and conciusion.

d. Obtain aprediction interval for the correction cost on a forthcoming job involving 10 galleys.
Use a confidence coefficient of 98 percent.

Refer to Typographical errors Problem 4.12.

a. Obtain the residuals ¢;. Do they sum to zero? Plot the residuals against the fitted values Y.
What conclusions can be drawn from your plot?

b. Conduct a formal test for lack of fit of linear regression through the origin; pse o = .01.
State the alternatives, decision rule, and conclusion. What is the P-value &f the test?

Refer to Grade point average Problem 1.19. Assume that linear regression through the origin

model (4.10) is appropriate.

a. Fit regression model (4.10) and state the estimated regression function.

b. Estimate 8; with a 95 percent confidence interval. Interpret your interval estimate.

c. Estimate the mean freshman GPA for students whose ACT test score is 30. Use a 95 percent
confidence interval.

Refer to Grade point average Problem 4.14.

a. Plot the fitted regression line and the data. Does the linear regression function through the
origin appear to be a good fit here?

b. Obtain the residuals ¢;. Do they sum to zero? Plot the residuals against the fitted values ¥;.
What conclusions can be drawn from your plot?

c. Conduct a formal test for lack of fit of linear regression through the origin; use o = .005.
State the alternatives, decision rule, and conclusion. What is the P-value of the test?

Refer to Copier maintenance Problem 1.20. Assume that linear regression through the origin

model (4.10) is appropriate.

a. Obtain the estimated regression function.

b. Estimate 8; with a 90 percent confidence 1nterval. Interpret your interval estimate.

c. Predict the service time on a new call in which six copiers are to be serviced. Use a 90 percent
prediction interval.

Refer to Copier maintenance Problem 4.16.

a. Piot the fitted regression line and the data. Does the linear regression function through the
origin appear to be a good fit here?

b. Obtain the residuals ¢;. Do they sum to zero? Plot the residuals against the fitted values Y.
What conclusions can be drawn from your plot?

¢. Conduct a formal test for lack of fit of linear regression through the origin; use & = .01.
State the alternatives, decision rule, and conclusion. What is the P-value of the test?

Refer to Plastic hardness Problem 1.22. Suppose that errors arise in X because the laboratory
technician is instructed to measure the hardness of the ith specimen (Y;) at a prerecorded
elapsed time (X;), but the timing is imperfect so the true elapsed time varies at random from
the prerecorded elapsed time. Will ordinary least squares estimates be biased here? Discuss.
Refer to Grade point average Problem 1.19. A new student earned a grade point average of
3.4 in the freshman year.
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a. Obtain a 90 percent confidence interval for the student’s ACT test score. Interpret your
confidence interval.

b. Iscriterion (4.33) as to the appropriateness of the approximate confidence interval met here?

RefertoPlastic hardness Problem 1.22. The measurement of a new test item showed 238 Brinell
units of hardness.

a. Obtain a 99 percent confidence interval for the elapsed time before the hardness was mea-
sured. Interpret your confidence interval.

b. Is criterion (4.33) as to the appropriateness of the approximate confidence interval met here?

Exercises

4.21.

4.22.

4.23.
4.24.

4.25.

When the predictor variable is so coded that X = 0 and the normal error regression model (2.1)
applies, are by and b; independent? Are the joint confidence intervals for B, and f; then
independent?

Derive an extension of the Bonferroni inequality (4.2a) for the case of three statemints, each
with statement confidence coefficient 1 — c.

Show that for the fitted least squares regression line through the origin (4.15), Z X;e; =0.

Show that ¥ as defined in (4.15) for linear regression through the origin is an unbiased estimator
of E{Y}.
Derive the formula for s2{F),} given in Table 4.1 for linear regression through the origin.

Projects

4.26.

4.27.

Refer to the CDI data set in Appendix C.2 and Project 1.43. Consider the regression relation

of number of active physicians to total population.

a. Obtain Bonferroni joint confidence intervals for By and B, using a 95 percent family con-
fidence coefficient.

b. Aninvestigator has suggested that 8o should be —100 and B, should be .0028. Do the joint
confidence intervals in part (a) support this view? Discuss.

c. It is desired to estimate the expected number of active physicians for counties with total
population of X = 500, 1,000, 5,000 thousands with family confidence coefficient .90.
Which procedure, the Working-Hotelling or the Bonferroni, is more efficient here?

d. Obtain the family of interval estimates required in part (c), using the more efficient procedure.
TInterpret your confidence intervals.

Refer to the SENIC data set in Appendix C.1 and Project 1.45. Consider the regression refation

of average length of stay to infection risk.

a. Obtain Bonferroni joint confidence intervals for §; and B, using a 90 percent family con-
fidence coefficient.

b. Aresearcher suggested that 8y should be approximately 7 and f; should be approximately 1.
Do the joint intervals in part (a) support this expectation? Discuss.

c. It is desired to estimate the expected hospital stay for persons with infection risks X =
2, 3,4, 5 with family confidence coefficient .95. Which procedure, the Working-Hotelling
or the Bonferroni, is more efficient here?

d. Obtain the family of interval estimates required in part (c), u§ing the more efficient procedure.
Interpret your confidence int€rvals,



Matrix Approach to Simple

Linear Regression Analysis

Matrix algebrais widely used for mathematical and statistical analysis. The matrix approach
is practically a necessity in multiple regression analysis, since it permits extensive systems
of equations and large arrays of data to be denoted compactly and operated upon efficiently.

In this chapter, we first take up a brief introduction to matrix algebra. (A more compre-
hensive treatment of matrix algebra may be found in specialized texts such as Reference 5.1.)
Then we apply matrix methods to the simple linear regression model discussed in previ-
ous chapters. Although matrix algebra is not really required for simple linear regression,
the application of matrix methods to this case will provide a useful transition to multiple
regression, which will be taken up in Parts II and 1.

Readers familiar with matrix algebra may wish to scan the introductory parts of this
chapter and focus upon the later parts dealing with the use of matrix methods in regression
analysis.

5.1 Matrices

Definition of Matrix

A matrix is a rectangular array of elements arranged in rows and columns. An example of
a matrix is:

Column Column
1 2

Row 1 16,000 23
Row 2 | 33,000 47
Row 3 | 21,000 35

The elements of this particular matrix are numbers representing income (column 1) and
age (column 2) of three persons. The elements are arranged by row (person) and column
" (characteristic of person). Thus, the element in the first row and first column (16,000)
represents the income of the first person. The element in the first row and second column (23)

76 represents the age of the first person. The dimension of the matrix is 3 x 2, i.e., 3 rows by
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2 columns. If we wanted to present income and age for 1,000 persons in a matrix with the
same format as the one earlier, we would require a 1,000 x 2 matrix.
Other examples of matrices are:

1 0 4 7 12 16
5 10 315 9 8
These two matrices have dimensions of 2 x 2 and 2 x 4, respectively. Note that in giving the

dimension of a matrix, we always specify the number of rows first and then the number of
columns. As in ordinary algebra, we may use Symbols to identify the elements of a matrix:

j=1 j=2 j=3

i=1 ay ap a3
=2 ap azn ax

Note that the first subscript identifies the row number and the second the colundn number.
We shall use the general notation a;; for the element in the ith row and the jth column. In
our above example,i = 1,2and j = 1, 2, 3.

A matrix may be denoted by a symbol such as A, X, or Z. The symbol is in boldface to
identify that it refers to a matrix. Thus, we might define for the above matrix:

a ap; a
A — 11 1 13
ap Gy a3

Reference to the matrix A then implies reference to the 2 x 3 array just given.
Another notation for the matrix A just given is:

A = [a] i=12j;=1273

This notation avoids the need for writing out all elements of the matrix by stating only the
general element. It can only be used, of course, when the elements of a matrix are symbols.
To summarize, a matrix with r rows and ¢ columns will be represented either in full:

ay apz - Gy -t Oye
az Gz --- Qz; - Oy
A=| ) ) . (5.1)
Gy Gz - Gy - e
| Ar1 Qr2 - Gpj - Ope |

or in abbreviated forrri: .
A=Ja;] i=1,...,rnj=1,...,¢
or simply by a boldface symbol, such as A.

- »

Comments

1. Do not think of a matrix as a number. It is a set of elements arranged in an array. Only when
the matrix has dimension 1 x 1 is there a single number in a matrix, in which case one car think of
it interchangeably as either a matrix or a number.
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2. The following is not a matrix:

14
8
10 15
9 16
since the numbers are not arranged in columns and rows. n

Square Matrix

A matrix is said to be square if the number of rows equals the number of columns. Two
examples are:

a a a
3 9 21 22 23

[4 7] ap 4pz ap
dz a4z 433
Vector ¢

A matrix containing only one column is called a column vector or simply a vector. Two
examples are:

a

4 Cy

A= 7 C= C3
10 Cq

Cs

The vector A is a 3 x 1 matrix, and the vector Cis a 5 x 1 matrix.
A matrix containing only one row is called a row vector. Two examples are:

B =[15 25 50] F=[fi f

We use the prime symbol for row vectors for reasons to be seen shortly. Note that the row
vector B’ is a 1 x 3 matrix and the row vector ¥’ is a 1 x 2 matrix.
A single subscript suffices to identify the elements of a vector.

Transpose

The transpose of a matrix A is another matrix, denoted by A’, that is obtained by inter-
changing corresponding columns and rows of the matrix A.
For example, if:

2 5
A=]|7 10
3x2 3 4
then the transpose A’ is:
F_ 12 7 3
zés - [5 10 4]

Note that the first column of A is the first row of A’, and similarly the second column of A
is the second row of A’. Correspondingly, the first row of A has become the first column
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of A’, and so on. Note that the dimension of A, indicated under the symbol A, becomes
reversed for the dimension of A’.
As another example, consider:

4
C=|7 C=[@4 7 10]
3x1 10 1x3

Thus, the transpose of a column vector is a row vector, and vice versa. This is the reason
why we used the symbol B’ earlier to identify a row vector, since it may be thought of as
the transpose of a column vector B.

In general, we have:

-a“ b alc—
A= = [aij] i=1,---,r;j=1a---’c (g‘z)
e | S JN

rl re
- = Row  Column
index index

-a“ arl—
A=]: = lagl  j=l....6i=1...,r (3)
exr . )

_alc arc__ / ‘\

Row  Column
index index

Thus, the element in the ith row and the jth column in A is found in the jth row and ith
column in A’.

Equality of Matrices

Two matrices A and B are said to be equal if they have the same dimension and if all
corresponding elements are equal. Conversely, if two matrices are equal, their corresponding
elements are equal. For example, if:

a 4
A=|a B=|7
3x1 as 3x1 3
then A = B implies:
a) ? 4 (,,12 =7 as = 3
Similarly, if:
ayy ap 17 2
A=l0y ax B=|14 5

3x2 3x2
asy  dsp 13 9
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then A = B implies:

a)) = 17 ap = 2
az = 14 az; = 5
as) = 13 asz; = 9

Regression In regression analysis, one basic matrix is the vector Y, consisting of the n observations on
Examples the response variable:

5.2

Y
Y=\ =
Y, ot
Note that the transpose Y’ is the row vector:
11(,,1 =, o --- HVYn] (5.5)

Another basic matrix in regression analysis is the X matrix, which is defined as follows for
simple linear regression analysis:

1 X,

1 X,
X=|. . (5.6)
nx2 M N

1 X,

The matrix X consists of a column of 15 and a column containing the n observations on the
predictor variable X. Note that the transpose of X is:

, 11 1
z’ﬁn_[x, X, - X] &.7)

The X matrix is often referred to as the design marrix.

Matrix Addition and Subtraction

Adding or subtracting two matrices requires that they have the same dimension. The sum,
or difference, of two matrices is another matrix whose elements each consist of the sum, or
difference, of the corresponding elements of the two matrices. Suppose:

1 4 I 2
A=1|25 B=|2 3
3x2 3 6 3x2 3 4

then:
1+1 4+2 2 6
A+B=|24+2 5+3|=|4 8
32 3+3 6+4 6 10
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Similarly:
1—1 4-2 0 2
A-B=|[2-2 5-3]=|0 2
32 3-3 6-—4 0 2

In general, if:

A ={g;] B =[b;] i=1...,rsj=1...,¢

rxe

then:
A+B=[a,-]-+b,-]-] and A—B=[a;]'—bi]-] (5.8)

rxce
Formula (5.8) generalizes in an obvious way to addition and subtraction of more than two
matrices. Note also that A + B = B + A, as in ordinary algebra. i
The regression model:

Y, =E{Vi}+& i=1,...,n

can be written compactly in matrix notation. First, let us define the vector of the mean
responses:

E{Y\}
E{Y>}
E(Y}=| .

nx1

(5.9)

E{Y,)

and the vector of the error terms:

e = (5.10)

Recalling the definition of the observations vector Y in (5.4), we can write the regression
model as follows:

Y =E{Y}+ €
nx1 nx1 nxl1
because: ;
Y\7 T [EM) £ E{ri} +¢
Y, E{Y2} €2 E{Yh} + &
.= . + .= .
Y, E{Y,} & E{Y,}+ ¢,

Thus, the observations vector Y equals the sum of two vectors, a vector containing the
expected values and another containing the error terms.
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5.3  Matrix Multiplication

Multiplication of a Matrix by a Scalar
A scalar is an ordinary number or a Symbol representing a number. In multiplication of a
matrix by a scalar, every element of the matrix is multiplied by the scalar. For example,
suppose the matrix A is given by:

w=[5 3]
Then 4A, where 4 is the scalar, equals:
4A=4'2 7':'8 28] -
9 3] [36 12
Similarly, kA equals:

where k denotes a scalar.
If every element of a matrix has a common factor, this factor can be taken outside the
matrix and treated as a scalar. For example:

9 27] _,[3 ¢
15 18|~ 7[5 6

Similarly:

_1fs 2
k|3 8

In general, if A = [a;;] and k is a scalar, we have:

W x| W
=lco x| N

Multiplication of a Matrix by a Matrix
Multiplication of a matrix by a matrix may appear somewhat complicated at first, but a little
practice will make it a routine operation.
Consider the two matrices:

25 4 6
2132_[4 1] 2]32:[5 8]

The product AB will be a 2 x 2 matrix whose elements are obtained by finding the cross
products of rows of A with columns of B and summing the cross products. For instance, to
find the element in the first row and the first column of the product AB, we work with the
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first row of A and the first column of B, as follows:

A B AB
Row 1 4| 6 Row 1 |33
Row2 |4 1 8
Col. 1 Col. 2 Col. 1

We take the cross products and sum:
2(4) +5(5) =33

The number 33 is the element in the first row and first column of the matrix AB.
To find the element in the first row and second column of AB, we work with the first row
of A and the second column of B:

A B AB
Row 1 l} l4 Row 1 [33 52 L
Row2 | 4 1 5

Col. 1 Col. 2 Col. 1 Col. 2

The sum of the cross products is:
2(6) +5(8) =52
Continuing this process, we find the product AB to be:
25 4 6 33 52
a8 = [4 1] [5 8] - [21 32]
Let us consider another example:

3
1 3 4
2‘33:[0 5 8] 5=

3x1 2

3
1 3 4 26
’%(?:[0 5 8] ; “[41]

When obtaining the product AB, we say that A is postmultiplied by B or B is premultiplied
by A. The reason for this precise terminology is that multiplication rules forordinary algebra
do not apply to matrix algebra. In ordinary algebra, xy = yx. In matrix algebra, AB # BA
usually. In fact, even though the product AB may be defined, the product BA may not be
defined at all.

In general, the product AB is defined dnly when the number of columns in A equals the
number of rows in B so that ther® will be corresponding terms in the cross products. Thus,
in our previous two examples, we had: ,

Equal i Equal .
AY\\B = AB AY\\B = AB
2x2 2x2 2x2 2x3 3x1 2x1
N /! N /!
Dimension Dimension

of product of product

1
%\
I
H
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Note that the dimension of the product AB is given by the number of rows in A and the
aumber of columns in B. Note also that in the second case the product BA would not be
defined since the number of columns in B is not equal to the number of rows in A:

Unequal

B v\ A
3x| 2x3

Here is another example of matrix multiplication:

by, by

a ap a
AB — 11 1 13 b21 b22
az) Gz Q43 b b
31 32

_ ay by +apby +asbsy  anbp;+apbn +013Z;3f
anby + apba + aybs  a21b1n + anby + axnbs

In general, if A has dimension r X ¢ and B has dimension ¢ x s, the product AB is a matrix
of dimension r x s whose element in the ith row and<jth column is:

¢ .
E aikbkj
k=1

s0 that:
AB = lzaikbki] i=1...,nj=1...s (5.12)
k=1

Thus, in the foregoing example, the element in the first row and second column of the
product AB is:

3
E aubir = anbyz + apby + ayzbs;

k=1

as indeed we found by taking the cross products of the elements in the first row of A and
second column of B and summing.

Additional
Examples ) 4 2l la| _ [4a +2a,
: 5 8 az - 5(11+8(12
2
2. [2 3 51|3]|=1[22+3%+52=1(38]
5

Here, the product is a 1 x 1 matrix, which is equivalent to a scalar. Thus, the matrix product
here equals the number 38.
I X Bo Bot+ B1 X,
3. 1 X, [ﬂ ] = |Bo+ B X2
1 Xs ! Bo+ Bi1Xs3
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ETe-SS—I(;IT A product frequently needed is Y'Y, where Y is the vector of observations on the response
Efagmples variable as defined in (5.4):
Exallip™>
Y,
YY=[Y, ¥, - Y] % =[P+ +--+7]=[D_¥] (5.13)
1x1 - 1 2 n :. - 1 - .
Y,
Note that Y'Y is a 1 x 1 matrix, or a scalar. We thus have a compact way of writing a sum
of squared terms: Y'Y = 5 Y.
We also will need XX, which is a 2 x 2 matrix, where X is defined in (5.6):
1 X,
1 1 - 1)1 X n X
XX = .. = L (5.14
2x2 [X] Xz Xn] - : [le Zth ( )
1 X,
and X'Y, which is a 2 x 1 matrix:
4 Y‘
1 1 - 1] Y
XY = = 5.15
2x1 [Xl Xz c-- Xn:| : [ZXIYI] ( )
Y,

5.4 Special Types of Matrices

Certain special types of matrices arise regularly in regression analysis. We consider the
most important of these.

Symmetric Matrix
If A = A’, A is said to be symmetric. Thus, A below is symmetric:

1 4 6 1 4 6
A=14 2 5 A=|4 2 5 :
33 165 3 316 5 3

A symmetric matrix necessarily is square. Symmetric matrices arise typically in regression
analysis when we premultiply a matrix, say, X, by its transpose, X'. The resulting matrix,
X'X, is symmetric, as can readily be seen from (5.14).

Diagonal Matrix .
A diagonal matrix is a square matrix whose off-diagonal elements are all zeros, such as:
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We will often not show all zeros for a diagonal matrix, presenting it in the form:

a

Two important types of diagonal matrices are the identity matrix and the scalar matrix.

Identity Matrix. The identity matrix or unit matrix is denoted by I. It is a diagonal matrix
whose elements on the main diagonal are all 1s. Premultiplying or postmultifilying any r x r
matrix A by the r x r identity matrix I leaves A unchanged. For example:

1 00 any  apz alﬂ a ap alﬂ
IA=|0 1 0 21 Gp 43| = |Gz 4n O3
|0 0 1] [as axn as)| | a3y a3 as3 |
Similarly, we have:
an a4z ags 10 OW an a2 alﬂ
Al=|ay an ap| |0 1 0)=|ay an an
|as1 a a3 [0 O 1] | a31 axn  as3 |

Note that the identity matrix I therefore corresponds to the number 1 in ordinary algebra,
since we have there that 1 - x = x -1 = x.
In general, we have for any r x r matrix A:

AI=IA=A (5.16)

Thus, the identity matrix can be inserted or dropped from a matrix expression whenever it
is convenient to do so.

Scalar Matrix. A scalar matrix is a diagonal matrix whose main-diagonal elements are
the same. Two examples of scalar matrices are:

2 0 k0 0
0 2 0 k£ O
0 0 &k

A scalar matrix can be expressed as kI, where k is the scalar. For instance:

3 2]-2fp -

£k 0 0 1 00
O k 0] =k|0 1 0| =F
0 0 k 0 01

Multiplying an r x r matrix A by the r x r scalar matrix kI is equivalent to multiplying
A by the scalar k.
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vector and Matrix with All Elements Unity

A column vector with all elements 1 will be denoted by 1:

1
1

1 = : (5-17)
rxl1 .
1

1 -1
) =|: : (5.18)
rxr 1 1
i
For instance, we have:
1 11
P 1 = J=[111
3x1 1 3x3 1 1 1
Note that for an n x 1 vector 1 we obtain:
1
l1’}=[1 - 11 : | =Inl=n
1
and:
1 1 1
W=/ --- 11={: =1
1 1 1 nxn
Zero Vector
A zero vector is a vector containing only zeros. The zero column vector will be denoted
by 0: -
0
. 0
0=1- (5.19)
~ rx1 .
0_
For example, we have: . -
0]
=10
3x1 0_
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5.5 Linear Dependence and Rank of Matrix

Linear Dependence
Consider the following matrix:

1 2 51
A=12 2 10 6
3 4 15 1

Let us think now of the columns of this matrix as vectors. Thus, we view A as being made
up of four column vectors. It happens here that the columns are interrelated in a special
manner. Note that the third column vector is a multiple of the first column vector!”

5 1
101 =5]|2
15 3

-

We say that the columns of A are linearly dependent. They contain redundant information,
s0 to speak, since one column can be obtained as a linéar combination of the others.

We define the set of ¢ column vectors C,, ..., C; in an r X ¢ matrix to be linearly
dependent if one vector can be expressed as a linear combination of the others. If no vector
in the set can be s0 expressed, we define the set of vectors to be linearly independent. A
more general, though equivalent, definition is:

When ¢ scalars k4, . . ., k., not all zero, can be found such that:
lel +k202++kccc=0

where 0 denotes the zero column vector, the ¢ column vectors are linearly (5.20)
dependent. If the only set of scalars for which the equality holds is
ky=0,..., k. =0, the set of ¢ column vectors is linearly independent.

To illustrate for our example, k, = 5, k; =0, k3 = —1, k4 = 0 leads to:

1 2 5 1 0
512{+0]|2]{—-1|10]+0|6] =10
3 4 15 1 0

" Hence, the column vectors are linearly dependent. Note that some of the k; equal zero here.
For linear dependence, it is only required that not all k; be zero.

Rank of Matrix

The rank of a matrix is defined to be the maximum number of linearly independent columns
in the matrix. We know that the rank of A in our earlier example cannot be 4, since the four
columns are linearly dependent. We can, however, find three columns (1, 2, and 4) which
are linearly independent. There are no scalars ky, ks, k4 such that k) C; + k2 Cy + k4Cy =0
other than k) = k, = k4 = 0. Thus, the rank of A in our example is 3.

The rank of a matrix is unique and can equivalently be defined as the maximum number
of linearly independent rows. It follows that the rank of an r x ¢ matrix cannot exceed
min(r, ¢), the minimum of the two values r and c.
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When a matrix is the product of two matrices, its rank cannot exceed the smaller of the
two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C cannot exceed
min(rank A, rank B).

5.6 Inverse of a Matrix

Examples

1
In ordinary algebra, the inverse of a number is its reciprocal. Thus, the inverse of 6is —. A
number multiplied by its inverse always equals 1:

1 1
6--=--6=1
6 6
x-l:x-x_'=x_l x=1
x

In matrix algebra, the inverse of a matrix A is another matrix, denoted by A~!, such thet:

ATTA=AATT=1 (5.21)

where I is the identity matrix. Thus, again, the identity matrix I plays the same role as the

number 1 in ordinary algebra. An inverse of a matrix is defined only for square matrices.

Even $0, many square matrices do not have inverses. If a square matrix does have an inverse,
the inverse is unique.

1. The inverse of the matrix:
is:
since:
or:

w4 - g

2. The inverse of the matrix:

300
A= 0:4 0
3 1o 0 2
1s: .
1 .
~ 0 0 -
3)
-1 1
s |9 2 0
1
0o =
0 2
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sincCe:
I'o o
31 300 100
A'A=1lo = o]0 4 0]=]0 1 0]=1I
41002 0 0 1
0 _
0 3

Note that the inverse of a diagonal matrix is a diagonal matrix consisting simply of the
reciprocals of the elements on the diagonal.

Finding the Inverse

Up to this point, the inverse of a matrix A has been given, and we have only checked to
make sure it is the inverse by seeing whether or not A™!A = L. But how does one find the
inverse, and when does it exist?

An inverse of a square r X r matrix exists if the rank of the matrix is . Such a matrix is
said to be nonsingular or of full rank. An r X r matrix with rink less than r is said to be
singular or not of full rank, and does not have an inverse. The inverse of an r X r matrix of
full rank also has rank r.

Finding the inverse of a matrix can often require a large amount of computing. We shall
take the approach in this book that the inverse of a 2 x 2 matrix and a 3 x 3 matrix can
be calculated by hand. For any larger matrix, one ordinarily uses a computer to find the
inverse, Unless the matrix is of a special form such as a diagonal matrix. It can be shown
that the inverses for 2 x 2 and 3 x 3 matrices are as follows:

1. If:
a b
A= [C d ]
then:
d —b
—1 —_— _
-1 a b | D D
2‘32 [c d] "l —¢ a (5.22)
D D
where:
D =ad —bc (5.22a)

D is called the determinant of the matrix A. If A were singular, its determinant would equal
zero and no inverse of A would exist.

2. If:

>0
LR

then:

(5-13)

=
l_
o0 A, 9
>0 o
e 0
Il
QU >
T
Xm0
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where:
= (ek — fh)/Z B=—Mbk—ch)/Z C=(@f—ce)/Z
D=—(dk— fg)/Z E=(ak—cg)/Z F=—(af —cd)/Z (5.23a)
=(dh—eg)/Z H=—(@h—-bg)/Z K =(ae—bd)/Z
and:

Z =a(ek — fh)y — b(dk — fg) + c(dh — eg) (5.23b)
Z is called the determinant of the matrix B.

Let us use (5.22) to find the inverse of:

. 2 4
A=[3 1]

We have:
=2 b=4
7 = 3 d = 1
D=ad—-bc=2(1)—43)=—
Hence:
1 —4
Al |10 -10) -1 4
-3 2 3 -2
-10 -10

as was given in an eatlier example.

When an inverse A™" has been obtained by hand calculations orfrom a computer program
for which the accuracy of inverting a matrix is not known, it may be wise to compute
A~TA to check whether the product equals the identity matrix, allowing for minor rounding
departures from  and 1.

The principal inverse matrix encountered in regression analysis is the inverse of the matrix
XX in (5.14):

% n > X,-}
N DR
Using rule (5.22), we have: - ‘
a=n b= X; ,
e=3Xi d=3X; .

so that:

p=nYy x- (> x%) (X x)= [ZXZ (ZX) ]=nZ(X,-—X)2
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Hence:
> X} -2 X
&% = | " X —X)? nY (X — X)?
252 -y X; n

ny(Xi— X2 nd(X; - X)?
Since 3~ X; = nX and 3 _(X; — X)? = 3" X? — nX?, we can simplify (5.24):

I _X
. nl X — X2 S(X:— X
/X 1 — n Z .
()Z(XZ ) —X 1 Mﬂﬁ‘

YK — Xy (X — X)?
Uses of Inverse Matrix
In ordinary algebra, we solve an equation of the type:”

by multiplying both sides of the equation by the inverse of 5, namely:
1 1
-(5y) = =20
5069 =500

and we obtain the solution:

y= %(20) =4
In matrix algebra, if we have an equation:
AY =C
we correspondingly premultiply both sides by A™!, assuming A has an invers
AT'AY = A7IC
Since AT'AY = IY =Y, we obtain the solution:
Y=A"'C

To illustrate this vse, suppose we have two simultaneous equations:
2y, +4y, =20
3yi+y, =10
which can be written as follows in matrix notation:
3B
3 1|y |10

The solution of these equations then is:

=0T [
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Earlier we found the required inverse, so we obtain:,

HEEEIHEH

Hence, y) = 2 and y, = 4 satisfy these two equations.

5.7 Some Basic Results for Matrices

We list here, without proof, some basic results for matrices which we will utilize in later

work.
A+B=B+A (5.25)
A+B)+C=A+B+0C) L (5.26)
(AB)C = A(BC) (5.27)
C(A+B) =CA+CB (5.28)
,4 k(A + B) = kA + kB (5.29)
Ay =A (5.30)
A+ByY =A"+PB (5.31)
(AB) = B'A/ (5.32)
(ABC) = C'B'A’ (5.33)
(AB)~! = B'A™! (5.34)
(ABC)™! = C'B'A™! (5.35)
A H1T=A (5.36)
AY = @AYy (5.37)

5.8 Random Vectors and Matrices

A random vector or a random matrix contains elements that are random variables. Thus,
the observations vector Y in (5.4) is a random vector since the Y; elements are random
variables. .

Expectation of Random Vector or Matrix

Suppose we have n = 3 observations in the observations vector Y-

Y,
Y=|Y
. 3x1 Y3 .

The expected value of Y is a vector, denoted by E{Y}, that is defined as follows:

E{Y\}
E{Y} = | E{Y,}
3x1 E{Yg}
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Thus, the expected value of a random vector is a vector whose elements are the expected
values of the random variables that are the elements of the random vector. Similady, the
expectation of a random matrix is a matrix whose elements are the expected values of the
corresponding random variables in the original matrix. We encountered a vector of expected
values earlier in (5.9).
In general, for a random vector Y the expectation is:
E{Y} =[E(Y;]] i=1,...,n (5.38)

nxl1

and for a random matrix Y with dimension n X p, the expectation is:

E(Y}=[E¥;}] i=1...mj=1....p " (539

nxp

Regression Suppose the number of cases in a regression application is n = 3. The three error terms g,

Example &7, €3 each have expectation zero. For the etror terms vector:
€ :
€ = | &
3x1
€3
we have:
Efe}= 0
3x1 3x1
since:
Efg} 0
E{Gz} =10
Eles} 0

Variance-Covariance Matrix of Random Vector
Consider again the random vector Y consisting of three observations Y1, ¥», ¥3. The variances
of the three random variables, 02{Y;}, and the covariances between any two of the random
variables, o'{Y;, Y;}, are assembled in the variance-covariance matrix of Y, denoted by
02{Y}, in the following form:

UZ{YI} o{l, Y»} ofl, Y3}
o’(Y}= | oV, 1} o%¥a} o{Y, Y3} (5-40)
o{¥s, Y1} of¥s, Y} o?(Ys}

Note that the variances are on the main diagonal, and the covariance o{Y;, ¥;} is found
in the ith row and jth column of the matrix. Thus, o'{Y>, Y,} is found in the second row,
first column, and o {Y;, Y5} is found in the first row, second column. Remember, of course,
that o{Y>, ¥} = o{Y), Y2}. Since o{Y;, ¥;} = o{Y;, ¥V;} foralli # j, o2{Y} is a symmetric
matrix.

It follows readily that:

o’{Y} = E{[Y — E{(Y}I[Y — E{Y}]'} (5.41)
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For our illustration, we have:

Y, — E{Nh}
(Y} =ES | Y, — E(Yo} | [V, — E{Y)} Y,—E(Ya} Ys— E(¥3}]
Y; — E{Y3}

Multiplying the two matrices and then taking expectations, we obtain:

Location in Product Term Expected Value
Row 1, column 1 (Y1 — E{Vq1D)? o?{Yq}
Row 1, column 2 (Y7 — E{YaD(Y2 — E{Y2D) aiYs, Y2}
Row 1, column 3 (Ys — E{Yi)(Ys — E{Y3)) VPR EY
Row 2, column 1 (Y2 — E{Y2]) (Y, — E{"1D) o{Ya, Y1}
etc. etc. etc. +

This, of course, leads to the variance-covariance matrix in (5.40). Remember the definitions
of variance and covariance in (A.15) and (A.21), respectively, when taking expectations.
To generalize, the variance-covariance matrix for an n x 1 random vector Y is:

oy} or. Y2} -+ ofr, Y}
o{V, Y1} oYy} -+ ofYa, Y}

oY} = _ _ _ (5.42)
oV, 11} ofY,, Y2} --- o}{Y,} ]

Note again that 6%{Y} is a symmetric matrix.

Let us return to the example based on n = 3 cases. Suppose that the three error terms have
constant variance, 02{¢;} = 0%, and are uncorrelated so that o'{g;, 6;} = 0 fori # j. The
variance-covariance matrix for the random vector € of the previous example is therefore as
follows:

c2 0 O
ofe}j=0 o2 0
3x3 - 0 0 02

Note that all variances are o2 and all covariances are zero. Note also that this variance-
covarianCe matrix is a scalar matrix, with the common variance o2 the scalar. Hence, we
can express the variance-covariance matrix in the following simple fashion:

— ~2T
“5=g
sinCe: ’ :
1 00 o2 0 0
cI=02|0 1 0|=[0 o2 0
0 01 0 0 o2
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Some Basic Results

Frequently, we shall encounter a random vector W that is obtained by premultiplying the
random vector Y by a constant matrix A (a matrix whose elements are fixed):

W = AY (5.43)
Some basic results for this case are:
E{A}=A (5.44)
E{W} = E{AY} = AE(Y} e (5.45)
o} {W} = 6?{AY} = Ac*{Y}A’ (5.46)

where o?{Y} is the variance-covariance matrix of Y.

&8

As a simple illustration of the use of these results, congider:

Wi 1 -11[v Y, - Y,
W, B 1 1 Y, - i+Y, )
Al A

2x1 2x2 2x1

Example

We then have by (5.45):

[1 —‘1] [E{Yl}] [E{Yn}—E{Yz}]
E(W} = -

2x1 1 1] |E{Ys} E{N}+ E{Y,}
and by (5.46):

) [1 —1] [ o2{Y,} J{Y,,Yz}] [ 1 1]
o {W} =
2%2 1 1] oY} o2y} -1 1
_ [oz{m +02 {1}~ 20{1,, 12} o*(¥1} — o*{¥a}
- VAR Y o2{¥1} + 02 {Y3} + 20(1y, Yo}
Thus:
o2 (Wi} = o{Y) ~ Yo} = 0?{Y\} + 0X{¥2} — 20{Y, Yo}
02 {Wa} = o{Y + Yo} = 07 {¥\} + 0X{¥a} + 20{Y}, Yo}
o{Wy, Wy} = oY) — Y5, Y, + Yo} = o2{Y,} — 0%{Y>}

Multivariate Normal Distribution

Density Function. The density function for the multivariate normal distribution is best
given in matrix form. We first need to define some vectors and matrices. The observations
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vector Y containing an observation on each of the p Y variables is defined as usual:

)

Y,
Y =1|. (5.47)
px1 :

Y,

The mean vector E{Y}, denoted by w, contains the expected values for each of the p ¥

variables:
1291
M2
w=1. (5.48)
px1 :
Up 18

Finally, the variance-covariance matrix 62{Y} is denoted by ¥ and contains as always the
variances and covariances of the p Y variables:

2
eh Gl—f cee Opp
(o)1 o, o Ogp
=], . (5.49)
po . . :
O, Opp o0 O
pl p2 p

Here, 012 denotes the variance of Y}, 0}, denotes the covariance of Y| and Y, and the like.
The density function of the multivariate normal distribution can now be stated as follows:

1 1
F) = amyeziz P —5 - wYZHY — IL)] (5-50)
Here, | 2] is the determinant of the variance-covariance matrix X. When there are p = 2
variables, the multivariate normal density function (5.50) simplifies to the bivariate normal
density function (2.74).

The multivariate normal density function has properties that correspond to the ones de-
scribed for the bivariate normal distribution. Forinstance, if Yy, . . ., ¥}, arejointly normally
distributed (i.e., they follow the multivariate normal distribution), the marginal probability
distribution of each variable Y}, is normal, with mean g, and standard deviation o;.

Simple Linear Regression Model in Matrix Terms

We are now ready to develop simple linear regression in matrix terms. Remember again that
we will not present any new results, but shall only state in matrix terms the results obtained
earlier. We begin with the normal error regression model (2.1):

i=P+pXi+e i=1...n (5.51)
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This implies:
Yi=86+BX +¢g

=86+ B X2+& (5.51a)

Yn = ﬂO + ﬂan + ¢,

We defined earlier the observations vector Y in (5.4), the X matrix in (5.6), and the € vector
in (5.10). Let us repeat these definitions and also define the § vector of the regression

coefficients:
Y, 1 X,
Y2 1 X2 ﬂ()
= R = R . = € = 5-52
n¥l : n)x(Z : : zgl I:ﬂl:l nxl ( )
YII 1 XII -
Now we can write (5.51a) in matrix terms compactly as follows:
Y=X f+¢ (5.53)
nxl1 nx2 2x] nxl1
since:
Iq 1 )(l €
Yz _ 1 Xz I:ﬂ() :| + &7
: Do B
Yn L 1 XII 8"
[ Bo + i1 X, £ Bo+ B X+ &
Bo+ Bi X2 ) Bo+ B X2+ &
= . + . = R
_ﬂ0+ﬂan En ﬂ0+ﬂan+£n
Note that X@ is the vector of the expected values of the ¥; observations since E{Y;}=
Bo + Bi1X:; hence:
E{Y} =X (5.54)

nxl1 nx1

where E{Y} is defined in (5.9).
The column of 1s in the X matrix may be viewed as consisting of the constant Xo = 1
in the alternative regression model (1.5): '

Yi = ﬂ0X0+ﬂlXi + & where XO =1

Thus, the X matrix may be considered to contain a column vector consisting of 1s and
another column vector consisting of the predictor variable observations X;.

~ With respect to the error terms, regression model (2.1) assumes that E{g;} = 0, og} =
02, and that the &; are independent normal random variables. The condition E{g;} =01in
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matrix terms is:

E{e}= 0 (5.55)
nxl1 nxl
since (5.55) states:
Efe} 0
E{€2} 0
Efe,} 0

The condition that the error terms have constant variance o2 and that all covariances
o(g;, &;} for i # j are zero (since the &; are independent) is expressed in matrix terms
through the variance-covariance matrix of the error terms:

62 0 0 --- 0 L
0 o2 0 --- 0
= . . . : (5.56)
P 0 0 0 --- o2

Since this is a scalar matrix, we know from the earlier example that it can be expressed in
the following simple fashion:

o’{e} = o1 (5.56a)

nxn nxn

Thus, the normal error regression model (2.1) in matrix terms is:
Y=XB+e (5.57)
where:

€ is a vector of independent normal random variables with E{e} = 0 and
o%{e} = oI

5.10 Least Squares Estimation of Regression Parameters

Normal Equations

The normal equations (1.9):
bo+b Y Xi=) Y
nog + 1 Z ) Z (5.58)
bodY  Xi 4+ b > X} =5 XY,
in matrix terms are:
XX p =XY (5.59)

. 2x2 21 2x1 »

where b is the vector of the least squares regression coefficients:

b = [b"] (5.59a)
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To see this, recall that we obtained X'X in (5.14) and X'Y in (5.15). Equation (5.59) thus
states:

n Y Xi|[b] [ V]

> X, zxf] b] [T

or: - _ -
nby+b, Y X; Y

boY- X +b Y X} | B [ >°XiY; |

These are precisely the normal equations in (5.58).

w

Estimated Regression Coefficients

Example

To obtain the estimated regression coefficients from the normal equations (5.59) by matrix
methods, we premultiply both sides by the inverse of X'X (we assume this exists):

X'X)"'X'Xb = (X'X)"'X'Y
We then find, since (X’X)"'X’X =T andIb = b:

b = XX)"'XY (5.60)
2% 1 2%x2 2x1
The estimators by and by in b are the same as those given eatlier in (1.10a) and (1.10b). We
shall demonstrate this by an example.

We shall use matrix methods to obtain the estimated regression coefficients for the Toluca
Company example. The data on the ¥ and X variables were given in Table 1.1, Using these
data, we define the Y observations vector and the X matrix as follows:

399 1 80
121 1

(5.61a) Y=| . (561b) X=|. . (5.61)
323 1 70

We now require the following matrix products:

1 80
. 1 1 .- 17|t 30 25 1,750
sz[so 30 - 70] : =[1,750 142,300] (5-62)
1 70
399
, 1 1 - 1] 121 7.807
XY—[so 30 .- 70] , =[617,180] (5-63)
323
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Using (5.22), we find the inverse of X'X:

(5.64)

ot [ 287475 —.003535
XX = [—.003535 00005051

In subsequent matrix calculations utilizing this inverse matrix and other matrix results, we
shall actually utilize more digits for the matrix elements than are shown.
Finally, we employ (5.60) to obtain:

[Be] _ orenciorg | 287475 —.003535 7,807
b= [bl} = XX)7XY = [ —.003535 00005051 | | 617,180
62.37
= [ 3.5702] (5.65)
or by =62.37 and b; =3.5702. These results agree with the ones in Chapter 1. An‘}“f differ-
ences would have been due to rounding effects.

Comments

1. To derive the normal equations by the method of least squares, we minimize the quantity:
Q=" Y~ (fo+ f X
In matrix notation:
0= (Y- XB)(Y —XB) (5.66)
Expanding, we obtain:
0=YY-BXY-YXB+BXXB

since (XB)’ = B'X’ by (5.32). Note now that Y'XP is 1 x 1, hence is equal to its transpose, which
according to (5.33) is B'X’Y. Thus, we find:

0 =YY - 2XY+BXXB (5.67)
To find the value of § that minimizes Q, we differentiate with respect to fy and f;. Let:
aQ
d 9fo
— = 5.68
3
Then it follows that: s
]
B (Q) = -2X'Y 4+ 2X'’XB (5.69)

Equating to the zero vector, dividing by 2, and substituting b for § gives the matrix form of the least
squares normal equations in (5.59).

2. A comparison of the normal equations and X'X shows that whenever the columns of XX are
linearly dependent, the normal equations will be linearly dependent also. No unique solutions can
then be obtained for by and b;. Fortunately, in most regression applications, the columns of X'X are
linearly independent, leading to unique solutions for by and b;. ]

|
|
!

H
1
3
+
H
i
i
i
1
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5.11 VFitted Values and Residuals

Fitted Values

Example

Let the vector of the fitted values ¥; be denoted by v
¥,
. | B
Y =] . (5.70)
nxl1 :
A
In matrix notation, we then have: T
¥ =x (5.71)
nxl1 nx2 2x1
because:
¥, 1 X, by + b X,
Yz 1 Xz bO 1 bo -+ b1X2
2l E [bl] =
17,, 1 X, by+ b X,

For the Toluca Company example, we obtain the vector of fitted values using the matrices
in (5.61b) and (5.65):

1 80 347.98

" 1 30 62.37 169.47

Y=Xb= [ 3.5702] = . (5.72)
1 70 312.28

The fitted values are the same, of course, as in Table 1.2.

Hat Matrix. We can express the matrix result for Y in (5.71) as follows by using the
expression for b in (5.60):

¥ = XX'X)"'X'Y

or, equivalently:

f’l —H Y (5.73)
nx nxn nxl1
where:

H = XXX)'X (5.73a)

nxn

We see from (5.73) that the fitted values ¥; can be expressed as linear combinations of
the response variable observations Y;, with the coefficients being elements of the matrix
H. The H matrix involves only the observations on the predictor variable X, as is evident
from (5.73a).

The square n x n matrix His called the harmatrix. It plays an important role in diagnostics
for regression analysis, as we shall see in Chapter 10 when we consider whether regression
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Example
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results are unduly influenced by one or a few observations. The matrix H is symmetric and
has the special property (called idempotency):

HH = H (5.74)

In general, a matrix M is said to be idemporent ift MM = M.

Let the vector of the residuals e; = ¥; — ¥; be denoted by e:

€
€
e =1 (5.75)
e, N
In matrix notation, we then have:
e=Y—-Y=Y-Xb (5.76)
nxl1 nxl1 nxl1 nxl nxl1

For the Toluca Company example, we obtain the vector of the residuals by using the results
in (5.61a) and (5.72):

399 347.98 51.02
121 169.47 —48.47

e=|. |- . |= : (5.77)
323 312.28 10.72

The residuals are the same as in Table 1.2,

Variance-Covariance Matrix of Residuals. The residuals e;, like the fitted values ¥;,
can be expressed as linear combinations of the response variable observations ¥;, using the
result in (5.73) for Y:

e=Y-¥Y=Y-HY={A-HY
We thus have the important result:

e =(1-H Y (5.78)

nx1 nxn nxn nxl1

where H is the hat matrix defined in (5.53a). The matrix I — H, like the matrix H, is
symmetric and idempotent. '
The variance-covariance matrix of the vector of residuals e involves the matrix I — H:

ofe} = o*(I — H) (5.79)

nxn »

and is estimated by:

s’{e} = MSE( — H) (5.80)

nxn
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Comment
The variance-covariance matrix of e in (5.79) can be derived by means of (5.46). Since e = (I - H)Y,
we obtain: ’

o’{e) = (I — H)o*{Y}( — HY

Now 02{Y}=0?{e} =021 for the normal error model according to (5.56a). Also, (I~ H) =
Y — H because of the symmetry of the matrix. Hence:

oZ{e} = o?(1 — I - H)
=o’I-M(A-H)

In view of the fact that the matrix ¥ —H is idempotent, we know tha%l— H(I-H)=
I — H and we obtain formula (5.79). i n

5.12 Analysis of Variance Results

e

Sums of Squares , ]
To see how the sums of squares are expressed in matrix notation, we begin with the total sum
of squares SSTO, defined in (2.43). It will be convenient to use an algebraically equivalent
expression:

N2
SSTO=> (Y, —¥)*=> ¥!- (—Z—HYJ— (5.81)

We know from (5.13) that:

YY=) 1

The subtraction term (3 Y;)?/n in matrix form uses J, the matrix of 1s defined in (5.18),

as follows:
;)2 1
S—Z—-—)— = (—) YJY (5.82)

n n

For instance, if n = 2, we have:

1 1 1| [n] _ i+ Y)Y, +Ys)
(o [l ] -7

Hence, it follows that:

1
SSTO =Y'Y — (—) YJY (5.83)
n

Justas 3" ¥? is represented by Y'Y in matrix terms, so SSE = 3 e = $(¥; — ¥;)% can
be represented as follows:
SSE = e'e = (Y — Xb) (Y — Xb) (5.84)
which can be shown to equal:

SSE=Y'Y —b'X'Y (5.84a)
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Finally, it can be shown that:

1
SSR=b'X'Y — (—) Y'JY (5.85)
n
m_ Let us find SSE for the Toluca Company example by matrix methods, using (5.84a). Using
XA (5.61a), we obtain:
399
121
YY=1[399 121 ... 323]| . | =2,745173
323
and vsing (5.65) and (5.63), we find:
— 7,807 i
XY =1[62.37 3.5702] [617,180 = 2,690,348
Hence:
7 SSE=Y'Y —b'X'Y = 2,745,173 — 2,690,348 = 54,825

which is the same result as that obtained in Chapter 1. Any difference would have been due
to rounding effects.

Comment

To illustrate the derivation of the sums of squares expressions in matrix notation, consider SSE:
SSE =¢'e = (Y —Xb) (Y — Xb) = Y'Y - 2b'’X'Y + b'X'Xb
In substituting for the rightmost b we obtain by (5.60):
SSE = Y'Y - 2b'X'Y + VX' X(X'X)"'X'Y
=YY - 2bXY +bIXY

In dropbing I and subtracting, we obtain the result in (5.84a). |

Sums of Squares as Quadratic Forms

The ANOVA sums of squares can be shown to be quadratic forms. An example of a quadratic
form of the observations ¥; when n = 2 is:

5YF + 6Y,Y, + 47} (5.86)

Note that this expression is a second-degree polynomial containing terms involving the
squares of the observations and the cross product. We can express (5.86) in matrix terms as
follows:

- »

v, Yz]'[g z] [g] — Y'AY (5.86a)

where A is a symmetric matrix.
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In general, a quadratic form is defined as:

n n

YlXAlY=;;a,-jY,-Y,- where a;; = aj; (5.87)
A is a symmetric n X n matrix and is called the matrix of the quadratic form.
The ANOVA sums of squares $ST0, SSE, and SSR are all quadratic forms, as can be

seen by reexpressing b'’X'. From (5.71), we know, using (5.32), that:
X = (Xb)/ — ?/

We now use the result in (5.73) to obtain:

bX = (HY) o
Since H is a symmetric matrix so that H' = H, we finally obtain, using (5.32):
bX =YH (5.88)
This result enables vs to express the ANOVA sums of squares as follows:
- 1 nd
SSTO=Y' |I— (—) J] Y (5.89a)
| n
SSE=Y(IA-H)Y (5.89b)
[ 1
SSR=Y |H- (—) J] Y (5.89¢)
L n /

Each of these sums of squares can now be seen to be of the form Y'AY, where the three A
matrices are:

| (;11—) J (5.90a)
I-H (5.90b)
H- (%) J (5.90¢)

Since each of these A matrices is symmetric, $STO, SSE, and SSR are quadratic forms,
with the matrices of the quadratic forms given in (5.90). Quadratic forms play an important
role in statistics because all sums of squares in the analysis of variance for linear statistical
models can be expressed as quadratic forms.

5.13 Inferences in Regression Analysis

Aswe saw in eatlier chapters, all interval estimates are of the following form: point estimator
plus and minus a certain number of estimated standard deviations of the point estimator.
Similarly, all tests require the point estimator and the estimated standard deviation of the
point estimator or, in the case of analysis of variance tests, various sums of squares. Matrix
algebra is of principal help in inference making when obtaining the estimated standard
deviations and sums of squares. We have already given the matrix equivalents of the sums
of squares for the analysis of variance. We focus here chiefly on the matrix expressions for
the estimated variances of point estimators of interest.



Chapter 5 Matrix Approach to Simple Linear Regression Analysis 207

Regression Coefficients

Example

The variance-covariance matrix of b:

vy [ Pt ottty
"zi?}‘[o{bl,bo} o%}] G20

is:

o’(b} = oc?(X'’X)"! (5.92)
2x2
or, from (5.24a):
gi N 02X2 —Xo?
X:i—XP? Y (Xi—X)?
cpi=| " = 5.
2>{<l2)} —Xo? o? i (5.92a)

YAX: — X)? Y (X — X)?

When MSE is substituted for o2 in (5.92a), we obtain the estimated variance-covariance
matrix of b, denoted by s?{b}:

MSE X*MSE —XMSE
X; — X)? X; — X)?
2y = MsExxy = | " 2 ¥ "1 593
22 —XMSE MSE

> (X — X)? Y (Xi — X)?
In (5.92a), you will recognize the variances of by in (2.22b) and of b, in (2.3b) and the

covariance of by and by in (4.5). Likewise, the estimated variances in (5.93) are familiar
from earlier chapters.

We wish to find s2{bo} and s%{b,} for the Toluca Company example by matrix methods.
Using the results in Figure 2.2 and in (5.64), we obtain:

287475 —.003535 ]

2 _ =1 __
s'{b} = MSEX'X)™ = 2,384 [ —003535 00005051

(5.94)

_ [685.3¢ —8.428
| -8428 12040

Thus, s2{bg} = 685.34 and s2{b,} = .12040. These are the same as the results obtained in
Chapter 2.

Comment !
To derive the variance-covariance matrix of b, recall that:
b= (X'X)"'X'Y = AY
where A is a constant matrix: :
A=XX)"'X
Hence, by (5.46) we have:
oZ{b} = AcZ{Y}A'
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Now 02{Y} = oL Further, it follows from (5.32) and the fact that (X’X)™! is symmetric that:
A =XxX)"
We find therefore:
o?{b} = (X'X) ' X0’ IX(X'X)"

2XX)TIXXXX)

Mean Response

Example

= o2 (X'’X)™'1
= o2(X'X)"!
. n
To estimate the mean response at X, let us define the vector:
X = [ ! ] oo X I x] (5.95)
2x1 Xn . 1x2 -
The fitted value in matrix notation then is:
¥, =X,b (5.96)

since:
Xib=[1 X [Z‘:] = [bo+ b1 Xs] = (¥4l = ¥
Note that X b is a le 1 matrix; hence, we can write the final result as a scalar.
The variance of Yy, given eatlier in (2.29b), in matrix notation is:‘
o {¥,} = 02X, (X'X)"'X,, (5.97)

The variance of ¥, in (5.93) can be expressed as a function of 62 {b}, the variance-covariance
matrix of the estimated regression coefficients, by making use of the result in (5.92):

o*{¥1} = X, o?(b}X, (5.97a)
The estimated variance of ¥}, given earlier in (2.30), in matrix notation is:
(¥} = MSECX,(X'’X)™'X,,) (5.98)
We wish to find s2{¥,} for the Toluca Company example when X, = 65. We define:
X, =[1 65]
and use the result in (5.94) to obtain:
s {7} = X s {b}X,

685.34 —8.428 ][1

=1l 65][—8.428 12040 65]298'37

This is the same result as that obtained in Chapter 2.
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Comment
The result in (5.97a) can be derived directly by using (5.46), since ¥, = X, b:

(¥} = X, 0% ()X,

Hence:

o o?{bo}  ofbo, b1} !
=01 Xl [a{b1,bo} oz?blll ] [X'l]

or:
o*{¥1) = oM{bo} + 2X0{bo, b1} + X202 (b)) (5.99)
Using the results from (5.92a), we obtain:
28 o? o2X? 2Xh(—)_()0'2 X,ZIO'Z
c{tpy)=—+ = + =5 + =
no X=X YK — X Y (- X)?

which reduces to the familiar expression:

1 M] (5.992)

o? ?1 =c?|= + =

{ h } (4 " Z ( Xi — X)Z

Thus, we see explicitly that the variance expression in (5.99a) contains contributions from o2 {b},
o2{b,}, and o'{by, b; }, which it must according to (A.30b) since ¥, = bo+b; X, is a linear combination
of by and b;. |

Prediction of New Observation

The estimated variance s%{pred}, given earlier in (2.38), in matrix notation is:

s2{pred} = MSE(1 + X, (X'X)"'X}) (5.100)
Cited 5.1. Graybill, E A. Matrices with Applications in Statistics. 2nd ed. Belmont, Calif.: Wadsworth,
Reference 2002.
Problems  5.1. For the matrices below, obtain (1) A + B, (2) A — B, (3) AC, (4) AR/, (5) B'A.

1 4 1 3
A=12 6 .B=]1 4 C=[g Z (1)]
3 8 25

State the dimension of each resulting matrix.
5.2. For the matrices below, obtain (1) A + C, 2) A — C, Q) B'A, (4) AC', (5) C'A.

2 1 6 3 8
3 5 9 8 6
A=ls5 4 B=13 C=1s5
4 8 1 - |2 4
State the dimension of each resulting matrix.
5.3. Show how the following expressions are writien in terms of matrices: (1) ¥; — ¥ = ¢,

(Z)ZXie; =0. Assumei =1,...,4.
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*5.4.

5.5.

*5.6.

51.
58.

59.

5.10.

Flavor deterioration. The results shown below were obtained in a small-scale experiment to
study the relation between °F of storage temperature (X) and number of weeks before flavor
deterioration of a food product begins to occur (Y).

it 1 2 3 4 5
Xi: 8 4 0 —4 -8
Yi: 7.8 9.0 10.2 11.0 11.7

Assume that first-order regression model (2.1) is applicable. Using matrix methods, find (1)
Y'Y, @) XX, 3)X'Y.

Consumer finance. The data below show, for a consumer finance company operating in six
cities, the number of competing loan companies operating in the city (X) and the number per
thousand of the company’s loans made in that city that are currently delinquent (Y):

2 i 2 3 4 5 6

Xi 4 1 2 3 3 4
Y 16 5 10 15 13 22

Assume that first-order regression model (2.1) is applicable. Using matrix methods, find (1)
Y'Y, (2) XX, (3)XY. .

Refer to Airfreight breakage Problem 1.21. Using matrix methods, find (1) Y'Y, (2) X'X,
3)XY.

Refer to Plastic hardness Problem 1.22. Using matrix methods, find (1) Y'Y, 2) X'X, 3) X'Y.

Let B be defined as follows:
1 50
B=|1 0 5
1 0 5

a. Are the column vectors of B linearly dependent?
b. What is the rank of B?
c. What must be the determinant of B?

Let A be defined as follows:
01 8
A=1|0 3 1
0 5 5

a. Are the column vectors of A linearly dependent?

b. Restate definition (5.20) in terms of row vectors. Are the row vectors of A linearly dependent?
c. What is the rank of A?

d. Calculate the determinant of A.

Find the inverse of each of the following matrices:

4 3 2
a=[24] s w]
100 1 6

Check in each case that the resulting matrix is indeed the inverse.
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5.11. Find the inverse of the following matrix:

513
A=(4 0 5
1 9 6

Check that the resulting matrix is indeed the inverse.
#5,12. Refer to Flavor deterioration Problem 5.4. Find (X'X)~L.
5.13. Refer to Consumer finance Problem 5.5. Find (X’X) L.
*5.14. Consider the simultaneous equations:

4y + Ty =25
2143y =12
a. Write these equations in matrix notation.

b. Using matrix methods, find the solutions for y; and y,.
5.15. Consider the simultaneous equations:

5y1 + Zyz =8 L

a. Write these equations in matrix notation.
b. Using matrix methods, find the solutions for y; and y,.

5.16. Consider the estimated linear regression function in the form of (1.15). Write expressions in
this form for the fitted values Y; in matrix terms fori =1, ..., 5.

5.17. Consider the following functions of the random variables Y3, Y», and Y3:

Wi=h+Y+Y;s
Wz =Y, 1— Y; 2
Ws=Y1—-Y,—Y;

a. State the above in matrix notation.

b. Find the expectation of the random vector W.

c. Find the variance-covariance matrix of W.

*5.18. Consider the following functions of the random variables Yy, Y3, Y3, and Yj:

1
Wy = Z(Y1+Y2+Y3+Y4)

Wy = %(Yl + 1) — %(Y3 + Y
a. State the above in matrix notation.

b. Find the expectation of the random vector W.

c. Find the variance-covariance matrix of W.

*5.19. Find the matrix A of the quadratic férm:
3Y2 + 107, Y+ 1772
5.20. Find the matrix A of the quadratic form:
] Y} — 8V Y, +8Y;



212 PartOne Simple Linear Regression

*5.21.

522

#5.23.

5.24.

*5.25.

5.26.

For the matrix:

.

find the quadratic form of the observations ¥; and Y5.

For the matrix:
1 0 4
A= lO 3 0}
4 0 9

find the quadratic form of the observations Y, ¥z, and Y3.
Refer to Flavor deterioration Problems 5.4 and 5.12.
a. Using matrix methods, obtain the following: (1) vector of estimated regredSion coefficients,

(2) vector of residuals, (3) SSR, (4) SSE, (5) estimated variance-covariance matrix of b,
(6) point estimare of E£{Y,} when X, = —6, (7) estimated variance of ¥, when X, = —6.

b. What simplifications arose from the spacing of the X levels in the experiment?

c. Find the hat matrix H. -

d. Find s*{e}.

Refer to Consumer finance Problems 5.5 and 5.13.

a. Using matrix methods, obtain the following: (1) vector of estimated regression coefficients,

(2) vector of residuals, (3) SSR, (4) SSE, (5) estimated variance-covariance matrix of b,
(6) point estimate of E{Y;} when X, = 4, (7) s*{pred} when X = 4.

b. From your estimated variance-covariance matrix in part (a5), obtain the following:
(1) s{bo, bi}; (2) s*{bo}; (3) s{by}-

¢. Find the hat matrix H.

d. Find s*{e}.

Refer to Airfreight breakage Problems 1.21 and 5.6.

a. Using matrix Amethods, obtain the following: M XX)L @b, 3)e 4 H, (5 SSE,
(6) s*{b}, (7) ¥, when X, = 2, (8) s2{V;} when X, = 2.

b. From part (a6), obtain the following: (1) s2{b,}; (2) s{by, b1}; 3) s{bo}.

¢. Find the matrix of the quadratic form for SSR.

Refer to Plastic hardness Problems 1.22 and 5.7.

a. Using matrix methods, obtain the following: (1) X’X)™!, 2) b, 3) YA(, 4) H, (5) SSE,
(6) s2{b}, (7) s*{pred} when X, = 30.

b. From part (a6), obtain the following: (1) s2{bg}; 2) s{bo, b1 }; (3) s{b1}.

c. Obtain the matrix of the quadratic form for SSE.

Exercises

5.27.

5.28.

5.29.

5.30.
531.

Refer to regression-through-the-origin model (4.10). Set up the expectation vector for €. Assume
thati =1,...,4.

Consider model (4.10) for regression through the origin and the estimator by given in (4.14).
Obtain (4.14) by utilizing (5.60) with X suitably defined.

Consider the least squares estimator b given in (5.60). Using matrix methods, show thatb is an
unbiased estimator.

Show that ¥}, in (5.96) can be expressed in matrix terms as b'X,,.

Obtain an expression for the variance-covariance matrix of the fitted values ¥;,i = 1,...,n,
in terms of the hat matrix.



Part

Multiple Linear
Regression




Chapter i

SO |
3
MA’V

Multiple Regression |

9‘5}*‘“
Multiple regression analysis is one of the most widely used of all statistical methods. Iy
this chapter, we first discuss a variety of multiple regression models. Then we present the
basic statistical results for multiple regression in matrix form. Since the matrix expressions
for multiple regression are the same as for simple linear regression, we state the results
without much discussion. We conclude the chapter with an example, illustrating a variety

of inferences and residual analyses in multiple regression analysis.

6.1 Multiple Regression Models

Need for Several Predictor Variables

214

When we first introduced regression analysis in Chapter 1, we spoke of regression models
containing a number of predictor variables. We mentioned a regression model where the
response variable was direct operating cost for a branch office of a consumer finance chain,
and four predictor variables were considered, including average number of loans outstanding
at the branch and total number of new loan applications processed by the branch. We also
mentioned a tractor purchase study where the response variable was volume of tractor
purchases in a sales territory, and the nine predictor variables included number of farms in
the territory and quantity of crop production in the territory. In addition, we mentioned a
study of short children where the response variable was the peak plasma growth hormone
level, and the 14 predictor variables included gender, age, and various body measurements.
In all these examples, a single predictor variable in the model would have provided an
inadequate description since a number of key variables affect the response variable in
important and distinctive ways. Furthermore, in situations of this type, we frequently find
that predictions of the response variable based on a model containing only a single predictor
variable are too imprecise to be useful. We noted the imprecise predictions with a single
predictor variable in the Toluca Company example in Chapter 2. A more complex model,
containing additional predictor variables, typically is more helpful in providing sufficiently
precise predictions of the response variable.

In each of the examples just mentioned, the analysis was based on observational data be-
canse the predictor variables were not controlled, usually because they were not susceptible
to direct control. Multiple regression analysis is also highly useful in experimental situations
where the experimenter can control the predictor variables. An experimenter typically will
wish to investigate a number of predictor variables simultaneously because almost always
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more than one key predictor variable influences the response. For example, in a study of
productivity of work crews, the experimenter may wish to control both the size of the crew
and the level of bonus pay. Similarly, in a study of responsiveness to a drug, the experimenter
may wish to control both the dose of the drug and the method of administration.

The multiple regression models which we now describe can be utilized for either obser-
vational data or for experimental data from a completely randomized design.

First-Order Model with Two Predictor Variables

FIGURE 6.1
Response
Functionis a
Plane—Sales
Promotion
Example.

When there are two predictor variables X; and X5, the regression model:
Y =Po+ PiXu + B Xz + & 6.1)

is called a first-order model with two predictor variables. A first-order model, as we noted
in Chapter 1, is linear in the predictor variables. ¥; denotes as usual the response in the
ith trial, and X;; and X;, are the values of the two predictor variables in the ith trial. The
f is £ i
parameters of the model are By, B1, and B, and the error term is &;.
Assuming that E{g;} = 0, the regression function for model (6.1) is:

E{Y} = Bo+ b1 X1+ B X (6.2)

Analogous to simple linear regression, where the regression function E{Y} = By + 1 X is
a line, regression function (6.2) is a plane. Figure 6.1 contains a representation of a portion
of the response plane:

E{Y}=10+2X, +5X, (6.3)

Note that any point on the response plane (6.3) corresponds to the mean response E{Y'} at
the given combination of levels of X; and X.

Figure 6.1 also shows an observation ¥; corresponding to the levels (X;;, X;2) of the two
predictor variables. Note that the vertical rule in Figure 6.1 between Y; and the response plane
represents the difference between ¥; and the mean E{Y;} of the probability distribution of
Y for the given (X, X;2) combination. Hence, the vertical distance from Y; to the response
plane represents the error term ¢; = ¥; — E{Y;}.

- E{Y}=10+2X1 +5X2

o< Xins Xi2)
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Example

.

Frequently the regression function in multiple regression is called a regression surface
or a response surface. In Figure 6.1, the response surface is a plane, but in other cases the
response surface may be more complex in nature.

Meaning of Regression Coefficients. Let us now consider the meaning of the regression
coefficients in the multiple regression function (6.3). The parameter fo =10 is the Y in-
tercept of the regression plane. If the scope of the model includes X; = 0, X, = O, then
Bo = 10 represents the mean response E{Y} at X; = 0, X, = 0. Otherwise, By does not
have any particular meaning as a separate term in the regression model.

The parameter B, indicates the change in the mean response E£{Y} per unit increase in
X, when X, is held constant. Likewise, B, indicates the change in the mean response per
unit increase in X, when X, is held constant. To see this for our examp],;: suppose X, is
held at the level X, = 2. The regression function (6.3) now is:

E{Y} =10+ 2X, +5(2) =20 4+ 2X, X, =2 (6.9
Note that this response function is a straight line with slope B = 2. The same is true for
any other value of X,; only the intercept of the response function will differ. Hence, B, =
indicates that the mean response E{Y} increases by 2 with a unit increase in X, when X, is
constant, no matter what the level of X,. We confirm therefore that B, indicates the change
in E{Y} with a unit increase in X; when X; is held constant.

Similarly, B, =5 in regression function (6.3) indicates that the mean response E{Y}
increases by 5 with a unit increase in X, when X is held constant.

When the effect of X; on the mean response does not depend on the level of X5, and
correspondingly the effect of X, does not depend on the level of X, the two predictor
variables are said to have addirive effects or not to interact. Thus, the first-order regression
model (6.1) is designed for predictor variables whose effects on the mean response are
additive or do not interact.

The parameters B, and B, are sometimes called partial regression coefficients becavse
they reflect the partial effect of one predictor variable when the other predictor variable is
included in the model and is held constant.

The response plane (6.3) shown in Figure 6.1 is for a regression model relating test market
sales (Y, in 10 thousand dollars) to point-of-sale expenditures (X, in thousand dollars) and
TV expenditures (X,, in thousand dollars). Since ; =2, if point-of-sale expenditures in
a locality are increased by one unit (1 thousand dollars) while TV expenditures are held
constant, expected sales increase by 2 units (20 thousand dollars). Similarly, since f2 =5,
if TV expenditures in a locality are increased by 1 thousand dollars and point-of-sale
expenditures are held constant, expected sales increase by 50 thousand dollars.

Comments

1. A regression model for which the response surface is a plane can be used either in its own right
when it is appropriate, or as an approximation to a more complex response surface. Many complex
response surfaces can be approximated well by a plane for limited ranges of X; and X,.
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2. We can readily establish the meaning of 8, and B, by calculus, taking partial derivatives of the
response surface (6.2) with respect to X; and X, in turn:

dE{Y} dE(Y}
ax, P ox, P
The partial derivatives measure the rate of change in E{Y } with respect to one predictor variable when
the other is held constant. [ |

First-Order Model with More than Two Predictor Variables

We consider now the case where there are p — 1 predictor variables X, ..., X,_;. The
regression model:

Yi = fo+ B X +ﬂ2Xi2+'--+ﬂp_1X,-.p_ls+ & (6.5)
is called a first-order model with p — 1 predictor variables. It can also be written:

p—1

Yi=Po+ Y BeXu + & (6.5a)
k=1
’ or, if we let X;o = 1, it can be written as:
. o
Y= BXu+e  where Xip=1 (6.5b)

k=0

Assuming that £{e;} = 0, the response function for regression model (6.5) is:
EY}=Bo+BiXi+BXo+ -+ Bp1Xp (6.6)

This response function is a hyperplane, which is a plane in more than two dimensions. It
is no longer possible to picture this response surface, as we were able to do in Figure 6.1
for the case of two predictor variables. Nevertheless, the meaning of the parameters is
analogous to the case of two predictor variables. The parameter B indicates the change in
the mean response E{Y'} with a unit increase in the predictor variable X, when all other
predictor variables in the regression model are held constant. Note again that the effect
of any predictor variable on the mean response is the same for regression model (6.5) no
matter what are the levels at which the other predictor variables are held. Hence, first-
order regression model (6.5) is designed for predictor variables whose effects on the mean
response are additive and therefore do not interact.

Comment
When p — 1 = 1, regression model (6.5) reduces to:

Yi=Bo+ B Xo+&

which is the simple linear regression model considered in earlier chapters. ]

»

General Linear Regression Model

In general, the variables X,,..., X p;, in a regression model do not need to represent
different predictor variables, as we shall shortly see. We therefore define the general linear
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regression model, with normal error terms, simply in terms of X variables:

Yi=Fo+BiXa+ BXn+- -+ 81 Xip-1 48

where:
Bos Bi, - - ., Bp—1 are parameters
X;1, ..., Xi,p—1 are known constants

&; are independent N (0, 02)

i=1,....n

If we let X;o = 1, regression mode! (6.7) can be written as follows:

Yi = BoXio+ B Xo + BoXio 4+ - -+ Bpo 1 Xipoy +

where X;o =1, or:

p—1
Y, = ZﬂkXik + & where X;o =1
k=0 -

The response function for regression model.(6.7) is, since E{g;} = O:

E(Y}=po+ X1+ BXo+ -+ B X,

(6.7)

(6.7a)

(6.7b)

(6.8)

Thus, the general linear regression model with normal error terms implies that the obser-
vations ¥; are independent normal variables, with mean E{Y;} as given by (6.8) and with

constant variance o2,

This general linear model encompasses a vast variety of situations. We consider a few

of these now.

p — 1Predictor Variables. When X, ..., X, represent p — 1 different predictor vari-
ables, general linear regression model (6.7) is, as we have seen, a first-order model in which
there are no interaction effects between the predictor variables. The example in Figure 6.1

involves a first-order model with two predictor variables.

Qualitative Predictor Variables. The general linearregression model (6.7) encompasses
not only quantitative predictor variables but also qualitative ones, such as gender (male,
female) or disability status (not disabled, partially disabled, fully disabled). We use indicator
variables that take on the values O and 1 to identify the classes of a qualitative variable.

. Consider a regression analysis to predict the length of hospital stay (¥') based on the age

(X,) and gender (X3) of the patient. We define X as follows:
X, = {1 if pati'ent female
0 if patient male
The first-order regression model then is as follows:
Yi=Bo+ B Xu + BXin + &
where:
X;) = patient’s age

X = 1 if patient female
270 if patient male

6.9
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The response function for regression model (6.9) is:

E{Y} = fo+ p1 X\ + o X> (6.10)
For male patients, X, = 0 and response function (6.10) becomes:
E{Y} = Bo+ Bi X1 Male patients (6.10a)
For female patients, X, = 1 and response function (6.10) becomes:
E{Y}=(Bo+ B2+ B X,  Female patients (6.10b)

These two response functions represent parallel straight lines with different intercepts.

In general, we represent a qualitative variable with ¢ classes by means of ¢ — 1 indicator
variables. For instance, if in the hospital stay example the qualifative variable disability
status is to be added as another predictor variable, it can be représented as follows by the
two indicator variables X3 and Xj: 0

Xa = 1 if patient not disabled
710 otherwise

X, = 1 if patient partially disabled

*7 10 otherwise

The first-order model with age, gender, and disability status as predictor variables then is:

Yi = Bo+ B X+ BoXio + B3 Xis + BuXia + & 6.11)
where:

X;) = patient’s age

X0 = 1 if patient female
2710 ifpatient male

Xox = 1 if patient not disabled
70 otherwise

X = 1 if patient partially disabled
#7010 otherwise

In Chapter 8 we present a comprehensive discussion of how to model qualitative predictor
variables and how to interpret regression models containing qualitative predictor variables.

Polynomial Regression. Polynomial regression models are special cases of the general
linear regression model. They contain squared and higher-order terms of the predictor vari-
able(s), making the response function curvilinear. The following is a polynomial regression

model with one predictor variable:
i

Y =Bo+ BiXi + B X + & (6.12)

Figure 1.3 on page 5 shows an example of a polynomial regression function with one
predictor variable.

Despite the curvilinear nature of the response function for regression model (6.12), it is
a special case of general linear regression model (6.7). If we let X;; = X; and X;» = X2,
we can write (6.12) ag follows:

Yi=po+piXa+BXnte
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which is in the form of general linear regression model (6.7). While (6.12) illustrates a curvi-
linear regression model where the response function is quadratic, models with higher-degree
polynomial response functions are also particular cases of the general linear regression
model. We shall discuss polynomial regression models in more detail in Chapter 8.

Transformed Variables. Models withtransformed variables involve complex, curvilinear
response functions, yet still are special cases of the general linear regression model. Consider
the following model with a transformed Y variable:

log¥; = Bo + BiXin + BoXiz + Ba3Xiz + & (6.13)

Here, the response surface is complex, yet model (6.13) can still be treated as a general
linear regression model. If we let ¥/ = log Y;, we can write regressigpsinodel (6.13) as
follows:

Y=o+ BiXu +BXio+ BsXis + &

which is in the form of general linear regression model (6.7). The response variable just
happens to be the logarithm of Y.

Many models can be transformed into the general linear regression model. For instance,
the model:

1
Y; =
Bo+ BiXa + B Xin + &
can be transformed to the general linear regression model by letting ¥7 = 1/Y;. We then
have:

(6.14)

Y/ =P+ biXa + BXint+ &

Interaction Effects. When the effects of the predictor variables on the response variable
are not additive, the effect of one predictor variable depends on the levels of the other pre-
dictor variables. The general linear regression model (6.7) encompasses regression models
with nonadditive or interacting effects. An example of a nonadditive regression model with
two predictor variables X, and X3 is the following:

Yi =P+ BiXu + PoXio + B3 XuXip + & (6.15)

Here, the response function is complex because of the interaction term B3X;; X;,. Yet
regression model (6.15) is a special case of the general linear regression model. Let X3 =
X; X ;> and then write (6.15) as follows:

Yi=Ppo+ B X+ P Xeo+ B Xis + &

We see that this model is in the form of general linear regression model (6.7). We shall
discuss regression models with interaction effects in more detail in Chapter 8.

Combination of Cases. A regression model may combine several of the elements we have
just noted and still be treated as a general linear regression model. Consider the following
regression model containing linear and quadratic terms for each of two predictor variables
and an interaction term represented by the cross-product term:

Y = Bo+ BiXo + BoXh + BaXiz + XS + Bs X Xio + & (6.16)
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FIGURE 6.2 Additional Examples of Response Functions.
4

Y

@ ()

Let us define:
Zy = X; Zin = X3 Ziz = X Ziy =X} Zis = XnXp
We can then write regression model (6.16) as follows:
Yi =Po+ BrZi + B2Zin + B3Ziz + PaZis + PsZis + &
which is in the form of general linear regression model (6.7).
The general linear regression model (6.7) includes many complex models, some of which

may be highly complex. Figure 6.2 illustrates two complex response surfaces when there
are two predictor variables, that can be represented by general linear regression model (6.7).

Meaning of Linear in General Linear Regression Model. It should be clear from the
various examples that general linearregression model (6.7)is not restricted to linear response
surfaces. The term linear model refers to the fact that model (6.7) is linear in the parameters;
it doesmot refer to the shape of the response surface.

We say that a regression model is linear in the parameters when it can be written in the
form:

Y =cofo+cubr + b+ + i p1Bpor + & (6.17)

where the terms ¢, ¢;1, etc., are coefficients involving the predictor variables. For example,
first-order model (6.1) in two predictor, variables:

Y =B+ piXu +BXn+&

is linear in the parameters, with c;o = 1, ¢;; = X}y, and ¢;2 = Xin.
An example of a nonlinear regression model is the following:

Y: = Boexp(B1 X;) + &

This 1s a nonlinear regression model because it cannot be expressed in the form of (6.17).
We shall discuss nonlinear regression models in Part III.
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6.2 General Linear Regression Model in Matrix Terms

We now present the principal results for the general linear regression model (6.7) in matrix
terms. This model, as noted, encompasses a wide variety of particular cases. The results to
be presented are applicable to all of these.

It is a remarkable property of matrix algebra that the results for the general linear regres-
sion model (6.7) in matrix notation appear exactly as those for the simple linear regression
model (5.57). Only the degrees of freedom and other constants related to the number of X
variables and the dimensions of some matrices are different. Hence, we are able to present
the results very concisely.

The matrix notation, to be sure, may hide enormous computational complexities. To find
the inverse of a 10 x 10 matrix A requires a tremendous amount of étf?»nputation, yet it is
simply represented as A~ Our reason for emphasizing matrix algebra is that it indicates
the essential conceptual steps in the solution. The actual computations will, in all but the
very simplest cases, be done by computer. Hence, it does not matter to us whether (X'X)~!
represents finding the inverse of a2 x 2 or a 10 x 10matrix. The important point is to know
what the inverse of the matrix represents.

To express general linear regression model (6.7):

Yi=PF+biXn+BXn+ - +Bp-1Xip1+6&

in matrix terms, we need to define the following matrices:

(6.18a) (6.18b)

[ 1, (1 Xy X o+ Xipa

Y, 1 X X -+ Xop
Y=]. X=7]. . . .
nxl : nxp : : : :

_Yn _1 an XnZ Xn,p~l

(6.18)

(6.18¢) (6.18d)

[ Bo &,
B el ﬂ.l £ = 82
px1 : nx1

| Bp—1 L En

Note that the Y and € vectors are the same as for simple linear regression. The B vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model.
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model (6.7) is:

Y=X B+e (6.19)

nxl1 nXp nxp nxl1
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where:

Y is a vector of responses

B is a vector of parameters

X is a matrix of constants

€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

o2 0 .- 0
0 o2 --- 0 .
ofe}=|. . .| =071,
0o 0 --- o? §

Consequently, the random vector Y has expectation:

E{Y} = XB (6.20)

nx1

and the variance-covariance matrix of Y is the same as that of e:

oY} =01 (6.21)

nxn

Estimation of Regression Coefficients

The least squares criterion (1.8) is generalized as follows for general linear regression
model (6.7):

Q=) (Yi—fo—BiXu—~+— Pp1Xep)’ (6.22)
i=1

The least squares estimators are those values of B, 1, . .., Bp—1 that minimize Q. Let us
denote the vector of the least squares estimated regression coefficients by, by, . . ., b,—; ash:

bo
b, .
b=| . (6.23)
px1 :
- bp—l

The least squares normal equations for the general linear regression model (6.19) are:
- XXb=XY ‘ (6.24)
and the least squares estimators are:

b =XX) ' (XX)Y (6.25)
2x1 2x2 2x1
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The method of maximum likelihood leads to the same estimators for normal error regres-
sion model (6.19) as those obtained by the method of least squares in (6.25). The likelihood

function in (1.26) generalizes directly for multiple regression as follows:

1 l n
L(B.0") = oty P [—2—03 > (i~ fo— BiX —
i=1

- ﬁ,,_lx,-_,,_,)z} (6.26)

Maximizing this likelihood function with respect to Sy, B, . . ., Bp—1 leads to the estimators
in (6.25). These estimators are least squares and maximum likelihood estimators and have
all the properties mentioned in Chapter 1: they are minimum variance unbiased, consistent,

and sufficient.

6.4 Fitted Values and Residuals

Let the vector of the fitted values ¥; be denoted by ' and the vector of the residual terms

= Y; — ¥, be denoted by e:

?l ’ (4]
N ¥, €

(6.27a) Y=1. (6.27b) e =
?Il e}l

The fitted values are represented by:
¥ =Xb

nxl

and the residual terms by:

e =Y-Y=Y—-Xb

nxl

(6.27)

(6.28)

(6.29)

The vector of the fitted values ¥ can be expressed in terms of the hat matrix H as follows:

Y =HY

nxl1

where:

H =XXX)'x

nxn

Similarly, the vector of residuals can be expressed as follows:

e =(I-HY

nxl1

The variance-covariance matrix of the residuals is:

o’{e} = o2(I1— H)

nxn

(6.30)

(6.30a)

(6.31)

(6.32)
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which is estimated by:
s’{e} = MSE1 — H) (6.33)

nxn

6.5 Analysis of Variance Results

sums of Squares and Mean Squares

TABLE 6.1
ANOVA Table
for General
Linear
Regression
Model (6.19).

The sums of squares for the analysis of variance in matrix terms are, from (5.89):

SSTO = Y'Y — (1) YJY=Y [1 - (1) J] Y ) (6.34)
n n 3
SSE = ¢e = (Y — Xb)'(Y — Xb) = Y'Y — b'X'Y = YA — H)Y (6.35)
SSR = bX'Y — (1) YJIY=Y [H —~ (1) J] Y ¢6.36)
n n

where J is an n x n matrix of 1s defined in (5.18) and H is the hat matrix defined in (6.302).
SSTO, as usual, has n — 1 degrees of freedom associated with it. SSE has n — p degrees
of freedom associated with it since p parameters need to be estimated in the regression
function for model (6.19). Finally, SSR has p — 1 degrees of freedom associated with it,
representing the number of X variables X3, ..., Xp—_;.
Table 6.1 shows these analysis of variance results, as well as the mean squares MSR and
MSE”:

SS,

MSR = R (6.37)
p—1
SSE

MSE = 225 (6.38)
n—p

The expectation of MSE is o2, as for simple linear regression. The expectation of MSR
is 0’2 plus a quantity that is nonnegative. For instance, when p — 1 = 2, we have:

1 - _
E(MSRY =0 + 5 [B2Y_(Xur = X2 + B2 (Ko — Xo)?
+ 28182 Y (Xin — X1)(Xiz — Xz)]
Note that if both B; and B, equal zero, E{MSR} = 2. Otherwise E{MSR} > o2.

Source of i
Variation ss. df MS
) SSR
Regression SSR=bXY — (—:—'),Y’JY p—1 MSR = P
a ’ - ‘SSE
Error SSE=Y'Y —WX'Y n—p MSE = ~§————

. —

Total SSTO=Y'Y — (%) Y'JY n-1
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F Test for Regression Relation
To test whether there is a regression relation between the response variable ¥ and the set of

X variables X1, ..., Xp-1, Le., to choose between the alternatives:
Hy: = —_.e = =0
o: B1 = B2 Bp-1 (6.392)
Hienotall B (k=1,..., p— 1) equal zero
we use the test statistic:
MSR
F*= — 6.
MSE (6-39b)
The decision rule to control the Type 1 error at « is:
.
IfFF < F(l1—a;p~—1,n— p),conclude Hy,
P 0 (6.39¢)

If F* > F(1 - a; p ~ 1,n — p), conclude H,

The existence of a regression relation by itself does not, of course, ensure that usefu]
predictions can be made by using it.

Note that when p — 1 = 1, this test reduces to the F test in (2.60) for testing in simple
linear regression whether or not 8; = 0.

Coefficient of Multiple Determination
The coefficient of multiple determination, denoted by R?, is defined as follows:

SSR SSE

2

=——=1—-— 6.40
SSTO SSTO (6.40)
It measures the proportionate reduction of total variation in ¥ associated with the use of the
setof X variables X1, ..., X, ;. The coefficient of multiple determination R? reduces tothe

coefficient of simple determmatlon in (2.72) for simple linear regression when p — 1 =1,
i.e., when one X variable is in regression model (6.19). Just as before, we have:

0<R*<1 (6.41)

where R? assumes the value O when all by =0 (k =1,..., p — 1), and the value 1 when
all Y observations fall directly on the fitted regression surface, i.e., when ¥; = f’,» forall i.

Adding more X variables to the regression model can only increase R? and never reduce
it, because SSE can never become larger with more X variables and SSTO is always the
same for a given set of responses. Since R? usually can be made larger by inclunding a larger
number of predictor variables, it is sometimes suggested that a modified measure be used
that adjusts for the number of X variables in the model. The adjusted coefficient of multiple
determination, denoted by R2, adjusts R? by dividing each sum of squares by its associated
degrees of freedom:

SSE
R2=1—”"’=1—(”_1 SSE. (6.42)
“ SSTO SSTO

n—1

This adjusted coefficient of multiple determination may actually become smaller when
another X variable is introduced into the model, because any decrease in SSE may be more
than offset by the loss of a degree of freedom in the denominator n — p.
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Comments

1. To distinguish between the coefficients of determination for simple and multiple regression,
we shall from now on refer to the former as the coefficient of simple determination.

2. It can be shown that the coefficient of multiple determination R? can be viewed as a coefficient
of simple determination between the responses ¥; and the fitted values ¥;,

3. Alarge value of R% does not necessarily imply that the fitted model is a useful one. For instance,
observations may have been taken at only a few levels of the predictor variables. Despite a high R?
in this case, the fitted model may not be useful if most predictions require extrapolations outside the
region of observations. Again, even though R? is large, MSE may still be too large for inferences to
be useful when high precision is required. ]

The coefficient of multiple correlation R is the positive square root of R*:
R =+R? L6.43)

When there is one X variable in regression model (6.19), i.e., when p—1 = 1, the coefficient
of multiple correlation R equals in absolute value the correlation coefficient r in (2.73) for
simple correlation.

6.6 Inferences about Regression Parameters

The least squares and maximum likelihood estimators in b are unbiased:

Efb) = p (6.44)
The variance-covariance matrix o 2{b}:
o?{bo} o{bo,br} -+ o{bo, by1}
o{by, b o?{bh} ceo o{by, bp_i}
(b} — {1' 0} o {l'pl (6.45)
pxp : : :
o{bp_1,bo} o{bp_y, b1} - o*{b,1}
is given by:
o?{b} = > (X’X)™! (6.46)

PXp
The estimated variance-covariance matrix s*{b}:

s {bo}y ' s{bo, b1} -+ s{bo, bp-1}

2(b) s{bT', bo} 52{'[71} ‘ s{bl,'bp_l} (6.47)
pPXp . . :
s{bp—1,bo¥ s{bp—1, b1} -+ $H{bp-1}
is given by: :
s?{b} = MSE(X'X)™? (6.48)

pxp
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From s?{b}, one can obtain s*{bg}, s*{b,}, or whatever other variance is needed, or any
needed covariances.

Interval Estimation of B
For the normal error regression model (6.19), we have:
b — By

s{bi}

Hence, the confidence limits for §; with 1 — « confidence coefficient are:

~t(n— p) k=0,1,...,p—1 (6.49)

by Xt(1 —a/2;n — p)s{b} (6.50)
Tests for gy e
Tests for B are set up in the nsuval fashion. To test:
Hy: B =0
0: i (6.51a)
Ha: .Bk 5& 0 kil
we may use the test statistic:
b
= 6.51b
s (©-31b)
and the decision rule:
IF|r*| <t(l —a/2;n — p), conclude H,
[7*] < r(1 — «/2;n — p), conclude Hy (6.510)

Otherwise conclude H,

The power of the t test can be obtained as explained in Chapter 2, with the degrees of
freedom modified to n — p.

As with simple linear regression, an F test can also be conducted to determine whether
or not B = 0 in multiple regression models. We discuss this test in Chapter 7.

Joint Inferences

The Bonferroni joint confidence intervals can be used to estimate several regression co-
efficients simultaneously. If g parameters are to be estimated jointly (where g < p), the
confidence limits with family confidence coefficient 1 — « are:

by + Bs{b,} (6.52)
where:
B=rt(1—a/2g;n— p) (6.52a)

In Chapter 7, we discuss tests concerning subsets of the regression parameters.
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6.7 Estimation of Mean Response and Prediction
of New Observation

Interval Estimation of E{V;}

For given values of X,,..., X,_, denoted by Xy1,..., Xp p—1, the mean response is
denoted by E{Y)}. We define the vector X,

1
X hl
X, = ) (6.53)
px1 :
Xh. p—1
L,
so that the mean response to be estimated is:
E{V,} =X,p (6.54)
The estimated mean response corresponding to X,, denoted by ¥;,, is:
¥, =Xb (6.55)
»This estimator is unbiased:
E{¥i} =X, B = E{¥,} (6.56)
and its variance is:
oY1} = 02X, (X'X)'X, (6.57)

This variance can be expressed as a function of the variance-covariance matrix of the
estimated regression coefficients:

(¥} = X, 6’ (b}X,, (6.57a)

Note from (6.57a) that the variance o:2{ ¥, } is a function of the variances o2{b; } of the regres-
sion coefficients and of the covariances o {by, by} between pairs of regression coefficients,
just as in simple linear regression. The estimated variance s%{}}} is given by:

sH ¥} = MSE(X: (X'X)™'X,,) = X s*(b}X,, (6.58)
The 1 — « confidence limits for E{Y},} are:
V1l —o/2;n — p)s{¥,} (6.59)

Confidence Region for Regression Surface '

The 1 —a confidence region for the entire regression surface is an extension of the Working-
Hotelling confidence band (2.40) for the regression line when there is one predictor variable.
Boundary points of the confidence region at X, are obtained from:

¥, = Ws{¥,) (6.60)
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where:
W2=pFQ —a;p,n—p) (6.60a)

The confidence coefficient 1 — o provides assurance that the region contains the entire
regression surface over all combinations of values of the X variables.

Simultaneous Confidence Intervals for Several Mean Responses

To estimate a number of mean responses E{Y;} corresponding to different X, vectors with
family confidence coefficient 1 — «, we can employ two basic approaches:

1. Use the Working-Hotelling confidence region bounds (6.60) for the several X, vectors
of interest: ”

Y £ Ws{¥,) (6.61)

where ¥;,, W, and s{¥;} are defined in (6.55), (6.60a), and (6.58), respectively. Since the
Working-Hotelling confidence region covers the mean résponSc:s for all possible X;, vec-
tors with confidence coefficient | — ¢, the selected boundary values will cover the mean
responses for the X, vectors of interest with family confidence coefficient greater than 1 —¢,

2. Use Bonferroni simultaneous confidence intervals. When g interval estimates are to
be made, the Bonferroni confidence limits are:

Yy £ Bs{¥s) (6.62)
where:
B=t(1—-a/2g,n—p) (6.62a)

For any particular application, we can compare the W and B multiples to see which
procedure will lead to natrower confidence intervals. If the X, levels are not specified in
advance but are determined as the analysis proceeds, itis better to use the Working-Hotelling
limits (6.61) since the family for this procedure includes all possible X, levels.

Prediction of New Observation Ypnew)
The 1 — o prediction limits for a new observation Yy (ewy corresponding to X;, the specified
values of the X variables, are:

¥i £1(1 —a/2;n — p)s{pred} (6.63)
where:
s*{pred} = MSE + s*{¥;} = MSE(1 + X, (X'X)™'X,,) (6.63a)

and s2{F}} is given by (6.58).

Prediction of Mean of m New Observations at X,
When m new observations are to be selected at the same levels X, and their mean ¥(pew) i
to be predicted, the 1 — « prediction limits are:

Y, £1(1 — a/2; n — p)s{predmean} (6.69)
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where:

MSE N 1
s*{predmean} = —— + s*{¥},} = MSE (E + X}, (X’X)"Xh) (6.64a)
m

predictions of g New Observations

Simultaneous Scheffé prediction limits for g new observations at g different levels X;, with
family confidence coefficient 1 — « are given by:

¥y =+ Ss{pred} (6.65)
where:
§*=gF(l—a;8,n— p) (6.65a)

and s2{pred} is given by (6.63a).
Alternatively, Bonferroni simultaneous prediction limits can be used. For g predictions

with family confidence coefficient 1 — «, they are: 18
¥, £ Bs{pred} (6.66)
where:
B=t(l—a/2g;n— p) (6.66a)

A comparison of S and B in advance of any particular use will indicate which procedure
will lead to narrower prediction intervals.

Caution about Hidden Extrapolations

FIGURE 6.3
Region of
Observations
on X; and X,
Jointiy,
Compared with
Ranges of X,
and Xz
Individually.

When estimating a mean response or predicting a new observation in multiple regression,
one needs to be particularly careful that the estimate or prediction does not fall outside the
scope of the model. The danger, of course, is that the model may not be appropriate when it
is extended outside the region of the observations. In multiple regression, it is particularly
easy to lose track of this region since the levels of X\, ..., Xp— jointly define the region.
Thus, one cannot merely look at the ranges of each predictor variable. Consider Figure 6.3,

X2

Region Covered
by X'l and XZ
Jointly |

r<—Range of X;—
I I
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6.8 Diagnostics and Remedial Measures

where the shaded region is the region of observations for a multiple regression application
with two predictor variables and the circled dot represents the values (X, Xin) for which
a prediction is to be made. The circled dot is within the ranges of the predictor variableg
X, and X, individually, yet is well outside the joint region of observations. It is easy to
spot this extrapolation when there are only two predictor variables, but it becomes much
more difficult when the number of predictor variables is large. We discuss in Chapter 10
a procedure for identifying hidden extrapolations when there are more than two predictor
variables.

Diagnostics play an important role in the development and evaluation of multiple regression
models. Most of the diagnostic procedures for simple linear regression that we described in
Chapter 3 carry over directly to multiple regression. We review these diagnostic procedures
now, as well as the remedial measures for simple linear regression that carry over directly
to multiple regression.

Many specialized diagnostics and remedial procedures for multiple regression have alsg

been developed. Some important ones will be discussed in Chapters 10 and 11.

Scatter Plot Matrix

FIGURE 6.4
SYGRAPH
Scatter Plot
Matrix and
Correlation
Matrix—
Dwaine Studios
Example.

Box plots, sequence plots, stem-and-leaf plots, and dot plots for each of the predictor vari-
ables and for the response variable can provide helpful, preliminary univariate information
about these variables. Scatter plots of the response variable against each predictor variable
can aid in determining the nature and strength of the bivariate relationships between each of
the predictor variables and the response variable and in identifying gaps in the data points as
well as outlying data points. Scatter plots of each predictor variable against each of the other
predictor variables are helpful for studying the bivariate relationships among the predictor
variables and for finding gaps and detecting outliers.

Analysis is facilitated if these scatter plots are assembled in a scatter plot matrix, such
as in Figure 6.4. In this figure, the Y variable for any one scatter plot is the name found in

(a) Scatter Plot Matrix (b) Correlation Matrix
SALES | . - .o
X ° o P
o 8% < H SALES  TARGTPOP DISPOINC
PR TARGTPOP P SALES 1.000 945 .836
2™ go, o TARGTPOP 1.000 781
s 0" S DISPOINC 1.000

= | DISPOINC
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its row, and the X variable is the name found in its column. Thus, the scatter plot matrix in
Figure 6.4 shows in the first row the plots of ¥ (SALES) against X, (TARGETPOP) and
X, (DISPOINC), of X, against Y and X in the second row, and of X, against ¥ and X,
in the third row. These variables are described on page 236. Alternatively, by viewing the
first column, one can compare the plots of X, and X, each against Y, and similarly for the
other two columns. A scatter plot matrix facilitates the study of the relationships among
the variables by comparing the scatter plots within a row or a column. Examples in this and
subsequent chapters will illustrate the usefulness of scatter plot matrices.

A complement to the scatter plot matrix that may be useful at times is the correlation ma-
trix. This matrix contains the coefficients of simple correlation ry, rys, . . . , Fy p—1 between
Y and each of the predictor variables, as well as all of the coefficients of simple correlation
among the predictor variables—ry, between X and X3, r13 between X and X3, etc. The
format of the correlation matrix follows that of the scatter plot matrix:

i
1 ry| rys cee Ty p-
ry) 1 r2  cce FiLp-1
(6.67)
'1
Fyp—1 Tip-1 Tap-1 °-° 1

Note that the correlation matrix is symmetric and that its main diagonal contains 1s because
the coefficient of correlation between a variable and itself is 1. Many statistics packages
provide the correlation matrix as an option. Since this matrix is symmetric, the lower (or
upper) triangular block of elements is frequently omitted in the output.

Some interactive statistics packages enable the user to employ brushing with scatter plot
matrices. When a point in a scatter plot is brushed, it is given a distinctive appearance on the
computer screen in each scatter plot in the matrix. The case corresponding to the brushed
point may also be identified. Brushing is helpful to see whether a case that is outlying in
one scatter plot is also outlying in some or all of the other plots. Brushing may also be
applied to a group of points to see, for instance, whether a group of cases that does not fit
the relationship for the remaining cases in one scatter plot also follows a distinct pattern in
any of the other scatter plots.

Three-Dimensional Scatter Plots

Some interactive statistics packages provide three-dimensional scatter plots or point clouds,
and permit spinning of these plots to enable the viewer to see the point cloud from different
perspectives. This can be very helpful fof identifying patterns that are only apparent from
certain perspectives. Figure 6.6 6n page 238 illustrates a three-dimensional scatter plot and
the use of spinning. ’

Residual Plots

A plot of the residuals against the fitted values is useful for assessing the appropriateness of
the multiple regression function and the constancy of the variance of the error terms, as well
as for providing information about outliers, just as for simple linear regression. Similary,

»
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a plot of the residuals against time or against some other sequence can provide diagnostic
information about possible correlations between the error terms in multiple regression. Box
plots and normal probability plots of the residuals are useful for examining whether the
error terms are reasonably normally distributed.

In addition, residuals should be plotted against each of the predictor variables. Each of
these plots can provide further information about the adequacy of the regression function
with respect to that predictor variable (e.g., whether a curvature effect is required for thyt
variable) and about possible variation in the magnitude of the error variance in relation to
that predictor variable.

Residuals should also be plotted against important predictor variables that were omitted
from the model, to see if the omitted variables have substantial additional effects on the
response variable that have not yet been recognized in the regression model. Also, residuals
should be plotted against interaction terms for potential interaction effects not included ip
the regression model, such as against X; X,, X; X3, and X5 X3, to see whether some or all
of these interaction terms are required in the model.

A plot of the absolute residuals or the squared residuals against the fitted values is useful
for examining the constancy of the variance of the error terms. If nonconstancy is detected, a
plot of the absolute residuals or the squared residuals against each of the predictor variables
may identify one or several of the predictor variables to which the magnitude of the error
variability is related.

Correlation Test for Normality
The correlation test for normality described in Chapter 3 carries forward directly to multiple
regression. The expected values of the ordered residuals under normality are calculated
according to (3.6), and the coefficient of correlation between the residuals and the expected
values under normality is then obtained. Table B.6 is employed to assess whether or not
the magnitude of the correlation coefficient supports the reasonableness of the normality
assumption.

Brown-Forsythe Test for Constancy of Error Variance

The Brown-Forsythe test statistic (3.9) for assessing the constancy of the error variance can
be used readily in multiple regression when the error variance increases or decreases with
one of the predictor variables. To conduct the Brown-Forsythe test, we divide the data set
into two groups, as for simple linear regression, where one group consists of cases where
the level of the predictor variable is relatively low and the other group consists of cases
where the level of the predictor variable is relatively high. The Brown-Forsythe test then
proceeds as for simple linear regression.

Breusch-Pagan Test for Constancy of Error Variance
The Breusch-Pagan test (3.11) for constancy of the error variance in multiple regressionis
carried out exactly the same as for simple linear regression when the error variance increases
or decreases with one of the predictor variables. The squared residuals are simply regressed
against the predictor variable to obtain the regression sum of squares SSR*, and the test
proceeds as before, using the etror sum of squares SSE for the full multiple regression
model.
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When the error variance is a function of more than one predictor variable, a multiple
regression of the squared residuals against these predictor variables is conducted and the
regression sum of squares SSR* is obtained. The test statistic again uses SSE for the full
multiple regression model, but now the chi-square distribution involves ¢ degrees of free-
dom, where ¢ is the number of predictor variables against which the squared residuals are
regressed.

F Test for Lack of Fit

The lack of fit F test described in Chapter 3 for simple linear regression can be carried over
to test whether the multiple regression response function: i

E{Yy=0+ b1 X1+ + Bp1Xp

is an appropriate response surface. Repeat observations in multiple regression areLreplicate
observations on Y corresponding to levels of each of the X variables that are constant from
trial to trial. Thus, with two predictor variables, repeat observations require that X, and X,
each remain at given levels from trial to trial.

Once the ANOVA table, shown in Table 6.1, has been obtained, SSE is decomposed into
pure error and lack of fit components. The pure error sum of squares SSPE is obtained by first
calculating for each replicate group the sum of squared deviations of the Y observations
around the group mean, where a replicate group has the same values for each of the X
variables. Let ¢ denote the number of groups with distinct sets of levels for the X variables,
and let the mean of the ¥ observations for the jth group be denoted by ¥ ;. Then the sum
of squares for the jth group is given by (3.17), and the pure error sum of squares is the sum
of these sums of squares, as given by (3.16). The lack of fit sum of squares SSLF equals the
difference SSE — SSPE, as indicated by (3.24).

The number of degrees of freedom associated with SSPFE is n — ¢, and the number of
degrees of freedom associated with SSLF is (n — p) — (n — ¢) = ¢ — p. Thus, for testing
the alternatives:

Ho: E{Y}= o+ b1 X1+ + Bp1 Xp-1
Hy: E{Y}# Bo+BiXa+---+ Bpi Xp—i

the appropriate test statistic is:

(6.68a)

_ SSLF | SSPE _ MSLF
“¢c—p n—c MSPE

where SSLF and SSPE are given by (3.2f1) and (3.16), respectively, and the appropriate
decision rule is:

*

(6.68b)

IFF* < F(1 —a;c— p,n —¢), conclude H
< F(1—-a;c— p,n—¢),conclude Hy (6.68¢)
IfF*> F(1 -a;c— p,n— c),conclude H,

Comment

When replicate observations are not available, an approximate lack of fit test can be conducted
if there are cases that have similar X, vectors. These cases are grouped together and treated as
pseudoreplicates, and the test for lack of fit is then carried out using these groupings of similar
cases. |
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Remedial Measures

The remedial measures described in Chapter 3 are also applicable to multiple regression.
When a more complex model is required to recognize curvature or interaction effects, the
multiple regression model can be expanded to include these effects. For example, X3 might
be added as a variable to take into account a curvature effect of X, or X X3 might be
added as a variable to recognize an interaction effect between X; and X5 on the response
variable. Alternatively, transformations on the response and/or the predictor variables cap
be made, following the principles discussed in Chapter 3, to remedy model deficiencies.
Transformations on the response variable ¥ may be helpful when the distributions of the error
terms are quite skewed and the variance of the error terms is not constant. Transformations
of some of the predictor variables may be helpful when the effects of these variables are
curvilinear. In addition, transformations on ¥ and/or the predictor variables may be helpful
in eliminating or substantially reducing interaction effects.

As with simple linear regression, the usefulness of potential transformations needs to be
examined by means of residual plots and other diagnostic tools to determine whether the
multiple regression model for the transformed data is appropriate.

Box-Cox Transformations. The Box-Cox procedure for determining an appropriate
power transformation on Y for simple linear regression models described in Chapter 3
is also applicable to multiple regression models. The standardized variable W in (3.36) is
again obtained for different values of the parameter A and is now regressed against the set
of X variables in the multiple regression model to find that value of A that minimizes the
error sum of squares SSE.

Box and Tidwell (Ref. 6.1) have also developed an iterative approach for ascertaining
appropriate power transformations for each predictor variable in amultiple regression model
when transformations on the predictor variables may be required.

6.9 An Example—Multiple Regression with Two
Predictor Variables

Setting

In this section, we shall develop a multiple regression application with two predictor vari-
ables. We shall illustrate several diagnostic procedures and several types of inferences that
might be made for this application. We shall set up the necessary calculations in matrix
format but, for ease of viewing, show fewer significant digits for the elements of the matrices
than are used in the actual calculations.

Dwaine Studios, Inc., operates portrait studios in 21 cities of medium size. These studios
specialize in portraits of children. The company is considering an expansion into other
cities of medium size and wishes to investigate whether sales (Y) in a community can be
predicted from the number of persons aged 16 or younger in the community (X,) and the
per capita disposable personal income in the community (X5). Data on these variables for
the most recent year for the 21 cities in which Dwaine Studios is now operating are shown
in Figure 6.5b. Sales are expressed in thousands of dollars and are labeled ¥ or SALES;
the number of persons aged 16 or younger is expressed in thousands of persons and i
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FlGURE 6.5 (a) Multiple Regression Output (b) Basic Data
SYSTAT DEP VAR: SALES N: 21 MULTIPLE R: 0.957 SQUARED MULTIPLE R: CASE X1 X2 Y FITTED RESIDUAL
. 0.917 1 68.5 16.7 174.4 187.184 -12.7841
ltl le ADJUSTED SQUARED MULTIPLE R: .907 STANDARD ERROR OF ESTIMATE: 2 45.2 16.8 164.4 154.229 10.1706
uitip!

. 11.0074 3 91.3 18.2 244.2 234.396 9.8037
Regress“)n 4 47.8 16.3 154.6 153.329 1.2718
Qutput and 5 46.9 17.3 181.6 161.385 20.2151

. 6 66.1 18.2 207.5 197.741 9.7586
Basic 7 49.5 15.9 152.8 152.085  0.7449
Data___Dwaine VARIABLE  COEFFICIENT STD ERROR  STD COEF TOLERANCE T P(2 TAIL) 8 52.0 17.2 163.2 167.867 ~4.6666

. 9 48.9 16.6 145.4 157.738 -~12.3382
Studlos CONSTANT ~68.8571 60.0170 0.0000 . -1.1473 0.2663 10 38.4 16.0 137.2 136.846 0.3540
Example' TARGTPOP 1.4546 0.2118 0.7484 0.3896 6.8682 0. 0000 11 87.9 18.3 241.9 230.387 11.5126
DISPQINC 9.3655 4.0640 0.2511 0.3896 2.3045 0.0333 12 72.8 17.1 191.1 197.185 -6.0849

13r 88.4 17.4 232.0 222.686 9.3143

12, 42,9 15.8 145.3 141.518 3.7816

15, 52.5 17.8 161.1 174.213 -13.1132

ANALYSIS OF VARIANCE 16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

SOURCE SUM-DF-SQUARES DF MEAN-SQUARE F-RATIO P 18 51.7 16.3 144.0%159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

REGRESSION 240185. 2821 2 12007. 6411 99.1038 0.0000 20 82.7 19.1 224.1 230.316 ~6.2160

RESIDUAL 2180.9274 18 121.1626 21 52.3 16.0 166.5 157.064 9.4356

INVERSE (X'X)
1 2 3
i 1 20,7289
2 0.0722 0.00037
3 ~1.9926 ~0.0056 0.1363

labeled X; or TARGTPORP for target population; and per capita disposable personal income

is expressed in thousands of dollars and labeled X, or DISPOINC for disposable income.

The first-order regression model:

Y =fo+ b1 X+ foXio + & (6.69)
with normal error terms is expected to be appropriate, on the basis of the SYGRAPH
scatter plot matrix in Figure 6.4a. Note the linear relation between target population and
sales and between disposable income and sales. Also note that there is more scatter in the
latter relationship. Finally note that there is also some linear relationship between the two
predictor variables. The correlation matrix in Figure 6.4b bears out these visual impressions
from the scatter plot matrix.

A SYGRAPH plot of the point cloud is shown in Figure 6.6a. By spinning the axes, we
obtain the perspective in Figure 6.6b which supports the tentative conclusion that a respense
plane may be a reasonable regression function to utilize here.

i
Basic Calculations -

The X and Y matrices for the Dwaine Studios example are as follows:

P

1 68.5’ 16.7 174.4
1 452 16.8 164.4

(6.70)

1 523 16.0 166.5
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FIGURE 6.6 SYGRAPH Plot of Point Cloud before and after Spinning—Dwaine Studios Exa

Sales

(a) Before Spinning (b) After Spinnin
e
250 e e 250
e
e
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We require:
1.
1 68.5
1 1
1 452
XX=|685 452 --- 523 ] )
167 168 --- 160| | _-
1 523
which yields:
21.0 11,3024 360.0
X'X = | 1,302.4 87,707.9 22,609.2
360.0 22,6092 6,190.3
2.
174.4
! ! 164.4
XY= |685 452 --- 523
167 16.8 --- 16.0 ’
166.5
which yields:
3,820
X'Y = | 249,643

66,073

16.
16.

16.
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-1

210 1,324 3600
X'X)™? = | 1,3024 87,707.9 22,609.2
360.0 22,6092  6,190.3

Using (5.23), we obtain:
20.7280  .0722 —1.9926
XXy ! = 0722 00037 —.0056 (6.73)
—~1.9926 —.0056 .1%93

Algebraic Equivalents. Note that X'X for the first-order regression model (6.69) with
two predictor variables is:

. . . 1 Xn X

, 1 Xy X
XX=1Xny Xu - Xu . .
X2 Xoo -0 Xm2 ) ' '

1 an XnZ

or:

n > X > Xz
XX=[>Xa 2Xi XXuXe (6.74)

Y X Y XeXa 2 Xp
For the Dwaine Studios example, we have:
n=21
D Xy =685+452+-- = 13024
D XuXp = 68.5(16.7) +45.2(16.8) + - - - = 22,609.2
efc.

These elements are found in (6.71).
Also note that X'Y for the first-order regression model (6.69) with two predictor
variables is:

Y
1 T | v Y
2
XY= |Xu Xu v Xu = > XY (6.75)
Xi2-Xe - Xm Y S XY

For the Dwaine Studios example, we have:
Z Y, = 1744+ 1644 + - - = 3,820

P

N XY, = 68.5(174.4) + 45.2(164.4) + - - - = 249,643
D XY, =16.7(174.4) + 16.8(164.4) + - - - = 66,073

These are the elements found in (6.72).
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Estimated Regression Function

FIGURE 6.7
S-Plus Plof of
Estimated
Regression
Surface—
Dwaine Studios
Example.

The least squares estimates b are readily obtained by (6.25), using our basic calculations
in (6.72) and (6.73):
29.7280 0722 —1.9926 3,820

b=XX)"'XY= 0722 .00037 —.0056 | | 249,643
—1.9926 —.0056 1363 66,073
which yields:
bo —68.857
b=|b| = 1.455 y (6.76)
by 9.366 -

and the estimated regression function is:
¥ = —68.857 + 1.455X, + 9.366 X,

A three-dimensional plot of the estimated regr'zssion function, with the responses super-
imposed, is shown in Figure 6.7. The residuals are represented by the small vertical lines
connecting the responses to the estimated regression surface.

This estimated regression function indicates that mean sales are expected to increase by
1.455 thousand dollars when the target population increases by 1 thousand persons aged
16 years or younger, holding per capita disposable personal income constant, and that mean
sales are expected to increase by 9.366 thousand dollars when per capita income increases
by 1 thousand dollars, holding the target population constant.

Figure 6.5a contains SYSTAT multiple regression output for the Dwaine Studios exam-
ple. The estimated regression coefficients are shown in the column labeled COEFFICIENT;
the output shows one more decimal place than we have given in the text.

The SYSTAT output also contains the inverse of the X'X matrix that we calculated
earlier; only the lower portion of the symmetric matrix is shown. The results are the same
asin (6.73).

Sales
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Algebraic Version of Normal Equations. The normal equations in algebraic form fo
the case of two predictor variables can be obtained readily from (6.74) and (6.75). We have

X'X)b = X'Y

n > Xi > Xin by Y
Y Xa  YXA Y XaXe| |b| =Y xaY
> Xio Y XeoXa Y. X3 b, > XY

from which we obtain the normal equations: e

Zl/i:nbo-l-blzxil-l-bzzxizt .
S XaYi=boy Xa+bh Y Xi+bh ) XuXp (6.77)
S Xo¥i=bhY Xo+bh Y XaXo+b Y X5

Fitted Values and Residuals

To examine the appropriateness of regression model (6.69) for the data at hand, we require
the fitted values ¥; and the residuals ¢; = ¥; — Y¥;. We obtain by (6.28):

~

Y =Xb
Y, 1 68.5 167 187.2
7, 1 452 168 | 6887 154.2
i =1. . . 1.455 = .
K : : : 9.366 :
¥ 1 523 16.0 157.1
Further, by (6.29) we find:
e=Y-Y
e 174.4 187.2 —12.8
e, 164.4 154.2 10.2

Figure 6.5b shows the cortiputer output for the fitted values and residuals to more decimal
places than we have presented. :

nalysis of Appropriateness of Model .
We begin our analysis of the appropriateness of regression model (6.69) for the Dwaine
Studios example by considering the plot of the residuals e against the fitted values ¥ in
Figure 6.8a. This plot does not suggest any systematic deviations from the response plane,
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FIGURE 6.8 (a) Residual Plot against ¥ (b) Residual Plot against X,
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nor that the variance of the error terms varies with the level of ¥. Plots of the residuals e
against X; and X5 in Figures 6.8b and 6.8c, respectively, are entirely consistent with the
conclusions of good fit by the response function and constant variance of the error terms.

In multiple regression applications, there is frequently the possibility of interaction ef-
fects being present. To examine this for the Dwaine Studios example, we plotted the resid-
vals e against the interaction term X, X, in Figure 6.8d. A systematic pattern in this plot
would suggest that an interaction effect may be present, so that a response function of the
type:

E{Y}= Bo+ B X) + foXo + B3 X, X,

. might be more appropriate. Figure 6.8d does not exhibit any systematic pattern; hence, 00
interaction effects reflected by the model term f3 X X, appear to be present.



Chapter 6 Muitiple Regressionl 243

FIGURE 6.9 @ (b)
Additional Plot of Absolute _ Normal Probability Plot
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Figure 6.9 contains two additional diagnostic plots. Figure 6.9a presents a plot of the
absolute residuals against the fitted values. There is no indication of nonconstancy of the
error variance. Figure 6.9b contains a normal probability plot of the residuals. The pattern
is moderately linear. The coefficient of correlation between the ordered residuals and their
expected values under normality is .980. This high value (the interpolated critical valve in
Table B.6 for n = 21 and o = .05 is .9525) helps to confirm the reasonableness of the
conclusion that the error terms are fairly normally distributed.

Since the Dwaine Studios data are cross-sectional and do not involve a time sequence,
a time sequence plot is not relevant here. Thus, all of the diagnostics support the use of
regression model (6.69) for the Dwaine Studios example.

Analysis of Variance

To test whether sales are related to target population and per capita disposable income, we
require the ANOVA table. The basic quantities needed are:

174.4
164.4
YY=1{1744 1644 --- 166.5]
166.5
= 721,072.40
= 11 .- 1] ]1744
1 1 ’ 1] ]164.4
~ ) YJIY = —[1744 164.4 --- 166.5] .
n 21 . :
11 1] [ 166.5
2
= G.8200)° = 694,876.19

21
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Thus:
1

fl

SSTO=Y'Y — ( ) Y'JY = 721,072.40 — 694,876.19 = 26,196.21

and, from our results in (6.72) and (6.76):
SSE =YY - bXY
3,820
= 721,072.40 — [-68.857 1.455 9.366] | 249,643
66,073
= 721,072.40 — 718,891.47 = 2,180.93

Finally, we obtain by subtraction:
SSR = SSTO — SSE = 26,196.21 — 2,180.93 = 24,015.28

These sums of squares are shown in the SYSTAT ANOVA table in Figure 6.5a. Also
shown in the ANOVA table are degrees of freedom and mean squares. Note that three
regression parameters had to be estimated; hence, 21 —3 =18 degrees of freedom are
associated with SSE. Also, the number of degrees of freedom associated with SSR is
2—the number of X variables in the model.

Test of Regression Relation. To test whether sales are related to target population and
per capita disposable income:

H(): ﬁ] = 0 and ﬁz =0
H,: not both B, and B, equal zero

we use test statistic (6.39b):

MSR _ 12,007.64
MSE ~— 121.1626

This test statistic is labeled F-RATIO in the SYSTAT output. For ¢ = .05, we require
F(.95; 2. 18) = 3.55. Since F* = 99.1 > 3.55, we conclude H,, that sales are related to
target population and per capita disposable income. The P-value for this test is .0000, as
shown in the SYSTAT output labeled P.

Whether the regression relation is useful for making predictions of sales or estimates of
mean sales still remains to be seen.

F* = 99.1

Coefficient of Multiple Determination. For our example, we have by (6.40):
5 SSR 24,015.28

R° = =
SSTO  26,196.21

Thus, when the two predictor variables, target population and per capita disposable income,
are considered, the variation in sales is reduced by 91.7 percent. The coefficient of multipk
determination is shown in the SYSTAT output labeled SQUARED MULTIPLE R. Also
shown in the output is the coefficient of multiple correlation R = .957 and the adjusted
coefficient of multiple determination (6.42), Rf, = .907, which is labeled in the output

= 917
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ADIUSTED SQUARED MULTIPLE R. Note that adjusting for the number of predictor
variables in the model had only a small effect here on R2.

gstimation of Regression Parameters

Dwaine Studios is not interested in the parameter fy since it falls far outside the scope of
the model. It is desired to estimate ) and B jointly with family confidence coefficient .90.
We shall use the simultaneous Bonferroni confidence limits (6.52).

First, we need the estimated variance-covarjance matrix s*{b}:

s’ (b} = MSE(X'X)™!
MSE is given in Figure 6.5a, and (X’X)~! was obtained in (6.73). Hence:
29.7289 0722 —1.9926

sib) = 121.1626 | .0722  .00037 —.0056 L
~1.9926 —.0056 1363
(6.78)
3,6020 8748 —241.43
= 8.748  .0448 —.679
—24143 —.679 16.514

The two estimated variances we require are:

s2(b)} = .0448 or s{b}=.212
s2{b,} = 16.514 or s{b,} = 4.06
These estimated standard deviations are shown in the SYSTAT outputin Figure 6.5a, 1abeled

STD ERROR, to four decimal places.
Next, we require for g = 2 simultaneous estimates:

B =1[1 — .10/2(2); 18] = #(.975;18) = 2.101

The two pairs of simultaneous confidence limits therefore are 1.455 = 2.101(.212) and
9.366 % 2.101(4.06), which yield the confidence intervals:

1.01 < p; < 1.90
84 < B, <179

With family confidence coefficient .90, we conclude that 8, falls between 1.01 and 1.90
and that S, falls between .84 and 17.9.

Note that the simultaneous confidence intervals suggest that both 8, and B, are positive,
which s in accord with theoretical expectations that sales should increase with higher target
population and higher per capita disposable income, the other variable being held constant.

Estimation of Mean Response
Dwaine Studios would like to estimate expected (mean) sales in cities with target population
Xm = 65.4 thousand persons aged 16 years or younger and per capita disposable income
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X2 = 17.6 thousand dollars with a 95 percent confidence interval. We define:

1
17.6

The point estimate of mean sales is by (6.55):

—68.857
Y, =Xb=[1 654 17.6] 1.455 | = 191.10,5--
9.366

The estimated variance by (6.58), using the results in (6.78), is:

il

SHAED 451 ¢

3,602.0° 8748 —241.43 1
=[1 654 17.6] 8.748  .0448 ~.679| | 65.4
—241.43 —.679 16.514| | 17.6
= 7.656
or:
s{¥,} =277

For confidence coefficient .95, we need 7(.975; 18) = 2.101, and we obtain by (6.59)
the confidence limits 191.1042.101(2.77). The confidence interval for E{Y}} therefore
is:

185.3 < E{Y;} < 196.9

Thus, with confidence coefficient .95, we estimate that mean sales in cities with target
population of 65.4 thousand persons aged 16 years or younger and per capita disposable
income of 17.6 thousand dollars are somewhere between 185.3 and 196.9 thousand dollars.
Dwaine Studios considers this confidence interval to provide information about expected
(average) sales in communities of this size and income level that is precise enough for
planning purposes.

Algebraic Version of Estimated Variance s*{¥,}. Since by (6.58):
20 1 — w2
A {Yh} = XhS {b}Xh
it follows for the case of two predictor variables in a first-order model:

s (T} = s%{bo} + X2 5% b1} + X257 b2} + 2X)15{bo, b1}
+2X128{bo> b2} + 2X11 Xpa5{b1, ba} (6.79)
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prediction Limits for New Observations

Dwaine Studios as part of a possible expansion program would like to predict sales for two
new cities, with the following characteristics:

City A CityB

Xm 654 531
X 17.6 177

Prediction intervals with a 90 percent family confidence coefficient are desired. Note that
the two new cities have characteristics that fall well within the pattern of the 2£ cities on
which the regression analysis is based.

To determine which simultaneous prediction intervals are best here, we find S as given
in (6.65a) and B as given in (6.66a) for g =2 and 1 — « = .90:

% = 2F(.90;2, 18) = 2(2.62) = 5.24 S =229
and:
B =1[1—.10/2(2); 18] = £(.975; 18) = 2.101

Hence, the Bonferroni limits are more efficient here.
For city A, we use the results obtained when estimating mean sales, since the levels of
the predictor variables are the same here. We have from before:

¥,=191.10 s*¥,}=7.656 MSE =121.1626
Hence, by (6.632):
s{pred} = MSE + s*{¥,} = 121.1626 + 7.656 = 128.82

s{pred} = 11.35
In similar fashion, we obtain for city B (calculations not shown):
¥, =174.15  s{pred} = 11.93

We previously found that the Bonferroni multiple is B = 2.101. Hence, by (6.66) the simul-
taneous Bonferroni prediction limits with family confidence coefficient .90 are 191.10 &
2.101(11.35) and 174.15 £ 2.101(11.93), leading to the simultaneous prediction intervals:

City A: 167.3 < Yigeny < 214.9
City B: 149.1 < Yyewy < 199.2°

With family confidence coefficient .90, we predict that sales in the two cities will be within
the indicated limits. Dwaine Studios considers these prediction limits to be somewhat useful
for planning purposes, but would prefer tighter intervals for predicting sales for a particular
city. A consulting firm has been engaged to see if additional or alternative predictor variables
can be found that will lead to tighter prediction intervals.



248 Part Two Multiple Linear Regression

Note incidentally that even though the coefficient of multiple determination, R* = .917,
is high, the prediction limits here are not fully satisfactory. This serves as another remindey
that a high value of R* does not necessarily indicate that precise predictions can be made,
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Problems

6.1,

6.3.

6.4.

6.5.

6.6.

Set up the X matrix and f vector for each of the following regression models (assume i =

a. Yl = ﬂ()+ﬂ]Xi] + ﬂZX”X,'g +£‘,‘ ’K,,_a’
b. log¥; = By + B/ Xiy + B2 Xio + &

. Set up the X matrix and § vector for each of the following regression models (assume j =

1,....5):

a. Y; =B Xo + B X+ B X)) + & -

b. VY= fo+ BiXi + B logg Xia + &

A student stated: “Adding predictor variables to a regression model can never reduce RZ, so we
should include all available predictor variables in the model.” Comment.

Why is it not meaningful to attach a sign to the coefficient of multiple correlation R, although
we do so for the coefficient of simple correlation r,?

Brand preference. In a small-scale experimental study of the relation between degree of brand
liking (Y) and moisture content (X)) and sweetness (X32) of the product, the following results
were obtained from the experiment based on a completely randomized design (data are coded):

it 1 2 3 14 15 16
X,'-|: 4 4 4 e 10 10 10
Xiz: 2 4 2 .. 4 2 4
Y 64 73 61 95 94

100

a. Obtain the scatter plot matrix and the correlation matrix. What information do these diag-
nostic aids provide here?

b. Fit regression model (6.1) to the data. State the estimated regression function. How is by
interpreted here?

¢. Obtain the residuals and prepare a box plot of the residuals. What information does this plot
provide?

d. Plot the residuals against ¥, X, X», and X X, on separate graphs. Also prepare a normal
probability plot. Interpret the plots and summarize your findings.

e. Conduct the Breusch-Pagan test for constancy of the error variance, assuming log o7 =
o+ 11 Xi1 + 72 Xi2: use o = .01. State the alternatives, decision rule, and conclusion.

f. Conduct a formal test for lack of fit of the first-order regression function; use ¢ = .01. State
the alternatives, decision rule, and conclusion.

Refer to Brand preference Problem 6.5. Assume that regression model (6. 1) with independent

normal error terms is appropriate.

a. Test whether there is a regression relation, using o = .01. State the alternatives, decision
rule, and conclusion. What does your test imply about f; and 8,7
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6.8.

*6.9.

*6.10.
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b. What is the P-value of the test in part (a)?

c. Estimate 8 and 8, jointly by the Bonferroni procedure, using a 99 percent family confidence
coefficient. Interpret your results.

Refer to Brand preference Problem 6.5.
a. Calculate the coefficient of multiple determination R?. How is it interpreted here?

b. Calculate the coefficient of simple determination R? between Y; and #:. Does it equal the
coefficient of multiple determination in part (a)?

Refer to Brand preference Problem 6.5. Assume that regression model (6.1) with independent
normal error terms is appropriate.

a. Obtain an interval estimate of £{Y,} when X;; = 5and X, = 4. Use a 99 percent confidence
coefficient. Interpret your interval estimate.

b. Obtain a prediction interval for a new observation Yey) When Xy =5 and X, =4. Use a
99 percent confidence coefficient.

Grocery retailer. A large, national grocery retailer tracks productivity and costs ofhts facilities
closely. Data below were obtained from a single distribution center for a one-year period. Each
data point for each variable represents one week of activity. The variables included are the
number of cases shipped (X1), the indirect costs of the total labor hours as a percentage (X5),
a qualitative predictor called holiday that is coded 1 if the week has a holiday and 0 otherwise
(X3), and the total labor hours (Y).

i 1 2 3 cn 50 51 52
Xn: 305,657 328,476 317,164 ... 290,455 411,750 292,087
Xi2: 717 6.20 461 ... 7.99 7.83 7.77
Xiz: 0 0 0 ... 0 0 0

Y;: 4264 4496 4317 . 4499 4186 4342

a. Prepare separate stem-and-leaf plots for the number of cases shipped X;; and the indirect
cost of the total hours X;5. Are there any outlying cases present? Are there any gaps in the
data?

b. The cases are given in consecutive weeks. Prepare a time plot for each predictor variable.

- ‘What do the plots show?

c. Obtain the scatter plot matrix and the correlation matrix. What information do these diag-

nostic aids provide here?

Refer to Grocery retailer Problem 6.9.

a. Fit regression model (6.5) to the data for three predictor variables. State the estimated
regression function. How are by, b,, and b3 interpreted here?

b. Obtain the residuals and prepare a;box plot of the residuals. What information does this plot
provide? -

c. Plot the residuals against ¥, X1, X0, X3, and X 1 X3 on separate graphs. Also prepare a normal
probability plot. Interpret the plots and summarize your findings.

d. Preparea time plot of the residuals. Is there any indication4hat the error terms are correlated?
Discuss.

e. Divide the 52 cases into two groups, placing the 26 cases with the smallest fitted values
Y; into group 1 and the other 26 cases into group 2. Conduct the Brown-Forsythe test for
constancy of the error variance, using o = .01. State the decision rule and conclusion.
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*6.11.

*6.12.

*6.13.

*6.14.

*6.15.

Referto Grocery retailer Problem 6.9. Assume that regression model (6.5) for three predictor

variables with independent normal error terms is appropriate.

a. Test whether there is a regression relation, using level of significance .05. State the alterna-
tives, decision rule, and conclusion. What does your test result imply about 8, 8, and ;2
What is the P-value of the test?

b. Estimate 8 and B3 jointly by the Bonferroni procedure, using a 95 percent family confidence
coefficient. Interpret your results.

¢. Calculate the coefficient of multiple determination R*. How is this measure interpreted here?

Refer to Grocery retailer Problem 6.9. Assume that regression model (6.5) for three predictor

variables with independent normal ervor terms is appropriate.

a. Management desires simultaneous interval estimates of the total labor hours forthe following

e

five typical weekly shipments: o
1 2 3 4 5
Xq: 302,000 245,000 280,000 350,000 295,000
X2t 7.20 7.40 « 6.90 7.00 6.70
X3: 0 0 0 0 1

Obtain the family of estimates using a 95 percent family confidence coefficient. Employ the
Working-Hotelling or the Bonferroni procedure, whichever is more efficient.

b. For the data in Problem 6.9 on which the regression fit is based, would you consider a
shipment of 400,000 cases with an indirect percentage of 7.20 on a nonholiday week to be
within the scope of the model? What about a shipment of 400,000 cases with an indirect
percentage of 9.9 on a nonholiday week? Support your answers by preparing a relevant plot.

Refer to Grocery retailer Problem 6.9. Assume that regression model (6.5) for three predictor
variables with independent normal error terms is appropriate. Four separate shipments with the
following characteristics must be processed next month:

1 2 3 4
Xq: 230,000 250,000 280,000 340,000
X2 7.50 7.30 7.10 6.90
X3: 0 0 0 0

Management desires predictions of the handling times for these shipments so that the actual
handling times can be compared with the predicted times to determine whether any are out of
line. Develop the needed predictions, using the most efficient approach and a family confidence
coeflicient of 95 percent.

Refer to Grocery retailer Problem 6.9. Assume that regression model (6.5) for three predictor
variables with independent normal ervor terms is appropriate. Three new shipments are to be
received, each with X;,; = 282,000, X;, = 7.10, and X;3 = 0.

a. Obtain a 95 percent prediction interval for the mean handling time for these shipments.

b. Convert the interval obtained in part (a) into a 95 percent prediction interval for the total
labor hours for the three shipments.

Patient satisfaction. A hospital administrator wished to study the relation between patient
satisfaction (¥) and patient’s age (X, in years), severity of illness (X, an index), and anxiety
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level (X3, an index). The administrator randomly selected 46 patients and collected the data
presented below, where larger values of Y, X, and X3 are, respectively, associated with more
satisfaction, increased severity of illness, and more anxiety.

i 1 2 3 . 44 45 46
Xii: 50 36 40 . 45 37 28
Xiz: 51 46 48 51 53 46
Xiz: 23 23 2.2 . 2.2 21 1.8
Y;: 48 57 66 e 68 59 92

%

a. Prepare a stem-and-leaf plot for each of the predictor variables. Are any noteworthy features
revealed by these plots?

b. Obtain the scatter plot matrix and the correlation matrix. Interpret these andbstate your
principal findings.

c. Fit regression model (6.5) for three predictor variables to the data and state the estimated
regression function. How is b, interpreted here?

d. Obtain the residuals and prepare a box plot of the residuals. Do there appear to be any
outliers?

e. Plot the residuals against ¥, each of the predictor variables, and each two-factor interaction
term on separate graphs. Also prepare a normal probability plot. Interpret your plots and
summarize your findings.

f. Can you conduct a formal test for lack of fit here?

g. Conduct the Breusch-Pagan test for constancy of the error variance, assuming log o =
Yo+ nXn +» X+ X5 use a=.01. State the alternatives, decision rule, and
conclusion.

Refer to Patient satisfaction Problem 6.15. Assume that regression model (6.5) for three
predictor variables with independent normal error terms is appropriate.

a. Test whether thereis a regression relation; use o = .10, State the alternatives, decision rule,
and conclusion. What does your test imply about 8;, £, and 837 What is the P-value of the
test?

b. Obtain joint interval estimates of fi, B, and B3, using a 90 percent family confidence
coefficient. Interpret your results.

c. Calculate the coefficient of multiple determination. What does it indicate here?

Refer to Patient satisfaction Problem 6.15. Assume that regression model (6.5) for three
predictor variables with independent normal error terms is appropriate.

a. Obtain an interval estimate of the mean satisfaction when Xp; =35, X, = 45,and X3 =2.2.
Use a 90 percent confidence coefficient. Interpret your confidence interval.

b. Obtain a prediction interval for a new patient’s satisfaction when Xp; = 35, Xj» = 45, and
X3 = 2.2. Use a 90 percent confidence coefficient. Interpret your prediction interval.

Commercial properties. A commercial real estate company evaluates vacancy rates, square
footage, rental rates, and operating ekpenses for commercial p;operties in a large metropolitan
area in order to provide clients with quantitative information upon which to make rental deci-
sions. The data below are taken from 81 suburban commercial properties that are the newest,
best located, most attractive, and expensive for five specific geographic areas. Shown here are

H
i
3
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the age (X,), operating expenses and taxes (X2}, vacancy rates (X3), total square footage (X)),
and rental rates (Y).

1 2 3 79 80 81

X,‘12
X,’zi
X,'3:
X,'4:

6.19.

N 6.20.

1 14 16 cae 15 11 14
5.02 8.19 3.00 ... 11.97 11.27 12.68
0.14 0.27 0 e 0.14 0.03 0.03

123,000 104,079 39,998 ... 254,700 434,746 201,930

ae

13.50 12.00 10.50 ... 15.00 15.25 14.50

Prepare a stem-and-leaf plot for each predictor variable. What infefation do these plots
provide?

Obtain the scatter plot matrix and the correlation matrix. Interpret these and state your
principal findings.

Fit regression model (6.5) for four predictor~variables to the data. State the estimated
regression function.

Obutain the residuals and prepare a box plot of the residuals. Does the distribution appear to
be fairly symmetrical?

Plot the residuals against ¥, each predictor variable, and each two-factor interaction termon
separate graphs. Also prepare a normal probability plot. Analyze your plots and summatize
your findings.

. Can you conduct a formal test for lack of fit here?

Divide the 81 cases into two groups. placing the 40 cases with the smallest fitted values ¥;
into group | and the remaining cases into group 2. Conduct the Brown-Forsythe test for
constancy of the ervor variance, using o = .05. State the decision rule and conclusion.

Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) for four
predictor variables with independent normal error terms is appropriate.

a.

C.

Test whether there is a regression refation; use & = .05. State the alternatives. decision rule,
and conclusion. What does your test imply about 8y, £, f3, and £,? What is the P-value
of the test?

Estimate £, 2, Bz, and B, jointly by the Bonferroni procedure, using a 95 percent family
confidence coefficient. Interpret your results.

Calculate R? and interpret this measure.

Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) for four
predictor variables with independent normal error terms is appropriate. The researcher wishes
1o obtain simultaneous interval estimates of the mean rental rates for four typical properties
specified as follows:

1 2 3 4
Xq: 5.0 6.0 14.0 12.0
Xa: 8.25 8.50 11.50 1025
X3: 0 0.23 0.11 0
Xa: 250,000 270,000 300,000 310,000

Obtain the family of estimates using a 95 percent family confidence coefficient. Employ the
most efficient procedure.
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Exercises

6.21. Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) for four
predictor variables with independent normal error terms is appropriate, Three properties with
the following characteristics did not have any rental information available.

1 2 3
Xq: 4.0 6.0 12.0
Xa: 10.0 115 12.5
X3: 0.10 0 032
Xa: 80,000 120,000 340,000

Develop separate prediction intervals for the rental rates of these properties, using a 95 per-

cent statement confidence coefficient in each case. Can the rental rates of theseLthree prop-

erties be predicted fairly precisely? What is the family confidence level for the et of three
predictions?

6.22. For each of the following regression models, indicate whether it is a general linear regres-
sion model. If it is not, state whether it can be expressed in the form of (6.7) by a suitable
transformation:

a. Y; = fo+ BiXu + B logig Xio + B3 X7 + &

b. Y; = sexp(fo + Bi X + B X}

c. Yy =logo(B1Xn1) + B2 Xiz + &

d. Y = o exp(Bi1Xn) + &

e. ¥; = [1+exp(Bo+ BiXn +&)]7!

6.23. (Calculus needed.) Consider the multiple regression model:

Y =BXn+BXinte i=1,...,n

where the &; are uncorrelated, with E{g;} = O and o2{g;} = o2

a.” State the least squares criterion and derive the least squares estimators of 8, and 8.

b, Assuming that the g; are independent normal random variables, state the likelihood function
and obtain the maximum likelihood estimators of 8; and B,. Are these the same as the least
squares estimators?

6.24. (Calculus needed.) Consider the multiple regression model:

Y; = Bo+ BiXn + B X} + BsXin + & i=1,...,n

where the &; are independent N (0, ¢2).

a. State the least squares criterion and derive the least squares normal equations.

b. State the likelihood function ang explain why the maximaim likelihood estimators will be
the same as the least squares estimators.

6.25. An analyst wanted to fit the reéression model Y; =pBy+ i Xi + B2 Xin+ B Xis+ &,
i=1,...,n,by the method of least squares when it is known that 8; = 4. How can the analyst
obtain the desired fit by using a multiple regression computer program?

6.26. For regression model (6.1), show that the coefficient of simple determination between Y; and

¥; equals the coefficient of multiple determination R,
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6.27.

1n a small-scale regression study, the following data were obtained:

i 1 2 3 4 5 6
X,"|1 7 4 16 3 21 8
Xiat 33 41 7 49 5 31
Yi: 42 33 75 28 91 55

Assume that regression model (6.1) with independent normal error terms is appropriate. Using
matrix methods, obtain (a) b; (b) e; (¢) H; (d) SSR; (e) s2{b}; (f) ¥, when X = 10, X0 = 30;
) s2{¥} when X, = 10, X;o = 30.

Projects

6.28.

6.30.

&

Refer to the CDI data set in Appendix C.2. You have been asked to evaluate two alternative

models for predicting the number of active physicians (¥) in a CDI. Proposed model I includes

as predictor variables total population (X,), land area (X3), and total personal income (X3).

Proposed model 11 includes as predictor variables population density (X, total population

divided by land area), percent of population greaterthan 64 years old (X3), and total personal

income (X3).

a. Preparea stem-and-leaf plot for each of the predictor variables. What noteworthy information
is provided by your plots?

b. Obtain the scatter plot matrix and the correlation matrix for each proposed model. Summarize
the information provided.

c. For each proposed model, fit the first-order regression model (6.5) with three predictor
variables.

d. Calculate R? for each model. Is one model clearly preferable in terms of this measure?

e. For each model, obtain the residuals and plot them against ¥, each of the three predictor
variables, and each of the two-factor interaction terms. Also prepare a normal probability
plot for each of the two fitted models. Interpret your plots and state your findings. Is one
model clearly preferable in terms of appropriateness?

. Refer to the CDI data set in Appendix C.2.

a. For each geographic region, regress the number of serious crimes in a CDI (Y) against
population density (X, total population divided by land area), per capita personal income
(X2), and percent high school graduates (X3). Use first-order regression model (6.5) with
three predictor variables. State the estimated regression functions.

b. Are the estimated regression functions similar for the four regions? Discuss.

c. Calculate MSE and R? for each region. Are these measures similar for the four regions?
Discuss.

d. Obtain the residuals for each fitted model and prepare a box plot of the residuals for each
fitted model. Interpret your plots and state your findings.

Refer to the SENIC data set in Appendix C.1. Two models have been proposed for predicting the

average length of patient stay in a hospital (¥). Model I utilizes as predictor variables age (X)),

infection risk (X,), and available facilities and services (X3 ). Model Il uses as predictor variables

nuniber of beds (X)), infection risk (X2), and available facilities and services (X3).

a. Prepare a stem-and-leaf plot for each of the predictor variables. What information do these
plots provide?

b. Obtain the scatter plot matrix and the correlation matrix for each proposed model. Interpret
these and state your principal findings.
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c. For each of the two proposed models, fit first-order regression model (6.5) with three pre-
dictor variables.

d. Calculate R? for each model. Is one model clearly preferable in terms of this measure?

e. For each model, obtain the residuals and plot them against ¥, each of the three predictor
variables, and each of the two-factor interaction terms. Also prepare a normal probability
plot of the residuals for each of the two fitted models. Interpret your plots and state your
findings. Is one model clearly more appropriate than the other?

6.31. Refer to the SENIC data set in Appendix C.1.

a. For each geographic region, regress infection risk (¥) against the predictor variables age
(X1), routine culturing ratio (X3), average daily census (X3),sand available facilities and
services (X4). Use first-order regression model (6.5) with four predictor variables. State the
estimated regression functions.

b. Are the estimated regression functions similar for the four regions? Discuss. &

c. Calculate MSE and R? for each region. Are these measures similar for the four regions?
Discuss.

d. Obtain the residuals for each fitted model and prepare a box plot of the residuals for each
fitted model. Interpret the plots and state your findings.
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In this chapter, we take up some specialized topics that are unique to multiple regression.
These include extra sums of squares, which are useful for conducting a variety of tests about
the regression coefficients, the standardized version of the multiple regression model, and
multicollinearity, a condition where the predictor variables are highly correlated.

7.1 Extra Sums of Squares

Basic Ideas

Example

256

An extra sum of squares measures the marginal reduction in the error sum of squares
when one or several predictor variables are added to the regression model, given that other
predictor variables are already in the model. Equivalently, one can view an extra sum of
squares as measuring the marginal increase in the regression sum of squares when one or
several predictor variables are added to the regression model.

We first utilize an example to illustrate these ideas, and then we present definitions of
extra sums of squares and discuss a variety of uses of extra sums of squares in tests about
regression coefficients.

Table 7.1 contains a portion of the data for a study of the relation of amount of bedy fat
(Y) to several possible predictor variables, based on a sample of 20 healthy females 25-
34 years old. The possible predictor variables are triceps skinfold thickness (X)), thigh
circumference (X,), and midarm circumference (X3). The amount of body fat in Table 7.1
for each of the 20 persons was obtained by a cumbersome and expensive procedure requiring
the immersion of the person in water. It would therefore be very helpful if a regression
model with some or all of these predictor variables could provide reliable estimates of the
amount of body fat since the measurements needed for the predictor variables are easy to
obtain.

Table 7.2 contains some of the main regression results when body fat (Y) is regressed
(1) on triceps skinfold thickness (X ) alone, (2) on thigh circumference (X,) alone, (3) on
X1 and X, only, and (4) on all three predictor variables. To keep track of the regression
model that is fitted, we shall modify our notation slightly. The regression sum of squares
when X, only is in the model is, according to Table 7.2a, 352.27. This sum of squares
will be denoted by SSR(X,). The error sum of squares for this model will be denoted by
SSE(X,); according to Table 7.2a it is SSE(X,) = 143.12.
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Similarly, Table 7.2c indicates that when X; and X, are in the regression model,
the regression sum of squares is SSR(X;, X;) =385.44 and the error sum of squares is
SSE (X1, X2) = 109.95.

Notice that the error sum of squares when X; and X, are in the model, SSE(X;, X5) =
109.95, is smaller than when the model contains only X, SSE(X ) = 143.12. The difference
is called an extra sum of squares and will be denoted by SSR(X>|X1):

SSR(X2X1) = SSE(X1) — SSE(X1, X2)
= 143.12 — 109.95 = 33.17

TABLE 7.1

. Triceps / / _ Thigh N@a@rr
Basic Bod Subject  Skinfold Thickness  Circumference  Circumference  Body Fat
Data—"Body [§ Xit Xiz "Xiz L]
Fat Example. : : £
1 19.5 4301 29.1 11.9
2 24.7 49.8° 282 22.8
3 30.7 51 9 37.0 18.7
) 18 30.2 58.6 24.6 25.4
: 19 22,7 48.2 274 14.8
20 25.2 51.0 275 211
il (@) Regression of ¥ on X; -
Results for A VZ _1 4 96+8 572)(1 .
Several Fitted  Source of N
Models—Body Variation .5s df Ms
FatExample. — pogression 352.27 1 352.27
Error '!43.1 2 18 7.95
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X1 by = .8572. s{b} =.1288° 6.66

(b),Regression of ¥ on X
¥ = —23.634 + .8565X;

Source of _
Variation ss ; df Ms
Regression 381.97 1 381.97
Error 113.42 . 18 6.30
Total 495.39 19

Estimated Estimated
Variable Regression-Coefficient Standard Deviation t*
X2 b2 = .8565 's{b2} = .1100 7.79

(continued )
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TABLE 7.2
(Continued).

(c) Regression of ¥ on X; and X,
Y = —19.174 4+ .2224 X, + .6594X,

Source of
Variation ss df MS
Regression 385.44 2 192.72
Error 109.95 17 6.47
Total 495,39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X4 by =.2224 s{by) = .3034.4" 73
X2 b, = 6594 S{bz} =.2912 2.26
(d) Regression of Y on Xq, X3, and X3
Y =117.08 + 4.334X; — 2.857X, — 2.186 X3
Source of
Variation SS df MS
Regression 396.98 3 132.33
Error 98.41 16 6.15
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X4 b= 4.334 s{b,} = 3.016 1.44
X2 b, = —2.857 s{bz} = 2.582 —1.11
X3 bs; = —-2.186 s{b3} = 1.596 -1.37

This reduction in the error sum of squares is the result of adding X to the regression model
when X, is already included in the model, Thus, the extra sum of squares SSR(X>|X))
measures the marginal effect of adding X, to the regression model when X, is already in
the model. The notation SSR(X,|X ) reflects this additional or extra reduction in the error
sum of squares associated with X,, given that X is already included in the model.

The extrasum of squares SSR(X | X, ) equivalently can be viewed as the marginal increase
in the regression sum of squares:

SSR(X21X1) = SSR(X1, X2) — SSR(X))
= 385.44 — 352.27 = 33.17

The reason for the equivalence of the marginal reduction in the error sum of squares and
the marginal increase in the regression sum of squares is the basic analysis of variance
identity (2.50):

SSTO = SSR + SSE

Since SSTO measures the variability of the ¥; observations and hence does not depend on
the regression model fitted, any reduction in SSE implies an identical increase in SSR.
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We can consider other extra sums of squares, such as the marginal effect of adding X3 to
the regression model when X, and X, are already in the model. We find from Tables 7.2c
and 7.2d that:

SSR(X31X), X2) = SSE(X, X3) — SSE(X), X2, X3)
= 109.95 — 98.41 = 11.54
or, equivalently:
SSR(X3| Xy, X3) = SSR(X,, X2, X3) — SSR(X,, X2)
= 396.98 — 385.44 = 11.54

We can even consider the marginal effect of adding several variables, such as adding
both X, and X3 to the regression model already containing X, (see Tables 7.2a ind 7.2d):

SSR(X,, X3|X1) = SSE(X,) — SSE(X,, X2, X3)
= 143.12 — 98.41 = 44.71
or, equivalently:

SSR(X2, X3|X1) = SSR(X,, X3, X3) — SSR(X)
= 396.98 — 352.27 = 44.71

We assemble now our earlier definitions of extra sums of squares and provide some addi-
tional ones. As we noted earlier, an extra sum of squares always involves the difference
between the error sum of squares for the regression model containing the X variable(s)
already in the model and the error sum of squares for the regression model containing both
the original X variable(s) and the new X variable(s). Equivalently, an extra sum of squares
involves the difference between the two corresponding regression sums of squates.

Thus, we define:

SSR(X,]X2) = SSE(X2) — SSE(X,, X3) (7.1a)
o, equi;/alently:

SSR(X,|X2) = SSR(X1, X2) — SSR(X2) (7.1b)
If X, is the extra variable, we define: )

SSR(X,|X ) = SSE(X,) — SSE(X,, X2) (7.2a)
or, equivalently: - '

SSR(X,]X,) = SSR(X,, X2) — SSR(X)) (7.2b)

Extensions for three or more variables are straightforward: For example, we define:

SSR(X;3] X1, X2) = SSE(X,, X2) — SSE(X,, X2, X5) (7.3a)

SSR(X3]| X1, X2) = SSR(X), X2, X3) — SSR(X,, X2) (7.3b)



260 Part Two Muiltiple Linear Regression

and:

SSR(X1, X31X1) = SSE(X 1) — SSE(X . X2, X3) (7.4a)
or:

SSR(X2, Xa1X1) = SSR(X,, Xa, X3) — SSR(X1) (7.4b)

Decomposition of SSR into Extra Sums of Squares
Iin multiple regression, unlike simple linear regression, we can obtain a variety of decom-
positions of the regression sum of squares SSR into extra sums of squares. Let us consider
the case of two X variables. We begin with the identity (2.50) for variable X,:

SSTO = SSR(X,) + SSE(X,) -~ (7.5)

where the notation now shows explicitly that X, is the X vartable in the model. Replacing
SSE(X,) by its equivalent in (7.2a), we Obtain:

SSTO = SSR(X 1) + SSR(X2[X1) + SSE(X,, X2) (7.6)

We now make use of the same identity for multiple regression with two X variables as
in (7.5) for a single X variable, namely:

SSTO = SSR(X,, X») + SSE(X,. X>5) (7.7
Solving (7.7) for SSE(X,, X2) and using this expression in (7.6) lead to:
SSR(X,, X2) = SSR(X,) + SSR(X»|X 1) (7.8)

Thus, we have decomposed the regression sum of squares SSR(X, X») into two marginal
components: (1) SSR(X,), measuring the contribution by including X alone in the model,
and (2) SSR(X;|X,), measuring the additional contribution when X is included, given that
X, is already in the model.

Of course, the order of the X variables is arbitrary. Here, we can also obtain the
decomposition:

SSR(X 1. X3) = SSR(X2) 4+ SSR(X11X>) 7.9

We show in Figure 7.1 schematic representations of the two decompositions of
SSR(X,, X,) for the body fat example. The total bar on the left represents SSTO and
presents decomposition (7.9). The unshaded component of this bar is SSR(X,), and the
combined shaded area represents SSE(X»). The latter area in turn is the combination of the
extra sum of squares SSR(X|X>) and the error sum of squares SSE(X,, X,) when both
X and X, are included in the model. Similarly, the bar on the right in Figure 7.1 shows
decomposition (7.8). Note in both cases how the extra sum of squares can be viewed either
as a reduction in the error sum of squares or as an increase in the regression sum of squares
when the second predictor variable is added to the regression model.

When the regression model contains three X variables, a variety of decompositions of
SSR(X,, X2, X3) can be obtained. We illustrate three of these:

SSR(X\. X2, X3) = SSR(X1) + SSR(X2| X1) + SSR(X3|X\. X»)  (7.109)
SSR(X1, X2. X3) = SSR(X2) + SSR(X3|X2) + SSR(X (| X2, X5)  (7.10b)
SSR(X1, Xa. X3) = SSR(X1) + SSR(X2, X3|X,) (7.100)
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FIGURE 7.1 Schematic Representation of Extra Sums of Squares—Body Fat Example.

SSR(X;) = 381.97 J < SSR(Xq, Xp) = 385.44 -»J

SSROq|X) = 3.47 —

S$STO = 495.39 $S§TO = 495.39

r ~ r ~

> SSR(Xy) = 352.27

<
o [ SSRX[Xp) = 33.17

L

> SSE(X;) = 143.12

SSEX) = 113424 | SSE(X, X,) = 109.95

EABnI;:-l 70? Source of

xample .o _
ANOVA Table Varlatlp? A% df / MSs |
with Regression SSR(X1, X2, X3) 3 MSR(X1, Xa, Xs)
Decomposition X SSR(X1) 1 MSR(X1)
of S5R for Xa| X SSR(X2|X7).. . 1 MSR(X2| X1)
Three X X3|X1, X2 SSR(X3| X1, X2) 1 MSR(X31X1, X2)
Variables. Error SSE('XT; ‘Xz, X3) n—4 MSE(’X1, Xz/,, Xg\-)

Total ssT0 n—1

It is obvious that the number of possible decompositions becomes vast as the number of
X variables in the regression model increases.

ANOVA Table Containing Decomposition of SSR

ANOVA tables can be constructed containing decompositions of the regression sum of
squares into extra sums of squares. Table 7.3 contains the ANOVA table decomposition
for the case of three X variables often used in regression packages, and Table 7.4 contains
this same decomposition for the body fat example. The decomposition involves single extra
X variables. !

Note that each extra sum of squares involving a single extra X variable has associated
with it one degree of freedom. The resulting mean squares are constructed as usual. For
example, MSR(X;|X,) in Table 7.3 is obtained as follows:

SSR(X| X))
1

Extra sums of squares involving two extra X variables, such as SSR(X>, X3|X)), have
two degrees of freedom associated with them. This follows because we can express such
an extra sum of squares as a sum of two extra sums of squares, each associated with one

MSR(Xz|X,) =
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TABLE 7.4
ANOVA Table
with
Decomposition
of SSR—Body
Fat Example
with Three
Predictor
Variables.

Source of

Variation SS df MS
Regression 396.98 3 132.33
Xy 352.27 1 352.27
X2l X4 33.17 1 33.17
X3 X1, X2 11.54 1 11.54
Error 98.41 16 6.15
Total 495.39 19

degree of freedom. For example, by definition of the extra sums of sqiares, we have:
SSR(X 3, X531 X1} = SSR(X:51X 1) + SSR(X3| X1, X3) (7.1
The mean square MSR(X», X3|X)) is therefore obtajned as follows:

SSR(X2. X31X1)

MSR(X», X3|X,) = 2

Many computer regression packages provide decompositions of SSR into single-degree-
of-freedom extra sums of squares, usually in the order in which the X variables are entered
into the model. Thus, if the X variables are entered in the order X, X,, X3, the extra sums
of squares given in the output are:

SSR(X,)
SSR(X,|X )
SSR(X31 X1, X2)

If an extra sum of squares involving several extra X variables is desired, it can be obtained
by summing appropriate single-degree-of-freedom extra sums of squares. For instance, to
obtain SSR(X,, X3|X:) in our earlier illustration, we would utilize (7.11) and simply add
SSR(X,]X,) and SSR(X3|X, X2).

If the extra sum of squares SSR(X,, X3|X») were desired with a computer package
that provides single-degree-of-freedom extra sums of squares in the order in which the X
variables are entered, the X variables would need to be entered in the order X5, X, X3 or
X2, X3, X,. The first ordering would give:

SSR(X3)
SSR(X1X>)
SSR(X3|X1, X2)
The sum of the last two extra sums of squares will yield SSR(X,, X3| X5).
The reason why extra sums Of squares are of interest Is that they occur in a variety
of tests about regression coefficients where the question of concern is whether certain X

variables can be dropped from the regression model. We turn next to this use of extra sums of
squares.
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7.2 Uses of Extra Sums of Squares in Tests
for Regression Coefficients

Test whether a Single 8, =0

When we wish to test whether the term £, X can be dropped from a multiple regression
model, we are interested in the alternatives:

H()Z .Bk =0
Hn: .Bk ?’L‘ 0
We already know that test statistic (6.51b):

«_ b
s{b}

is appropriate for this test.
Equivalently, we can vuse the general linear test approach described in Section 2.8. We
»  now show that this approach involves an extra sum of squares. Let us consider the first-order
— regression model with three predictor variables:

Y; = fo+ BiXu + B2 Xin+ B3 Xiz +¢&  Full model (7.12)
To test the alternatives:
Hy: 3 =0
0 s (7.13)
H;:B#0

we fit the full model and obtain the error sum of squares SSE(F). We now explicitly show
the variables in the full model, as follows:

SSE(F) = SSE(X,, X2, X3)

The degrees of freedom associated with SSE(F) are dfy = n — 4 since there are four
parameters in the regression function for the full model (7.12).
The reduced model when Hj in (7.13) holds is:

Y; =B+ Bi X +B:Xin+ & Reduced model (7.14)
We next fit this reduced model and obtain:
SSE(R) = SSE(X,, X»)

There are dfg = n — 3 degrees of freedom associated with the reduced model.
The general linear test statistic (2.70):

v SSEQR)— SSE(F) _ SSE(F)”
© dfe—dfe T dfr

here becomes:
. SSE(XI, XZ) - SSE(XI, X27 X3) R SSE(Xh XZ, X3)

" n=3)—n—-4 ) n—4
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Example

Note that the difference between the two error sums of squares in the numerator term is the
extra sum of squares (7.3a):

SSE(X1, X2) — SSE(X1, X2, X3) = SSR(X3| X1, X2)

Hence the general linear test statistic here is:

_ SSR(X3|X1, X2) | SSE(X1, X2, X3) _ MSR(X3|X1, X2)
- 1 ) n—4  MSE(X1, X2, X3)

We thus see that the test whether or not 3 = 0 1s a marginal test, given that X, and X,
are already in the model. We also note that the extra sum of squares SSR(X3| X, X3) has
one degree of freedom associated with it, just as we noted earlier. >

Test statistic (7.15) shows that we do not need to fit both the full model and the reduced
model to use the general linear test approach here. A single computer run can provide a fit
of the full model and the appropriate extra sum of squares.

F*

(7.15)

In the body fat example, we wish to test for the model with all three predictor variables
whether midarm circumference (X3) can be dropped from the model. The test alternatives
are those of (7.13). Table 7.4 contains the ANOVA results from a computer fit of the full
regression model (7.12), including the extra sums of squares when the predictor variables
are entered in the order X, X,, X3. Hence, test statistic (7.15) here is:

_ SSR(X3|Xy, X2) | SSE(X1, X», X3)
B 1 ' n—4

11.54  98.41
=—+ ——=1.88

1 16

For o = .01, we require F(.99; 1, 16) = 8.53. Since F* = 1.88 < 8.53, we conclude Hj,
that X3 can be dropped from the regression model that already contains X and X,.

Note from Table 7.2d that the r* test statistic here is:

by 2186

T os{bs} 1.596

Since (1*)? = (—1.37)? = 1.88 = F*, we see that the two test statistics are equivalent, just
as for simple linear regression.

F*

*

—1.37

Comment

The F* test statistic (7.15) to test whether or not 83 = 0is calleda partial F test statistic to distinguish
itfrom the F* statistic in (6.39b) for testing whether all B, = 0, i.e., whether or not there is a regression
refation between Y and the set of X variables. The latter test is called the overall F test. ]

Test whether Several ;=0

In multiple regression we are frequently interested in whether several terms in the regression
model can be dropped. For example, we may wish to know whether both f,X> and X3
can be dropped from the full model (7.12). The alternatives here are:

Hy: By = B35 =
o: P =p3=0 (7.16)
H,: not both B, and 5 equal zero
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With the general linear test approach, the reduced model under Hy is:
Yi=F+BXn+ s Reduced model (7.17)
and the error sum of squares for the reduced model is:
SSE(R) = SSE(X))

This error sum of squares has dfg = n — 2 degrees of freedom associated with it.
The general linear test statistic (2.70) thus becomes here:

_ SSE(X)) — SSE(X,, X2, X3)  SSE(X), X, X3)

N (n—2)—(n—4) ' n—4

F*

Again the difference between the two error sums of squares in the numerator term is an
extra sum of squares, namely:

SSE(X)) — SSE(X,, X2, X3) = SSR(X3, X5/ X1) -

Hence, the test statistic becomes:
_ SSR(X», X3|Xy) | SSE(Xy, X2, X3)  MSR(X», X31X))
N 2 ’ n—4 T MSE(X,, X2, X3)

Note that SSR(X>, X3| X)) has two degrees of freedom associated with it, as we pointed out
earlier.

F*

(7.18)

We wish to test in the body fat example for the model with all three predictor variables
whether both thigh circumference (X3) and midarm circumference (X3) can be dropped
from the full regression model (7.12). The alternatives are those in (7.16). The appropriate
extra sum of squares can be obtained from Table 7.4, using (7.11):

SSR(X2, X3|X1) = SSR(X2| X1) + SSR(X3| X, X2)
= 3317+ 11.54 = 44.71

Test statistic (7.18) therefore is:

_ SSR(X,, X3|1X1)
B 2

= 44—271 +6.15=3.63

*

=+ MSE(X,, X2, X3)

For o = .03, we require F(.95;2, 16) =3.63. Since F* =3.63 is at the boundary of the
decision rule (the P-value of the test statistic is .05), we may wish to make further analyses
before deciding whether X, and X3 should be dropped from the regression model that
already contains X,. -

’

Comments

1. For testing whether a single f; equals zero, two equivalent test statistics are available: the ¢*
test statistic and the F* general linear test statistic. When testing whether several f equal zero, only
the general linear test statistic F* is available.

2. General linear test statistic (2.70) for testing whether several X variables can be dropped
from the general linear regression model (6.7) can be expressed in terms of the coefficients of
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multiple determination for the full and reduced models. Denoting these by R% and R, respectively,
we have:

Cdfe—~dfy T dfr

(7.19)

Specifically for testing the alternatives in (7.16) for the body fat example, test statistic (7.19) becomeg:

2 2 2
Ry;m - Ry” i an

F¥:(n—2)—(n—4)+ n—4 (7'20)

where R,z,“23 denotes the coefficient of nwltiple determination when Y is reg"'r'é;sed on X;, X, and
X3, and R,l,[l denotes the coefficient when Y is regressed on X alone.

Wesee from Table 7.4 that Ry, 1o, = 396.98/495.39 = .80135 and Ry, =352.27/495.39 = 71110,
Hence, we obtain by substituting in (7.20):

o

. .80135— 71110 1~ .80135
T 0-2)—(0—4) 16

=303

This is the same result as before. Note that R%,“ corresponds to the coefficient of simple determination
R? between Y and X,.

Test statistic (7.19) is not appropriate when the full and reduced regression models do not contain
the intercept term fy. In that case, the general linear test statistic in the form (2.70) must be used. R

7.3  Summary of Tests Concerning Regression Coefficients

We have already discussed how to conduct several types of tests concerning regression
coefficients in a multiple regression model. For completeness, we summarize here these
tests as well as some additional types of tests.

Test whether All 8, =0

This is the overall F test (6.39) of whether or not there is a regression relation between the
response variable Y and the set of X variables. The alternatives are:

HO:ﬂl:ﬁZ:“‘:ﬂp—l:()

(7.21)
Hynotall B (k =1, ..., p— 1) equal zero
and the test stafistic is:
Pt SSR(Xy, ..., Xp20) N SSE(Xy, ..., X1
p—1 ‘ n—p
_ MSR 7.2
MSE

If Hy holds, F* ~ F(p — 1, n — p). Large values of F* lead to conclusion H,.
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Test whether a Single f,=0

This is a partial F test of whether a particular regression coefficient 8 equals zero. The
alternatives are:

Ho: B, =0
0: By (7.23)

Hn:ﬂk ?’L‘O

and the test statistic is:
o SSR(Xi| X1y - Xits Xiwts -+, Xp1) | SSE(X,, ..., Xpy)
1 ) AP
MSR(Xi X,y -y Xeels Xetls - -+ Xp )

_ (Xl X, k=1 Xia1 p—1) (7.24)

MSE

If Hy holds, F* ~ F(1,n — p). Large values of F* lead to conclusion H, bStatistics
packages that provide extra sums of squares permit use of this test without having to fit the
reduced model.

An equivalent test statistic is (6.51b):

. b
1" =
s{bi}
If Hp holds, r* ~ r(n — p). Large values of [t*] lead to conclusion H,.

Since the two tests are equivalent, the choice is usually made in terms of available
information provided by the regression package output.

(7.25)

Test whether Some $,=0
This 1s another partial F test. Here, the alternatives are:

Ho:ﬂq:ﬁqH:‘”:.Bp—l:O

. (7.26)
H,: not all of the B in Hy equal zero

where for convenience, we arrange the model so that the last p — g coefficients are the ones
to be tested. The test statistic is:

 SSR(Xgs - Xp1lX1, -, Xg1) | SSE(Xy, -, Xp1)
P—q ) n—p

_ MSR(Xg, ..., XpalX1, ., Xqi)

N MSE

If Hp holds, F* ~ F(p — q, n — p). Large values of F* lead to conclusion H,.

Note that test statistic (7.27) actually encompasses the two earlier cases. If ¢ = 1, the
test is whether all regression coefficients equal zero. If ¢ = p — 1, the test is whether a
single regression coefficient equals zero. Also note that test statistic (7.27) can be calculated
without having to fit the reduced model if the regression package provides the needed extra
sums of squares:

F*

(7.27)

SSR(Xys - » Xp1l Xus - s Xgot)
Ve — SSR(X,1X1, .., Xgut) + <+ 4 SSR(Xp_ 1| X1s - - » Xp_2) (7.28)
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Other Tests

Test statistic (7.27) can be stated equivalently in terms of the coefficients of multiple
determination for the full and reduced models when these models contain the intercept termy
Bo, as follows:

2 2 _ p2
RY|1~~-,7—1“RY|1~.-¢1—1 . 1 RYII~--;)—|

F*= : 7.
pP—q n—p (7.29)
where Ry, ,_, denotes the coefficient of multiple determination when Y is regressed on
all X variables, and Rf,““_q_, denotes the coefficient when Y is regressed on X1, ..., X,,_,

only.

»

When tests about regression coefficients are desired that do not involve testing whether ope
or several f3; equal zero, extra sums of squares cannot be used and the general linear tegt
approach requires separate fittings of the full and reduced models. For instance, for the full
model containing three X variables:

Yi = Bo+ BiXu + BoXio + B3Xis + & Full model (7.30)
we might wish to test:
Ho: By = B
H,: By # B (731
The procedure would be to fit the full model (7.30), and then the reduced model:
Yi=Bo+ BcXi1 + Xp2) + B3Xis+ & Reduced model (732

where 8. denotes the common coefficient for 8, and 8, under Hp and X;; + X, is the
corresponding new X variable. We then use the general F* test statistic (2.70) with 1 and
n — 4 degrees of freedom.

Another example where extra sums of squares cannot be used is in the following test for
regression model (7.30):

Ho: 1 =3,B3=5

e L (7.33)
H,: not both equalities in Hy hold
Here, the reduced model would be:
Y, —3Xiy —5Xi3 = Po+ P2 Xzt & Reduced model (739

Note the new response variable ¥ — 3X; — 5X5 in the reduced model, since 8, X and £5X;3
are known constants under Hy. We then use the general linear test statistic F* in (2.70) with
2 and n — 4 degrees of freedom.

7.4 Coefficients of Partial Determination

Extra sums of squares are not only useful for tests on the regression coefficients of a multiple
regression model, but they are also encountered in descriptive measures of relationship called
coefficients of partial determination. Recall that the coefficient of multiple determinatior
R?, measures the proportionate reduction in the variation of ¥ achieved by the introductio?
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ofthe entire set of X variables considered in the model. A coefficient of partial determination,
in contrast, measures the marginal contribution of one X variable when all others are already
included in the model.

Two Predictor Variables

We first consider a first-order multiple regression model with two predictor variables, as
given in (6.1):

Y = Bo+ BiXn + B2 X + &

SSE(X5,) measures the variation in ¥ when X, is included in tL)e model. SSE(X;, X5)
measures the variation in ¥ when both X; and X, are included in the model. Hence, the
relative marginal reduction in the variation in ¥ associated with X; when X, is already in
the model is: .
SSE(X>) — SSE(Xy, X2)  SSR(Xi]X2)
SSE(X5)  SSE(X,)

This measure is the coefficient of partial determination between ¥ and X, given that X, is
in the model. We denote this measure by R,Z,m:

R SSE(X,) — SSE(X1, X3)  SSR(X11X?)

viz = SSE(X,) SSE(X3) (7.35)

Thus, R},, measures the proportionate reduction in the variation in ¥ remaining after X,
18 included in the model that is gained by also including X; in the model.

The coefficient of partial determination between Y and X», given that X is in the model,
is defined correspondingly:

2 SSR(X>| X1)

~ T SSE(X) (7.36)

Y2i1 —
‘General Case

The generalization of coefficients of partial determination to three or more X variables in
the model is immediate. For instance:

SSR(X11X2, X3)

vins = SSE(X3, X3) 730
R%zus :, %I;(E}%}I:% (738)
Rysp = % (7:39)
2 SSR(X41X1, X2, X3) (7.40)

SSE(XI’ XZ: X3)

Note that in the subscripts to R?, the entries to the left of the vertical bar show in turn
the variable taken as the response and the X variable being added. The entries to the right
of the vertical bar show the X variables already in the model.
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Example

Coefficients

For the body fat example, we can obtain a variety of coefficients of partial determinatioy,
Here are three (Tables 7.2 and 7.4):

»_ SSR(Xa|Xy) 3317 -
AL T SSE(X,) 14312 7

» _ SSR(X3|X\, Xa) 1154 105
VA2 T SSE(X,, Xo)  109.95

SSR(X\|X2) 347
R, = = = 03
e SSE(X2) 113.42 l

We see that when X, is added to the regression model containing X, here, the error sup
of squares SSE(X1) 1s reduced by 23.2 percent. The error sum of squares for the mode
containing both X; and X, is only reduced by another 10.5 percent when X is added to the
model. Finally, if the vegression model already contains X, adding X, reduces SSE(X,)
by only 3.1 percent.

Comments

1. The coefficients of partial determination can take on values between 0 and 1, as the definitions
readily indicate.

2. A coefficient of partial determination can be interpreted as a coefficient of simple determination,
Consider a multiple regression model with two X variables. Suppose we regress Y on X, and obtain
the residuals:

e (Y1X2) = ¥ — ¥i(Xa)

where f’i (X3) denotes the fitted values of ¥ when X is in the model. Suppose we further regress X,
on X5 and obtain the residuals:

ei(X11X2) = Xi — Xa(X2)

where X;1(X>) denotes the fitted values of X, in the regression of X; on X,. The coefficient of simple
determination R? between these two sets of residuals equals the coefficieni of partial determination
R, Thus, this coefficient measures the relation between Y and X, when both of these variables
have been adjusted for their linear relationships to Xs.

3. The plot of the residuals ¢; (Y| X>) against ¢; (X]X,) provides a graphical representation of (he
strength of the relationship between Y and X, adjusted for X». Such plots of residuals, called added
variable plots or partial regression plots, are discussed in Section 10.1. n

of Partial Correlation

The square root of a coefficient of partial determination is called a coefficient of partial
correlation. Itis given the same sign as that of the corresponding regression coefficientinthe
fitted regression function. Coefficients of partial correlation are frequently used in practice,
although they do not have as clear a meaning as coefficients of partial determination. One
use of partial correlation coefficients is in computer routines for finding the best predict(_)li
variable to be selected next for inclusion in the regression model. We discuss this use1
Chapter 9.
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For the body fat example, we have:
ryan = 232 = 482
ryzz = —+/.105 = —324
rrig = +.031 = .176

Note that the coefficients ryz; and ryy; are positive because we see from Table 7.2¢ that
b, = .6594 and b, = .2224 are positive. Similarly, rys; 2 is negative becanse we see from
Table 7.2d that b; = —2.186 is negative.

5

Comment

Coefficients of partial determination can be expressed in terms of simple or other partial correlation
coefficients. For example: i

(7.41)

(ry2 — rain)?
Ry =y = —n—
| (1-rk) (1-r3)
(ryap — riprvip)”
1—’|22|3)(1 _r12/1|3)

where ry, denotes the coefficient of simple correlation between Y and X, r;2 denotes the coefficient
of simple correlation between X; and X3, and so on. Extensions are straightforward. |

Riys = [ryasl = ( (7.42)

75 Standardized Multiple Regression Model

A standardized form of the general multiple regression model (6.7) is employed to control
roundoff errors in normal equations calculations and to permit comparisons of the estimated
regression coefficients in common units.

Roundoff Errors in Normal Equations Calculations

The results from normal equations calculations can be sensitive to rounding of data in
intermediate stages of calculations. When the number of X variables is small—say, three
or less—roundoff effects can be controlled by carrying a sufficient number of digits in
intermediate calculations. Indeed, most computer regression programs use double-precision
arithmetic in all computations to control roundoff effects. Still, with a large number of
X variables, serious roundoff effects can arise despite the use of many digits in intermediate
calculations.

Roundoff errors tend to enter normal equations calculations primarily when the inverse
of X'X is taken. Of course, any errors in (X’X)~! may be magnified in calculating b and
other subsequent statistics. The danger of serious roundoff errors in (X’X)~! is particularly
great when (1) X'X has a determinant that is_close to zero and/or (2) the elements of X'X
differ substantially in order of magnitude. The first condition arises when some or all of the
X variables are highly intercorrelated. We shall discuss this situation in Section 7.6.

The second condition arises whenthe X variables have substantially different magnitudes
so that the entries in the X’X matrix cover a wide range, say, from 15 to 49,000,000. A
solution for this condition is to transform the variables and thereby reparameterize the
regression model into the standardized regression model.
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The transformation to obtain the standardized regression model, called the correlatio,
transformation, makes all entries in the X'X matrix for the transformed variables fall betweey,
—1 and I inclusive, so that the calculation of the inverse matrix becomes much lesg subject
to roundoff errors due to dissimilar orders of magnitudes than with the original variableg.

Comment

In order to avoid the computational difficulties inherent in inverting the X'X matrix, many statisticg
packages use an entirely different computationatapproach that involves decomposing the X niatrix jg
a product of several matrices with special properties. The X matrix is often first modified by Centering
each of the variables (i.e., using the deviations around the mean) to further intprove computatiopg)
accuracy. Information on decomposition strategies may be found in texts on statistical Gemputing,
such as Reference 7.1. N

Lack of Comparability in Regression Coefficients
A second difficulty with the nonstandardized multiple regression model (6.7) is that ordinar-
ily regression coefficients cannot be compared because of differences in the units involved,
We cite two examples.

1. When considering the fitted response function:
V' = 200 + 20,000X, + .2X,

one may be tempted to conclude that X, is the only important predictor variable, and that
X has little effect on the response variable Y. A little reflection should make one wary of
this conclusion. The reason is that we do not know the units involved. Suppose the units are;

Y in dollars
X in thousand dollars
X5 in cents

In that event, the effect on the mean response of a $1,000 increase in X, (i.e., a l-unit
increase) when X, is constant would be an increase of $20,000. This is exactly the same
as the effect of a $1,000 increase in X» (i.e., a 100,000-unit increase) when X is constant,
despite the difference in the regression coefficients.

2. In the Dwaine Studios example of Figure 6.5, we cannot make any comparison be-
tween b, and b, because X, is in units of thousand persons aged 16 or younger, whereas
X» is in units of thousand dollars of per capita disposable income.

Correlation Transformation

Use of the correlation transformation helps with controlling roundoff errors and, by express-
ing the regression coefficients in the same units, may be of help when these coefficients
are compared. We shall first describe the correlation transformation and then the resulting
standardized regression model. )

The correlation transformation is a simple modification of the usual standardization of d
variable. Standardizing a variable, as in (A.37), involves centering and scaling the variableg
Centering involves taking the difference between each observation and the mean Ofi}u;
observations for the variable; scaling involves expressing the centered observations in utls
of the standard deviation of the observations for the variable. Thus, the usual standardizations
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of the response variable Y and the predictor variables X, ..., X, are as follows:
Y, —Y
(7.43a)
Sy
Xu—X
SRRk Gk=1,...,p—1) (7.43b)
Sk

where ¥ and X, are the respective means of the ¥ and the X; observations, and sy and s
are the respective standard deviations defined as follows:

(Y — Yy

> (X — Xi)?
The correlation transformation is a simple function of the standardized variables in
(7.43a, b):
1 Y, - Y
Y= —= ( : ) (7.44a)
- ¥
1 Xu— X
r = k_ Tk (k=1,....p—1) (7.44b)
n—1 Sk

Standardized Regression Model
The regression model with the transformed variables Y* and X} as defined by the correlation
transformation in (7.44) is called a standardized regression model and is as follows:

Vr=BXh B X e (7.45)

Lp—

The reason why there is no intercept parameter in the standardized regression model (7.45) is
that the least squares or maximum likelihood calculations always would lead to an estimated
intercept term of zero if an intercept parameter were present in the model.

Itis easy to show that the parameters f7, ..., §5_, in the standardized regression model
and the original parameters o, fi, . . ., Bp—1 inthe ordinary multiple regression model (6.7)
are related as follows:

ﬁk=<i_:>ﬁl‘: k=1,...,p=1) (7.462)

. -

Bo=Y —p1X1— - — BpaXp (7.46b)

We see that the standardized regression coefficients 8; and the original regression coeffi-

cients B (k=1, ..., p—1) are related by simple scaling factors involving ratios of standard
deviations.
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X’X Matrix for Transformed Variables
In order to be able to study the special nature of the XX matrix and the least squareg norme]
equations when the variables have been transformed by the correlation transformation, v,
need to decompose the correlation matrix in (6.67) containing all pairwise correlation Coef.
ficients among the respouse and predictor variables V', X1, X», ..., X, into two Matrices,

I. The first matrix, denoted by rx . is called the correlation matrix of the X variableg, It

has as its elemments the coefficients of simple correlation between all pairs of the X varipje, -
This matrix is defined as follows: )

VA

1 F12 o Fpr

ray 1 R S |
Ixx = . L (7.47) ‘

(p—-1)x(p—1) . . <

Fp-1.1 Fp—12 =°*° 1

Here, ri, again denotes the coefficient of simple correlation between X, and X, and s *
on. Note that the main diagonal consists of Is because the coefficient of simple correlatigy :
between a variable and itself is 1. The correlation matrix ryy is symmetric; remember tha -
rue = rex. Because of the symmetry of this matrix, computer printouts frequently omit the -
lower or upper triangular block of elements. :
2. The second matrix, denoted by ryx, is a vector containing the coefficients of simple_f
correlation between the response variable V' and each of the X variables, denoted again by

Fyy, Fy2, €1C.: B
Fyi
Fya
ryx = (748)
(p—-1xl
Fy.p—t

Now we are ready to consider the X'X matrix for the transformed variables in the

standardized regression model (7.45). The X matrix here is:
X )lkl e X T p—1
X5 o X5, ;
X =1 2t (7.49)
nx(p—1) : :

al u.p~1

Remember that the standardized regression mmodel (7.45) does not contain an intercept terif
hence, there is no column of s in the X matrix. It can be shown that the X'X imatrix for the
transformed variables is simply the correlation matrix of the X variables defined in (747}

X’X =Txx (7 '50
(p—Dx(p—1)

Since the XX matrix for the transformed variables consists of coefficients of correlatio

between the X variables, all of its elements are between —1 and | and thus are of th

same order of magnitude. As we pointed out earlier, this can be of great help in contrOﬂlI{

roundoff errors when inverting the X'X matrix.
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Comment

We illustrate that the X'X matrix for the transformed variables is the correlation matrix of the X
variables by considering two entries in the matrix:

1. In the upper left corner of X'X we have:

%\ %2
Z(X71)2=Z Xn— X, :E(le XD +s12=1
n—1s n—1
2. In the first row, second column of X'X, we have:
Xn— X, Xia— X
X*X: =
Z nee Z(«/n—lm)(«/n—l&)

1 Y (Xu-— X)X - X5)
T n-1

8152
P _ 2= X)X - X))
DX~ X012 Y (X — %27 v

But this equals ry2, the coefficient of correlation between X and X5, by (2.84). |

Estimated Standardized Regression Coefficients
The least squares normal equations (6.24) for the ordinary multiple regression model:
X'Xb =X'Y
and the least squares estimators (6.25):
b=XX)"'XY

can be expressed simply for the transformed variables. It can be shown that for the trans-
formed variables, XY becomes:

XY =ryx (7.51)

(p—-1x1
where ryx is defined in (7.48) as the vector of the coefficients of simple correlation between
Y and each X variable. It now follows from (7.50) and (7.51) that the least squares nor-
mal equations and estimators of the regression coefficients of the standardized regression

model (7.45) are as follows:
rxxb =ryx (7.523)
b =‘i‘;§(l‘yx (7.52b)
where: ‘
& -i bf . -
. ; b;
: “f b = 2 (7.52()
. 5 (p—Dx1
, b1
"The regression coefficients &*, ... by, are often called standardized regression

« coefficients.
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Example

The return to the estimated regression coefficients for regression model (6.7) in the
original variables is accomplished by employing the relations:

s
b = <l> o k=1...,p—1D (7.53q)
Sk

b() = i} — bl}zl —.e —bp_l}zp_l (753b)

Comment

When there are two X variables in the regression model, i.e., when p — 1 = 2, we can readily see u;e/
algebraic form of the standardized regression coefficients. We have:

1l e
Ixx = [rlz 1] | (7.54q)
rex = | 1 ’ (7.54b
fra ~4b)
1 1 -r
1 _ 12
Tex = T2 z [_ru 1 } (7.540
Hence, by (7.52b) we obtain:
1 1 —rp| |rn 1 ryy —ritys
b= —— = 7.
1-r% [—rlz 1 } [ryz 1—r% |rr2—rern (753)
Thus:
ryy — oty
12
pp= 2T (7.55b)
1—-rp
[ |

Table 7.5a repeats a portion of the original data for the Dwaine Studios example in Fig-
ure 6.5b, and Table 7.5b contains the data transformed according to the correlation trans-
formation (7.44). We illustrate the calculation of the transformed data for the first case,
using the means and standard deviations in Table 7.5a (differences in the last digit of the
transformed data are due to rounding effects):

v 1 (YI—Y> X — 1 (Xu—}—(,>
! V=1 Sy 1 V-1 Sy
1 (174.4 - 181.90) 1 (68.5 — 62.019)

N 36.191 V2 =1 18.620
= —.04634 = .07783
1 X.— X, 1 16.7 — 17.143
Xt = = = —.10208
2 =1 ( 52 ) V21— 1 ( 97035 )
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* (a) Original Data

- Target Per:Capita

Case sales Populatlon Dlsposable Income
i Y, Xt] X12
1 174.4 68.5° 16. 7,
2 164.4 45.2 16 8':
20 2241 82.7 19 1
21 166.5 523 16.0
¥ =181.90 X1 = 62:019 X5 =17:143
sy = 36.191 '$51°="18.620- Sy =97035

(b) Transformed Data

1 7 04637 07783 40205
2 —.10815 20198 —.07901
20 26070 24835 45100
2 09518 —i1671 —.26336

(c) Fitted Standardized Model
Pr = 74845 ¢ 2511X5

When fitting the standardized regression model (7.45) to the transformed data, we obtain
the fitted model in Table 7.5c:

¥* = 7484X; + 2511X3

The standardized regression coefficients bf =.7484 and b; =.2511 are shown in the
SYSTAT regression output in Figure 6.5a on page 237, labeled STD COEE. We see from
the standardized regression coefficients that an increase of one standard deviation of X,
(target population) when X, (per capita disposable income) is fixed leads to a much larger
increase in expected sales (in units of standard deviations of ¥) than does an increase of
one standard deviation of X, when X is fixed. .

To shift from the standardized regression coefficients & and & back to the regression
coefficients for the model with the original variables, we employ (7.53). Using the data in
Table 7.5, we obtain:

b = (%) pr = 01 sy = 14546

1

- -

18.620

191
(s—y>b; 36091 sty = 9.3652

Il

b2 52 97035
by

I
~i

— b X, — b X, = 181.90 — 1.4546(62.019) — 9.3652(17.143) = —68.860
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The estimated regression function for the multiple regression model in the original variableg
therefore is:

¥ = —68.860 + 1.455X, + 9.365X,

This is the same fitted regression function we obtained in Chapter 6, except for slight
rounding effect differences. Here, b, and b, cannot be compared directly because X ig i
units of thousands of persons and Xj is in units of thousands of dollars.

Sometimes the standardized regression coefficients b} =.7484 and b3 =.2511 are iy,
terpreted as showing that target population (X;) has a much greater impact on sales thap
per capita disposable income (X») because b} is much larger than b5. However, as weswil]
see in the next section, one must be cautious about interpreting any regression coefﬁcient,
whether standardized or not. The reason is that when the predictor variables are correlateq
among themselves, as here, the regression coefficients are affected by the other predictor
variables in the model. For the Dwaine Studios data, the correlation between X, and X, is
r12 = .781, as shown in the correlation matrix in Figure 6.4b on page 232.

The magnitudes of the standardized regression coefficients are affected not only by
the presence of correlations among the predictor variables but also by the spacings of the
observations on each of these variables. Sometimes these spacings may be quite arbitrary,
Hence, it is ordinarily not wise to interpret the magnitudes of standardized regression
coefficients as reflecting the comparative importance of the predictor variables,

Comments

1. Some computer packages present both the regression coefficients by, for the modet in the original
variables as well as the standardized coefficients b}, as in the SYSTAT output in Figure 6.5a. The
standardized coefficients are sometimes labeled beta coefficients in printouts.

2. Some computer printouts show the magnitude of the determinant of the correlation matrix of
the X variables. A near-zero value for this determinant implies both a high degree of linear association
among the X variables and a high potential for roundoff errors. For two X variables, this determinant
is seen from (7.54) to be 1 — r%,, which approaches 0 as r, approaches 1.

3. It is possible to use the correlation transformation with a computer package that does not
permit regression through the origin, because the intercept coefficient b will always be zero for data
so transformed. The other regression coefficients will also be correct.

4. Use of the standardized variables (7.43) without the correlation transformation modifica-
tion in (7.44) will lead to the same standardized regression coefficients as those in (7.52b) for the
correlation-transformed variables. However, the elements of the X'X matrix will not then be bounded
between —1 and 1. |

7.6 Multicollinearity and lts Effects

In multiple regression analysis, the nature and significance of the relations between the
predictor or explanatory variables and the response variable are often of particular interest.
Some questions frequently asked are:

1. What is the relative importance of the effects of the different predictor variables?

2. What is the magnitude of the effect of a given predictor variable on the response variable?

3. Can any predictor variable be dropped from the model because it has little or no effect
on the response variable?
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4. Should any predictor variables not yet included in the model be considered for possible
inclusion?

If the predictor variables included in the model are (1) uncorrelated among themselves
and (2) uncorrelated with any other predictor variables that are related to the response
variable but are omitted from the model, relatively simple answers can be given to these
questions. Unfortunately, in many nonexperimental situations in business, economics, and
the social and biological sciences, the predictor or explanatory variables tend to be correlated
among themselves and with other variables that are related to the response variable but are
not included in the model. For example, in a regression of family food expenditures on
the explanatory variables family income, family savings, and age of head of household,
the explanatory variables will be correlated among themselves. Further, they will also be
correlated with other socioeconomic variables not included in the model that do affect
family food expenditures, such as family size.

When the predictor variables are correlated among themselves, intercorrelation or multi-
collinearity among them is said to exist. (Sometimes the latter term is reserved for those
instance® when the correlation among the predictor variables is very high.) We shall explore
a variety of interrelated problems created by multicollinearity among the predictor variables.
First, however, we examine the situation when the predictor variables are not correlated.

Uncorrelated Predictor Variables

TABLE 7.6
Uncorrelated
Predictor
Variables—
Work Crew
Productivity
Example,

Table 7.6 contains data for a small-scale experiment on the effect of work crew size (X;)
and level of bonus pay (X3) on crew productivity (¥). The predictor variables X; and X, are
uncorrelated here, i.e., r5, = 0, where rZ, denotes the coefficient of simple determination
between X, and X». Table 7.7a contains the fitted regression function and the analysis of
variance table when both X; and X, are included in the model. Table 7.7b contains the same
information when only X is included in the model, and Table 7.7c contains this information
when only X3 is in the model.

An important feature to note in Table 7.7 is that the regression coefficient for X;, b; =
5.375, is the same whether only X is included in the model or both predictor variables are
included. The same holds for b, = 9.250. This is the result of the two predictor variables
being uncorrelated.

Bonus Pay
Case Crew Size (dollars) ' Crew Productivity
i Xn Xiz™ ¥i
1 4 2 . 42
2 4 2 39
3 4 3 ’ 48
4 4 3 . 51
5 6 2 49
6 6 2 53
7 6 3 61
8 6 3 60
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TABLE 7.7
Regression
Results when
Predictor
Variables Are
Uncorrelated—
Work Crew
Productivity
Example.

Multiple Linear Regression

(a) Regression of Y on X; and X,
¥ =.375 4+ 5.375X; 4+ 9.250X,

Source of
Variation ss df MS
Regression 402.250 2 201.125
Error 17.625 5 3.525
Total 419.875 7
(b) Regression of Y on X,
¥ = 23.500 + 5.375 X,
Source of o
Variation SS df MS
Regression 231.125 1 231.125
Error 188.750 6 31.458
Total 419.875 77
(c) Regression of Y on Xz
Y = 27.250 + 9.250X;
Source of
Variation ss df MS
Regression 171.125 1 171.125
Error 248.750 6 41.458
Total 419.875 7

Thus, when the predictor variables are uncorrelated, the effects ascribed to them by a
first-order regression model are the same no matter which other of these predictor variables
are included in the model. This is a strong argument for controlled experiments whenever
possible, since experimental control permits choosing the levels of the predictor variables
so as to make these variables uncorrelated.

Another important feature of Table 7.7 is related to the error sums of squares. Note from
Table 7.7 that the extra sum of squares SSR(X{X>) equals the regression sum of squares
SSR(X,) when only X, is in the regression model:

SSR(X (1X2) = SSE(X»2) — SSE(X,, X2)
= 248.750 — 17.625 = 231.125
SSR(X,) = 231.125
Similarly, the extra sum of squares SSR(X,|X;) equals SSR(X,), the regression sum of
squares when only X, is in the regression model:
SSR(X21X 1) = SSE(X,) — SSE(X,, X2)
= 188.750 — 17.625 = 171.125
SSR(X,) = 171.125
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In general, when two or more predictor variables are uncorrelated, the marginal contribu-
tion of one predictor variable in reducing the error sum of squares when the other predictor
variables are in the model is exactly the same as when this predictor variable is in the model
alone.

Comment

To show that the regression coefficient of X, is unchanged when X, is added to the regression model
in the case where X, and X, are uncorrelated, consider the following algebraic expression for by in
the first-order multiple regression model with two predictor variables:

E(Xil - X[)(Y, — Y) _ [ E(Yz _ Y)z :l 1/2 - 3
Y. )2 XY .
(X — X)) S (X — X)) 056

1-r% N

bl:

where, as before, ry, denotes the coefficient of simple correlation between Y and X5, and ry2 denotes
the coefficient of simple correlation between X, and X».
If X, and X5 are uncorrelated, rjz = 0, and (7.56) reduces to:
g _ 2 — X)W — 1)

b —
! DX — X1)?

when r = 0 (7.56a)

But (7.56a) is the estimator of the slope for the simple linear regression of ¥ on X, per (1.10a).
Hence, when X, and X, are uncorrelated, adding X to the regression model does not change the

regression coefficient for X;; correspondingly, adding X to the regression model does not change

the regression coefficient for X,. |

Nature of Problem when Predictor Variables Are Perfectly Correlated

TABLE 7.8
Example of
Perfectly
Correlated
Predictor
Variables.

To see the essential nature of the problem of multicollinearity, we shall employ a simple
example where the two predictor variables are perfectly correlated. The data in Table 7.8
refer to four sample observations on a response variable and two predictor variables. Mr. A
was asked to fit the first-order multiple regression function:

E{Y} = Bo+ B X1+ fa X2 (7.57)

Fitted Values for

, Regression Function
Case e e
i Xin Xiz v | '7:58) (7.59)
¥ 2 6 23 | 23 23
2 8 9 8 | 8 - 83
3 6 8 63 63 , 63
4 10 10 103+ | 103 103

~ ‘ResponséFunctions:
V=874 X1+ 18Xz (7.58)
V= -7 49X 12Xz (7:59)
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FIGURE 7.2
Two Response
Planes That
Intersect when

Xz =54+.5X;.

He returned in a short time with the fitted response function:
Y =87+ X, + 18X, (7.58)

He was proud because the response function fits the data perfectly. The fitted values are
shown in Table 7.8.

It so happened that Ms. B also was asked to fit the response function (7.57) to the same
data, and she proudly obtained:

Y= —-74+9X,+2X, (7.59)

Her response function also fits the data perfectly, as shown in Table 7.8.

Indeed, it can be shown that infinitely many response functions will fit the data in
Table 7.8 perfectly. The reason is that the predictor variables X, and X, are perfectly
related, according to the relation:

X, =5+ .5X, (7.60)

Note that the fitted response functions (7.58) and (7.59) are entirely different response
surfaces, as may be seen in Figure 7.2. The two response surfaces have the same fitted
values only when they intersect. This occurs when X, and X, follow relation (7.60), i.e.,
when X, =5+ .5X,.

Thus, when X, and X, are perfectly related and, as in our example, the data do not
contain any random error component, many different response functions will lead to the
saime perfectly fitted values for the observations and to the same fitted values for any
other (X, X2) combinations following the relation between X, and X,. Yet these response
functions are not the same and will lead to different fitted values for (X, X») combinations
that do not follow the relation between X, and X».

Two key implications of this example are:

1. The perfect relation between X; and X did not inhibit our ability to obtain a goodfil
to the data.
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2. Since many different response functions provide the same good fit, we cannot interpret
any one set of regression coefficients as reflecting the effects of the different predictor
variables. Thus, in response function (7.58), b = 1 and b, = 18 do not imply that X is the
key predictor variable and X, plays little role, because response function (7.59) provides
an equally good fit and its regression coefficients have opposite comparative magnitudes.

gffects of Multicollinearity
In practice, we seldom find predictor variables that are perfectly related or data that do not
contain some random error component. Nevertheless, the implications just noted for our
idealized example still have relevance.

1. The fact that some or all predictor variables are correlated among themselves does
not, in general, inhibit our ability to obtain a good fit nor does it tend to affect inferences
about mean responses or predictions of new observations, provided these inferences are
made within the region of observations. (Figure 6.3 on p. 231 illustrates the concept of the
region of observations for the case of two predictor variables.)

2. The counterpart in real life to the many different regression functions providing equally
good fits to the data in our idealized example is that the estimated regression coefficients tend
to have large sampling variability when the predictor variables are highly correlated. Thus,
the estimated regression coefficients tend to vary widely from one sample to the next when
the predictor variables are highly correlated. As a result, only imprecise information may
be available about the individual true regression coefficients. Indeed, many of the estimated
regression coetficients individually may be statistically not significant even though a definite
statistical relation exists between the response variable and the set of predictor variables.

3. The common interpretation of a regression coefficient as measuring the change in the
expected value of the response variable when the given predictor variable is increased by
one unit while all other predictor variables are held constant is not fully applicable when
multicollinearity exists. It may be conceptually feasible to think of varying one predictor
variable and holding the others constant, but it may not be possible in practice to do so
for predictor variables that are highly correlated. For example, in a regression model for
predicting crop yield from amount of rainfall and hours of sunshine, the relation between the
two predictor variables makes it unrealistic to consider varying one while holding the other
constant. Therefore, the simple interpretation of the regression coefficients as measuring
marginal effects is often unwarranted with highly correlated predictor variables.

We illustrate these effects of multicollinearity:by returning to the body fat example. A
portion of the basic data was given in Table 7.1, and regression results for different fitted
models were presented in Table 7.2. Figure 7.3 contains the scatter plot matrix and the
correlation matrix of the predictor variables. It is evident from the scatter plot matrix that
predictor variables X, and X are highly correlated; the correlation matrix of the X variables
shows that the coefficient of simple correlation is r1; = .924. On the other hand, X5 is not so
highly related to X, and X individually; the correlation matrix shows that the cotrelation
coefficients are rj3 = .458 and r;3 = .085. (But X3 is highly correlated with X; and X,
together; the coefficient of multiple determination when X3 is regressed on X, and X»
is .998.)
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FIGURE 7.3
Scatter Plot
Matrix and
Correlation
Matrix of the
Predictor
Variables—
Body Fat
Example.

Multiple Linear Regression

(@) Scatter Plot Matrix of X Variables (b) Correlation Matrix of X Variables
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Effects on Regression Coefficients. Note from Table 7.2 that the regression coefficiept
for X, triceps skinfold thickness, varies markedly depending on which other variables are
included in the 1model:

Variables in Model by by
X1 .8572 —
X2 — .8565
X1, X2 2224 6594
X1, X2, X3 4.334 —2.857

The story is the same for the regression coefficient for X,. Indeed, the regression co-
efficient b, even changes sign when X3 is added to the model that includes X, and X,.

The important conclusion we must draw 1s: When predictor variables are correlated, the
regression coefficient of any one variable depends on which other predictor variables are
included in the model and which ones are left out. Thus, a regression coefficient does not
reflect any inherent effect of the particular predictor variable on the response variable but
only a marginal or partial effect, given whatever other correlated predictor variables are
included in the model.

Comment

Another illustration of how intercorrelated predictor variables that are omitted from the regression
model can influence the regression coefficients in the regression model is provided by an analyst who
was perplexed about the sign of a regression coefficient in the fitted regression model. The analyst had
found in a regression of territory company sales on territory population size, per capita income, and
sonie other predictor variables that the regression coefficient for population size was negative, and this
conclusion was supported by a confidence interval for the regression coefficient. A consultant noted
that the analyst did not include the major competitor’s market penetration as a predictor variable in
the model. The competitor was niost active and effective in territories with large populations, thereby
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keeping company sales down in these territories. The result of the omission of this predictor variable
from the model was a negative coefficient for the population size variable. [ ]

Effects on Extra Sums of Squares. When predictor variables are correlated, the marginal
contribution of any one predictor variable in reducing the error sum of squares varies,
depending on which other variables are already in the regression model, just as for regression
coefficients. For example, Table 7.2 provides the following extra sums of squares for X;:

SSR(X1) = 352.27
SSR(X11X2) = 3.47

The reason why SSR(X;]|X3) is so small compared with SSR(X) is that X3 and X, are
highly correlated with each other and with the response variable. Thus, when X is already
in the regression model, the marginal contribution of X, in reducing the error sum of squares
is comparatively small because X, contains much of the same information as X.

The same story is found in Table 7.2 for X,. Here SSR(X3|X;) = 33.17, which is much
smaller than SSR(X ;) = 381.97. The important conclusion is this: When predictor variables
are correlated, there is no unique sum of squares that can be ascribed to any one predictor
varidble as reflecting its effect in reducing the total variation in Y. The reduction in the
total variation ascribed to a predictor variable must be viewed in the context of the other
correlated predictor variables already included in the model.

Comments

1. Multicollinearity also affects the coefficients of partial determination through its effects on the
extra sums of squares. Note from Table 7.2 for the body fat example, for instance, that X is highly
correlated with ¥:

2 _ SSR(X)) 35227
L™ SSTO — 49539

However, the coefficient of partial determination between Y and X, when X3 is already in the
regression model, is much smaller:

SR 3.4
SSROOIXz) _ 347 _

R = = =
iz SSE(X>) 113.42

The reason for the small coefficient of partial determination here is, as we have seen, that X, and
X are highly correlated with each other and with the response variable. Hence, X, provides only
relatively limited additional information beyond that furnished by Xa.

2. The extra sum of squares for a predictor variable after other correlated predictor variables are
in the model need not necessarily be smaller than befare these other variables are in the model, as we
found in the body fat example. In special cases, it can be larger. Consider the following special data
set and its correlation matrix:

’

Y X, X, v ox x
;8 1(5) §3 Y 1.0 .02 .976
o 5 s X" 10 243

X3 1.0

1 10 10
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Here, Y and X are highly positively correlated, but ¥ and X, are practically uncorrelated. In addity,
X, and X, are moderately positively correlated. The extra sum of squares for X; when it is the ol
variable in the model for this data set is SSR(X,) = .25, but when X, already is in the niodel the exiy
sum of squares is SSR(X|X2) = 18.01. Similarly, we have for these data:

SSR(X,) = 362.49 SSR(X2| X1) = 380.25

The increase in the extra sums of squares with the addition of the other predictor variable in the modey
related to the special situation here that X is practically uncorrelated with Y but moderately correlareg
with X, which in turn is highly correlated with Y. The general point even here still holds—the €xiry
suin of squares is affected by the other correlated predictor variables already in the model.

When SSR(X{X2) > SSR(X,), as in the example just cited, the variable X, is sometimes calleg
a suppressor variable. Since SSR(X2|X1) > SSR(X>) in the example, the variable X, Xvould also be
called a suppressor variable. = N

Effectson s{b.}. Note from Table 7.2 for the body fat exaimple how much more imprecige
the estimated regression coefficients b, and b, become as more predictor variables are addeq
to the regression model:

*

Variables in Model s{b} s{by}
X1 .1288 —
X3 — 1100
X, X2 .3034 .2912
X1, X2, X3 3.016 2.582

Again, the high degree of muliticollinearity among the predictor variables is responsible for
the inflated variability of the estimated regression coefficients.

Effects on Fitted Values and Predictions. Notice in Table 7.2 for the body fat example
that the high multicollinearity among the predictor variables does not prevent the mean
square error, measuring the variability of the error terms, from being steadily reduced as
additional variables are added to the regression model:

Variables in Model MSE
X3 7.95
X1, X2 6.47
x'll XZ/ X3 6.] 5

Furthermore, the precision of fitted values within the range of the observations on the
predictor variables is not eroded with the addition of correlated predictor variables into
the regression model. Consider the estimation of mean body fat when the only predictor
variable in the model is triceps skinfold thickness (X,) for X, = 25.0. The fitted value
and its estimated standard deviation are (calculations not shown):

Y, =1993  s{F,}=.632

When the highly correlated predictor variable thigh circumference (X») is also included
in the model, the estimated mean body fat and its estunated standard deviation are as follows
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for X,,; = 25.0 and X;; = 50.0:
V,=1936 s{¥,}=.624

Thus, the precision of the estimated mean response is equally good as before, despite the
addition of the second predictor variable that is highly correlated with the first one. This
stability in the precision of the estimated mean response occurred despite the fact that the
estimated standard deviation of b; became substantially larger when X, was added to the
mode] (Table 7.2). The essential reason for the stability is that the covariance between b,
and b;, is negative, which plays a strong counteracting influence to the increase in s2{b,} in
determining the value of s2{¥,} as given in (6.79).

When all three predictor variables are included in the model, the estimated mean body
fat and its estimated standard deviation are as follows for X, =25.0, Xj2=150.0, and
Xz = 29.0:

Y, =19.19  s{f,}= 621 i

Thus, the addition of the third predictor variable, which is highly correlated with the first two
predictor variables together, also does not materially affect the precision of the estimated
mean response.

Effects on Simultaneous Tests of 8;. A not infrequent abuse in the analysis of multiple
regression models is to examine the ¢* statistic in (6.51b):

t* = b
s{b}

for each regression coefficient in tarn to decide whether 8, = Ofork =1,..., p— 1. Even
if a simultaneous inference procedure is used, and often it is not, problems still exist when
the predictor variables are highly correlated.

Suppose we wish to test whether 8; = 0 and 8; = 0 in the body fat example regression
model with two predictor variables of Table 7.2¢. Controlling the family level of significance
at .05, we require with the Bonferroni method that each of the two 7 tests be conducted with
level of significance .025. Hence, we need 1(.9875; 17) = 2.46. Since both ¢* statistics
in Table 7.2c hdve absolute values that do not exceed 2.46, we would conclude from the
two separate tests that 8; =0 and that 8, =0. Yet the proper F test for Hy: Bi=p=0
would lead to the conclusion H,, that not both coefficients equal zero. This can be seen
from Table 7.2c, where we find F* = MSR/MSE = 192.72/6.47 = 29.8, which far exceeds
F(.95;2,17)=3.59.

The reason for this apparently paradoxical result is that each ¢* test is a marginal test,
as we have seen in (7.15) from the perspective, of the general linear test approach. Thus,
a small SSR(X,|X>) here indicates that X, does not provide much additional information
beyond X5, which already is in the model; hence, we are led to the conclusion that 8, = 0.
Similarly, we are led to conclude 8, = 0 here because SSR(X2|X1) is small, indicating that
X does not provide moch more additional information when X is already in the model.
But the two tests of the marginal effects of X; and X, together are not equivalent to testing
whether there is a regression relation between Y and the two predictor variables. The reason
is that the reduced mode] for each of the separate tests contains the other predictor variable,
whereas the reduced model for testing whether both 8, = 0 and 8, = 0 would contain
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neither predictor variable. The proper F test shows that there is a definite regression relatiop,
here between ¥ and X; and X,.

The same paradox would be encountered in Table 7.2d for the regression modej With
three predictor variables if three simultaneous tests on the regression coefficients Were
conducted at family level of significance .05.

Comments

I. It was noted in Section 7.5 that a near-zero determinant of X'X is a potential source of Serioyg
roundoff errors in normal equations calculations. Severe multicollinearity has the effect of making
this determinant come close to zero. Thus, under severe multicollinearity, the regression coefficientg
may be subject to large roundoff errors as well as large sampling variances. Hence, it is particulardy
advisable to employ the correlation transformation (7.44) in normal equations calculations whey
multicollinearity is present.

2. Just as high intercorrelations among the predictor variables tend to make the estimated re.
gression coefficients imprecise (i.e., erratic from sample to sample), so do the coefficients of parii
correlation between the response variable and each predictor variable tend to become erratic from
sample to sample when the predictor variables are highly correldted.

3. The effect of intercorrelations among the predictor variables on the standard deviations of the
estimated regression coefficients can be seen readily when the variables in the model are transformed
by means of the correlation transformation (7.44). Consider the first-order model with two predictor
variables:

Yi=HFo+Bi X+ B Xio +& (7.61)
This model in the variables transformed by (7.44) becomes:
V=B X\ + X5+ (7.62)
The (X’X) ! matrix for this standardized model is given by (7.50) and (7.54c):

, 1 I —rp
XX) ' =1yt = _ r (7.63)
b—rp | —r2 |
Hence, the variance-covariance matrix of the estimated regression coefficients is by (6.46) and (7.63):
5 3 . I I —rpp
o*{b} = (0")ryy = (o) 3 [ .7] (7.64)
b—rpy |—ri2 |

where (%) is the error term variance for the standardized model (7.62). We see that the estimated
regression coefficients b} and b3 have the same variance here:

(U*)z

b} = b3y = T

(7.65)

wind

and that each of these variances become larger as the correlation between X and X, increases. Indeed,
as X, and X, approach perfect correlation (i.e.. as r, approaches 1), the variances of b} and b} become
larger without limit.

4. We noted in our discussion of simiultaneous tests of the regression coefficients that it is possi-
ble that a set of predictor variables is related to the response variable, yet all of the individual tests
on the regression coefficients will lead to the conclusion that they equal zero because of the multi-
collinearity among the predictor variables. This apparently paradoxical result is also possible under
special circumstances when there is no multicollinearity among the predictor variables. The special
circumstances are not likely to be found in practice, however. n
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Need for More Powerful Diagnostics for Multicollinearity

As we have seen, multicollinearity among the predictor variables can have important con-
sequences for interpreting and using a fitted regression model. The diagnostic tool con-
sidered here for identifying multicollinearity—namely, the pairwise coefficients of simple
correlation between the predictor variables—is frequently helpful. Often, however, serious
multicollinearity exists without being disclosed by the pairwise correlation coefficients. In
Chapter 10, we present a more powerful tool for identifying the existence of serious multi-
collinearity. Some remedial measures for lessening the effects of multicollinearity will be
considered in Chapter 11.
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Problems

7.1.

7.2.
7.3.

*7.4.

*7.5.

*7.6.

7.1.

k

State the number of degrees of freedom that are associated with each of the following extra

sums of squares: (1) SSR(X|X2); (2) SSR(X|X1, X3); (3) SSR(X, X2|X3, X4); (4) SSR(X,,

X2, X31X4, X5).

Explain in what sense the regression sum of squares SSR(X) is an extra sum of squares.

Refer to Brand preference Problem 6.5.

a. Obtain the analysis of variance table that decomposes the regression sum of squares into
extra sums of squares associated with X and with X, given X .

b. Test whether X, can be dropped from the regression model given that X is retained. Use
the F* test statistic and level of significance .01. State the alternatives, decision rule, and
conclusion. What is the P-value of the test?

Refer to Grocery retailer Problem 6.9.

a. Obtain the analysis of variance table that decomposes the regression sum of squares into
extra sums of squares associated with X ; with X3, given X ; and with X», given X and X3.

b. Test whether X can be dropped from the regression model given that X, and X3 are retained.
Use the F* test statistic and « = .05. State the alternatives, decision rule, and conclusion.
What is the P-value of the test?

c. Does SSR(X1) + SSR(X21X ) equal SSR(X>) + SSR(X|X>) here? Must this always be the
case?

Refer to Patient satisfaction Problem 6.15.
a. Obtain the analysis of variance table that decomposes the regression sum of squares into
extra sums of squares associated with X»; with X, given X,; and with X3, given X, and X,.

b. Test whether X5 can be dropped from the regression model given that X, and X, areretained.
Use the F* test statistic and level of significance .025. State the alternatives, decision rule,
and conclusion. What is the P-yalue of the test?

Refer to Patient satisfaction Problem 6.15. Test whether both X, and X3 can be dropped from
the regression model given that X, is retained. Use o = .025. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?

Refer to Commercial properties Problem 6.18.

Pl

a. Obtain the analysis of variance table that decomposes the regression sum of squares into
extra sums of squares associated with X4; with X, given X4; with X5, given X, and Xa;
and with X3, given X, X, and X,.
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7.8.

*7.9.

7.10.

7.11.

*7.13.

*7.14.

71.15.

7.16.

*7.17.

*7.18.

b. Test whether Xz can be dropped from the regression model given that X, X, and Xy are
retained. Use the F” tes1 statistic and level of significance .01. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?

Refer to Commercial properties Problems 6. 18 and 7.7. Test whether both X, and X; cqp be

dropped from the regression model given that X and Xy are retained; use o = .01, Sigge the

alternatives, decision rule, and conclusion. What is the P-value of the test?

Refer to Patient satisfaction Problem 6. 15. Test whether ) = —[.0and 82 = O use v = 025

State the alternatives, full and reduced models, decision rule, and conclusion.

Refer to Commercial properties Problem 6.18. Test whether 8 = —.l and 8, =

o = .0l. State the alternatives, full and reduced models, decision rule, and conclusion.

45 uge

Refer to the work crew productivity example in Table 7.6.

a. Calculate R3,, R}y, Riy, Ryypps Ryoy»> and R*. Explain what each coefficiént measures and
interpret your results.

b. Are any of the results obtained in part (a) special because the two predictor variables zpe
uncorrelated?

2

. Referto Brand preference Problem 6.5. Calculate R, R}, R}y, Ry, Ry and R2. Explain

what each coefficient measures and interpret your results.

Refer to Grocery retailer Problem 6.9. Calculate R}, RY,. Rl R}jj0> Rys Rioy3, and R2,

Explain what each coefficient measures and interpret your results.

Refer to Patient satisfaction Problem 6.15.

a. Calculate R}, R;'fuzv and Ry ;- How is the degree of marginal linear association between
Y and X, affected, when adjusted for X,? When adjusted for both X, and X3?

b. Make a similar analysis to that in part (a) for the degree of marginal linear association
between Y and X,. Are your findings similar to those in part (a) for ¥ and X,?

Refer to Commercial properties Problems 6.18 and 7.7. Calculate R}y, Ry, R}y, RY,

R%,Zlm, R%f_zuz;u and R®. Explain what each coefficient measures and interpret your results.

How is the degree of marginal linear association between Y and X, affected, when adjusted

for X47?

Refer to Brand preference Problem 6.5.

a. Transform the variables by means of the correlation transformation (7.44) and fit the stan-
dardized regression model (7.45).

b. Interpret the standardized regression coefficient b}.

c¢. Transform the estimated standardized regression coefficients by means of (7.53) back tothe
ones for the fitted regression model in the original variables. Verify that they are the same
as the ones obtained in Problem 6.5b.

Refer to Grocery retailer Problem 6.9.

a. Transform the variables by means of the correlation transformation (7.44) and fit the
standardized regression model (7.45).

b. Calculate the coefficients of determination between all pairs of predictor variables. Is it
meaningful here to consider the standardized regression coefficients to reflect the effect of
one predictor variable when the others are held constant?

c. Transform the estimated standardized regression coefficients by means of (7.53) back tothe
ones for the fitted regression model in the original vartables. Verify that they are the same
as the ones obtained in Problem 6.10a.

Refer to Patient satisfaction Problem 6.15.



7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

*7.25.
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a. Transform the variables by means of the correlation transformation (7.44) and fit the
standardized regression model (7.45).

b. Calculate the coefficients of determination between all pairs of predictor variables. Do these
indicate that it is meaningful here to consider the standardized regression coefficients as
indicating the effect of one predictor variable when the others are held constant?

c¢. Transform the estimated standardized regression coefficients by means of (7.53) back to the
ones for the fitted regression model in the original variables. Verify that they are the same
as the ones obtained in Problem 6.15c.

Refer to Commercial properties Problem 6.18.

a. Transform the variables by means of the correlation transformation (7.44) and fit the stan-
dardized regression model (7.45).

b. Interpret the standardized regression coefficient b3. )

c. Transform the estimated standardized regression coefficients by means of (7.53) back to the
ones for the fitted regression model in the original variables. Verify that they are the sgme
as the ones obtained in Problem 6.18c.

A speaker stated in a workshop on applied regression analysis: “In business and the social
sciences, some degree of multicollinearity in survey data is practically inevitable.” Does this
statement apply equally to experimental data?

Refer to the example of perfectly correlated predictor variables in Table 7.8.

a. Develop another response function, like response functions (7.58) and (7.59), that fits the
data perfectly.

b. What is the intersection of the infinitely many response surfaces that fit the data perfectly?

The progress report of a research analyst to the supervisor stated: “All the estimated regression
coefficients in our model with three predictor variables to predict sales are statistically sig-
nificant. Our new preliminary model with seven predictor variables, which includes the three
variables of our smaller model, is less satisfactory because only two of the seven regression
coefficients are statistically significant. Yet in some initial trials the expanded model is giving
more precise sales predictions than the smaller model. The reasons for this anomaly are now
being investigated.” Comment.

Two authors wrote as follows: “Our research utilized a multiple regression model. Two of
the predictor variables important in our theory turned out to be highly correlated in our data
set. This'made it difficult to assess the individual effects of each of these variables separately.
We retained both variables in our model, however, because the high coefficient of multiple
determination makes this difficulty unimportant.” Comment.

Refer to Brand preference Problem 6.5.

a. Fit first-order simple linear regression model (2.1) for relating brand liking (¥') to moisture
content (X ). State the fitted regression function.

b. Compare the estimated regression coeffigient for moisture content obtained in part (a) with
the corresponding coefficient obtained in Problem 6.5b. What do you find?

c. Does SSR(X ) equal SSR(X|X>) here? If not, is the difference substantial?

d. Refer to the correlation matrix obtained in Problem 6.5a. What bearing does this have on
your findings in parts (b) and (¢)? . .

Refer to Grocery retailer Problem 6.9.

a. Fit first-order simple linear regression model (2.1) for relating total hours required to handle
shipment (¥) to total number of cases shipped (X). State the fitted regression function.

3
2
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*7.26.

b. Cglnpare the estimgted regres§ion coef.ﬁcieflt for total cases shipped obtained in part (a)
with the corresponding coefficient obtained in Problem 6.10a. What do you find?

c. Does SSR(X ) equal SSR(X|X) here? If not, is the difference substantial?

d. Refer to the correlation matrix obtained in Problem 6.9c. What bearing does this haye on
your findings in parts (b) and (c)?

Refer to Patient satisfaction Problem 6.15.

a. Fit first-order linear regression model (6.1) for relating patient satisfaction () to patiepps
age (X)) and severity of illness (X,). State the fitted regression function.

b. Compare the estimated regression coefficients for patient’s age and severity of illness g},
tained in part (a) with the corresponding coefficients obtained in Problem 6.15¢c. What ¢
you find?

c. Does SSR(X ) equal SSR(X|X3) here? Does SSR(X>) equal SSR(leXg)?U

d. Refer to the correlation matrix obtained in Problem 6.15b. What bearing does it have o
your findings in parts (b) and (c)?

»

. Refer to Commercial properties Problem 6.18.

a. Fit first-order linear regression model (6.1) for relating rental rates (Y} to property age ( X1)
and size (X4). State the fitted regression function.

b. Compare the estimated regression coefficients for property age and size with the corre-
sponding coefficients obtained in Problem 6.18c. What do you find?

c. Does SSR(X4) equal SSR(X4}X3) here? Does SSR(X ;) equal SSR(X 1X3)?

d. Refer to the correlation matrix obtained in Problem 6. [8b. What bearing does this have on
your findings in parts (b) and (c)?

Exercises

7.28.

7.30.

7.31L

a. Define each of the following extra sums of squares: (F) SSR(X5|X1); (2) SSR(X3, X4X,);
(3) SSR(X4] X1, X2, X3).

b. For a multiple regression model with five X variables, what is the relevant extra sum of
squares for testing whether or not 5 = (7 whether or not g, = g4 = 0?7

. Show that:

a. SSR(Xi, X2, X3, X4) = SSR(X\) + SSR(X3, X311 X)) + SSR(X4| Xy, X2, X3).

b. SSR(X\, Xa, X3, X4) = SSR(X2. X3) + SSR(X,| X2, X3) + SSR(X4|X,, Xa, X3).

Refer to Brand preference Problem 6.5.

a. Regress Y on X using simple linear regression model (2.1) and obtain the residuals.

b. Regress X on X, using simple linear regression model (2.1) and obtain the residuals.

c. Calculate the coefficient of simple correlation between the two sets of residuals and show
that it equals ryp-

The following regression model is being considered in a water resources study:

Yi=Bo+ BiXa + B Xin+ BsXu X+ B/ Xia + &

State the reduced models for testing whetherornot: (N Sz = 4 =0, 2} fz=0,B3) B =
B=5@) B, =T

. The following regression model is being considered in a market research study:

Y = Bo+ BiXa + B Xir + B X2 + &
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7.33.
7.34.

7.35.
7.36.
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State the reduced models for testing whether ornot: (1) 81 = 83 =0,2) 8 =0,3) B3 =5,

4) fo=10,(5) ) = pa.

Show the equivalence of the expressions in (7.36) and (7.41) for R%,,.

Refer to the work crew productivity example in Table 7.6.

a. For the variables transformed according to (7.44), obtain: (1) X'X, (2) X'Y, (3) b, (4) s*{b}.

b. Show that the standardized regression coefficients obtained in part (a3) are related to the
regression coefficients for the regression model in the original variables according to (7.53).

Derive the relations between the §; and ; in (7.46a) for p — 1 = 2.

Derive the expression for X'Y in (7.51) for standardized regression model (7.30.) for p—1 = 2.

7.37.

7.38.

Refer to the CDI data set in Appendix C.2. For predicting the number of active physicians (¥)
in a county, it has been decided to include total population (X ) and total personal income (X5)
as predictor variables. The question now is whether an additional predictor variable woulld be
helpful in the model] and, if so, which variable would be most helpful. Assume that a first-order
multiple regression model is appropriate.

a. For each of the following variables, calculate the coefficient of partial determination given
that X, and X, are included in the model: Jand area (X3), percent of population 65 or older
(X4), number of hospital beds (X5), and total serious crimes (X¢).

b. On the basis of the results in part (a), which of the four additional predictor variables is best?
Is the extra sum of squares associated with this variable larger than those for the other three
variables?

c. Using the F* test statistic, test whether or not the variable determined to be best in part (b)
is helpful in the regression model when X; and X are included in the model; use & = .01.
State the alternatives, decision rule, and conclusion. Would the F* test statistics for the other
three potential predictor variables be as large as the one here? Discuss.

Refer to the SENIC data set in Appendix C.1. For predicting the average length of stay of
patients in a hospital (¥), it has been decided to include age (X)) and infection risk (X>) as
predictor variables. The question now is whether an additional predictor variable would be
helpful in the mode! and, if so, which variable would be most helpful. Assume that a first-order
multiple regression model is appropriate.

a. For each of the following variables, calculate the coefficient of partial determination given
that X, and X, are included in the mode]: routine culturing ratio (X3), average daily census
(X4), number of nurses (Xs), and available facilities and services (Xs)-

b. On the basis of the results in part (a), which of the four additional predictor variables is best?
Is the extra sum of squares associated with this variable larger than those for the other three
variables?

c. Using the F* test statistic, test whether gr not the variable determined to be best in part (b)
is helpful in the regression model when X, and X, are included in the model; use & = .05.
State the alternatives, decision rule, and conclusion. Would the F* test statistics for the other
three potential predictor variables be as large as the one here? Discuss.

- -



Chapter

Regression Models
for Quantitative
and Qualitative Predictors

[n this chapter, we consider in greater detail standard modeling techniques for quantitative
predictors, for qualitative predictors, and for regression models containing both quantitative
and qualitative predictors. These techniques include the use of interaction and polynomigl
terms for quantitative predictors, and the use of indicator variables for qualitative predictors,

8.1 Polynomial Regression Models

We first consider polynomial regression models for quantitative predictor variables. They
are among the most frequently used curvilinear response models in practice because they
are handled easily as a special case of the general linear regression model (6.7). Next, we
discuss several commonly used polynomial regression models. Then we present a case to
illustrate soine of the major issues encountered with polynomial regression models.

Uses of Polynomial Models

294

Polynomial regression models have two basic types of uses:

1. When the true curvilinear response function is indeed a polynomial function.
2. When the true curvilinear response function is unknown (or complex) but a polynomial
function is a good approximation to the true function.

The second type of use, where the polynomial function is employed as an approximation
when the shape of the true curvilinear response function is unknown, is very common. It
may be viewed as a nonparametric approach to obtaining information about the shape of
the response function.

A 1main danger in using polynomial regression models, as we shall see, is that extrap-
olations may be hazardous with these models, especially those with higher-order terms.
Polynomial regression models may provide good fits for the data at hand, but may turn in
unexpected directions when extrapolated beyond the range of the data.
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‘One Predictor Variable—Second Order

FIGURE 8.1
Examples of
Second-Order
Polynomial
Response
Functions.

Polynomial regression models may contain one, two, or more than two predictor variables.
Further, each predictor variable may be present in varions powers. We begin by considering
a polynomial regression model with one predictor variable raised to the first and second
powers:

Y;=Po+ Bixi + Pox? + & (8.1

where:
Xi = X,' — X

This polynomial model is called a second-order model with one predictor variable becanse
the single predictor variable is expressed in the model to the first and second powers. Note
that the predictor variable is centered—in other words, expressed as a deviation around its
mean X—and that the ith centered observation is denoted by x;. The reason for using a
centered predictor variable in the polynomial regression model is that X and X? often will be
highly correlated. This, as we noted in Section 7.5, can cause serious computational difficol-
ties when the X'X matrix is inverted for estimating the regression coefficients in the normal
equations calculations. Centering the predictor variable often reduces the multicollinear-
ity substantially, as we shall illustrate in an example, and tends to avoid computational
difficulties.

The regression coefficients in polynomial regression are frequently written in a slightly
different fashion, to reflect the pattern of the exponents:

Y; = Bo+ Bixi + Bux? + & (8.2

We shall employ this latter notation in this section.
The response function for regression model (8.2) is:

E{Y}= Bo+ Bix + pux’ (8.3)

This response function is a parabola and is frequently called a quadratic response function.
Figure 8.1 contains two examples of second-order polynomial response functions.

~
~

60 |- 60

50 50

40 |- 40 E{y} = 18 — 8x + 2x2
30 Fyy=52+8x-22  30F )

20 201 .
10 10+ .
e A R A
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The regression coefficient By represents the mean response of ¥ when x =0, j ¢ wh
X = X. The regression coefficient B, is often called the linear effect coefficient, ang B a
called the quadratic effect coefficient. s

Comments

1. The danger of extrapolating a polynomial response function is illustrated by the responge funcg
in Figure 8. fa. If this function is extrapolated beyond x = 2, it actually turns downward, Whi(;ﬁ
might not be appropriate in a given case.

2. The algebraic version of the least squares normal equations:

X'Xb =X'Y
for the second-order polynomial regression model (8.2) can be readily obtaifed from 6.77) by
replacing X, by x; and X;» by x?. Since Y x; =0, this yields the normal equations:

.
ZY, = Ilb() +17“ Z,‘(,—z

Zx,-Y,— = b er + by er 8.49)

Zx,-zY,- =by inz—l—bl er + by Zr?

|
One Predictor Variable—Third Order
The regression model:
Y; = Bo+ Pixi + Bux} + Pinx + & (8.5)
where:
xi=X;—X

is a third-order model with one predictor variable. The response function for regression
model (8.5) is:

E(Y}= Bo+ Bix + Bux’ + Bix° (8.6)

Figure 8.2 contains two examples of third-order polynomial response functions.

One Predictor Variable—Higher Orders

Polynomial models with the predictor variable present in higher powers than the third
should be employed with special caution. The interpretation of the coefficients becomes
difficult for such models, and the models may be highly erratic for interpolations and even
small extrapolations. It must be recognized in this connection that a polynomial mode! of
sufficiently high order can always be found to fit data containing no repeat observations
perfectly. For instance, the fitted polynomial regression function for one predictor variable
of order n — 1 will pass through all z observed Y values. One needs to be wary, therefore, of

‘using high-order polynomials for the sole purpose of obtaining a good fit. Such regression
functions may not show clearly the basic elements of the regression relation between X and
Y and may lead to erratic interpolations and extrapolations.
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Y Y

30 30
EY} =163 — 1.45x — .15x%2 — .35%3

20

101 Fyy = 22.45 + 1.45x + .15x% + .35x3

Two Predictor Variables—Second Order

-The regression model:
Y; = Bo+ Bixi + BaXin + Buxly + Buxhy + PrXixiz + & 8.7)
where:
xin= Xy — X,
xio =X — X,

is a second-order model with two predictor variables. The response function is:
E{Y} = o+ Bixi + Boxz + PuXi + Bnx} + Brxixs (8.8)

which is the equation of a conic section. Note that regression model (8.7) contains separate
linear and quadratic components for each of the two predictor variables and a cross-product
term. The latter represents the interaction effect between x; and x,, as we noted in Chapter 6.
The coefficient 8y, is often called the interaction effect coefficient.

Figure 8.3 contains a representation of the response surface and the contour curves for
a second-order response function with two predictor variables:

E{Y} = 1,740 — 4x? — 3x2 — 3x;x,

The contour curves correspond to different, response levels and show the various combi-
nations of levels of the two predictor variables that yield the same level of response. Note
that the response surface in Figure 8.3a has a maximum at x; = 0 and x, = 0. Figure 6.2b
presents another type of second-order polynomial résponse function with two predictor
variables, this one containing a saddle point.

Pl

»

Comment

The cross-product term B2x1x5 in (8.8) is considered to be a second-order term, the same as f;x2
or ﬂzzxg. The reason can be seen by writing the latter terms as By x1x; and Basx2%,, respectively. W
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FIGURE 8.3 Example of a Quadratic Response Surface—E{Y}=1,740 — 4x? — 3xZ — 3x,x,.

(a) Response Surface (b) Contour Curves
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Three Predictor Variables—Second Order
The second-order regression model with three predictor variables is:

Y; = Bo + Bixit + Boxiz + Baxiz + Buxi + Buxl + Brx’

+ BiaXinXiz + BrsXinxis + BaaXioXiz + & (8.9
where:
xi1=Xn — X1
Xin = X2 — X2
xi3 = Xi3s — X3

The response function for this regression model is:

E{Y} = o+ Bix1 + Baxa + Baxs + Puxi + Booxs + Piax?
+ Br2x1xz + BrsX1x3 + Br3xoxs (8.10)

The coefficients B2, B13, and B3 are interaction effect coefficients for interactions between
pairs of predictor variables.

Implementation of Polynomial Regression Models
Fitting of Polynomial Models. Fitting of polynomial regression models presents no new
problems since, as we have seen in Chapter 6, they are special cases of the general Jinear
regression model (6.7). Hence, all earlier results on fitting apply, as do the earlier results on
making inferences.
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Hierarchical Approach to Fitting. When using a polynomial regression model as an
approximation to the true regression function, statisticians will often fit a second-order or
third-order model and then explore whether a lower-order model is adequate. For instance,
with one predictor variable, the model:

Y; = Bo+ Bixi + Bux? + Bux; + &

may be fitted with the hope that the cubic term and perhaps even the quadratic term can be
dropped. Thus, one would wish to test whether or not 8,3 = 0, or whether or notboth 8, =0
and Bi11 =0. The decomposition of SSR into extra sums of squares therefore proceeds as
follows:

0

SSR(x)
SSR(x?)x)
SSR(x3|x, x?)

To test whether 811y =0, the appropriate extra sum of squares is SSR(x3|x, x2). If, in-
stead, one wishes to test whether a linear term is adequate, i.e., whether 8;; = 8,1 =0, the
appropriate extra sum of squares is SSR(x?, x*|x) = SSR(x*|x) + SSR(x?|x, x?).

With the hierarchical approach, if a polynomial term of a given order is retained, then
all related terms of lower order are also retained in the model. Thus, one would not drop
the quadratic term of a predictor variable but retain the cubic term in the model. Since the
quadratic term is of lower order, it is viewed as providing more basic information about the
shape of the response function; the cubic term is of higher order and is viewed as providing
refinements in the specification of the shape of the response function. The hierarchical
approach to testing operates similarly for polynomial regression models with two or more
predictor variables. Here, for instance, an interaction term (second power) would not be
retained without also retaining the terms for the predictor variables to the first power.

Regression Function in Terms of X. After a polynomial regression model has been
developed, we often wish to express the final mode] in terms of the original variables rather
than keeping it in terms of the centered variables. This can be done readily. For example, the
fitted second-order model for one predictor variable that is expressed in terms of centered
values x = X — X:

Y = by + bix + bux? (8.11)
becomes in terms of the original X variable:
Y =8+ WX +1,X* (8.12)
where: !
by = bo‘— hX + b, X? i (8.12a)
Y, =b —2b, X i (8.12b)
by, = bn ' . (8.12¢)

The fitted values and residuals for the regression function in terms of X are exactly the
same as for the regression function in terms of the centered values x. The reason, as we

oy

it

vt
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noted earlier, for utilizing a imodel that is expressed in terms of centered observationg isto
reduce potential calculational difficulties due to multicollinearity among X, X2, x3 ete
inherent in polynomial regression. ”

Comment

The estimated standard deviations of the regression coefficients in terms of the centered varigbjeg x
in (8.1 1) do not apply to the regression coefficients in terms of the original variables X in (8.12). 1
the estimated standard deviations for the regression coefficients in terms of X are desired, they may
be obtained by using (5.46), where the ransformation matrix A is developed from (8.12a—c), [

Case Example

Setting. A researcher studied the effects of the charge rate and temperature 6n the life
of a new type of power cell in a preliminary small-scale experiment. The charge rate X)
was controlled at three levels (.6, 1.0, and 1.4 amperes) and the ambient temperature ( X))
was controlled at three levels (10, 20, 30°C). Factors pertaining to the discharge of the
power cell were held at fixed levels. The life of the power cell (¥) was measured in termg
of the number of discharge-charge cycles that a power cell underwent before it failed. The
data obtained in the study are contained in Table 8.1, columns 1-3.

The researcher was not sure about the nature of the response function in the range of the
factors studied. Hence, the researcher decided to fit the second-order polynomial regression
model (8.7):

Y; = Bo+ Bixin + Poxiz + Buxyy + Buxi + Puxixiz + & (8.13)
for which the response function is:

E(Y}= Bo+ Bix, +ﬁ2x2+ﬁnx,2+ﬁ22x22+ﬁlzxxxz (8.19)

TABLE 8.1 Data—Power Cells Example.

Cell

i

—

— OV oONAOAN D WN =

Nokerof G ® @ 6 © 0 6
umber o arge
Cycles Rate Temperature Coded values
Y Xn X1z X0 X2 pred x% Xn %o
150 .6 10 -1 -1 1 1 1
49 1.4 10 1 -1 1 1 A
131 1.0 20 0 0 0 0 0
184 1.0 20 0 0 0 0 0
109 1.4 20 1 0 1 0 0
279 6 30 _1 1 i 1 1
235 1.0 30 0 1 0 1 0
224 1.4 30 1 1 1 1 1
X, =10 X2=20

Setting adapted Irom: S. M. Sidik. H. F. Leibecki. and J. M. Bozek, Cycies Till Fuilure of Silver-Zine Cells with Competing Faiiure Modes—Preliminary Dawa
Analysis. NASA Technical Memorandwn 815-56, 1980.
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Because of the balanced nature of the X, and X, levels studied, the researcher not only
centered the variables X, and X, around their respective means but also scaled them in
convenient units, as follows:

Xil _Xl X“—I.O

X = =

4 4
Xin— X _ Xp—20
0 10

Here, the denominator used for each predictor variable is the absolute difference between
adjacent levels of the variable. These centered and scaled variables are shown in columns 4
and 5 of Table 8.1. Note that the codings defined in (8.15) lead to simple coded values, —1,
0, and 1. The squared and cross-product terms are shown in columns 6-8 of Table 8.1.

Use of the coded variables x; and x, rather than the original variables X, and X, reduces
the correlations between the first power and second power terms markedly here:

(8.15)

Xi2 =

i
Correlation between Correlation between
Xi and XZ: 991 Xz and X3: .986
: x;and xf: 0.0 xpand x2: 0.0

The correlations for the coded variables are zero here because of the balance of the design
of the experimental levels of the two explanatory variables. Similarly, the correlations
between the cross-product term x;.x, and each of the terms x;, x2, x, x2 are reduced to zero
here from levels between .60 and .76 for the corresponding terms in the original variables.
Low levels of multicollinearity can be helpfu] in avoiding computational inaccuracies.

The researcher was particularly interested in whether interaction effects and curvature
effects are required in the mode! for the range of the X variables considered.

Fitting of Model. Figure 8.4 contains the basic regression results for the fit of model (8.13)
with the SAS regression package. Using the estimated regression coefficients (labeled
Parameter Estimate), we see that the estimated regression function is as follows:

¥ = 162.84 — 55.83x; + 75.50x; + 27.39x% — 10.61x7 + 11.50x;x,  (8.16)

Residual Plots. The researcher first investigated the appropriateness of regression
model (8.13) for the data at hand. Plots of the residuals against ¥, x,, and x, are shown
in Figure 8.5, as is also a normal probability plot. None of these plots suggest any gross
inadequacies of regression model (8.13). The coefficient of correlation between the ordered
residuals and their expected values under normality is .974, which supports the assumption
of normality of the error terms (see Table B.6). ’

Test of Fit. Since there are three replications at x; = 0, x, = 0, another indication of the
adequacy of regression model (8.13) can be obtained by the formal testin (6.68) of the good-
ness of fit of the regression function (8.14). The pure error sum of squares (3.16) is simple
to obtain here, because there is only one combination of levels at which replications occur:

SSPE = (157 — 157.33)% + (131 — 157.33)% + (184 — 157.33)?
= 1,404.67

g )

T s
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FIGURE 8.4
SAS
Regression
Output for
Second-Order
Polynomial
Model
(8.13)—Power
Cells Example.

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 5 66365.56140 11073.11228 10.(565 0.0109
Error 5 5240.43860 1048.08772
C Total 10 60606.00000

Root MSE 32.37418 R-square 0.9135

Dep Mean 172.00000 Adj R-sq 0.8271

C.V. 18.82220

Parameter Estimates wlp’
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 162.842105 16.607605642 9.806 0.0002
Xi 1 -55.833333 13.21670483 -4.224 0.0083
X2 1 75.500000 13.21670483 5#712 0.0023
X1sQ 1 27.394737 20.34007956 1.347 0.2359
¥2sQ 1 -10.605263 20.34007956 v -0.521 0.6244
X1X2 1 11.500000 16.18709146 0.710 0.5092
Variable DF Type I SS
INTERCEP 1 325424
X1 1 18704
X2 1 34202
X18Q 1 1645.966667
X28Q 1 284.928070
X1X2 1 629.000000

Since there are ¢ = 9 distinct combinations of levels of the X variables here, there are
n—c =11 — 9 = 2 degrees of freedom associated with SSPE. Further, SSE = 5,240.44
according to Figure 8.4; hence the lack of fit sum of squares (3.24) is:

SSLF = SSE — SSPE = 5,240.44 — 1,404.67 = 3,835.77

with which ¢ — p =9 — 6 = 3 degrees of freedom are associated. (Remember that p =6
regression coefficients in mode] (8.13) had to be estimated.) Hence, test statistic (6.68b) for
testing the adequacy of the regression function (8.14) is:

_ SSLF  SSPE  3,835.77 _ 1,404.67
T c—p n—c 3 ' 2

%

= 1.82

For a = .05, we require F(.95; 3, 2) = 19.2. Since F* = 1.82 < 19.2, we conclude
according to decision rule (6.68c) that the second-order polynomial regression function
(8.14) is a good fit.

Coefficient of Multiple Determination. Figure 8.4 shows that the coefficient of multiple
determination (labeled R-square) is R? = .9135. Thus, the variation in the lives of the power
cells is reduced by about 91 percent when the first-order and second-order relations to the
charge rate and ambient temperature are utilized. Note that the adjusted coefficient of mul-
tiple correlation (labeled Adj R-sq) is RZ = .8271. This coefficient is considerably smaller
here than the unadjusted coefficient because of the relatively large number of parameters in
the polynomial regression function with two predictor variables.
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Partial F Test. The researcher now turned to consider whether a first-order model would
be sufficient. The test alternatives are:

Ho: By = P2 = P12 =0
H,: not all 8s in Hy equal zero

The partial F test statistic (7.27) here is:

4
2 2
_ SSR(x?, x2, x1x2|x1, x2)
3

F*

+~MSE .

In anticipation of this test, the researcher entered the X variables in the SAS regression
program in the order x;, xo, xlz, x%, X1X2, as may be seen at the bottom of Figure 8.4. The
extra sums of squares are labeled Type I SS. The first sum of squares shown is not relevant
here. The second one is SSR(x,) = 18,704, the third one is SSR(x2|x,) = 34,202, and so
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FIGURE 8.6
S-Plus Plot of
Fitted
Response Plane
(8.19)>—Power
Cells Example.

on. The required extra sum of squares is therefore obtained as follows:
SSR(x, x5, X122 | X1, x2) = SSR(x7|x1, x2) + SSR(x3 |x1, x2, x7)
+ SSR(x1x2| %1, X2, X, X3)
= 1,646.0 + 284.9 +529.0 = 2,459.9

We also require the error mean square. We find in Figure 8.4 that itis MSE = 1,048, 1. Henge
the test statistic is:

2,459.9
F* =

= 1,048.1 = .78

For level of significance o = .05, we require F(.95; 3. 5) = 5.41. Since F* =" /8 < 541
we conclude Hj, that no curvature and interaction effects are needed, so that a first-ordey
model is adequate for the range of the charge rates and temperatures considered.

First-Order Model. On the basis of this analysis, the researcher decided to consider the
first-order model: :

Yi = Bo+ Bixin + PaXia + & (8.17)
A fit of this mode! yielded the estimated response function:
¥ = 172.00— 55.83x, + 75.50x; (8.18)

(12.67) (12.67)

Note that the regression coefficients b, and b, are the same as in (8. 16) for the fitted second-
order model. This is a result of the choices of the X, and X, levels studied. The num-
bers in parentheses under the estimated regression coefficients are their estimated standard
deviations. A variety of residual plots for this first-order model were made and analyzed
by the researcher (not shown here), which confirmed the appropriateness of first-order
mode! (8.17).

Fitted First-Order Model in Terms of X. The fitted first-order regression function (8.18)
can be transformed back to the original variables by utilizing (8.15). We obtain:

¥ = 160.58 — 139.58X, + 7.55X, (8.19)

Figure 8.6 contains an S-Plus regression-scatter plot of the fitted response plane. The
researcher used this fitted response surface for investigating the effects of charge rate and
temperature on the life of this new type of power cell.
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Estimation of Regression Coefficients. The researcher wished to estimate the linear
effects of the two predictor variables in the first-order model, with a 90 percent family
confidence coefficient, by means of the Bonferroni method. Here, g =2 statements are
desired; hence, by (6.52a), we have:

B=1t[1—.10/2(2)] = £(.975;8) = 2.306
The estimated standard deviations of b; and b, in (8.18) apply to the model in the coded vari-

ables. Since only first-order terms are involved in this fitted model, we obtain the estimated

standard deviations of b, and &, for the fitted model (8.19) in the original variables as follows:
1 12.67

s{ty = [ — Js{bi} = —— =31.68

{1} ( : 4> {b1} 7

10 10

i
The Bonferroni confidence limits by (6.52) therefore are —139.58 + 2.306(31.68) and
7.55 + 2.306(1.267), yielding the confidence limits:

s{b} = ( ! )s{bz} _ 1267 o6

v —212.6 < 8; < —66.5 4.6 < B, <105

With confidence .90, we conclude that the mean number of charge /discharge cycles before
failure decreases by 66 to 213 cycles with a unit increase in the charge rate for given ambient
temperature, and increases by 5 to 10 cycles with a unit increase of ambient temperature
for given charge rate. The researcher was satisfied with the precision of these estimates for
this initial small-scale study.

Some Further Comments on Polynomial Regression

1. The use of polynomial models is not without drawbacks. Such models can be more
expensive in degrees of freedom than alternative nonlinear models or linear models with
transformed variables. Another potential drawback is that serious multicollinearity may be
present even when the predictor variables are centered.

2. An alternative to using centered variables in polynomial regression is to use orthog-
onal polynomials. Orthogonal polynomials are uncorrelated. Some computer packages use
orthogonal polynomials in their polynomial regression routines and present the final fitted
results in terms of both the orthogonal polynomials and the original polynomials. Orthog-
onal polynomials are discussed in specialized texts such as Reference 8.1.

3. Sometimes a quadratic response function is fitted for the purpose of establishing the
linearity of the response function when repeat observations are not available for directly
testing the linearity of the response function. lfitting the quadratic model:

Y; = Bo + Bix: + Bux’ + & (8.20)

and testing whether 8;; = 0 does not, however, necessarily establish that a linear response
function is appropriate. Figure 8.2a provides an example. If sample data were obtained for
the response function in Figure 8.2a, model (8.20) fitted, and a test on B;; made, it likely
would lead to the conclusion that 8;; = 0. Yét a linear response function clearly might not
be appropriate. Examination of residuals would disclose this lack of fit and should always
accompany formal testing of polynomial regression coefficients.
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8.2 Interaction Regression Models

We have previously noted that regression models with cross-product interaction effects
such as regression model (6.15), are special cases of general linear regression mode} (6_7)j
We also encountered regression models with interaction effects briefly when we considereg
polynomial regression inodels, such as model (8.7). Now we consider in some detai} 1.
gression models with interaction effects, including their interpretation and implementatiop.

Interaction Effects
A regression model with p — 1 predictor variables contains additive effects if the responge
function can be written in the form: -

E{Y}= (XD + (X)) + -+ fo(Xpo1) (8.21)
where fi, f2, ..., fp—1 can be any functions, not necessarily simple ones. For instance,
the following response function with two predictor variables can be expressed in the form

of (8.21):

E{Y}=Bo+ B X1+ B X? + B:X>
/ \,—/

X)) f2X2)

We say here that the effects of X; and X, on Y are additive.
In contrast, the following regression function:

E{Y}=Po+ i Xi + fo X2+ B3 X1 X2

cannot be expressed in the form (8.21). Hence, this latter regression model! is not additive,
or, equivalently, it contains an interaction effect.

A simple and commonly used means of modeling the interaction effect of two predictor
variables on the response variable is by a cross-product term, such as ;X X, in the above
response function. The cross-product term is called an interaction term. More specifically,
it is sometimes called a linear-by-linear or a bilinear interaction term. When there are three
predictor variables whose effects on the response variable are linear, but the effects on ¥ of
X, and X> and of X, and X3 are interacting, the response function would be modeled as
follows using cross-product terms:

E{Y} = Bo+ 1 Xi+ PaXo+ B3 X5 + B Xa Xo + Bs X X3

Interpretation of Interaction Regression Models with Linear Effects
We shall explain the influence of interaction effects on the shape of the response function
and on the interpretation of the regression coefficients by first considering the simple case of
two quantitative predictor variables where each has a linear effect on the response variable.

Interpretation of Regression Coefficients. The regression model for two quantitative
predictor variables with linear effects on Y and interacting effects of X; and X, on Y
represented by a cross-product term is as follows:

Yi=Bo+BiXit + BaXio + B3 Xin Xiz + & (8.22)



Chapter 8 Regression Models for Quantitative and Qualitative Predictors 307

The meaning of the regression coefficients §; and 8, here is not the same as that given earlier
because of the interaction term B3 X;1 X ;. The regression coefficients 8, and 8, no longer
indicate the change in the mean response with a unit increase of the predictor variable, with
the other predictor variable held constant at any given level. It can be shown that the change
in the mean response with a unit increase in X; when X3 is held constant is:

B+ BXa (8.23)

Similarly, the change in the mean response with a unit increase in X; when X, is held
constant is:

B2+ B3 X1 (8.29)

Hence, in regression model (8.22) both the effect of X, for given level of X, and the effect
of X, for given level of X, depend on the level of the other predictor variable. -

We shall illustrate how the effect of one predictor variable depends on the level of the
other predictor variable in regression model (8.22) by returning to the sales promotion
response function shown in Figure 6.1 on page 215. The response function (6.3) for this
example, relating locality sales (Y) to point-of-sale expenditures (X;) and TV expenditures
(X2), is additive:

E{Y} = 10+ 2X, +5X, (8.25)

In Figure 8.7a, we show the response function E{Y} as a function of X, when X;=1
and when X, =3. Note that the two response functions are parallel—that is, the mean
sales response increases by the same amount 8; =2 with a unit increase of point-of-sale
expenditures whether TV expenditures are X, =1 or X, =3. The plot in Figure 8.7a is
called a conditional effects plot because it shows the effects of X, on the mean response
conditional on different levels of the other predictor variable.

In Figure 8.7b, we consider the same response function but with the cross-product term
.5X1 X5 added for interaction effect of the two types of promotional expenditures on sales:

E{(Y} =10+ 2X, + 5X2+ 5X, X2 (8.26)

FIGURE 8.7 Tllustration of Reinforcement and Interference Interaction Effects—Sales Promotion Example.
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We again use a conditional effects plot to show the response function E{Y} as a fuﬂction
of X, conditional on X, = I and on X, = 3. Note that the slopes of the response functiOns
plotted against X, now differ for X2 = 1 and X, = 3. The slope of the response functioy
when X, = 1 is by (8.23):

B4+ X, =2+.5(1)=25
and when X, = 3, the slope is:
B+ B3Xa=2+.5(3)=35

Thus, a unit increase in point-of-sale expenditures has a larger effect on sales wijep TV
expenditures are at a higher level than when they are at a lower level.

Hence, B, in regression mode! (8.22) containing a cross-product term for interactiop
effect no longer indicates the change in the mean response for a unit increase in X, for any
given X» level. That effect in this model depends on the level of X;. Although the megy
response in regression mode! (8.22) when X is constant is still'a linear function of X 1, ow
both the intercept and the slope of the response function change as the level at which X, is
held constant is varied. The same holds when the mean response is regarded as a functiop
of X5, with X, constant.

Note that as a result of the interaction effect in regression model (8.26), the increage
in sales with a unit increase in point-of-sale expenditures is greater, the higher the leve]
of TV expenditures, as shown by the larger slope of the response function when X, =3
than when X, = 1. A similar increase in the slope occurs if the response function againg
X, is considered for higher levels of X;. When the regression coefficients 8; and B, are
positive, we say that the interaction effect between the two quantitative variables is of a
reinforcement or synergistic type when the slope of the response function against one of the
predictor variables increases for higher levels of the other predictor variable (i.e., when f;
is positive).

If the sign of B; in regression mode! (8.26) were negative:

E{Y} = 104+ 2X, +5X; — .5X, X, (8.27)

the result of the interaction effect of the two types of promotional expenditures on sales
would be that the increase in sales with a unitincrease in point-of-sale expenditures becomes
smaller, the higher the level of TV expenditures. This effect is shown in the conditional
effects plot in Figure 8.7c. The two response functions for X; = | and X, = 3 are again
nonparallel, but now the slope of the response function is smaller for the higher level of
TV expenditures. A similar decrease in the slope would occur if the response function
against X, is considered for higher levels of X;. When the regression coefficients 8, and
B2 are positive, we say that the interaction effect between two quantitative variables is of
an interference or antagonistic type when the slope of the response function against one of
the predictor variables decreases for higher levels of the other predictor variable (i.e., when
Bs is negative).

Comments

I. When the signs of ) and 8, in regression niodel (8.22) are negative, a negative f; is usually
viewed as a reinforcement type of interaction effect and a positive Sz as an interference type of effect
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M

2. To derive (8.23) and (8.24), we differentiate:
EY} =B+ X1+ BXo+ B X1 Xs

with respect to X and X, respectively:

IE(Y} IE(Y)
ax, =pi+ B3 X2 ax,

= B2+ B Xy

|
Shape of Response Function. Figure 8.8 shows for the sales promotion example the
impact of the interaction effect on the shape of the response function. Figure 8.8a presents the
additive response functionin (8.25), and Figures 8.8b and 8.8¢ present the reSponsfe functions
with the reinforcement interaction effect in (8.26) and with the interference interaction effect
in (8.27), respectively. Note that the additive response function is a plane, but that the two
response functions with interaction effects are not. Also note in Figures 8.8b and 8.8c that
the mean response as a function of X, for any given level of X5, is no longer parallel to the
same function at a different level of X,, for either type of interaction effect.

We can also illustrate the difference in the shape of the response function when the
two predictor variables do and do not interact by representing the response surface by
means of a contour diagram. As we noted previously, such a diagram shows for different
response levels the varions combinations of levels of the two predictor variables that yield
the same level of response. Figure 8.8d shows a contour diagram for the additive response
surface in Figure 8.8a when the two predictor variables do not interact. Note that the contour
curves are straight lines and that the contour lines are parallel and hence equally spaced.
Figures 8.8e and 8.8f show contour diagrams for the response surfaces in Figures 8.8b
and 8.8c, respectively, where the two predictor variables interact. Note that the contouor
curves are no longer straight lines and that the contour curves are not parallel here. For
instance, in Figore 8.8e the vertical distance between the contours for E{Y} =200 and
E{Y}=400 at X, =10 is much larger than at X; = 50.

In general, additive or noninteracting predictor variables lead to parallel contour curves,
whereas interacting predictor variables lead to nonparallel contour curves.

Interpretation of Interaction Regression Models with Curvilinear Effects

When one or more of the predictor variables in a regression model have curvilinear effects
on the response variable, the presence of interaction effects again leads to response functions
whose contouor curves are not parallel. Figure 8.9a shows the response surface for a study
of the volume of a quick bread:

E{Y} = 65+ 3X, +4X, — 10X} — 15X} + 35X, X,

Here, Y is the percentage increase in the volume of the quick bread from baking, X is the
amount of a leavening agent (coded), and X, is the oven temperature (coded). Figure 8.9b
shows contour curves for this response function. Note the lack of paralleltsm in the contour
curves, reflecting the interaction effect. Figure 8.10) presents a conditional effects plot to
show in a simple fashion the nature of the interaction in the relation of oven temperature (X5)
to the mean volume when leavening agent amount (X)) is held constant at different levels.
Note that increasing oven temperature increases volume when leavening agent amount is
high, and the opposite is true when leavening agent amount is low.
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8.9 Response Surface and Contour Curves for Curvilinear Regression Model with Interaction
pick Bread Volume Example.
(a) Fitted Response Surface (b) Contour Plot

0
1 ;\‘39 / T
K
Q
O oo 75.0]
S\ 05p" ¢ 3
80.0 o
ézg ran O\ .//49 O’J
X s < 654
)/ég;;::‘ SLLY Qo;//
7<)
Yy =
X ~0.5F

FIGURE

100.0

3
(-4
X2

Fitted Response”

H

=65.0 Q
A /
"0 ) b‘sg '559 Q/
o . o1
-1.0 | ./Z. Padx
-1.0 05 0.0 0.5 1.0

Xi

FIGURE 8.10
Conditional
Effects Plot for
Curvilinear
Regression
Model with
Interaction
Effect—Quick
Bread Volume
Example.

Implementation of Interaction Regression Models
The fitting of interaction regression models is routine, once the appropriate cross-product
terms have been added to the data set. Two considerations need to be kept in mind when
developing regression models with interaction effects.

1. When interaction terms are added to a regression model, high multicollinearities may
exist between some of the predictor variables and spme of the interaction terms, as well as
among some of the interaction terms. A partial remedy to improve computational accuracy
is to center the predictor variables; i.e., to use x;; = X;k — X

2. When the number of predictor variables in the regression model is large, the poten-
tial number of interaction terms can become very large. For example, if eight predictor
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Example

variables are present in the regression model in linear terms, there are potentially 28 pair
wise interaction terms that could be added to the regression model. The data set woulg need
to be quite large before 36 X variables could be used in the regression model.

1t is therefore desirable to identify in advance, whenever possible, those interactio“s
that are most likely to influence the response variable in important ways. In addition ¢,
utilizing a priori knowledge, one can plot the residuals for the additive regression mogey
against the different interaction tenims to determine which ones appear to be influengig
in affecting the response variable. When the number of predictor variables is large, theg,
plots may need to be limited to interaction terms involving those predictor variables that
appear to be the most important on the basis of the initial fit of the additive regressiop
model.

We wish to test forinally in the body fat example of Table 7.1 whether interaction terms be.
tween the three predictor variables should be included in the regression model. We therefore
need to consider the following regression model: ’

Yi=Bo+BiXit + B Xiz + B Xis + BaXit Xiz + Bs Xin Xis + B X2 Xis + & (8.28)

This regression model requires that we obtain the new variables X X», X1 X5, and X, X,
and add these X variables to the ones in Table 7. 1. We find upon exaimining these X variableg
that some of the predictor variables are highly correlated with soime of the interaction
terims, and that there are also some high correlations aimong the interaction terms. For
example, the correlation between X, and XX, is .989 and that between X, Xz and X, X,
is .998.

We shall therefore use centered variables in the regression model:

Y, = ﬁo + ﬁlxil + /52)«’;2 + ﬁzxrs + ﬁ-‘lxilxiZ + ﬁsxnxm + ﬁﬁxiz)«’;s + & (829)

where:

xin = Xi — X1 = Xi1 — 25.305
Xi» = Xi2 - )?'_) = X,"_) —51.170
Xiz = Xizs — X1 = X — 27.620

Upon obtaining the cross-product terms using the centered variables, we find that the in-
tercorrelations involving the cross-product terms are now smaller. For example, the largest
correlation, which was between X X3 and X5 X3, is reduced from .998 to .891. Other cor-
relations are reduced in absolute magnitude even more.

Fitting regression model (8.29) yields the following estimated regression function, mean
square error, and extra suins of squares:

' = 20.53 + 3.438x, — 2.095x — 1.616x; + .00888x x, — .08479x, x5 + .09042x,3
MSE = 6.745
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Variable Extra Sum of Squares
X SSR(x1) = 352.270
X2 SSR(X2|X1) = 33.169
X3 SSR(X3IX1, Xz) = 11.546
X1X2 SSR(X1 XalX1, Xa, X3) = 1.496
X1X3 SSR(x1X31X1, X2, X3, X9X2) = 2.704
X2X3 SSR(x2x31%1, X2, X3, X1 X2, X1X3) = 6.515

We wish to test whether any interaction terms are needed:

Ho: B4 = s = 6 =0
H,: not all s in Hy equal zero

The partial F test statistic (7.27) requires here the following extra sum of squares:
SSR(x1x2, X1X3, X2X3|X1, X2, X3) = 1.496 +2.704 + 6.515 = 10.715

E4

and the test stafistic is:

e SSR(x1x2, X1X3, X2X3|X1, X2, X3)  MSE

3
10.715
=5 =+ 6.745 = .53

For level of significance o = .05, we require F(.95; 3, 13) = 3.41. Since F* = .53 <341,
we conclude Hp, that the interaction terms are not needed in the regression model. The
P-value of this test is .67.

8.3 Qualitative Predictors

As mentioned in Chapter 6, qualitative, as well as quantitative, predictor variables can be
used in regression models. Many predictor variables of interest in business, economics,
and the social and biological sciences are qualitative. Examples of qualitative predictor
variables are gender (male, female), purchase status (purchase, no purchase), and disability
status (not disabled, partly disabled, fully disabled).

In a study of innovation in the insurance industry, an economist wished to relate the speed
with which a particular insurance innovation is adopted (Y) to the size of the insurance firm
(X)) and the type of firm. The response variable is measured by the nomber of months
elapsed between the time the first firm adopted the innovation and the time the given firm
adopted the innovation. The first predictor variable, size of firm, is-quantitative, and is
measured by the amount of total assets of the firm. The second predictor variable, type of
firm, is qualitative and is composed of two classes—stock companies and mutual companies.
In order that such a qualitative variable can be used in a regression model, quantitative
indicators for the classes of the qualitative variable must be employed.
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Qualitative Predictor with Two Classes

There are many ways of quantitatively identifying the classes of a qualitative variable, We
shall use indicator variables that take on the values O and 1. These indicator variableg are
easy to use and are widely employed, but they are by no means the only way to quantify »
qualitative variable.

For the insurance innovation example, where the qualitative predictor variable hag ty,,
classes, we might define two indicator variables X, and X3 as follows:

X, — 1 if stock company
7 10 otherwise

) (8.30)
I if mutual company
X3 = .
’ 0 otherwise
A first-order 1model then would be the following:
Y=o+ B X+ BoXin+ B3Xiat & (8.31)

This intuitive approach of setting up an indicator variable for each class of the qualitative
predictor variable unfortunately leads to computational difficulties. To see why, suppose
we have n = 4 observations, the first two being stock firms (for which X; = | and X; =0),
and the second two being mutual firms (for which X3 =0 and X3 =1). The X matrix would

then be:
X1 X2 X3
1 Xy 10
L. ORI
X= I X 0 1
1 X4 O 1

Note that the first colunn is equal to the sum of the X and X3 columns, so that the columns
are linearly dependent according to definition (5.20). This has a serious effect on the X'X
matrix:

M 1 1 1 1 Xao 1 O
w1 X1t Xa Xa Xa| |l X 1O
XX=107 0 0 ol x5 01
(o 0ot 1) oxyq 01
4 _
4 S Xa 2 2

i

(34

&

r
i
—
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‘We see that the first column of the XX matrix equals the sum of the last two columns,
so that the columns are linearly dependent. Hence, the X'X matrix does not have an inverse,
and no unique estimators of the regression coefficients can be found.

A simple way out of this difficulty is to drop one of the indicator variables. In our
example, we might drop X3. Dropping one indicator variable is not the only way out of the
difficulty, but it leads to simple interpretations of the parameters. In general, therefore, we
shall follow the principle:

A qualitative variable with ¢ classes will be represented by ¢ — 1

indicator variables, each taking on the values O and 1. (8.32)

Comment o

Indicator variables are frequently also called dummy variables or binary variables. The latter term
has reference to the binary number system containing only 0 and 1. |

Interpretation of Regression Coefficients

Returning to the insurance innovation example, suppose that we drop the indicator variable
X3 from regression model (8.31) so that the model becomes:

Y=o+ BrXn+ foXiz + & (8.33)

where:

X;1 = size of firm
X, — 1 if stock company
2710 if mutual company

The response function for this regression model is:
E{Y}=po+ Bi1X1+ B X2 (8.39)

To understand the meaning of the regression coefficients in this model, consider first the
case of a mutnal firm. For such a firm, X> = 0 and response function (8.34) becomes:

E{Y} Bo+ B1X1+ B2(0) = o+ B Xa Mutual firms (8.34a)

Thus, the response function for mutual firms is a straight line, with Y intercept Sy and slope
Bi1. This response function is shown in Figure 8.11.
For a stock firm, X; = 1 and response function (8.34) becomes:

E{Y}=Bo+ B X1+ B2(1) = (Bo+ B2) + B1X1  Stock firms  (8.34b)

This also is a straight line, with the same slope 8; but with ¥ intercept fo + 8. This response
function is also shown in Figure 8.11. '

Let us consider now the meaning of the regression coefficients in response function (8.34)
with specific reference to the insurance innovation example. We see that the mean time
elapsed before the innovation is adopted, E{Y}, is a linear function of size of firm (X)),
with the same slope B8; for both types of firms. 8; indicates how much higher (lower) the
response function for stock firms is than the one for mutual firms, for any given size of firm.
Thus, 8, measures the differential effect of type of firm. In general, 8, shows how much
higher (lower) the mean response line is for the class coded 1 than the line for the class
coded O, for any given level of X;.
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FIGURE 8.11
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In the insurance innovation example, the economist studied 10 mutual firms and 10 stock
firms. The basic data are shown in Table 8.2, columns 1-3. The indicator coding for type
of firm is shown in column 4. Note that X, = 1 for each stock firm and X, = O for each
mutual firm.

The fitting of regression model (8.33) is now straightforward. Table 8.3 presents the key
results from a computer run regressing ¥ on X; and X,. The fitted response function is:

Y = 33.87407 — .10174X, + 8.05547X,

Figure 8.12 contains the fitted response function for each type of firm, together with the
actual observations.

The economist was most interested in the effect of type of firm (X) on the elapsed time
for the innovation to be adopted and wished to obtain a 95 percent confidence interval for
B2. We require #(.975; 17) = 2.110 and obtain from the results in Table 8.3 the confidence
limits 8.05547 4 2.110(1.45911). The confidence interval for 8, therefore is:

498 < B, <11.13

Thus, with 95 percent confidence, we conclude that stock companies tend to adopt the inno-
vation somewhere between 5 and 11 months later, on the average, than mutual companies.
for any given size of firm.

A formal test of:

H()Iﬂ2=0
Haiﬁz#o
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m 2 3) (4) &)
Number of Size of Firm Indicator
Firm  Months Elapsed  (million dollars)  Type of Code )
i Y Xin “Firm Xiz Xin Xiz
1 17 151 Mutual 0 0
2 26 92 Mutual 0 0
3 21 175 Mutual 0 0
4 30 31 Mutual 0 0
5 22 104 ‘Mutual 0 s O
6 0 277 Mutual 0 F 0
7 12 210 Mutual- 0 : 0
8 19 120 Mutual 0 0
9 4 290 Mutual 0 0
10 16 238 Mutual 0 0
11 28 164 Stock 1 164
12 15 272 Stock 1 272
13 - 11 295 Stock 1 295
14 38 68 Stock 1 68
15 31 85 Stock 1 85
16 21 224 Stock 1 224
17- 20 166 Stock 1 166
18 13 305 Stock 1 305
19 30 124 Stock 1 124
20 14 246 Stock 1 246
‘(a) Regression Coefficients
Regression Estimated Estimated.
Coefficient - Regression Coefficient  Standard Deviation t
Bo - 33.87407 1.81386 18.68
B ~.10174 .00889 ~11:44
B2 8.05547 1.45911 5.52
~ (b) Analysis of Variance’
Source of
Variation sS df MS
Regression 1,50441 . 2 752.20
Error 176.39 17 10.38
Total 1,680.80 19 :

with level of significance .05 would lead to H,, that type of firm has an effect, since the
95 percent confidence interval for 8, does not include zero.
The economist also carried out other analyses, some of which will be described shortly.

Comment

The reader may wonder why we did not simply fit separate regressions for stock firms and mutual
firms in our example, and instead adopted the approach of fitting one regression with an indicator
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FIGURE 8.12 Y
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variable. There are two reasons for this. Since the model assumes equal slopes and the same constant
error term variance for each type of firm, the common slope f; can best be estimated by pooling
the two types of firms. Also, other inferences, such as for Sy and S, can be made more precisely by
working with one regression mode] containing an indicator variable since more degrees of freedom
will then be associated with MSE. |

Qualitative Predictor with More than Two Classes

If a qualitative predictor variable has more than two classes, we require additional indicator
variables in the regression model. Consider the regression of tool wear (¥') on tool speed
(X1) and tool model, where the latter is a qualitative variable with four classes (M1, M2,
M3, M4). We therefore require three indicator variables. Let us define them as follows:

+, — J1 iftool model M1
2710 otherwise

(8.35)

P 1 if tool model M2
3710 otherwise

X, — 1 if tool model M3
4710 otherwise

First-Order Model. A first-order regression model is:

Yi=PFo+BiXin+ B Xpn+ B Xis+ BaXis+ & (8-36)
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For this model, the data input for the X variables would be as follows:

Tool Model X1 X, X3 Xa

M1 Xi 1 0 0
M2 Xi1 0 1 0
M3 Xn 0 0 1
M4 Xi 0 0 0

The response function for regression model (8.36) is:
E{Y}=Bo+ i Xi+ B Xo+ B3 X5+ BuXs (8.37)

To understand the meaning of the regression coefficients, consider first what response
function (8.37) becomes for tool models M4 for. which X, =0, X5 =0, and X, = 0:

E{Y}= B+ B X1 Tool models M4 (8.37a)
For tool models M1, X, = 1, X3 = 0, and X; = 0, and response function (8.37) becomes:

E{Y} = (Bo+ B2) + B X1 Tool models M1 (8.37b)
Similarly, response functions (8.37) becomes for tool models M2 and M3:

E{Y} = (Bo+ B3) + B X1 Tool models M2 (8.37¢)

E{Y} = (Bo+ Bs) + 5 Xy Tool models M3 (8.37d)

Thus, response function (8.37) implies that the regression of tool wear on tool speed is
linear, with the same slope for all four tool models. The coefficients B,, 83, and B, indicate,
respectively, how much higher (lower) the response functions for tool models M1, M2, and
M3 are than the one for tool models M4, for any given level of tool speed. Thus, 8,, 83, and
B4 measure the differential effects of the qualitative variable classes on the height of the
response function for any given level of X, always compared with the class for which X, =
X3 = X, = 0. Figure 8.13 illustrates a possible arrangement of the response functions.

When osing regression model (8.36), we may wish to estimate differential effects other
than against tool models M4. This can be done by estimating differences between regression
coefficients. For instance, B4 — 83 measures how much higher (lower) the response function
for tool models M3 is than the response function for todl models M2 for any given level of
tool speed, as may be seen by comparing (8.37c) and (8.37d). The point estimator of this
quantity is, of course, b; — b3, and the estimated variance of this estimator is:

s — b3} = 5> (b} + 5 {bs} — 25{by, b3} . (8.38)

The needed variances and covariance can be readily obtained from the estimated variance-
covariance matrix of the regression coefficients.

Time Series Applications
Economists and business analysts frequently use time series data in regression analysis.
Indicator variables often are usefol for time series regression models. For instance, savings
(Y) may be regressed on income (X), where both the savings and income data are annual
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FIGURE 8.13
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data for a number of years. The model employed might be:
Yi=p+BX+e t=1,...,n (839)

where ¥; and X, are savings and income, respectively, for time period £. Suppose that the
period covered includes both peacetime and wartime years, and that this factor should be
recognized since savings in wartime years tend to be higher. The following model might
then be appropriate:

i=F%+bBXn+HhXntea (8.40)
where:

X1 = income
X, = 1 if period t peacetime
2710 otherwise

Note that regression model (8.40) assumes that the marginal propensity to save (8) is
constant in both peacetime and wartime years, and that only the height of the response
function is affected by this qualitative variable.

Another use of indicator variables in time series applications occurs when monthly
or quarterly data are used. Suppose that quarterly sales (Y) are regressed on quarterly
advertising expenditures (X;) and quarterly disposable personal income (X3). If seasonal
effects also have aninfluence on quarterly sales, a first-order regression model incorporating
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seasonal effects would be:

Yi=0+6Xn+BXo+B3X3+ BaXia+ BsXys + & (8.41)

where:

X1 = quarterly advertising expenditures
X, = quarterly disposable personal income
Xon = 1 if first quarter
710 otherwise
X = 1 if second quarter
7 10 otherwise
X = 1 if third quarter
5710 otherwise
. I
Regression models for time series data are susceptible to correlated error terms. It is
particularly important in these cases to examine whether the modeling of the time series
components of the data is adequate to make the error terms uncorrelated. We discuss in

Chapter 12 a test for correlated error terms and a regression model that is often useful when
the error terms are correlated.

8.4 Some Considerations in Using Indicator Variables

Indicator Variables versus Allocated Codes

An alternative to the use of indicator variables for a qualitative predictor variable is to em-
ploy allocated codes. Consider, for instance, the predictor variable “frequency of product
use” which has three classes: frequent user, occasional user, nonuser. With the allocated
codes approach, a single X variable is employed and values are assigned to the classes; for
instance:

Class X
Frequent user 3
Occasional user © 2
Nonuser 1

I

The allocated codes are, of course, arbitrary and could be other sets of numbers. The first-
order model with allocated codes for our example, assuming no other predictor variables,
would be:

Yi=po+ 1 Xn +& (8.42)

The basic difficulty with allocated codes is that they define a metric for the classes of the
qualitative variable that may not be reasonable. To see this concretely, consider the mean
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responses with regression mode! (8.42) for the three classes of the qualitative variable:

Class E{Y}

Frequent user E{Y}=Bo+ B1(3) = Bo + 3B

Occasional user E{Y} = Bo+ B1(2) = Bo + 284

Nonuser E{Y}y=Bo+ B (1) = Bo + b
Note the key implication:

E{Y|frequent user} — E{Y |occasional user} = E{Y|occasional user} — E{Y [ponuser} = g,

Thus, the coding 1, 2, 3 implies that the mean response changes by the same amount whep
going from a nonuser to an occasional user as when going from an occasional user to 4
frequent user. This may not be in accord with reality and is the result of the coding 1,2, 3,
which assigns equal distances between the three user classes. Other allocated codes may, of
course, imply different spacings of the classes of the qualitative variable, but these would
ordinarily still be arbitrary.

Indicator variables, in contrast, make no assumptions about the spacing of the classes
and rely on the data to show the differential effects that occur. If, for the same example, two
indicator variables, say, X, and X, are employed to represent the qualitative variable, ag
follows:

Class X1 X2
Frequent user 1 0
Occasional user 0 1

Nonuser 0 0

the first-order regression model would be:
Yi=Bo+ BiXi+ B Xiz + & (8.43)
Here, B, measures the differential effect:
E{Y|frequent user} — E{Y |nonuser}
and B, measures the differential effect:
E{Y|occasional user} — E{Y|nonuser}

Thus, B, measures the differential effect between occasional user and nonuser, and ; — f
measures the differential effect between frequent user and occasional user. Notice that there
are no arbitrary restrictions to be satisfied by these two differential effects. Also note that
if B = 2B, then equal spacing between the three classes would exist.

Indicator Variables versus Quantitative Variables

Indicator variables can be used even if the predictor variable is quantitative. For instance, the
quantitative variable age may be transformed by grouping ages into classes such as under
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21, 21-34, 35-49, etc. Indicator variables are then used for the classes of this new predictor
variable. At first sight, this may seem to be a questionable approach because information
about the actual ages is thrown away. Forthermore, additional parameters are placed into
the model, which leads to a reduction of the degrees of freedom associated with MSE.

Nevertheless, there are occasions when replacement of a quantitative variable by indicator
variables may be appropriate. Consider a large-scale survey in which the relation between
liquid assets (¥) and age (X) of head of household is to be studied. Two thousand households
were included in the study, so that the loss of 10 or 20 degrees of freedom is immaterial.
The analyst is very much in doubt about the shape of the regression function, which could
be highly complex, and hence may utilize the indicator variable approach in order to obtain
information about the shape of the response function without making any assumptlons about
its functional form.

Thus, for large data sets use of indicator variables can serve as an alternatlve to lowess
and other nonparametric fits of the response function.

Other Codings for Indicator Variables
As stated earlier, many different codings of indicator variables are possible. We now describe
~two alternatives to our 0, 1 coding for ¢ — 1 indicator variables for a qualitative variable
with ¢ classes. We illustrate these alternative codings for the insurance innovation example,
where Y is time to adopt an innovation, X is size of insurance firm, and the second predictor
variable is type of company (stock, mutual).
The first alternative coding is:

%= {_1 it o commeny (8449
For this coding, the first-order linear regression model:
Yi=p0+ 61 Xa+ B Xin+ & (8.45)
has the response function:
E{Y}=Bo+ pi X1 + B2 X2 (8.46)
This response function becomes for the two types of companies:
E{Y} = (Bo+ B2) + 51 Xy Stock firms (8.46a)
E{Y} = (o — B2) + Bi Xi Mutual firms (8.46b)

Thus, By here may be viewed as an average ” intercept of the regression line, from which
the stock company and mutual company intercepts differ by g, in opposite directions. A test
whether the regression lines are the same for both types’ of companies involves Hp: 8, = 0,
H,: 5, #0.

A second alternative coding scheme is to use a 0, 1 indicator vanable for each of the ¢
classes of the qualitative variable and to drop the intercept term in the regression model.
For the insurance innovation example, the model would be:

Yi=8Xa+BXnt+HXate (8.47)
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where:

X1 = size of firm
P 1 if stock company
2 0 otherwise

P 1 if mutual company
710 otherwise

Here, the two response functions are:
E(Y}= B+ B X\ Stock firms (8.48a)

E{Y} = B+ Bi Xy Mutual firms o (8.48b)

A test of whether or not the two regression lines are the same would involve the alternativeg
Hg: Br = B, H,: B> # Ba. This type of test, discussed in Section 7.3, cannot be conducted
by using extra sums of squares and requires the fitting of,both the full and reduced models,

8.5 Modeling Interactions between Quantitative
and Qualitative Predictors

In the insurance innovation example, the economist actually did not begin the analysis with
regression model (8.33) because of the possibility of interaction effects between size of
firm and type of firm on the response variable. Even though one of the predictor variables
in the regression mode! here is qualitative, interaction effects can still be introduced into
the model in the usual manner, by including cross-product terms. A first-order regression
model with an added interaction term for the insurance innovation example is:

Yi=PBo+ BiXis + BoXio + B3 XuXin + & (8.49)
where:

X;1 = size of firm

X — I if stock company
2710 otherwise

The response function for this regression model is:

E{Y}=Bo+BiXi+ BXo+ B: X Xs (8.50)

Meaning of Regression Coefficients

The meaning of the regression coefficients in response function (8.50) can best be understood
by examining the nature of this function for each type of firm. For a mutual firm, X, =0
and hence X, X, = 0. Response function (8.50) therefore becomes for mutual firms:

E{Y} = Bo+ B X1 + B2(0) + B3(0) = Bo + B X, Mutual firms ~ (8.50a)

This response function is shown in Figure 8.14. Note that the Y intercept is 3, and the slope
is B, for the response function for mutual firms.
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For stock firms, X, =1 and hence X;X, = X;. Response function (8.50) therefore be-
comes for stock firms:

E{Y} = o+ 1 X1 + B2(1) + B3X;
or:

E{Y} = (Bo+ B2) + (61 + B3) X1 Stock firms

This response function is also shown in Figure 8.14. Note that the response function for
stock firms has Y intercept B + B2 and slope B + Bs.

We see that 8, here indicates how much greater (smaller) is the Y intercept of the response
function for the class coded 1 than that for the class coded 0. Similarly, B3 indicates how
much greater (smaller) is the slope of the response function for the class coded 1 than that
for the class coded 0. Because both the intercept and the slope differ for the two classes in
regression model (8.49), it is no longer true that 8, indicates how much higher (lower) one
response function is than the other for any given level of X;. Figure 8.14 shows that the
effect of type of firm with regression model (8.49) depends on X}, the size of the firm. For
smaller firms, according to Figure 8.14, mutual firms tend to innovate more quickly, but for
larger firms stock firms tend to innovate more quickly. Thus, when interaction effects are
present, the effect of the qualitative predictor variable can be studied only by comparing the
regression functions within the scope of the model for the different classes of the qualitative
variable.

Figure 8.15 illustrates another possible interaction pattern for the insurance innovation
example. Here, mutuoal firms tend to introduce the innovation more quickly than stock firms

(8.50b)
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FIGURE 8.15
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for all sizes of firms in the scope of the model. but the differential effect is much smaller
for large firms than for small ones.

The interactions portrayed in Figures 8.14 and 8.15 can no longer be viewed as reinforcing
or interfering types of interactions because one of the predictor variables here is qualitative,
When one of the predictor variables is qualitative and the other quantitative, nonparalle}
response functions that do not intersect within the scope of the model (as in Figure 8.15) are
sometimes said to represent an ordinal interaction. When the response functions intersect
within the scope of the model (as in Figure 8.14), the interaction is then said to be adisordinal
interaction.

Since the economist was concerned that interaction effects between size and type of firm
may be present, the initial regression model fitted was mode! (8.49):

Yi=Bo+ BiXi + B Xio + B X Xin+ &

The values for the interaction term X X5 for the insurance innovation example are shown
in Table 8.2, column 5, on page 317. Note that this column contains O for mutual companies
and X;; for stock companies.

Again, the regression fit is routine. Basic results from a computer run regressing ¥ on
Xy, X2, and X X, are shown in Table 8.4. To test for the presence of interaction effects:

HO: 3 = 0
H,: B3 #0
the economist used the t* statistic from Table 8.4a:

b —.0004171
_ by _—ooom7t
s{bs}

*

.01833
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(a) ‘R'egression Coefficients

Regression Estimated Estimated
Coefﬁc:ent Regressiod Coefﬁcient Standard Deviation t*
Bo 33.83837 2.44065 13.86
B -.10153 01305 ~7.78
Bz 8.13125 3.65405 2.23
Ba. —.0004171 .01833 —.02
(b) Analysis of Variance
Source of %'
Variation ss df MSs ¥
Regression 1,504.42 3 501.47 ¢
Error. 176.38 16 11.02
Total 1,680.80 19

For level of significance .05, we require £(.975; 16) = 2.120. Since |t*| = .02 < 2.120,
we conclude Hp, that 83 = 0. The conclusion of no interaction effects is supported by the
two-sided P-value for the test, which is very high, namely, .98. It was because of this result
that the economist adopted regression model (8.33) with no interaction term, which we
discussed earlier.

Comment

Fitting regression mode] (8.49) yields the same response functions as would fitting separate regressions
for stock firms and mutual firms. An advantage of using model (8.49) with an indicator variable is
that one regression run will yield both fitted regressions.

Another advantage is that tests for comparing the regression functions for the different classes of
the qualitative variable can be clearly seen to involve tests of regression coefficients in a general linear
mode]. For instance, Figure 8.14 for the insurance innovation example shows that a test of whether
the two regression functions have the same slope involves:

Hy: g35=0
H,: B35 #0
Similarly, Figure 8.14 shows that a test of whether the two regression functions are identical involves:
Hy. B = B3 =
H,: not both ﬂz =0and 3 =
. |

8.6 More Complex Models ,

We now briefly consider more complex models involving quantitative and qualitative
predictor variables.
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More than One Qualitative Predictor Variable

Regression models can readily be constructed for cases where two or more of the Predicto,
variables are qualitative. Consider the regression of advertising expenditures (¥) op soly ;
(X)), type of firm (incorporated, not incorporated), and quality of sales managemen¢ (high
low). We may define: ’

X, — 1 if firm incorporated
2710 otherwise

1 if quality of sales management high (8.51
X 3 = . * )
0 otherwise

First-Order Model. A first-order regression model for the above example is:

3
N

Yi=Bo+ b Xo+ B X + B Xis+ & (8.52)
This mode! implies that the response function of advertising expenditures on sales is linear, {
with the same slope for all “type of firm—quality of sales management” combinations :
and B, and B indicate the additive differential effects of type of firm and quality of sale; -
management on the height of the regression line for any given levels of X, and the other
predictor variable.

First-Order Model with Certain Interactions Added. A first-order regression model
to which are added interaction effects between each pair of the predictor variables for the
advertising example is:

Yi = Bo+ BiXi + BaXio + BaXiz + BaXa Xiz + Bs Xy Xiz + B Xin X3 +6 (853):

Note the implications of this model:

Type of Quality of Sales

Firm Management Response Function
Incorporated High E{Y} = (Bo+ B2+ B3 + Bs) + (B1 + Pa + f)ks
Not incorporated High E{Y} = (Bo+ B3) + (B1 + Bs) Xa
Incorporated Low E{Y}=(Bo+ B2) + (B1 + Bo) X1

Not incorporated Low E{Y} = Bo+ B X1

Not only are all response functions different for the various “type of firm—gquality of sales
management” combinations, but the differential effects of one qualitative variable on the
intercept depend on the particular class of the other qualitative variable. For instance, when
we move from “notincorporated—low quality” to “incorporated—Ilow quality,” the intercept
changes by ;. But if we move from “not incorporated—high quality” to “incorporafﬂd’
high quality,” the intercept changes by 2 + Be.
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Qualitative Predictor Variables Only
Regression models containing only qualitative predictor variables can also be constructed.
With reference to our advertising example, we could regress advertising expenditures only
on type of firm and quality of sales management. The first-order regression model then
would be:

Y, = o+ BoXio+ B3Xiz + & (8.59)
where X;» and X3 are defined in (8.51).

Comments .

1. Models in which all explanatory variables are qualitative are called an?zlysis of variance
models.

2. Models containing some quantitative and some qualitative explanatory variables, where the
chief explanatory variables of interest are qualitative and the quantitative variables are introduced
primarily to reduce the variance of the error terms, are called analysis of covariance models.

t4

8.7 Comparison of Two or More Regression Functions

Frequently we encounter regressions for two or more populations and wish to study their
similarities and differences. We present three examples.

1. A company operates two production lines for making soap bars. For each line, the
relation between the speed of the line and the amount of scrap for the day was studied.
A scatter plot of the data for the two production lines suggests that the regression relation
between production line speed and amount of scrap is linear but not the same for the two
production lines. The slopes appear to be about the same, but the heights of the regression
lines seem to differ. A formal test is desired to determine whether or not the two regres-
sion lines are identical. If it is found that the two regression lines are not the same, an
investigation is to be made of why the difference in scrap yield exists.

2. Aneconomist is studying the relation between amount of savings and level of income
for middle-income families from urban and rural areas, based on independent samples from
the two populations. Each of the two relations can be modeled by linear regression. The
economist wishes to compare whether, at given income levels, urban and rural families
tend to save the same amount—i.e., whether the two regression lines are the same. If they
are not, the economist wishes to explore whether at least the amounts of savings out of an
additional dollar of income are the same for the two groups—i.e., whether the slopes of the
two regression lines are the same.

3. Two instruments were constructed for a company to identical specifications to measure
pressure in an industrial process. A study was then made for each instrument of the relation
between its gauge readings and actual pressures as determined by an almost exact but slow
and costly method. If the two regression lines are the same, a single calibration schedule
can be developed for the two instruments; otherwise, two different calibration schedules
will be required.
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When it is reasonable to assume that the error term variances in the regression modelg
for the different populations are equal, we can vse indicator variables to test the equality
of the different regression functions. If the error variances are not equal, transformationg of
the response variable may equalize them at least approximately.

We have already seen how regression models with indicator variables that contain ingey.
action terms permit testing of the equality of regression functions for the different clasgeg
of a qualitative variable. This methodology can be used directly for testing the equality of
regression functions for different populations. We simply consider the different populationg
as classes of a predictor variable, define indicator variables for the different populations, apg
develop a regression model containing appropriate interaction terms. Since no new pring;.
ples arise in the testing of the equality of regression functions for different populations, we
immediately proceed with two of the earlier examples to illustrate the ap%roach.

Soap Production Lines Example

TABLE 8.5
Data—Soap
Production
Lines Example
(all data are
coded).

The data on amount of scrap (¥) and line speed (X)) for the soap production lines example
are presented in Table 8.5. The variable X, is a code for the production line. A symbdlic
scatter plot of the data, using different symbols for the two production lines, is shown in
Figure 8.16. !

Tentative Model. On the basis of the symbolic scatter plot in Figure 8.16, the analyst
decided to tentatively fit regression model (8.49). This model assumes that the regression
relation between amount of scrap and line speed is linear for both production lines and that
the variances of the error terms are the same, but permits the two regression lines to have
different slopes and intercepts:

Yi= o+ BrXin+ B Xz + B3Xiy Xio + & (8.55)
Production Line 1 Production Line 2
Amount Line Amount: line
Case of Scrap Speed Case of Scrap Speed
i Y Xn X i Y; Xn X
1 218 100 1. 16 140 105 0
2 248 125 1 17 277 215 O
3 360 220 1 18 384 270 0
4 351 205 1 19 341 255 0
5 470 300 1 20 215 175 0
6 394 255 1 21 180 135 0
7 332 225 1 22 260 200 O
8 321 175 1 23 361 275 0O
9 410 270 1 24 252 155. 0O
10 260 170 1 25 422 320 o0
11 241 155 1 26 273 190 0
12 331 190 1 27 410 295 0
13 275 140 1 ’
14 425 290 1
15 367 265 1



FIGURE 8.16
Scatter
Plot—S0ap
production

Lines Example.
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where:

X1 = line speed
Xy = {1 if production line 1
! 0 if production line 2
i=1,2,...,27

Note that for purposes of this model, the 15 cases for production line 1 and the 12 cases for
production line 2 are combined into one group of 27 cases.

Diagnostics. A fit of regression model (8.55) to the data in Table 8.5 led to the results
presented in Table 8.6 and the following fitted regression function:

¥ =757+ 1.322X, + 90.39X; — .1767X, X

Plots of the residuals against ¥ are shown in Figure 8.17 for each production line. Two plots
are used in order to facilitate the diagnosis of possible differences between the two produc-
tion lines. Both plots in Figure 8.17 are reasonably consistent with regression model (8.55).
The splits between positive and negative residuals of 10 to 5 for production line 1 and 4 to
8 for production line 2 can be accounted for by randomness of the outcomes. Plots of the
residuals against X, and a normal probability plot of the residuals (not shown) also support
the appropriateness of the fitted model. For the latter plot, the coefficient of correlation
between the ordered residuals and their expected values under normality is .990. This is
sufficiently high according to Table B.6 to support the assumption of normality of the error
terms. . 2

Finally, the analyst desired to make a formal test of the equality of the variances of
the error terms for the two production lines, using the Brown-Forsythe test described in
Section 3.6. Separate linear regression models were fitted to the data for the two production
lines, the residuals were obtained, and the absolute deviations d;; and dj, in (3.8) of the
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TABLE 8.6
Regression
Results for Fit
of Regression
Model (8.55)—
Soap
Production

Lines Example.

FIGURE 8.17
Residual Plots
against
?—Soap
Production
Lines Example.

(a) Regression Coefficients

\Ef;ti mated Estimated
Regression Regression Standard
Coefficient ~ Coefficient  Deviation

fo 7.57 20.87

B 1.322 09262,
B2 90.39 28.35

Bs —1767 .1288

(b) Analysis of Variance

Source of
Varlation ss df
Regression 169,165 3
X1 149,661 1
X2l X4 18,694 1
X1 X2l X1, X2- 810: ]
Error 9,904 23
Total 179,069 26
(a) Production Line 1
e
40+
®
20 [~ ) @ -]
®
b ®
% 0 °° Ze
g ®
_20 -
®
e® °
_40 -
1 1 1 |

0 1700 200 300 400 vy

residuals around the median residual for each
The results were as follows:

Production Line 1

Y =97.965 +1.145X,
d1=16.132
> (dy — d1)2=2,952.20




Chapter 8 Regression Models for Quantitative and Qualitative Predictors 333

The pooled variance s? in (3.9a) therefore is:

2 2,952.20 + 2,045.82
- 27 -2
Hence, the pooled standard deviation is s = 14.139, and the test statistic in (3.9) is:

16.132 — 12.648
t 3 2 = .636

" 14.1394 ! + !
’ 15 12

For o = .05, we require £(.975; 25) = 2.060. Since |[#i| = .636 < 2.060, we conclude
that the error term variances for the two production lines do not differ. The two-sided
P-value for this test is .53. )

At this point, the analyst was satisfied abount the aptness of regression model (8.55)
with normal error terms and was ready to proceed with comparing the regresiion relation
between amount of scrap and line speed for the two production lines.

= 199.921

Inferences about Two Regression Lines. Identity of the regression functions for the two
production lines is tested by considering the alternatives:

Hy: By =p3=0

(8.56)
H,:notboth B, =0and B5=10
The appropriate test statistic is given by (7.27):
SSR(X,, X1X3|X SSE(X,, X2, X1 X
e (X2, X1Xo| 1)_:_ (X1, X2, X1X2) (8.56a)

2 n—4
where # represents the combined sample size for both populations. Using the regression
results in Table 8.6, we find:

SSR(X5, X, X2[X;) = SSR(X2i X)) + SSR(X X2[ X1, X3)
= 18,694 4 810 = 19,504
19,504 9,904
2 T 23
To control ¢ at level .01, we require F(.99; 2, 23) = 5.67. Since F* = 22.65 > 5.67, we
conclude H,, that the regression functions for the two production lines are not identical.

Next, the analyst examined whether the slopes of the regression lines are the same. The
alternatives here are:

Hy: B3 =0

 H B #0 (®:37
and the appropriate test statistic is either the * statistic (7.25) or the partial F test statis-
tic (7.24): :

SSR(X; X21X1, X SSE(X;, X2, X1 X
. (X1 X2l Xy 2)_:_ (X}, X2, X1X2) (8.57a)

1 n—4

Using the regression results in Table 8.6 and the partial F test statistic, we obtain:

810 9,904
1 23

F* = 1.88
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For o = .01, we require F(.99; 1, 23) = 7.88. Since F* = 1.88 < 7.88, we conclude H,
that the slopes of the regression functions for the two production lines are the same. '

Using the Bonferroni inequality (4.2), the analyst can therefore conclude at family sig-
nificance level .02 that a given increase in line speed leads to the same amount of incregge
in expected scrap in each of the two production lines, but that the expected amount of g¢
for any given line speed differs by a constant amount for the two production lines.

We can estimate this constant difference in the regression lines by obtaining a confidenge
interval for B,. For a 95 percent confidence interval, we require £ (.975; 23) = 2.069. Using
the results in Table 8.6, we obtain the confidence limits 90.39 + 2.069(28.35). Hence, the
confidence interval for B, is:

317 < 6, <1490
We thus conclude, with 95 percent confidence, that the mean amount of scrap for production

line 1, at any given line speed, exceeds that for production line 2 by somewhere between
32 and 149.

w

Instrument Calibration Study Example
The engineer making the calibration study believed that the regression functions relat.
ing gauge reading (Y) to actual pressure (X,) for both instruments are second-order
polynomials:

E{Y} = Bo+ B X1+ B X;

but that they might differ for the two instruments. Hence, the model employed (using a
centered variable for X to reduce multicollinearity problems—see Section 8.1) was:

Yi = Bu + Bixit + Baxiy + BaXix + Baxit Xiz + Bsxj Xio + &, (8.58)
where:

xi1 = X; — X, = centered actual pressure

X — 1 if instrument B
i2 0 otherwise

Note that for instrument A, where X, = 0, the response function is:
E{Y}= Bo+ Bix| + Box; Instrument A (8.59a)
and for instrument B, where X, = 1, the response function is:
E{Y}= (Bo+ B5) + (B1 + Bu)x1 + (B2 + Bs)x>  Instrument B (8.59b)
Hence, the test for equality of the two response functions involves the alternatives:
Hy fi=B,=8;=0
Hj: fz)t alfg;;k if SHO equal zero (860
and the appropriate test statistic is (7.27):

_ SSR(Xa, x1 X2 X Xalxy, x7)  SSE(x1.x{, X2, 31 X5, x7 X3)
N 3 N n—6

where n represents the combined sample size for both populations.

F* (8.60a)




Chapter 8 Regression Models for Quantitative and Qualitative Predictors 335

Comments

1.

The approach just described is completely general. If three or more populations are involved,

additional indicator variables are simply added to the model.

2. The use of indicator variables for testing whether two or more regression functions are the
same is equivalent to the general linear test approach where fitting the full mode! involves fitting
separate regressions to the data from each population, and fitting the reduced model involves fitting

one regression to the combined data.
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Problems

8.1.

8.2.

8.3.

*8.4.

*8.5.

Prepare a contour plot for the quadratic response surface E{Y} =140 + 4x2 — 2x}+ 5% x5.
Describe the shape of the response surface.

Prepare a contour plot for the quadratic response surface E{Y} =124 — 3x7 — 2x2 — 6x,x,.
Describe the shape of the response surface.

A junior investment analyst used a polynomial regression mode! of relatively high order in a
research seminar on municipal bonds and obtained an R? of .991 in the regression of net interest
yield of bond (Y) on industrial diversity index of municipality (X) for seven bond issues. A
classmate, unimpressed, said: “You overfitted. Your curve follows the random effects in the
data”

4. Comment on the criticism.

b. Might R? defined in (6.42) be more appropriate than R? as a descriptive measure here?”

Refer to Muscle mass Problem 1.27. Second-order regression model (8.2) with independent

normal error terms is expected to be appropriate.

a. Fitregression model (8.2). Plot the fitted regression function and the data. Does the quadratic
regression function appear to be a good fit here? Find R?.

b. Test whether or not there is a regression relation; use o = .0S5. State the alternatives, decision
rule, and conclusion.

c. -Estimate the mean muscle mass for women aged 48 years; use a 95 percent confidence
interval. Interpret your interval.

d. Predict the muscle mass for a woman whose age is 48 years; use a 95 percent prediction
interval, Interpret your interval.

e. Test whether the quadratic term can be dropped from the regression model; use o« = .05.
State the alternatives, decision rule, and conclusion.

f. Express the fitted regression function obtained in part (a) in terms of the original variable X.

g. Calculate the coefficient of simplelcorrelation between X and X? and between x and x2. Is
the use of a centered variable helpful here?

Refer to Muscle mass Problems 1.27 and 8.4.

a Obtain the residuals from the fit in 8.4a and plot them against ¥ and against x on separate
graphs. Also prepare a normal probability plot. Interpret your plots.

b. Test formally for lack of fit of the quadratic regression function; use « = .05. State the
alternatives, decision rule, and conclusion. What assumptions did you make implicitly in
this test?
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8.6.

8.7.

8.8.

8.9.

c¢. Fitthird-order mode! (8.6) and test whetherornot 81, =0: usex = .05. State the ¢ dl[emahves
decision rule, and conclusion. Is your conclusion consistent with your finding in part (by?

Steroid level. An endocrinologist was interested in exploring the relationship between the leve]
of a steroid (Y') and age (X) in healthy female subjects whose ages ranged from 8 to 25 years,
She collected a sample of 27 healthy females in this age range. The data are given below-

it 1 2 3 ... 25 26 27
Xi 23 19 25 e 13 14 18
Y;: 27.1 22.1 21.9 ... 12.8 20.8 20.6

a. Fitregression model (8.2). Plotthe fitted regression function and the data. Does the quadratic
regression function appear to be a good fit here? Find R2. »

b. Test whether or not there is a regression relation; use o« = .01. State the alternatives, decisiop
rule, and conclusion. What is the P-value of the test?

c. Obtain joint interval estimates for the mean steroid level of females aged 10, 15, and 20,
respectively. Use the most efficient simultapeous estimation procedure and a 99 perceyy
family confidence coefficient. Interpret your intervals.

d. Predict the steroid levels of females aged 15 using a 99 percent prediction interval. Interpre
your interval.

e. Test whether the quadratic term can be dropped from the model; use o = .01. State the
alternatives, decision rule, and conclusion.

f. Express the fitted regression function obtained in part (a) in terms of the original variable X

Refer to Steroid level Problem 8.6.

a. Obtain the residuals and plot them against the fitted values and against x on separate graphs.
Also prepare a normal probability plot. What do your plots show?

b. Test formally for lack of fit. Control the risk of a Type I error at .01. State the alternatives,
decision rule, and conclusion. What assumptions did you make implicitly in this test?

Refer to Commercial properties Problems 6.18 and 7.7. The vacancy rate predictor (X3) does
not appear to be needed when property age (X ), operating expenses and taxes (X»). and total
square footage (X,) are included in the model as predictors of rental rates (¥).

a. The age of the property (X,) appears to exhibit some curvature when plotted against the
rental rates (Y). Fit a polynomial regression model with centered property age (xy),
the square of centered property age (x7), operating expenses and taxes (X.), and total
square footage (X4). Plot the ¥ observations against the fitted values. Does the response
function provide a good fit?

b. Calculate R?, What information does this measure provide?

c. Test whether or not the the square of centered property age (x?) can be dropped from the
model; use ¢ = .05. State the alternatives, decision rule. and conclusion. What is the P-value
of the test?

d. Estimate the mean rental rate when X; = 8, X, = 16, and X4 = 250,000: use a 95 percent
confidence interval. Interpret your interval.

e. Express the fitted response function obtained in part (a) in the original X variables.
Consider the response function E{Y} =25 4+ 3X, +4X> + 1.5X, X».

a. Prepare a conditional effects plot of the response function against X, when X, =3 and
when X, = 6. How is the interaction effect of X, and X, on Y apparent from this graph!?
Describe the nature of the interaction effect.



8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

8.16.
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b. Plot a set of contour curves for the response surface. How is the interaction effect of X; and
X, on Y apparent from this graph?

Consider the response function E{Y} = 14 + 7X; + 5X, — 4X, X,.

a. Prepare a conditional effects plot of the response function against X, when X; = 1 and when
X =4. How does the graph indicate that the effects of X; and X, on Y are not additive?
What is the nature of the interaction effect?

b. Plot a set of contour curves for the response surface. How does the graph indicate that the
effects of X, and X, on Y are not additive?

Refer to Brand preference Problem 6.5.
a. Fit regression model (8.22).

b. Test whether or not the interaction term can be dropped from the.model; use o = .05. State
the alternatives, decision rule, and conclusion.

A student who used a regression model that included indicator variables was upset when
receiving only the following output on the multiple regression printout: XTRANSPOSE X
SINGULAR. What is a likely source of the difficulty?

Refer to regression model! (8.33). Portray graphically the response curves for this model if
Bo =253, 8 =.20,and B, = —12.1.

In aregression study of factors affecting learning time for a certain task (measured in minutes),
gender of learner was included as a predictor variable (X>) that was coded X, = 1 if male and
0 if female. It was found that b, = 22.3 and s{b,} = 3.8. An observer questioned whether the
coding scheme for gender is fair because it results in a positive coefficient, leading to longer
learning times for males than females. Comment.

Refer to Copier maintenance Problem 1.20. The users of the copiers are either training in-
stitutions that use a small model, or business firms that use a large, commercial model.. An
analyst at Tri-City wishes to fit a regression model including both number of copiers serviced
(X1) and type of copier (X;) as predictor variables and estimate the effect of copier model
(S—small, L—large) on number of minutes spent on the service call. Records show that the
models serviced in the 45 calls were:

i 1 2 3 eer 43 44 45

Assume that regression model (8.33) is appropriate, and let X, = 1 if small model and 0 if large,

commercial model.

a. Explain the meaning of all regression coefficients in the model.

b. Fit the regression model and state the estimated regression function.

c. Estimate the effect of copier model on mean service time with a 95 percent confidence
interval. Interpret your interval estimate.

d. Why would the analyst wish to include X, number of copiers, in the regression model when
interest is in estimating the effect of type of copier mode! on service time?

e. Obtain the residuals and plot them against X X;. Is there any indication that an interaction
term in the regression model would be helpful?

Refer to Grade point average Problem 1.19. An assistant to the director of admissions con-

jectured that the predictive power of the model could be improved by adding information on

whether the student had chosen a major field of concentration at the time the application was

submitted. Assume that regression model (8.33) is appropriate, where X is entrance test score
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8.17.

8.18.

*8.19.

8.20.

8.21.

8.22.

and X> = | if student had indicated a major field of concentration at the time of aPPIiCation
and 0 if the major field was undecided. Data for X» were as follows:

i 1 2 3 118 119 120
Xia: 0 1 0 . 1 1 0

a. Explain how each regression coefficient in mode! (8.33) is interpreted here.

b. Fit the regression model and state the estimated regression function.

c¢. Test whether the X> variable can be dropped from the regression model; use ¢ = (1. State
the alternatives. decision rule, and conclusion.

d. Obtain the residuals for regression model (8.33) and plot them against X1 X5, Is there any
evidence in your plot that it would be helpful to include an interaction term in the modep?

Refer to regression models (8.33) and (8.49). Would the conclusion that > = 0 have the same

implication for each of these models? Explain.

Refer to regression model (8.49). Portray graphically the response curves for this mode if

Bu= 25,81 = .30, B, = —12.5, and B; = .05. Describe the nature of the interaction effect.

Refer to Copier maintenance Problems 1.20 and 8.15.

a. Fit regression model (8.49) and state the estimated regression function.

b. Test whether the interaction term can be dropped from the model; control the o risk at .10,
State the alternatives, decision rule, and conclusion. What is the P-value of the test? If the
interaction term cannot be dropped from the model. describe the nature of the interaction
effect.

Refer to Grade point average Problems 1.19 and 8.16.

a. Fit regression model (8.49) and state the estimated regression function.

b. Test whether the interaction term can be dropped from the model; use o« = .05. State the
alternatives. decision rule, and conclusion. If the interaction term cannot be dropped from
the model, describe the nature of the interaction effect.

In a regression analysis of on-the-job head injuries of warehouse laborers caused by falling

objects, ¥ is a measure of severity of the injury, X, is an index reflecting both the weight of

the object and the distance it fell, and X, and X3 are indicator variables for nature of head
protection worn at the time of the accident, coded as follows:

Type of Protection X2 X3

Hard hat 1 0
Bump cap 0 1
None 0 0

The response function to be used in the study is E{Y} = By + Bi1 X1 + B2 X + B3 X5,

a. Develop the response function for each type of protection category.

b. For each of the following questions, specify the alternatives Hy and H, for the appropriate
test: (1) With X fixed, does wearing & bump cap reduce the expected severity of injury as
compared with wearing no protection? (2) With X fixed, is the expected severity of injury
the same when wearing a hard hat as when wearing a bump cap?

Refer to tool wear regression model (8.36). Suppose the indicator variables had been defined as

follows: X> = | if tool model M2 and O otherwise, X3 = 1 if tool model M3 and 0 otherwise,

X, = liftool model M4 and () otherwise. Indicate the meaning of each of the following: (O]

(2) By — 3. 3) Bi-
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A marketing research trainee in the national office of a chain of shoe stores used the following
response function to study seasonal (winter, spring, summer, fall) effects on sales of a certain
line of shoes: E{Y} = By + B X, + B2X5 + B3X3. The Xs are indicator variables defined as
follows: X; = 1if winter and O otherwise, X, = 1if spring and O otherwise, X3 = 1 if fall and 0
otherwise. After fitting the model, the trainee tested the regression coefficients 8, (k =0, ..., 3)
and came to the following set of conclusions at an .05 family level of significance: gy # O,
B =0, B2 # 0, B3 #£ 0. In the report the trainee then wrote: “Results of regression analysis
show that climatic and other seasonal factors have no influence in determining sales of this
shoe line in the winter. Seasonal influences do exist in the other seasons.” Do you agree with
this interpretation of the test results? Discuss.

Assessed valuations. A tax consultant studied the current relation between selling price and
assessed valuation of one-family residential dwellings in a large tax district by obtaining data
for a random sample of 16 recent “arm’s-length” sales transactions of one-family dwellings
located on corner lots and for a random sample of 48 recent sales of one-family dwellings not
located on corper lots. In the data that follow, both selling price (¥) and assessed. valuation
(X)) are expressed in thousand dollars, whereas lot location (X3) is coded 1 for corner lots
and O for non-corner lots.

it 1 2 3 cer 62 63 64
Xii: 76.4 743 69.6 . 79.4 74.7 71.5
Xiz: 0 0 0 . 0 0 1

Y 788 73.8 64.6 . 97.6 84.4 70.5

Assume that the error variances in the two populations are equal and that regression model (8.49)

is appropriate.

a. Plot the sample data for the two populations as a symbolic scatter plot. Does the regression
relation appear to be the same for the two populations?

b. Test for identity of the regression functions for dwellings on corner lots and dwellings in
other locations; contro] the risk of Type I error at .05. State the alternatives, decision rule,
and conclusion.

c. Plot the estimated regression functions for the two populations and describe the nature of
the differences between them.

Refer to Grocery retailer Problems 6.9 and 7.4.

a. Fitregression model (8.58) using the number of cases shipped (X) and the binary variable
(X3) as predictors.

b. Test whether or not the interaction terms and the quadratic term can be dropped from the
model; use o = .05. State the alternatives, decision rule, and conclusion. What is the P-value
of the test?

In time series analysis, the X variable representing time usually is defined to take on values
1, 2, etc., for the successive time periéds. Does this represent an allocated code when the time
periods are actually 1989, 1990, etc.?

An analyst wishes to include number of older siblings in family as a predictor variable in a re-
gression analysis of factors affecting maturation in eighth graders. The number of older siblings
in the sample observations ranges from 0 to 4. Discuss whether this variable should be placed
in the model as an ordinary quantitative variable or by means of four 0, 1 indicator variables.
Refer to regression model (8.31) for the insurance innovation study. Suppose fy were dropped
from the model to eliminate the linear dependence in the X matrix so that the model becomes
Y; = B1Xn + BoXiz + B3 Xis +&;. What is the meaning here of each of the regression coeffi-
cients By, B, and B57
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Exercises

8.29.

8.30.

831.

8.32.

8.33.

8.34.

8.35.

Consider the second-order regression model with one predictor variable in (8.2) and the ol
lowing two sets of X values:

Set I: 10 15 1.1 13 1.9 .8 12 14
Set2: 12 1 123 17 415 71 283 38

For each set, calculate the coefficient of correlation between X and X2, then between x and x2
Also calculate the coefficients of correlation between X and X* and between x and X3, Wha;
generalizations are suggested by your results?

(Calculus needed.) Referto second-order response function (8.3). Explain precisely the Meaning

of the linear effect coefficient 8 and the quadratic effect coefficient ;.

a. Derive the expressions for by, b}, and b}, in (8.12). LT

b. Using (5.46). obtain the variance-covariance matrix for the regression coefficients pettaining
to the original X variable in terms of the variance-covariance matrix for the regressigy
coefficients pertaining to the transformed x variable.

How are the normal equations (8.4) simplified if the X values are equally spaced, such as the

time series representation X, =1, X, =2, ..., X, = n?

Referto the instrument calibration study exanmple in Section 8.7. Suppose that three instruments

(A, B, C) had been developed to identical specifications, that the regression functions relating

gauge reading (Y') to actual pressure (X;) are second-order polynomials for each instrumeny,

that the error variances are the same, and that the polynomial coefficients may differ from ope
instrument to the next. Let X5 denote a second indicator variable, where Xz =1 if instrumen

C and O otherwise.

a. Expand regression model! (8.58) to cover this sitvation.

b. State the alternatives, define the test statistic, and give the decision rule for each of the
following tests when the level of significance is .01: (1) test whether the second-order re-
gression functions for the three instruments are identical, (2) test whether all three regression
functions have the same intercept, (3) test whether both the linear and quadratic effects are
the same in all three regression functions.

In a regression study, three types of banks were involved, namely, commercial, mutual savings,
and savings and loan. Consider the following system of indicator variables for type of bank:

Type of Bank X, X3
Commercial 1 0
Mutual savings 0

Savings and loan -1 -1

a. Develop a first-order linear regression model for relating last year’s profit or loss (Y) tosize
of bank (X ) and type of bank (X2, X3).

b. State the response functions for the three types of banks.

c. Interpret each of the following quantities: (1) f2, (2) B3. 3) — B — Bs.

Refer to regression model (8.54) and exclude variable X5.

a. Obtain the X'X matrix for this special case of a single qualitative predictor variable, for
i=1,...,n when n firms are not incorporated.

b. Using (6.25), find b.

c. Using (6.35) and (6.36), find SSE and SSR.
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8.36.

8.37.

8.38.

8.39.

8.40.

Refer to the CDI data set in Appendix C.2. It is desired to fit second-order regression model (8.2)
for relating number of active physicians (Y) to total population (X).

a. Fit the second-order regression model. Plot the residuals against the fitted values. How well
does the second-order model appear to fit the data?

b. Obtain R? for the second-order regression model. Also obtain the coefficient of simple
determination for the first-order regression model. Has the addition of the quadratic term in
the regression model substantially increased the coefficient of determination?

c. Test whether the quadratic term can be dropped from the regression model; use o = .05.
State the alternatives, decision rule, and conclusion.

Refer to the CDI data set in Appendix C.2. A regression model relating serious crime rate
(Y, total serious crimes divided by total population) to population density (X, total population
divided by land area) and unemployment rate (X3) is to be constructed.

a. Fit second-order regression model (8.8). Plot the residuals against the fitted vaIUfs. How
well does the second-order model appear to fit the data? What is R2?

b. Test whether or not all quadratic and interaction terms can be dropped from the regression
model; use o = .0l. State the alternatives, decision rule, and conclusion.

c. Instead of the predictor variable population density, total population (X ) and land area
(X3) are to be employed as separate predictor variables, in addition to unemployment rate
(X3). The regression model should contain linear and quadratic terms for total population,
and linear terms only for land area and unemployment rate. (No interaction terms are to be
includedin this model.) Fit this regression model and obtain R?, Is this coefficient of multiple
determination substantially different from the one for the regression model in part (a)?

Refer to the SENIC data set in Appendix C.1. Second-order regression model (8.2) is to be
fitted for relating number of nurses (Y) to available facilities and services (X).

a. Fit the second-order regression mode!. Plot the residuals against the fitted values. How well
does the second-order model appear to fit the data?

b. Obtain R? for the second-order regression model. Also obtain the coefficient of simple
determination for the first-order regression model. Has the addition of the quadratic term in
the regression model substantially increased the coefficient of determination?

c. Test whether the quadratic term can be dropped from the regression model; use o« = .01.
State the alternatives, decision rule, and conclusion.

Refer to the CDI data set in Appendix C.2. The number of active physicians (Y) is to be
regressed against total population (X)), total personal income (X3), and geographic region
(X3, X4, X5).

a, Fit a first-order regression model. Let X3 = 1 if NE and O otherwise, X4 = 1 if NC and 0
otherwise, and X5 = 1if S and 0 otherwise.

b. Examine whether the effect for the northeastern region on number of active physicians
differs from the effect for the north central region by constructing an appropriate 90 percent
confidence interval, Interpret your interval estimate.

c¢. Test whether any geographic effects are present;‘use o = .10. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?

Refer to the SENIC data set in Appendix C.1. Infection risk (Y') is to be regressed against length
of stay (X,), age (X2), routine chest X-ray ratio (X3), and medical school affiliation (Xj).

a. Fit a first-order regression model. Let X4 = 1 if hospital has medical school affiliation and
0 if not.
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8.41.

8.42.

b. Estimate the cffect of medical schoo! affiliation on infection risk using a 98 perceny confi.
dence interval. Interprel your interval estimate.

¢. Ithas been suggested that the effect of medical school affiliation on infection risk may interacy
with the effects of age and routine chest X-ray ratio. Add appropriaie interaction tepmg o
the regression model, fit the revised regression model, and test whether the interaction termg
are helpful: use o = .10. State the alternatives, decision rule, and conclusion.

Refer to the SENIC data set in Appendix C.1. Length of stay (V) is to be regressed op age
(X1), routine culturing ratio (Xa), average daily census (X3). available facilities and serviczs
(X,), and region (Xs. X6, X7).

a. Fita first-order regression model. Let X5 = | if NE and O otherwise, X¢ = | if NC 4 0
otherwise. and X; = | if S and 0 otherwise. .

b. Test whether the routine culturing ratio can be dropped from the model; use a level of
significance of .05. State the alternatives, decision rule, and conclusion.

c. Examine whether the effect on length of stay forhospitals located in the western region differs
from that for hospitals located in the other three regions by constructing an appropriage
confidence interval for each pairwise compariSon. Use the Bonferroni procedure with 5
95 percent family confidence coefficient, Summarize your findings.

Refer to Market share data set in Appendix C.3. Company executives want to be able 1o

predict market share of their product (¥') based on merchandise price (X), the gross Nielsep

rating points (X», an index of the amount of advertising exposure that the product received);
the presence or absence of a wholesale pricing discount (X3 = | if discount present: otherwise

Xz = 0); the presence or absence of a package promotion during the period (X4 = | if promotion

present; otherwise X, = 0): and year (X5). Code year as a nominal level variable and use 2000

as the referent year.

a. Fita first-order regression model. Plot the residuals against the fitted values. How well does
the first-order model appear to fit the data?

b. Re-fitthe modelin part (a). after adding all second-order terms involving only the quantitative
predictors. Test whether or not all quadratic and interaction terms can be dropped from the
regression model: use & = .05. State the alternatives. decision rule, and concluston.

c. Inpart (a), test whether advertising index (X») and year (Xs) can be dropped from the model;
use o = .05. State the alternatives, decision rule, and conclusion.

Case
Study

8.43.

Refer to University admissions data set in Apperndix C.4. The director of admissions at a state
university wished to determine how accurately students” grade-point averages at the end of their
freshman year (Y) can be predicted from the entrance examination (ACT) test score (X-): the
high school class runk (X, a percentile where 99 indicates student is at or near the top of his
or her class and | indicates student is at or near the bottom of the class); and the academic year
(X3). The academic year variable covers the years 1996 through 2000. Develop a prediction
model for the director of admissions. Justify your choice of model. Assess your mode!’s ability
to predict and discuss its use as a tool for admissions decisions.



Building the Regreésion
Model 1: Model Selection
and Validation :

In earlier chapters, we considered how to fit simple and multiple regression models and how
to make inferences from these models. In this chapter, we first present an overview of the
model-building and model-validation process. Then we consider in more detail some special
issues in the selection of the predictor variables for exploratory observational studies. We
conclude the chapter with a detailed description of methods for validating regression models.

9.1 Overview of Model-Building Process

At the risk of oversimplifying, we present in Figure 9.1 a strategy for the building of a
regression model. This strategy involves three or, sometimes, four phases:

1. Data collection and preparation

2. Reduction of explanatory or predictor variables (for exploratory observational studies)
3. Model refinement and selection

4. Model validation

We consider each of these phases in turn.

Data Collection

The data collection requirements for building a regression model vary with the nature of
the study. It is useful to distinguish four types of studies.

Controlled Experiments. In a controlled experiment, the experimenter controls the
levels of the explanatory variables and assigns @ treatment, consisting of a combination
of levels of the explanatory variables, to each experimental unit and observes the response.
For example, an experimenter studied the effects of the size of a graphic presentation and
the time allowed for analysis of the accuracy with which the analysis of the presentation is
carried out. Here, the response variable is a measure of the accuracy of the analysis, and the
explanatory variables are the size of the graphic presentation and the time allowed. Jungig;
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executives were used as the experimental units. A treatment consisted of a particular com-
bination of size of presentation and length of time allowed. In controlled experiments, the
explanatory variables are often called factors or control variables.

The data collection requirements for controlled expeﬁments are straightforward, though
not necessarily simple. Observations for each experimental unit are needed on the response
variable and on the level of each of the control variables used for that experimental unit.
There may be difficult measurement and scaling problems for the response variable that are
unique to the area of application.

Controlled Experiments with Covariates. Statistical design of experiments uses sup-
plemental information, such as characteristics of the experimental units, in designing the
experiment so as to reduce the variance of the experimental error terms in the regression
model. Sometimes, however, it is not possible to incorporate this supplemental infgrmation
into the design of the experiment. Instead, it may be possible for the experimenter to incor-
porate this information into the regression model and thereby reduce the error variance by
including uncontrolled variables or covariates in the model.

In our previous example involving the accuracy of analysis of graphic presentations,
the experimenter suspected that gender and number of years of education could affect the
accuracy responses in important ways. Because of time constraints, the experimenter was
able to use only a completely randomized design, which does not incorporate any supple-
mental information into the design. The experimenter therefore also collected data on two
uncontrolled variables (gender and number of years of education of the junior executives)
in case that use of these covariates in the regression model would make the analysis of
the effects of the explanatory variables (size of graphic presentation, time allowed) on the
accuracy response more precise.

Confirmatory Observational Studies. These studies, based on observational, not experi-
mental, data, are intended to test (i.e., to confirm or not to confirm) hypotheses derived from
previous studies or from hunches. For these studies, data are collected for explanatory vari-
ables that previous studies have shown to affect the response variable, as well as for the new
variable or variables involved in the hypothesis. In this context, the explanatory variable(s)
involved in the hypothesis are sometimes called the primary variables, and the explanatory
variables that are included to reflect existing knowledge are called the control variables
(known risk factors in epidemiology). The control variables here are not controlled as in
an experimental study, but they are used to account for known influences on the response
variable. For example, in an observational study of the effect of vitamin E supplements
on the occurrence of a certain type of cancer, known risk factors, such as age, gender, and
race, would be included as control variables and the amount of vitamin E supplements
taken daily would be the primar§ explanatory variable. The response variable would be the
occurrence of the particular type of cancer during the period under consideration. (The use
of qualitative response variables in a regression model will be considered in Chapter 14.)
Data collection for confirmatory observational studies involves obtaining observations on
the response variable, the control variables, and the primary explanatory variable(s). Here, as
in controlled experiments, there may be important and complex problems of measurement,
such as how to obtain reliable data on the amount of vitamin supplements taken daily.

Exploratory Observational Studies. In the social, behavioral, and health sciences, man-
agement, and other fields, it is often not possible to conduct controlled experiments.
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Furthermore, adequate knowledge for conducting confirmatory observational studjeg g
be lacking. As a result, many studies in these fields are exploratory observationa] Studieg
where investigators search tor explanatory variables that might be related to the response
variable. To complicate matters further, any available theoretical models may involye X-
planatory variables that are not directly measurable, such as a family’s future earnings over
the next 10 years. Under these conditions, investigators are often forced to prospect for ex-
planatory variables that could conceivably be related to the response variable under study.
Obviously, such a set of potentially useful explanatory variables can be large. For exap,.
ple, a company’s sales of portable dishwashers in a district may be affected by populatig,
size, per capita income, percent of population in urban areas, percent of population undey
50 years of age, percent of families with children at home, etc., ete.!

After a lengthy list of potentially useful explanatory variables has been compiled, some
of these variables can be quickly screened out. An explanatory variable (1) may not be
fundamental to the probleimn, (2) may be subject to large measurement errors, and/or (3) may
effectively duplicate another explanatory variable in the list. Explanatory variables that
cannot be measured may either be deleted or replaced by proxy variables that are highly
correlated with them,

The number of cases to be collected for an exploratory observational regression study
depends on the size of the pool of potentially useful explanatory variables available at thig
stage. More cases are required when the pool is large than when it is small. A general ryle
of thumb states that there should be at least 6 to 10 cases for every variable in the pool,
The actual data collection for the pool of potentially useful explanatory variables and for
the response variable again may involve important issues of measurement, just as for the
other types of studies.

Data Preparation

Once the data have been collected, edit checks should be performed and plots prepared
to identify gross data errors as well as extreme outliers. Difficulties with data errors are
especially prevalent in large data sets and should be corrected or resolved before the model
building begins. Whenever possible, the investigator should carefully monitor and control
the data collection process to reduce the likelihood of data errors.

Preliminary Model Investigation

Once the data have been properly edited, the formal modeling process can begin. A va-

. riety of diagnostics should be employed to identify (1) the functional forms in which the
explanatory variables should enter the regression model and (2) important interactions that
should be included in the model. Scatter plots and residual plots are useful for determining
relationships and their strengths. Selected explanatory variables can be fitted in regression
functions to explore relationships, possible strong interactions. and the need for transfor-
mations. Whenever possible, of course, one should also rely on the investigator’s prior
knowledge and expertise to suggest appropriate transformations and interactions to inves-
tigate. This is particularly important when the number of potentially useful explanatory
variables is large. In this case, it may be very difficult to investigate all possible pair-
wise interactions, and prior knowledge should be used to identify the important ones. The
diagnostic procedures explained in previous chapters and in Chapter 10 should be used as
resources in this phase of model building.
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tion of Explanatory Variables

Controlled Experiments. The reduction of explanatory variables in the model-building
phase is usually not an important issue for controlled experiments. The experimenter has
chosen the explanatory variables for investigation, and a regression model is to be devel-
oped that will enable the investigator to study the effects’of these variables on the response
variable. After the model has been developed, including the use of appropriate functional
forms for the variables and the inclusion of important interaction terms, the inferential proce-
dures considered in previous chapters will be used to determine whether the explanatory vari-
ables have effects on the response variable and, if so, the nature and magnitude of the effects.

Controlled Experiments with Covariates. In studies of controlled experiments with
covariates, some reduction of the covariates may take place because investigators often
cannot be sure in advance that the selected covariates will be helpful in reducing the error
variance. For instance, the investigator in our graphic presentation example may wish to
examine at this stage of the model-building process whether gender and number of years
of education are related to the accuracy response, as had been anticipated. If not, the
investigator would wish to drop them as not being helpful in reducing the model error
variance and, therefore, in the analysis of the effects of the explanatory variables on the
response variable. The number of covariates considered in controlled experiments is usually
small, so no special problems are encountered in determining whether some or all of the
covariates should be dropped from the regression model.

Confirmatery Observational Studies. Generally, no reduction of explanatory variables
should take place in confirmatory observational studies. The control variables were chosen
on the basis of prior knowledge and should be retained for comparison with earlier studies
even if some of the control variables turn ouf not to lead to any error variance reduction
in the study at hand. The primary variables are the ones whose influence on the response
variable is to be examined and therefore need to be present in the model.

Exploratory Observational Studies. Inexploratory observational studies, the number of
explanatory variables that remain after the initial screening typically is still large. Further,
many of these variables frequently will be highly intercorrelated. Hence, the investigator
usually ‘will wish to reduce the number of explanatory variables to be used in the final
model. There are several reasons for this. A regression model with numerous explanatory
variables may be difficult to maintain. Further, regression models with a limited number of
explanatory variables are easier to work with and understand. Finally, the presence of many
highly intercorrelated explanatory variables may substantially increase the sampling vari-
ation of the regression coefficients, detract from the model’s descriptive abilities, increase
the problem of roundoff errors (as noted in Chapter 7), and not improve, or even worsen,
the model’s predictive ability..An actual worsening of the model’s predictive ability can
occur when explanatory variables are kept in the regression model that are not related to
the response variable, given the other explanator)'/ variables in the model. In that case, the
variances of the fitted values o2{¥;} tend to become larger with the inclusion of the useless
additional explanatory variables.

Hence, once the investigator has tentatlvely decided upon the functional form of the
regression relations (whether given variables are to appear in linear form, quadratic form,
etc.) and whether any interaction terms are to be included, the next step in many exploratory
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observational studies is to identify a few “good” subsets of X variables for further intep.
sive study. These subsets should include not only the potential explanatory variableg in
first-order form but also any needed quadratic and other curvature terms and any Necessary
interaction terms.

The identification of “good” subsets of potentially useful explanatory variables ¢, be
included in the final regression model and the determination of appropriate functiopg
and interaction relations for these variables usually constitute some of the most diffigy,
problems in regression analysis. Since the uses of regression models vary, no one subset of
explanatory variables may always be “best.” For instance, a descriptive use of a regression
model typically will emphasize precise estimation of the regression coefficients, wheregg
a predictive use will focus on the prediction errors. Often, different subsets of the poo] of
potential explanatory variables will best serve these varying purposes” Even for a giyey
purpose, it is often found that several subsets are about equally “good” according to a givep
criterion, and the choice among these “good” subsets needs to be made on the basig of
additional considerations.

The choice of a few appropriate subsets of explanatory variables for final consideratiop
in exploratory observational studies needs to be done with great care. Elimination of key
explanatory variables can seriously damage the explanatory power of the model and lesq
to biased estimates of regression coefficients, mean responses, and predictions of ney
observations, as well as biased estimates of the error variance. The bias in these estimatesjs
related to the fact that with observational data, the error terms in an underfitted regression
model may refiect nonrandom effects of the explanatory variables not incorporated in the
regression model. Important omitted explanatory variables are sometimes called Jazent
explanatory variables.

On the other hand, if too many explanatory variables are included in the subset, then this
overfitted model will often result in variances of estimated parameters that are larger than
those for simpler models.

Another danger with observational data is that important explanatory variables may be
observed only over narrow ranges. As a result, such important explanatory variables may
be omitted just because they occur in the sample within a narrow range of values and
therefore turn out to be statistically nonsignificant.

Another consideration in identifying subsets of explanatory variables is that these subsets
need to be small enough so that maintenance costs are manageable and analysis is facilitated,
yet large enough so that adequate description, control, or prediction is possible.

A variety of computerized approaches have been developed to assist the investigator
in reducing the number of potential explanatory variables in an exploratory observational
study when these variables are correlated among themselves. We present two of these
approaches in this chapter. The first, which is practical for pools of explanatory variables
that are small or moderate in size, considers all possible subsets of explanatory variables
that can be developed from the pool of potential explanatory variables and identifies those
subsets that are ““good” according to a criterion specified by the investigator. The second
approach employs automatic search procedures to arrive at a single subset of the explanatory
variables. This approach is recommended primarily for reductions involving large pools of
explanatory variables.

Even though computerized approaches can be very helpful in identifying approptiate
subsets for detailed, final consideration, the process of developing a useful regression model
must be pragmatic and needs to utilize large doses of subjective judgment. Explanatory
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variables that are considered essential should be included in the regression model before
any computerized assistance is sought. Further, computerized approaches that identify only
a single subset of explanatory variables as “best” need to be supplemented so that additional
subsets are also considered before the final regression moglel is decided upon.

Comments
1. All too often, unwary investigators will screen a set of explanatory variables by fitting the

regression model containing the entire set of potential X variables and then simply dropping those
for which the t* statistic (7.25):

«_ b

£ slb
has a small absolute value. As we know from Chapter 7, this procedure can lead to the dropping
of important intercorrelated explanatory variables. Clearly, a good search procedure mu.g be able

to handle important intercorrelated explanatory variables in such a way that not all of them will be
dropped.

2. Controlled experiments can usually avoid many of the problems in exploratory observational

studies. For example, the effects of latent predictor variables are minimized by using randomization.

»  In addition, adequate ranges of the explanatory variables can be selected and correlations among the
' explanatory variables can be eliminated by appropriate choices of their levels, |

Model Refinement and Selection

At this stage in the model-building process, the tentative regression model, or the several
“good” regression models in the case of exploratory observational studies, need to be
checked in detail for curvature and interaction effects. Residual plots are helpful in deciding
whether one model is to be preferred over another. In addition, the diagnostic checks to
be described in Chapter 10 are useful for identifying influential outlying observations,
multicollinearity, ete.

The selection of the ultimate regression model often depends greatly upon these diag-
nostic results. For example, one fitted model may be very much influenced by a single case,
whereas another is not. Again, one fitted model may show correlations among the error
terms, whereas another does not.

When ‘repeat observations are available, formal tests for lack of fit can be made. In
any case, a variety of residual plots and analyses can be employed to identify any lack of
fit, outliers, and influential observations. For instance, residual plots against cross-product
and/or power terms not included in the regression model can be useful in identifying way:
in which the model fit can be improved further. .

When an automatic selection procedure is utilized for an exploratory observational study
and only a single model is identified as “Best,” other models should also be explored. One
procedure is to use the number of explanatory variables in the model identified as “best” as
an estimate of the number of explanatory variables-needed in the regression model. Then
the investigator explores and identifies other candidate models with approximately the same
number of explanatory variables identified by the automatic procedure.

Eventually, after thorough checking and various remedial actions, such as transforma-
tions, the investigator narrows the number of competing models to one or just a few. At this
point, it is good statistical practice to assess the validity of the remaining candidates through
model validation studies. These methods can be used to help decide upon a final regression
model, and to determine how well the model will perform in practice.
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Model Validation

Model validity refers to the stability and reasonableness of the regression coefficients, the
plausibility and usability of the regression function, and the ability to generalize infe,.
ences drawn from the regression analysis. Validation is a useful and necessary part of g
model-building process. Several methods of assessing model validity will be described i,
Section 9.6.

9.2  Surgical Unit Example

—_—

With the completion of this overview of the model-building process for asegression study,
we next present an example that will be used to illustrate all stages of this process as they
are taken up in this and the following two chapters. A hospital surgical unit was interested
in predicting survival in patients undergoing a particular type of liver operation. A randop
selection of 108 patients was available for analysis. From each patient record, the following
information was extracted from the preoperation evaluation:

X, blood clotting score

X, prognostic index

X3 enzyme function test score

Xy liver function test score

Xs age, in years

X6 indicator variable for gender (0 = male, | = female)

X7 and Xg indicator variables for history of alcohol use:
Alcohol Use X7 Xg
None 0 0
Moderate 1 0
Severe 0 1

These constitute the pool of potential explanatory or predictor variables for a predictive
regression model. The response variable is survival time, which was ascertained in a follow-
up study. A portion of the data on the potential predictor variables and the response variableis
presented in Table 9.1. These data have already been screened and properly edited for errors.

TABLE 9.1 Potential Predictor Variables and Response Variable—Surgical Unit Example.

Case
Number
i

1
2
3

52

53

54

Blood- Alc. Al
Clotting Prognostic Enzyme Liver Use: Use: Survival

Score Index Test Test Age Gender Mod. Heavy Time
X Xiz Xis Xia  Xis Xie X7 Xis Yi Y, =InY;
6.7 62 81 259 50 0 1 0 695 6.544
5.1 59 66 1.70 39 0 0 0 403 5.999
7.4 57 83 216 55 0 0 0 710 6.565
6.4 85 40 1.21 58 0 0 1 579 6.361
6.4 59 85 233 63 0 1 0 550 6.310
8.8 78 72 3.20 56 0 0 0 651 6.478
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To illustrate the model-building procedures discussed in this and the next section, we will
use only the first four explanatory variables. By limiting the number of potential explanatory
variables, we can explain the procedures without overwhelming the reader with masses of
computer printouts. We will also use only the first 54 of the 108 patients.

Since the pool of predictor variables is small, a reasonably full exploration of relation-
ships and of possible strong interaction effects is possible at this stage of data preparation.
Stem-and-leaf plots were prepared for each of the predictor variables (not shown). These
highlighted several cases as outlying with respect to the explanatory variables. The investi-
gator was thereby alerted to examine later the influence of these cases. A scatter plot matrix
and the correlation matrix were also obtained (not shown).

A first-order regression mode] based on all predictor variables was fitted to serve as a
starting point. A plot of residuals against predicted values for this fitted model is shown
in Figure 9.2a. The plot suggests that both curvature and nonconstant error variapce are
apparent. In addition, some departure from normality is suggested by the normal prolgability
plot of residuals in Figure 9.2b.

To make the distribution of the error terms more nearly normal and to see if the same
transformation would also reduce the apparent curvature, the investigator examined the

(a) Residual Plot for Y (b) Normal Plot for Y
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FIGURE 2.3
JMP Scatter
Plot Matrix
and
Correlation
Matrix when
Response
Variable Is
Y'—Surgical
Unit Example.

logarithmic transformation ¥’ = In Y. Data for the transformed response variable are alg,
given in Table 9.1. Figure 9.2¢ shows a plot of residuals against fitted values when y* j
regressed on all four predictor variables in a first-order model; also the normal probability
plot of residuals for the transformed data shows that the distribution of the error termg jg
more nearly normal.

The investigator also obtained a scatter plot matrix and the correlation matrix with the
transformed Y variable; these are presented in Figure 9.3. In addition, various scatter and

Multivariate Correlations
LnSurvival Bloodclot  Progindex  Enzyme wﬂ}eiver

LnSurvival 1.0000 0.2462 0.4699 0.6539 0.6493
Bloodclot 0.2462 1.0000 0.0901 —0.1496 0.5024
Progindex 0.4699 0.0901 1.0000 —0.0236 0.3690
Enzyme 0.6539 —0.1496 ——0.0%{36 1.0000 0.4164
Liver 0.6493 0.5024 0.3690 0.4164 1.0000
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residual plots were obtained (not shown here). All of these plots indicate that each of the
predictor variables is linearly associated with ¥/, with X3 and X, showing the highest
degrees of association and X the lowest. The scatter plot matrix and the correlation matrix
further show intercorrelations among the potential predictor variables. In particular, X, has
moderately high pairwise correlations with X, X5, and X3.

On the basis of these analyses, the investigator concluded to use, at this stage of the
model-building process, ¥’ = In ¥ as the response variable, to represent the predictor vari-
ables in linear terms, and not to include any interaction terms. The next stage in the model-
building process is to examine whether all of the potential predictor variables are needed
or whether a subset of them is adequate. A number of useful measures have been devel-
oped to assess the adequacy of the various subsets. We now turn:to a discussion of these
measures.

9.3 Criteria for Model Selection

From any set of p — 1 predictors, 27~} alternative models can be constructed. This calcu-

.’ lation is based on the fact that each predictor can be either included or excluded from the
model. For example, the 2% = 16 different possible subset models that can be formed from
the pool of four X variables in the surgical unit example are listed in Table 9.2. First, there
is the regression model with no X variables, i.e., the model ¥; = S + &;. Then there are
the regression models with one X variable (X, X, X3, X,), with two X variables (X; and
X,, Xy and X35, X; and Xy, X and X3, X, and X4, X3 and X,), and so on.

TABLE 9.2 SSE,, R, R? ,, C,, AIC,, SBC,, and PRESS,, Values for All Possible Regression

Models—Surgical Unit Exa;flple.

m 2 3) @ &) (6) @) 3
p SSE, R2 RZ, Cp Aic, SBC, PRESS ,
1 - 12.808 0.000 0.000 151.498 —75.703 —73.714  13.296
2 12,031 0.061 0.043 141.164 —77.079 -73.101  13.512
2 9.979 0221 0.206 108.556 —87.178 ~83.200 10.744
2 7332 0428 0417 66489 ~—103.827  —99.849  8.327
2 7409 0.422 0410 67.715  —103.262 —99.284 8,025
3 9.443  0.263 0.234  102.031 —88.162 —82.195  11.062
3 5781  0.549  0.531 43.852 —114.658 —108.691 6.988
3 7299 0430 0408 ¢ 67.972 —102.067 —96.100 8.472
3 4312  0.663 +0.650 20.520 —130.483 —124.516 5.065
3 6.622 0483 0.463 57.215, —107.324 —101.357 7476
3 5130 0.599 0.584 33.504 —121.113  —115.146 6.121
4 3.109  0.757  0.743. 3391 146461  —138.205 3.914
4 6.570  0.487  0.456 58.392 —105.748 —97.792 7.903
4 4968 0.612 0589 ° 32932 —120.844 —112.888 6.207
4 3.614 0718  0.701 11.424 —138.023  —130.067 4,597
5 3.084 0759 0.740 5000 —144.590 —134.645 4.069
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In most circumstances, it will be impossible for an analyst to make adetailed examinatjoy
of all possible regression models. For instance, when there are 10 potential X varjapleg in
the pool. there would be 2 = 1,024 possible regression models. With the availability (¢
high-speed computers and efficient algorithms, running all possible regression modelg for
10 potential X variables is not time consuming. Still, the sheer volume of 1,024 alternagyy,
models to examine carefully would be an overwhelming task for a data analyst.

Model selection procedures, also known as subset selection or variables selection proce.
dures, have been developed to identify a small group of regression models that are “gogg
according to a specified criterion. A detailed examination can then be made of a limiteg
number of the more promising or “candidate” models, leading to the selection of the fing
regression model to be employed. This limited number might consist of three to six “good”
subsets according to the criteria specified, so the investigator can then carefully study thege
regression models for choosing the final model.

While many criteria for comparing the regression models have been developed, we wil
focus on six: R, R2 . C,, AIC,, SBC,, and PRESS,. Before doing so, we will need t
develop some notation. We shall denote the number of potential X variables in the pool by
P — 1. We assume throughout this chapter that all regression models contain an intercept
term fy. Hence, the regression function containing all potential X variables contains P
parameters, and the function with no X variables contains one parameter ().

The number of X variables in a subset will be denoted by p — 1, as always, so that there
are p parameters in the regression function for this subset of X variables. Thus, we have:

l<p<P ©.1)

We will assume that the number of observations exceeds the maximum number of
potential parameters:

n>PFP 9.2

and, indeed, it is highly desirable that 2 be substantially larg