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Preface 

vi 

Linear statistical models for regression, analysis of variance, and experimental design are 
widely used today in business administration, economics, engineering, and the social, health, 
and biological sciences. Successful applications of these models require a sound understand­
ing of both the underlying theory and the practical problems that are encountered in using 
the models in real-life situations. While Applied linear Statistical Models, Fifth Edition, is 
basically an applied book, it seeks to blend theory and applications effectively, avoiding the 
extremes of presenting theory in isolation and of giving elements of applications without 
the needed understanding of the theoretical foundations. 

The fifth edition differs from the fourth in a number of important respects. 

In the area of regression analysis (Parts I-III): 

1. We have reorganized the chapters for better clarity and flow of topics. Material from 
the old Chapter 15 on normal correlation models has been integrated throughout the 
text where appropriate. Much of the material is now found in an expanded Chapter 
2, which focuses on inference in regression analysis. Material from the old Chapter 7 
pertaining to polynomial and interaction regression models and from old Chapter 11 
on quantitative predictors has been integrated into a new Chapter 8 called, "Models 
for Quantitative and Qualitative Predictors." Material on model validation from old 
Chapter lOis now fully integrated with updated material on model selection in a new 
Chapter 9 entitled, "Building the Regression Model I: Model Selection and Validation." 

2. We have added material on important techniques for data mining, including regression 
trees and neural network models in Chapters 11 and 13, respectively. 

3. The chapter on logistic regression (Chapter 14) has been extensively revised and 
expanded to include a more thorough treatment of logistic, probit, and complemen­
tary log-log models, logistic regression residuals, model selection, model assessment, 
logistic regression diagnostics, and goodness of fit tests. We have also developed new 
material on polytomous (multicategory) nominal logistic regression models and poly­
tomous ordinal logistic regression models. 

4. We have expanded the discussion of model selection methods and criteria. The Akaike 
information criterion and Schwarz Bayesian criterion have been added, and a greater 
emphasis is placed on the use of cross-validation for model selection and validation. 

In the areas pertaining to the design and analysis of experimental and observational studies 
(Parts IV-VI): 

5. In the previous edition, Chapters 16 through 25 emphasized the analysis of variance, 
and the design of experiments was not encountered formally until Chapter 26. We 
have completely reorganized Parts IV-VI, emphasizing the design of experimental and 
observational studies from the start. In a new Chapter 15, we provide an overview of 
the basic concepts and planning approaches used in the design of experimental and 
observational studies, drawing in part from material from old Chapters 16, 26, and 
27. Fundamental concepts of experimental design, including the basic types of factors, 
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treatments, experimental units, randomization, and blocking are described in detail. 
This is followed by an overview of standard experimental designs, as well as the basic 
types of observational studies, including cross-sectional, retrospective, and prospective 
studies. Each of the design topics introduced in Chapter 15 is then covered in greater 
detail in the chapters that follow. We emphasize the importance of good statistical 
design of scientific studies, and make the point that proper design often leads to a 
simple analYSIS. We note that the statistical analysis techniques used for observational 
and experimental studies are often the same, but the ability to "prove" cause-and-effect 
requires a carefully designed experimental study. 

6. Previously, the planning of sample sizes was covered -in Chapter 26. We now present 
material on planning of sample sizes in the relevant chapter, rather than devoting a 
single, general discussion to this issue. 

7. We have expanded and updated our coverage (Section 24.2) on the interpretation of 
interaction plots for multi-factor studies. 

8. We have reorganized and expanded the material on repeated measures designs in Chap­
ter 27. In particular, we introduce methods for handling the analysis of factor effects 
when interactions between subjects and treatments are important, and when interactions 
between factors are important. 

9. We have added material on the design and analysis of balanced incomplete block 
experiments in Section 28.1, including the planning of sample sizes. A new appendix 
(B.15) has been added that provides standard balanced incomplete block designs. 

10. We have added new material on robust product and process design experiments in 
Chapter 29, and illustrate its use with a case study from the automotive industry. These 
experiments are frequently used in industrial studies to identify product or process 
designs that exhibit low levels of variation. 

The remaining changes pertain to both regression analysis (Parts I-III) and the design and 
analysis of experimental and observational studies (Parts IV-VI): 

11. We have made extensive revisions to the problem material. Problem data sets are 
generally larger and more challenging, and we have included a large number of new 
case data sets in Appendix C. In addition, we have added a new category of chapter 
exercises, called Case Studies. These are open-ended problems that require students, 
given an overall objective, to carry out complete analyses of the various case data sets in 
Appendix C. They are distinct from the material in the Problems and Projects sections, 
which frequently ask students to simply carry out specific .analytical procedures. 

12. We have substantially expanded the amount of graphic presentation, including much 
greater use of scatter plot matrices, three-dimensional rotating plots, three-dimensional 
response surface and contour plots, conditional effects plots, and main effects and 
interaction plots. 

13. Throughout the text, we have made extensive revisions in the exposition on the basis 
of classroom experience to improve the clarity of the presentation. 

We have included in this book not only the more conventional topics in regression and 
design, but also topics that are frequently slighted, though important in practice. We devote 
three chapters (Chapters 9-11) to the model-building process for regression, including 
computer-assisted selection procedures for identifying good subsets of predictor variables 
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The Student Solutions Manual and all of the data files on the compact disk can also be 
downloaded from the book's website at: www.mhhe.com/kutnerALSM5e.Alist of errata 
for the book as well as some useful, related links will also be maintained at this address. 

A book such as this cannot be written without substantial assistance from numerous 
persons. We are indebted to the many contributors who have developed the theory and 
practice discussed in this book. We also would like to acknowledge appreciation to our stu­
dents, who helped us in a variety of ways to fashion the method of presentation contained 
herein. We are grateful to the many users of Applied Linear Statistical Models and Applied 
Linear Regression Models, who have provided us with comments and suggestions based 
on their teaching with these texts. We are also indebted to Professors James E. Holstein, 
University of Missouri, and David L. Sherry, University of West Florida, for their review of 
Applied Linear Statistical Models, First Edition; to Professors Samuel Kotz, University of 
Maryland at College Park, Ralph P. Russo, University ofIowa, and Peter F. Thall, The George 
Washington University, for theirreview of Applied Linear Regression Models, First Edition; 
to Professors John S. Y Chiu, University of Washington, James A. Calvin, University of 
Iowa, and Michael F. Driscoll, Arizona State University, for their review of Applied Linear 
Statistical Models, Second Edition; to Professor Richard Anderson-Sprecher, University 
of Wyoming, for his review of Applied Linear Regression Models, Second Edition; and to 
Professors Alexander von Eye, The Pennsylvania State University, Samuel Kotz, University 
of Maryland at College Park, and John B. Willett, Harvard University, for their review of 
Applied Linear Statistical Models, Third Edition; to Professors Jason Abrevaya, Univer­
sity of Chicago, Frank Alt, University of Maryland, Vitoria Chen, Georgia Tech, Rebecca 
Doerge, Purdue University, Mark Henry, Clemson University, Jim Hobert, University of 
Florida, Ken Koehler, Iowa State University, Chii-Dean Lin, University of Massachussets 
Amherst, Mark Reiser, Arizona State University, Lawrence Ries, University of Missouri 
Columbia, and Ehsan Soofi, University of Wisconsin Milwaukee, for their reviews of 
Applied Linear Regression Models, Third Edition, or Applied Linear Statistical Models, 
Fourth Edition. These reviews provided many important suggestions, for which we are 
most grateful. 

In addition, valuable assistance was provided by Professors Richard K. Burdick, 
Arizona State University, R. Dennis Cook, University of Minnesota. W. J. Conover, Texas 
Tech University, Mark E. Johnson, University of Central Florida. Dick DeVeaux, Williams 
College, and by Drs. Richard I. Beckman, Los Alamos National Laboratory, Ronald L. 
Iman, Sandia National Laboratories, Lexin Li, University of California Davis, and Brad 
Jones, SAS Institute. We are most appreciative of their willing help. We are also indebted 
to the 88 participants in a survey concerning Applied Linear Regression Models, Second 
Edition, the 76 participants in a survey concerning Applied Linear Statistical Models, Third 
Edition, and the 73 participants in a survey concerning Applied Linear Regression Models, 
Third Edition, or Applied Linear Statistical Models, Fourth Edition. Helpful suggestions 
were received in these surveys, for which we are thankful. 

Weiyong Zhang and Vincent Agboto assisted us diligently in the development of new 
problem material, and Lexin Li and Yingwen Dong helped prepare the revised Instructor 
Solutions Manual and Student Solutions Manual under considerable time pressure. Amy 
Hendrickson provided much-needed LaTeX expertise. George Cotsonis assisted us dili­
gently in preparing computer-generated plots and in checking analysis results. We are most 
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grateful to these persons for their invaluable help and assistance. We also wish to thank 
the various members of the Carlson Executive MBA Program classes of 2003 and 2004; 
notably Mike Ohmes, Trevor Bynum, Baxter Stephenson, Zakir Salyani, Sanders Marvin, 
Trent Spurgeon, Nate Ogzawalla, David Mott, Preston McKenzie, Bruce Dejong, and TIm 
Kensok, for their contributions of interesting and relevant case study data and materials. 

Finally, our families bore patiently the pressures caused by our commitment to complete 
this revision. We are appreciative of their understanding. 

Michael H. Kutner 

Christopher J. Nachtsheim 

John Neter 

Williamli 
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Chapter 

Linear Regression with One 
Predictor Variable 

Regression analysis is a statistical methodology that utilizes the relation between two or 
more quantitative variables so that a response or outcome variable can be predicted from 
the other, or others. This methodology is widely used in business, the social and behavioral 
sciences, the biological sciences, and many other disciplines. A few examples of applications 
are: 

1. Sales of a product can be predicted by utilizing the relationship between sales and amount 
of advertising expenditures. 

2 The performance of an employee on a job can be predicted by utilizing the relationship 
between performance and a battery of aptitude tests. 

3. The size of the vocabulary of a child can be predicted by utilizing the relationship 
between size of vocabulary and age of the child and amount of education of the parents. 

4. The length of hospital stay of a surgical patient can be predicted by utilizing the rela­
tionship between the time in the hospital and the severity of the operation. 

In Part I we take up regression analysis when a single predictor variable is used for 
predicting the response or outcome variable of interest. In Parts II and III, we consider 
regression analysis when two or more variables are used for making predictions. In this 
chapter, we consider the basic ideas of regression analysis and discuss the estimation of the 
parameters of regression models containing a single predictor variable. 

1.1 Relations between Variables 

The concept of a relation between two variables, such as between family income and family 
expenditures for housing, is a familiar one. We distinguish between afunctional relation 
and a statistical relation, and consider each of these in tum. 

Functional Relation between Two Variables 
A functional relation between two variables is expressed by a mathematical formula. If X 

2 
denotes the independent variable and Y the dependent variable, a functional relation is 



FIGURE 1.1 
Example of 
Functional 
Relation. 

Example 

V) 
(]J 

y 

300 

a 200 
.... 
~ 
o 
o 

100 

ofthefonn: 

50 100 

Units Sold 

Chapter 1 Linear Regression with One Predictor Variable 3 

150 X 

Y = f(X) 

Given a particular value of X, the function f indicates the corresponding value of Y. 

Consider the relation between doUar sales (Y) of a product sold at a fixed price and number 
of units sold (X). If the selling price is $2 per unit, the relation is expressed by the equation: 

Y=2X 

This functional relation is shown in Figure 1.1. Number of units sold and dollar sales during 
three recent periods (while the unit price remained constant at $2) were as follows: 

Number of Dollar 
Period Units Sold Sales 

1 75 $150 
2 25 50 
3 130 260 

These observations are plotted also in Figure 1.1. Note that aU faU directly on the line of 
functional relationship. This is characteristic of aU functional relations. 

Statistical Relation between Two Variables 

Example 1 

A statistical relation, unlike a functional relation, is not a perfect one. In general, the 
observations for a statistical relation do not faU directly on-the curve of relationship. 

Perfonnance evaluations for 10 employees were obtained at midyear and at year-end. 
These data are plotted in Figure 1.2a. Year-end evaluations are taken as the dependent or 
response variable Y, and midyear evaluations as the independent, explanatory, or predictor 
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FIGURE 1.2 Statistical Relation between Midyear Perfonnance Evaluation and Year·End Evaluation. 
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variable X. The plotting is done as before. For instance, the midyear and year-end perfor­
mance evaluations for the first employee are plotted at X = 90, Y = 94. 

Figure l.2a clearly suggests that there is a relation between midyear and year-end evalua­
tions, in the sense that the higher the midyear evaluation, the higher tends to be the year-end 
evaluation. However, the relation is not a perfect one. There is a scattering of points, sug­
gesting that some of the variation in year-end evaluations is not accounted for by midyear 
performance assessments. For instance, two employees had midyear evaluations of X = 80, 
yet they received somewhat different year-end evaluations. Because of the scattering of 
points in a statistical relation, Figure 1.2a is called a scatter diagram or scatter plot. In 
statistical terminology, each point in the scatter diagram represents a trial or a case. 

In Figure 1.2b, we have plotted a line of relationship that describes the statistical relation 
between midyear and year-end evaluations. It indicates the general tendency by which year­
end evaluations vary with the level of midyear performance evaluation. Note that most of 
the points do not fall directly on the line of statistical relationship. This scattering of points 
around the line represents variation in year-end evaluations that is not associated with 
midyear performance evaluation and that is usually considered to be of a random nature. 
Statistical relations can be highly useful, even though they do not have the exactitude of a 
functional relation. 

Figure 1.3 presents data on age and level of a steroid in plasma for 27 healthy females 
between 8 and 25 years old. The data strongly suggest that the statistical relationship is 
curvilinear (not linear). The curve of relationship has also been drawn in Figure 1.3. It 
implies that, as age increases, steroid level increases up to a point and then begins to level 
off. Note again the scattering of points around the curve of statistical relationship, typical 
of all statistical relations. 
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FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in,Healthy Females Aged 8 to 25. 
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1.2 Regression Models and Their Uses 

Historical Origins 
Regression analysis was first developed by Sir Francis Galton in the latter part of the 
19th century. Galton had studied the relation between heights of parents and children and 
noted that the heights of children of both tall and short parents appeared to "revert" or 
"regress" to the mean of the group. He considered this tendency to be a regression to 
"mediocrity." Galton developed a mathematical description of this regression tendency, the 
precursor of today's regression models. 

The term regression persists to this day to describe statistical relations betwe!!n variables. 

Basic Concepts 

Example 

A regression model is a formal means of expressing the two essential ingredients of a 
statistical relation: 

1. A tendency of the response variable Y to vary with the predictor variable X in a systematic 
fashion. 

2. A scattering of points around the curve of statistical relationship. 

These two characteristics are embodied in a regression model by postulating that: 

1. There is a probability disfiibution of Y for each level of X. 
2. The means of these probability distributions vary in some systematic fashion with X. 

Consider again the performance evaluation example in FiglU"e 1.2. The year-end evaluation Y 
is treated in a regression model as a random variable. For each level of midyear performance 
evaluation, there is postulated a probability distribution of Y. Figure 1.4 shows such a 
probability distribution for X = 90, which is the midyear evaluation for the first employee. 
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FIGURE 1.4 
Pictorial 
Representation 
of Regression 
Model. 
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The actual year-end evaluation of this employee, Y = 94, is then viewed as a random 
selection from this probability distribution. 

Figure 1.4 also shows probability distributions of Y for midyear evaluation levels X = 50 
and X = 70. Note that the means of the probability distributions have a systematic relation 
to the level of X. This systematic relationship is called the regression function of Y on X. 
The graph of the regression function is called the regression curve. Note that in Figure 1.4 
the regression function is slightly curvilinear. This would imply for our example that the in­
crease in the expected (mean) year-end evaluation with an increase in midyear performance 
evaluation is retarded at higher levels of midyear performance. 

Regression models may differ in the form of the regression function (linear, curvilinear), 
in the shape of the probability distributions of Y (symmetrical, skewed), and in other ways. 
Whatever the variation, the concept of a probability distribution of Y for any given X is the 
formal counterpart to the empirical scatter in a statistical relation. Similarly, the regression 
curve, which describes the relation between the means of the probability distributions 
of Y and the level of X, is the counterpart to the general tendency of Y to vary with X 
systematically in a statistical relation. 

Regression Models with More than One Predictor Variable. Regression models may 
contain more than one predictor variable. Three examples follow. 

1. In an efficiency study of 67 branch offices of a consumer finance chain, the response 
variable was direct operating cost for the year just ended. There were four predictor variables: 
average size of loan outstanding during the year, average number of loans outstanding, total 
number of new loan applications processed, and an index of office salaries. 

2. In a tractor purchase study, the response variable was volume (in horsepower) of 
tractor purchases in a sales territory of a farm equipment firm. There were nine predictor 
variables, including average age of tractors on farms in the territory, number of farms in the 
territory, and a quantity index of crop production in the territory. 

3. In a medical study of short children, the response variable was the peak plasma growth 
hormone level. There were 14 predictor variables, including age, gender, height, weight, 
and 10 skinfold measurements. 

The model features represented in Figure 1.4 must be extended into further dimensions 
when there is more than one predictor variable. With two predictor variables Xl and X2, 



Chapter 1 Linear Regression with One Predictor Variable 7 

for instance, a probability distribution of Y for each (X" X 2) combination is assumed 
by the regression model. The systematic relation between the means of these probability 
distributions and the predictor variables Xl and X2 is then given by a regression surface. 

Construction of Regression Models 
Selection of Predictor Variables. Since reality must be reduced to manageable propor­
tions whenever we construct models, only a limited number of explanatory or predictor 
variables can-or should-be included in a regression model for any situation of interest. 
A central problem in many exploratory studies is therefore that of choosing, for a regres­
sion model, a set of predictor variables that is "good" in some sense for the purposes of 
the analysis. A major consideration in making this choice is the extent to which a chosen 
variable contributes to reducing the remaining variation in Yafter allowance is made for 
the contributions of other predictor variables that have tentatively been included in the 
regression model. Other considerations include the importance of the variable ks a causal 
agent in the process under analysis; the degree to which observations on the variable can 
be obtained more accurately, or quickly, or economically than on competing variables; and 
the degree to which the variable can be controlled. In Chapter 9, we will discuss procedures 
and problems in choosing the predictor variables to be included in the regression model. 

Functional Form of Regression Relation. The choice of the functional form of the 
regression relation is tied to the choice of the predictor variables. Sometimes, relevant theory 
may indicate the appropriate functional form. Learning theory, for instance, may indicate 
that the regression function relating unit production cost to the number of previous times the 
item has been produced should have a specified shape with particular asymptotic properties. 

More frequently, however, the functional form of the regression relation is not known in 
advance and must be decided upon empirically once the data have been collected. Linear 
or quadratic regression functions are often used as satisfactory first approximations to 
regression functions of unknown nature. Indeed, these simple types of regression functions 
may be used even when theory provides the relevant functional form, notably when the 
known form is highly complex but can be reasonably approximated by a linear or quadratic 
regression function. Figure l.5a illustrates a case where the complex regression function 

FIG URE 1.5 Uses of Linear Regression Functions to Approximate Complex Regression 
Functions-Bold Line Is the True Regression Function and Dotted Line Is the Regression 
Approximation. 

(a) Linear Approximation (b) Piecewise Linear Approximation 
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may be reasonably approximated by a linear regression function. Figure l.5b provides an 
example where two linear regression functions may be used "piecewise" to approximate a 
complex regression function. 

Scope of Model. In formulating a regression model, we usually need to restrict the cov­
erage of the model to some interval or region of values of the predictor variable(s). The 
scope is determined either by the design of the investigation or by the range of data at hand. 
For instance, a company studying the effect of price on sales volume investigated six price 
levels, ranging from $4.95 to $6.95. Here, the scope of the model is limited to price levels 
ranging from near $5 to near $7. The shape of the regression function substantially outside 
this range would be in serious doubt because the investigation provided no evidence as to 
the nature of the statistical relation below $4.95 or above $6.95. 

Uses of Regression Analysis 
Regression analysis serves three major purposes: (I) description, (2) control, and (3) predic­
tion. These purposes are illustrated by the three examples cited earlier. The tractor purchase 
study served a descriptive purpose. In the study of branch office operating costs, the main 
purpose was administrative control; by developing a usable statistical relation between cost 
and the predictor variables, management was able to set cost standards for each branch office 
in the company chain. In the medical study of short children, the purpose was prediction. 
Clinicians were able to use the statistical relation to predict growth hormone deficiencies 
in short children by using simple measurements of the children. 

The several purposes of regression analysis frequently overlap in practice. The branch 
office example is a case in point. Knowledge of the relation between operating cost and 
characteristics of the branch office not only enabled management to set cost standards for 
each office but management could also predict costs, and at the end of the fiscal year it 
could compare the actual branch cost against the expected cost. 

Regression and Causality 
The existence of a statistical relation between the response variable Y and the explanatory or 
predictor variable X does not imply in any way that Y depends causally on X. No matter how 
strong is the statistical relation between X and Y, no cause-and-effect pattern is necessarily 
implied by the regression model. For example, data on size of vocabulary (X) and writing 
speed (Y) for a sample of young children aged 5-10 will show a positive regression relation. 
This relation does not imply, however, that an increase in vocabulary causes a faster writing 
speed. Here, other explanatory variables, such as age of the child and amount of education, 
affect both the vocabulary (X) and the writing speed (Y). Older children have a larger 
vocabulary and a faster writing speed. 

Even when a strong statistical relationship reflects causal conditions, the causal condi­
tions may act in the opposite direction, from Y to X. Consider, for instance, the calibration 
of a thermometer. Here, readings of the thermometer are taken at different known tempera­
tures, and the regression relation is studied so that the accuracy of predictions made by using 
the thermometer readings can be assessed. For this purpose, the thermometer reading is the 
predictor variable X, and the actual temperature is the response variable Y to be predicted. 
However, the causal pattern here does not go from X to Y, but in the opposite direction: the 
actual temperature (Y) affects the thermometer reading (X). 
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These examples demonstrate the need for care in drawing conclusions about causal 
relations from regression analysis. Regression analysis by itself provides no information 
about causal patterns and must be supplemented by additional analyses to obtain insights 
about causal relations. 

Use of Computers 
Because regression analysis often entails lengthy and tedious calculations, computers are 
usually utilized to perform the necessary calculations. Almost every statistics package for 
computers contains a regression component. While packages differ in many details, their 
basic regression output tends to be quite similar. 

Mter an initial explanation of required regression calculations, we shall rely on computer 
calculations for all subsequent examples. We illustrate computer output by presenting output 
and graphics from BMDP (Ref. 1.1), MINITAB (Ref. 1.2), SAS (Ref. 1.3), SPSS (Ref. 1.4), 
SYSTAT (Ref. 1.5), JMP (Ref. 1.6), S-Plus (Ref. 1.7), and MATLAB (Ref. 1.8);,. 

1.3 Simple Linear Regression Model with Distribution 
of Error Terms Unspecified 

Formal Statement of Model 
In Part I we consider a basic regression model where there is only one predictor variable 
and the regression function is linear. The model can be stated as follows: 

Y; = f30 + f31X; + 10; (1.1) 

where: 

Y; is the value of the response variable in the ith trial 

f30 and f31 are parameters 

X; is a known constant, namely, the value of the predictor variable in the ith trial 

10; is a random error term with mean E{Cd = 0 and variance u 2 {Cd = u 2 ; 10; and Cj are 
uncorrelated so that their covariance is zero (i.e., u{c;, Cj} = 0 for all i, j; i =1= j) 

i =_1, ... , n 

Regression model (1.1) is said to be simple, linear in the parameters, and linear in the 
predictor variable. It is "simple" in that there is only one predictor variable, "linear in the 
parameters," because no parameter appears as an exponent or is multiplied or divided by 
another parameter, and "linear in the predictor variable," because this variable appears only 
in the first power. A model that is linear in the parameters and in the predictor variabie is 
also called ajirst-order model. 

Important Features of Model 
1. The response Y; in the ith trial is the sum of two components: (1) the constant term 

f30 + f31 Xi and (2) the random term..c;. Hence, Yi is a rando...m variable. 

2. Since E{c;} = 0, it follows from (A.13c) in Appendix A that: 

E{Y;} = E{f3o + f31 X ; + cd = f30 + fhX; + E{Cd = f30 + f31X; 

Note that f30 + f31X; plays the role ofthe constant a in (A. 13c). 
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Example 

Thus, the response Vi, when the level of X in the ith trial is Xi, comes from a probability 
distribution whose mean is: 

(1.2) 

We therefore know that the regression function for model (1.1) is: 

(1.3) 

since the regression function relates the means of the probability distributions of Y for given 
X to the level of X. 

3. The response Yi in the ith trial exceeds or falls short of the value of the regression 
function by the error term amount Ci. 

4. The error terms Ci are assumed to have constant variance 0-2• It therefore follows that 
the responses Yi have the same constant variance: 

(1.4) 

since, using (A.I6a), we have: 

0-2{,80 + ,81 Xi + cd = 0-2{c;} = 0-2 

Thus, regression model (1.1) assumes that the probability distributions of Y have the same 
variance 0- 2, regardless of the level of the predictor variable X. 

5. The error terms are assumed to be uncorrelated. Since the error terms Ci and Cj are 
uncorrelated, so are the responses Yi and Yj • 

6. In summary, regression model (1.1) implies that the responses Yi come from proba­
bility distributions whose means are E{Y;} = ,80 + ,81Xi and whose variances are 0-2, the 
same for all levels of X. Further, any two responses Yi and Yj are uncorrelated. 

A consultant for an electrical distributor is studying the relationship between the number 
of bids requested by construction contractors for basic lighting equipment during a week 
and the time required to prepare the bids. Suppose that regression model (1.1) is applicable 
and is as follows: 

Yi = 9.5 + 2.IXi + Ci 

where X is the number of bids prepared in a week and Y is the number of hours required to 
prepare the bids. Figure 1.6 contains a presentation of the regression function: 

E{Y} = 9.5 + 2.IX 

Suppose that in the ith week, Xi = 45 bids are prepared and the actual number of hours 
required is Yi = 108. In that case, the error term value is Ci = 4, for we have 

E{Y;} = 9.5 + 2.1(45) = 104 

and 

Yi = 108 = 104 + 4 

Figure 1.6 displays the probability distribution of Y when X = 45 and indicates from 
where in this distribution the observation Yi = 108 came. Note again that the error term Ci 

is simply the deviation of Yi from its mean value E{Y;}. 



FIGURE 1.6 
Illustration of 
Simple Linear 
Regression 
Model (1.1). 

FIGURE 1.7 
Meaning of 
Parameters of 
Simple Linear 
Regression 
Model (l.l). 
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Figure 1.6 also shows the probability distribution of Y when X = 25. Note that this 
distribution exhibits the same variability as the probability distribution when X = 45, in 
conformance with the requirements of regression model (1.1). 

Meaning of Regression Parameters 

Example 

The parameters f30 and f3, in regression model (1.1) are called regression coefficients. f3, 
is the slope of the regression line. It indicates the change in the mean of the probability 
distribution of Y per unit increase in X. The parameter f30 is the Y intercept of the regression 
line. When the scope of the model includes X = 0, f30 gives the mean of the probability 
distribution of Y at X = O. When the scope of the model does not cover X = 0, f30 does 
not have any particular meaning as a s~parate term in the regression model. 

Figure 1.7 shows the regression function: 

E{Y} = 9.5 + 2.1X 

for the electrical distributor example. The slope f3, = 2.1 i-ndicates that the preparation of 
one additional bid in a week leads to an increase in the mean of the probability distribution 
of Y of 2. I hours. 

The intercept f30 = 9.5 indicates the value of the regression function at X = O. However, 
since the linear regression model was formulated to apply to weeks where the number of 



12 Part One Simple Linear Regression 

bids prepared ranges from 20 to 80, f30 does not have any intrinsic meaning of its own 
here. If the scope of the model were to be extended to X levels near zero, a model with 
a curvilinear regression function and some value of f30 different from that for the linear 
regression function might well be required. 

Alternative Versions of Regression Model 
Sometimes it is convenient to write the simple linear regression model (1.1) in somewhat 
different, though equivalent, forms. Let Xo be a constant identically equal to 1. Then, we 
can write (1.1) as follows: 

Y; = f3oXo + f3, X; + 8i where Xo == 1 (1.5) 

This version of the model associates an X variable with each regression coefficient. 
An alternative modification is to use for the predictor variable the deviation Xi - X 

rather than Xi. To leave model (1.1) unchanged, we need to write: 

Ii = f30 + f3, (X; - X) + f3,X + 8; 

= (f3o + f3,X) + f3, (X; - X) + 8i 

= f3~ + f31(Xi - X) + 8; 

Thus, this alternative model version is: 

Yi = f3~ + f3,(Xi - X) + 8; 

where: 

f3~ = f30 + f3,X 

We use models (1.1), (1.5), and (1.6) interchangeably as convenience dictates. 

1.4 Data for Regression Analysis 

(1.6) 

(1.6a) 

Ordinarily, we do not know the values of the regression parameters f30 and f3, in regression 
model (1.1), and we need to estimate them from relevant data. Indeed, as we noted earlier, we 
frequently do not have adequate a priori knowledge of the appropriate predictor variables 
and of the functional form of the regression relation (e.g., linear or curvilinear), and we 
need to rely on an analysis of the data for developing a suitable regression model. 

Data for regression analysis may be obtained from nonexperimental or experimental 
studies. We consider each of these in tum. 

Observational Data 
Observational data are data obtained from nonexperimental studies. Such studies do not 
control the explanatory or predictor variable(s) of interest. For example, company officials 
wished to study the relation between age of employee (X) and number of days of illness 
last year (Y). The needed data for use in the regression analysis were obtained from per­
sonnel records. Such data are observational data since the explanatory variable, age, is not 
controlled. 

Regression analyses are frequently based on observational data, since often it is not 
feasible to conduct controlled experimentation. In the company personnel example just 
mentioned, for instance, it would not be possible to control age by assigning ages to persons. 
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A major limitation of observational data is that they often do not provide adequate infor­
mation about cause-and-effect relationships. For example, a positive relation between age of 
employee and number of days of illness in the company personnel example may not imply 
that number of days of illness is the direct result of age. It might be that younger employees 
of the company primarily work indoors while older employees usually work outdoors, and 
that work location is more directly responsible for the number of days of illness than age. 

Whenever a regression analysis is undertaken for purposes of description based on ob­
servational data, one should investigate whether explanatory variables other than those con­
sidered in the regression model might more directly explain cause-and-effect relationships. 

Experimental Data 
Frequently, it is possible to conduct a controlled experiment to provide data from which the 
regression parameters can be estimated. Consider, for instance, an insurance company that 
wishes to study the relation between productivity of its analysts in processing )(laims and 
length of training. Nine analysts are to be used in the study. Three of them will be selected 
at random and trained for two weeks, three for three weeks, and three for five weeks. 
The productivity ofthe analysts during the next 10 weeks will then be observed. The data 
so obtained will be experimental data because control is exercised over the explanatory 
variable, length of training. 

When control over the explanatory variable( s) is exercised through random assignments, 
as in the productivity study example, the resulting experimental data provide much stronger 
information about cause-and-effect relationships than do observational data. The reason is 
that randomization tends to balance out the effects of any other variables that might affect 
the response variable, such as the effect of aptitude of the employee on productivity. 

In the terminology of experimental design, the length of training assigned to an analyst in 
the productivity study example is called a treatment. The analysts to be included in the study 
are called the experimental units. Control over the explanatory variable(s) then consists of 
assigning a treatment to each of the experimental units by means of randomization. 

Completely Randomized Design 
The most basic type of statistical design for making randomized assignments of treatments to 
experimental units (or vice versa) is the completely randomized design. With this design, the 
assignments are made completely at random. This complete randomization provides that all 
combinations of experimental units assigned to the different treatments are equally likely, 
which implies that every experimental unit has an equal chance to receive anyone of the 
treatments. 

A completely randomized design is particularly useful when the experimental units are 
quite homogeneous. This design is veI); flexible; it accommodates any number of treatments 
and permits different sample~izes for different treatments. Its chief disadvantage is that, 
when the experimental units are heterogeneous, this design is not as efficient as some other 
statistical designs. 

1.5 Overview of Steps in Regression Analysis 

The regression models considered in this and subsequent chapters can be utilized either 
for observational data or for experimental data from a completely randomized design. 
(Regression analysis can also utilize data from other types of experimental designs, but 



14 Part One Simple Linear Regression 

FIGURE 1.8 
Typical 
Strategy for 
Regression 
Analysis. 

the regression models presented here will need to be modified.) Whether the data are 
observational or experimental, it is essential that the conditions of the regression model be 
appropriate for the data at hand for the model to be applicable. 

We begin our discussion of regression analysis by considering inferences about the re­
gression parameters for the simple linear regression model (1.1). For the rare occasion 
where prior knowledge or theory alone enables us to determine the appropriate regression 
model. inferences based on the regression model are the first step in the regression analysis. 
In the usual situation, however, where we do not have adequate knowledge to specify the 
appropriate regression model in advance, the first step is an exploratory study of the data, 
as shown in the flowchart in Figure 1.8. On the basis of this initial exploratory analysis, 
one or more preliminary regression models are developed. These regression models are 
then examined for their appropriateness for the data at hand and revised, or new models 
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are developed, until the investigator is satisfied with the suitability of a particular regres­
sion model. Only then are inferences made on the basis of this regression model, such as 
inferences about the regression parameters of the model or predictions of new observations. 

We begin, for pedagogic reasons, with inferences based on the regression model that is 
finally considered to be appropriate. One must have an understanding of regression models 
and how they can be utilized before the issues invol ved in the development of an appropriate 
regression model can be fully explained. 

1.6 Estimation of Regression Function 

Example 

The observational or experimental data to be used for estimating the parameters of the 
regression function consist of observations on the explanatory or predictor variable X and 
the corresponding observations on the response variable Y. For each trial, there is an X 
observation and a Y observation. We denote the (X, Y) observations for the t\rst trial as 
(X" YI), for the second trial as (X2, Y2), and in general for the ith trial as (Xi, Vi), where 
i = 1, ... ,n. 

In a small-scale study of persistence, an experimenter gave three subjects a very difficult 
task. Data on the age of the subject (X) and on the number of attempts to accomplish the 
task before giving up (Y) follow: 

Subject i: 

Age Xi: 
Number of attempts Yi: 

1 

20 
5 

2 

55 
12 

3 

30 
10 

In terms of the notation to be employed, there were n = 3 subjects in this study, the 
observations for the first subject were (X" YI ) = (20, 5), and similarly for the other 
subjects. 

Method of least -Squares 
To find "good" estimators of the regression parameters f30 and f31, we employ the method 
of least squares. For the observations (Xi> Vi) for each case, the method of least squares 
considers the deviation of Yi from its expected value: 

(1.7) 

In particular, the method of least squares requires that we consider the sum of the n squared 
deviations. This criterion is denoted by Q: 

n 

Q ~ :L(Yi - f30 - f3IXi)~ (1.8) 
i=1 

According to the method of least squares, the estimators of f30 and f31 are those values 
bo and b" respectively, that minimize the criterion Q for the given sample observations 
(X" YI), (X2, Y2), ... , (X,,, Yn). 
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FIG URE 1.9 IUustration of Least Squares Criterion Q for Fit of a Regression Line-Persistence Study 
Example. 
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Figure 1.9a presents the scatter plot of the data for the persistence study example and the 
regression line that results when we use the mean of the responses (9.0) as the predictor 
and ignore X: 

Y = 9.0 + O(X) 

Note that this regression line uses estimates bo = 9.0 and bl = 0, and that Y denotes 
the ordinate of the estimated regression line. Clearly, this regression line is not a good 
fit, as evidenced by the large vertical deviations of two of the Y observations from the 
corresponding ordinates Y of the regression line. The deviation for the first subject, for 
which (X" YI ) = (20,5), is: 

YI - (bo + bIXI ) = 5 - [9.0 + 0(20)] = 5 - 9.0 = -4 

The sum of the squared deviations for the three cases is: 

Q = (5 - 9.0)2 + (12 - 9.0)2 + (10 - 9.0)2 = 26.0 

Figure 1.9b shows the same data with the regression line: 

Y = 2.81 + .177X 

The fit of this regression line is clearly much better. The vertical deviation for the first case 
now is: 

YI - (bo + bIXI) = 5 - [2.81 + .177(20)] = 5 - 6.35 = -1.35 

and the criterion Q is much reduced: 

Q = (5 - 6.35)2 + (12 - 12.55)2 + (10 - 8.12)2 = 5.7 

Thus, a better fit of the regression line to the data corresponds to a smaller sum Q. 
The objective of the method of least squares is to find estimates bo and bl for f30 and f31, 

respectively, for which Q is a minimum. In a certain sense, to be discussed shortly, these 
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estimates will provide a "good" fit of the linear regression function. The regression line in 
Figure 1.9b is, in fact, the least squares regression line. 

Least Squares Estimators. The estimators bo and bl that satisfy the least squares criterion 
can be found in two basic ways: 

1. Numerical search procedures can be used that evaluate in a systematic fashion the least 
squares criterion Q for different estimates bo and bl until the ones that minimize Q are 
found. This approach was illustrated in Figure 1.9 for the persistence study example. 

2. Analytical procedures can often be used to find the values of bo and bl that minimize 
Q. The analytical approach is feasible when the regression model is not mathematically 
complex. 

Using the analytical approach, it can be shown forregression model (1.1) that the values 
bo and bl that minimize Q for any particular set of sample data are given by the following 
., ~ 
simultaneous equatIOns: 

2: Yi = nbo + b l 2: Xi 

2: Xi Yi = bo 2: Xi + b l 2: xi 
(1.9a) 

(1.9b) 

Equations (1.9a) and (1.9b) are called normal equations; bo and b l are called point esti­
mators of f30 and f31, respectively. 

The normal equations (1.9) can be solved simultaneously for bo and bl : 

b _ L:(Xi - X)(Yi - Y) 
1- L:(X; _ X)2 (l.lOa) 

bo = ~ (2: Yi - b l 2: Xi) = Y - b l X (l.lOb) 

where X and Y are the means of the Xi and the Yi observations, respectively. Computer 
calculations generally are based on many digits to obtain accurate values for bo and bl • 

Comment 

The normal equations (1.9) can be derived by calculus. For given sample observations (Xi, Yi), the 
quantity Q in (1.8) is a function of f30 and f3,. The values of f30 and f3, that minimize Q can tie derived 
by differentiating (1.8) with respect to f30 and f3,. We obtain: 

We then set these partial derivatives equal to zero, using bo and b I to denote the particular values of 
f30 and f3, that minimize Q: 

-22:(y; - bo - bIXi) = 0 

-22: Xi(Yi - bo - b,Xi ) = 0 
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Simplifying, we obtain: 

Expanding, we have: 

" 
2:(Yi - bo - b,Xi) = 0 
;=1 

" 2: Xi(Yi - bo - b,Xi) = 0 
;=1 

2: Y; - nbo - b, 2: Xi = 0 

2: X ;Y; - bo 2: X; - b, 2: X; = 0 

from which the normal equations (1.9) are obtained by rearranging terms. 
A test of the second partial derivatives will show that a minimum is obtained with the least squares 

estimators bo and b l • • 

Properties of Least Squares Estimators. An important theorem, called the Gauss­
Markov theorem, states: 

Under the conditions of regression model (1.1), the least squares 
estimators bo and bl in (1.10) are unbiased and have minimum 
variance among all unbiased linear estimators. 

(1.11) 

This theorem, proven in the next chapter, states first that bo and bl are unbiased estimators. 
Hence: 

E{bo} = f30 E{br} = f31 

so that neither estimator tends to overestimate or underestimate systematically. 
Second, the theorem states that the estimators bo and bl are more precise (i.e., their 

sampling distributions are less variable) than any other estimators belonging to the class of 
unbiased estimators that are linear functions of the observations YI , ••• , Y". The estimators 
bo and bl are such linear functions of the Yi • Consider, for instance, bl • We have from (1.1Oa): 

b _ L:(Xi - X)(Yi - Y) 
1- L:(Xi _X)2 

It will be shown in Chapter 2 that this expression is equal to: 

where: 

Since the ki are known constants (because the Xi are known constants), b l is a linear 
combination of the Yi and hence is a linear estimator. 
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In the same fashion, it can be shown that bo is a linear estimator. Among all linear 
estimators that are unbiased then, bo and bl have the smallest variability in repeated samples 
in which the X levels remain unchanged. 

The Toluca Company manufactures refrigeration equipment as well as many replacement 
parts. In the past, one of the replacement parts has been produced periodically in lots of 
varying sizes. When a cost improvement program was undertaken, company officials wished 
to determine the optimum lot size for producing this part. The production of this part involves 
setting up the production process (which must be done no matter what is the lot size) and 
machining and assembly operations. One key input for the model to ascertain the optimum 
lot size was the relationship between lot size and labor hours required to produce the lot 
To determine this relationship, data on lot size and work hours for 25 recent production 
runs were utilized. The production conditions were stable during the six-month period in 
which the 25 runs were made and were expected to continue to be the same during the 
next three years, the planning period for which the cost improvement prograrrr.,was being 
conducted. 

Table 1.1 contains a portion of the data on lot size and work hours in columns 1 and 
2. Note that all lot sizes are multiples of 10, a result of company policy to facilitate the 
administration of the parts production. Figure 1.1Oa shows a SYSTAT scatter plot of the 
data. We see that the lot sizes ranged from 20 to 120 units and that none of the production 
runs was outlying in the sense of being either unusually small or large. The scatter plot also 
indicates that the relationship between lot size and work hours is reasonably linear. We also 
see that no observations on work hours are unusually small or large, with reference to the 
relationship between lot size and work hours. 

To calculate the least squares estimates bo and bl in (1.10), we require the deviations 
Xi - X and Yi - Y. These are given in columns 3 and 4 of Table 1.1. We also require 
the cross-product terms (Xi - X)(Yi - Y) and the squared deviations (Xi - X)2; these 
are shown in columns 5 and 6. The squared deviations (Yi - y)2 in column 7 are for 
later use. 

Data on Lot Size and Work Hours and Needed Calculations for Least Squares Estimates-Toluca 
Company Example. 

(1) (2) (3) (4) (5) (6) P) 
lot Work 

Run Size Hours 
Xj Yj Xj-X Y;-f (X j - X)(Y; - Y) (Xj - X)2 (Y; _ y)2 

1 80 399 10 .86.72 867.2 100 7,520.4 
2 30 121 -40 -191.28 7,651.2 1,600 36,588.0 
3 50 221 -20 - -91.28 1,825.6 400 8;332.0 

23 40 244 -30 -68.28 2,048.4 900 4,662.2 
24 80 342 10 29.72 297:2 100 883.3 
25· 70 323 0 10.72 0.0 0 114.9 

Total 1,750 7,807 0 0 70,690 19,800 307,203 
Mean 70.0 312.28 
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FIGURE 1.10 
SYSTAT 
Scatter Plot 
and Fitted 
Regression 
Line-Toluca 
Company 
Example. 

FIGURE 1.11 
Portion of 
MINITAB 
Regression 
Output-
Toluca 
Company 
Example. 
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The regression equation is 
y ~ 62.4 + 3.57 X 

Predictor Coef 
Constant 62.37 
X 3.5702 

-

150 

Stdev 
26.18 

0.3470 
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~ 
15 300 
:r: 

0 

t-ratio 
2.38 

10.29 

(b) Fitted Regression Line 

50 100 
Lot Size 

p 
0.026 
0.000 

s ~ 48.82 R-sq ~ 82.2% R-sq(adj) ~ 81.4% 

150 

We see from Table 1.1 that the basic quantities needed to calculate the least squares 
estimates are as follows: 

2::(Xi - X)(Yi - Y) = 70,690 

'" - 2 L)Xi - X) = 19,800 

X = 70.0 

Y = 312.28 

Using (1.10) we obtain: 

L:(Xi - X)(Yi - Y) 70,690 
b l = L:(X

i 
_ X)2 = 19,800 = 3.5702 

bo = Y - blX = 312.28 - 3.5702(70.0) = 62.37 

Thus, we estimate that the mean number of work hours increases by 3.57 hours for each 
additional unit produced in the lot. This estimate applies to the range of lot sizes in the 
data from which the estimates were derived, namely to lot sizes ranging from about 20 to 
about 120. 

Figure 1.11 contains a portion of the MINITAB regression output for the Toluca Company 
example. The estimates bo and b l are shown in the column labeled Coef, corresponding to 
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the lines Constant and X, respectively. The additional infonnation shown in Figure 1.11 
will be explained later. 

point Estimation of Mean Response 

Example 

Estimated Regression Function. Given sample estimators bo and b l of the parameters 
in the regression function (1.3): 

E{Y} = f30 + f3IX 

we estimate the regression function as follows: 

V = bo+blX (1.12) 

where V (read Y hat) is the value of the estimated regression function at the level X of the 
predictor variable. 

We call a value of the response variable a response and E {Y} the mean respttnse. Thus, 
the mean response stands for the mean of the probability distribution of Y corresponding 
to the level X of the predictor variable. V then is a point estimator of the mean response 
when the level of the predictor variable is X. It can be shown as an extension of the Gauss­
Markov theorem (1.11) that V is an unbiased estimator of E {Y}, with minimum variance 
in the class of unbiased linear estimators. 

For the cases in the study, we will call Vi: 

i = 1, . .. ,n (1.13) 

thejitted value for the ith case. Thus, the fitted value Vi is to be viewed in distinction to the 
observed value Yi • 

For the Toluca Company example, we found that the least squares estimates of the regression 
coefficients are: 

bo = 62.37 bl = 3.5702 

Hence, the estimated regression function is: 

V = 62.37 + 3.5702X 

This estimated regression function is plotted in Figure 1.1Ob. It appears to be.a good 
description of the statistical relationship between lot size and work hours. 

To estimate the mean response for any level X of the predictor variable, we simply 
substitute that value of X in the estimated regression function. Suppose that we are interested 
in the mean number of work hours required when the lot size is X = 65; our point estimate is: 

I 

~ = 62.37 + 3.5702(65) = 294.4 

Thus, we estimate that the mean number of work hours required for production runs of 
X = 65 units is 294.4 hours. We !nterpret this to mean tlIat if many lots of 65 units are 
produced under the conditions of the 25 runs on which the estimated regression function is 
based, the mean labor time for these lots is about 294 hours. Of course, the labor time for 
anyone lot of size 65 is likely to fall above or below the mean response because of inherent 
variability in the production system, as represented by the error tenn in the model. 
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TABLE 1.2 
Fitted Values, 
Residuals, and 
Squared 
Residuals-
Toluca 
Company 
Example. 

Residuals 

Simple Linear Regression 

(1) (2) (3) (4) (5) 
Estimated 

lot Work Mean Squared 
Run Size Hours Response Residual Res~dual 

Xi Y; f; y;-f;=ei (Y; - f;)2 = if 
1 80 399 347.98 51.02 2,603.0 
2 30 121 169.47 -48.47 2,349.3 
3 50 221 240.88 -19.88 395.2 

23 40 244 205.17 38.83 1,507.8 
24 80 342 347.98 -5.98 35.8 
25 70 323 312.28 10.72 114.9 ---

Total 1,750 7,807 7,807 0 54,825 

Fitted values for the sample cases are obtained by substituting the appropriate X values 
into the estimated regression function. For the first sample case, we have X I = 80. Hence, 
the fitted value for the first case is: 

V I = 62.37 + 3.5702(80) = 347.98 

This compares with the observed work hours of YI = 399. Table 1.2 contains the observed 
and fitted values for a portion of the Toluca Company data in columns 2 and 3, respectively. 

Alternative Model (1.6). When the alternative regression model (1.6): 

Yi = f3~ + f31 (Xi - X) + 8i 

is to be utilized, the least squares estimator bl of f31 remains the same as before. The least 
squares estimator of f3~ = f30 + f3IX becomes, from (1.1Ob): 

b~ = bo + blX = CY - blX) + blX = Y 

Hence, the estimated regression function for alternative model (1.6) is: 

V = Y + bl(X - X) 

(1.14) 

(1.15) 

In the Toluca Company example, Y = 312.28 and X = 70.0 (Table 1.1). Hence, the 
estimated regression function in alternative form is: 

V = 312.28 + 3.5702(X -70.0) 

For the first lot in our example, Xl = 80; hence, we estimate the mean response to be: 

VI = 312.28 + 3.5702(80 -70.0) = 347.98 

which, of course, is identical to our earlier result. 

The ith residual is the difference between the observed value Yi and the corresponding fitted 
value Vi. This residual is denoted by ei and is defined in general as follows: 

(1.16) 
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For regression model (1.1), the residual ei becomes: 

ei = Yi - (bo + blXi) = Yi - bo - blXi (1.16a) 

The calculation of the residuals for the Toluca Company example is shown for a portion 
of the data in Table 1.2. We see that the residual for the first case is: 

el = YI - VI = 399 - 347.98 = 51.02 

The residuals for the first two cases are illustrated graphically in Figure 1.12. Note in 
this figure that the magnitude of a residual is represented by the vertical deviation of the Yi 

observation from the corresponding point on the estimated regression function (i.e., from 
the corresponding fitted value Vi). 

We need to distinguish between the model error term value 8i = Yi - E{Yd and the 
residual ei = Yi - Vi. The former involves the vertical deviation of Yi from the unknown 
true regression line and hence is unknown. On the other hand, the residual is the vertical 
deviation of Yi from the fitted value i\ on the estimated regression line, and it is known. 

Residuals are highly useful for studying whether a given regression model is appropriate 
for the data at hand. We discuss this use in Chapter 3. 

Properties of Fitted Regression line 
The estimated regression line (1.12) fitted by the method of least squares has a number of 
properties worth noting. These properties of the least squares estimated regression function 
do not apply to all regression models, as we shall see in Chapter 4. 

1. The sum of the residuals is zero: 
n 

(1.17) 

Table 1.2, column 4, illustrates this property for the Toluca~Company example. Rounding 
errors may, of course, be present in any particular case, resulting in a sum of the residuals 
that does not equal zero exactly. 

2. The sum of the squared residuals, L e~, is a minimum. lbis was the requirement to 
be satisfied in deriving the least squares estimators of the regression parameters since the 
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criterion Q in (1.8) to be minimized equals L e~ when the least squares estimators bo and 
bl are used for estimating f30 and f31. 

3. The sum of the observed values Y; equals the sum of the fitted values V;: 
1l 1l 

2:Y; = 2: V; (1.18) 
;=1 ;=1 

This property is illustrated in Table 1.2, columns 2 and 3, for the Toluca Company example. 
It follows that the mean of the fitted values V; is the same as the mean of the observed 
values Y;, namely, Y. 

4. The sum of the weighted residuals is zero when the residual in the ith trial is weighted 
by the level of the predictor variable in the ith trial: 

" 
(1.19) 

5. A consequence of properties (1.17) and (1.19) is that the sum ofthe weighted residuals 
is zero when the residual in the ith trial is weighted by the fitted value of the response variable 
for the ith trial: 

n 

(1.20) 
;=1 

6. The regression line always goes through the point eX, Y). 

Comment 

The six properties of the fitted regression line follow directly from the least squares normal equa­
tions (1.9). For example, property 1 in (1.17) is proven as follows: 

2: e; = 2:(Y;-bo-b,x;) = 2:Y;-nbo-bt 2: X; 

= 0 by the first normal equation (1.9a) 

Property 6, that the regression line always goes through the point eX, Y), can be demonstrated 
easily from the alternative form (1.15) of the estimated regression line. When X = X, we have: . 

• 
1.7 Estimation of Error Tenns Variance (J'2 

The variance a 2 of the error terms 8; in regression model (1.1) needs to be estimated to 
obtain an indication of the variability of the probability distributions of Y. In addition, as 
we shall see in the next chapter, a variety of inferences concerning the regression function 
and the prediction of Y require an estimate of a 2 • 

Point Estimator of 0-
2 

To lay the basis for developing an estimator of a 2 for regression model (1.1), we first 
consider the simpler problem of sampling from a single population. 

Single Population. We know that the variance a 2 of a single population is estimated by 
the sample variance s2. In obtaining the sample variance s2, we consider the deviation of 
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an observation Yi from the estimated mean Y, square it, and then sum an such squared 
deviations: 

n 

Such a sum is caned a sum of squares. The sum of squares is then divided by the degrees 
of freedom associated with it. This number is n - 1 here, because one degree of freedom is 
lost by using Y as an estimate of the unknown population mean f.1,. The resulting estimator 
is the usual sample variance: 

~ - 2 
2 ~i=l (Yi - Y) s =='-----'-----

n-l 

which is an unbiased estimator of the variance a 2 of an infinite population. The sample 
variance is often called a mean square, because a sum of squares has been divided by the 
appropriate number of degrees of freedom. }., 

Regression Model. The logic of developing an estimator of a 2 for the regression model is 
the same as for sampling from a single population. Recall in this connection from (1.4) that 
the variance of each observation Yi for regression model (1.1) is a 2 , the same as that of each 
error term 8i. We again need to calculate a sum of squared deviations, but must recognize 
that the Yi now come from different probability distributions with different means that 
depend upon the level Xi. Thus, the deviation of an observation Yi must be calculated 
around its own estimated mean Vi. Hence, the deviations are the residuals: 

Yi - Vi =ei 
and the appropriate sum of squares, denoted by SSE, is: 

n n 

(1.21) 
i=l i=l 

where SSE stands for error sum of squares or residual sum of squares. 
The sum of squares SSE has n - 2 degrees of freedom associated with it. Two degrees 

of freedom are lost because both f30 and f31 had to be estimated in obtaining the estimated 
means'· Vi. Hence, the appropriate mean square, denoted by MSE or s2, is: 

~ 2 
s2 = MSE = _S,_SE_ = =L=-(_1':_i -_Y_i)_ 

n-2 n-2 
Le~ 
n-2 

"(1.22) 

where MSE stands for error mean square or residual mean square. . 
It can be shown that MSE is an unbiased estimator of a 2 for regression model (1.1): 

E{MSE} = a 2 (1.23) 

An estimator of the standard deviation a is simply s = ,JMSE, the positive square root of 
MSE. 

We will calculate SSE for the Toluca Company example~by (1.21). The residuals were 
obtained earlier in Table 1.2, column 4. This table also shows the squared residuals in 
column 5. From these results, we obtain: 

SSE = 54,825 
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Since 25 - 2 = 23 degrees of freedom are associated with SSE, we find: 

s2 = MSE = 54,825 = 2,384 
23 

Finally, a point estimate of a, the standard deviation of the probability distribution of Y for 
any X, is s = ')2,384 = 48.8 hours. 

Consider again the case where the lot size is X = 65 units. We found earlier that the 
mean of the probability distribution of Y for this lot size is estimated to be 294.4 hours. 
Now, we have the additional information that the standard deviation of this distribution is 
estimated to be 48.8 hours. This estimate is shown in the MINITAB output in Figure 1.11, 
labeled as s. We see that the variation in work hours from lot to lot for lots of 65 units is 
quite substantial (49 hours) compared to the mean of the distribution (294 hours). 

1.8 Nonnal Error Regression Model 

Model 

No matter what may be the form of the distribution of the error terms 8; (and hence of the 
Vi), the least squares method provides unbiased point estimators of f30 and f3, that have 
minimum variance among all unbiased linear estimators. To set up interval estimates and 
make tests, however, we need to make an assumption about the form of the distribution of 
the 8;. The standard assumption is that the error terms 8; are normally distributed, and we 
will adopt it here. A normal error term greatly simplifies the theory of regression analysis 
and, as we shall explain shortly, is justifiable in many real-world situations where regression 
analysis is applied. 

The normal error regression model is as follows: 

Y; = f30 + f3,X; + 8; 

where: 

Y; is the observed response in the ith trial 

X; is a known constant, the level of the predictor variable in the ith trial 

f30 and f3, are parameters 

8; are independent N(O, a 2
) 

i = 1, ... ,n 

Comments 

1. The symbol N (0, a 2) stands for normally distributed, with mean 0 and variance a 2• 

(1.24) 

2. The normal error model (1.24) is the same as regression model (1.1) with unspecified error 
distribution, except that model (1.24) assumes that the errors 8; are normally distributed. 

3. Because regression model (1.24) assumes thaI the errors are normally distributed, the assump­
tion of uncorrelatedness of the 8; in regression model (1.1) becomes one of independence in the 
normal error model. Hence, the outcome in anyone trial has no effect on the error rerm for any other 
trial-as to whether it is positive or negative, small or large. 
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4. Regression model (1.24) implies that the Yj are independent normal random variables, with 
mean E{Y;} = f30 + f3,Xf and variance a 2

• Figure 1.6 pictures this normal error model. Each of the 
probability distributions of Y in Figure 1.6 is normally distributed, with constant variability, and the 
regression function is linear. 

5. The normality assumption for the error terms is justifiable in many situations because the error 
terms frequently represent the effects of factors omitted from the model that affect the response to 
some extent and that vary at random without reference to the variable X. For instance, in the Toluca 
Company example, the effects of such factors as time lapse since the last production run, particular 
machines used, season of the year, and personnel employed could vary more or less at random from 
run to run, independent of lot size. Also, there might be random measurement errors in the recording 
of Y, the hours required. Insofar as these random effects have a degree of mutual independence, the 
composite error term cf representing all these factors would tend to comply with the central limit 
theorem and the error term distribution would approach normality as the number of factor effects 
becomes large. 

A second reason why the normality assumption of the error terms is frequently justifiable is thaI 
the estimation and testing procedures to be discussed in the next chapter are based on the t distribution 
and are usually only sensitive to large departures from normality. Thus, unless the departures from 
normality are serious, particularly with respect to skewness, the actual confidence coefficients and 
risks of errors will be close to the levels for exact normality. • 

Estimation of Parameters by Method of Maximum likelihood 

FIGURE 1.13 
Densities for 
Sample 
Observations 
for Two 
Possible Values 
of It: Y1 = 250, 
Y2 = 265, 
Y3 =259. 

When the functional form of the probability distribution of the error terms is specified, 
estimators of the parameters f3o, f3" and a2 can be obtained by the method of maximum 
likelihood. Essentially, the method of maximum likelihood chooses as estimates those values 
of the parameters that are most consistent with the sample data. We explain the method of 
maximum likelihood first for the simple case when a single population with one parameter 
is sampled. Then we explain this method for regression models. 

Single Population. Consider a normal population whose standard deviation is known 
to be a = 10 and whose mean is unknown. A random sample of n = 3 observations is 
selected from the population and yields the results Y, = 250, Y2 = 265, Y3 = 259. We 
now wish to ascertain which value of fJ, is most consistent with the sample data. Consider 
fJ, = 230. Figure l.13a shows the normal distribution with fJ, = 230 and a = 10; also shown 
there are the locations of the three sample observations. Note that the sample obseryations 

J.L = 230 J.L = 259 

y y 

(a) (b) 
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would be in the right tail of the distribution if fJ, were equal to 230. Since these are unlikely 
occurrences, fJ, = 230 is not consistent with the sample data. 

Figure 1.13b shows the population and the locations of the sample data if fJ, were equal 
to 259. Now the observations would be in the center of the distribution and much more 
likely. Hence, fJ, = 259 is more consistent with the sample data than fJ, = 230. 

The method of maximum likelihood uses the density of the probability distribution at 
Yi (i.e., the height of the curve at Yi) as a measure of consistency for the observation Yi . 
Consider observation Y I in our example. If Y I is in the tail, as in Figure 1.13a, the height of 
the curve will be small. If Y I is nearer to the center of the distribution, as in Figure 1.13b, 
the height will be larger. Using the density function for a normal probability distribution 
in (A.34) in Appendix A, we find the densities for Y" denoted by I" for the two cases of 
fJ, in Figure 1.13 as follows: .... 

fJ, = 230: 1 [1 (250 - 230)2] II =,J2ii exp - - = .005399 
2Jr(IO) 2 10 

fJ, = 259: 1 [1 (256 - 259)2] /I =,J2ii exp - -2 = .026609 
2n(lO) 10 

The densities for all three sample observations for the two cases of fJ, are as follows: 

p, = 230 

.005399 

.000087 

.000595 

p, = 259 

.026609 

.033322 

.039894 

The method of maximum likelihood uses the product of the densities (i.e., here, the 
product of the three heights) as the measure of consistency of the parameter value with 
the sample data. The product is called the likelihood value of the parameter value fJ, and 
is denoted by L (fJ,). If the value of fJ, is consistent with the sample data, the densities will 
be relatively large and so will be the product (Le., the likelihood value). If the value of fJ, 
is not consistent with the data, the densities will be small and the product L(fJ,) will be 
small. 

For our simple example, the likelihood values are as follows for the two cases of fJ,: 

L(fJ, = 230) = .005399(.000087)(.000595) = .279x 10-9 

L(fJ, = 259) = .026609(.033322)(.039894) = .0000354 

Since the likelihood value L(fJ, = 230) is a very small number, it is shown in scientific 
notation, which indicates that there are nine zeros after the decimal place before 279. Note 
that L(fJ, = 230) is much smaller than L(fJ, = 259), indicating that fJ, = 259 is much more 
consistent with the sample data than fJ, = 230. 

The method of maximum likelihood chooses as the maximum likelihood estimate that 
value of fJ, for which the likelihood value is largest. Just as for the method of least squares, 



FIGURE 1.14 
Likelihood 
Function for 
Estimation of 
Mean of 
Normal 
Population: 
Y1 = 250, 
Y2 = 265, 
Y3 =259. 
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there are two methods of finding maximum likelihood estimates: by a systematic numerical 
search and by use of an analytical solution. For some problems, analytical solutions for the 
maximum likelihood estimators are available. For others, a computerized numerical search 
must be conducted. 

For our example, an analytical solution is available. It can be shown that for a normal 
population the maximum likelihood estimator of fJ, is the sample mean Y. In our example, 
Y = 258 and the maximum likelihood estimate of fJ, therefore is 258. The likelihood value 
of fJ, = 258 is L(fJ, = 258) = .0000359, which is slightly larger than the likelihood value 
of .0000354 for fJ, = 259 that we had calculated earlier. 

The product of the densities viewed as a function of the unknown parameters is called 
the likelihood function. For our example, where a = 10, the likelihoorlfunction is: 

[ 
1 ]3 [ I (250-fJ,)2] /[ 1 (265-fJ,)2] L(fJ,) = J2Ji(IO) exp -"2 10 exp -"2 10 ko 

[ 
1 (259-fJ,)2] xexp --
2 10 

Figure 1.14 shows a computer plot of the likelihood function for our example. It is based 
on the calculation of likelihood values L(fJ,) for many values of fJ,. Note that the likelihood 
values at fJ, = 230 and fJ, = 259 correspond to the ones we determined earlier. Also note 
that the likelihood function reaches a maximum at fJ, = 258. 

The fact that the likelihood function in Figure 1.14 is relatively peaked in the neigh­
borhood of the maximum likelihood estimate Y =258 is of particular interest. Note, for 
instance, that for fJ, = 250 or fJ, = 266, the likelihood value is already only a little more 
than one-half as large as the likelihood value at fJ, = 258. This indicates that the max­
imum likelihood estimate here is relatively precise because values of fJ, not near the maxi­
mum likelihood estimate Y = 258 are much less consistent with the sample data. When the 
likelihood function is relatively flat in a fairly wide region around the maximum likelihood 
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0.00001 
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estimate, many values of the parameter are almost as consistent with the sample data as the 
maximum likelihood estimate, and the maximum likelihood estimate would therefore be 
relatively imprecise. 

Regression Model. The concepts just presented for maximum likelihood estimation of 
a population mean carry over directly to the estimation of the parameters of normal error 
regression model (1.24). For this model, each Yi observation is normally distributed with 
mean {30 + f3, Xi and standard deviation a. To illustrate the method of maximum likelihood 
estimation here, consider the earlier persistence study example on page 15. For simplicity, 
let us suppose that we know a = 2.5. We wish to determine the likelihood value for the 
parameter values f30 = 0 and f3, = .5. For subject 1, X, = 20 and hence the mean of the 
probability distribution would be f30 + (3,X, = 0 + .5(20) = 10.0. Figure l.15a shows 
the normal distribution with mean 10.0 and standard deviation 2.5. Note that the observed 
value Y, = 5 is in the left tail of the distribution and that the density there is relatively small. 
For the second subject, X2 = 55 and hence (30 + f3, X2 = 27.5. The normal distribution with 
mean 27.5 is shown in Figure I.I5b. Note that the obsetyed value Y2 = l2 is most unlikely 
for this case and that the density there is extremely small. Finally, note that the observed 
value Y3 = 10 is also in the left tail of its distribution if f30 = 0 and f3, = .5, as shown in 
Figure I.I5c, and that the density there is also relatively small. 

FIGURE 1.15 Densities for Sample Observations if Po = 0 and P1 = 5-Persistence Study Example. 

(a) (b) (c) 

Xl = 20, Yl = 5 X2 = 55, Y2 = 12 X3 = 30, Y3'= 10 

f30 + f3l Xl = .5(20) = 10 f30 + f3,X2 = .5(55) = 27.5 f30 + f3l X3 = .5(30) = 15 

Y 
~ r 27.5' Y Y 

Y2 

(d) Combined Presentation 

o 
Age 
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Figure 1.15d combines all of this information, showing the regression function E {Y} = 
0+ .5X, the three sample cases, and the three normal distributions. Note how poorly the 
regression line fits the three sample cases, as was also indicated by the three small density 
values. Thus, it appears that f30 = 0 and f31 = .5 are not consistent with the data. 

We calculate the densities (i.e., heights of the curve) in the usual way. For Y I = 5, 
X I = 20, the normal density is as follows when f30 = 0 and f31 = .5: 

1 [1 (5 - 10.0)2] II = frC exp - -= .021596 
V 2n (2.5) 2 2.5 l 

The other densities are fz = .7175 X 10-9 and h = .021596, and the likelihood value of 
f30 = 0 and f31 = .5 therefore is: 

)\:, 

L(f3o = 0, f31 = .5) = .021596(.7175 x 10-9)(.021596) = .3346 x 1Ok-.12 

In general, the density of an observation Y; for the normal error regression model (1.24) 
is as follows, utilizing the fact that E{Y;} = f30 + f3IXi and a 2{y;} = a 2: 

1 [1 (Y; - f30 - f31 Xi ) 2] f; = --exp --
-J2iia 2 a 

(1.25) 

The likelihood function for n observations Y" Y2 , ••• , Yn is the product ofthe individual 
densities in (1.25). Since the variance a 2 of the error terms is usually unknown, the likelihood 
function is a function of three parameters, f3o, f31, and a 2: 

2 rrn 1 [1 2] 
L(f3o, f31> a ) = i=1 (2na 2)1/2 exp - 2a2 (Yi - f30 - f3I X i) 

(1.26) 

The values of f3o, f31, and a 2 that maximize this likelihood function are the maximum 
likelihood estimators and are denoted by So, S I, and 8 2 , respectively. These estimators can 
be found analytically, and they are as follows:' 

Parameter 

f30 
fh _ 

Maximum likelihood Estimator 

I ~o = bo same as (1.10b) 
~1 = b, same as (l.lOa) 

,,(y, _ }>-)2 
8 2 = ~ I I 

n 

(1.27) 

Thus, the maximum likelihood estimators of f30 and f31 are the same estimators as those 
provided by the method of least squares. The maximum likelihood estimator 8 2 is biased, 
and ordinarily the unbiased estimator MSE as given in (1.22) is used. Note that the unbi­
ased estimator MSE or s2 differs but slightly from the maximum likelihood estimator 8 2

, 
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Example 

especially if n is not small: 

S2 = MSE = _n_a-2 

n-2 
(1.28) 

For the persistence study example, we know now that the maximum likelihood estimates of 
f30 andf31 are bo =2.81 and b l = .177, the same as the least squares estimates in Figure 1.9b. 

Comments 
1. Since the maximum likelihood estimators ~o and ~, are the same as the least squares estimators 

ho and h" they have the properties of all least squares estimators: 
a. They are unbiased. 
h. They have minimum variance among all unbiased linear estimators. 
In addition, the maximum likelihood estimators ho and h, for the normal error regression model 
(1.24) have other desirable properties: 
c. They are consistent, as defined in (A 52). 
d. They are sufficient, as defined in (A53). 
e. They are minimum variance unbiased; that is, they have minimum variance in the class of all 

unbiased estimators (linear or otherwise). 
Thus, for the normal error model, the estimators ho and h, have many desirable properties. 

2. We find the values of /30, f3" and a 2 that maximize the likelihood function L in (1.26) by taking 
partial derivatives of L with respect to /30, f3" and a 2 , equating each of the partials to zero, and 
solving the system of equations thus obtained. We can work with loge L, rather than L, because 
both L and loge L are maximized for the same values of /30, f3" and a 2

: 

n n. 2 1 2:: 2 log L = --lou 2][ - -lou a - - (Y - f30 - f3,X) 
e 2 oe 2 oe 20'2 I I 

(1.29) 

Partial differentiation of the logarithm of the likelihood function is much easier; it yields: 

We now set these partial derivatives equal to zero, replacing /30, f3" and a 2 by the estimators ~o, 
~h and (}2. We obtain, after some simplification: 

(1.30a) 

2:: X;(Y; - ~o - ~,X;) = 0 (1.30b) 

'\" ~ ~ 2 
L..,(Y; - f30 - f3!X;) = {}2 (1.30c) 

n 
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Formulas (1.30a) and (1.30b) are identical to the earlier least squares normal equations (1.9), and 
formula (1.30c) is the biased estimator of a 2 given earlier in (1.27). • 

1.1. BMDP New System 2.0. Statistical Solutions, Inc. 
1.2. MINITAB Release 13. Minitab Inc. 
1.3. SASjSTPU Release 8.2. SAS Institute, Inc. 
1.4. SPSS 11.5 for Windows. SPSS Inc. 
1.5. SYSTAT 10.2. SYSTPU Software, Inc. 
1.6. JMP Version 5. SAS Institute, Inc. 
1.7. S-Plus 6 for Windows. Insightful Corporation. 
1.8. MA1LAB 6.5. The MathWorks, Inc. 

1.1. Refer to the sales volume example on page 3. Suppose that the number of units sold is measured 
accurately, bur clerical errors are frequently made in determining the dollar sales. Would the 
relation between the number of units sold and dollar sales still be a functional one? Discuss. 

1.2. The members of a health spa pay annual membership dues of $300 plus a charge of $2 for each 
visit to the spa. Let Y denote the dollar cost for the year for a member and X the number of 
visits by the member during the year. Express the relation between X and Y mathematically. 
Is it a functional relation or a statistical relation? 

1.3. Experience with a certain type of plastic indicates that a relation exists between the hardness 
(measured in Brinell units) of items molded from the plastic (Y) and the elapsed time since ter­
mination of the molding process (X). It is proposed to study this relation by means of regression 
analysis. A participant in the discussion objects, pointing out that the hardening of the plastic 
"is the result of a natural chemical process that doesn't leave anything to chance, so the relation 
must be mathematical and regression analysis is not appropriate." Evaluate this objection. 

1.4. In Table 1.1, the lot size X is the same in production runs 1 and 24 but the work hours Y differ. 
What feature of regression model (1.1) is illustrated by this? 

1.5. When asked to state the simple linear regression model, a student wrote it as follows: E {Y;} = 
f30 + fhX; + CI' Do you agree? 

1.6. Consider the normal err~r regression model (1.24). Suppose that the parameter valud are 
f30 = 200, f31 = 5.0, and a = 4. 

a Plot this normal error regression model in the fashion of Figure 1.6. Show the distributions 
of Y for X = 10, 20, and 40. 

b. Explain the meaning of the parameters f30 and f31. Assume that the scope of the model 
includes X = O. 

1.7. In a simulation exercise, regression model (1.1) applies with f30 = 100, f31 = 20, and a 2 = 25. 
An observation on Y will be made for X = 5. 

a. Can you state the exact probability that Y will fall between 195 and 205? Explain. 

b. If the normal error regression model (1.24) is applicable, can you now state the exact prob- Ii. 
ability that Y will fall between 195 and 205? If so, state it. 

1.8. In Figure 1.6, suppose another Y observation is obtained at X = 45. Would E{Y} for this new 
observation still be 104? Would the Y value for this new case again be 108? 

1.9. A student in accounting enthusiastically declared: "Regression is a very powerful tool. We can 
isolate fixed and variable costs by fitting a linear regression model, even when we have no data 
for small lots." Discuss. 

'i , 

ij 

i1 

!I ,. 

/' d. 

, 
" 
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1.10. An analyst in a large corporation studied the relation between current annual salary (Y) and 
age (X) for the 46 computer programmers presently employed in the company. The analyst 
concluded that the relation is curvilinear, reaching a maximum at 47 years. Does this imply 
that the salary for a programmer increases until age 47 and then decreases? Explain. 

1.l1. The regression function relating production output by an employee after taking a training 
program (Y) to the production output before the training program (X) is E{Y} = 20 + .9SX, 
where X ranges from 40 to 100. An observer concludes that the training program does not raise 
production output on the average because f3, is not greater than 1.0. Comment. 

1.12. In a study of the relationship for senior citizens between physical activity and frequency of 
colds, participants were asked to monitor their weekly time spent in exercise over a five-year 
period and the frequency of colds. The study demonstrated that a negative statistical relation 
exists between time spent in exercise and frequency of colds. The investigator conclooed that 
increasing the time spent in exercise is an effuctive strategy for reducing the frequency of colds 
for senior citizens. 

a Were the data obtained in the study observational or experimental data? 

b. Comment on the validity of the conclusions reached by the iI.lVestigator. 

c. Identify two or three other explanatory variables that might affect both the time spent in 
exercise and the frequency of colds for senior citizens simultaneously. 

d. How might the study be changed so that a valid conclusion about causal relationship between 
amount of exercise and frequency of colds can be reached? 

1.13. Computer programmers employed by a software developer were asked to participate in a month­
long training seminar. During the seminar, each employee was asked to record the number of 
hours spent in class preparation each week. After completing the seminar. the productivity level 
of each participant was measured. A positive linear statistical relationship between participants' 
productivity levels and time spent in class preparation was found. The seminar leader concluded 
that increases in employee productivity are caused by increased class preparation time. 

a Were the data used by the seminar leader observational or experimental data? 

b. Comment on the validity of the conclusion reached by the seminar leader. 

c. Identify two or three alternative variables that might cause both the employee productivity 
scores and the employee class participation times to increase (decrease) simultaneously. 

d. How might the study be changed so that a valid conclusion about causal relationship between 
class preparation time and employee productivity can be reached? 

1.14. Refer to Problem 1.3. Four different elapsed times since termination of the molding process 
(treatments) are to be studied to see how they affect the hardness of a plastic. Sixteen batches 
(experimental units) are available for the study. Each treatment is to be assigned to four exper­
imental units selected at random. Use a table of random digits or a random number generator 
to make an appropriate randomization of assignments. 

!.IS. The effects of five dose levels are to be studied in a completely randomized design, and 20 
experimental units are available. Each dose level is to be assigned to four experimental units 
selected at random. Use a table of random digits or a random number generator to make an 
appropriate randomization of assignments. 

1.16. Evaluate the following statement: "For the least squares method to be fully valid, it is required 
that the distribution of Y be normal." 

1.17. A person states that ho and h, in the fitted regression function (1.13) can be estimated by the 
method of least squares. Comment. 

1.18. According to (1.17), Lei = 0 when regression model (1.1) is fitted to a set of n cases by the 
method of least squares. Is it also true that L E:i = O? Comment. 
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1.19. Grade point average. The director of admissions of a small college selected 120 students at 
random from the new freshman class in a study to determine whether a student's grade point 
average (OPA) at the end of the freshman year (Y) can be predicted from the ACT test score (X). 
The results of the study follow. Assume that first-order regression model (1.1) is appropriate. 

;: 

21 
3.897 

2 

14 
3.885 

3 

28 
3.778 

118 

28 
3.914 

119 

16 
1.860 

120 

28 
2.948 

a. Obtain the least squares estimates of f30 and f3[, and state the estimated regression function. 

b. Plot the estimated regression function and the data."Does the estimated regression function 
appear to fit the data well? 

c. Obtain a point estimate of the mean freshman OPA for students with ACT test score X = 30. 

d. What is the point estimate of the change in the mean response when the entrance test ~ore 
increases by one point? 

* 1.20. Copier maintenance. The Tri-City Office Equipment Corporation sells an imported copier on 
a franchise basis and performs preventive maintenance and repair service on this copier. The 
data below have been collected from 45 recent calls on users to perform routine preventive 
maintenance service; for each call, X is the number of copiers serviced and Y is the total 
number of minutes spent by the service person. Assume that first-order regression model (1.1) 
is appropriate. 

;: 1 2 3 

Xi: 2 4 3 
Yi: 20 60 46 

a. Obtain the estimated regression function. 

43 

2 
27 

44 

4 
61 

45 

5 
77 

b. Plot the estimated regression function and the data. How well does the estimated regression 
function fit the data? 

c. Interpret bo in your estimated regression function. Does bo provide any relevant information 
here? Explain. 

d. Obtiun a poim estimate of the mean service time when X = 5 copiers are serviced. 

*1.21. Airfreight breakage. A substance used in biological and medical research is shipped by air­
freight to users in cartons of 1,000 ampules. The data below, involving 10 shipments, were 
collected on the number of times the carton was transferred from one aircraft to another over 
the shipment route (X) and the number of ampules found to be broken upon arrival (Y). Assume 
that first-order regression model (1.1) is appropriate. 

;: 

1 
16 

2 

o 
9 

3 

2 
17 

4 

o 
12 

5 

3 
22 

6 

1 
13 

7 

o 
8 

8 

15 

9 

2 
19 

10 

o 
11 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the expected number of broken ampules when X = 1 transfer is 
made. 
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c. Estimate the increase in the expected number of ampules broken when there are 2 transfers 
as compared to 1 transfer. 

d. Verify that your fitted regression line goes through the point (X, Y). 

1.22. Plastic hardness. Refer to Problems 1.3 and 1.14. Sixteen batches of the plastic were made, 
and from each batch one test item was molded. Each test item was randomly assigned to one of 
the four predetermined time levels, and the hardness was measured after the assigned elapsed 
time. The results are shown below; X is the elapsed time in hours? and Y is hardness in Brinell 
units. Assume that first-order regression model (1.1) is appropria'te. 

;: 

16 
199 

2 

16 
205 

3 

16 
196 

14 

40 
248 

15 

40 
253 

16 

40 
746 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the mean hardness when X = 40 hours. 

c. Obtain a point estimate of the change in mean hardness when X increases by 1 hour. 

1.23. Refer to Grade point average Problem 1.19. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 

b. Estimate (J"2 and (J". In what units is (J" expressed? 

*1.24. Refer to Copier maintenance Problem 1.20. 

a Obtain the residuals ej and the sum of the squared residuals L e'f. What is the relation 
between the sum of the squared residuals here and the quantity Q in (1.8)? 

b. Obtain point estimates of (J"2 and (J". In what units is (J" expressed? 

*1.25. Refer to Airfreight breakage Problem 1.21. 

a. Obtain the residual for the first case. What is its relation to 8,? 

b. Compute Lei and MSE. What is estimated by MSE? 

1.26. Refer to Plastic hardness Problem 1.22. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 

b. Estimate (J"2 and (J". In what units is (J" expressed? 

* 1.27. Muscle mass. A person's muscle mass is expected to decrease with age. To explore this rela­
tionship in women, a nutritionist randomly selected 15 women from each lO-year age group, 
beginning with age 40 and ending with age 79. The results follow; X is age, and Y is a measure 
of muscle mass. Assume that first-order regression model (1.1) is appropriate. 

;: 

43 
106 

2 

41 
106 

3 

47 
97 

58 

76 
56 

59 

72 
70 

60 

76 
74 

a. Obtain the estimated regression function. Plot the estimated regression function and the data. 
Does a linear regression function appear to give a good fit here? Does your plot support the 
anticipation that muscle mass decreases with age? 

b. Obtain the following: (1) a point estimate of the difference in the mean muscle mass for 
women differing in age by one year, (2) a point estimate of the mean muscle mass for women 
aged X = 60 years, (3) the value of the residual for the eighth case, (4) a point estimate of (J"2. 
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1.28. Crime rate. A criminologist studying the relationship between level of education-and crime 
rate in medium-sized U.S. counties collected the following data for a random sample of 84 coun­
ties; X is the percentage of individuals in the county having at least a high-school diploma, and 
Y is the crime rate (crimes reported per 100,000 residents) last year. Assume that first-order 
regression model (1.1) is appropriate. 

i: 

74 
8,487 

2 

82 
8,179 

3 

81 
8,362 

82 

88 
8,040 

83 

83 
6,981 

84 

76 
7,582 

a Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does the linear regression function appear to give a good fit here? Discuss. 

b. Obtain point estimates of the following: (1) the difference in the mean crime rate for two 
counties whose high-school graduation rates differ by one percentage point, (2) the mean 
crime rate last year in counties with high school graduation percentage X = 80, (3) BIO, 

(4)a2 • 

1.29. Refer to regression model (1.1). Assume that X = 0 is within the scope of the model. What is 
the implication for the regression function if f30 = 0 so that the model is Yi = f31 Xi + Bi? How 
would the regression function plot on a graph? 

1.30. Refer to regression model (1.1). What is the implication for the regression function if f31 = 0 
so that the model is Yi = f30 + Bj? How would the regression function plot on a graph? 

1.31. Refer to Plastic hardness Problem 1.22. Suppose one test item was molded from a single 
batch of plastic and the hardness of this one item was measured at 16 different points in time. 
Would the error term in the regression model for this case still reflect the same effects as for 
the experiment initially described? Would you expect the error terms for the different points in 
time to be uncorrelated? Discuss. 

1.32. Derive the expression for bi in (UOa) from the normal equations in (1.9). 

1.33. (Calculus needed.) Refecro the regression model Yj = f30 + Bi in Exercise 1.30. Derive the 
least squares estimator of f30 for this model. 

1.34. Prove that the least squares estimator of f30 obtained in Exercise 1.33 is unbiased. 

1.35. Prove the result in (1.18)-that the sum of the Yobservations is the same as the sum of the 
fitted values. 

1.36. Prove the result in (1.20) - that the sum of the residuals weighted by the fitted values is zero. 

1.37. Refer to Table l.l for the Toluca Company example. When asked to present a point estimate 
of the expected work hours for lot sizes of 30 pieces, a persbn gave the estimate 202 because 
this is the mean number of work hours in the three-runs of size 30 in the study. A critic states 
that this person's approach "throws away" most of the data in the study because cases with lot 
sizes other than 30 are ignored. Comment. 

1.38. In Airfreight breakage Problem 1.21, the least squares estimates are bo = 10.20 and1J I = 4.00, 
and L e; = 17.60. Evaluate the least squares criterion Q in (1.8) for the estimates (1) bo = 9, 
b l = 3; (2) bo = 11, b l = 5. Is the criterion Q larger for these estimates than for the least squares 
estimates? 

1.39. Two observations on Y were obtained at each of three X levels, namely, at X = 5, X = 10, and 
X = 15. 

a. Show that the least squares regression line fitted to the three points (5, f I ), (10, f 2), and 
(15, f3), where f I, f2, and f3 denote the means of the Yobservations at the three X levels, 
is identical to the least squares regression line fitted to the original six cases. 
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Projects 

b. In this study, could the error term variance a 2 be estimated without fitting a regression line? 
Explain. 

lAO. In fitting regression model (1.1), it was found that observation Yi fell directly on the fitted 
regression line (Le., Yi = i\). If this case were deleted, would the least squares regression line 
fitted to the remaining n - 1 cases be changed? [Hint: What is the contribution of case i to the 
least squares criterion Q in (1.8)?] 

1041. (Calculus needed.) Refer to the regression model Yi = /3,Xi+ei, i = 1, ... , n, in Exercise 1.29. 

1.42. 

a. Find the least squares estimator of /3, . 
b. Assume that the error terms ei are independent N (0, ( 2

) and that a 2 is known. State the 
likelihood function for the n sample observations on Y and obtain the maximum likelihood 
estimator of /3,. Is it the same as the least squares estimator? 

c. Show that the maximum likelihood estimator of /3, is unbiased. 

Typographical errors. Shown below are the number of galleys for a manuscript (X) and the 
dollar cost of correcting typographical errors (Y) in a random sample of recent orders handled by 
a firm specializing in technical manuscripts. Assume that the regression model Y; = /3, Xi + ei 
is appropriate, with normally distributed independent error terms whose variance is a 2 = 16. 

;: 

Xi: 
Yi : 

7 
128 

2 

12 
213 

3 

4 
75 

4 

14 
250 

5 

25 
446 

a. State the likelihood function for the six Y observations, for a 2 = 16. 

6 

30 
540 

b. Evaluate the likelihood function for /3, = 17, 18, and 19. For which of these /31 values is 
the likelihood function largest? 

c. The maximum likelihood estimator is hi = LXi Yi / L Xi. Find the maximum likelihood 
estimate. Are your results in part (b) consistent with this estimate? 

d. Using a computer graphics or statistics package, evaluate the likelihood function for values 
of /3, between /3, = 17 and /3, = 19 and plot the function. Does the point at which the 
. likelihood function is maximized correspond to the maximum likelihood estimate found in 
part (c)? 

1.43. Refer to the CDI data set in Appendix C.2. The number of active physicians in a CDI (Y) is 
expected to be related to total population, number of hospital beds, and total personal income. 
Assume that first-order regression model (1.1) is appropriate for each of the three predictor 
variables. 

a. Regress the number of active physicians in turn on each of the three predictor variables. 
State the estimated regression functions. 

b. Plot the three estimated regression functions and data on separate graphs. Does a linear 
regression relation appear to provide a good fit for each of the three predictor variables? 

c. Calculate MSE for each of the three predictor variables. Which predictor variable leads to 
the smallest variability around the fitted regression line? 

1.44. Refer to the CDI data set in Appendix C.2. 

a. For each geographic region, regress per capita income in a CDr (Y) against the per­
centage of individuals in a county having at least a bachelor's degree (X). Assume that 
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first-order regression model (1.1) is appropriate for each region. State the estimated regres­
sion functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 

c. Calculate MSE for each region. Is the variability· around the fitted regression line approxi­
mately the same for the four regions? Discuss. 

1.45. Refer to the SENIC data set in Appendix c.l. The average length of stay in a hospital (Y) is 
anticipated to be related to infection risk, available facilities and services, and routine chest 
X-ray ratio. Assume that first-order regression model (1.1) is appropriate for each of the three 
predictor variables. ({ 

a. Regress average length of stay on each of the three predictor variables. State the estimated 
regression functions. 

b. Plot the three estimated regression functions and data on separate graphs. Does a linear 
relation appear to provide a good fit for each of the three predictor variables? 

c. Calculate MSE for each of the three predictor variables. Which predictor variat!le leads to 
the smallest variability around the fitted regression line? 

1.46. Refer to the SENIC data set in Appendix c.1. 

a. For each geographic region, regress average length of stay in hospital (Y) against infection 
risk (X). Assume that first-order regression model (1.1) is appropriate for each region. State 
the estimated regression functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 

c. Calculate MSE for each region. Is the variability around the fitted regression line approxi­
mately the same for the four regions? Discuss. 

1.47. Refer to Typographical errors Problem 1.42. Assume that first-order regression model (1.1) 
is appropriate, with normally distributed independent error terms whose variance is a 2 = 16. 

a. State the likelihood function for the six observations, for a 2 = 16. 

b. Obtain the maximum likelihood estimates of fJo and f31, using (1.27). 

c. Using a computer graphics"or statistics package, obtain a three-dimensional plot of the 
likelihood function for ·values of f30 between f30 = -10 and f30 = 10 and for values of 
f31 between f31 = 17 and f31 = 19. Does the likelihood appear to be maximized by the 
maximum likelihood estimates found in part (b)? 



Chapter 

Inferences in Regression 
and Correlation Analysis 

In this chapter, we first take up inferences concerning. the regression parameters f30 and 
f31, considering both interval estimation of these parameters and tests about them. We then 
discuss interval estimation of the mean E {Y} of the probability distribution of Y, for given 
X, prediction intervals for a new observation Y, confidence bands for the regression line, 
the analysis of variance approach to regression analysis, the general linear test approach, 
and descriptive meaSures of association. Finally, we take up the correlation coefficient, a 
meaSure of association between X and Y when both X and Y are random variables. 

Throughout this chapter (excluding Section 2.11), and in the remainder of Part 1 unless 
otherwise stated, we assume that the normal error regression model (1.24) is applicable. 
This model is: 

where: 

f30 and f3, are parameters 

Xi are known constants 
8; are independent N (0, (J2) 

Y; = f30 + f3,X; + 8; (2.1) 

2.1 Inferences Concerning fh 

40 

Frequently, we are interested in drawing inferences about f3" the slope of the regression 
line in model (2.1). For instance, a market research analyst studying the relation between 
sales (Y) and advertising expenditures (X) may wish to obtain an interval estimate of f3, 
because it will provide information as to how many additional sales dollars, on the average, 
are generated by an additional dollar of advertising expenditure. 

At times, tests concerning f31 are of interest, particularly one of the form: 

Ho: f3, = 0 

Ha: f31 =1= 0 



FIGURE 2.1 
Regression 
Model (2.1) 
wbenPl = O. 
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y 

~----+-- E{Y} = f30 

x 

The reaSon for interest in testing whether or not f31 = 0 is that, when f31 = 0, there is no 
linear association between Y and X. Figure 2.1 illustrates the Case when f31 = ctNote that 
the regression line is horizontal and that the means of the probability distributions of Y are 
therefore all equal, namely: 

E{Y} = f30 + (O)X = f30 

For normal error regression model (2.1), the condition f31 = 0 implies even more than 
no linear association between Y and X. Since for this model all probability distributions of 
Y are normal with constant variance, and since the means are equal when f31 = 0, it follows 
that the probability distributions of Y are identical when f31 = O. This is shown in Figure 2.1. 
Thus, f31 = 0 for the normal error regression model (2.1) implies not only that there is no 
linear association between Y and X but also that there is no relation of any type between 
Y and X, since the probability distributions of Y are then identical at all levels of X. 

Before discussing inferences co~cerning f31 'further, we need to consider the sampling 
distribution of bl , the point estimator of f31' 

Sampling Distribution of b1 

The point estimator b l WaS given in (1.1Oa) as follows: 

L:(Xi - X)(Yi - Y) 
b l = L:(X

i 
_ X)2 .. (2.2) 

The sampling distribution of b l refers to the different values of b l that would be obtained 
with repeated sampling when the levels of the predictor variable X are held constant from 
sample to sample. 

For normal error regression model (2.1), the sampling distribution 
of b l is normal, with mean and variance: 

E~bd = f31 

a 2 

a
2
{bd = L:(Xi _ X)2 

(2.3) 

(2.3a) 

(2.3b) 

To show this, we need to recognize that b l is a linear combination of the observations Yi • 
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hI as Linear Combination of the Yi • It can be shown that hI, as defined in (2.2), Can be 
expressed as follows: 

(2.4) 

where: 

Xi-X 
ki = L(X

i 
_ X)2 (2.4a) 

Observe that the ki are a function of the Xi and therefore are fixed quantities since the Xi 
are fixed. Hence, hI is a linear combination of the Y; where the coefficiefits are solely a 
function of the fixed Xj. 

The coefficients ki have a number of interesting properties that will be used later: 

Comments 

1. To show that hI is a linear combination of the Yj with coefficients k/, we first prove: 

This follows since: 

But L(Xi - xW = Y L(Xj - X) = 0 since L(Xj - X) = 0, Hence, (2.8) holds. 
We now express hI using (2.8) and (2.4a): 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

2. The proofs of the properties of the k i are direct. For example, property (2.5) follows because: 

k- - X--X- -0 2:: 2:: [ Xi - X] 1· 2:: - 0 
1- L(X

j 
_X)2 - L(X

j 
_X)2 (, ) - L(X

j 
_X)2 -

Similarly, property (2.7) follows because: 

• 
Normality. We return now to the sampling distribution of hI for the nonnal error regres-
sion model (2.1). The nonnality of the sampling distribution of hI follows at once from the 
fact that hI is a linear combination of the Yj • The Yj are independently, nonnally distributed 
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according to model (2.1), and (A.40) in Appendix A states that a linear combination of 
independent normal random variables is normally distributed. 

Mean. The unbiasedness of the point estimator bl> stated earlier in the Gauss-Markov 
theorem (1.11), is easy to show: 

E{bd = E{l.:k;Y;} = l.:kiE{Yd = l.:k;(f3o + f3I X;) 

= f30 l.:k; + f31l.:'k;X; 

By (2.5) and (2.6), we then obtain E {b l } = f31. 

Variance. The variance of bI can be derived readily. We need only remember that the 
Y; are independent random variables, each with variance a 2 , and that the k; are constants. 
Hence, we obtain by (A.31): }.., 

a 2{bd = a 2{l.:k;Yi} = l.:k~a2{y;} 

= l.:k~a2 = a 2 l.:k~ 

2 1 
=a 

L(X; - X)2 

The last step follows from (2.7). 

Estimated Variance. We can estimate the variance of the sampling distribution of b l : 

a 2 

a
2
{bd = L(X; - xy 

by replacing the parameter a 2 with MSE, the unbiased estimator of a 2: 

s2{b _ MSE 
d - L(X; _X)2 

(2.9) 

Th~ point estimator s2 {b l } is an unbiased estimator of a 2 {b I }. Taking the positive square 
root, we obtain s{bd, the point estimator of a{bd. 

Comment 

We stated in theorem (1.11) that hI has minimum variance among all unbiased Hnear estimators of 
the form: 

I~l = l.:CiYi 

where the Ci are arbitrary constants. We now prove this. Since ~ I is required to be unbiased, the 
following must hold: 

Now E{Yd = f30 + f3 1Xi by (1.2), so the above condition becomes: 
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For the unbiasedness condition to hold, the C; must follow the restrictions: 

Now the variance of,8, is, by (A.31): 

Let us define Ci = k; + d;, where the k; are the least squares constants in (2.4a) and the d; are arbitrary 
constants. We can then write: 

We know that a 2 L k'f = a 2 (h.) from our proof above. Further, L kid; = 0 because of the restrictions 
on the k; and Ci above: 

Hence, we have: 

Lkid; = Lk;(C; -k;) 

= :LC;ki - :L k; 

= :Lc; [L~~;-_XX)2] - L(X;I_X)2 

LCiXi-XLCi 
L(X; _X)2 

Note that the smallest value of L dl is zero. Hence, the variance of ,81 is at a minimum when 
2:.df = O. But this can only occur if all d; = 0, which implies C; == k;. Thus, the least squares 
estimator h, has minimum variance among all unbiased linear estimators. • 

Sampling Distribution of (b1 - {Jl)/s{b1 } 

Since b, is normally distributed, we know that the standardized statistic (b, - ,8,)/a{bd 
is a standard normal variable. Ordinarily, of course, we need to estimate a{bd by s{bd, 
and hence are interested in the distribution of the statistic (b , - ,81)/s{bd. When a statistic 
is standardized but the denominator is an estimated standard deviation rather than the true 
standard deviation, it is called a studentized statistic. An important theorem in statistics 
states the following about the studentized statistic (b, - ,8,)/ s {b,}: 

b, - ,81 is distributed as t (n - 2) for regression model (2.1) 
s{br} 

(2.10) 

Intuitively, this result should not be unexpected. We know that if the observations Yi 

come from the same normal popUlation, (Y - fJ,) / s {Y} follows the t distribution with n - 1 
degrees of freedom. The estimator b

" 
like Y, is a linear combination of the observations Y;. 

The reason for the difference in the degrees of freedom is that two parameters (,80 and ,8,) 
need to be estimated for the regression model; hence, two degrees of freedom are lost here. 
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Comment 

We can show that the studentized statistic (b l - th)/s(bd is distributed as t with n - 2 degrees of 
freedom by relying on the following theorem: 

For regression model (2.1), SSE/a2 is distributed as X2 with n - 2 
degrees offreedom and is independerit of bo and b l • 

First, let us rewrite (bl - ,81)/s(bd as follows: 

bl - ,81 ...:.. s(bd 
a(bd . a(bd 

(2.11) 

The numerator is a standard normal variable z. The nature of the denominator can be seen by first 
considering: 

MSE SSE 
s2(bd L:(X; _X)2 MSE n-2 
--= 

a 2 =--=--
a 2(b l } a 2 a 2 

L:(X; _X)2 

SSE x2(n - 2) 

a 2(n -2) n-2 

where the symbol ~ stands for "is distributed as." The last step follows from (2.11). Hence, we have: 

b l - ,81 ~ Z 

s(b l } y!x2(n-2) 

. n-2 

But by theorem (2.11), z and X2 are independent since z is a function of b l and bl is independent of 
SSE/a2 ~ X2. Hence, by (A.44), it follows that: 

bl -,81 
-- ~t(n-2) 

s(bd 

This result places us in a position to readily make inferences concerning ,81. 

Confidence Interval for {Jl 

• 
Since -(b l - ,81)/s{bd follows a t distribution, we can make the following probability 
statement: 

P{t(a/2;n - 2) ::s (b l - ,81)/s{bd ::s t(l - a/2;n - 2)} = 1 - a (2.12) 

Here, t (a /2; n - 2) denotes the (a /2) 100 percentile of the t distribution with n - 2 degrees 
of freedom. Because of the symmetry of the t distribution around its mean 0, it follows that: 

t(a/2; n -Q) = -t(1 - a/2; n - 2) 

Rearranging the inequalities in (2.12) and using (2.13), we obtain: 

(2.13) 

P{b l - t(l - a/2; n - 2)s{bd ::s ,81 .::::: b, + t(1 - a/2;n - 2)s{bd} = 1 - a 

(2.14) 

Since (2.14) holds for all possible values of ,8J, the 1 - a confidence limits for ,81 are: 

b l ± t(l - a/2; n - 2)s{bd (2.15) 
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Example 

TABLE 2.1 
Results for 
Toluca 
Company 
Example 
Obtained in 
Cbapterl. 

FIGURE 2.2 
Portion of 
MINITAB 
Regression 
Output­
Toluca 
Company 
Example. 

Simple Linear Regression 

Consider the Toluca Company example of Chapter 1. Management wishes an estimate of 
f3, with 95 percent confidence coefficient. We summarize in Table 2.1 the needed results 
obtained earlier. First, we need to obtain s{bd: 

2 MSE 2,384 
s {bd = L:(X; _ X)2 = 19,800 = .12040 

s{bd = .3470 

This estimated standard deviation is shown in the MINITAB output in Figure 2.2 in the 
column labeled Stdev corresponding to the row labeled X. Figure 2.2 repeats the MINITAB 
output presented earlier in Chapter 1 and contains some additional results that we will utilize 
shortly. A" 

For a 95 percent confidence coefficient, we require t(.975; 23). From Table B.2'in Ap­
pendixB, wefindt(.975;23) = 2.069. The 95 percent confidence interval, by (2.15), then is: 

3.5702 - 2.069(.3470) .:s f3, .:s 3.5702 + 2.069(.3470) 

2.85 .:s f31 .:s 4.29 

Thus, with confidence coefficient .95, we estimate that the mean number of work hours 
increases by somewhere between 2.85 and 4.29 hours for each additional unit in the lot. 

Comment 

In Chapter 1, we noted that the scope of a regression model is restricted ordinarily to some range of 
values of the predictor variable. This is particularly important to keep in mind in using estimates of 
the slope th. In our Toluca Company example, a linear regression model appeared appropriate for 
lot sizes between 20 and 120, the range of the predictor variable in the recent past. It may not be 

n=25 
bo = 62.37 
y= 62.37 + 3.5702X 

L:(X; - X)2 = 19,800 
2:XY; - y)2 = 307,203 

The regression equation is 
Y = 62.4 + 3.57 X 

Predictor Coef 
Constant 62.37 

Stdev 
26.18 

X 3.5702 0.3470 

s = 48.82 R-sq = 82.2% 

Analysis of Variance 

SOURCE DF SS 
Regression 1 252378 
Error 23 54825 
Total 24 307203 

x = 70.00 
b1 = 3.5702 

SSE = 54,825 
MSE=2,384 

t-ratio 
2.38 

10.29 

p 
0.026 
0.000 

R-sq(adj) = 81.4% 

MS F 
252378 105.88 

2384 

P 
0.000 
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reasonable to use the estimate of the slope to infer the effect of lot size on number of work hours far 
outside this range since the regression relation may not be linear there. • 

Tests Concerning {Jl 

Example 1 

Example 2 

Since (b, - ,8,)/s{bd is distributed as t with n - 2 degrees of freedom, tests concerning 
,81 can be set up in ordinary fashion using the t distribution. 

Two-Sided Test A cost analyst in the Toluca Company is interested in testing, using 
regression model (2.1), whether or not there is a linear association between work hours and 
lot size, i.e., whether or not,81 = O. The two alternatives then are: 

Ho:,8, = 0 

Ha: ,8, =1= 0 
(2.16) 

The analyst wishes to control the risk of a Type I error at a = .05. The conclusion Ha could 
be reached at once by referring to the 95 percent confidence interval for ,8, constructtd 
earlier, since this interval does not include O. 

An explicit test of the alternatives (2.16) is based on the test statistic: 

* b, t =--
s{bd 

(2.17) 

The decision rule with this test statistic for controlling the level of significance at a is: 

If It*1 :::; t(1 - a/2;n - 2), conclude Ho 

If It*1 > t(l- a/2;n - 2), c~nclude Ha 
(2.18) 

For the Toluca Company example, where a = .05, b, = 3.5702, ands{bd = .3470, we 
require t(.975; 23) = 2.069. Thus, the decision rule for testing alternatives (2.16) is: 

If It*1 :::; 2.069, conclude Ho 

If It*1 > 2.069, conclude Ha 

Since It*1 = 13.5702/.34701 = 10.29 > 2.069, we conclude Ha, that,8, =1= 0 or that 
there is a linear association between work hours and lot size. The value of the test statistic, 
t* = 10.29, is shown in the MINITAB output in Figure 2.2 in the column labeled t-ratio 
and the row labeled X. 

The two-sided P-value for the sample outcome is obtained by first finding the one­
sided P-value, P{t(23) > t* = 1O.29}. We see from Table B.2 that this probability is 
less than .0005. Many statistical calculators and computer packages will provide the actual 
probability; it is almost 0, denoted by 0+. Thus, the two-sided P-value is 2(0+) = 0+. 
Since the two-sided P-value is less than the specified level of significance a = .05, we 
could conclude Ha directly. The MINITAB output in Figure 2.2 shows the P-value in the 
column labeled p, corresponding to the row labeled X. It is shown as 0.000. 

Comment 

When the test of whether or not fh = 0 leads to the conclusion that fh 1= 0, the association between 
Y and X is sometimes described to be a linear srotistical association. • 

One-Sided Test Suppose the analyst had wished to test whether or not ,8, is positive, 
controlling the level of significance at a = .05. The alternatives then would be: 

HO:,81 :::; 0 

Ha:,8, > 0 
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and the decision rule based on test statistic (2.17) would be: 

If t* .:s t(1 - a;n - 2), conclude Ho 

If t* > t (1 - a; n - 2), conclude Ha 

Fora = .05, we require t (.95; 23) = 1.714.Sincet* = 10.29 > 1.714, we would conclude 

Ha, that f3, is positive. 
This same conclusion could be reached directly from the one-sided P-value, which was 

noted in Example 1 to be 0+. Since this P-value is less than .05, we would conclude Ha. 

Comments 
1. The P-value is sometimes caned the observed level of significance. 

2. Many scientific publications commonly report the P-value together with the value of the test 
statistic. In this way, one can conduct a test at any desired level of significance a by comparing the 
P-value with the specified level a. 

3. Users of statistical calculators and computer packages need to be careful to ascertain whether 
one-sided or two-sided P-values are reported. Many commonly used labels, such as PROB or P, do 
not reveal whether the P-value is one- or two-sided. 

4. Occasionally, it is desired to test whether or not f31 equals some specified nonzero value f3w, 
which may be a historical norm, the value for a comparable process, or an engineering specification. 
The alternatives now are: 

and the appropriate test statistic is: 

Ho: f31 = f3w 
Ha: f31 1= f3lo 

* b i - f3w t = ---=--=-,c:= 
s(bd 

(2.19) 

(2.20) 

The decision rule to be employed here still is (2.18), but it is now based on t* defined in (2.20). 
Note that test statistic (2.20) simplifies to test statistic (2.17) when the test involves Ho: f3I = 

f3lo = O. • 

2.2 Inferences Concerning f30 

As noted in Chapter 1, there are only infrequent occasions when we wish to make inferences 
concerning f3o, the intercept of the regression line. These occur when the scope of the model 

includes X = O. 

Sampling Distribution of bo 
The point estimator bo was given in (1.lOb) as follows: 

(2.21) 

The sampling distribution of bo refers to the different values of bo that would be obtained 

with repeated sampling when the levels of the predictor variable X are held constant from 
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sample to sample. 

For regression model (2.1), the sampling distribution of 'bo 
is normal, with mean and variance: 

E{bo} = f30 

a 2 b } _ a2 ! X [ -2] 
{ 0 - n + E(X; - X)2 

(2.22) 

(2.22a) 

(2.22b) 

The normality of the sampling distribution of bo follows because bo, like bl , is a linear 
combination of the observations Yi • The results for the mean and variance of the sampling 
distribution of bo can be obtained in similar fashion as those for bl • 

An estimator of a 2 {bo} is obtained by replacing a 2 by its point estimator MSE: 

s2{bo} = MSE [! + E( j(2 2] 
n Xi - X) 

(2.23) 

The positive square root, s{bo}, is an estimator of a {bolo 

Sampling Distribution of (bo - {Jo)/s{bo} 
Analogous to theorem (2.10) for b" a theorem for bo states: 

bo - f30 is distributed as ten - 2) for regression model (2.1) 
s{bo} 

(2.24) 

Hence, confidence intervals for f30 and tests concerning f30 can be set up in ordinary fashion, 
using the t distribution. 

Confidence Interval for {Jo 

Example 

The 1 - a confidence limits for f30 are obtained in the same manner as those for f31 derived 
earlier. They are: 

bo ± t(1 - a12; n - 2)s{bo} (2.25) 

As noted earlier, the scope of the model for the Toluca Company example does not extend to 
lot sizes. of X = O. Hence, the regression parameter f30 may not have intrinsic meaning here. 
If, nevertheless, a 90 percent confidence interval for f30 were desired, we would proceed by 
finding t(.95; 23) and s{bo}. From Table B.2, we find t(.95; 23) = 1.714. Using the earlier 
results summarized in Table 2.1, we obtain by (2.23): 

[ 
1 j(2] [ 1 (70 00)2] 

s2{bo} = MSE ;; + E(X
i 

_ X)2 = 2,384 25 + 19:800 = 685.34 

or: 

s{bo} = 26.18 

The MINITAB output in Figure 2.2 shows this estimated standard deviation in the column 
labeled Stdev and the row labeled Constant. 

The 90 percent confidence interval for f30 is: 

62.37 - 1.714(26.18) ::s f30 :s 62.37 + 1.714(26.18) 

17.5 ::s f30 ::s 107.2 
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We caution again that this confidence interval does not necessarily provide meaningful 
information. For instance, it does not necessarily provide information about the "setup" 
cost (the cost incurred in setting up the production process for the part) since we are not 
certain whether a linear regression model is appropriate when the scope of the model is 
extended to X = O. 

2.3 Some Considerations on Making Inferences Concerning 
f30 and f31 

Effects of Departures from Normality ." 
If the probability distributions of Y are not exactly normal but do not depart seriously, 
the sampling distributions of bo and bI will be approximately normal, and the use of the 
t distribution will provide approximately the specified confidence coefficient or level of 
significance. Even if the distriputions of Y are far from nprmal, the estimators bo and bi 

generally have the property of asymptotic normality-their distributions approach normality 
under very general conditions as the sample size increases. Thus, with sufficiently large 
samples, the confidence intervals and decision rules given earlier still apply even if the 
probability distributions of Y depart far from normality. For large samples, the t value is, 
of course, replaced by the z value for the standard normal distribution. 

Interpretation of Confidence Coefficient and Risks of Errors 
Since regression model (2.1) assumes that the Xi are known constants, the, confidence 
coefficient and risks of errors are interpreted with respect to taking repeated samples in 
which the X observations are kept at the same levels as in the observed sample. For instance, 
we constructed a confidence interval for f3, with confidence coefficient .95 in the Toluca 
Company example. This coefficient is interpreted to mean that if many independent samples 
are taken where the levels of X (the lot sizes) are the same as in the data set and a 95 percent 
confidence interval is constructed for each sample, 95 percent of the intervals will contain 
the true value of f3,. 

Spacing of the X levels 
Inspection of formulas (2.3b) and (2.22b) for the variances of b i and bo, respectively, 
indicates that for given nand a 2 these variances are affected by the spacing of the X 
levels in the observed data. For example, the greater is the spread in the X levels, the larger 
is the quantity L (Xi - X)2 and the smaller is the variance of b,. We discuss in Chapter 4 
how the X observations should be spaced in experiments where spacing can be controlled. 

Power of Tests 
The power of tests on f30 and f3, can be obtained from Appendix Table B.5. Consider, for 
example, the general test concerning f3, in (2.19): 

Ho: f3I = f310 
Ha: f3, =1= f310 
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for which test statistic (2.20) is employed: 

* bi - tho t = --"-----'-
s{bd 

and the decision rule for level of significance a is given in (2.18): 

If It* 1 ::s t (1 - a 12; n - 2), conclude Ho 

If It*1 > t(1 - a12; n - 2), conclude Ha 

The power of this test is the probability that the decision rule will lead to conclusion Ha 
when Ha in fact holds. Specifically, the power is given by: 

Power = P{lt*1 > t(l- al2;n - 2) 18} ). (2.26) 

where 8 is the noncentrality measure-i.e., a measure of how far the true value of f3, is from 
f31O: 

8 = 1f3, - f3101 
a{bd 

(2.27) 

TableB.5 presents the power of the two-sided t testJora = .05 and a = .01, for various 
degrees of freedom df. To illustrate the use of this table, let us return to the Toluca Company 
example where we tested: 

Ho: f31 = f310 = 0 

Ha: f3, =1= f310 = 0 

Suppose we wish to know the power of the test when f31 = 1.5. To ascertain this, we need 
to know a 2

, the variance of the error terms. Assume, based on prior information or pilot 
data, that a reasonable planning value for the unknown variance is a 2 = 2,500, so a 2{bd 
for our example would be: 

a2 b } = a
2 

= 2,500 = .1263 
{, L:(Xi - X)2 19,800 

or a {b,} = .3553. Then 8 = 11.5 - 01-;- .3553 = 4.22. We enter Table B.5 for a = .05 (the 
level of significance used in the test) and 23 degrees of freedom and interpolate linearly 
between 8 = 4.00 and 8 = 5.00. We obtain: 

I 

4.22 -4.00 
.97 + - 0 00 (1.00 - .97) = .9766 

5.0 -4. 

Thus, if f31 = 1.5, the probability would be about .98 that we would be led to conclude 
Ha (f3I =1= 0). In other words, if f3, = i .5, we would be almost certain to conclude that there 
is a linear relation between work hours and lot size. 

The power of tests concerning f30 can be obtained from Table B.5 in completely analogous 
fashion. For one-sided tests, Table B.5 should be entered so that one-half the level of 
significance shown there is the level of significance of the one-sided test. 
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2.4 Interval Estimation of E{Yd 

A common objective in regression analysis is to estimate the mean for one or more prob­
ability distributions of Y. Consider, for example, a study of the relation between level of 
piecework pay (X) and worker productivity (Y). The mean productivity at high and medium 
levels of piecework pay may be of particular interest for purposes of analyzing the bene­
fits obtained from an increase in the pay. As another example, the Toluca Company was 
interested in the mean response (mean number of work hours) for a range of lot sizes for 
purposes of finding the optimum lot size. 

Let Xh denote the level of X for which we wish to estimate the mean respons~. Xh may 
be a value which occurred in the sample, or it may be some other value of the predictor 
variable within the scope of the model. The mean response when X = Xh is denoted by 
E{Yh}. Formula (1.12) gives us the point estimator Yh of E{Yh}: 

Yh = bo +blXh 

We consider now the sampling distribution of Yh . 

Sampling Distribution of Yh 

(2.28) 

The sampling distribution of Yh , like the earlier sampling distributions discussed, refers to 
the different values of Yh that would be obtained if repeated samples were selected, each 
holding the levels of the predictor variable X constant, and calculating Yh for each sample. 

For normal error regression model (2.1), the sampling distribution of 
Yh is normal, with mean and variance: 

E{Yh} = E{Yh} 

2 ~ 2 [1 (Xh - X)2 ] 
a {Yh } = a ;; + L:(X

i 
_ X)2 

(2.29) 

(2.29a) 

(2.29b) 

Normality. The normality of the sampling distribution of Yh follows directly from the 
fact that i\, like bo and bl , is a linear combination of the observations Yi • 

Mean. Note from (2.29a) that Yh is an unbiased estimator of E{Yh }. To prove this, we 
proceed as follows: 

E{Yh} = E{bo + blXd = E{bo} + XhE{bd =!3o + !3I Xh 

by (2.3a) and (2.22a). 

Variance. Note from (2.29b) that the variability of the sampling distribution of Yh is 
affected by how far Xh is from X, through the term (Xh - X)2. The further from X is 
Xh, the greater is the quantity (Xh - X)2 and the larger is the variance of Yh. An intuitive 
explanation of this effect is found in Figure 2.3. Shown there are two sample regression 
lines, based on two samples for the same set of X values. The two regression lines are 
assumed to go through the same (X, Y) point to isolate the effect of interest, namely, the 
effect of variation in the estimated slope bI from sample to sample. Note that at X I, near 
X, the fitted values 1\ for the two sample regression lines are close to each other. At X2 , 

which is far from X, the situation is different. Here, the fitted values Y2 differ substantially. 
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Thus, variation in the slope hI from sample to sample has a much more pronounced effect 
on i\ for X levels far from the mean X than for X levels near X. Hence, the variation in the 
i\ values from sample to sample will be greater when X h is far from the mean than when 
Xh is near the mean. 

When MSE is substituted for a 2 in (2.29b), we obtain s2{Vh}, the estimated variance 
of Vh : 

(2.30) 

TIle estimated standard deviation of Vh is then s {Vh}, the positive square root of s2 {Vh}. 

Comments 

1. When X" = 0, the variance of Y" in (2.29b) reduces to the variance of bo in (2.22b). Similarly, 
S2(y,,} in (2.30) reduces to s2(bo} in (2.23). The reason is that Yh = bo when Xh = 0 since Yh = 
bo +b,Xh • 

2. To derive a 2(y,,}, we first show thatb i and Yare uncorrelated and, hence, for regression model 
(2.1), independent: 

a(Y,b,} =0 (2.31) 

where a(Y, bd denotes the covariance between Y and b l • We begin with the definitions: 

where ki is as defined in (2.4a). We now use (A.32), with ai = lin and Ci = ki; remember that the 
Yi are independent random variables: 

- " ( 1) 2 a
2 

" a(Y, b.} = L.. ;; kia (Yd = --;;- L..ki 

But we know from (2.5) that L ki = O. Hence, the covariance is O. 
Now we are ready to find the variance of Y". We shall use the estimatodn the alternative form (1.15): 

2 ~ 2 - -
a (Y,,}=a (Y+b,(X,,-X)} 
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Since Y and bi are independent and X" and X are constants, we obtain: 

(T2(l\} = (T2(y} + (X" - X)2(T2(bd 

Now (T2(bd is given in (2.3b), and: 

Hence: 

2 ~ (T2 - 2 (T2 
(T (Y,J = - + (X" - X) '" 2 

n ~(Xi -X) 

which, upon a slight rearrangement of terms, yields (2.29b). • 
Sampling Distribution of (Yh - E{Yh})/S{Yh} 

Since we have encountered the t distribution in each type of inference for regression 
model (2.1) up to this point, it should not be surprising that: 

Y" - E{Y,,} . 
~ is distributed as t (n - 2) for regression model (2.1) 

s{Y,,} 
(2.32) 

Hence, all inferences concerning E {Y,,} are carried out in the usual fashion with the t 
distribution. We illustrate the construction of confidence intervals, since in practice these 
are used more frequently than tests. 

Confidence Interval for E{Yh} 

Example 1 

A confidence interval for E {Yh } is constructed in the standard fashion, making use of the t 
distribution as indicated by theorem (2.32). The I - ex confidence limits are: 

(2.33) 

Returning to the Toluca Company example, let us find a 90 percent confidence interval for 
E {Yh } when the lot size is Xh = 65 units. Using the earlier results in Table 2.1, we find the 
point estimate Yh: 

Yh = 62.37 + 3.5702(65) = 294.4 

Next, we need to find the estimated standard deviation s{Yh }. We obtain, using (2.30): 

s2{y } = 2 384 [~+ (65 -70.00)2] = 98.37 
h , 25 19,800 

s{Yh } = 9.918 

For a 90 percent confidence coefficient, we require t(.95; 23) = 1.714. Hence, our confi­
dence interval with confidence coefficient .90 is by (2.33): 

294.4 - 1.714(9.918) .:s E{Yh } .:s 294.4 + 1.714(9.918) 

277.4.:s E{Yh } .:s 311.4 

We conclude with confidence coefficient .90 that the mean number of work hours required 
when lots of 65 units are produced is somewhere between 277.4 and 311.4 hours. We see 
that our estimate of the mean number of work hours is moderately precise. 
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Suppose the Toluca Company wishes to estimate E {Yh} for lots with Xh = 100 units with 
a 90 percent confidence interval. We require: 

Yh = 62.37 + 3.5702(100) = 419.4 

s2{Yh} = 2,384 [;5 + (1001;,;~~00)2] = 203.72 

s{Yh } = 14.27 

t(.95;23) = 1.714 

Hence, the 90 percent confidence interval is: 

419.4 - 1.714(14.27) .:s E {Yh } .:s 419.4 + 1.714(14.27) 

394.9 .:s E{Yh } .:s 443.9 

Note that this confidence interval is somewhat wider than that for Example 1, since the 
Xh level here (Xh = 100) is substantially fartber from the mean X = 70.0 than the Xh 
level for Example 1 (Xh = 65). 

Comments 
I. Since the Xi are known constants in regression model (2.1), the interpretation of confidence 

intervals and risks of errors in inferences on the mean response is in terms of taking repeated 
samples in which the X observations are at the same levels as in the actual study. We noted this 
same point in connection with inferences on f30 and f31 • 

2. We see from formula (2.29b) that, for given sample results, the variance of Y" is smallest when 
X" = X. Thus, in an experiment to estimate the mean response at a particular level X" of the 
predictor variable, the precision of the estimate will be greatest if (everything else remaining equal) 
the observations on X are spaced so that X = X". 

3. The usual relationship between confidence intervals and tests applies in inferences concerning the 
mean response. Thus, the two-sided confidence limits (2.33) can be utilized for two-sided tests 
concerning the mean response at X". Alternatively, a.regular decision rule can be set up. 

4. The confidence limits (2.33) for a mean response E(Y,J are not sensitive to moderate departures 
from the assumption that the error terms are normally distributed. Indeed, the limits are not sensitive 
to substantial departures from normality if the sample size is large. This robustness in estimating 
the mean response is related to the robustness of the confidence limits for f30 and f31' noted earlier. 

5. Confidence limits (2.33) apply when a single mean response is to be estimated from the study. We 
discuss in Chapter 4 how to proceed when several mean responses are to be estimated from the 
same data • 

2.5 Prediction of New Observation 

We consider now the prediction of a new observation Y corresponding to a given level X of 
the predictor variable. Three illustrations where prediction of--a new observation is needed 
follow. 

1. In the Toluca Company example, the next lot to be produced consists of 100 units and 
management wishes to predict the number of work hours for this particular lot. 
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2. An economist has estimated the regression relation between company sales and number 
of persons 16 or more years old from data for the past 10 years. Using a reliable de­
mographic projection of the number of persons 16 or more years old for next year, the 
economist wishes to predict next year's company sales. 

3. An admissions officer at a university has estimated the regression relation between 
the high school grade point average (GPA) of admitted students and the first-year college 
GPA. The nfficer wishes to predict the first-year college GPA for an applicant whose 
high school GPA is 3.5 as part of the information on which an admissions decision will 
be based. 

The new observation on Y to be predicted is viewed as the result of a new trial, inde­
pendent of the trials on which the regression analysis is based. We denote the ~<;vel of X 
for the new trial as Xh and the new observation on Y as Yh(new), Of course, -we assume 
that the underlying regression model applicable for the basic sample data continues to be 
appropriate for the new observation. 

The distinction between estimation of the mean response E{Yh }, discussed in the pre­
ceding section, and prediction of a new response Yh(new), discussed now, is basic. In the 
former case, we estimate the mean of the distribution of Y. In the present case, we predict 
an individual outcome drawn from the distribution of Y. Of course, the great majority of 
individual outcomes deviate from the mean response, and this must be taken into account 
by the procedure for predicting Yh(new), 

Prediction Interval for Yh(new) when Parameters Known 
To illustrate the nature of a prediction interval for a new observation Yh(new) in as simple a 
fashion as possible, we shall first assume that all regression parameters are known. Later 
we drop this assumption and make appropriate modifications. 

Suppose that in the college admissions example the relevant parameters of the regression 
model are known to be: 

f30 = .10 f3, = .95 

E{Y} = .10 + .95X 

a = .12 

The admissions officer is considering an applicant whose high school GPA is Xh = 3.5. 
The mean college GPA for students whose high school average is 3.5 is: 

E{Yh } = .10 + .95(3.5) = 3.425 

Figure 2.4 shows the probability distribution of Y for X" = 3.5. Its mean is E{Yh } = 3.425, 
and its standard deviation is a = .12. Further, the distribution is normal in accord with 
regression model (2.1). 

Suppose we were to predict that the college GPA of the applicant whose high school 
GPA is Xh = 3.5 will be between: 

E{Yh } ± 3a 

3.425 ± 3(.12) 

so that the prediction interval would be: 

3.065 .:::: Yh(new) .:::: 3.785 
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k---- Prediction Limits---~ 

3.425 - 30- y 

Probability Distribution of Y when Xh = 3.5 

Since 99.7 percent of the area in a nonnal probability distribution falls within three standard 
deviations from the mean, the probability is .997 that this prediction interval will give a 
correct prediction for the applicant with high school GPA of 3.5. While the prediction limits 
here are rather wide, so that the prediction is not too precise, the prediction interval does 
indicate to the admissions officer that the applicant is expected to attain at least a 3.0 GPA 
in the first year of college. 

The basic idea of a prediction interval is thus to choose a range in the distribution of Y 
wherein most of the observations will fall, and then to declare that the next observation will 
fall in this range. The usefulness of the prediction interval depends, as always, on the width 
of the interval and the needs for precision by the user. 

In general, when the regression parameters of nonnal error regression model (2.1) are 
known, the 1 - a prediction limits for Yh(new) are: 

E{Yh } ± z(1 - aj2)a (2.34) 

In centering the limits around E{Yh }, we obtain the narrowest interval consistent with the 
specified probability of a correct prediction. 

Prediction Interval for Yh(new) when Parameters Unknown 
When the regression parameters are unknown, they must.be estimated. The mean of the 
distribution of Y is estimated by .rh , as usual, and the variance of the distribution of Y 
is estimated by MSE. We cannot, howeveJi, simply use the prediction limits (2.34) with 
the parameters replaced by the corresponding point estimators. The reason is illustrated 
intuitively in Figure 2.5. Shown there are two probability distributions of Y, corresponding to 
the upper and lower limits of a confidence interval for E {Yh }. In other words, the distribution 
of Y could be located as far left as the one shown, as far right as the other one shown, or 
anywhere in between. Since we do not know the mean E{Yh } and only estimate it by a 
confidence interval, we cannot be certain of the location of the distribution of Y. 

Figure 2.5 also shows the prediction limits for each of the two probability distribu­
tions of Y presented there. Since we cannot be certain of the location of the distribution 
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of Y, prediction limits for Y"(new) clearly must take account of two elements, as shown in 
Figure 2.5: 

1. Variation in possible location of the distribution of Y . 
2. Variation within the probability distribution of Y. 

Prediction limits for a new observation Yh(new) at a given level Xh are obtained by means 
of the following theorem: 

Yh(new) - I'h is distributed as ten - 2) for normal error regression model (2.1) (2.35) 
s{pred} 

Note that the studentized statistic (2.35) uses the point estimator I'h in the numerator rather 
than the true mean E {Yh } because the true mean is unknown and cannot be used in making a 
prediction. The estimated standard deviation of the prediction, s {pred}, in the denominator 
of the studentized statistic will be defined shortly. 

From theorem (2.35), it follows in the usual fashion that the 1 - a prediction limits for 
a new observation Yh(new) are (for instance, compare (2.35) to (2.10) and relate I'h to hi and 

Y"(new) to fh): 

I'h ± t(1 - a12; n - 2)s{pred} (2.36) 

Note that the numerator of the studentized statistic (2.35) represents how far the new 
observation Yh(new) will deviate from the estimated mean I'h based on the original n cases in 
the study. This difference may be viewed as the prediction error, with I'h serving as the best 
point estimate of the value of the new observation Yh(new), TIle variance of this prediction 
error can be readily obtained by utilizing the independence of the new observation Y h(new) and 
the original n sample cases on which I'" is based. We denote the variance of the prediction 
error by a 2{pred}, and we obtain by (A.31b): 

2 2 ~ 2 2~ 2 2~ 
a {pred} = a {Yh(new) - Y h } = a {Yh(new)} + a {Yh} = a + a {Yh} (2.37) 

Note that a 2{pred} has two components: 

1. The variance of the distribution of Y at X = Xh, namely a 2
• 

2. The variance of the sampling distribution of fh' namely a 2{I'h }. 
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An unbiased estimator of a 2{pred} is: 

(2.38) 

which can be expressed as follows, using (2.30): 

[ 
I (Xh - X)2 ] 

s2{pred} = MSE 1 + - + L 2 
n (Xi - X) 

(2.38a) 

The Toluca Company studied the relationship between lot size and work hours primarily 
to obtain infonnation on the mean work hours required for different lot sizes for use in 
determining the optimum lot size. The company was also interested, however, to see whether 
the regression relationship is useful for predicting the required work hours for individual 
lots. Suppose that the next lot to be produced consists of X h = 100 units and that a 90 percent 
prediction interva1 is desired. We require t(.95; 23) = 1.714. From earlier work, we have: 

i\ = 419.4 MSE= 2,384 

Using (2.38), we obtain: 

s2{pred} = 2,384 + 203.72 = 2,587.72 

s{pred} = 50.87 

Hence, the 90 percent prediction interval for Yh(new) is by (2.36): 

419.4 - 1.714(50.87) .:s Yh(new) .:s 419.4 + 1.714(50.87) 

332.2 .:s Yh(new) .:s 506.6 

With confidence coefficient .90, we predict that the number of work hours for the next 
production run of 100 units will be somewhere between 332 and 507 hours. 

This prediction interval is rather wide and may not be too useful for planning worker 
requirements for the next lot. The interval can still be useful for control purposes, though. 
For instance, suppose that the actual work hours on the next lot of 100 units were 550 hours. 
Since the actual work hours fall outside the prediction limits, management would have an 
indication that a change in the production process may have occurred and would be alerted 
to the possible need for remedial action. . 

Note that the primary reason for the wide prediction interval is the large lot-to-Iot vari­
ability in work hours for any gi"\!en lot size; MSE = 2,384 accounts for 92 percent of 
the estimated prediction variance s2{pred} = 2,587.72. It may be that the large lot-to-Iot 
variability reflects other factors that affect the required number of work hours besides lot 
size, such as the amount of experience of employees assigned to the lot production. If so, a 
multiple regression model incorporating these other factors might lead to much more pre­
cise predictions. Alternatively, a designed experiment could be conducted to determine the 
main factors leading to the large lot-to-Iot variation. A quality improvement program would 
then use these findings to achieve more unifonn performance, for example, by additional 
training of employees if inadequate training accounted for much of the variability. 
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Comments 
I. The 90 percent prediction interval for Yh(new) obtained in the Toluca Company example is wider 

than the 90 percent confidence interval for E(Yh } obtained in Example 2 on page 55. The reason is 
that when predicting the work hours required for a new lot, we encounter both the variability in Y" 
from sample to sample as well as the lot-to-Iot variation within the probability distribution of Y. 

2. Formula (2.38a) indicates that the prediction interval is wider the further X" is from X. The 
reason for this is that the estimate of the mean Y,,, as noted earlier, is less precise as X" is located 
farther away from X. 

3. The prediction limits (2.36), unlike the confidence limits (2.33) for a mean response E(Y,J, 
are sensitive to departures from normality of the error terms distribution. In Chapter 3, we discuss 
diagnostic procedures for examining the nature of the probability distribution of the error terms, and 
we describe remedial measures if the departure from normality is serious. 1 

_fl 

4. The confidence coefficient for the prediction limits (2.36) refers to the taking of repeated 
samples based on the same set of X values, and calculating prediction limits for Y"(new) for each 
sample. 

5. Prediction limits (2.36) apply for a single prediction based on the sample data. Next, we discuss 
how to predict the mean of several new observations at a given x,,, and in Chapter 4 we take up how 
to make several predictions at different X" levels. 

6. Prediction intervals resemble confidence intervals. However, they differ conceptually. A confi­
dence interval represents an inference on a parameter and is an interval that is intended to cover the 
value of the parameter. A prediction interval, on the other hand, is a statement about the value t9be 
taken by a random variable, the new observation Yh(new). • 

Prediction of Mean of m New Observations for Given Xh 
Occasionally, one would like to predict the mean of m new observations on Y for a given 
level of the predictor variable. Suppose the Toluca Company has been asked to bid on a 
contract that calls for m = 3 production runs of Xh = 100 units during the next few months. 
Management would like to predict the mean work hours per lot for these three runs and 
then convert this into a prediction of the total work hours required to fill the contract. 

We denote the mean of the new Y observations to be predicted as Y h(new). It can be shown 
that the appropriate 1 - a prediction limits are, assuming that the new Y observations are 
independent: 

where: 

or equivalently: 

Yh ± t(1 - aj2; n - 2)s{predmean} 

2 MSE 2 ~ 
s {predmean} = -- + s {Yh} 

m 

[ 
1 1 (Xh - X)2 ] 

s2 {predmean} = MSE - + - + L 2 
m n (Xi -X) 

Note from (2.39a) that the variance s2{predmean} has two components: 

(2.39) 

(2.39a) 

(2.39b) 

1. The variance of the mean of m observations from the probability distribution of Y at 
x= Xh • 

2. The variance of the sampling distribution of Yh • 
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In the Toluca Company example, let us find the 90 percent prediction interval for the mean 
number of work hours Y h(new) in three new production runs, each for Xh = 100 units. From 
previous work, we have: 

Yh = 419.4 

MSE= 2,384 

S2{Yh} = 203.72 

t(.95;23) = 1.714 

Hence, we obtain: 
2,384 

s2{predmean} = -3- + 203.72 = 998.4 

s{predmean} = 31.60 

The prediction interval for the mean work hours per lot then is: 

419.4 - 1.714(31.60) :s i\(new) :s 419.4 + 1.714(31.60) 

365.2 :s i\(new) :s 473.6 

Note that these prediction limits are narrower than those for predicting the work hours 
for a single lot of 100 units because they involve a prediction of the mean work hours for 
three lots. 

We obtain the prediction interval for the total number of work hours for the three lots by 
multiplying the prediction limits for i\(new) by 3: 

1,095.6 = 3(365.2):s Total work hours:s 3(473.6) = 1,420.8 

Thus, it can be predicted with 90 percent confidence that between 1,096 and 1,421 work 
hours will be needed to fill the contract for three lots of 100 units each. 

Comment 
The 90 percent prediction interval for Y,,(new), obtained for the Toluca Company example above, is 
narrower than that obtained for Y"(new) on page 59, as expected. Furthermore, both of the prediction in­
tervals are wider than the 90 percent confidence intervalfor E (Y,J obtained in Example 2 on page 55-
also as expected. • 

2.6 Confidence-Band for Regression Line 

At times we would like to obtain a confidence band for the entire regression line E{Y} = 

f30 + f3,X. This band enables us to see the regionjn which the entire regression line lies. It 
is particularly useful for determining the appropriateness of a fitted regression function, as 
we explain in Chapter 3. 

The Working-Hotelling 1 - ex confidence band for the regression line for regression . , 
model (2.1) has the folloWlllg t~o boundary values at any level Xh : 

(2.40) 

where: 

w2 = 2F(1 - ex; 2, n - 2) (2.40a) 

and Yh and S{Yh} are defined in (2.28) and (2.30), respectively. Note that the formula 
for the boundary values is of exactly the same form as formula (2.33) for the confidence 
limits for the mean response at Xh, except that the t mUltiple has been replaced by the W 
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Example 

multiple. Consequently, the boundary points of the confidence band for the regression line 
are wider apart the further Xh is from the mean X of the X observations. The W multiple 
will be larger than the t multiple in (2.33) because the confidence band must encompass 
the entire regression line, whereas the confidence limits for E{Yh } at Xh apply only at the 
single level X h. 

We wish to determine how precisely we have been able to estimate the regression function 
for the Toluca Company example by obtaining the 90 percent confidence band for the 
regression line. We illustrate the calculations of the boundary values of the confidence band 
when Xh = 100. We found earlier for this case: 

s{i\} = 14.27 

We now require: 

W2 = 2F(1 - a; 2, n - 2) = 2F(.90; 2, 23) = 2(2.549) = 5.098 

W = 2.258 

Hence, the boundary values of the confidence band for the regression line at Xh = 100 are 
419.4 ± 2.258(14.27), and the confidence band there is: 

387.2::s f30 + f3,Xh ::s 451.6 for Xh = 100 

In similar fashion, we can calculate the boundary values for other values of Xh by 
obtaining Yh and S{Yh} for each Xh level from (2.28) and (2.30) and then finding the 
boundary values by means of (2.40). Figure 2.6 contains a plot of the confidence band for 
the regression line. Note that at Xh = 100, the boundary values are 387.2 and 451.6, as we 
calculated earlier. 

We see from Figure 2.6 that the regression line for the Toluca Company example has 
been estimated fairly precisely. The slope of the regression line is clearly positive, and the 
levels of the regression line at different levels of X are estimated fairly precisely except for 
small and large lot sizes. 
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Comments 

1. The boundary values of the confidence band for the regression line in (2.40) define a hyperbola, 
as may be seen by replacing Yh and s{Y,J by their definitions in (2.28) and (2.30), respectively: 

[
1 (X-XY ]1/2 

bo + blX ± W.JMSE - + L 2 
n (Xi - X) 

(2.41) 

2. The boundary values of the confidence band for the regression line at any value Xh often are 
not substantially wider than the confidence limits for the mean response at that single X h level. In 
the Toluca Company example, the t multiple for estimating the mean response at Xh = 100 with a 
90 percent confidence interval was t(.95; 23) = 1.714. This compares with the W multiple for the 
90 percent confidence band for the entire regression line of W = 2.258. With the somewhat wider 
limits for the entire regression line, one is able to draw conclusions about any and all mean responses 
for the entire regression line and not just about the mean response at a given X level. Some uses of 
this broader base for inference will be explained in the next two chapters. l. 

3. The confidence band (2.40) applies to the entire regression line over all real-numbered values 
of X from -(X) to 00. The confidence coefficient indicates the proportion of time that the estimating 
procedure will yield a band that covers the entire line, in a long series of samples in which the X 
observations are kept at the same level as in the actual study. 

In applications, the confidence band is ignored for that part of the regression line which is not 
of interest in the problem at hand. In the Toluca Company example, for instance, negative lot sizes 
would be ignored. The confidence coefficient for a limited segment of the band of interest is somewhat 
higher than 1 - a, so 1 - a serves then as a lower bound to the confidence coefficient. 

4. Some alternative procedures for developing confidence bands for the regression line have been 
developed. The simplicity of the Working-Hotelling confidence band (2.40) arises from the fact that 
it is a direct extension of the confidence limits for a single mean response in (2.33). • 

2.7 Analysis of Variance Approach to Regression Analysis 

We now have developed the basic regression model and demonstrated its major uses. At 
this point, we consider the regression analysis from the perspective of analysis of variance. 
This new perspective will not enable us to do anything new, but the analysis of variance 
approach will come into its own when we take up mUltiple regression models and other 
types of linear statistical models. 

Partitioning of Total Sum of Squares 
Basic Notions. The analysis of variance approach is based on the partitioning of sums 
of squares and degrees of freedom associated with the t:esponse variable Y. To explain the 
motivation of this approach, consWer again the Toluca Company example. Figure 2.7a shows 
the observations Yi for the first two production runs presented in Table 1.1. Disregarding 
the lot sizes, we see that there is variation in the number of work hours Yi , as in all statistical 
data. This variation is conventionally measured in tenus of the-deviations of the Yi around 
their mean Y: 

Yi-Y (2.42) 
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FIG U RE 2.7 Illustration of Partitioning of lOtal Deviations Y i - Y - lOluca Company Example (not drawn to 
scale; only observations Y 1 and Y 2 are shown). 
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These deviations are shown by the vertical lines in Figure 2.7a. The measure of total 
variation, denoted by SSTO, is the sum of the squared deviations (2.42): 

SSTO = 2:(Yi - y)2 (2.43) 

Here SSTO stands for total sum of squares. If all Yi observations are the same, SSTO = O. 
The greater the variation among the Yj observations, the larger is SSTO. Thus, SSTO for 
our example is a measure of the uncertainty pertaining to the work hours required for a lot, 
when the lot size is not taken into account. 

When we utilize the predictor variable X, the variation reflecting the uncertainty con­
cerning the variable Y is that of the Yi observations around the fitted regression line: 

(2.44) 

These deviations are shown by the vertical lines in Figure 2.7b. The measure of variation 
in the Yi observations that is present when the predictor variable X is taken into account is 
the sum of the squared deviations (2.44), which is the familiar SSE of (1.21): 

'" A 2 SSE = L..,.(Yi - Y j ) (2.45) 

Again, SSE denotes error sum of squares. If all Y; observations fall on the fitted regression 
line, SSE = O. The greater the variation of the Yi observations around the fitted regression 
line, the larger is SSE. 

For the Toluca Company example, we know from earlier work (Table 2.1) that: 

SSTO = 307,203 SSE = 54,825 

What accounts for the substantial difference between these two sums of squares? The 
difference, as we show shortly, is another sum of squares: 

(2.46) 
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where SSR stands for regression sum of squares. Note that SSR is a sum of squared deviations, 
the deviations being: 

(2.47) 

These deviations are shown by the vertical lines in Figure 2.7c. Each deviation is simply the 
difference between the fitted value on the regression line and the mean of the fitted values 
Y. (Recall from (1.18) that the mean of the fitted values Yi is Y.) lfthe regression line is 
horizontal so that Yi - Y == 0, then SSR = O. Otherwise, SSR is positive. 

SSR may be considered a measure of that part of the variability of the Yi which is 
associated with the regression line. The larger SSR is in relation to SSTO, the greater is the 
effect of the regression relation in accounting for the total variation in the Yi observations. 

For the Toluca Company example, we have: 

SSR = SSTO - SSE = 307,203 - 54,825 = 252,378 

which indicates that most of the total variability in work hours is accounted for by the 
relation between lot size and work hours. 

Formal Development of Partitioning. The total deviation Yi - Y, used in the measure of 
the total variation of the observations Yi without taking the predictor variable into account, 
can be decomposed into two components: 

(2.48) 

Total Deviation Deviation 
deviation of fitted around 

regression fitted 
value regression 

around mean line 

The two components are: 

1. The deviation of the fitted value Yi around the mean Y. 
2. The deviation of the observation Yi around the fitted regression line. 

Figure 2.7 shows this decomposition for observation Y, by the broken lines. 
It is a remarkable property that the sums of these squared deviations have the same 

relationship: 

'" -2 "'A -2", A2 L.)Yi - Y) = L..,.(Yi - Y) + L..,.(Yi - Yi) (2.49) 

or, using the notation in (2.43), (2.45), and (2.46): 
f 

SSTO = SSR + SSE (2.50) 

To prove this basic result in the analysis of variance, we proceed as follows: 

2::(Yi - y)2 = 2::[(Yi - Y) + (Yi - yi)]2 

= 2::[(Yi - y)2 + (Yi - yi)2 + 2(Yi - Y)(Y; - Yi)] 

= 2::(y; - y)2 + 2::(Yi - yi)2 + 22::(Yi - Y)(Yi - Yi) 
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The last tenn on the right equals zero, as we can see by expanding it: 

22)Yi - Y)(Yi - Yi) = 2:L Yi(Yi - Yi) - 2Y :L(Yi - Yi) 

The first summation on the right equals zero by (1.20), and the second equals zero by (1.17). 
Hence, (2.49) follows. 

Comment 
The formulas for ssro, SSR, and SSE given in (2.43), (2.45), and (2.46) are best for computational 
accuracy. Alternative formulas that are algebraically equivalent are available. One that is useful for 
deriving analytical results is: 

2,", - 2 
SSR = hI L..(Xi - X) (2.51) 

• 
Breakdown of Degrees of Freedom 

Corresponding to the partitioning of the total sum of squares SSTO, there is a partitioning 
of the associated degrees of freedom (abbreviated df). We have n - 1 degrees of freedom 
associated with SSTO. One degree of freedom is lost because the deviations Yi -'- Y are 
subject to one constraint: they must sum to zero. Equivalently, one degree of freedom is 
lost because the sample mean Y is used to estimate the population mean. 

SSE, as noted earlier, has n - 2 degrees of freedom associated with it. Two degrees of 
freedom are lost because the two parameters f30 and f3I are estimated in obtaining the fitted 
values Yi • 

SSR has one degree of freedom associated with it. Although there are n deviations Yi - Y, 
all fitted values Yi are calculated from the same estimated regression line. Two degrees of 
freedom are associated with a regression line, corresponding to the intercept and the slope 
of the line. One of the two degrees of freedom is lost because the deviations t - Y are 
subject to a constraint: they must sum to zero. 

Note that the degrees of freedom are additive: 

n - 1 = 1 + (n - 2) 

For the Toluca Company example, these degrees of freedom are: 

24 = 1 +23 

Mean Squares 
A sum of squares divided by its associated degrees of freedom is called a mean square 
(abbreviated MS). For instance, an ordinary sample variance is a mean square since a sum 
of squares, 2:)Yi - y)2, is divided by its associated degrees of freedom, n - 1. We are 
interested here in the regression mean square, denoted by MSR: 

SSR 
MSR=-=SSR 

1 
and in the error mean square, MSE, defined earlier in (1.22): 

SSE 
MSE=-­

n-2 

(2.52) 

(2.53) 
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For the Toluca Company example, we have SSR = 252,378 and SSE = 54,825. Hence: 

252378 
MSR = i = 252,378 

Also, we obtained earlier: 

54,825 
MSE= -- =2384 

23 ' 

Comment 

The two mean squares MSR and MSE do not add to 

ssm = 307,203 = 12,800 
(n - I) 24 

Thus, mean squares are not additive. • 
Analysis of Variance Table 

TABLE 2.2 
ANOVA Table 
for Simple 
Linear 
Regression. 

Basic Table. The breakdowns of the total sum of squares and associated degrees of 
freedom are displayed in the form of an analysis of variance table (ANOVA table) in 
Table 2.2. Mean squares of interest also are shown. In addition, the ANOVA table contains 
a column of expected mean squares that will be utilized shortly. The ANOVA table for the 
Toluca Company example is shown in Figure 2.2. The columns for degrees of freedom and 
sums of squares are reversed in the MINITAB output. 

Modified Table. Sometimes an ANOVA table showing one additional element of decom­
position is utilized. This modified table is based on the fact that the total sum of squares 
can be decomposed into two parts, as follows: 

'" - 2 '" 2 -2 SSTO = L...-(Yi - Y) = L...- Y; - nY 

In the modified ANOVA table, the total uncorrected sum of squares, denoted by SSTOU, 
is defined as: 

SSTOU = 2:: Y? (2.54) 

and the correction for the mean sum of squares, denoted by SS(correction for mean), is 
defined as: 

SS(correction for mean) = ny2 (2.55) 

Table 2.3 shows the general format of this modified ANOVA table. While both typ.es of 
ANOVA tables are widely used, we shall usually utilize the basic type of table. 

Source of 
Variation SS df \M5 E{MS} 

Regression SSR = L:(}/j - Y)2 • 1 
'SSR' MSR , ..... , .=y 'a:2 +' R2Vc'(X" X'"')2 ., '1-'1 L;j' /"-,, . 

Error SSE = L:(Yj - }/j)2 n-'2 MSE;=:SS~, 
.n.-i2 

Total ssm = L:( Y;~ y)2 17-1 
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TABLE 2.3 
Source of 

Modified 
Variation 55 df M5 

ANOVA Thble 
for Simple Regression SSR = 2:(}/i - y)2 1 MSR=; SSR 
Linear 

. .... 1 

Regression. Error SSE = 2:(Yi - }/i)2 n-:- 2 MSE= . SSE .. 
... n-2 

Total SSTO = 2:(Y;- y)2 n-l 

Correction for mean SS( correction 1 
for mean) =. ny2 

Total, uncorrected SSTOU= 2: Yl n ....,/ 

Expected Mean Squares 
In order to make inferences based on the analysis of variance approach, we need tq know 
the expected value of each of the mean squares. The expected value of a mean square is the 
mean of its sampling distribution and tells us what is being estimated by the mean square. 
Statistical theory provides the following results: 

E{MSE} = a 2 

E {MSR} = a 2 + f3~ l)X i - X)2 

(2.56) 

(2.57) 

The expected mean squares in (2.56) and (2.57) are shown in the analysis of variance table 
in Table 2.2. Note that result (2.56) is in accord with our earlier statement that MSE is an 
unbiased estimator of a 2 . 

1\vo important implications of the expected mean squares in (2.56) and (2.57) are the 
following: 

1. The mean of the sampling distribution of MSE is a 2 whether or not X and Y are linearly 
related, i.e., whether or not f3, = o. 

2. The mean of the sampling distribution of MSR is also a 2 when f3, = O. Hence, when 
f3, = 0, the sampling distributions of MSR and MSE are located identically and MSR and 
MSE will tend to be of the same order of magnitude. 

On the other hand, when f3, =1= 0, the mean of the sampling distribution of MSR is 
greater than a 2 since the term N 2:(Xi - X)2 in (2.57) then must be positive. Thus, 
when f31 =1= 0, the mean of the sampling distribution of MSR is located to the right of that 
of MSE and, hence, MSR will tend to be larger than MSE. 

This suggests that a comparison of MSR and MSE is useful for testing whether or not 
f3, = O. If MSR and MSE are of the same order of magnitude, this would suggest that f31 = O. 
On the other hand, if MSR is substantially greater than MSE, this would suggest that f3, =1= O. 
This indeed is the basic idea underlying the analysis of variance test to be discussed next 

Comment 

The derivation of (2.56) follows from theorem (2.11), which states that SSE/a 2 ~ x2 (n - 2) 
for regression model (2.1). Hence, it follows from property (A.42) of the chi-square distribution 
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that: 

or that: 

E{S:;} =n-2 

E{ SSE} = E(MSE} = a 2 

n-2 

To find the expected value of MSR, we begin with (2.51): 

2,", -2 SSR = b, L..(Xi - X) 

Now by (A.1Sa), we have: 

a 2{b.} = E{bi} - (E{bd)2 

We know from (2.3a) that E(b.) = f3, and from (2.3b) that: 

a 2 

a
2
(b,} = L(X

i 
- )(.)2 

Hence, substituting into (2.58), we obtain: 

2 a
2 

2 
E{b'}=L -2+ f3 , (Xi - X) 

It now follows that: 

Finally, E{MSR} is: 

f Test of {J 1 = 0 versus {JI ::f:. 0 

(2.58) 

• 
The analysis of variance approach provides us with a battery of highly useful tests for 
regression models (and other linear statistical models). For the simple linear regression 
case considered here, the analysis of variance provides us with a test for: 

Ho: f3, = 0 

Ha: f3, =1= 0 
(2.59) 

Test Statistic. The test statistic for the analysis of variance approach is denoted by F*. 
As just mentioned, it compares MSR and MSE in the following fashion: 

F* = MSR (2.60) 
MSE 

The earlier motivation, based on the expected mean squares in Table 2.2, suggests that large 
values of F* support Ha and values of F* near 1 support Ho. In other words, the appropriate 
test is an upper-tail one.' ~ 

Sampling Distribution of F*. In order to be able to construct a statistical decision rule 
and examine its properties, we need to know the sampling distribution of F*. We begin by 
considering the sampling distribution of F* when Ho (f3, = 0) holds. Cochran's theorem 
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will be most helpful in this connection. For our purposes, this theorem can be stated as 
follows: 

If all n observations Yi come from the same normal distribution with 
mean fJ, and variance a 2 , and SSTO is decomposed into k sums of 
squares SS,., each with degrees of freedom df,., then the SS,./ a 2 terms 
are independent X2 variables with df,. degrees of freedom if: 

k 

2:4fr=n-l 
1"=1 

j?' 

(2.61) 

Note from Table 2.2 that we have decomposed SSTO into the two sums of squares SSR 
and SSE and that their degrees of freedom are additive. Hence: 

If f3, = 0 so that all Yi have the same mean fJ, = f30 and the same 
variance a 2, SSE/a2 and SSR/a 2 are independent X2 variables. 

Now consider test statistic F*, which we can write as follows: 

SSR SSE 
a 2 a 2 MSR 

F*=--...;---=--
1 n -2 MSE 

But by Cochran's theorem, we have when Ho holds: 

when Ho holds 

where the X 2 variables are independent. Thus, when Ho holds, F* is the ratio of two 
independent X2 variables, each divided by its degrees of freedom. But this is the definition 
of an F random variable in (A.47). 

We have thus established that if Ho holds, F* follows the F distribution, specifically the 
F(I, n - 2) distribution. 

When Ha holds, it can be shown that F* follows the noncentral F distribution, a complex 
distribution that we need not consider further at this time. 

Comment 
Even if f31 1= 0, SSR and SSE are independent and SSE/a2 ~ X2

• However, the condition that both 
SSR/a2 and SSE/a2 are X2 random variables requires f31 = O. • 

Construction of Decision Rule. Since the test is upper-tail and F* is distributed as 
F(I, n - 2) when Ho holds, the decision rule is as follows when the risk of a Type I error 
is to be controlled at a: 

If F* :s F(1 - a; 1, n - 2), conclude Ho 

If F* > F(1 - a; 1, n - 2), conclude Ha 
(2.62) 

where F(l - a; 1, n - 2) is the (1 - a)lOO percentile of the appropriate F distribution. 
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For the Toluca Company example, we shall repeat the earlier test on f3" this time using the 
F test. The alternative conclusions are: 

Ho: f3, = 0 

Ha: f3, =1= 0 

As before, leta = .05. Sincen = 25, we require F(.95; 1,23) = 4.28. Thedecisionruleis: 

If F* .:s 4.28, conclude Ho 

If F* > 4.28, conclude Ha 

We have from earlier that MSR = 252,378 and MSE = 2;384. Hence, F* is: 

F* = 252,378 = 105.9 
2,384 

Since F* = 105.9 > 4.28, we conclude Ha, that f3, =1= 0, or that there~s a linear 
association between work hours and lot size. This is the same result as when the t test was 
employed, as it must be according to our discussion below. 

The MINITAB output in Figure 2.2 on page 46 shows the F* statistic in the column 
labeled F. Next to it is shown the P-value, P{F(I, 23) > 105.9}, namely, 0+, indicating 
that the data are not consistent with f3, = o. 
Equivalence of F Test and t Test. For a given a level, the F test of f3, = 0 versus f3, =1= 0 
is equivalent algebraically to the two-tailed t test. To see this, recall from (2.51) that: 

Thus, we can write: 

2'" - 2 SSR = bl L..(X; - X) 

F* = __ SS_R_-_: _1_ 
SSE + (n -2) 

biLex; - X)2 

MSE 

b2 (b)2 
F* = s2{~d = s{~d = (t*)2 (2.63) 

The last step follows because the t* statistic for testing whether or not f3, = 0 is by' (2.17): 

* b, t =--
s{bd 

In the Toluca Company example, we just calculated that F* = 105.9. From earlier work, 
we have t* = 10.29 (see Figure 2.2). We thus see that (10.29)2 = 105.9. 

Corresponding to the relation between t* and F*, we have the following relation between 
the required percentiles of the t and F distributions for the tests: [t(1 - a12; n - 2)]2 = 
F(1 - a; 1, n - 2). In our tests on f3" these percentiles were [t(.975; 23)f = (2.069)2 = 
4.28 = F(.95; 1,23). Remember that the t test is two-tailed 'Whereas the F test is one-tailed. 

Thus, at any given a level, we can use either the t test or the F test for testing f31 = 0 
versus f31 =1= O. Whenever one test leads to Ho, so will the other, and correspondingly for Ha. 
The t test, however, is more flexible since it can be used for one-sided alternatives involving 
f3, (.:s 2:) 0 versus f3, (> <) 0, while the F test cannot. 
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2.8 General Linear Test Approach 

Full Model 

The analysis of variance test of f31 = 0 versus f31 =1= 0 is an example of the general test for 
a linear statistical model. We now explain this general test approach in terms of the simple 
linear regression model. We do so at this time because of the generality of the approach 
and the wide use we shall make of it, and because of the simplicity of understanding the 
approach in terms of simple linear regression. 

The general linear test approach involves three basic steps, which we now describe in 
tum. 

-f? 

We begin with the model ~onsidered to be appropriate for the data, which in this context is 
called the full or unrestricted model. For the simple linear regression case, the full model is 
the normal error regression model (2.1): 

Full model (2.64) 

We fit this full model, either by the method of least squares or by the method of maximum 
likelihood, and obtain the error sum of squares. The error sum of squares is the sum of the 
squared deviations of each observation Yi around its estimated expected value. In this 
context, we shall denote this sum of squares by SSE( F) to indicate that it is the error sum 
of squares for the full model. Here, we have: 

(2.65) 

Thus, for the full model (2.64), the error sum of squares is simply SSE, which measures the 
variability of the Yi observations around the fitted regression line. 

Reduced Model 
Next, we consider Ho. In this instance, we have: 

Ho: f31 = 0 

Ha: f3, =1= 0 
(2.66) 

The model when Ho holds is called the reduced or restricted model. When f31 = 0, 
model (2.64) reduces to: 

Yj = f30 +8j Reduced model (2.67) 

We fit this reduced model, by either the method of least squares or the method of 
maximum likelihood, and obtain the error sum of squares for this reduced model, denoted 
by SSE(R). When we fit the particular reduced model (2.67), it can be shown that the least 
squares and maximum likelihood estimator of f30 is Y. Hence, the estimated expected value 
for each observation is ho = Y, and the error sum of squares for this reduced model is: 

SSE(R) = 2:(Yi - hoi = 2:(Yi - y)2 = SSTO (2.68) 
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The logic now is to compare the two error sums of squares SSE(F) and SSE(R). It can be 
shown that SSE(F) never is greater than SSE(R): 

SSE (F) .::5 SSE(R) (2.69) 

The reason is that the more parameters are in the model, the better one can fit the data 
and the smaller are the deviations around the fitted regression function. When SSE (F) is 
not much less than SSE(R), using the full model does not account for much more of the 
variability of the Y; than does the reduced model, in which case the data suggest that the 
reduced model is adequate (i.e., that Ho holds). To put this another way, when SSE(F) is 
close to SSE(R), the variation of the observations around the fitted regression function for 
the full model is almost as great as the variation around the fitted regression function for 
the reduced model. In this case, the added parameters in the full model really do not help to 
reduce the variation in the Y; about the fitted regression function. Thus, a small difference 
SSE(R) - SSE(F) suggests that Ho holds. On the other hand, a large difference suggests that 
Ha holds because the additional parameters in the model do help to reduce substantially the 
variation of the observations Yi around the fitted regression function. 

The actual test statistic is a function of SSE(R) - SSE (F), namely: 

SSE(R) - SSE(F) SSE (F) 
F* - ...:...---

- 4fR - 4fF . d!F 
(2.70) 

which follows the F distribution when Ho holds. TIle degrees of freedom 4fR and d!F are 
those associated with the reduced and full model error sums of squares, respectively. Large 
values of F* lead to Ha because a large difference SSE(R) - SSE(F) suggests that Ha holds. 
The decision rule therefore is: 

If F* .::5 F(l- a;4fR - d!F, d!F), conclude Ho 

If F* > F(l - a;4fR - d!F, d!F), conclude Ha 

For testing whether or not f31 = 0, we therefore have: 

SSE(R) = SSTO 

4fR=n-1 

so that we obtain when substituting into (2.70): 

SSE (F) = SSE 

d!F =n-2 

SSTO - SSE SSE 
F*=------

SSR SSE 
-1--'-n-2 (n - 1) - (n - 2) -,- n - 2 

which is identical to the analysis of vru;iance test statistic (2.60). 

MSR 

MSE 

(2.71) 

The general linear test approach can be used for highly complex tests of linear statistical 
models, as well as for simple tests. The basic steps in summary form are: 

1. Fit the full model and obtain the error sum of squares SSE (F). 
2. Fit the reduced model under Ho and obtain the error sum of squares SSE(R). 
3. Use test statistic (2.70) and decision rule (2.71). 
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2.9 Descriptive Measures of Linear Association between X and Y 

We have discussed the major uses of regression analysis-estimation of parameters and 
means and prediction of new observations-without mentioning the "degree of linear 
association" between X and Y, or similar terms. The reason is that the usefulness of estimates 
or predictions depends upon the width of the interval and the user's needs for precision, 
which vary from one application to another. Hence, no single descriptive measure of the 
"degree of linear association" can capture the essential information as to whether a given 
regression relation is useful in any particular application. 

Nevertheless, there are times when the degree of linear association is of interest in its 
own right. We shall now briefly discuss two descriptive measures that ar~equently used 
in practice to describe the degree of linear association between X and Y: 

Coefficient of Determination 
We saw earlier that SSTO measures the variation in the observations Yi , or the uncertainty in 
predicting Y, when no account of the predictor variable· X is taken. Thus, SSTO is a measure 
of the uncertainty in predicting Y when X is not considered. Similarly, SSE measures the 
variation in the Yi when a regression model utilizing the predictor variable X is employed. 
A natural measure of the effect of X in reducing the variation in Y, i.e., in reducing the 
uncertainty in predicting Y, is to express the reduction in variation (SSTO - SSE = SSR) 
as a proportion of the total variation: 

(2.72) 

The measure R2 is called the coefficient of determination. Since 0 .:s SSE .:s SSTO, it 
follows that: 

(2.72a) 

We may interpret R2 as the proportionate reduction of total variation associated with 
the use of the predictor variable X. Thus, the larger R2 is, the more the total variation of 
Y is reduced by introducing the predictor variable X. The limiting values of R2 occur as 
follows: 

1. When all observations fallon the fitted regression line, then SSE = 0 and R2 = 1. 
This case is shown in Figure 2.8a. Here, the predictor variable X accounts for all variation 
in the observations Yi • 

2. When the fitted regression line is horizontal so that hI = 0 and Yi == Y, then SSE = 
SSTO and R2 = O. This case is shown in Figure 2.8b. Here, there is no linear association 
between X and Y in the sample data, and the predictor variable X is of no help in reducing 
the variation in the observations Yi with linear regression. 

In practice, R2 is not likely to be 0 or 1 but somewhere between these limits. The closer 
it is to 1, the greater is said to be the degree of linear association between X and Y. 
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(a) R2 = 1 (b) R2 = 0 
y 

Y= Y 

x 

. ). 
For the Toluca Company example, we obtamed SSTO = 307,203 and SSR = 252,378. 
Hence: 

R2 = 252,378 = .822 
307,203 

Thus, the variation in work hours is reduced by 82.2 percent when lot size is considered. 
The MINITAB output in Figure 2.2 shows the coefficient of determination R2 labeled 

as R-sq in percent fOnD. The output also shows the coefficient R-sq(adj), which will be 
explained in Chapter 6. 

limitations of R2 
We noted that no single measure will be adequate for describing the usefulness of a regres­
sion model for different applications. Still, the coefficient of determination is widely used. 
Unfortunately, it is subject to serious misunderstandings. We consider now three common 
misunderstandings: 

Misanderstanding 1. A high coefficient of determination indicates that useful 
predictions can be made. This is not necessarily correct. In the Toluca Company 
example, we saw that the coefficient of determination was high (R2 = .82). Yet the 
90 percent prediction interval for the next lot, consisting of 100 units, was wide (332 
to 507 hours) and not precise enough to pennit management to schedule workers 
effectively. 

Misunderstanding 2. A high coefficient of determination indicates that the estimated 
regression line is a good jit;-Again, this is not necessarily correct. Figure 2.9a shows 
a scatter plot where the coefficient of determiI\ation is high (R2 = .69). Yet a linear 
regression function would not be a good fit since the regression relation is curvilinear. 

Misunderstanding 3. A coefficienrof determination near zero indicates that X and Y 
are not related. This also is not necessarily correct. Figure 2.9b shows a scatter plot 
where the coefficient of determination between X and Y is R2 = .02. Yet X and Y are 
strongly related; however, the relationship between the two variables is curvilinear. 
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FIGURE 2.9 
lllustrations 
of Two Misun-
derstandings 
about 
Coefficient of 
Determination. 
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Misunderstanding 1 arises because R2 measures only a relative reduction from SSTO 
and provides no information about absolute precision for estimating a mean response or 
predicting a new observation. Misunderstandings 2 and 3 arise because R2 measures the 
degree of linear association between X and Y, whereas the actual regression relation may 
be curvilinear. 

Coefficient of Correlation 

Example 

A measure of linear association between Y and X when both Y and X are random is the 
coefficient of correlation. This measure is the signed square root of R2: 

r=±-JR.2 (2.73) 

A plus or minus sign is attached to this measure according to whether the slope of the fitted 
regression line is positive or negative. Thus, the range of r is: -1 .:s r .:s 1. 

For the Toluca Company example, we obtained R2 = .822. Treating X as a random variable, 
the correlation coefficient here is: 

r = +.J.822 = .907 

The plus sign is affixed since hI is positive. We take up the topic of correlation analysis in 
more detail in Section 2.11. 

Comments 

1. The value taken by R2 in a given sample tends to be affected by the spacing of the X observations. 
This is implied in (2.72). SSE is not affected systematically by the spacing of the Xi since, for regression 
model (2.1), 0-

2 (Yd = 0-
2 at all X levels. However, the wider the spacing of the Xi in the sample 

when b I 1= 0, the greater will tend to be the spread of the observed Yi around Y and hence the greater 
ssro will be. Consequently, the wider the Xi are spaced, the higher R2 will tend to be. 

2. The regression sum of squares SSR is often called the "explained variation" in Y, and the residual 
sum of squares SSE is called the "unexplained variation." The coefficient R2 then is interpreted in terms 
of the proportion of the total variation in Y (ssrO) which has been "explained" by X. Unfortunately, 
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this terminology frequently is taken literally and, hence, misunderstood. Remember that in a regression 
model there is no implication that Y necessarily depends on X in a causal or explanatory sense. 

3. Regression models do not contain a parameter to be estimated by R2 or r. These are simply 
descriptive measures of the degree of linear association between X and Y in the sample observations 
that may, or may not, be useful in any instance. • 

Considerations in Applying Regression Analysis 

We have now discussed the major uses of regression analysis-to make inferences about 
the regression parameters, to estimate the mean response for a given X, and to predict 
a new observation Y for a given X. It remains to make a 'few cautionary remarks about 
implementing applications of regression analysis. 

1. Frequently, regression analysis is used to make inferences for the future. For instance, 
for planning staffing requirements, a school board may wish to predict future enrollments by 
using a regression model containing several demographic variables as predictor variables. 
In applications of this type, it is important to remember that the validity of the regression 
application depends upon whether basic causal conditions in the Period ahead will be similar 
to those in existence during the period upon which the regression analysis is based. This 
caution applies whether mean responses are to be estimated, new observations predicted, 
or regression parameters estimated. 

2. In predicting new observations on Y, the predictor variable X itself often has to be 
predicted. For instance, we mentioned earlier the prediction of company sales for next year 
from the demographic projection of the number of persons 16 years of age or older next 
year. A prediction of company sales under these circumstances is a conditional prediction, 
dependent upon the correctness of the population projection. It is easy to forget the condi­
tional nature of this type of prediction. 

3. Another caution deals with inferences pertaining to levels of the predictor variable 
that fall outside the range of observations. Unfortunately, this situation frequently occurs 
in practice. A company that predicts its sales from a regression relation of company sales 
to disposable personal income will often find the level of disposable personal income of 
interest (e.g., for the year ahead) to fall beyond the range of past data. If the X level does 
not fall far beyond this range, one may have reasonable confidence in the application of the 
regression analysis. On the other hand, if the X level falls far beyond the range of past data, 
extreme caution should be exercised since one cannot be sure that the regression function 
that fits the past data is appropriate over the wider range of the predictor variable. 

4. A statistical test that leads to the conclusion that f3, =1= 0 does not establish a cause­
and-effect relation between the predictdr and response variables. As we noted in Chapter I, 
with nonexperimental data both the X and Y variables may be simultaneously influenced by 
other variables not in the regression model. On the other hand, the existence of a regression 
relation in controlled experiments is often good evidence of a cause-and-effect relation. . ~ 

5. We should note again that frequently we wish to estimate several mean responses 
or predict several new observations for different levels of the predictor variable, and that 
special problems arise in this case. The confidence coefficients for the limits (2.33) for 
estimating a mean response and for the prediction limits (2.36) for a new observation apply 
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only for a single level of X for a given sample. In Chapter 4, we discuss how to make 
multiple inferences from a given sample. 

6. Finally, when observations on the predictor variable X are subject to measurement 
errors, the resulting parameter estimates are generally no longer unbiased. In Chapter 4, we 
discuss several ways to handle this situation. 

2 .11 Normal Correlation Models 

Distinction between Regression and Correlation Model 
T 

The normal error regression model (2.1), which has been used throughout this chapter 
and which will continue to be used, assumes that the X values are known constants. As a 
consequence of this, the confidence coefficients and risks of errors refer to repeated sampling 
when the X values are kept the same from sample to sample. 

Frequently, it may not be appropriate to consider the X values as known constants. For 
instance, consider regressing daily bathing suit sales by a department store on mean daily 
temperature. Surely, the department store cannot control daily temperatures, so it would not 
be meaningful to think of repeated sampling where the temperature levels are the same from 
sample to sample. As a second example, an analyst may use a correlation model for the two 
variables "height of person" and "weight of person" in a study of a sample of persons, each 
variable being taken as random. The analyst might wish to study the relation between the 
two variables or might be interested in making inferences about weight of a person on the 
basis of the person's height, in making inferences about height on the basis of weight, or in 
both. 

Other examples where a correlation model, rather than a regression model, may be 
appropriate are: 

1. To study the relation between service station sales of gasoline, and sales of auxiliary 
products. 

2. To study the relation between company net income determined by generally accepted 
accounting principles and net income according to tax regulations. 

3. To study the relation between blood pressure and age in human subjects. 

The correlation model most widely employed is the normal correlation modeL We discuss 
it here for the case of two variables. 

Bivariate Normal Distribution 
The normal correlation model for the case of two variables is based on the bivariate normal 
distribution. Let us denote the two variables as YI and Y2. (We do not use the notation X and 
Y here because both variables playa symmetrical role in correlation analysis.) We say that 
YI and Y2 are jointly normally distributed if the density function of their joint distribution 
is that of the bivariate normal distribution. 
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Density Function. The density function of the bivariate nonna! distribution is as follows: 

{ [( )

2 1 1 Y I - MI 
f(Y" Y2) = exp - 2· 

2na,a2v1 - Pf2 2(1- P12) al 

(2.74) 

Note that this density function involves five parameters: M" M2, a" a2, P12. We shall explain 
the meaning of these parameters shortly. First, let us consider a graphic representation of 
the bivariate normal distribution. 

Figure 2.10 contains a SYSTAT three-dimensional plot of a bivariate normal probability 
distribution. The probability distribution is a surface in three-dimensional space. For every 
pair of (Y" Y2) values, the density f(Y" Y2) represents the height of the surface at that 
point. The surface is continuous, and probability corresponds to volume under the surface. 

Marginal Distributions. If Y I and Y2 are jointly normally distributed, it can be shown 
that their marginal distributions have the following characteristics: 

The marginal distribution of Y I is normal with mean MI 
and standard deviation a I: 

1 [1 (YI - M I ) 2] fl(YI ) = I'C exp --
v 2nal 2 al 

I 

The marginal.distribution of Y2 is normal with mean M2 
and standard deviation a2: 

1 [ . I (Y2 - M2) 2] 
h(Y2) = ,J2:iia2 exp - 2 a2 ~ 

(2.75 b) 

Thus, when Y I and Y2 are jointly normally distributed, each of the two variables by itself 
is normally distributed. The converse, however, is not generally true; if Y I and Y2 are each 
normally distributed, they need not be jointly normally distributed in accord with (2.74). 
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Meaning of Parameters. The five parameters of the bivariate nonnal density func­
tion (2.74) have the following meaning: 

1. fJ, I and a I are the mean and standard deviation of the marginal distribution of Y I • 

2. fJ,2 and a2 are the mean and standard deviation of the marginal distribution of Y2. 

3. PI2 is the coefficient of correlation between the random variables YI and Y2. TIlls 
coefficient is denoted by P {YI, Y2} in Appendix A, using the correlation operator notation, 
and defined in (A.25a): 

(2.76) 

Here, al and a2, as just mentioned, denote the standard deviations of YI !Ww- Y2, and al2 
denotes the covariance a{Y" Y2} between YI and Y2 as defined in (A.2I): 

(2.77) 

Note that a 12 == a21 and PI2 == P21' 

If YI and Y2 are independent, al2 = 0 according to (A.28) so that PI2 = O. If-YI and 
Y2 are positively related-that is, YI tends to be large when Y2 is large, or small when 
Y2 is small-a12 is positive and so is P12. On the other hand, if YI and Y2 are negatively 
related-that is, YI tends to be large when Y2 is small, or vice versa-al2 is negative and so 
is P12. The coefficient of correlation PI2 can take on any value between -1 and 1 inclusive. 
It assumes 1 if the linear relation between YI and Y2 is perfectly positive (direct) and -1 if 
it is perfectly negative (inverse). 

Conditional Inferences 
As noted, one principal use of a bivariate correlation model is to make conditional inferences 
regarding one variable, given the other variable. Suppose YI represents a service station's 
gasoline sales and Y2 its sales of auxiliary products. We may then wish to predict a service 
station's sales of auxiliary products Y2 , given that its gasoline sales are YI = $5,500. 

Such conditional inferences require the use of conditional probability distributions, which 
we discuss next 

Conditional Probability Distribution of YI • The density function of the conditional 
probability distribution of YI for any given value of Y2 is denoted by f(Y I IY2) and defined 
as follows: 

fe y IY ) = f(Y" Y2) 
I 2 h(Y2) 

(2.78) 

where f (YI, Y2) is the joint density function of YI and Y2, and h (Y2) is the marginal density 
function of Y2. When YI and Y2 are jointly nonnally distributed according to (2.74) so that 
the marginal density function h(Y2) is given by (2.75b), it can be shown that: 

The conditional probability distribution of Y I for any given 
value of Y2 is nonnal with mean al12 + f312Y2 and standard 
deviation all2 and its density function is: 

f(YdY2) = 1 exp[_!(YI-aI12-f312Y2)2] 
.J2Jra112 2 all2 

(2.79) 
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The parameters a112, f312, and al12 of the conditional probability distributions of YI are 
functions of the parameters of the joint probability distribution (2.74), as follows: 

al 
al12 = MI - M2P12-

a2 
al 

f312 = P12-
a2 

a~2 = a~ (1- P~2) 

(2.80a) 

(2.80b) 

(2.80c) 

The parameter al12 is the intercept of the line of regression of YI on Y2, and the parameter 
f312 is the slope of this line. Thus we find that the conditional distribution of Y" given Y2, is 
equivalent to the nonnal error regression model (1.24). 

Conditional Probability Distributions of Y2. The random variables Y I and Y2 play sym­
metrical roles in the bivariate normal probability distribution (2.74). Hence, it follows: 

The conditional probability distribution of Y2 for any given 
value of YI is normal with mean a211 + f321 Y I and standard 
deviation a211 and its density function is: 

1 [1 (Y2 - a211 - f32IYI)2] 
!(Y2 IYI ) =.J2ii exp --2 

2na211 a211 

(2.81) 

The parameters a211, f321, and a211 of the conditional probability distributions of Y2 are 
functions of the parameters of the joint probability distribution (2.74), as follows: 

a2 
f321 = P12-

al 

a~l = aJ(1 - P~2) 

(2.82a) 

(2.82b) 

(2.82c) 

Important Characteristics of Conditional Distributions. Three important characteris­
tics of the conditional probability distributions of Y I are nonnality, linear regression, and 
constant variance. We take up each of these in turn. -

1. The conditional probability distribution of Y I for any given value of Y2 is nonna). 
Imagine that we slice a bivariate nonnal distribution vertically at a given value of Y2 , say, 
at Yh2 . That is, we slice it parallel to the VI axis. This slicing is shown in Figure 2.11. The 
exposed cross section has the shape of a nonnal distribution, and after being scaled so that 
its area is 1, it portrays the conditional probability distribution of YI, given that Y2 = Yh2 . 

This property of normality holds no matter wh~t the value Yh2 is. Thus, whenever we 
slice the bivariate nonnal distribution parallel to the Y I axis, we-obtain (after proper scaling) 
a normal conditional probability distribution. 

2. The means of the conditional probability distributions of YI fall on a straight line, and 
hence are a linear function of Y2 : 

(2.83) 
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FIGURE 2.11 
Cross Section 
of Bivariate 
Normal 
Distribution 
atY',2. 

Here, £¥112 is the intercept parameter and f312 the slope parameter. Thus, the relation between 
the conditional means and Y2 is given by a linear regression function. 

3. All conditional probability distributions of Y I have the same standard deviation a112. 

Thus, no matter where we slice the bivariate normal distribution parallel to the Y I axis, 
the resulting conditional probability distribution (after scaling to have an area of 1) has the 
same standard deviation. Hence, constant variances characterize the conditional probability 
distributions of YI • 

Equivalence to Normal Error Regression Model. Suppose that we select a random 
sample of observations (YI , Y2) from a bivariate normal population and wish to make 
conditional inferences about Yb given Y2• The preceding discussion makes it clear that the 
normal error regression model (1.24) is entirely applicable because: 

1. The YI observations are independent. 
2. The YI observations when Y2 is considered given or fixed are normally distributed with 

mean E {YI IY2} = £¥112 + f312Y2 and constant variance a~2· 

Use of Regression Analysis. In view of the equivalence of each of the conditional bivariate 
normal correlation models (2.81) and (2.79) with the normal error regression model (1.24), 
all conditional inferences with these correlation models can be made by means of the 
usual regression methods. For instance, if a researcher has data that can be appropriately 
described as having been generated from a bivariate normal distribution and wishes to make 
inferences about Y2, given a particular value of Y I , the ordinary regression techniques will 
be applicable. Thus, the regression function of Y2 on YI can be estimated by means of (1.12), 
the slope of the regression line can be estimated by means of the interval estimate (2.15), 
a new observation Y2 , given the value of Y" can be predicted by means of (2.36), and so 
on. Computer regression packages can be used in the usual manner. To avoid notational 
problems, it may be helpful to relabel the variables according to regression usage: Y = Y2 , 

X = YI • Of course, if conditional inferences on YI for given values of Y2 are desired, the 
notation correspondences would be: Y = Y" X = Y2. 
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Can we still use regression model (2.1) if Y, and Y2 are not bivariate normal? It can be 
shown that all results on estimation, testing, and prediction obtained from regression model 
(2.1) apply if Y, = Y and Y2 = X are random variables, and if the following conditions 
hold: 

1. TIle conditional distributions of the Yi , given Xi, are normal and independent, with 
conditional means f30 + f3,Xi and conditional variance a2

• 

2. The Xi are independent random variables whose probability distribution g (Xi) does not 
invol ve the parameters f3o, f3" a2

• 

These conditions require only that regression model (2.1) is appropriate for each condi­
tional distribution of Yi , and that the probability distribution of the Xi does not involve the 
regression parameters. If these conditions are met, all earlier results on estimation, testing, 
and prediction still hold even though the XI are now random variables. The major modi­
fication occurs in the interpretation of confidence coefficients and specified risIts of error. 
When X is random, these refer to repeated sampling of pairs of (Xi, Yi ) values, where the 
Xi values as well as the Yi values change from sample to sample. Thus, in our bathing suit 
sales illustration, a confidence coefficient would refer to the proportion of correct interval 
estimates if repeated samples of n days' sales and temperatures were obtained and the 
confidence interval calculated for each sample. Another modification occurs in the test's 
power, which is different when X is a random variable. 

Comments 
1. The notation for the parameters of the conditional correlation models departs somewhat from 

our previous notation for regression models. The symbol a is now used to denote the regression 
intercept. The subscript 112 to a indicates that Y, is regressed on Y2• Similarly, the subscript 211 to a 
indicates that Y2 is regressed on Yr. The symbol {h2 indicates that it is the slope in the regression of Y 1 

on Y2 , while {h, is the slope in the regression of Y2 on Yr. Finally, a21' is the standard deviation of the 
conditional probability distributions of Y2 for any given Y" while a'12 is the standard deviation of the 
conditional probability distributions of Y, for any given Y2 • 

2. Two distinct regressions are involved in a bivariate normal model, that of Y, on Y2 when Yz is 
fixed and that of Y2 on Y, when Y, is fixed. In general, the two regression lines are not the same. For 
instance, the two slopes f3'2 and f321 are the same only if al = a2, as can be seen from (2.80b) and 
(2.82b). 

3. When interval estimates for the conditional correlation models are obtained, the confidence 
coefficient refers to repeated samples where pairs of observations (Y" Y2 ) are obtained from the 
bivariate normal distribution. • 

Inferences on Correlation Coefficients 
A principal use of the bivariate normal correlation model is to study the relationship between 
two variables. In a bivariate nOrmal model, the parameter P'2 provides information about 
the degree of the linear relationship between the two variables Y, and Y2 • 

Point Estimator of P12. The maximum likelihood estimator of P'2, denoted by r12, is 
given by: 

(2.84) 



84 Part One Simple Linear Regression 

Example 

This estimator is often called the Pearson product-moment correlation coefficient. It is a 
biased estimator of PI2 (unless PI2 = 0 or 1), but the bias is small when n is large. 

It can be shown that the range of rl2 is: 

(2.85) 

Generally, values of rl2 near 1 indicate a strong positive (direct) linear association be­
tween YI and Y2 whereas values of rl2 near -1 indicate a strong negative (indirect) linear 
association. Values of rI2 near 0 indicate little or no linear association between YI and Y2 • 

Test whether P12 = O. When the population is bivariate normal, it is frequently desired 
to test whether the coefficient of correlation is zero: 

Ho: PI2 = 0 

Ha: PI2 =1= 0 
(2.86) 

The reason for interest in this test is that in the case where Y I and Y2 are jointly normally 
distributed, PI2 = 0 implies that YI and Y2 are independent. 

We can use regression procedures for the test since t2.80b) implies that the fol).owing 
alternatives are equivalent to those in (2.86): 

Ho: f312 = 0 

Ha: f312 =1= 0 
(2.86a) 

and (2.82b) implies that the following alternatives are also equivalent to the ones in (2.86): 

Ho: f3z1 = 0 

Ha: f3z1 =1= 0 
(2.86b) 

It can be shown that the test statistics for testing either (2.86a) or (2.86b) are the same 
and can be expressed directly in terms of r12: 

* rl2-Jn - 2 
t = (2.87) 

Jl - r~2 
If Ho holds, t* follows the ten - 2) distribution. The appropriate decision rule to control 
the Type I error at a is: 

If It*1 :::: t(1 - a12; n - 2), conclude Ho 

If It*1 > t(l- al2;n - 2), conclude Ha 

Test statistic (2.87) is identical to the regression t* test statistic (2.17). 

(2.88) 

A national oil company was interested in the relationship between its service station gasoline 
sales and its sales of auxiliary products. A company analyst obtained a random sample of 
23 of its service stations and obtained average monthly sales data on gasoline sales (YI ) 

and comparable sales of its auxiliary products and services (Y2). These data (not shown) 
resulted in an estimated correlation coefficient rI2 = .52. Suppose the analyst wished to test 
whether or not the association was positive, controlling the level of significance at a = .05. 
The alternatives would then be: 

Ho: P12:::: 0 

Ha: PI2 > 0 
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and the decision rule based on test statistic (2.87) would be: 

If t* :s t(1 - a; n - 2), conclude Ho 

If t* > t (1 - a; n - 2), conclude Ha 

For a = .05, we require t(.95; 21) = 1.721. Since: 

t* = .52.J2I = 2.79 
Jl - (.52)2 

is greater than 1.721, we would conclude Ha, that Pl2 > O. The P-value for this test is .006. 

Interval Estimation of P12 Using the z' Transformation. Because the sampling distri­
bution of rl2 is complicated when Pl2 =1= 0, interval estimation of Pl2 is usually carried 
out by means of an approximate procedure based on a transformation. This transformation, 
known as the Fisher z transformation, is as follows: k.. 

, 1 (1 + r12) Z = -log --
2 e 1 - rl2 

(2.89) 

When n is large (25 or more is a useful rule of thumb), the distribution of z' is approximately 
normal with approximate mean and variance: 

1 (1 + P12) 
E{z'} = l; = "2 loge 1 - Pl2 (2.90) 

1 
a 2 {z'} =--

n-3 
(2.91) 

Note that the transformation from rl2 to z' in (2.89) is the same as the relation in (2.90) 
between Pl2 and E{z'} = l;. Also note that the approximate variance of z' is a known 
constant, depending only on the sample size n. 

Table B.8 gives paired values for the left and right sides of (2.89) and (2.90), thus elim­
inating the need for calculations. For instance, if rl2 or Pl2 equals .25, Table B.8 indicates 
that z' or l; equals .2554, and vice versa. The values on the two sides of the transformation 
always have the same sign. Thus, if r12 or Pl2 is negative, a minus sign is attached to the 
value in Table B.8. For instance, if rl2 = -.25, z' = -.2554. 

Interval Estimate. When the sample size is large (n 2: 25), the standardized statistic: 

z' -l; 
a{z'} 

(2.92) 

is approximately a standard normal variable. Therefore, approximate I-a confidence limits 
for l; are: 

z'·± z(1 - aI2)a{z'} (2.93) 

where z(l - (12) is the (1 - (12) 100 percentile of the standard normal distribution. The 
1 - a confidence limits for Pl2 are then obtained by transforming the limits on l; by means 
of (2.90). 
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Example An economist investigated food purchasing patterns by households in a midwestern city. 
Two hundred households with family incomes between $40,000 and $60,000 were selected 
to ascertain, among other things, the proportions of the food budget expended for beef and 
poultry, respectively. The economist expected these to be negatively related, and wished to 
estimate the coefficient of correlation with a 95 percent confidence interval. Some supporting 
evidence suggested that the joint distribution of the two variables does not depart markedly 
from a bivariate normal one. 

The point estimate of P12 was r12 = -.61 (data and calculations not shown). To obtain 
an approximate 95 percent confidence interval estimate, we require: 

z' = -.7089 when rl2 = -.61 (from Table B.8) 

, I 
a{z} = ,)200 _ 3 = .07125 

z(.975) = 1.960 

Hence, the confidence limits for l;, by (2.93), are -.7089 ± 1.960(.07125), and the approx-
imate 95 percent confidence interval is:' ". 

-.849 :s l; :s -.569 

Using Table B.8 to transform back to P12, we obtain: 

-.69:s Pl2 :s -.51 

This confidence interval was sufficiently precise to be useful to the economist, confirming 
the negative relation and indicating that the degree of linear association is moderately high. 

Comments 
1. As usual, a confidence interval for P12 can be employed to test whether or not P'2 has a specified 

value-say, .S-by noting whether or not the specified value falls within the confidence limits. 

2. It can be shown that the square of the coefficient of correlation, namely P~2' measures the 
relative reduction in the variability of Y2 associated with the use of variable Yr. To see this, we noted 
earlier in (2.80c) and (2.82c) that: 

a~2 = a~(1- Pi2) 

a~, = ai(1- Pi2) 

We can rewrite these expressions as follows: 

(2.94a) 

(2.94b) 

(2.95a) 

(2.95b) 

The meaning of Pi2 is now clear. Consider first (2.95a). P~2 measures how much smaller relatively is 
the variability in the conditional distributions of Y" for any given level of Y2, than is the variability 
in the marginal distribution of Yr. Thus, P~2 measures the relative reduction in the variability of Y, 
associated with the use of variable Y2. Correspondingly, (2.95b) shows that P~2 also measures the 
relative reduction in the variability of Y2 associated with the use of variable Yl. 
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It can be shown that: 

(2.96) 

The limiting value Pi2 = 0 occurs when YI and Y2 are independent, so that the variances of each 
variable in the conditional probability distributions are then no smaller than the variance in the 
marginal distribution. The limiting value Pi2 = 1 occurs when there is no variability in the conditional 
probability distributions for each variable, so perfect predictions of either variable can be made from 
the other. 

3. The interpretation of Pi2 as measuring the relative reduction in the conditional variances as 
compared with the marginal variance is valid for the case of a bivariate normal popUlation, but not 
for many other bivariate popUlations. Of course, the interpretation implies nothing in a causal sense. 

4. Confidence limits for Pi2 can be obtained by squaring the respective confidence limits for P12, 
provided the latter limits do not differ in sign. • 

Spearman Rank Correlation Coefficient 
At times the joint distribution of two random variables YI and Y2 differs considerably from 
the bivariate normal distribution (2.74). In those cases, transformations of the variables Y I 

and Y2 may be sought to make the joint distribution of the transformed variables approx­
imately bivariate normal and thus permit the use of the inference procedures about PI2 
described earlier. 

When no appropriate transformations can be found, a nonpararnetric rank correlation 
procedure may be useful for making inferences about the association between Y I and Y2 • The 
Spearman rank correlation coefficient is widely used for this purpose. First, the observations 
on YI (i.e., Yll , ••• , Ynl ) are expressed in ranks from 1 to n. We denote the rank of Yi! by 
Ri!. Similarly, the observations on Y2 (i.e., Y12, ... , Yn2) are ranked, with the rank of Yi2 
denoted by Ri2 . The Spearman rank correlation coefficient, to be denoted by rs, is then 
defined as the ordinary Pearson product-moment correlation coefficient in (2.84) based on 
the rank data: 

(2.97) 

Here RI is the mean of the ranks Ri! and R2 is the mean of the ranks Ri2. Of course, since 
the ranks Ri I and Ri2 are the integers 1, ... , n, it follows that R I = R2 = (n +- 1) /2. 

Like an ordinary correlation coefficient, the Spearman rank correlation coefficient takes 
on values between -1 and 1 inclusive: 

-1 .:S rs .:S 1 (2.98) 

The coefficient rs equals 1 when the ranks for YI are identical to those for Y2 , that is, when 
the case with rank 1 for Y I also has rank 1 for Y2 , and so on. In that case, there is perfect 
association between the ranks for the two variables. The coefficient rs equals -1 when the 
case with rank 1 for Y I has rank n for Y2, the case with rank 2 for Y I has rank n - 1 for 
Y2 , and so on. In that event, there is perfect inverse association between the ranks for the 
two variables. When there is little, if any, association between the ranks of Y I and Y2, the 
Spearman rank correlation coefficient tends to have a value near zero. 
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Example 

TABLE 2.4 
Data on 
Population and 
Expenditures 
and Their 
Ranks-SaJes 
Marketing 
Example. 

The Spearman rank correlation coefficient can be used to test the alternatives: 

Ho: There is no association between YI and Y2 

Ha: There is an association between YI and Y2 

(2.99) 

A two-sided test is conducted here since Ha includes either positive or negative association. 
When the alternative Ha is: 

Ha: There is positive (negative) association between Y I and Y2 (2.100) 

an upper-tail (lower-tail) one-sided test is conducted. 
The probability distribution of rs under Ho is not difficult to obtain. It is based on the 

condition that, for any ranking of Y" all rankings of Y2 are equally likelb-when there is no 
association between YI and Y2 • Tables have been prepared and are prestnted in specialized 
texts such as Reference 2.1. Computer packages generally do not present the probability 
distribution of rs under Ho but give only the two-sided P-value. When the sample size n 
exceeds 10, the test can be carried out approximately by using test statistic (2.87): 

* rs-Jn - 2 
t = -===-

.)1- r} 
(2.101) 

based on the t distribution with n - 2 degrees of freedom. 

A market researcher wished to examine whether an association exists between population 
size (YI ) and per capita expenditures for a new food product (Y2). The data for a random 
sample of 12 test markets are given in Table 2.4, columns 1 and 2. Because the distributions of 
the variables do not appear to be approximately normal, a nonparametric test of association 
is desired. The ranks for the variables are given in Thble 2.4, columns 3 and 4. A computer 
package found that the coefficient of simple correlation between the ranked data in columns 
3 and 4 is rs = .895. The alternatives of interest are the two-sided ones in (2.99). Since n 

"(1) 

Test Population 
Market. (in thollsands) 

; Yil 

1 29 
2 435 
3 86 
4 1,090 
5 219 
6 503 
7 47 
8 3,5~4 
9 185 

Hi 98 
11 952 
12 89 

(2) 
per Capita 

Expenditure 
(d~lIars) 

1';2 

127 
214 
133 
208 
153 
184 
1'30 
.2# 
1~1 
154 
194 
H)3 

/l.1.l Rif 
12 
8 Jl 
3 4 
1110 
76 
:Q8 
L 3 
12<12 
6/ 5 
5 r 

·10" 9· 
lf 1 
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exceeds 10 here, we use test statistic (2.101): 

t* = .895,JT2"=2 = 6.34 
Jl - (.895)2 

Fora = .01, werequiret(.995; 10) = 3.169. Since It*1 = 6.34 > 3.169, we conclude Ha , 

that there is an association between population size and per capita expenditures for the food 
product. The two-sided P-value of the test is .00008. 

Comments 
1. In case of ties among some data values, each of the tied values is given the average of the ranks 

involved. 

2. It is interesting to note that had the data in Table 2.4 been analyzed by assuming the bivariate 
normal distribution assumption (2.74) and test statistic (2.87), then the strength of the association 
would have been somewhat weaker. In particular, the Pearson product-moment correlation coefficient 

is r,2 = .674, with t* = .674.JTI)/Jl - (.674)2 = 2.885. Our conclusion would hbe been to 
conclude Ho, that there is no association between population size and per capita expenditures for the 
food product. The two-sided P-value of the test is .016. 

3. Another nonpararnetric rank procedure similar to Spearman's rs is Kendall's T. This statistic 
also measures how far the rankings of Y! and Y2 differ from each other, but in a somewhat different 
way than the Spearman rank correlation coefficient. A discussion of Kendall's T may be found in 
Reference 2.2. • 

Cited 2.1. Gibbons, J. D. Nonparametric Methods for Quantitative Analysis. 2nd ed. Columbus, Ohio: 

References American Sciences Press, 1985. 

Problems 

2.2. Kendall, M. G., and J. D. Gibbons. Rank Correlation Methods. 5th ed. London: Oxford University 
Press, 1990. 

2.1. A student working on a summer internship in the economic research department of a large 
corporation studied the relation between sales of a product (Y, in million dollars) and population 
(X, in million persons) in the firm's 50 marketing districts. The normal error regression model 
(2.1) was employed. The student first wished to test whether or not a linear association between 
Y and X existed. The student accessed a simple linear regression program and obtained the 
following information on the regression coefficients: 

Parameter 

Intercept 
Slope 

Estimated Value 

7.43119 
:755048 

95 Percent 
Confidence limits 

-1.18518 
.452886 

16.0476 
1.05721 

a. The student concluded from these results that there is a linear association between Y and 
X. Is the conclusion warranre.d? What is the implied le~el of significance? 

b. Someone questioned the negative lower confidence limit for the intercept, pointing out that 
dollar sales cannot be negative even if the population in a district is zero. Discuss. 

2.2. In a test of the alternatives Ho: f3! ::5 0 versus Ha: f3, > 0, an analyst concluded Ho. Does this 
conclusion imply that there is no linear association between X and Y? Explain. 
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2.3. A member of a student team playing an interactive marketing game received the following 
computer output when studying the relation between advertising expenditures (X) and sales 
(Y) for one of the team's products: 

Estimated regression equation: Y = 350.7 - .18X 

Two-sided P-value for estimated slope: .91 

The student stated: "The message I get here is that the more we spend on advertising this 
product, the fewer units we sell!" Comment. 

2.4. Refer to Grade point average Problem 1.19. 

a. Obtain a 99 percent confidence interval for f3,. Interpret your confidence interval. Does it 
include rero? Why might the director of admissions be interested in whether)he confidence 
interval includes rero? or.,," 

b. Test, using the test statistic t*, whether or not a linear association exists between student's 
ACT score (X) and GPA at the end of the freshman year (Y). Use a level of significance of 
.Ol. State the alternatives, decision rule, and conclusion. 

c. What is the P-value of your test in part (b)? How does it support the conclusion reached in 
part (b)? 

*2.5. Refer to Copier maintenance Problem 1.20. 

a. Estimate the change in the mean service time when the number of copiers serviced increases 
by one. Use a 90 percent confidence interval. Interpret your confidence interval. 

b. Conduct a t test to determine whether or not there is a linear association between X and Y 
here; control the a risk at .10. State the alternatives, decision rule, and conclusion. What is 
the P-value of your test? 

c. Are your results in parts (a) and (b) consistent? Explain. 

d. The manufacturer has suggested that the mean required time should not increase by more 
than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to 
decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error 
at .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

e. Does bo give any relevant information here about the "start-up" time on calls-Le., about 
the time required before service work is begun on the copiers at a customer location? 

*2.6. Refer to Airfreight breakage Problem 1.21. 

a. Estimate f31 with a 95 percent confidence interval. Interpret your interval estimate. 

b. Conduct a t test to decide whether or not there is a linear association between number of times 
a carton is transferred (X) and number of broken ampules (Y). Use a level of significance 
of .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

c. f30 represents here the mean number of ampules broken when no transfers of the shipment 
are made-Le., when X = O. Obtain a 95 percent confidence interval for f30 and interpret it. 

d. A consultant has suggested, on the basis of previous experience, that the mean number of 
broken ampules should not exceed 9.0 when no transfers are made. Conduct an appropriate 
test, using a = .025. State the alternatives, decision rule, and conclusion. What is the 
P-value of the test? 

e. Obtain the power of your test in part (b) if actually f3, = 2.0. Assume a(b,} = .50. Also 
obtain the power of your test in part (d) if actually f30 = 1l. Assume a{bo} = .75. 

2.7 Refer to Plastic hardness Problem 1.22. 

a. Estimate the change in the mean hardness when the elapsed time increases by one hour. Use 
a 99 percent confidence interval. Interpret your interval estimate. 
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b. The plastic manufacturer has stated that the mean hardness should increase by 2 Brinell 
units per hour. Conduct a two-sided test to decide whether this standard is being satisfied; 
use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

c. Obtain the power of your test in part (b) if the standard actually is being exceeded by 
.3 Brinell units per hour. Assume a (bd = .1. 

2.8. Refer to Figure 2.2 for the Toluca Company example. A consultant has advised that an increase 
of one unit in lot size should require an increase of 3.0 in the expected number of work hours 
for the given production item. 

a. Conduct a test to decide whether or not the increase in the expected number of work hours 
in the Toluca Company equals this standard. Use a = .05. State the alternatives, decision 
rule, and conclusion. 

b. Obtain the power of your test in part (a) if the consultant's standard actually is being exceeded 
by .5 hour. Assume a{bd = .35. 

c. Why is F* = 105.88, given in the printout, not relevant for the test in part (a)? }.., 

2.9. Refer to Figure 2.2. A student, noting that s{bd is furnished in the printout, asks why s(Yd is 
not also given. Discuss. 

2.10. For each of the following questions, explain whether a confidence interval for a mean response 
or a prediction interval for a new observation is appropriate. 

a. What will be the humidity level in this greenhouse tomorrow when we set the temperature 
level at 31°C? 

b. How much do families whose disposable income is $23,500 spend, on the average, for meals 
away from home? 

c. How many kilowatt-hours of electricity will be consumed next month by commercial and 
industrial users in the Twin Cities service area, given that the index of business activity for 
the area remains at its present level? 

2.11. A person asks if there is a difference between the "mean response at X = X,," and the "mean 
of m new observations at X = X"." Reply. 

2.12. Can a 2 (pred} in (2.37) be brought increasingly close to 0 as n becomes large? Is this also the 
case for a 2 (y,,} in (2.29b)? What is the implication of this difference? 

2.13. ~efer to Grade point average Problem 1.19. 

a. Obtain a 95 percent interval estimate of the mean freshman OPA for students whose ACT 
test score is 28. Interpret your confidence interval. 

b. Mary Jones obtained a score of 28 on the entrance test. Predict her freshman OPA-using a 
95 percent prediction interval. Interpret your prediction interval. 

c. Is the prediction interval in part (b) wider than the confidence interval in part (a)? Shol}ld it 
be? 

d. Determine the boundary values 0f the 95 percent confidence band for the regression line 
when X" = 28. Is your-confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.14. Refer to Copier maintenance Problem 1.20. 

a. Obtain a 90 percent confidence interval for the mean gervice time on calls in which six 
copiers are serviced. Interpret your confidence interval. 

b. Obtain a 90 percent prediction interval for the service time on the next call in which six 
copiers are serviced. Is your prediction interval wider than the corresponding confidence 
interval in part (a)? Should it be? 
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c. Management wishes ro estimate the expected service time per copier on calls in which six 
copiers are serviced. Obtain an appropriate 90 percent confidence interval by converting the 
interval obtained in part (a). Interpret the converted confidence interval. 

d. Determine the boundary values of the 90 percent confidence band for the regression line 
when X" = 6. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.15. Refer to Airfreight breakage Problem 1.21. 

a Because of changes in airline routes, shipments may have to be transferred more frequently 
than in the past. Estimate the mean breakage for the following numbers of transfers: X = 2, 
4. Use separate 99 percent confidence intervals. Interpret your results. 

b. The next shipment will entail two transfers. Obtain a 99 percent prediction interval for the 
number of broken ampules for this shipment. Interpret your prediction int~I)'.Itl: 

c. In the next several days, three independent shipments will be made, each entailing two 
transfers. Obtain a 99 percent prediction interval for the mean number of ampules broken in 
the three shipments. Convert this interval into a 99 percent prediction interval for the total 
number of ampules broken in the three shipments. 

d. Determine the boundary values of the 99 percent confidence band for the regression line 
when Xh = 2 and when Xh = 4. Is your confidence band wider at these two points than the 
corresponding confidence intervals in part (a)? Should it be? 

2.16. Refer to Plastic hardness Problem 1.22. 

a Obtain a 98 percent confidence interval for the mean hardness of molded items with an 
elapsed time of 30 hours. Interpret your confidence interval. 

b. Obtain a 98 percent prediction interval for the hardness of a newly molded test item with 
an elapsed time of 30 hours. 

c. Obtain a 98 percent prediction interval for the mean hardness of 10 newly molded test items, 
each with an elapsed time of 30 hours. 

d. Is the prediction interval in part (c) narrower than the one in part (b)? Should it be? 

e. Determine the boundary values of the 98 percent confidence band for the regression line 
when X h = 30. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

2.17. An analyst fitted normal error regression model (2.1) and conducted an F test of f31 = 0 versus 
f3, ¥ O. The P-value of the test was .033, and the analyst concluded Ha: f31 ¥ O. Was the a 
level used by the analyst greater than or smaller than .033? If the a level had been .01, what 
would have been the appropriate conclusion? 

2.18. For conducting statistical tests concerning the parameter f3" why is the t test more versatile 
than the F test? 

2.19. When testing whether or not f3, = 0, why is the F test a one-sided test even though Ha includes 
both f3, < 0 and f3, > O? [Hint: Refer to (2.57).] 

2.20. A student asks whether R2 is a point estimator of any parameter in the normal error regression 
model (2.1). Respond. 

2.21. A value of R2 near I is sometimes interpreted to imply that the relation between Y and X is 
sufficiently close so that suitably precise predictions of Y can be made from knowledge of X. 
Is this implication a necessary consequence of the definition of R2? 

2.22. Using the normal error regression model (2.1) in an engineering safety experiment, a researcher 
found for the first 10 cases that R2 was zero. Is it possible that for the complete set of 30 cases 
R2 will not be zero? Could R2 not be zero for the first 10 cases, yet equal zero for all 30 cases? 
Explain. 
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2.23. Refer to Grade point average Problem 1.19. 

a. Set up the ANOVA table. 

b. What is estimated by MSR in your ANOVA table? by MSE? Under what condition do MSR 
and MSE estimate the same quantity? 

c. Conduct an F test of whether or not f31 = O. Control the a risk at .01. State the alternatives, 
decision rule, and conclusion. 

d. What is the absolute magnitude of the reduction in the variation of Y when X is introduced 
into the regression model? What is the relative reduction? What is the name of the latter 
measure? 

e. Obtain r and attach the appropriate sign. 

f. Which measure, R2 or r, has the more clear-cut operational interpretation? Explain. 

*2.24. Refer to Copier maintenance Problem 1.20. 

a. Set up the basic ANOVA table in the format of Table 2.2. Which elements of your table are ad­
ditive? Also set up the ANOVA table in the format of Table 2.3. How do the two tabl,es differ? 

b. Conduct an F test to determine whether or not there is a linear association between time 
spent and number of copiers serviced; use a = .10. State the alternatives, decision rule, and 
conclusion. 

c. By how much, relatively, is the total variation in number of minutes spent on a call- reduced 
when the number of copiers serviced is introduced into the analysis? Is this a relatively small 
or large reduction? What is the name of this measure? 

d. Calculate r and attach the appropriate sign. 

e. Which measure, r or R2, has the more clear-cut operational interpretation? 

*2.25. Refer to Airfreight breakage Problem 1.21. 

a. Set up the ANOVA table. Which elements are additive? 

b. Conduct an F test to decide whether or not there is a linear association between the number 
of times a carton is transferred and the number of broken ampules; control the a risk at .05. 
State the alternatives, decision rule, and conclusion. 

c. Obtain the t* statistic for the test in part (b) and demonstrate numerically its equivalence to 
the F* statistic obtained in part (b). 

d. Calculate R2 and r. What proportion of the variation in Y is accounted for by introducing 
-X into the regression model? 

2.26. Refer to Plastic hardness Problem 1.22. 

a. Set up the ANOVA table. 

b. Test by means of an F test whether or not there is a linear association between the hardness 
of the plastic and the elapsed time. Use a = .01. State the alternatives, decision rule, and 
conclusion. 

c. Plot the deviations Yi - Yi against Xi on a graph. Plot the deviations Yi - Y against Xi 
I 

on another graph, using the same scales as for the first graph. From your two graphs, does 
SSE or SSR appear to b~ the larger component of ssrO? What does this imply about the 
magnitude of R2? 

d. Calculate R2 and r. 

*2.27. Refer to Muscle mass Problem 1.27. 

a. Conduct a test to decide whether or not there is a negative linear association between amount 
of muscle mass and age. Control the risk of Type I error at .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 
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b. The two-sided P-value for the test whether /30 = 0 is 0+. Can it now be concluded 
that bo provides relevant information on the amount of muscle mass at birth for a female 
child? 

c. Estimate with a 95 percent confidence interval the difference in expected muscle mass for 
women whose ages differ by one year. Why is it not necessary to know the specific ages to 
make this estimate? 

*2.28. Refer to Muscle mass Problem 1.27. 

a. Obtain a 95 percent confidence interval for the mean muscle mass for women of age 60. 
Interpret your confidence interval. 

b. Obtain a 95 percent prediction interval for the muscle mass of a woman whose age is 60. Is 
the prediction interval relatively precise? 

c. Determine the boundary values of the 95 percent confidence band for-<tl1-tregression line 
when Xh = 60. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.29. Refer to Muscle mass Problem 1.27. 

a. Plot the deviations Yi - Yi against Xi on one graph, Plot the deviations Yi - Y against Xi 
on another graph, using the same scales as in the first graph. From your two graphs, does 
SSE or SSR appear to be the larger component of SSTO? What does this imply ab9ut the 
magnitude of R2? 

b. Set up the ANOVA table. 

c. Test whether or not f3, = 0 using an F test with a = .05. State the alternatives, decision 
rule, and conclusion. 

d. What proportion of the total variation in muscle mass remains "unexplained" when age is 
introduced into the analysis? Is this proportion relatively small or large? 

e. Obtain R2 and r. 

2.30. Refer to Crime rate Problem 1.28. 

a. Test whether or not there is a linear association between crime rate and percentage of high 
school graduates, using a t test with a = .01. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

b. Estimate f3, with a 99 percent confidence interval. Interpret your interval estimate. 

2.31. Refer to Crime rate Problem 1.28 

a. Set up the ANOVA table. 

b. Carry out the test in Problem 2.30a by means of the F test. Show the numerical equivalence 
of the two test statistics and decision rules. Is the P-value for the F test the same as that for 
the t test? 

c. By how much is the total variation in crime rate reduced when percentage of high school 
graduates is introduced into the analysis? Is this a relatively large or small reduction? 

d. Obtain r. 

2.32. Refer to Crime rate Problems 1.28 and 2.30. Suppose that the test in Problem 2.30a is to be 
carried out by means of a general linear test. 

a. State the full and reduced models. 

b. Obtain (1) SSE(F), (2) SSE(R), (3) dfF. (4) dfR, (5) test statistic F* for the general linear 
test, (6) decision rule. 

c. Are the test statistic F* and the decision rule for the general linear test numerically equivalent 
to those in Problem 2.30a? 
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2.33. In developing empirically a cost function from observed data on a complex chemical experiment, 
an analyst employed normal error regression model (2.1). f30 was interpreted here as the cost 
of setting up the experiment. The analyst hypothesized that this cost should be $7.5 thousand 
and wished to test the hypothesis by means of a general linear test. 

a. Indicate the alternative conclusions for the test. 

b. Specify the full and reduced models. 

c. Without additional information, can you tell what the quantity dfR -dfF in test statistic (2.70) 
will equal in the analyst's test? Explain. 

2.34. Refer to Grade point average Problem 1.19. 

a. Would it be more reasonable to consider the Xi as known constants or as random variables 
here? Explain. 

b. If the Xi were considered to be random variables, would this have any effect on prediction 
intervals for new applicants? Explain. 

2.35. Refer to Copier maintenance Problems 1.20 and 2.5. How would the meaning of the wnfidence 
coefficient in Problem 2.5a change if the predictor variable were considered a random variable 
and the conditions on page 83 were applicable? 

2.36. A management trainee in a production department wished to study the relation between weight 
of rough casting and machining time to produce the finished block. The trainee selected castings 
so that the weights would be spaced equally apart in the sample and then observed the corre­
sponding machining times. Would you recommend that a regression or a correlation model be 
used? Explain. 

2.37. A social scientist stated: "The conditions for the bivariate normal distribution are so rarely met 
in my experience that I feel much safer using a regression mode!." Comment. 

2.38. A student was investigating from a large sample whether variables Y1 and Y2 follow a bivariate 
normal distribution. The student obtained the residuals when regressing Y, on Y2, and also 
obtained the residuals when regressing Y2 on Yb and then prepared a normal probability plot 
for each set of residuals. Do these two normal probability plots provide sufficient information 
for determining whether the two variables follow a bivariate normal distribution? Explain. 

2.39. For the bivariate normal distribution with parameters J-tl = 50, J-t2 = 100,0", = 3,0"2 = 4, and 
Pl2 = .80. 

a. Stare the characteristics of the marginal distribution of Yr. 

b. State the characteristics of the conditional distribution of Y2 when Y, = 55. 

c. State the characteristics of the conditional distribution of Y1 when Y2 = 95. 

2.40. Explain whether any of the following would be affected if the bivariate normal mod~l (2.74) 
were employed instead of the normal error regression model (2.1) with fixed levels of the 
predictor variable: (1) point estimates of the regression coefficients, (2) confidence limit~ for 
the regression coefficients, (3) interpretation of the confidence coefficient. 

2.4l. Refer to Plastic hardness Problem 1.22. A student was analyzing these data and received the 
following standard query from the interactive regression and correlation computer package: 
CALCULATE CONFIDENCE INTERVAL FOR POPULATION CORRELATION COEFFI­
CIENT RHO? ANSWER Y OR N. Would a "yes" response lead to meaningful information 
here? Explain. 

*2.42. Property assessments. The data that follow show assessed value for property tax purposes 
(Y" in thousand dollars) and sales price (Y2, in thousand dollars) for a sample of 15 parcels 
of land for industrial development sold recently in "arm's length" transactions in a tax district. 
Assume that bivariate normal model (2.74) is appropriate here. 
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2.43. 

i: 

13.9 
28.6 

2 

16.0 
34.7 

3 

10.3 
21.0 

13 

14.9 
35.1 

14 

12.9 
30.0 

15 

15.8 
36.2 

a. Plot the data in a scatter diagram. Does the bivariate normal model appear to be appropriate 
here? Discuss. 

b. Calculate r,2. What parameter is estimated by r,2? What is the interpretation of this 
parameter? 

c. Test whether or not Y, and Y2 are statistically independent in the population, using test statis­
tic (2.87) and level of significance .01. State the alternatives, decision rule, and conclusion. 

d. To test P'2 = .6 versus P'2 1= .6, would it be appropriate to use test statistic (2.87)? 

"" Contract profitability. A cost analyst for a drilling and blasting contractor~examined 84 con-
tracts handled in the last two years and found that the coefficient of correlation between value 
of contract (Y,) and profit contribution generated by the contract (Y2) is r'2 = .61. Assume 
that bivariate normal model (2.74) applies. 

a. Test whether or not Y, and Y2 are statistically independent in the population; use a = .05. 
State the alternatives, decision rule, and conclusion. 

b. Estimate P,2 with a 95 percent confidence interval. 

c. Convert the confidence interval in part (b) to a 95 percent confidence interval for P~2' Interpret 
this interval estimate. 

*2.44. Bid preparation. A building construction consultant studied the relationship between cost of 
bid preparation (Y,) and amount of bid (Y2) for the consulting firm's clients. In a sample of 
103 bids prepared by clients, r'2 = .87. Assume that bivariate normal model (2.74) applies. 

a. Test whether or not P,2 = 0; control the risk of Type I error at .10. State the alternatives, 
decision rule, and conclusion. What would be the implication if P'2 = O? 

b. Obtain a 90 percent confidence interval for P12' Interpret this interval estimate. 

c. Convert the confidence interval in part (b) to a 90 percent confidence interval for P~2' 

2.45. Water flow. An engineer, desiring to estimate the coefficient of correlation P'2 between rate 
of water flow at point A in a stream (Y,) and concurrent rate of flow at point B (Y2), obtained 
r'2 = .83 in a sample of 147 cases. Assume that bivariate normal model (2.74) is appropriate. 

a. Obtain a 99 percent confidence interval for P,2' 

b. Convert the confidence interval in part (a) to a 99 percent confidence interval for P~2' 

2.46. Refer to Property assessments Problem 2.42. There is some question as to whether or not 
bivariate model (2.74) is appropriate. 

a. Obtain the Spearman rank correlation coefficient rs. 

b. Test by means of the Spearman rank correlation coefficient whether an association exists 
between property assessments and sales prices using test statistic (2.101) with a = .01. 
State the alternatives, decision rule, and conclusion. 

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
Problem 2.42? 

*2.47. Refer to Muscle mass Problem 1.27. Assume that the normal bivariate model (2.74) is 
appropriate. 

a. Compute the Pearson product-moment correlation coefficient r'2. 

b. Test whether muscle mass and age are statistically independent in the population; use 
a = .05. State the alternatives, decision rule, and conclusion. 
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c. The bivariate normal model (2.74) assumption is possibly inappropriate here. Compute the 
Spearman rank correlation coefficient, rs. 

d. Repeat part (b), this time basing the test of independence on the Spearman rank correlation 
computed in part (c) and test statistic (2.101). Use a = .05. State the alternatives, decision 
rule, and conclusion. 

e. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
parts (c) and (d)? 

2.48. Refer to Crime rate Problems 1.28, 2.30, and 2.31. Assume that the normal bivariate model 
(2.74) is appropriate. 

a. Compute the Pearson product-moment correlation coefficient r'2. 

b. Test whether crime rate and percentage of high school graduates are statistically independent 
in the population; use a = .01. State the alternatives, decision rule, and conclusion. 

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
2.31b and 2.30a, respectively? }.., 

2.49. Refer to Crime rate Problems 1.28 and 2.48. The bivariate normal model (2.74) assumption 
is possibly inappropriate here. 

a. Compute the Spearman rank correlation coefficient rs. 

b. Test by means of the Spearman rank correlation coefficient whether an association exists 
between crime rate and percentage of high school graduates using test statistic (2.101) and 
a level of significance .01. State the alternatives, decision rule, and conclusion. 

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
Problems 2.48a and 2.48b, respectively? 

2.50. Derive the property in (2.6) for the k i . 

2.51. Show that bo as defined in (2.21) is an unbiased estimator of /30. 
2.52. Derive the expression in (2.22b) for the variance of bo, making use of (2.31). Also explain how 

variance (2.22b) is a special case of variance (2.29b). 

2.53. (Calculus needed.) 

a. Obtain the likelihood function for the sample observations Yj, ... , Y" given Xj, ... , X"' if 
- the conditions on page 83 apply. 

b. Obtain the maximum likelihood estimators of /30, f3" and a 2. Are the estimators of f30 and 
f3, the same as those in (l.27) when the Xi are fixed? '. 

2.54. Suppose that normal error regression model (2.1) is applicable except that the error variance 
is not constant; rather the variance is larger, the larger is X. Does f3, = 0 still imply that there 
is no linear association between X and Y? That there is no association between X and Y? 
Explain. 

2.55. Derive the expression for SilR in (2.51). 

2.56. In a small-scale regression study, five observatiol)s on Y were obtained corresponding to X = 1, 
4,10, ll, and 14. Assume that a = .6, /30 = 5, and f3, = 3. 

a. What are the expected values Cff MSR and MSE here? 

b. For derermining whether or not a regression relation exists, would it have been better or 
worse to have made the five observations at X = 6,7, 8, 9, and 1O? Why? Would the 
same answer apply if the principal purpose were to estimate the mean response for X = 8? 
Discuss. 
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Projects 

2.57. The normal error regression model (2.1) is assumed to be applicable. 

a. When testing Ho: f3, = 5 versus Ha: f3, 1= 5 by means of a general linear test, what is the 
reduced model? What are the degrees offreedom dfR? 

b. When testing Ho: f30 = 2, f3, = 5 versus Ha: not both f30 = 2 and f3, = 5 by means of a 
general linear test, what is the reduced model? What are the degrees of freedom dfR? 

2.58. The random variables Y, and Y2 follow the bivariate normal distribution in (2.74). Show that if 
P'2 = 0, Y, and Y2 are independent random variables. 

2.59. (Calculus needed.) 

a Obtain the maximum likelihood estimators of the parameters of the bivariate normal distri­
bution in (2.74). 

b. Using the results in part (a), obtain the maximum likelihood estimators ofJhe parameters of 
the conditional probability distribution of Y, for any value of Y2 in (2.8ll). 

c. Show that the maximum likelihood estimators of all2 and f3'2 obtained in part (b) are the 
same as the least squares estimators ( 1.10) for the regression coefficients in the simple linear 
regression model. 

2.60. Show that test statistics (2.17) and (2.87) are equivalent. 

2.6l. Show that the ratio SSR/SsrO is the same whether Y, is regressed on Y2 or Y2 is regressed on 
Yr. [Hint: Use (1. lOa) and (2.51).] 

2.62. Refer to the CDI data set in Appendix C.2 and Project l.43. Using R2 as the criterion, which 
predictor variable accounts for the largest reduction in the variability in the number of active 
physicians? 

2.63. Refer to the CDI data set in Appendix C.2 and Project l.44. Obtain a separate interval estimate 
of f3, for each region. Use a 90 percent confidence coefficient in each case. Do the regression 
lines for the different regions appear to have similar slopes? 

2.64. Refer to the SENIC data set in Appendix C.1 and Project 1.45. Using R2 as the criterion, which 
predictor variable accounts for the largest reduction in the variability of the average length of 
stay? 

2.65. Refer to the SENIC data set in Appendix C.1 and Project l.46. Obtain a separate interval 
estimate of f31 for each region. Use a 95 percent confidence coefficient in each case. Do the 
regression lines for the different regions appear to have similar slopes? 

2.66. Five observations on Yare to be taken when X = 4, 8, 12, 16, and 20, respectively. The true 
regression function is E(y} = 20 + 4X, and the Bi are independent N(O, 25). 

a. Generate five normal random numbers, with mean 0 and variance 25. Consider these random 
numbers as the errorterms for the five Y observations at X = 4,8, 12, 16, and 20 and calculate 
Yj, Y2, Y3 , Y4 , and Ys. Obtain the least squares estimates ho and h, when fitting a straight 
line to the five cases. Also calculate Y" when X" = 10 and obtain a 95 percent confidence 
interval for E(Y,,} when X" = 10. 

b. Repeat part (a) 200 times, generating new random numbers each time. 

c. Make a frequency distribution of the 200 estimates hI. Calculate the mean and standard 
deviation of the 200 estimates hI. Are the results consistent with theoretical expectations? 

d. What proportion of the 200 confidence intervals for E (Yd when X" = 10 include E (Yd? 
Is this result consistent with theoretical expectations? 
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2.67. Refer to Grade point average Problem 1.19. 

a. Plot the data, with the least squares regression line for ACT scores between 20 and 30 
superimposed. 

b. On the plot in part (a), superimpose a plot of the 95 percent confidence band for the true 
regression line for ACT scores between 20 and 30. Does the confidence band suggest that 
the true regression relation has been precisely estimated? Discuss. 

2.68. Refer to Copier maintenance Problem 1.20. 

a. Plot the data, with the least squares regression line for numbers of copiers serviced between 
1 and 8 superimposed. 

b. On the plot in part (a), superimpose a plot of the 90 percent confidence band for the true 
regression line for numbers of copiers serviced between 1 and 8. Does the confidence band 
suggest that the true regression relation has been precisely estimated? Discuss. 
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Diagnostics and 
Remedial Measures 

When a regression model, such as the simple linear regression model (2.1), is considered 
for an application, we can usually not be certain in advance that the model is appropriate 
for that application. Anyone, or several, of the features of the model, such as linearity 
of the regression function or normality of the error terms, may not be appropriate for the 
particular data at hand. Hence, it is important to examine the aptness of the model for the 
data before inferences based on that model are undertaken. In this chapter, we discuss some 
simple graphic methods for studying the appropriateness of a model, as well as some formal 
statistical tests for doing so. We also consider some remedial techniques that can be helpful 
when the data are not in accordance with the conditions of regression model (2.1). We 
conclude the chapter with a case example that brings together the concepts and methods 
presented in this and the earlier chapters. 

While the discussion in this chapter is in terms of the appropriateness of the simple 
linear regression model (2.1), the basic principles apply to all statistical models discussed 
in this book. In later chapters, additional methods useful for examining the appropriateness 
of statistical models and other remedial measures will be presented, as well as methods for 
validating the statistical model. 

Diagnostics for Predictor Variable 

We begin by considering some graphic diagnostics for the predictor variable. We need 
diagnostic information about the predictor variable to see if there are any outlying X values 
that could influence the appropriateness of the fitted regression function. We discuss the 
role of influential cases in detail in Chapter 10. Diagnostic information about the range and 
concentration of the X levels in the study is also useful for ascertaining the range of validity 
for the regression analysis. 

Figure 3.1a contains a simple dot plot for the lot sizes in the Toluca Company example 
in Figure 1.10. A dot plot is helpful when the number of observations in the data set is not 
large. The dot plot in Figure 3.1a shows that the minimum and maximum lot sizes are 20 
and 120, respectively, that the lot size levels are spread throughout this interval, and that 
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FIGURE 3.1 MINITAB and SYGRAPH Diagnostic Plots for Predictor Variable-Toluca Company Example. 
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there are no lot sizes that are far outlying. The dot plot also shows that in a number of cases 
several runs were made for the same lot size. 

A second useful diagnostic for the predictor variable is a sequence plot. Figure 3.1b 
contains a time sequence plot of the lot sizes for the Toluca Company example. Lot size is 
here plotted against production run (i.e., against time sequence). The points in the plot;;rre 
connected to show more effectively the time sequence. Sequence plots should be utilized 
whenever data are obtained in a sequence, such as over time or for adjacent geographic 
areas. The sequence plot in Figure 3.1b contains no special pattern. If, say, the plot had 
shown that smaller lot sizes had been utilized early on and larger lot sizes later on, this 
information could be very helpful for subsequent diagnostic studies of the aptness of the 
fitted regression model. 

Figures 3.1c and 3.1d contain two other diagnostic plots that present information similar 
to the dot plot in Figure 3.la. The stem-and-leafplot in Figure 3.1c provides information 
similar to a frequency histogram. By displaying the last digits, this plot also indicates here 
that all lot sizes in the Toluca Company example were multiples of 10. The letter M in the 
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SYGRAPH output denotes the stem where the median is located, and the letter H denotes 
the stems where the first and third quartiles (hinges) are located. 

The box plot in Figure 3.ld shows the minimum and maximum lot sizes, the first and 
third quartiles, and the median lot size. We see that the middle half of the lot sizes range 
from 50 to 90, and that they are fairly symmetrically distributed because the median is 
located in the middle of the central box. A box plot is particularly helpful when there are 
many observations in the data set. 

3.2 Residuals 

Direct diagnostic plots for the response variable Y are ordinarily not too us~fuhn regression 
analysis because the values of the observations on the response variable are a function of 
the level of the predictor variable. Instead, diagnostics for the response variable are usually 
carried out indirectly through an examination of the residuals. 

The residual ei, as defined in (1.16), is the difference between the observed value Y; and 
the fitted value Y;: . 

e; = Y; - Y; (3.1) 

The residual may be regarded as the observed error, in distinction to the unknown true error 
C; in the regression model: 

C; = Y; - E{Y;} (3.2) 

For regression model (2.1), the error terms C; are assumed to be independent normal 
random variables, with mean 0 and constant variance a 2• If the model is appropriate for the 
data at hand, the observed residuals e; should then reflect the properties assumed for the C;. 

This is the basic idea underlying residual analysis, a highly useful means of examining the 
aptness of a statistical model. 

Properties of Residuals 
Mean. The mean of the n residuals e; for the simple linear regression model (2.1) is, 
by (1.17): 

(3.3) 

where e denotes the mean of the residuals. Thus, since e is always 0, it provides no infor­
mation as to whether the true errors C; have expected value E {c;} = O. 

Variance. The variance of the n residuals ej is defined as follows for regression 
model (2.1): 

2 L(e; - e)2 L e; SSE 
s = =--=--=MSE 

n-2 n-2 n-2 
(3.4) 

If the model is appropriate, MSE is, as noted earlier, an unbiased estimator of the variance 
of the error terms a 2• 

Nonindependence. The residuals e; are not independent random variables because they 
involve the fitted values Y; which are based on the same fitted regression function. As 
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a result, the residuals for regression model (2.1) are subject to two constraints. These 
are constraint (1. 17)-that the sum of the ei must be O-and constraint (1.l9)-that the 
products Xiei must sum to O. 

When the sample size is large in comparison to the number of parameters in the regression 
model, the dependency effect among the residuals ei is relatively unimportant and can be 
ignored for most purposes. 

Semistudentized Residuals 
At times, it is helpful to standardize the residuals for residual analysis. Since the standard 
deviation of the error terms 8; is a, which is estimated by ./ MSE, it is natural to consider 
the following form of standardization: 

* ei - e ei 
e· =---=---

I ./ MSE ./ MSE 
(3.5) 

}.., 

If ./MSE were an estimate of the standard deviation of the residual ei, we would call e; 
a studentized residual. However, the standard deviation of ei is complex and varies for 
the different residuals ei, and ./MSE is only an approximation of the standard deviation 
of ei. Hence, we call the statistic e7 in (3.5) a semistudentized residual. We shall take 
up studentized residuals in Chapter 10. Both semistudentized residuals and studentized 
residuals can be very helpful in identifying outlying observations. 

Departures from Model to Be Studied by Residuals 
We shall consider the use of residuals for examining six important types of departures from 
the simple linear regression model (2.1) with normal errors: 

1. The regression function is not linear. 
2. The error terms do not have constant variance. 
3. The error terms are not independent. 
4. The model fits all but one or a few outlier observations. 
5. The error terms are not normally distributed. 
6. One or several important predictor variables have been omitted from the model. 

3.3 Diagnostics for Residuals 

We take up now some informal diagnostic plots of residuals to provide information on 
whether any of the six types of departures from the simple linear regression model (2.1) 
just mentioned are present. The following plots of residuals (or semistudentized residuals) 
will be utilized here for this purpose: ' 

1. Plot of residuals against predictor variable. 
2. Plot of absolute or squared residuals against predictor variable. 
3. Plot of residuals against fitted values. 
4. Plot of residuals against time or otl1er sequence. 
5. Plots of residuals against omitted predictor variables. 
6. Box plot of residuals. 
7. Normal probability plot of residuals. 
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FIGURE 3.2 MINIThB and SYGRAPH Diagnostic Residual Plots-Toluca Company Example. 
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Figure 3.2 contains, for the Toluca Company example, MlNITAB and SYGRAPH plots 
of the residuals in Table 1.2 against the predictor variable and against time, a box plot, and 
a normal probability plot. All of these plots, as we shall see, support the appropriateness of 
regression model (2.1) for the data. 

We tum now to consider how residual analysis can be helpful in studying each of the six 
departures from regression model (2.1). 

Nonlinearity of Regression Function 
Whether a linear regression function is appropriate for the data being analyzed can be 
studied from a residual plot against the predictor variable or, equivalently, from a residual 
plot against the fitted values. Nonlinearity of the regression function can also be studied 
from a scatter plot, but this plot is not always as effective as a residual plot. Figure 3.3a 
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(b) Residual Plot 
2 
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contains a scatter plot of the data and the fitted regression line for a study of the relation 
between maps distributed and bus ridership in eight test cities. Here, X is the number of 
bus transit maps distributed free to residents of the city at the beginning of the test period 
and Y is the increase during the test period in average daily bus ridership during nonpeak 
hours. The original data and fitted values are given in Table 3.1, columns 1,2, and 3. 'The 
plot suggests strongly that a linear regrFssion function is not appropriate. 

Figure 3.3b presents a plot_of the residuals, shown in Table 3.1, column 4, against the 
predictor variable X. The lack of fit of the linear regression function is even more strongly 
suggested by the residual plot against X in Figure 3.3b than by the scatter plot. Note that 
the residuals depart from 0 in a systf;.lllatic fashion; they are.negative for smaller X values, 
positive for medium-size X values, and negative again for large X values. 

In this case, both Figures 3.3a and '3.3b point out the lack of linearity of the regression 
function. In general, however, the residual plot is to be preferred, because it has some 
important advantages over the scatter plot. First, the residual plot can easily be used for 
examining other facets of the aptness of the model. Second, there are occasions when the 
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FIGURE 3.4 
Prototype 
Residual Plots. 
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scaling of the scatter plot places the Yi observations close to the fitted values Yi , for instance, 
when there is a steep slope. It then becomes more difficult to study the appropriateness of 
a linear regression function from the scatter plot. A residual plot, on the other hand, can 
clearly show any systematic pattern in the deviations around the fitted regression line under 
these conditions. 

Figure 3.4a shows a prototype situation of the residual plot against X when a linear 
regression model is appropriate. The residuals then fall within a horizontal band centered 
around 0, displaying no systematic tendencies to be positive and negative. This is the case 
in Figure 3.2a for the Toluca Company example. 

Figure 3.4b shows a prototype situation of a departure from the linear regression model 
that indicates the need for a curvilinear regression function. Here the residuals tend to vary 
in a systematic fashion between being positive and negative. This is the case in Figure 3.3b 
for the transit example. A different type of departure from linearity would, of course, lead 
to a picture different from the prototype pattern in Figure 3.4b. 

Comment 
A plor of residuals against the fitted values Y provides equivalent information as a plot of residuals 
against X for the simple linear regression model, and thus is not needed in addition to the residual plot 
against X. The two plots provide the same information because the fitted values Yi are a linear function 
of the values Xi for the predictor variable. Thus, only the X scale values, not the basic pattern of the 
plotted points, are affected by whether the residual plot is against the Xi or the Y;. For curvilinear 
regression and multiple regression, on the other hand, separate plots of the residuals against the fitted 
values and against the predictor variable(s) are usually helpful. • 
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Nonconstancy of Error Variance 

FIGURE 3.5 
Residual Plots 
lHustrating 
Nonconstant 
Error 
Variance. 

Plots of the residuals against the predictor variable or against the fitted values are not only 
helpful to study whether a linear regression function is appropriate but also to examine 
whether the variance of the error terms is constant. Figure 3.Sa shows a residual plot against 
age for a study ofthe relation between diastolic blood pressure of healthy, adult women (Y) 
and their age (X). The plot suggests that the older the woman is, the more spread out the 
residuals are. Since the relation between blood pressure and age is positive, this suggests 
that the error variance is larger for older women than for younger ones. 

The prototype plot in Figure 3.4a exemplifies residual plots when the error term variance 
is constant. The residual plot in Figure 3.2a for the Toluca Company example is of this type, 
suggesting that the error terms have constant variance here. 

Figure 3.4c shows a prototype picture of residual plots when the error variance increases 
with X. In many business, social science, and biological science applications, departures 
from constancy of the error variance tend to be of the "megaphone" type shoWn in Fig­
ure 3.4c, as in the blood pressure example in Figure 3.Sa. One can also encounter error 
variances decreasing with increasing levels of the predictor variable and occasionally vary­
ing in some more complex fashion. 

Plots of the absolute values of the residuals or of the squared residuals against the pre­
dictor variable X or against the fitted values Y are also useful for diagnosing nonconstancy 
of the error variance since the signs of the residuals are not meaningful for examining the 
constancy of the error variance. These plots are especially useful when there are not many 
cases in the data set because plotting of either the absolute or squared residuals places all of 
the information on changing magnitudes of the residuals above the horizontal zero line so 
that one can more readily see whether the magnitude of the residuals (irrespective of sign) 
is changing with the level of X or Y. 

Figure 3.Sb contains a plot of the absolute residuals against age for the blood pressure 
example. This plot shows more clearly that the residuals tend to be larger in absolute 
magnitude for older-aged women. 
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FIGURE 3.6 
Residual Plot 
with Outlier. 
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Presence of Outliers 
Outliers are extreme observations. Residual outliers can be identified from residual plots 
against X or Y, as well as from box plots, stem-and-leaf plots, and dot plots of the residu­
als. Plotting of semistudentized residuals is particularly helpful for distinguishing outlying 
observations, since it then becomes easy to identify residuals that lie many standard devi­
ations from zero. A rough rule of thumb when the number of cases is large is to consider 
semistudentized residuals with absolute value of four or more to be outliers. We shall take 
up more refined procedures for identifying outliers in Chapter 10. 

The residual plot in Figure 3.6 presents semistudentized residuals and contains one 
outlier, which is circled. Note that this residual represents an observation almost six standard 
deviations from the fitted value. 

Outliers can create great difficulty. When we encounter one, our first suspicion is that 
the observation resulted from a mistake or other extraneous effect, and hence should be 
discarded. A major reason for discarding it is that under the least squares method, a fitted 
line may be pulled disproportionately toward an outlying observation because the sum of 
the squared deviations is minimized. This could cause a misleading fit if indeed the outlying 
observation resulted from a mistake or other extraneous cause. On the other hand, outliers 
may convey significant information, as when an outlier occurs because of an intemction 
with another predictor variable omitted from the model. A safe rule frequently suggested is 
to discard an outlier only if there is direct evidence that it represents an error in recording, 
a miscalculation, a malfunctioning of equipment, or a similar type of circumstance. 

Comment 
When a linear regression model is fitted to a d~ta set with a small number of cases and an outlier is 
present, the fitted regression can be so distorted by the outlier that the residual plot may improperly 
suggest a lack of fit of the linear regression model, in addition to flagging the outlier. Figure 3.7 
illustrates this situation. The scatter plot in Figure 3.7a presents a situation where all observations 
except the outlier fall around a straight-line statistical relationship. When a linear regression function 
is fitted to these data, the outlier causes such a shift in the fitted regression line as to lead to a systematic 
pattern of deviations from the fitted line for the other observations, suggesting a lack of fit of the linear 
regression function. This is shown by the residual plot in Figure 3.7b. • 

Nonindependence of Error Terms 
Whenever data are obtained in a time sequence or some other type of sequence, such as 
for adjacent geographic areas, it is a good idea to prepare a sequence plot of the residuals. 
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FIGURE 3.7 (a) Scatter Plot (b) Residual Plot 
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FIGURE 3.8 Residual Time Sequence Plots Illustrating Nonindependence of Error Terms. 
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The purpose of plotting the residuals against time or in some other type of sequen.ce is to 
see if there is any correlation between error terms that are near each other in the sequence. 
Figure 3.8a contains a time sequence plot of the residuals in an experiment to study the 
relation between the diameter of a weld (X) and the shear strength of the weld (Y): An 
evident correlation between the error terms stands out. Negative residuals are associated 

I 

mainly with the early trials, ~nd positive residuals with the later trials. Apparently, some 
effect connected with time was present, such as learning by the welder or a gradual change 
in the welding equipment, so the shear strength tended to be greater in the later welds 
because of this effect. 

A prototype residual plot showing a time-related trend effect is presented in Figure 3.4d, 
which portrays a linear time-related trend effect, as in the welding example. It is sometimes 
useful to view the problem of nonindependence of the error terms as one in which an 
important variable (in this case, time) has been omitted from the model. We shall discuss 
this type of problem shortly. 
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Another type of nonindependence of the error terms is illustrated in Figure 3.8b. Here 
the adjacent error terms are also related, but the resulting pattern is a cyclical one with no 
trend effect present. 

When the error terms are independent, we expect the residuals in a sequence plot to 
fluctuate in a more or less random pattern around the base line 0, such as the scattering 
shown in Figure 3.2b for the Toluca Company example. Lack of randomness can take the 
form of too much or too little alternation of points around the zero line. In practice, there is 
little concern with the former because it does not arise frequently. Too little alternation, in 
contrast. frequently occurs, as in the welding example in Figure 3.8a. 

Comment 

When the residuals are plotted against X, as in Figure 3.3b for the transit example, the scatter may not 
appear to be random. For this plot, however. the basic problem is probably not lack of independence 
of the error terms but a poorly fitting regression function. Thi~, indeed, is the situation portrayed in 
the scatter plot in Figure 3.3a. • 

Nonnormality of Error Terms 
As we noted earlier, small departures from normality do not create any serious problems. 
Major departures, on the other hand, should be of concern. The normality of the error terms 
can be studied informally by examining the residuals in a variety of graphic ways. 

Distribution Plots. A box plot of the residuals is helpful for obtaining summary informa­
tion about the symmetry of the residuals and about possible outliers. Figure 3.2c contains 
a box plot of the residuals in the Toluca Company example. No serious departures from 
symmetry are suggested by this plot. A histogram, dot plot, or stem-and-leaf plot of the 
residuals can also be helpful for detecting gross departures from normality. However, the 
number of cases in the regression study must be reasonably large for any of these plots to 
convey reliable information about the shape of the distribution of the error terms. 

Comparison of Frequencies. Another possibility when the number of cases is reasonably 
large is to compare actual frequencies of the residuals against expected frequencies under 
normality. For example, one can determine whether, say, about 68 percent of the residuals 
ei fall between ±-JMSE or about 90 percent fall between ±1.645-JMSE. When the sample 
size is moderately large, corresponding t values may be used for the comparison. 

To illustrate this procedure, we again consider the Toluca Company example of Chapter 1. 
Table 3.2, column t, repeats the residuals from Table 1.2. We see from Figure 2.2 that 
.JMSE = 48.82. Using the t distribution, we expect under normality about 90 percent of 
the residuals to fall between ±t(.95; 23).JMSE = ±1.714(48.82), or between -83.68 
and 83.68. Actually, 22 residuals. or 88 percent, fall within these limits. Similarly, under 
normality, we expect about 60 percent of the residuals to fall between -41.89 and 41.89. 
The actual percentage here is 52 percent. Thus, the actual frequencies here are reasonably 
consistent with those expected under normality. 

Normal Probability Plot. Still another possibility is to prepare a normal probability plot 
of the residuals. Here each residual is plotted against its expected value under normality. 
A plot that is nearly linear suggests agreement with normality, whereas a plot that departs 
substantially from linearity suggests that the error distribution is not normal. 

Table 3.2, column 1, contains the residuals for the Toluca Company example. To find 
the expected values of the ordered residuals under normality, we utilize the facts that (1) 
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(1) (2) (3) 
Expected 

Run Residual Rank Value under 
; ej If Normality 

1 51.02 22 51.95 
2 -48.47 5 -44.10 
3 -19.88 10 ,-14j6 

23 38.83 19 31.05 
24 -5.98 13 0 
25 10.72 17 19.93 

k.. 
the expected value of the error terms for regression model (2.1) is zero and (2) the standard 
deviation of the error terms is estimated by ,JMSE. Statistical theory has shown that for a 
normal random variable with mean 0 and estimated standard deviation -J MSE, a good ap­
proximation of the expected value of the kth smallest observation in a random sample of n is: 

-JMSE[Z (k - .375)] 
n+.25 

(3.6) 

where Z (A) as usual denotes the (A) 100 percentile of the standard normal distribution. 
Using this approximation, let us calculate the expected values of the residuals under 

normality for the Toluca Company example. Column 2 of Table 3.2 shows the ranks of 
the residuals, with the smallest residual being assigned rank 1. We see that the mnk of the 
residual for run 1, e, = 51.02, is 22, which indicates that this residual is the 22nd smallest 
among the 25 residuals. Hence, for this residual k = 22. We found earlier (Table 2.1) that 
MSE = 2,384. Hence: 

k - .375 

n+.25 

22 - .375 21.625 
--- = -- = .8564 
25 + .25 25.25 

so that the expected value of this residual under normality is: 

yl2,384[z(.8564)] = V2,384(1.064) = 51.95 

Similarly, the expected value ofthe residual forrun 2, e2 = -48.47, is obtained by noting 
that the mnk of this residual is k = 5; in other words, this residual is the fifth smallest one 
among the 25 residuals. Hence, we require (k - .375)/(n + .25) = (5 - .375)/(25 + .25) = 
.1832, so that the expected value of this residual under normality is: 

V2,384[z(.1832)] = V2,384(-.9032) = -44.10 

Table 3.2, column 3, contains the expected values under the assumption of normality 
for a portion of the 25 residuals. Figure 3.2d presents a pklt of the residuals against their 
expected values under normality. Note that the points in Figure 3.2d fall reasonably close to 
a straight line, suggesting that the distribution of the error terms does not depart substantially 
from a normal distribution. 

Figure 3.9 shows three normal probability plots when the distribution of the error terms 
departs substantially from normality. Figure 3.9a shows a normal probability plot when 
the error term distribution is highly skewed to the right. Note the concave-upward shape 
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FIGURE 3.9 Normal Probability Plots when Error Term Distribution Is Not Normal. 
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of the plot. Figure 3.9b shows a normal probability plot when the error term distribution 
is highly skewed to the left. Here, the pattern is concave downward. Finally, Figure 3.9c 
shows a normal probability plot when the distribution of the error tenus is symmetrical but 
has heavy tails; in other words, the distribution has higher probabilities in the tails than 
a normal distribution. Note the concave-downward curvature in the plot at the left end, 
corresponding to the plot for a left-skewed distribution, and the concave-upward plot at the 
right end, corresponding to a right-skewed distribution. 

Comments 

1. Many computer packages will prepare normal probability plots, either automatically or at the 
option of the user. Some of these plots utilize semistudentized residuals, others omit the factor "jMSE 
in (3.6), but neither of these variations affect the nature of the plot 

2. For continuous data, ties among the residuals should occur only rarely. If two residuals do have 
the same value, a simple procedure is to use the average rank for the tied residuals for calculating the 
corresponding expected values. • 

Difficulties in Assessing Nonnality. The analysis for model departures with respect to 
normality is, in many respects, more difficult than that for other types of departures. In the 
first place, random variation can be particularly mischievous when studying the nature of 
a probability distribution unless the sample size is quite large. Even worse, other types of 
departures can and do affect the distribution of the residuals. For instance, residuals may 
appear to be not normally distributed because an inappropriate regression function is used or 
because the error variance is not constant. Hence, it is usually a good strategy to investigate 
these other types of departures first, before concerning oneself with the normality of the 
error terms. 

Omission of Important Predictor Variables 
Residuals should also be plotted against variables omitted from the model that might have 
important effects on the response. The time variable cited earlier in the welding example is 
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an illustration. The purpose of this additional analysis is to determine whether there are 
any other key variables that could provide important additional descriptive and prediftive 
power to the model. 

As another example, in a study to predict output by piece-rate workers in an assembling 
operation, the relation between output (Y) and age (X) of worker was studied for a sample 
of employees. The plot of the residuals against X, shown in Figure 3.lOa, indicates no 
ground for suspecting the appropriatenes~ of the linearity of the regression function or the 
constancy of the error variance. Since machines produced by two companies (A and B) are 
used in the assembling operation and could have an effect on output, residual plots against 
X by type of machine were undertaken and are shown in Figures 3.lOb and 3.lOc. Note 
that the residuals for Company A machines tend to be positive: while those for Company B 
machines tend to be negative. Thus, type of machine appears to have a definite effect on 
productivity, and output predictions may turn out to be far superior when this variable is 
added to the model. 
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While this second example dealt with a qualitative variable (type of machine), the resid­
ual analysis for an additional quantitative variable is analogous. The residuals are plotted 
against the additional predictor variable to see whether or not the residuals tend to vary 
systematically with the level of the additional predictor variable. 

Comment 
We do not say that the original model is "wrong" when it can be improved materially by adding one or 
more predictor variables. Only a few of the factors operating on any response variable Y in real-world 
situations can be included explicitly in a regression model. The chief purpose of residual analysis in 
identifYing other important predictor variables is therefore to test the adequacy of the model and see 
whether it could be improved materially by adding one or more predictor variables. • 

Some Final Comments 
1. We discussed model departures one at a time. In actuality, several types of departures 

may occur together. For instance, a linear regression function may be a poor fit and the 
variance of the error terms may not be constant. In these cases, the prototype patterns of 
Figure 3.4 can still be useful, but they would need to be combined into composite patterns. 

2. Although graphic analysis of residuals is only an informal method of analysis, in 
many cases it suffices for examining the aptness of a model. 

3. The basic approach to residual analysis explained here applies not only to simple 
linear regression but also to more complex regression and other types of statistical models. 

4. Several types of departures from the simple linear regression model have been identi­
fied by diagnostic tests of the residuals. Model misspecification due to either nonlinearity or 
the omission of important predictor variables tends to be serious, leading to biased estimates 
of the regression parameters and error variance. These problems are discussed further in 
Section 3.9 and Chapter 10. Nonconstancy of error variance tends to be less serious,leading 
to less efficient estimates and invalid error variance estimates. The problem is discussed in 
depth in Section 11.1. The presence of outliers can be serious for smaller data sets when 
their influence is large. Influential outliers are discussed further in Section lOA. Finally, the 
nonindependence of error terms results in estimators that are unbiased but whose variances 
are seriously biased. Alternative estimation methods for correlated errors are discussed in 
Chapter 12. 

3.4 Overview of Tests Involving Residuals 

Graphic analysis of residuals is inherently SUbjective. Nevertheless, subjective analysis of a 
variety of interrelated residual plots will frequently reveal difficulties with the model more 
clearly than particular formal tests. There are occasions, however, when one wishes to put 
specific questions to a test. We now briefly review some of the relevant tests. 

Most statistical tests require independent observations. As we have seen, however, the 
residuals are dependent. Fortunately, the dependencies become quite small for large samples, 
so that one can usually then ignore them. 

Tests for Randomness 
A runs test is frequently used to test for lack of randomness in the residuals arranged in time 
order. Another test, specifically designed for lack of randomness in least squares residuals, 
is the Durbin-Watson test. This test is discussed in Chapter 12. 
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Tests for Constancy of Variance 
When a residual plot gives the impression that the variance may be increasing or decreasing 
in a systematic manner related to X or E {Y}, a simple test is based on the rank correlation 
between the absolute values of the residuals and the corresponding values of the predictor 
variable. Two other simple tests for constancy of the error variance-the Brown-Forsythe 
test and the Breusch-Pagan test-are discussed in Section 3.6. 

Tests for Outliers 
A simple test for identifying an outlier observation involves fitting a new regression line to 
the other n - 1 observations. The suspect observation, which was not used in fitting the new 
line, can now be regarded as a new observation. One can calculate the probability that in n 
observations, a deviation from the fitted line as great as that of the outlier will be obtained 
by chance. If this probability is sufficiently small, the outlier can be rejected as not having 
come from the same population as the other n - 1 observations. Otherwise, the outlier~s 
retained. We discuss this approach in detail in Chapter 10. 

Many other tests to aid in evaluating outliers have been developed. These are discussed 
in specialized references, such as Reference 3.1. 

Tests for Normality 
Goodness of fit tests can be used for examining the normality of the error terms. For instance, 
the chi-square test or the Kolmogorov-Smirnov test and its modification, the Lilliefors test, 
can be employed for testing the normality of the error terms by analyzing the residuals. 
A simple test based on the normal probability plot of the residuals will be taken up in 
Section 3.5. 

Comment 
The runs test, rank correlation, and goodness of fit tests are commonly used statistical procedures and 
are discussed in many basic statistics texts. • 

3.5 Correlation Test for Normality 

Example 

In addition to visually assessing the approximate linearity of the points plotted in a nor­
mal probability plot, a formal test for normality of the error terms can be conducted by 
calculating the coefficient of correlation (2.74) between the residuals ei and their expected 
values under normality. A high value of the correlation coefficient is indicative of normality. 
Table B.6, prepared by Looney and Gulledge (Ref. 3.2), contains critical values (percentiles) 
for various sample sizes for the distribution of the coefficient of correlation between the 
ordered residuals and their expected values under normality when the error terms are nor­
mally distributed. If the observed coefficient of correlation is at least as large as the tabled 
value, for a given a level, one can conclude that the en;or terms are reasonably normally 
distributed. 

. ~ 

For the Toluca Company example in Table 3.2, the coefficient of correlation between the 
ordered residuals and their expected values under normality is .991. Controlling the a risk 
at .05, we find from Table B.6 that the critical value for n = 25 is .959. Since the observed 
coefficient exceeds this level, we have support for our earlier conclusion that the distribution 
of the error terms does not depart substantially from a normal distribution. 
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Comment 

The correlation test for normality presented here is simpler than the Shapiro-Wilk test (Ref. 3.3), 
which can be viewed as being based approximately also on the coefficient of correlation between the 
ordered residuals and their expected values under normality. • 

3.6 Tests for Constancy of Error Variance 

We present two formal tests for ascertaining whether the error terms have constant variance: 
the Brown-Forsythe test and the Breusch-Pagan test. 

Brown-Forsythe Test 
,.~ .7' 

The Brown-Forsythe test, a modification of the Levene test (Ref. 3.4), does not depend 
on normality of the error terms. Indeed, this test is robust against serious departures from 
normality, in the sense that the nominal significance level remains approximately correct 
when the error terms have equal variances even if the distribution of the error terms is 
far from normal. Yet the test is still relatively efficient when the error terms are normally 
distributed. The Brown-Forsythe test as described is applicable to simple linear regression 
when the variance of the error terms either increases or decreases with X, as illustrated in 
the prototype megaphone plot in Figure 3.4<.:. The sample size needs to be large enough so 
that the dependencies among the residuals can be ignored. 

The test is based on the variability of the residuals. The larger the error variance, the 
larger the variability of the residuals will tend to be. To conduct the Brown-Forsythe test, we 
divide the data set into two groups, according to the level of X, so that one group consists 
of cases where the X level is comparatively low and the other group consists of cases where 
the X level is comparatively high. If the error variance is either increasing or decreasing 
with X, the residuals in one group will tend to be more variable than those in the other 
group. Equivalently, the absolute deviations of the residuals around their group mean will 
tend to be larger for one group than for the other group. In order to make the test more 
robust, we utilize the absolute deviations of the residuals around the median for the group 
(Ref. 3.5). The Brown-Forsythe test then consists simply of the two-sample t test based on 
test statistic (A.67) to determine whether the mean of the absolute deviations for one group 
differs significantly from the mean absolute deviation for the second group. 

Although the distribution of the absolute deviations of the residuals is usually not normal, 
it has been shown that the t* test statistic still follows approximately the t distribution when 
the variance of the error terms is constant and the sample sizes of the two groups are not 
extremely small. 

We shall now use eil to denote the ith residual for group 1 and ei2 to denote the ith 
residual for group 2. Also we shall use nl and n2 to denote the sample sizes of the two 
groups, where: 

(3.7) 

Further, we shall use el and e2 to denote the medians of the residuals in the two groups. 
The Brown-Forsythe test uses the absolute deviations of the residuals around their group 
median, to be denoted by dil and di2 : 

(3.8) 
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With this notation, the two-sample t test statistic (A.67) becomes: 

([I - ([2 
t;F=-=== sJ 1 + 1 

nl n2 

(3.9) 

w here ([I and ([2 are the sample means ofthe di! and dib respectively, and the pooled variance 
S2 in (A.63) becomes: 

(3.9a) 

We denote the test statistic for the Brown-Forsythe test by t~F' 
If the error terms have constant variance and n 1 and n2 are not extremely small, t~ F 

follows approximately the t distribution with n - 2 degrees of freedom. Large absolute 
values of t~F indicate that the error terms do not have constant variance. 1-

We wish to use the Brown-Forsythe test for the Toluca Company example to determine 
whether or not the error term variance varies with the level of X. Since the X levels are 
spread fairly uniformly (see Figure 3.1a), we divide the 25 cases into two groups with 
approximately equal X ranges. The first group consists of the 13 runs with lot sizes from 
20 to 70. The second group consists of the 12 runs with lot sizes from 80 to 120. Table 3.3 

Group 1 

(1) (2)' (3) -(4) 
Lot Residual 

Run Size ell dll (41 - iJ1)2 

1 14 20 -20.77 ;89 1!929.41 
2 2 30 .:...48.47 28.59 2p3.25 

12 12 70 -60.28 40.40 19.49 
13 25 70 10.7'2 30:60 202.07 -

Total 582~60 '12,566.6 
€1 = -19.88 di = 44.815 

Group 2 

(1) (2) (3) (4) 
Lot Residual 

Run Size e;2 42 f42 - iJ2)2 

1 1 80 '51.02 '·53170 637.56 
2 8 80 4.02 6.10 473.06 .... 

11 20 110 -34.09~ 31.41 ~ 8.76 
12 7 120 55.21 57:89 866)1' 

--
Total 341)40 9;610;2 

€2 == 22.68 iJi=is.450 
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presents a portion of the data for each group. In columns 1 and 2 are repeated the lot sizes 
and residuals from Table 1.2. We see from Table 3.3 that the median residual is e, = -19.88 
for group I and e2 = -2.68 for group 2. Column 3 contains the absolute deviations of the 
residuals around their respective group medians. For instance, we obtain: 

d" = Ie" - eli = I - 20.77 - (-19.88)1 = .89 

d'2 = le'2 - e21 = 151.02 - (-2.68)1 = 53.70 

The means of the absolute deviations are obtained in the usual fashion: 

- 582.60 
d, = ----u- = 44.815 

- 341.40 
d2 = ---u- = 28.450 

Finally, column 4 contains the squares of the deviations of the do and di2 around their 
respective group means. For instance, we have: 

(d" - d1i = (.89 - 44.815)2 ~ 1,929.41 

(d'2 - d2i = (53.70 - 28.450)2 = 637.56 

We are now ready to calculate test statistic (3.9): 

2 12,566.6 + 9,610.2 64 
s = = 9 .21 

25 -2 
s = 31.05 

44.815 - 28.450 
t;F = ~1 = 1.32 

31.05 - +-
13 12 

To control the a risk at .05, we require t(.975; 23) = 2.069. The decision rule therefore is: 

If It;FI ::::: 2.069, conclude the error variance is constant 

If It;FI > 2.069, conclude the error variance is not constant 

Since It~FI = 1.32 ::::: 2.069, we conclude that the error variance is constant and does not 
vary with the level of X. The two-sided P-value of this test is .20. 

Comments 
1. If the data set contains many cases, the two-sample t test for constancy of error variance can 

be conducted after dividing the cases into three or four groups, according to the level of X, and using 
the two extreme groups. 

2. A robust test for constancy of the error variance is desirable because nonnormality and lack of 
constant variance often go hand in hand. For example, the distribution of the error terms may become 
increasingly skewed and hence more variable with increasing levels of X. • 

Breusch-Pagan Test 
A second test for the constancy of the error variance is the Breusch-Pagan test (Ref. 3.6). 
This test, a large-sample test, assumes that the error terms are independent and normally 
distributed and that the variance of the error term lOb denoted by a?, is related to the level 
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of X in the following way: 

(3.10) 

Note that (3.10) implies that al either increases or decreases with the level of X, depending 
on the sign of YI. Constancy of error variance corresponds to y, = O. The test of Ho: y, = 0 
versus Ha: y, i= 0 is carried out by means of regressing the squared residuals e~ against Xi 
in the usual manner and obtaining the regression sum of squares, to be denoted by SSR*. 
The test statistic X~P is as follows: 

X~P = S~R* 7 (S~E) 2 (3.11) 

where SSR* is the regression sum of squares when regressing e2 on X and SSE is the error 
sum of squares when regressing Yon X. If Ho: YI = 0 holds and n is reasonably large, 
X~P follows approximately the chi-square distribution with one degree of freeJom. Large 
values of X~P lead to conclusion Ha, that the error variance is not constant. 

To conduct the Breusch-Pagan test for the Toluca Company example, we regress the squared 
residuals in Table 1.2, column 5, against X and obtain SSR* = 7,896,128. We know from 
Figure 2.2 that SSE = 54,825. Hence, test statistic (3.11) is: 

2 _ 7,896,128 . (54,825)2 _ 1 
XBP - 2 --;- 25 -.82 

To control the a risk at .05, we require X2 (.95; 1) = 3.84. Since X~P = .821 ::s 3.84, we 
conclude Ho, that the error variance is constant. The P-value of this test is .64 so that the 
data are quite consistent with constancy of the error variance. 

Comments 

1. The Breusch-Pagan test can be modified to allow for different relationships between the error 
variance and the level of X than the one in (3.10). 

2. Test statistic (3.11) was developed independently by Cook and Weisberg (Ref. 3.7), and the test is 
sometimes referred to as the Cook-Weisberg test. • 

3.7 F Test for Lack of Fit 

Assumptions 

We next take up a formal test for determining whether a specific type of regression func:tion 
adequately fits the data We illustrate this test for ascertaining whether a linear regression 
function is a good fit for the data. 

The lack of fit test assumes that the observations Y for given X are (1) independent and 
(2) normally distributed, and that (3) the distributions of Y~have the same variance a 2

• 

The lack of fit test requires repeat, observations at one or more X levels. In nonexperi­
mental data, these may occur fortuitously, as when in a productivity study relating workers' 
output and age, several workers of the same age happen to be included in the study. In an 
experiment, one can assure by design that there are repeat observations. For instance, in an 
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Example 

TABLE 3.4 
Data and 
Analysis of 
Variance 
Table-Bank 
Example. 

experiment on the effect of size of salesperson bonus on sales, three salespersons can be 
offered a particular size of bonus, for each of six bonus sizes, and their sales then observed. 

Repeat trials for the same level of the predictor variable, of the type described, are called 
replications. The resulting observations are called replicates. 

In an experiment involving 12 similar but scattered suburban branch offices of a commercial 
bank, holders of checking accounts at the offices were offered gifts for setting up money 
market accounts. Minimum initial deposits in the new money market account were specified 
to qualify for the gift. The value of the gift was directly proportional to the specified 
minimum deposit. Various levels of minimum deposit and related gift values were used in 
the experiment in order to ascertain the relation between the specified minimum deposit 
and gift value, on the one hand, and number of accounts opened at the office, orr'the other. 
Altogether, six levels of minimum deposit and proportional gift value were used, with two 
of the branch offices assigned at random to each level. One branch office had a fire during 
the period and was dropped from the study. Table 3.4a contains the results, where X is the 
amount of minimum deposit and Y is the number of new mOl}ey market accounts that were 
opened and qualified for the gift during the test period. 

A linear regression function was fitted in the usual fashion; it is: 

Y = 50.72251 + .48670X 

The analysis of variance table also was obtained and is shown in Table 3.4b. A scatter plot, 
together with the fitted regression line, is shown in Figure 3.11. The indications are strong 
that a linear regression function is inappropriate. To test this formally, we shall use the 
general linear test approach described in Section 2.8. 

(a) Data 

Size of Size of 
Minimum Number Minimum Number 
Deposit of New Deposit of New 

Branch (dollars) Accounts Branch (dollars) Accounts 
i X; Y; i X; Y; 

1 125 160 7 75 42 
2 100 112 8 175 124 
3 200 124 9 125 150 
4 75 28 10 200 104 
5 150 152 11 100 136 
6 175 156 

(b) ANOVA Table 

Source of 
Variation 55 df M5 

Regressi'on 5,141.3 1 5,141.3 
Error 14,741.6 9 1,638.0 

Total 19,882.9 10 



FIGURE 3.11 
Scatter Plot 
and Fitted 
Regression 
Line-Bank 
Example. 

TABLE 3.5 
Data Arranged 
by Replicate 
Number and 
Minimum 
Deposit-Bank 
Ex3D1ple. 

Notation 

Full Model 
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V) 

c: 175 
:::l • 0 

~ 
u 
u 
« 125 
3: 
(]J 

z 
'0 75 Y = 50.7 + .49X 
(;:; 
.0 
E • 
:::l 

Z 50 100 150 200 
Size of Minimum Deposit 

Size of Minimum DelJosit (dollars) ~, 

j=l j=2 j=3 jdo4 j=5 j=6 1-
Replicate Xl =75 X2 = 100 X3 =125 X4.=7 150 Xs = 175 X6 =200 

i =1 28 ,.,2 160 152 156 124 
i=2 42 136 150 124 104 

Mean Yi 35 124 155 152 140 114 

First, we need to modify our notation to recognize the existence of replications at some levels 
of X. Table 3.5 presents the same data as Table 3.4a, but in an arrangement that recognizes 
the replicates. We shall denote the different X levels in the study, whether or not replicated 
observations are present, as X I, ... , Xc' For the bank example, c = 6 since there are six 
minimum deposit size levels in the study, for five of which there are two observations and 
for one there is a single observation. We shall let Xl = 75 (the smallest minimum deposit 
level), X2 = 100, '" , X6 = 200. Further, we shall denote the number of replicates for the 
j th level of X as n j; for our example, n I = n2 = n3 = ns = n6 = 2 and n4 = 1. Thus, the 
total number of observations n is given by: 

(3.12) 

We shall denote the observed value of the response variable for the ith replicate for 
the jth level of X by Yij, where i = 1, ... , nj, j = 1, ... , c. For the bank example 
(Table 3.5), Yll = 28, Y21 = 42, YI2 = 112, and so on. Finally, we shall denote the 
mean of the Y observations at the level X =' X j by :Vj . Thus, :VI = (28 + 42) /2 = 35 and 
:V4 = 152/1 = 152. -

The general linear test approach begins with the specification of the full model. The full 
model used for the lack of fit test makes the same assumptions as the simple linear regression 
model (2.1) except for assuming a linear regression relation, the subject of the test. This 
full model is: 

Full model (3.13) 
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where: 

M j are parameters j == 1, ... , C 

Cij are independent N(O, a 2
) 

Since the error terms have expectation zero, it follows that: 

Thus, the parameter Mj (j == 1, ... , c) is the mean response when X = X j • 

(3.14) 

The full model (3.13) is like the regression model (2.1) in stating that each response 
Y is made up of two components: the mean response when X = X j and a raI!,gQm error 
term. The difference between the two models is that in the full model (3.13) there are no 
restrictions on the means M j , whereas in the regression model (2.1) the mean responses are 
linearly related to X (i.e., E{Y} = f30 + f3, X). 

To fit the full model to the data, we require the least squares or maximum likelihood 
estimators for the pammeters M j. It can be shown that these estimators of M j are simply the 
sample means Yj: 

(3.15) 

Thus, the estimated expected value for observation Yij is Yj , and the error sum of squares 
for the full model therefore is: 

(3.16) 

In the context of the test for lack of fit, the full model error sum of squares (3.16) is called 
the pure error sum of squares and is denoted by SSPE. 

Note that SSPE is made up of the sums of squared deviations at each X level. At level 
X == X j, this sum of squared deviations is: 

(3.17) 

These sums of squares are then added over all of the X levels (j = 1, ... , c). For the bank 
example, we have: 

SSPE == (28 - 35)2 + (42 - 35i + (112 - 124)2 + (136 - 124)2 + (160 - 155)2 

+ (150 - 155)2 + (152 - 152)2 + (156 - 140)2 + (124 - 140)2 

+ (124 - 114)2 + (104 - 114)2 

= 1,148 

Note that any X level with no replications makes no contribution to SSPE because Yj = Y1j 

then. Thus, (152 - 152)2 = 0 for j == 4 in the bank example. 
The degrees of freedom associated with SSPE can be obtained by recognizing that the 

sum of squared deviations (3.17) at a given level of X is like an ordinary total sum of squares 
based on n observations, which has n - 1 degrees of freedom associated with it. Here, there 
are n j observations when X = X j; hence the degrees of freedom are n j - 1. Just as SSPE 
is the sum of the sums of squares (3.17), so the number of degrees of freedom associated 
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with SSPE is the sum of the component degrees of freedom: 

dfF = 2)n j - 1) = I> j - c = n - c (3.18) 

For the bank example, we have dfF = 11 - 6 = 5. Note that any X level with no replications 
makes no contribution to dfF because n j - I = 1 - 1 = 0 then, just as such an X level 
makes no contribution to SSPE. 

Reduced Model 

Test Statistic 

The general linear test approach next requires consideration of the reduced model under 
Ho. For testing the appropriateness of a linear regression relation, the alternatives are: 

Ho: E{Y} = f30 + f3,X 

Ha: E{Y} i= f30 + f3,X 

Thus, Ho postulates that Mj in the full model (3.13) is linearly related to X( 

Mj = f30 + f3,X j 

the reduced model under Ho therefore is: 

Yij = f30 + f3,X j + Cij Reduced model 

(3.19) 

(3.20) 

Note that the reduced model is the ordinary simple linearregression model (2.1), with the 
subscripts modified to recognize the existence of replications. We know that the estimated 
expected value for observation Yij with regression model (2.1) is the fitted value Yij : 

Yij = bo + blXj (3.21) 

Hence, the error sum of squares for the reduced model is the usual error sum of squares SSE: 

SSE(R) = L 2)Yij - (bo + b,Xj)]2 

= LL(Yij - Yij)2 = SSE 

We also kno~ that the degrees of freedom associated with SSE(R) are: 

d/R=n-2 

For the bank example, we have from Table 3.4b: 

SSE(R) = SSE = 14,741.6 

d/R = 9 

The general linear test statistic (2.70): 

F* = SSE(R) - SSE(F) ...;-. SSE(F) 

dfN - dfF dfF • 

here becomes: 

SSE - SSPE SSPE 
F*= ---

(n - 2) - (n - c) . n - c 

(3.22) 

(3.23) 
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The difference between the two error sums of squares is called the lack of fit sum of squares 
here and is denoted by SSLF: 

SSLF = SSE - SSPE (3.24) 

We can then express the test statistic as follows: 

F* = SSLF -;-. SSPE 
c-2 n-c 
MSLF 

MSPE 
(3.25) = 

where MSLF denotes the lack offit mean square and MSPE denotes the pure error mean 
,4j¢" 

square. .-
We know that large values of F* lead to conclusion Ha in the general linear test. Decision 

rule (2.71) here becomes: 

If F* :S F(1 - a; c - 2, n - c), ~onclude Ho 

If F* > F(1 - a; c - 2, n - c), conclude Ha 
(3.26) 

For the bank example, the test statistic can be constructed easily from our earlier results: 

SSPE = 1,148.0 

SSE = 14,741.6 

n-c=11-6=5 

SSLF = 14,741.6 - 1,148.0 = 13,593.6 c - 2 = 6 - 2 = 4 

F* = 13,593.6 --'- 1,148.0 
4 . 5 

= 3,398.4 = 14.80 
229.6 

If the level of significance is to be a = .01, we require F(.99;4, 5) = 11.4. Since 
F* = 14.80 > 11.4, we conclude Ha, that the regression function is not linear. This, of 
course, accords with our visual impression from Figure 3.11. The P-value for the test is 
.006. 

ANOVATable 
The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in 
fact, decomposed the error sum of squares SSE into two components: 

SSE = SSPE + SSLF 

This decomposition follows from the identity: 

YIj - Y;j = Yij - Yj + Yj - Yij 
'-v--" '-v-" '-v-" 

Error Pure error Lack of fit 
deviation deviation deviation 

(3.27) 

(3.28) 

This identity shows that the error deviations in SSE are made up of a pure error component 
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y l3 = 160, 
X3 = 125 in the bank example. 
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(pure error deviation) 5 = YB - Y3 { 

(lack offit deviation) 43 = Y3 - Yn 

75 100 125 

YB = 160 

Y3 = 155 

YB - YB = 48 (error deviation) 

150 
Size of Minimum Deposit (dollars) 

When (3.28) is squared and summed over all observations, we obtain (3.27) since the 
cross-product sum equals zero: 

(3.29) 
SSE = SSPE + SSLF 

Note from (3.29) that we can define the lack of fit sum of squares directly as follows: 

(3.30) 

Since all Yij observations at the level X j have the same fitted value, which we can denote 
by Yj , we can express (3.30) equivalently as: 

(3.30a) 

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression 
function is appropriate, then the means :Vj will be near the fitted values Yj calculated from 
the estimated linear regression function and SSLF will be small. On the other hand, if the 
linear regression function is not appropriate, the means :Vj will not be near the fitted values 
calculated from the estimated linear ,regression function, as in Figure 3.11 for the bank 
example, and SSLF will be large. 

Formula (3.30a) also indicates why c - 2 degrees of freedom are associated with SSLF. 
There are c means :Vj in the sum of squares, and two degrees of freedom are lost in estimating 
the parameters f30 and f3, of the linear regression function to obtain the fitted values Yj • 

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains 
the general ANOVA table, including the decomposition of SSE just explained and the 
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank 
example. 
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TABLE 3.6 
General 
ANOVA Table 
for Testing 
Lack of Fit of 
Simple Linear 
Regression 
Function and 
ANOVA 
Table-Bank 
Example. 

Simple Linear Regression 

(a)Gene~al 

Source of 
Variation 55 df M5 

Regression SSR= EE(Yij - y)2 1 MSR= SS~ 
1 

Error SSE = E E(Yij - Yij)2 n-2 MSE= SSE 
. n-2 

Lack of fit SSLF = EE(Y j - Yij? c-2 NfSL _ SStF F- .. 
c-2 

Pure errOr SSPE = EE(Yij - Y j)2 n-c MSPE= SSPE .. / 
n-c 

Tqtaf ssf6= E E(Yij - Y)2 n-l 

.(b) Bank Example 

Source of 
Variation 55 df M5 

Regression 5~141.3 1 5~141.3 
Error 14,741.6 9 j·l,638.0 

Lack Qffit 13,593.6 4 3,398.4 
Pure error 1,148.0 5 229.6 

Total 19,'882.9 10 

Comments 

1. As shown by the bank example, not all levels of X need have repeat observations for the F test 
for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient. 

2. It can be shown that the mean squares MSPE and MSLFhave the following expectations when 
testing whether the regression function is linear: 

E{MSPE) = u 2 

E{MSLF) = u 2 + Enj[JLj - (130 + ,8I X j))2 
c-2 

(3.31) 

(3.32) 

The reason for the term "pure error" is that MSPE is always an unbiased estimator of the error term 
variance u 2

, no matter what is the true regression function. The expected value of MSLF also is u 2 if 
the regression function is linear, because JLj = 130 +,81 Xj then and the second term in (3.32) becomes 
zero. On the other hand, if the regression function is not linear, JL j of. 130 + ,81 X j and E {MSLF) will 
be greater than u 2

• Hence, a value of F* near 1 accords with a linear regression function; large values 
of F* indicate that the regression function is not linear. 

3. The terminology "error sum of squares" and "error mean square" is not precise when the 
regression function under test in Ho is not the true function since the error sum of squares and error 
mean square then reflect the effects of both the lack of fit and the variability of the error terms. We 
continue to use the terminology for consistency and now use the term "pure error" to identifY the 
variability associated with the error term only. 
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4. Suppose that prior to any analysis of the appropriateness of the model, we had fitted a linear 
regression model and wished to test whether or not f3! = 0 for the bank example (Table 3Ab). Test 
statistic (2.60) would be: 

* MSR 5,141.3 
F =-=--=3.14 

MSE 1,638.0 

For a = .10, F(.90; 1, 9) = 3.36, and we would conclude Ho, that f31 = 0 or that there is no linear 
association between minimum deposit size (and value of gift) and number of new accounts. A conclu­
sion that there is no relation between these variables would be improper, however. Such an inference 
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re­
gression function is not linear. This illustrates the importance of always examining the appropriateness 
of a model before any inferences are drawn. 

5. The general linear test approach just explained can be used to test the appropriateness of other 
regression functions. Only the degrees of freedom for SSLF will need be modified. In general, c - p 
degrees of freedom are associated with SSIF, where p is the number of parameters in the regression 
function. For the test of a simple linear regression function, p = 2 because there are two pararrv;ters, 
f30 and f31' in the regression function. 

6. The alternative Ha in (3.19) includes all regression functions other than a linear one. For 
instance, it includes a quadratic regression function or a logarithmic one. If Ha is concluded, a study 
of reSiduals can be helpful in identifying an appropriate function. 

7. When we conclude that the employed model in Ho is appropriate, the usual practice is to use 
the error mean square MSE as an estimator of u 2 in preference to the pure error mean square MSPE, 
since the former contains more degrees of freedom. 

8. Observations at the same level of X are genuine repeats only if they involve independent trials 
with respect to the error term. Suppose that in a regression analysis of the relation between hardness 
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among 
other things, random errors in the measurement of hardness by the analyst and effects of uncontrolled 
production factors, which vary at random from specimen to specimen and affect hardness. If the 
analyst takes two readings on the hardness of a specimen, this will not provide a genuine replication 
because the effects of random variation in the production factors are fixed in any given specimen. 
For genuine replications, different specimens with the same carbon content (X) would have to be 
measured by the analyst so that all the effects covered in the error term could vary at random from 
one repeated observation to the next 

9. When no replications are present in a data set, an approximate test for lack of fit can be 
conducted if there are some cases at adjacent X levels for which the mean responses are quite close to 
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the test for 
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this'<and 
related procedures for conducting a test for lack of fit when no replicates are present may be found in 
Reference 3.8. • 

3.8 Overview of Remedial Measures' 

If the simple linear regression model (2.1) is not appropriate for a data set, there are two 
basic choices: 

1. Abandon regression model (2.1) and develop and use a more appropriate model. 
2. Employ some transformation on the data so that regression model (2.1) is appropriate 

for the transformed data. 
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Each approach has advantages and disadvantages. The first approach may entail a more 
complex model that could yield better insights, but may also lead to more complex proce­
dures for estimating the parameters. Successful use of transformations, on the other hand, 
leads to relatively simple methods of estimation and may involve fewer parameters than 
a complex model, an advantage when the sample size is small. Yet transformations may 
obscure the fundamental interconnections between the variables, though at other times they 
may illuminate them. 

We consider the use of transformations in this chapter and the use of more complex 
models in later chapters. First, we provide a brief overview of remedial measures. 

Nonlinearity of Regression Function 
When the regression function is not linear, a direct approach is to m;d7fy regression 
model (2.1) by altering the nature of the regression function. For instance, a quadratic 
regression function might be used: 

E{Y} = f30 + f3,X + f3'l.X2 

or an exponential regression function: 

E {Y} = f3of3f 

In Chapter 7, we discuss polynomial regression functions, and in Part ill we take up nonlinear 
regression functions, such as an exponential regression function. 

The transformation approach employs a transformation to linearize, at least approxi­
mately, a nonlinear regression function. We discuss the use of transformations to linearize 
regression functions in Section 3.9. 

When the nature of the regression function is not known, exploratory analysis that does 
not require specifYing a particular type of function is often useful. We discuss exploratory 
regression analysis in Section 3.10. 

Nonconstancy of Error Variance 
When the error variance is not constant but varies in a systematic fashion, a direct approach 
is to modify the model to allow for this and use the method of weighted least squares to 
obtain the estimators of the parameters. We discuss the use of weighted least squares for 
this purpose in Chapter 11. 

Transformations can also be effective in stabilizing the variance. Some of these are 
discussed in Section 3.9. 

Nonindependence of Error Terms 
When the error terms are correlated, a direct remedial measure is to work with a model that 
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial 
transformation that is often helpful is to work with first differences, a topic also discussed 
in Chapter 12. 

Nonnormality of Error Terms 
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately, 
it is often the case that the same transformation that helps stabilize the variance is also helpful 
in approximately normalizing the error terms. It is therefore desirable that the transformation 
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for stabilizing the error variance be utilized first, and then the residuals studied to see if 
serious departures from normality are still present. We discuss transformations to achieve 
approximate normality in Section 3.9. 

Omission of Important Predictor Variables 
When residual analysis indicates that an important predictor variable has been omitted from 
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss 
multiple regression analysis in which two or more predictor variables are utilized. 

Outlying Observations 
When outlying observations are present, as in Figure 3.7a, use of the least squares and 
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis­
tortions in the estimated regression function. When the outlying observations do not repre­
sent recording errors and should not be discarded, it may be desirable to use aruestimation 
procedure that places less emphasis on such outlying observations. We discuss one such 
robust estimation procedure in Chapter 11. 

3.9 Transformations 

We now consider in more detail the use of transformations of one or both of the original 
variables before carrying out the regression analysis. Simple transformations of either the 
response variable Y or the predictor variable X, or of both, are often sufficient to make the 
simple linear regression model appropriate for the transformed data. 

Transformations for Nonlinear Relation Only 

Example 

We first consider transformations for linearizing a nonlinear regression relation when the 
distribution of the error terms is reasonably close to a normal distribution and the error 
terms have approximately constant variance. In this situation, transformations on X should 
be attempted. The reason why transformations on Y may not be desirable here is that a 
transformation on Y, such as Y' = -/y, may materially change the shape of the distribution 
of the -error terms from the normal distribution and may also lead to substantially differing 
error term variances. 

Figure 3.13 contains some prototype nonlinear regression relations with constant error 
variance and also presents some simple transformations on X that may be helpful to lin­
earize the regression relationship without affecting the distributions of Y. Several alternative 
transformations may be tried. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed, to decide which transformation is most effective. 

Data from an experiment on the effect of number of days of training received (X) on 
performance (Y) in a battery of simulated sales situations are presented in Table 3.7, 
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in 
Figure 3.14a. Clearly the regression relation appears to be'curvilinear, so the simple linear 
regression model (2.1) does not seemto be appropriate. Since the variability at the different 
X levels appears to be fairly constant, we shall consider a transformation on X. Based on 
the prototype plot in Figure 3.13a, we shall consider initially the· square root transformation 
X' = .JX. The transformed values are shown in column 3 of Table 3.7. 
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FIGURE 3.13 
Prototype 
Nonlinear 
Regression 
Patterns with 
Constant Error 
Variance and 
Simple Trans­
formations 
ofX. 

TABLE 3.7 
Use of Square 
Root Transfor-
mation of X to 
Linearize 
Regression 
Relation-
Sales Training 
Exanlple. 

(a) 

(b) 

(c) 

Prototype Regression Pattern 
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(1) 
Sales Days of 

Trainee Training 
; Xi 

1 .5 
2 .5 
3 1.0 
4 1.0 
5 1.5 
6 1.,5 
7 2.0 
8 2.0 
9 2.5 

10 2.5 

Transformations of X 

X' = 10910 X X' = .JX. 

X' = X2 X' = exp(X) 

X' = l/X X' = exp(-X) 

(2) (3) 
·Performance 

Score 
Yi Xi =.jX; 

42.5 ;70711 
50.6 .70711 
68.5 1.00000 
80.7 1.00000 
89.0 1.22474 
99.6 1.22474 

105.3 1.41421 
111;8 1.41421 
112.3 1.58114 
125.7 1.58114 

In Figure 3.14b, the same data are plotted with the predictor variable transformed to 
X' = .JX. Note that the scatter plot now shows a reasonably linear relation. The variability 
of the scatter at the different X levels is the same as before, since we did not make a 
transformation on Y. 

To examine further whether the simple linear regression model (2.1) is appropriate now, 
we fit it to the transformed X data. The regression calculations with the transformed X data 
are carried out in the usual fashion, except that the predictor variable now is X'. We obtain 
the following fitted regression function: 

Y = -10.33 + 83.45X' 

Figure 3.14c contains a plot of the residuals against X'. There is no evidence of lack of 
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of 
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Scatter Plots and Residual P1ots--Sales Training Example. 

(a) Scatter Plot (~) Scatter Plot against .JX. 
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the residuals. No strong indi~ations of substantial departures from normality are indicated 
by this plot. This conclusion is supported by the high coefficient of correlation between the 
ordered residuals and their expected values under normality, .979. For ex = .01, Table B.6 
shows that the critical value is .879, so the observed cqefficient is substantially larger 
and supports the reasonableness of normal error terms. Thus, the simple linear regression 
model (2.1) appears to be appropriate here for the transformed data. 

The fitted regression function in the original units of X can easily be obtained, if desired: 

Y = -10.33 + 83.4S.JX 
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FIGURE 3.15 
Prototype 
Regression 
Patterns with 
Unequal Error 
Variances and 
Simple Trans­
formations 
ofY. 

(a) 

Prototype Regression Pattern 

(b) 

Transformations on Y 

Y'= JY 

Y' = 10glo Y 

Y' = l/Y 

Note: A simultaneous transformation on X may also be helpful or necessary. 

Comment 

At times, it may be helpful to introduce a constant into the transformation. For example, if some of 
the X data are near zero and the reciprocal transformation is desired, we can shift the origin by using 
the transformation X' = 1/ (X + k), where k is an appropriately chosen constant. • 

Transformations for Nonnormality and Unequal Error Variances 

Example 

Unequal error variances and nonnormality of the error terms frequently appear together. 
To remedy these departures from the simple linear regression model (2.1), we need a 
transformation on Y, since the shapes and spreads of the distributions of Y need to be 
changed. Such a transformation on Y may also at the same time help to linearize a curvilinear 
regression relation. At other times, a simultaneous transformation on X may be needed to 
obtain or maintain a linear regression relation. 

Frequently, the nonnormality and unequal variances departures from regression 
model (2.1) take the form of increasing skewness and increasing variability of the distribu­
tions of the error terms as the mean response E {Y} increases. For example, in a regression 
of yearly household expenditures for vacations (Y) on household income (X), there will 
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation 
expenditures) for high-income households than for low-income households, who tend to 
consistently spend much less for vacations. Figure 3.15 contains some prototype regression 
relations where the skewness and the error variance increase with the mean response E {Y}. 

This figure also presents some simple transformations on Y that may be helpful for these 
cases. Several alternative transformations on Y may be tried, as well as some simultaneous 
transformations on X. Scatter plots and residual plots should be prepared to determine the 
most effective transformation(s). 

Data on age (X) and plasma level of a polyamine (Y) for a portion of the 25 healthy 
children in a study are presented in columns 1 and 2 of Table 3.8. These data are plotted in 
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well 
as the greater variability for younger children than for older ones. 
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Transforma-
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Relation and 
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(1) (2) (3) 
Child Age Plasma Level 

X; Y; Y; = IOg10 Y; 

1 0 (newbom) 13.44 1.1284 
2 0 (newbom) 12.84 1.1086 
3 0 (newborn) 11.91 1.0759 
4 0 (newbom) 20.09 1.3030 
5 0 (newborn) 15.60 1.1931 
6 1.0 10.11 1.0048 
7 1.0 11.38 1.0561 

. .. - ... 
19 3.0 6.90 .8388 
20 3.0 6.77 .8306 
21 4.0 4.86 .6866 
22 4.0 5.10 :7076 
23 4.0 5.67 .7536 
24 4~0 5.75 .7597 
25 4.0 6.23 .7945 

On the basis of the prototype regression pattern in Figure 3.15b, we shall first try the 
logarithmic transformation Y' = 10glO Y. The transformed Y values are shown in column 3 
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the 
transformation not only has led to a reasonably linear regression relation, but the variability 
at the different levels of X also has become reasonably constant. 

To further examine the reasonableness of the transformation Y' = 10glO Y, we fitted the 
simple linear regression model (2.1) to the transformed Y data and obtained: 

Y' = 1.135 - .1023X 

A plot of the residuals against X is shown in Figure 3.16c, and a normal probability plot of 
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered 
residuals and their expected values under normality is .981. For a = .05, Table B.6 indicates 
that the critical value is .959 so that the observed coefficient supports the assumption of 
normality of the error terms. All of this evidence supports the appropriateness of regress.ion 
model (2.1) for the transformed Y data. 

Comments 

1. At times it may be desirable to introduce a constant into a transformation of Y, such as when 
Y may be negative. For instance, the logarithmic transformation to shift the origin in Y and make all 
Y observations positive would be Y' = l~g]O(Y + k), where k is an appropriately chosen constant. 

2. When unequal error variances are present but the regression relation is linear, a transformation 
on Y may not be sufficient While such a transformation may stabilize the error variance, it will also 
change the linear relationship to a curvilinear one. A transformation on X may therefore also be 
required. This case can also be handled by using weighted least squares, a procedure explained in 
Chapter 11. -. 
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The difference between the two error sums of squares is called the lack of fit sum of squares 
here and is denoted by SSLF: 

SSLF = SSE - SSPE (3.24) 

We can then express the test statistic as follows: 

F* = SSLF -;- SSPE 
c-2 n-c 
MSLF 

MSPE 
(3.25) 

where MSLF denotes the lack offit mean square and MSPE denotes the pu!:¥ error mean 
,.,.fo' 

square. 
We know that large values of F* lead to conclusion Ha in the general linear test. Decision 

rule (2.71) here becomes: 

If F* .:::: F(1 - a; c - 2, n - c), Q"Onclude Ho 

If F* > F(1 - a;c - 2, n ~ c), conclude Ha 
(3.26) 

For the bank example, the test statistic can be constructed easily from our earlier results: 

SSPE = 1,148.0 

SSE = 14,741.6 

n-c=1l-6=5 

SSLF = 14,741.6 - 1,148.0 = 13,593.6 c - 2 = 6 - 2 = 4 

* 13,593.6. 1,148.0 
F = 4 --;--5-

= 3,398.4 = 14.80 
229.6 

If the level of significance is to be a = .01, we require F(.99;4, 5) = 11.4. Since 
F* = 14.80 > 11.4, we conclude Ha, that the regression function is not linear. This, of 
course, accords with our visual impression from Figure 3.11. The P-value for the test is 
.006. 

AN OVA Table 
The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in 
fact, decomposed the error sum of squares SSE into two components: 

SSE = SSPE + SSLF 

This decomposition follows from the identity: 

Yij - Yij = Yij - Yj + Yj - Yij 
'-v--" '-v-" '-v-" 

Error Pure error Lack of fit 
deviation deviation deviation 

(3.27) 

(3.28) 

This identity shows that the error deviations in SSE are made up of a pure error component 
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y13 = 160, 
X3 = 125 in the bank example. 
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(pure error deviation) 5 = Yn - Y3 { 

Yn = 160 

Y3 = 155 

(lack offit deviation) 43 = Y3 - Vn Yn - Vn = 48 (error deviation) 

v = 50.72251 + .48670X 

75 100 125 150 x L 
Size of Minimum Deposit (dollars) 

When (3.28) is squared and summed over all observations, we obtain (3.27) since the 
cross-product sum equals zero: 

(3.29) 
SSE SSPE + SSLF 

Note from (3.29) that we can define the lack of fit sum of squares directly as follows: 

(3.30) 

Since all Yij observations at the level X j have the same fitted value, which we can denote 
by 9j , we can express (3.30) equivalently as: 

SSLF = I>j(Yj - 9j)2 
j 

(3.30a) 

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression 
function is appropriate, then the means Yj will be near the fitted values Yj calculated from 
the estimated linear regression function and SSLF will be small. On the other hand, if the 
linear regression function is not appropriate, the means 1'j will not be near the fitted values 
calculated from the estimated linear regression function, as in Figure 3.11 for the bank 
example, and SSLF will be large. 

Formula (3.30a) also indicates why c - 2 degrees of freedom are associated with SSLF. 
There are c means Yj in the sum of squares, and t~o degrees of freedom are lost in estimating 
the parameters f30 and f3, of the linear regression function to obtain the fitted values 9j • 

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains 
the general ANOVA table, including the decomposition of SSE just explained and the 
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank 
example. 



126 Part One 

TABLE 3.6 
General 
ANOVATable 
for Testing 
Lack of Fit of 
Simple Linear 
Regression 
Function and 
ANOVA 
Table-Bank 
Example. 

Simple Linear Regression 

(a) General 

Source of 
Variation 55 df M5 

Regression SSR = E E(fij - Yf 1 MSR= SS~ 
1 

Error SSE = E E(Yij - fij)2 n-2 MSE"'" SSE 
'n-2 

Lack of fit SSLF = EE(Y j - fij)2 c-2 MSLF= SSLF 
c-'2 

pure error SSPE = EE(Yij - y j)2 n-c MSPE= SSPE ../ 
n-c 

Total SSTO'='E E(Yi i - yy n-1 

(b), BanI< Example 
-¥ 

Source of , 
Variation 55 df M5 

Regression 5,141.3 '1 i 5;141.3 
&ror 14;741.6 9 n~638.t)' 

Lack:offit 13;593;6 4 3;398.4 
PUI'e'error 1,148.0 5 229.6 

total 19,882.9 10 

Comments 

1. As shown by the bank example, not all levels of X need have repeat observations for the F test 
for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient 

2. It can be shown that the mean squares MSPE and MSLF have the following expectations when 
testing whether the regression function is linear: 

E{MSPE} = u 2 

E{MSLF} = u 2 + Enj[JLj - (/30 + thXj)f 
c-2 

(3.31) 

(3.32) 

The reason for the term "pure error" is that MSPE is always an unbiased estimator of the error term 
variance u 2 , no matter what is the true regression function. The expected value of MSLF also is u 2 if 
the regression function is linear, because JL j = f30 + f31 X j then and the second term in (3.32) becomes 
zero. On the other hand, if the regression function is not linear, JLj =1= f30 + f31Xj and E{MSLF) will 
be greater than u 2

• Hence, a value of F* near 1 accords with a linear regression function; large values 
of F* indicate that the regression function is not linear. 

3. The terminology "error sum of squares" and "error mean square" is not precise when the 
regression function under test in Ho is not the true function since the error sum of squares and error 
mean square then reflect the effects of both the lack of fit and the variability of the error tenns. We 
continue to use the terminology for consistency and now use the term "pure error" to identify the 
variability associated with the error tenn only. 
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4. Suppose that prior to any analysis of the appropriateness of the model, we had fitted a linear 
regression model and wished to test whether or not fh = 0 for the bank example (Thble 3.4b). Thst 
statistic (2.60) would be: 

F* = MSR = 5,141.3 = 3.14 
MSE 1,638.0 

For a = .10, F(.90; 1, 9) = 3.36, and we would conclude Ho, that f31 = 0 or that there is no linear 
association between minimum deposit size (and value of gift) and number of new accounts. A conclu­
sion that there is no relation between these variables would be improper, however. Such an inference 
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re­
gression function is not linear. This illustrates the importance of always examining the appropriateness 
of a model before any inferences are drawn. 

5. The general linear test approach just explained can be used to test the appropriateness of other 
regression functions. Only the degrees offreedom for SSLF will need be modified. In general, c - p 
degrees of freedom are associated with SSLF, where p is the number of parameters in thekregression 
function. For the test of a simple linear regression function, p = 2 because there are two parameters, 
f30 and f3l> in the regression function. 

6. The alternative Ha in (3.19) includes all regression functions other than a linear one. For 
instance, it includes a quadratic regression function or a logarithmic one. If Ha is concluded, a study 
of residuals can be helpful in identifying an appropriate function. 

7. When we conclude that the employed model in Ho is appropriate, the usual practice is to use 
the error mean square MSE as an estimator of (12 in preference to the pure error mean square MSPE, 
since the former contains more degrees of freedom. 

8. Observations at the same level of X are genuine repeats only if they involve independent trials 
with respect to the error term. Suppose that in a regression analysis of the relation between hardness 
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among 
other things, random errors in the measurement of hardness by the analyst and effects of uncontrolled 
production factors, which vary at random from specimen to specimen and affect hardness. If the 
analyst takes two readings on the hardness of a specimen, this will not provide a genuine replication 
because the effects of random variation in the production factors are fixed in any given specimen. 
For genuine replications, different specimens with the same carbon content (X) would have to be 
measured by the analyst so that all the effects covered in the error term could vary at random from 
one repeated observation to the next 

9. when no replications are present in a data set, an approximate test for lack of fit can be 
conducted if there are some cases at adjacent X levels for which the mean responses are quite close to 
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the'test for 
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this and 
related procedures for conducting a test for lack of fit when no replicates are present may be found in 
Reference 3.8. . • 

3.8 Overview of Remedial Measures 

If the simple linear regression model (2.1) is not appropriate for a data set, there are two 
basic choices: 

1. Abandon regression model (2.1) and develop and use a more appropriate model. 

2. Employ some transformation on the data so that regression model (2.1) is appropriate 
for the transformed data. 
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Each approach has advantages and disadvantages. The first approach may entail a more 
complex model that could yield better insights, but may also lead to more complex proce­
dures for estimating the parameters. Successful use of transformations, on the other hand, 
leads to relatively simple methods of estimation and may involve fewer parameters than 
a complex model, an advantage when the sample size is small. Yet transformations may 
obscure the fundamental interconnections between the variables, though at other times they 
may illuminate them. 

We consider the use of transformations in this chapter and the use of more complex 
models in later chapters. First, we provide a brief overview of remedial measures. 

Nonlinearity of Regression Function -When the regression function is not linear, a direct approach is to mot'llfy regression 
model (2.1) by altering the nature of the regression function. For instance, a quadratic 
regression function might be used: 

or an exponential regression function: 

E {Y} = f30f3~ 

In Chapter 7 , we discuss polynomial regression functions, and in partIn we take up nonlinear 
regression functions, such as an exponential regression function. 

The transformation approach employs a transformation to linearize, at least approxi­
mately, a nonlinear regression function. We discuss the use of transformations to linearize 
regression functions in Section 3.9. 

When the nature of the regression function is not known, exploratory analysis that does 
not require specifying a particular type of function is often useful. We discuss exploratory 
regression analysis in Section 3.10. 

Nonconstancyof Error Variance 
When the error variance is not constant but varies in a systematic fashion, a direct approach 
is to modify the model to allow for this and use the method of weighted least squares to 

obtain the estimators of the parameters. We discuss the use of weighted least squares for 
this purpose in Chapter 11. 

Transformations can also be effective in stabilizing the variance. Some of these are 
discussed in Section 3.9. 

Nonindependence of Error Terms 
When the error terms are correlated, a direct remedial measure is to work with a model that 
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial 
transformation that is often helpful is to work with first differences, a topic also discussed 
in Chapter 12. 

Nonnormalityof Error Terms 
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately, 
it is often the case that the same transformation that helps stabilize the variance is also helpful 
in approximately normalizing the errorterms.ltis therefore desirable that the transformation 
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for stabilizing the error variance be utilized first, and then the residuals studied to see if 
serious departures from normality are still present. We discuss transformations to achieve 
approximate normality in Section 3.9. 

Omission of Important Predictor Variables 
When residual analysis indicates that an important predictor variable has been omitted from 
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss 
multiple regression analysis in which two or more predictor variables are utilized. 

Outlying Observations 
When outlying observations are present, as in Figure 3.7a, use of the least squares and 
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis­
tortions in the estimated regression function. When the outlying observations do not repre­
sent recording errors and should not be discarded, it may be desirable to use an~stimation 
procedure that places less emphasis on such outlying observations. We discuss one such 
robust estimation procedure in Chapter 11. 

3.9 Transformations 

We now consider in more detail the use of transformations of one or both of the original 
variables before carrying out the regression analysis. Simple transformations of either the 
response variable Y or the predictor variable X, or of both, are often sufficient to make the 
simple linear regression model appropriate for the transformed data. 

Transformations for Nonlinear Relation Only 

Example 

We first consider transformations for linearizing a nonlinear regression relation when the 
distribution of the error terms is reasonably close to a normal distribution and the error 
terms have approximately constant variance. In this situation, transformations on X should 
be attempted. The reason why transformations on Y may not be desirable here is that a 
transformation on Y, such as Y' = -/y, may materially change the shape of the distribution 
of the.error terms from the normal distribution and may also lead to substantially differing 
error term variances. 

Figure 3.13 contains some prototype nonlinear regression relations with const{mt error 
variance and also presents some simple transformations on X that may be helpful to lin­
earize the regression relationship without affecting the distributions of Y. Several alternative 
transformations may be tried. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to decide which transformation is most effective. , 
Data from an experiment OH the effect of number of days of training received (X) on 
performance (Y) in a battery of simulated safes situations are presented in Table 3.7, 
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in 
Figure 3. 14a. Clearly the regressioFl. relation appears to be-curvilinear, so the simple linear 
regression model (2.1) does not seem.to be appropriate. Since the variability at the different 
X levels appears to be fairly constant, we shall consider a transformation on X. Based on 
the prototype plot in Figure 3.13a, we shall consider initially the square root transformation 
X' = .JX. The transformed values are shown in column 3 of Table 3.7. 
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FIGURE 3.13 
Prototype 
Nonlinear 
Regression 
Patterns with 
Constant Error 
Variance and 
Simple Trans­
formations 
ofX. 

TABLE 3.7 
Use of Square 
Root Transfor-
mation of X to 
Linearize 
Regression 
Relation-
Sales Training 
Example. 

Prototype Regression Pattern Transformations of X 

(a) X' = 10910 X X' = JX 

(b) X' = X2 X' = exp(X) 

(c) X'= l/X X'= exp(-X) 

(1) (2) (3) 
Sales Days of Performance 

TrainE!e Training Score 
X; Y; Xf =./Xi 

1 .5 42.5 .70711 
2 .5 50.6 .70711 
3 1.0 68.5 1:00000· 
4 1.0 80.7 LOOOOO 
5 1.5 89.0 1.22474 
6 1 .. 5 99.6 1.22474 
7 2.0 105.3 1.41421 
8 2;0 111.8 1.41421 
9 2.5 112.3 1.58h4 

10 2~5 125.7 1.58114 

In Figure 3.14b, the same data are plotted with the predictor variable transformed to 
X' = .JX. Note that the scatter plot now shows a reasonably linear relation. The variability 
of the scatter at the different X levels is the same as before, since we did not make a 
transformation on Y. 

To examine further whether the simple linear regression model (2.1) is appropriate now, 
we fit it to the transformed X data. The regression calculations with the transformed X data 
are carried out in the usual fashion, except that the predictor variable now is X'. We obtain 
the following fitted regression function: 

Y = -10.33 + 83.45X' 

Figure 3.14c contains a plot of the residuals against X'. There is no evidence of lack of 
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of 
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Scatter Plots and Residual Plots--Sales Training Example. 

(a) Scatter Plot (b) Scatter Plot against .JX. 
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, 
the residuals. No strong indications of substantial departures from normality are indicated 
by this plot. This conclusion is supported by the high coefficient of correlation between the 
ordered residuals and their expected values under hormality, .979. For ex ~ .01, Table B.6 
shows that the critical value is .879~ so the observed coefficient is substantially larger 
and supports the reasonableness of normal error terms. Thus, the simple linear regression 
model (2.1) appears to be appropriate here for the transformed data. 

The fitted regression function in the original units of X can easily be obtained, if desired: 

Y = -10.33 + 83.4S.JX 
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FIGURE 3.15 Prototype Regression Pattern 
Prototype 
Regression 
Patterns with 
Unequal Error 
Variances and 
Simple Trans­
formations 
ofY. 

(a) (b) 

Transformations on Y 

y' = loglO Y 

Y' = l/Y 

Note: A simultaneous transformation on X may also be helpful or necessary. 

Comment 

(c) 

At times, it may be helpful to introduce a constant into the transformation. For example, if some of 
the X data are near zero and the reciprocal transfonnation is desired, we can shift the origin by using 
the transformation X' = I/(X + k), where k is an appropriately chosen constant. • 

Transformations for Nonnormality and Unequal Error Variances 

Example 

Unequal en-or variances and nonnormality of the en-or terms frequently appear together. 
To remedy these departures from the simple linear regression model (2.1), we need a 
transformation on Y, since the shapes and spreads of the distributions of Y need to be 
changed. Such a transformation on Y may also at the same time help to linearize a curvilinear 
regression relation. At other times, a simultaneous transformation on X may be needed to 
obtain or maintain a linear regression relation. 

Frequently, the nonnormality and unequal variances departures from regression 
model (2.1) take the form of increa<;ing skewness and increasing variability of the distribu­
tions of the error terms a<; the mean response E {Y} increa<;es. For example, in a regression 
of yearly household expenditures for vacations (Y) on household income (X), there will 
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation 
expenditures) for high-income households than for low-income households, who tend to 
consistently spend much less for vacations. Figure 3.15 contains some prototype regression 
relations where the skewness and the error variance increase with the mean response E{Y}. 
This figure also presents some simple transformations on Y that may be helpful for these 
cases. Several alternative transformations on Y may be tried, as well as some simultaneous 
transformations on X. Scatter plots and residual plots should be prepared to determine the 
most effective transformation(s). 

Data on age (X) and plasma level of a polyamine (Y) for a portion of the 25 healthy 
children in a study are presented in columns I and 2 of Table 3.8. These data are plotted in 
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well 
as the greater variability for younger children than for older ones. 
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(1) (2) (3) 
Child Age Plasma Level 

XI YI Yf = log10 YI 

1 0 (newborn) 13.44 1.1284 
2 0 (newborn) 12.84 1.1086 
3 0 (newborn) 11.91. 1.0759 
4 0 (newborn) 20.09 1.3030 
5 0 (newborn) 15.60 1.1931 
6 1.0 10.11 1.0048 
7 1.0 11.38 1.0561 

19 3.0 6.90 .8388 
20 3.0 6.77 .8306 
21 4.0 4.86 .6866 
22 4.0 5.10 ]076 
23 4.0 5.67 .7536 
24 4.0 5.75 .7597 
25 4.0 6.23 .7945 

On the basis of the prototype regression pattern in Figure 3.15b, we ~shall first try the 
logarithmic transformation Y' = 10giO Y. The transformed Y values are shown in column 3 
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the 
transformation not only has led to a reasonably linear regression relation, but the variability 
at the different levels of X also has become reasonably constant. 

To further examine the reasonableness of the transformation Y' = 10glO Y, we fitted the 
simple linear regression model (2.1) to the transformed Y data and obtained: 

y' = 1.135 - .1023X 

A plot of the residuals against X is shown in Figure 3.16c, and a normal probability plot of 
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered 
residuals and their expected values under normality is .981. For a = .05, Table B.6 indicates 
that the critical value is .959 so that the observed coefficient supports the assumption of 
normality of the error terms. All of this evidence supports the appropriateness of regression 
model (2.1) for the transformed Y data. 

Comments 

1. At times it may be desirable to introduce a constant into a transformation of Y, such as when 
Y may be negative. For instance, the logarithmic transf.ormation to shift the origin in Y and make all 
Y observations positive would be Y' = 10glO(Y + k), where k is an appropriately dQosen constant 

2. When unequal error variances are present but the regression relation is linear, a transformation 
on Y may not be sufficient While such a tmnsformation may stabilize the error variance, it will also 
change the linear relationship to a curvilinear one. A transformation on X may therefore also be 
required. This case can also be handled by using weighted least squares, a procedure explained in 
Chapter 11. .• 
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FIGURE 3.16 Scatter Plots and Residual Plots-Plasma Levels Example. 

(a) Scatter Plot 
(b) Scatter Plot with y' = 10glo Y 
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Box-Cox Transformations 
It is often difficult to detennine from diagnostic plots, such as the one in Figure 3.16a for 
the plasma levels example, which transfonnation of Y is most appropriate for correcting 
skewness of the distributions of error tenus, unequal error variances, and nonlinearity ofthe 
regression function. The Box.,.Cox procedure (Ref. 3.9) automatically identifies a transfor­
mation from the family of power transformations on Y. The family of powertransfonnations 
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is of the form: 

y'= yA (3.33) 

where A is a parameter to be determined from the data. Note that this family encompasses 
the following simple transformations: 

A=2 

A =.5 

A=O 

A= -.5 

A = -1.0 

y' = y2 

y' =-/y 

y' = log" Y 

y' = _1_ 
-/y 

I 1 Y=y 

(by definition) (3.34) 

The normal error regression model with the response variable a member of the family of 
power transformations in (3.33) becomes: 

(3.35) 

Note that regression model (3.35) includes an additional parameter, A, which needs to be 
estimated. The Box-Cox procedure uses the method of maximum likelihood to estimate A, 
as well as the other parameters f3o, f31, and a 2

• In this way, the Box-Cox procedure identifies 
)", the maximum likelihood estimate of A to use in the power transformation. 

Since some statistical software packages do not automatically provide the Box-Cox max­
imum likelihood estimate)" for the power transformation, a simple procedure for obtaining 
)" using standard regression software can be employed instead. This procedure involves a 
numerical search in a range of potential A values; for example, A = -2, A = -1.75, ... , 
A = 1.75, A = 2. For each A value, the Y( observations are first standardized so that the 
magnitude of the error sum of squares does not depend on the value of A: 

where: 

K,~ (iH"" 
1 

K,t=-­
AK~-' 

Note that K2 is the geometric mean of the Yi obs~rvations. 

(3.36) 

(3.36a) 

(3.36b) 

Once the standardized observations Wi have been obtained for a given A value, they are 
regressed on the predictor variable X -and the error sum of sqHares SSE is obtained. It can be 
shown that the maximum likelihood estimate)" is that value of A for which SSE is a minimum. 

If desired, a finer search can be conducted in the neighborhood of the A value that 
minimizes SSE. However, the Box-Cox procedure ordinarily is used only to provide a guide 
for selecting a transformation, so overly precise results are not needed. In any case, scatter 

( 
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Example 

TABLE 3.9 
Box-Cox 
Results-
Plasma Levels 
Example. 

FIGURE 3.17 
SAS-JMP 
Box-Cox 
ResuIts­
Plasma Levels 
Example. 

and residual plots should be utilized to examine the appropriateness of the transformation 
identified by the Box-Cox procedure. 

Table 3.9 contains the Box-Cox results for the plasma levels example. Selected values of A, 
ranging from -1.0 to 1.0, were chosen, and for each chosen A the transformation (3.36) 
was made and the linear regression of W on X was fitted. For instance, for A = .5, the 
transformation Wi = K I ( -JYi -1) was made and the linearregression of W on X was fitted. 
For this fitted linear regression, the error sum of squares is SSE = 48.4. The transformation 
that leads to the smallest value of SSE corresponds to A = -.5, for which SSE = 30.6. 

Figure 3.17 contains the SAS-JMP Box-Cox results for this example. It consists of a 
plot of SSE as a function of A. From the plot, it is clear that a power value near A = -.50 
is indicated. However, SSE as a function of A is fairly stable in the rang0"from near 0 to 

-1.0, so the earlier choice of the logarithmic transformation Y' = 10glO Y for the plasma 
levels example, corresponding to A = 0, is not unreasonable according to the Box-Cox 
approach. One reason the logarithmic transformation was chosen here is because of the 
ease of interpreting it The use of logarithms to base lO;4"ather than natural logarithms does 
not, of course, affect the appropriateness of the logarithmic transformation . 

. " 

Comments 

1. At times, theoretical or a priori considerations can be utilized to help in choosing an appropriate 
transformation. For example, when the shape of the scatter in a study of the relation between price of a 
commodity (X) and quantity demanded (Y) is that in Figure 3.1Sb, economists may prefer logarithmic 
transformations of both Y and X because the slope of the regression line for the transformed variables 
then measures the price elasticity of demand. The slope is then commonly interpreted as showing the 
percent change in quantity demanded per 1 percent change in price, where it is understood that the 
changes are in opposite directions. 

), SSE· ~. SSE 
1.0 78.0 ~.J 33'~1 

.9 10.4 .=.3 11/~ 

.7 57:~ ,.,...4 ·30:7 

.5 48.4- -5 30~6 

.3 410.4 ~:6: jpj 

.1 36.4 -'J 3f:.J 
0 ·34.S <9. 32:7 

-·1 ~() 33~9 

60 

~ 40F-__ ~~~ ______ ~~ ____________ ~ 
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20 
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-1.5 -1.0 -0.5 .0 .5 1.0 1.5 2.0 
A 



3.10 

Chapter 3 Diagnostics and Remedial Measures 137 

Similarly, scientists may prefer logarithmic transformations of both Y and X when studying the 
relation between radioactive decay (Y) of a substance and time (X) for a curvilinear relation of the 
type illustrated in Figure 3.15b because the slope of the regression line for the transformed variables 
then measures the decay rate. 

2. After a transformation has been tentatively selected, residual plots and other analyses described 
earlier need to be employed to ascertain that the simple linear regression model (2.1) is appropriate 
for the transformed data 

3. When transformed models are employed, the estimators bo and bi obtained by least squares 
have the least squares properties with respect to the transformed observations, not the original ones. 

4. The maximum likelihood estimate of A with the Box-Cox procedure is subject to sampling 
variability. In addition, the error sum of squares SSE is often fairly stable in a neighborhood around the 
estimate. It is therefore often reasonable to use a nearby A value for which the power transformation 
is easy to understand. For example. use of A = 0 instead of the maximum likelihood estimate 
1 = .13 or use of A = -.5 instead of 1 = -.79 may facilitate understanding without sacrificing 
much in terms of the effectiveness of the transformation. To determine the reasonablen~s of using 
an easier-to-understand value of A, one should examine the flatness of the likelihood function in 
the neighborhood of 1, as we did in the plasma levels example. Alternatively, one may construct an 
approximate confidence interval for A; the procedure for constructing such an interval is discussed in 
Reference 3.10. 

5. When the Box-Cox procedure leads to a A value near 1, no transformation of Y may be needed . 

• 
Exploration of Shape of Regression Function 

Scatter plots often indicate readily the nature of the regression function. For instance, 
Figure 1.3 clearly shows the curvilinear nature of the regression relationship between steroid 
level and age. At other times, however, the scatter plot is complex and it becomes difficult to 
see the nature of the regression relationship, if any, from the plot. In these cases, it is helpful 
to explore the nature of the regression relationship by fitting a smoothed curve without any 
constraints on the regression function. These smoothed curves are also called nonparametric 
regression curves. They are useful not only for exploring regression relationships but also 
for confirming the nature of the regression function when the scatter plot visually suggests 
the nature of the regression relationship. 

Many smoothing methods have been developed for obtaining smoothed curves for time 
series data, where the Xi denote time periods that are equally spaced apart. The method of 
moving averages uses the mean of the Y observations for"adjacent time periods to obtain 
smoothed values. For example, the mean of the Y values for the first three time periods 
in the time series might constitute thf1 first smoothed value corresponding to the middle 
of the three time periods, in Q!her words, corresponding to time period 2. Then the mean 
of the Y values for the second, third, and fourth time periods would constitute the second 
smoothed value, corresponding to the middle o( these three time periods, in other words, 
corresponding to time period 3, and so on. Special procedures are required for obtaining 
smoothed values at the two ends of the time series. The larger the successive neighborhoods 
used for obtaining the smoothed values, the smoother the curve will be. 

The method of running medians is similar to the method of moving averages, except 
that the median is used as the average measure in order to reduce the influence of outlying 
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observations. With this method, as well as with the moving average method, successive 
smoothing of the smoothed values and other refinements may be undertaken to provide a 
suitable smoothed curve for the time series. Reference 3.11 provides a good introduction 
to the running median smoothing method. 

Many smoothing methods have also been developed for regression data when the X 
values are not equally spaced apart. A simple smoothing method, band regression, divides 
the data set into a number of groups or "bands" consisting of adjacent cases according to 
their X levels. For each band, the median X value and the median Y value are calculated, 
and the points defined by the pairs of these median values are then connected by straight 
lines. For example, consider the following simple data set divided into three groups: 

,,,,,,,-
Median Median 

X y X Y 

2.0 13.1 
2.7 J4.4 

3.4 15.7 

3.7 14.9 
4.5 16.8 4.5 16.8 
5.0 17.1 

5.2 16.9 

5.9 
5.55 17.35 

17.8 

The three pairs of medians are then plotted on the scatter plot of the data and connected by 
straight lines as a simple smoothed nonparametric regression curve. 

lowess Method 
The lowess method, developed by Cleveland (Ref. 3.12), is a more refined nonparametric 
method than band regression. It obtains a smoothed curve by fitting successive linear re­
gression functions in local neighborhoods. The name lowess stands for locally weighted 
regression scatter plot smoothing. The method is similar to the moving average and running 
median methods in that it uses a neighborhood around each X value to obtain a smoothed 
Y value corresponding to that X value. It obtains the smoothed Y value at a given X by 
fitting a linear regression to the data in the neighborhood of the X value and then using the 
fitted value at X as the smoothed value. To illustrate this concretely, let (X I, Y1) denote the 
sample case with the smallest X value, (X2' Y2) denote the sample case with the second 
smallest X value, and so on. If neighborhoods of three X values are used with the lowess 
method, then a linear regression would be fitted to the data: 

The fitted value at X2 would constitute the smoothed value corresponding to X2 • Another 
linear regression would be fitted to the data: 
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and the fitted value at X3 would constitute the smoothed value corresponding to X3 • 

Smoothed values at each end of the X range are also obtained by the lowess procedure. 
The lowess method uses a number of refinements in obtaining the final smoothed values 

to improve the smoothing and to make the procedure robust to outlying observations. 

1. The linear regression is weighted to give cases further from the middle X level in each 
neighborhood smaller weights. 

2. To make the procedure robust to outlying observations, the linear regression fitting is 
repeated, with the weights revised so that cases that had large residuals in the first fitting 
receive smaller weights in the second fitting. 

3. To improve the robustness of the procedure further, step 2 is repeated one or more 
times by revising the weights according to the size of the residuals in the latest fitting. 

To implement the lowess procedure, one must choose the size of the successive neigh­
borhoods to be used when fitting each linear regression. One must also choose the 'weight 
function that gives less weight to neighborhood cases with X values far from each center 
X level and another weight function that gives less weight to cases with large residuals. 
Finally, the number of iterations to make the procedure robust must be chosen. 

In practice, two iterations appear to be sufficient to provide robustness. Also, the weight 
functions suggested by Cleveland appear to be adequate for many circumstances. Hence, 
the primary choice to be made for a particular application is the size of the successive 
neighborhoods. The larger the size, the smoother the function but the greater the danger 
that the smoothing will lose essential features of the regression relationship. It may require 
some experimentation with different neighborhood sizes in order to find the size that best 
brings out the regression relationship. We explain the lowess method in detail in Chapter 11 
in the context of multiple regression. Specific choices of weight functions and neighborhood 
sizes are discussed there. 

Figure 3.18a contains a scatter plot based on a study of research quality at 24 research 
laboratories. The response variable is a measure of the quality of the research done at the 
laboratory, and the explanatory variable is a measure of the volume of research performed 
at the labQratory. Note that it is very difficult to tell from this scatter plot whether or not a 
relationship exists between research quality and quantity. Figure 3.18b repeats the scatter 
plot and also shows the lowess smoothed curve. The curve suggests that there might be 
somewhat higher research quality for medium-sized laboratories. However, the scatter is 
great so that this suggested relationship should be considered only as a possibility. Also, 
because any particular measures of research quality and quantity are so limited, other 
measures should be considered to see if these corroborate the relationship suggested in 
Figure 3.18b. 

Use of Smoothed Curves to Confirm Fitted Regression Function 
Smoothed curves are useful not only in the exploratory stages~when a regression model is 
selected but they are also helpful in confirming the regression function chosen. The proce­
dure for confirmation is simple: The smo~thed curve is plotted together with the confidence 
band for the fitted regression function. If the smoothed curve falls within the confidence 
band, we have supporting evidence of the appropriateness of the fitted regression function. 
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Figure 3.19a repeats the scatter plot for the Toluca Company example from Figure 1.1Oa 
and shows the lowess smoothed curve. It appears that the regression relation is linear or 
possibly slightly curved. Figure 3.19b repeats the confidence band for the regression line 
from Figure 2.6 and shows the lowess smoothed curve. We see that the smoothed curve falls 
within the confidence band for the regression line and thereby supports the appropriateness 
of a linear regression function. 

Comments 

1. Smoothed curves, such as the lowess curve, do not provide an analytical expression for the 
functional form of the regression relationship. They only suggest the shape of the regression curve. 

2. The lowess procedure is not restricted to fitting linearregression functions in each neighborhood. 
Higher-degree polynomials can also be utilized with this method. 
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3. Smoothed curves are also useful when examining residual plots to ascertain whether the resid­
uals (or the absolute or squared residuals) follow some relationship with X or Y. 

4. References 3.13 and 3.14 provide good introductions to other nonparametric methods in re-
gression analysis. • 

3.11 Case Example-Plutonium Measurement 

TABLE 3.10 
BasicData-
Plutonium 
Measurement 
Example. 

Some environmental cleanup work requires that nuclear materials, such as plutonium 238, 
be located and completely removed from a restoration site. When plutonium has become 
mixed with other materials in very small amounts, detecting its presence can be a difficult 
task. Even very small amounts can be traced, however, because plutonium emits subatomic 
particles--alpha particles-that can be detected. Devices that are used to detect plutonium 
record the intensity of alpha particle strikes in counts per second (#/sec). The regression rela­
tionship between alpha counts per second (the response variable) and plutonium actii1,ity (the 
explanatory variable) is then used to estimate the activity of plutonium in the material under 
study. This use of a regression relationship involves inverse prediction [i.e., predicting plu­
tonium activity (X) from the observed alpha count (Y)], a procedure discussed in Chapter 4. 

The task here is to estimate the regression relationship between alpha counts per second 
and plutonium activity. This relationship varies for each measurement device and must be 
established precisely each time a different measurement device is used. It is reasonable to 
assume here that the level of alpha counts increases with plutonium activity, but the exact 
nature of the relationship is generally unknown. 

In a study to establish the regression relationship for a particular measurement device, 
four plutonium standards were used. These standards are aluminum/plutonium rods con­
taining a fixed, known level of plutonium activity. The levels of plutonium activity in the 
four standards were 0.0, 5.0, 10.0, and 20.0 picocuries per gram (pCi/g). Each standard was 
exposed to the detection device from 4 to 10 times, and the rate of alpha strikes, measured 
as counts per second, was observed for each replication. A portion of the data is shown 
in Table 3.10, and the data are plotted as a scatter plot in Figure 3.20a. Notice that, as 
expected, the strike rate tends to increase with the activity level of plutonium. Notice also 
that nonz..ero strike rates are recorded for the standard containing no plutonium. This results 
from background radiation and indicates that a regression model with an intercept term is 
required here. 

Pll.Itonium Alpha Count 
Case Activity Rate 

. (pCi/g) (#/set) 

1 20 .150 
2 ° .004 
3. 10 ,0(59 . ... 

22 ° . 002 
23 5 .049 
24 0 .106 
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FIGURE 3.20 
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As an initial step to examine the nature of the regression relationship, a lowess smoothed 
curve was obtained; this curve is shown in Figure 3.20b. We see that the regression rela­
tionship may be linear or slightly curvilinear in the range of the plutonium activity levels 
included in the study. We also see that one ofthe readings taken at 0.0 pCi/g (case 24) does not 
appear to fit with the rest of the observations. An examination oflaboratory records revealed 
that the experimental conditions were not properly maintained for the last case, and it was 
therefore decided that case 24 should be discarded. Note, incidentally, how robust the lowess 
smoothing process was here by assigning very little weight to the outlying observation. 

A linear regression function was fitted next, based on the remaining 23 cases. The SAS­
JMP regression output is shown in Figure 3.21a, a plot of the residuals against the fitted 
values is shown in Figure 3.21b, and a normal probability plot is shown in Figure 3.2Ic. 
The JMP output uses the label Model to denote the regression component of the analysis 
of variance; the label C Total stands for corrected total. We see from the regression output 
that the slope of the regression line is not zero (F* = 228.9984, P-value = .0000) so that a 
regression relationship exists. We also see from the flared, megaphone shape of the residual 
plot that the error variance appears to be increasing with the level of plutonium activity. 
The normal probability plot suggests non normality (heavy tails), but the nonlinearity of the 
plot is likely to be related (at least in part) to the unequal error variances. The existence of 
nonconstant variance is confirmed by the Breusch-Pagan test statistic (3.11): 

x1p = 23.29 > X2 (.95; 1) = 3.84 

The presence of nonconstant variance clearly requires remediation. A number of ap­
proaches could be followed, including the use of weighted least squares discussed in Chap­
ter 11. Often with count data, the error variance can be stabilized through the use of a 
square root transformation of the response variable. Since this is just one in a range of 
power transformations that might be useful, we shall use the Box-Cox procedure to suggest 
an appropriate power transformation. Using the standardized variable (3.36), we find the 
maximum likelihood estimate of A to be )" = .65. Because the likelihood function is fairly 
flat in the neighborhood of)" = .65, the Box-Cox procedure supports the use of the square 
root transformation (i.e., use of A = .5). The results of fitting a linear regression function 
when the response variable is Y' = -JY are shown in Figure 3.22a. 
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FIGURE 3.21 SAS-JMP Regression Output and Diagnostic Plots for Untransformed Data-Plutonium 
Measurement Example. 

0.04 

0.Q3 

0.02 

0.01 

Term Estimate 
Intercept 0.0070331 
Plutonium 0.005537 

Source DF 
Model 1 
Error 21 
CTotal 22 

Source DF 
Lack of Fit 2 
Pure Error 19 
Total Error 21 

(b) 
Residual Plot 

• 

(a) Regression Output 

Std Error t Ratio Prob>ltl 
0.0036 1.95 0.0641 

0.00037 15.13 0.0000 

Sum of Squares Mean Square F Ratio 
0.03619042 0.036190 228.9984 
0.00331880 0.000158 Prob>F 
0.03950922 0.0000 

Sum of Squares Mean Square F Ratio 
0.00016811 0.000084 0.5069 
0.00315069 0.000166 Prob>F 
0.00331880 0.6103 

(c) 
Normal Probability Plot 

0.04 

• 0.03 • 

0.02 

• • • 
0.01 

iii • : "iii ••• ~ . . 
~ 0.00 I--!!.'----:..--------- :::l 

_ .. 
"0 0.00 •• 

~ I • • 
'in 
(]J ...... 

er! • -0.01 

-0.02 

-0.Q3 

• • 
• 

• 

-0.01 • • 
-0.02 

-0.03 
• -0.04'--_....J.... __ -'--_----'-__ -'--_--' 

0.00 0.02 0.05 0.07 0.10 0.12 
-0.04 '--_.1......_.1......_-'--_-'--_-'-----' 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 

Fitted Expected 

At this point a new problem has arisen. Although the residual plot in Figure 3.22b shows 
that the error variance appears to be more stable and the points in the normal probability 
plot in Figure 3.22c fall roughly on a straight line, the residual plot now suggests tha~ Y' 
is nonlinearly related to X. This concern is confirmed by the lack of fit test statistic (3.25) 
(F* = 10.1364, P-value = .0010). Qf course, this result is not completely unexpected, 
since Y was linearly related tQ.X. 

To restore a linear relation with the transformed Y variable, we shall see if a square root 
transformation of X will lead to a satisfactory linear fit. The regression results when re­
gressing Y' = -/Y on X' = .JX are presented in Figure 3.23. Notice from the residual plot 
in Figure 3.23b that the square root transformation of the predictor variable has eliminated 
the lack of fit. Also, the normal prob~bility plot of the residuals in Figure 3.23c appears 
to be satisfactory, and the correlation test (r = .986) supports the assumption of normally 
distributed error terms (the interpolated critical value in TItble B.6 for ex = .05 and n = 23 
is .9555). However, the residual plot suggests that some nonconstancy of the error variance 
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FIGURE 3.22 SAS-JMP Regression Output and Diagnostic Plots for Transformed Response 
Variable-Plutonium Measurement Example. 
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may still remain; but if so, it does not appear to be substantial. The Breusch-Pagan test statis­
tic (3.11) is x1p = 3.85, which corresponds to a P-value of .05, supporting the conclusion 
from the residual plot that the nonconstancy of the error variance is not substantial. 

Figure 3.23d contains a SYSTAT plot of the confidence band (2.40) for the fitted regres­
sion line: 

y' = .0730 + .0573X' 

We see that the regression line has been estimated fairly precisely. Also plotted in this figure 
is the lowess smoothed curve. This smoothed curve falls entirely within the confidence band, 
supporting the reasonableness of a linear regression relation between Y' and X'. The lack of 
fit test statistic (3.25) now is F* = 1.2868 (P-value = .2992), also supporting the linearity 
of the regression relating Y' = ..JY to X' = .JX. 
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3.1. DistingUish between (1) residual and semistudentized residual, (2) E {cd = 0 and e = 0, 
(3) error term and residual. 

3.2. Prepare a prototype residual plot for each of the following cases: (1) error variance decreases 
with X; (2) true regression function is U shaped, but a linear regression function is fitted. 

3.3. Referto Grade point average Problem 1.19. 

a. Prepare a box plot for the ACT scores Xi. Are there any noteworthy features in this plot? 

b. Prepare a dot plot of the residuals. What information does this plot provide? 

c. Plot the residual el against the fitted values Y;. What departures from regreSSion model (2.1) 
can be studied from this plot? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Test the reason­
ableness of the normality assumption here using Table B.6 and a = .05. What do you 
conclude? 

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with 
the level of X. Divide the data into the two groups, X < 26, X 2: 26, and use a = .01. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (c)? 
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f. Information is given below for each student on two variables not included in the model, 
namely, intelligence test score (X2 ) and high school class rank percentile (X3). (Note that 
larger class rank percentiles indicate higher standing in the class, e.g., I % is near the bottom 
of the class and 99% is near the top of the class.) Plot the residuals against X2 and X3 on 
separate graphs to ascertain whether the model can be improved by including either of these 
variables. What do you conclude? 

i: 2 3 

X2 : 122 132 119 
X3: 99 71 75 

*3.4. Refer to Copier maintenance Problem 1.20. 

118 119 120 

140 111 110 
97 65 85 

a. Prepare a dot plot for the number of copiers serviced XI. What information is provided by 
this plot? Are there any outlying cases with respect to this variable? ~ 

b. The cases are given in time order. Prepare a time plot for the number of copiers serviced. 
What does your plot show? 

c. Prepare a stem-and-leaf plot of the residuals. Are there any noteworthy features in this plot? 

d. Prepare residual plots of ei versus Y; and el versus Xi on separate graphs. Do these plots 
provide the same information? What departures from regression model (2.1) can be studied 
from these plots? State your findings. 

e. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Does the normality 
assumption appear to be tenable here? Use Table B.6 and a = .10. 

f. Prepare a time plot of the residuals to ascertain whether the error terms are correlated over 
time. What is your conclusion? 

g. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance varies with the level of X. Use a = .05. State the alternatives, 
decision rule, and conclusion. 

h. Information is given below on two variables not included in the regression model, namely, 
mean operational age of copiers serviced on the call (X2' in months) and years of experience 
ofthe service person making the call (X3 ). Plot the residuals against X2 and X3 on separate 

- graphs to ascertain whether the model can be improved by including either or both of these 
variables. What do you conclude? 

i: 

20 
4 

2 

19 
5 

3 

27 
4 

*3.5. Refer to Airfreight breakage Problem 1.21. 

43 

28 
3 

44 

26 
3 

45 

33 
6 

a. Prepare a dot plot forthe number of transfers XI. Does the distribution of number oftransfers 
appear to be asymmetrical? 

h. The cases are given in time order. Prepare a time plot for the number of transfers. Is any 
systematic pattern evident in your plot? Discuss. 

c. Obtain the residuals el and prepare a stem-and-leaf plot of the residuals. What information 
is provided by your plot? 
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d. Plot the residuals ei against Xi to ascertain whether any departures from regression 
model (2.1) are evident. What is your conclusion? 

e. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected val ues under normality to ascertain whether 
the normality assumption is reasonable here. Use Table B.6 and ex = .01. What do you 
conclude? 

f. Prepare a time plot of the residuals. What information is provided by your plot? 

g. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance varies with the level of X. Use ex = .10. State the alternatives, 
decision rule, and conclusion. Does your conclusion support your preliminary findings in 
part (d)? 

3.6. Refer to Plastic hardness Problem 1.22. .,,.#':#-' 

a. Obtain the residuals ei and prepare a box plot of the residuals. What information is provided 
by your plot? 

b. Plot the residuals ei against the fitted values Y; to ascertain whether any departures from 
regression model (2.1) are evident. State your findings. 

c. Prepare a normal probability plot ofthe residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Does the normality 
assumption appear to be reasonable here? Use Table B.6 and ex = .05. 

d. Compare the frequencies of the residuals against the expected frequencies under normality, 
using the 25th, 50th, and 75th percentiles of the relevant t distribution. Is the information 
provided by these comparisons consistent with the findings from the normal probability plot 
in part (c)? 

e. Use the Brown-Forsythe test to determine whether or not the error variance varies with the 
level of X. Divide the data into the two groups, X :::: 24, X > 24, and use ex = .05. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (b)? 

*3.7. Refer to Muscle mass Problem 1.27. 

a. Prepare a stem-and-leaf plot for the ages Xi, Is this plot consistent with the random selection 
of women from each lO-year age group? Explain. 

b. Obtain the residuals ei and prepare a dot plot of the residuals. What does your plot show? 

c. Plot the residuals ei against Yi and also against Xi on separate graphs to ascertain whether 
any departures from regression model (2.1) are evident. Do the two plots provide the same 
information? State your conclusions. 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality to ascertain whether 
the normality assumption is tenable here. Use Table B.6 and ex = .10. What do you conclude? 

e. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance varies with the level of X. Use ex = .01. State the alternatives. 
decision rule, and conclusion. Is your conclusion consistent with your preliminary findings 
in part (c)? 

3.8. Refer to Crime rate Problem 1.28. 

a. Prepare a stem-and-leaf plot for the percentage of individuals in the county having at least 
a high school diploma Xi. What information does your plot provide? 

b. Obtain the residuals ei and prepare a box plot of the residuals. Does the distribution of the 
residuals appear to be symmetrical? 
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c. Make a residual plot of ei versus 1>;. What does the plot show? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. 'Jest the reason­
ableness of the normality assumption using Table B.6 and ex = .05. What do you conclude? 

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with 
the level of X. Divide the data into the two groups, X .:::: 69, X > 69, and use ex = .05. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (c)? 

3.9. Electricity consumption. An economist studying the relation between household electricity 
consumption (Y) and number of rooms in the home (X) employed linear regression model (2.1) 
and obtained the following residuals: 

i: 

X;: 
e;: 

2 
3.2 

2 3 4 5 6 7 

345 6 7 8 
2.9 -1.7 -2.0 -2.3 -1.2 -.9 

8 

9 
.8 

9 10 

10 ~ 11 
.7 .5 

Plot the residuals ei against Xi. What problem appears to be present here? Might a transforma­
tion alleviate this problem? 

3.10. Per capita earnings. A sociologist employed linear regression model (2.1) to relate per capita 
earnings (Y) to average number of years of schooling (X) for 12 cities. The fitted values Y; and 
the semistudentized residuals e; follow. 

i: 

9';: 9.9 
ej': -1.12 

2 

9.3 
.81 

3 

10.2 
-.76 

10 

15.6 
-3.78 

11 

11.2 
.74 

12 

13.1 
.32 

a Plot the semistudentized residuals against the fitted values. What does the plot suggest? 

b. How many semistudentized residuals are outside ± 1 standard deviation? Approximately 
how many would you expect to see if the normal error model is appropriate? 

3.11. Drug concentration. A pharmacologist employed linear regression model (2.1) to study the 
relation between the concentration of a drug in plasma (Y) and the log-dose of the drug (X). 
The residuals and log-dose levels follow. 

i: 

Xi: -1 
.5 

2 

o 
2.1 

3 

-3.4 

4 

-1 
.3 

5 

o 
-1.7 

6 

4.2 

7 

-1 
-.6 

8 

o 
2.6 

a. Plot the residuals ei against Xi' What conclusions do you draw from the plot? 

9 

-4.0 

b. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance vari~ with log-dose of the grug (X). Use ex = .05. State the 
alternatives, decision rule, and conclusion. Does your conclusion support your preliminary 
findings in part (a)? 

3.12. A student does not understand why the sum of squares defined in (3.16) is called a pure error 
sum of squares "since the formula looks like one for an ordinary sum of squares." Explain. 
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*3.13. Refer to Copier maintenance Problem 1.20. 

a. What are the alternative conclusions when testing for lack of fit of a linear regression 
function? 

b. Perform the test indicated in part (a). Control the risk of Type I error at .05. State the decision 
rule and conclusion. 

c. Does the test in part (b) detect other departures from regression model (2.1), such as lack 
of constant variance or lack of normality in the error terms? Could the results of the test of 
lack of fit be affected by such departures? Discuss. 

3.14. Refer to Plastic hardness Problem 1.22. 

a Perform the F test to determine whether or not there is lack of fit of a linear regression 
function; use ex = .01. State the alternatives, decision rule, and conclusion. 

#. 

b. Is there any advantage of having an equal number of replications at each of1he X levels? Is 
there any disadvantage? 

c. Does the test in part (a) indicate what regression function is appropriate when it leads to the 
conclusion that the regression function is not linear? How would you proceed? 

3.15. Solution concentration. A chemist studied the concentraTion of a solution (Y) over time (X). 
Fifteen identical solutions were prepared. The IS. solutions were randomly divided into five 
sets of three, and the fi ve sets were measured, respectively, after I, 3, 5, 7, and 9 hours. The 
results follow. 

i: 2 

Xi: 9 9 
Yi: .07 .09 

a Fit a linear regression function. 

3 

9 
.08 

13 

1 
2.84 

14 15 

2.57 3.10 

b. Perform the F test to determine whether or not there is lack of fit of a linear regression 
function; use ex = .025. State the alternatives, decision rule, and conclusion. 

c. Does the test in part (b) indicate what regression function is appropriate when it leads to the 
conclusion that lack of fit of a linear regression function exists? Explain. 

3.16. Refer to Solution concentration Problem 3.15. 

a. Prepare a scatter plot of the data. What transformation of Y might you try, using the prototype 
patterns in Figure 3.15 to achieve constant variance and linearity? 

b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power 
transformation. Evaluate SSE for A = -.2, -.1,0, .1, .2. What transformation of Y is 
suggested? 

c. Use the transformation Y' = 10gIO Y and obtain the estimated linear regression function for 
the transformed data. 

d. Plot the estimated regression line and the transformed data Does the regression line appear 
to be a good fit to the transformed data? 

e. Obtain,the residuals and plot them against the fitted values. Also prepare a normal probability 
plot. What do your plots show? 

f. Express the estimated regression function in the original units. 

*3.17. Sales growth. A marketing researcher studied annual sales of a product that had been introduced 
10 years ago. The data are as follows, where X is the year (coded) and Y is sales in thousands 



Exercises 

Chapter 3 Diagnostics and Remedial Measures 151 

of units: 

i: 

Xi: 
Vi: 

o 
98 

2 

135 

3 

2 
162 

4 

3 
178 

5 

4 
221 

6 

5 
232 

7 

6 
283 

8 

7 
300 

9 

8 
374 

a. Prepare a scatter plot of the data. Does a linear relation appear adequate here? 

10 

9 
395 

b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power transfor­
mation of Y. Evaluate SSE for A = .3, .4, .5, .6, .7. What transformation of Y is suggested? 

c. Use the transformation Y' = ..JY and obtain the estimated linear regression function for the 
transformed data. 

d. Plot the estimated regression line and the transformed data. Does the regression line appear 
to be a good fit to the transformed data? 

e. Obtain the residuals and plot them against the fitted values. Also prepare a normal probabili ty 
plot. What do your plots show? 

f. Express the estimated regression function in the original units. 

3.18. Production time. In a manufacturing study, the production times for III recent production 
runs were obtained. The table below lists for each run the production time in hours (Y) and the 
production lot size (X). 

i: 

Xi: 
Vi: 

15 
14.28 

2 

9 

8.80 

3 

7 
12.49 

109 

12 
16.37 

110 

9 
11.45 

111 

15 
15.78 

a. Prepare a scatter plot of the data Does a linear relation appear adequate here? Would a 
transformation on X or Y be more appropriate here? Why? 

b. Use the transformation X' = -JX and obtain the estimated linear regression function for the 
transformed data. 

c. Plot the estimated regression line and the transformed data. Does the regression line appear 
to be a good fit to the transformed data? 

d. -Obtain the residuals and plot them against the fitted values. Also prepare a normal probabili ty 
plot. What do your plots show? 

e. Express the estimated regression function in the original units. 

3.19. A student fitted a linear regression function for a class assignment. The student plotted the 
residuals ej again!t Y; and found a P9sitive relation. When the residuals were plotted against 
the fitted values Yj , the student found no relation. How could this difference arise? Which is 
the more meaningful plot? -

3.20. If the error terms in a regression model are independent N (0, u 2), what can be said about the 
error terms after transformation X' = II X is used? Is the situation the same after transformation 
Y' = llY is used?' # 

3.21. Derive the result in (3.29). 

3.22. Using (A.70), (A.41), and (A.42), show that E{MSPE} = u 2 for normal error regression 
model (2.1). 
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Projects 

3.23. A linear regression model with intercept f30 = 0 is under consideration. Data have been 
obtained that contain replications. State the full and reduced models for testing the appro­
priateness of the regression function under consideration. What are the degrees of freedom 
associated with the full and reduced models if n = 20 and c = 10? 

3.24. Blood pressure. The following data were obtained in a study of the relation between diastolic 
blood pressure (Y) and age (X) for boys 5 to 13 years old. 

i: 

Xi: 
Y;: 

5 
63 

2 

8 
67 

3 

11 
74 

4 

7 
64 

5 

13 
75 

6 

12 
69 

7 

12 
90 

8 

6 
60 

a. Assuming normal error regression model (2.1) is appropriate, obtain the estimated regression 
function and plot the residuals ei against Xi. What does your.,residual plot show? 

b. Omit case 7 from the data and obtain the estimated regression function based on the remaining 
seven cases. Compare this estimated regression function to that obtained in part (a). What 
can you conclude about the effect of case 7? 

c. Using your fitted regression function in part (b), obtain a 99 percent prediction interval for 
a new Y observation at X = 12. Does observation Y7 fall outside this prediction interval? 
What is the significance of this? 

3.25. Referto the CDI data set in Appendix C.2 and Project 1.43. For each ofthe three fitted regression 
models, obtain the residuals and prepare a residual plot against X and a normal probability plot. 
Summarize your conclusions. Is linear regression model (2.1) more appropriate in one case than 
in the others? 

3.26. Refer to the CDI data set in Appendix C.2 and Project 1.44. For each geographic region, obtain 
the residuals and prepare a residual plot against X and a normal probability plot. Do the four 
regions appear to have similar error variances? What other conclusions do you draw from your 
plots? 

3.27. Refer to the SENIC data set in Appendix C. I and Project 1.45. 

a. For each ofthe three fitted regression models, obtain the residuals and prepare a residual plot 
against X and a normal probability plot. Summarize your conclusions. Is linear regression 
model (2.1) more apt in one case than in the others? 

b. Obtain the fitted regression function for the relation between length of stay and infection 
risk after deleting cases 47 (X47 = 6.5, Y47 = 19.56) and 112 (Xm = 5.9, YlI2 = 17.94). 
From this fitted regression function obtain separate 95 percent prediction intervals for new 
Y observations at X = 6.5 and X = 5.9, respectively. Do observations Y47 and YII2 fall 
outside these prediction intervals? Discuss the significance of this. 

3.28. Refer to the SENIC data set in Appendix C.l and Project 1.46. For each geographic region, 
obtain the residuals and prepare a residual plot against X and a normal probability plot. Do the 
four regions appear to have similar error variances? What other conclusions do you draw from 
your plots? 

3.29. Refer to Copier maintenance Problem 1.20. 

a. Divide the data into four bands according to the number of copiers serviced (X). Band 1 
ranges from X = .5 to X = 2.5; band 2 ranges from X = 2.5 to X = 4.5; and so forth. 
Determine the median value of X and the median value of Y in each ofthe bands and develop 
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the band smooth by connecting the four pairs of medians by straight lines on a scatter plot 
ofthe data. Does the band smooth suggest that the regression relation is linear? Discuss. 

b. Obtain the 90 percent confidence band for the true regression line and plot it on the scatter 
plot prepared in part (a). Does the band smooth fall entirely inside the confidence band? 
What does this tell you about the appropriateness ofthe linear regression function? 

c. Create a series of six overlapping neighborhoods of width 3.0 beginning at X = .5. The 
first neighborhood will range from X = .5 to X = 3.5; the second neighborhood will range 
from X = 1.5 to X = 4.5; and so on. For each of the six overlapping neighborhoods, fit a 
linear regression function and obtain the fitted value t at the center Xc of the neighborhood. 
Develop a simplified version of the lowess smooth by connecting the six (Xc, Yc) pairs by 
straight lines on a scatter plot of the data. In what ways does your simplified lowess smooth 
differ from the band smooth obtained in part (a)? 

3.30. Refer to Sales growth Problem 3.17. 

; 

a Divide the range of the predictor variable (coded years) into five bands of width 2.0, as 
follows: Band 1 ranges from X = -.5 to X = 1.5; band 2 ranges from X = 1.5 to X = ~.5; 
and so on. Determine the median value of X and the median value of Y in each band and 
develop the band smooth by connecting the five pairs of medians by straight lines on a 
scatter plot of the data. Does the band smooth suggest that the regression relation is linear? 
Discuss. 

b. Create a series of seven overlapping neighborhoods of width 3.0 beginning at X = -.5. The 
first neighborhood will range from X = -.5 to X = 2.5; the second neighborhood will range 
from X = .5 to X = 3.5; and so on. For each of the seven overlapping neighborhoods, fit a 
linear regression function and obtain the fitted value t at the center Xc of the neighborhood. 
Develop a simplified version of the lowess smooth by connecting the seven (Xc, t) pairs 
by straight lines on a scatter plot of the data. 

c. Obtain the 95 percent confidence band for the true regression line and plot it on the plot 
prepared in part (b). Does the simplified lowess smooth fall entirely within the confidence 
band for the regression line? What does this tell you about the appropriateness ofthe linear 
regression function? 

3.31. Refer to the Real estate sales data set in Appendix C. 7. Obtain a random sample of 200 cases 
from the_ 522 cases in this data set. Using the random sample, build a regression model to 
predict sales price (Y) as a function of finished square feet (X). The analysis should include an 
assessment ofthe degree to which the key regression assumptions are satisfied. If the regression 
assumptions are not met, include andjustify appropriate remedial measures. Use the final mode! 
to predict sales price for two houses that are about to come on the market: the first has X = 1100 
finished square feet and the second has X = 4900 finished square feet. Assess the strengths 
and weaknesses of the final model. 

3.3 2. Refer to the Prostate cancer data set in Appyndix C.5. Build a regression model to predict PSA 
level (Y) as a function of cancer ,Yolume (X). The analysis should include an assessment of 
the degree to which the key regression assumptions are satisfied. If the regression assumptions 
are not met, include and justify appropriate remedial measures. Use the final model to estimate 
mean PSA level for a patient whose cancer volume is 20 cc. Assess the strengths and weaknesses 
of the final model. • # 
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SiIllultaneous Inferences 
and Other Topics in 
Regression Analysis 

In this chapter, we take up a variety of topics in simple linear regression analysis. Several 
of the topics pertain to how to make simultaneous inferences from the same set of sample 
observations. 

4.1 Joint Estimation of f30 and f31 

Need for Joint Estimation 

154 

A market research analyst conducted a study of the relation between level of advertising 
expenditures (X) and sales (Y). The study included six different levels of advertising ex­
penditures, one of which was no advertising (X = 0). The scatter plot suggested a linear 
relationship in the range of the advertising expenditures levels studied. The analyst now 
wishes to draw inferences with confidence coefficient .95 about both the intercept f30 and the 
slope f31' The analyst could use the methods of Chapter 2 to construct separate 95 percent 
confidence intervals for f30 and f3,. The difficulty is that these would not provide 95 percent 
confidence that the conclusions for both f30 and f3, are correct. If the inferences were indepen­
dent, the probability of both being correct would be (.95)2, or only .9025. The inferences are 
not, however, independent, coming as they do from the same set of sample data, which makes 
the determination of the probability of both inferences being correct much more difficult. 

Analysis of data frequently requires a series of estimates (or tests) where the analyst 
would like to have an assurance about the correctness of the entire set of estimates (or tests). 
We shall call the set of estimates (or tests) of interest the family of estimates (or tests). In our 
illustration, the family consists of two estimates, for f30 and f3,. We then distinguish between a 
statement confidence coefficient and a family confidence coefficient. A statement confidence 
coefficient is the familiar type of confidence coefficient discussed earlier, which indicates the 
proportion of correct estimates that are obtained when repeated samples are selected and the 
specified confidence interval is calculated for each sample. Afamily confidence coefficient, 
on the other hand, indicates the proportion of families of estimates that are entirely correct 
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when repeated samples are selected and the specified confidence intervals for the entire 
family are calculated for each sample. Thus, a family confidence coefficient corresponds to 
the probability, in advance of sampling, that the entire family of statements will be correct. 

To illustrate the meaning of a family confidence coefficient further, consider again the 
joint estimation of f30 and f3,. A family confidence coefficient of, say, .95 would indicate here 
that if repeated samples are selected and interval estimates for both f30 and f3J are calculated 
for each sample by specified procedures, 95 percent of the samples would lead to a family 
of estimates where both confidence intervals are correct. For 5 percent of the samples, either 
one or both of the interval estimates would be incorrect. 

A procedure that provides a family confidence coefficient when estimating both f30 and f3, 
is often highly desirable since it permits the analyst to weave the two separate results together 
into an integrated set of conclusions, with an assurance that the entire set of estimates is 
correct. We now discuss one procedure for constructing simultaneous confidence intervals 
for f30 and f3, with a specified family confidence coefficient-the Bonferroni proctdure. 

Bonferroni Joint Confidence Intervals 
The Bonferroni procedure for developing joint confidence intervals for f30 and f3, with a 
specified family confidence coefficient is very simple: each statement confidence coefficient 
is adjusted to be higher than 1 - ex so that the family confidence coefficient is at least 1 - ex. 
The procedure is a general one that can be applied in many cases, as we shall see, not just 
for the joint estimation of f30 and f3,. 

We start with ordinary confidence limits for f30 and f3, with statement confidence coef­
ficients 1 - ex each. These limits are: 

bo ± t(l- ex/2;n - 2)s{bo} 

b, ± t(l - ex/2; n - 2)s{bd 

We first ask what is the probability that one or both of these intervals are incorrect. Let Al 
denote the event that the first confidence interval does not cover 130, and let A2 denote the 
event that the second confidence interval does not cover f3,. We know: 

Probability theorem (A.6) gives the desired probability: 

peAl U A2) = peAl) + P(A2) - peAl n A 2) 

Next, we use complementation property (A.9) to obtain the probability that both intervals 
are correct, denoted by p(A, n A 2): 

p(A, nA 2) = 1 - peAl U A 2) = 1 - peAl) - P(A2) + peAl n A2) (4.1) , . 

Note from probability properties (A.9) and (A.lO) that A, n A2 and A, U A2 are comple­
mentary events: 

1- peAl UA2),= peAl UA2) = peA} nA2) 

Finally, we use the fact that peAl n A2)::::: 0 to obtain from (4.1) the Bonferroni 
inequality: 

(4.2) 
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which for our situation is: 

(4.2a) 

Thus, if f30 and f3, are separately estimated with, say, 95 percent confidence intervals, the 
Bonferroni inequality guarantees us a family confidence coefficient of at least 90 percent 
that both intervals based on the same sample are correct. 

We can easily use the Bonferroni inequality (4.2a) to obtain a family confidence coeffi­
cient of at least 1 - a for estimating f30 and f3,. We do this by estimating f30 and f3, separately 
with statement confidence coefficients of 1 - a/2 each. This yields the Bonferroni bound 
l-a/2- a/2 = I-a. Thus, the I-a family confidence limits for f30 and f3, for regression 
model (2.1) by the Bonferroni procedure are: 

bo ± Bs{bo} b, ± Bs{bd (4.3) 

where: 
B=t(I-a/4;n-2) (4.3a) 

and bo, b" s{bo}, and s{bt} are defined in (1.10), (2.9), and (2.23). Note that a statement 
confidence coefficient of 1 - a/2 requires the (1-' a/4) 100 percentile of the t distribution 
for a two-sided confidence interval. 

For the Toluca Company example, 90 percent family confidence intervals for f30 and f3, 
require B = t(I - .10/4; 23) = t(.975; 23) = 2.069. We have from Chapter 2: 

bo = 62.37 

b, = 3.5702 

s{bo} = 26.18 

s{bd = .3470 

Hence, the respective confidence limits for f30 and f3, are 62.37 ± 2.069(26.18) and 
3.5702 ± 2.069(.3470), and the joint confidence intervals are: 

8.20 .:::: f30 .:::: 116.5 

2.85 .:::: f3, :::s 4.29 

Thus, we conclude that f30 is between 8.20 and 116.5 and f3, is between 2.85 and 4.29. 
The family confidence coefficient is at least .90 that the procedure leads to correct pairs of 
interval estimates. 

Comments 
1. We reiterate that the Bonferroni 1 - a family confidence coefficient is actually a lower bound 

on the true (but often unknown) family confidence coefficient. To the extent that incorrect interval 
estimates of f30 and f3, tend to pair up in the family, the families of statements will tend to be correct 
more than (l - a)l00 percent of the time. Because of this conservative nature of the Bonferroni 
procedure, family confidence coefficients are frequently specified at lower levels (e.g., 90 percent) 
than when a single e~timate is made. 

2. The Bonferroni inequality (4.2a) can easily be extended to g simultaneous confidence intervals 
with family confidence coefficient 1 - a: 

(4.4) 
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Thus, if g interval estimates are desired with family confidence coefficient 1 - a, constructing each 
interval estimate with statement confidence coefficient 1 - al g will suffice. 

3. For a given family confidence coefficient, the larger the number of confidence intervals in the 
family, the greater becomes the multiple B, which may make some or all of the confidence intervals 
too wide to be helpful. The Bonferroni technique is ordinarily most useful when the number of 
simultaneous estimates is not too large. 

4. It is not necessary with the Bonferroni procedure that the confidence intervals have the same 
statement confidence coefficient. Different statement confidence coefficients, depending on the impor­
tance of each estimate, can be used. For instance, in our earlier illustration f30 might be estimated with 
a 92 percent confidence interval and f31 with a 98 percent confidence interval. The family confidence 
coefficient by (4.2) will stilI be at least 90 percent. 

5. Joint confidence intervals can be used directly for testing. To illustrate this use, an industrial 
engineer working for the Toluca Company theorized that the regression function should have an 
intercept of 30.0 and a slope of 2.50. Although 30.0 falls in the confidence interval for f3~ 2.50 does 
not fall in the confidence interval for f31. Thus, the engineer's theoretical expectations are not correct 
at the a = .10 family level of significance. 

6. The estimators bo and b i are usually correlated, but the Bonferroni simultaneous confidence lim­
its in (4.3) only recognize this correlation by means of the bound on the family confidence coefficient. 
It can be shown that the covariance between bo and bi is: 

(4.5) 

Note that if X is positive, bo and b i are negatively correlated, implying that if the estimate b l is too 
high, the estimate bo is likely to be too low, and vice versa. 

In the Toluca Company example, X = 70.00; hence the covariance between bo and b i is negative. 
This implies that the estimators bo and bi here tend to err in opposite directions. We expect this intu­
itively. Since the observed points (Xi, Yi ) fall in the first quadrant (see Figure 1.lOa), we anticipate 
that if the slope of the fitted regression line is too steep (b i overestimates f3I)' the intercept is most 
likely to be too low (bo underestimates (30), and vice versa. 

When the independent variable is Xi - X, as in the alternative model (1.6), b~ and b l are uncor-
related according to (4.5) because the mean of the Xi - X observations is zero. • 

4.2 Simultaneous Estimation of Mean Responses 

Often the mean responseS at a number of X levels need to be estimated from the same 
sample data. The Toluca Company, for instance, needed to estimate the mean number 
of work hours for lots of 30, 65, and 100 units in its search for the optimum lot size. We 
already know how to estimate the mean response for anyone level of X with given statement 
confidence coefficient. Now we shall discuss two procedures for simultaneous estimation 
of a number of different mean responses with a family confidence coefficient, so that there 
is a known assurance of all of the estimates of mean responses being correct. These are the 
Working-Hotelling and the Bonferroni procedures. ~ 

The reason why a family confidence coefficient is needed for estimating several mean 
responses even though all estimates are based on the Same fitted regression line is that 
the separate interval estimates of E {Yh } at the different Xh levels need not all be correct 
or all be incorrect. The combination of sampling errors in bo and b l may be such that 
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the interval estimates of E{Yh } will be correct over some range of X levels and incorrect 
elsewhere. 

Working-Hotelling Procedure 

Example 

The WoIking-HoteIling procedure is based on the confidence band for the regression line 
discussed in Section 2.6. The confidence band in (2.40) contains the entire regression line and 
therefore contains the mean responses at all X levels. Hence, we can use the boundary values 
of the confidence band at selected X levels as simultaneous estimates of the mean responses 
at these X levels. The family confidence coefficient for these simultaneous estimates will 
be at least 1 - ex because the confidence coefficient that the entire confidence band for the 
regression line is correct is I - ex. #-_ 

The Working-Hotelling procedure for obtaining simultaneous confiden~ intervals for 
the mean responses at selected X levels is therefore simply to USe the boundary values in 
(2.40) for the X levels of interest. The simultaneous confidence limits for g mean responses 
E{Yh } for regression model (2.1) with the Working-HoteIling procedure therefore are: 

(4.6) 

where: 

W2 = 2F(1 - ex; 2, n - 2) (4.6a) 

and Y h and s {Y h} are defined in (2.28) and (2.30), respectively. 

For the Toluca Company example, we require a family of estimates of the mean number 
of work hours at the following lot size levels: Xh = 30, 65, 100. The family confidence 
COefficient is to be .90. In Chapter 2 we obtained Yh and s{Yh } for Xh = 65 and 100. In 
similar fashion, we can obtain the needed results for lot size Xh = 30. We summarize the 
results here: 

30 
65 

100 

169.5 
294.4 
419.4 

s{S\} 

16.97 
9.918 

14.27 

For a family confidence coefficient of .90, we require F(.90; 2, 23) = 2.549. Hence: 

W2 = 2(2.549) = 5.098 w = 2.258 

We can now obtain the confidence intervals for the mean number of work hours at Xii = 30, 
65, and 100: 

131.2 =)69.5 - 2.258(16.97) .:::: E{Yh } .:::: 169.5 + 2.258(16.97) = 207.8 

272.0 = 294.4 - 2.258(9.918) .:::: E{Yh } .:::: 294.4 + 2.258(9.918) = 316.8 

387.2 = 419.4 - 2.258(14.27) .:::: E{Yh } .:::: 419.4 + 2.258(14.27) = 451.6 

With family confidence coefficient .90, we conclude that the mean number of work hours 
required is between 131.2 and 207.8 for lots of 30 parts, between 272.0 and 316.8 for lots 
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of 65 parts, and between 387.2 and 451.6 for lots of 100 parts. The family confidence 
coefficient .90 provides assuranCe that the procedure leads to all correct estimates in the 
family of estimates. 

Bonferroni Procedure 

Example 

The Bonferroni procedure, discussed earlier for simultaneous estimation of f30 and f3" is 
a completely general procedure. To construct a family of confidence intervals for mean 
responses at different X levels with this procedure, We calculate in each instance the usual 
confidence limits for a single mean response E{Yh} in (2.33), adjusting the statement con­
fidence coefficient to yield the specified family confidence coefficient. 

When E{Yh} is to be estimated for g levels Xh with family confidence coefficient 1- a, 
the Bonferroni confidence limits for regression model (2.1) are: 

1\ ± Bs{l\} 1. (4.7) 

where: 

B = t(I - a/2g;n - 2) (4.7a) 

and g is the number of confidence intervals in the family. 

For the Toluca Company example, the Bonferroni simultaneous estimates of the mean 
number of work hours for lot sizes Xh = 30,65, and 100 with family confidence coefficient 
.90 require the Same data as with the WoIking-Hotelling procedure. In addition, we require 
B = t[l - .10/2(3); 23] = t(.9833; 23) = 2.263. 

We thus obtain the following confidence intervals, with 90 percent family confidence 
coefficient, for the mean number of work hours for lot sizes Xh = 30, 65, and 100: 

131.1 = 169.5 - 2.263(16.97) .:::: E{Yh } .:::: 169.5 + 2.263(16.97) = 207.9 

272.0 = 294.4 - 2.263(9.918) .:::: E{Yh } .:::: 294.4 + 2.263(9.918) = 316.8 

387.1 = 419.4 - 2.263(14.27) .:::: E{Yh } .:::: 419.4 + 2.263(14.27) = 451.7 

Comments 

I. In this instance the Working-HoteIling confidence limits are slightly tighter than, or the same 
as, the Bonferroni limits. In other cases where the number of statements is small, the Bonferroni 
limits may be tighter. For larger families, the WoIking-HotelIing confidence limits will always be 
the tighter, since W in (4.6a) stays the same for any number of statements in the family whereas B 
in (4.7a) becomes larger as the number of statements increases. In practice, once the family confi­
dence coefficient has been decided upon, one can calculate the W and B multiples to determine which 
procedure leads to tighter confidence limits'. 

2. Both the WoIking-HoteIling and Bonferroni procedures provide lower bounds to the actual 
family confidence coefficient. 

3. The levels of the predictor variable for which the mean response is to be estimated are sometimes 
not known in advance. Instead, the levels'of interest are deterrnined~as the analysis proceeds. This was 
the case in the Toluca Company example, where the lot size levels of interest were determined after 
analyses relating to other factors affecting the optimum lot size were completed. In such cases, it is 
better to use the Wortdng-HoteIling procedure because the family for this procedure encompasses all 
possible levels of X. • 
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4.3 Simultaneous Prediction Intervals for New Observations 

Example 

Now we consider the simultaneous predictions of g new observations On Y in g indepen­
dent trials at g different levels of X. Simultaneous prediction intervals are frequently of 
interest. For instance, a company may wish to predict sales in each of its sales regions from 
a regression relation between region sales and population size in the region. 

Two procedures for making simultaneous predictions will be considered here: the Scheffe 
and Bonferroni procedures. Both utilize the same type of limits as those for predicting a 
single observation in (2.36), and only the multiple of the estimated standard deviation is 
changed. The Scheffe procedure USeS the F distribution, whereas the Bonferroni procedure 
UseS the t distribution. The simultaneous prediction limits for g predictions with the Scheffe 
procedure with family confidence coefficient I - ex are: "..# 

Yh ± Ss{pred} (4.8) 

where: 
--0' 

S2 = gF(I- ex; g, n - 2) (4.8a) 

and s {pred} is defined in (2.38). With the Bonferroni procedure, the 1 - ex simultaneous 
prediction limits are: 

Yh ± Bs{pred} (4.9) 

where: 

B = t(1 - ex/2g; n - 2) (4.9a) 

The Sand B multiples can be evaluated in advance to See which procedure provides tighter 
prediction limits. 

The Toluca Company wishes to predict the work hours required for each of the next two 
lots, which will consist of 80 and 100 units. The family confidence coefficient is to be 
95 percent. To determine which procedure will give tighter prediction limits, we obtain the 
Sand B multiples: 

S2 = 2F(.95; 2,23) = 2(3.422) = 6.844 S = 2.616 

B = t[1 - .05/2(2); 23] = t(.9875; 23) = 2.398 

We see that the Bonferroni procedure will yield somewhat tighter prediction limits. The 
needed estimates, based on earlier results, are (calculations not shown): 

80 
100 

348.0 
419.4 

s{pred} 

49.91 
50.87 

Bs{pred} 

119.7 
122.0 

The simultaneous prediction limits for the next two lots, with family confidence coefficient 
.. 95, when X h = 80 and 100 then are: 

228.3 = 348.0 - 119.7 S Yh(new) S 348.0 + 119.7 = 467.7 

297.4 = 419.4 - 122.0 S Yh(new) S 419.4 + 122.0 = 541.4 
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With family confidence coefficient at least .95, we Can predict that the work hours for the 
next two production runs will be within the above pair oflimits. As We noted in Chapter 2, the 
prediction limits are very wide and may not be too useful for planning worker requirements. 

Comments 
1. Simultaneous prediction intervals for g new observations on Y at g different levels of X with 

a 1 - ex family confidence coefficient are wider than the corresponding single prediction intervals 
of (2.36). When the number of simultaneous predictions is not large, however, the difference in the 
width is only moderate. For instance, a single 95 percent prediction interval for the Toluca Company 
example would utilize a t multiple of t(.975; 23) = 2.069, which is only moderately smaller than the 
multiple B = 2.398 for two simultaneous predictions. 

2. Note that both the B and S multiples for simultaneous predictions become larger as g increases. 
This contrasts with simultaneous estimation of mean responses where the B multiple becomes larger 
but not the W multiple. When g is large, both the B and S multiples for simultaneous predictions 
may become so large that the prediction intervals will be too wide to be useful. Other sihlUltaneous 
estimation techniques might then be considered, as discussed in Reference 4.1. • 

4.4 Regression through Origin 

Model 

Inferences 

Sometimes the regression function is known to be linear and to go through the origin at 
(0, 0). This may occur, for instance, when X is units of output and Y is variable cost, so Y 
is zero by defini tion when X is zero. Another example is where X is the number of brands 
of beer stocked in a supermarket in an experiment (including some supermarkets with no 
brands stocked) and Y is the volume of beer sales in the supermarket. 

The normal error model for these CaSes is the same as regression model (2.1) except that 

f30 = 0: 

(4.10) 

where:-

f3, is a parameter 

Xi are known constants 

£i are independent N (0, a 2
) 

The regression function for model (4.10) is: 
I 

(4.11) 

which is a straight line through the origin, with slope f31. 

. 
The least squares estimator of f3, in regression model (4.10) is obtained by minimizing: 

(4.12) 
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TABLE 4.1 
Confidence 
Limits for 
Regression 
through 
Origin. 

with respect to f31. The resulting normal equation is: 

(4.13) 

leading to the point estimator: 

(4.14) 

The estimator hI in (4.14) is also the maximum likelihood estimator for the normal error 
regression model (4.10). 

The fitted value Vi for the ith case is: 

(4.15) 

and the ith residual is defined, as usual, as the difference between the observed and fitted 
values: 

ei = Yi - Vi = Yi - hI Xi (4.16) 

An unbiased estimator of the error variance a 2 for regression model (4.10) is: 

"(Yo y )2 " e,? s 2 = MSE = L.., i - i L.., 

n-l n-l 
(4.17) 

The reaSon for the denominator n - I is that only one degree of freedom is lost in estimating 
the single parameter in the f.egression function (4.11). 

Confidence limits for f31' E {Yh}, and a new observation Yh(new) forregression model (4.10) 
are shown in Table 4.1. Note that the t mUltiple has n - 1 degrees of freedom here, the 
degrees of freedom associated with MSE. The results in Table 4.1 are deri ved in analogous 
fashion to the earlier results for regression model (2.1). Whereas for model (2.1) with an 
intercept we encounter terms (Xi - X)2 or (Xh - X)2, here we find xl and X~ because of 
the regression through the origin. 

The Charles Plumbing Supplies Company operates 12 warehouses. In an attempt to tighten 
procedures for planning and control, a consultant studied the relation between number of 
work units performed (X) and total variable labor cost (Y) in the warehouses during a test 
period. A portion of the data is given in Table 4.2, columns 1 and 2, and the observations 
are shown as a scatter plot in Figure 4.1. 

Estimate of Estimated Variance Confidence Limits 

MSE 
f31 S2{b,} =-- b1 ± ts{b,} (4.18) 

LXf 

E{Yh} 2 f} X~MSE 
s { h = LX! fh ± ts{fh} (4.19) 

Yh(new) s2{pred} = MSE(l + ~~!) f h ± ts{pred} (4.20) 

where: t = t(l - aj2; n -1) 
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FIGURE 4.1 
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(1) (2) (3) (4) '(5) (6) 
Work Variable 
Units Labor Cost 

Warehouse Performed (dollars) 
Xj Y/ XjY; X?-

I 
Yj ej 

1 20 114 2,2~0 400 93.71 20.29 
2 196 921 180;516 38>416 918.31' 2.69 
3 115 560 64,400 13,225 538.81 2l.19 

10 147 ' 670 98,490 2,1,~Q~ 688.74 -18.74 
11 182 828 150,696 33,124 852.72 -24.72 
12 160 762 121,920 25,600 749.64 12.36 

Total 1,359 6,390 894,714 190,963 6,367.28 ~ 22.72 

1000 

800 ...., 
Vl 
0 
u 
es 600 
.n 
'" --' 
OJ 

15 400 
'" .;:: 

~ 
200 

0 50 100 150 200 
Work Units Performed 

Model (4.10) for regression through the origin WaS employed since Y involves variable 
costs only and the other conditions of the model appeared to be satisfied as well. From 
Table 4.2, columns 3 and 4, we have LXi Yi = 894,714 and Lxi = 190,963. HeNce: 

LXiY; 894,714 
hI = '" 2 = 63 = 4.68527 

6Xi 190,9 

and the estimated regression function is: 
I 

Y = 4.68527X 

In Table 4.2, the fitted values are shown in column 5, the residuals in column 6. The fitted 
regression line is plotted in Figure 4.} and it appears to be a ftood fit. 

An interval estimate of f31 is desired with a 95 percent confidence coefficient. By squaring 
the residuals in Table 4.2, column 6, and then summing them, we obtain (calCUlations not 
shown): 

2 L el 2,457.6 
s =MSE= -- = -- = 223.42 

n -1 11 
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From Table 4.2, column 4, we have Lxi = 190,963. Hence: 

2 MSE 223.42 
s {bd = '" 2 = = .0011700 

6Xi 190,963 
s{bd = .034205 

For a 95 percent confidence coefficient, we require t(.975; 11) = 2.20l. The confidence 
limits, by (4.18) in Table 4.1, are 4.68527 ± 2.201(.034205). The 95 percent confidence 
interval for f3, therefore is: 

4.61 .:::: f3, .:::: 4.76 

Thus, with 95 percent confidence, it is estimated that the mean variable labor cost increases 
by somewhere between $4.61 and $4.76 for each additional work unit performe.u,..-

Important Cautions for Using Regression through Origin 
In using regression-through-the-origin model (4.10), the residuals must be interpreted with 
care because they do not sum to zero usually, as may be see~ in Table 4.2, column 6, for 
the warehouse example. Note from the normal equation (4.13) that the only constraint On 
the residuals is of the form L Xiei = O. Thus, in a residual plot the residuals will usually 
not be balanced around the zero line. 

Another important caution for regression through the origin is that the sum of the squared 
residuals SSE = Lei for this type of regression may exceed the total sum of squares 
SSTO = L(Y; - y)2. This can occur when the data form a curvilinear pattern or a linear 
pattern with an intercept away from the origin. Hence, the coefficient of determination 
in (2.72), R2 = 1 - SSE/SSTO, may turn out to be negative. Consequently, the coefficient 
of determination R2 has no clear meaning for regression through the origin. 

Like any other statistical model, regression-through-the-origin model (4.10) needs to be 
evaluated for aptness. Even when it is known that the regression function must go through 
the origin, the function may not be linear or the variance of the error terms may not be 
constant In many other cases, one cannot be sure in advance that the regression line goes 
through the origin. Hence, it is generally a safe practice not to USe regression-through-the­
origin model (4.10) and instead use the intercept regression model (2.1). If the regression 
line does go through the origin, bo with the intercept model will differ from 0 only by a 
small sampling error, and unless the sample size is very small USe of the intercept regression 
model (2.1) has no disadvantages of any consequence. If the regression line does not go 
through the origin, use of the intercept regression model (2.1) will avoid potentially serious 
difficulties resulting from forcing the regression line through the origin when this is not 
appropriate. 

Comments 

1. In interval estimation of E {Yh J or prediction of Yh(new) with regression through the origin, note 
that the intervals (4.19) and (4.20) in Table 4.1 widen the further X h is from the origin. The reason 
is that the value of the true regression function is known precisely at the origin, so the effect of the 
sampling error in the slope hI becomes increasingly important the farther X" is from the origin. 

2. Since with regression through the origin only one parameter, f31, must be estimated for regression 
function (4.11), simultaneous estimation methods are not required to make a family of statements 
about several mean responses. For a given confidence coefficient 1 - ct, formula (4.19) in Table 4.1 
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can be used repeatedly with the given sample results for different levels of X to generate a family of 
statements for which the family confidence coefficient is stilI 1 - ct. 

3. Some statistical packages calculate R2 for regression through the origin according to (2.72) 
and hence will sometimes show a negative value for R2. Other statistical packages calculate R2 using 
the total uncorrected sum of squares SSTOU in (2.54). This procedure avoids obtaining a negative 
coefficient but lacks any meaningful interpretation. 

4. The ANOVA tables for regression through the origin shown in the output for many statistical 
A2 

packages are based on SSTOU = '2:Y?, SSRU = '2:Yi = bi '2:xf, and SSE = '2:(Yi - b I Xi)2, 
where SSRU stands for the uncorrected regression sum of squares. It can be shown that these sums of 
squares are additive: SSTOU = SSRU + SSE. • 

4.5 Effects of Measurement Errors 
): 

In our discussion of regression models up to this point, we have not explicitly considered 
the presence of measurement errors in the observations on either the response variable Y 
or the predictor variable X. We noW examine briefly the effects of measurement errors in 

, the observations on the responSe and predictor variables. 

Measurement Errors in Y 
When random measurement errors are present in the observations on the response variable 
Y, no new problems are created when these errors are uncorrelated and not biased (positive 
and negative meaSurement errors tend to cancel out). Consider, for example, a study of 
the relation between the time required to complete a task (Y) and the complexity of the 
task (X). The time to complete the task may not be measured accurately because the person 
operating the stopwatch may not do so at the precise instants called for. As long as such 
meaSurement errors are of a random nature, uncorrelated, and not biased, these measurement 
errors are simply absorbed in the model error term £. The model error term always reflects 
the composite effects of a large numberoffactors not considered in the model, one of which 
noW would be the random variation due to inaccuracy in the process of measuring Y. 

Measurement Errors in X 
Unfortunately, a different situation holds when the observations on the predictor variable 
X are subject to measurement errors. Frequently, to be sure, the observations on X are 
accurate, with no measurement errors, as when the predictor variable is the price of a product 
in different stores, the number of variables in different optimization problems, or the wage 
rate for different classes of employees. At other times, however, measurement errors may 
enter the value observed for the predictor variable, for iJlstance, when the predictor variable 
is pressure in a tank, temperature in an oven, speed of a production line, or reported age of 
a person. 

We shall use the last illustration in our dev.elopment of the nature ofthe problem. Suppose 
We are interested in the relation between employees' piecework earnings and their ages. 
Let Xi denote the true age of the ith employee and X; the age reported by the employee 
on the employment record. Needless to say, the two are not always the same. We define the 
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measurement error 0; as follows: 

0; = X; - Xi 

The regression model we would like to study is: 

Y; = f30 + f3,X; + S; 

(4.21) 

(4.22) 

However, we observe only X;, so We must replace the true age Xi in (4.22) by the reported 
age X;, using (4.21): 

Yi = f30 + f3, (X; - 0;) + Si 

We can now rewrite (4.23) as follows: 

Yi = f30 + f3,X; + (Si - f3,0;) 

(4.23) 

(4.24) 

Model (4.24) may appear like an ordinary regression model, with predictor variable X* 
and error term S - f3,0, but it is not. The predictor v~riable observation X; is a random 
variable, which, as we shall see, is correlated with the error term S; - f3, 0;. 

Intuitively, we know that S; - f3,Oi is not independent of X; since (4.21) constrains 
X; - 0; to equal Xi' To determine the dependence formally, let us aSsume the following 
simple conditions: 

E{o;} = 0 

E{s;} = 0 

E{o;s;} = 0 

(4.25a) 

(4.25b) 

(4. 25c) 

Note that condition (4.25a) implies that E{X;J = E{X; + o;} = X;, so that in our example 
the reported ages would be unbiased estimates ofthe true ages. Condition (4.25b) is the usual 
requirementthatthe model errortermss; have expectation 0, balancing around the regression 
line. Finally, condition (4.25c) requires that the measurement error 0; not be correlated with 
the model error Si; this follows because, by (A.21a), a{o;, s;} = E{o;s;} since E{od = 
E{s;} = 0 by (4.25a) and (4.25b). 

We now wish to find the covariance between the observations X; and the random terms 
S; - f3,0; in model (4.24) under the conditions in (4.25), which imply that E{X;J = X; and 
E{s; - f3,0;} = 0: 

a{X;, Si - f3,od = E{[X; - E{X;}][(s; - f3,0;) - E{s; - f3,0;}]} 

= E{(X; - Xi)(Si - f3,0;)} 

= E{O;(Si - f3,0;)} 

= E {o;s; - f3,on 

Now E{OiS;} = 0 by (4.25c), and E{on = a 2 {0;} by (A.15a) because E {od = 0 by (4.25a). 
We therefore obtain: 

(4.26) 

This covariance is not zero whenever there is a linear regression relation between X and Y. 
If we assume that the response Y and the random predictor variable X* follow a bivariate 

normal distribution, then the conditional distribution of the Y;, i = 1, ... n, given X;, 
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i = 1, ... n, are normal and independent, with conditional mean E{Y;jX;J = f3~ + f3~ X; 
and conditional variance a~IX" Furthermore, it can be shown that f3i = f3, [all(ai + a~)], 
where ai is the variance of X and a~ is the variance of Y. Hence, the least squares slope 
estimate from fitting Y on X* is not an estimate of f3" but is an estimate of f3~ .:::: f3,. 
The resulting estimated regression coefficient of f3; will be too small on average, with the 
magnitude ofthe bias dependent upon the relative sizes of ai and a~. If a~ is small relative 
to ai, then the bias would be small; otherwise the bias may be substantial. Discussion 
of possible approaches to estimating f3~ that are obtained by estimating these unknown 
variances ai and a~ will be found in specialized texts such as Reference 4.2. 

Another approach is to USe additional variables that are known to be related to the true 
value of X but not to the errors of measurement O. Such variables are called instrumental 
variables because they are used as an instrument in studying the relation between X and 
Y. Instrumental variables make it possible to obtain consistent estimators of the regression 
parameters. Again, the reader is referred to Reference 4.2. ~ 

Comment 

What, it may be asked, is the distinction between the case when X is a random variable, considered in 
Chapter 2, and the case when X is subject to random measurement errors, and why are there special 
problems with the latter? When X is a random variable, the observations on X are not under the 
control of the analyst and will vary at random from trial to trial, as when X is the number of persons 
entering a store in a day. If this random variable X is not subject to measurement errors, however, it 
can be accurately ascertained for a given trial. Thus, if there are no measurement errors in counting the 
number of persons entering a store in a day, the analyst has accurate information to study the relation 
between number of persons entering the store and sales, even though the levels of number of persons 
entering the store that actually occur cannot be controlled. If, on the other hand, measurement errors 
are present in the observed number of persons entering the store, a distorted picture of the relation 
between number of persons and sales will occur because the sales observations will frequently be 
matched against an incorrect number of persons. • 

Berkson Model 
There is one situation where measurement errors in X are no problem. This CaSe was first 
noted by Berkson (Ref. 4.3). Frequently, in an experiment the predictor variable is set at 
a target value. For instance, in an experiment on the effect of room temperature on word 
processor productivity, the temperature may be set at target levels of 68° F, 70° F, and 72° F, 
according to the temperature control on the thermostat. The observed temperature X; is 
fixed here, whereas the actual temperature Xi is a random variable since the thermostat may 
not be completely accurate. Similar situations exist when water pressure is set according to 
a gauge, or employees of specified ages according to their employment records are selected 
for a study. -

In all of these caSes, the observation X; is a fixed quantity, whereas the unobserved true 
value Xi is a random variable. The ~easurement error is, a~ before: 

<Oi = X; - Xi (4.27) 

Here, however, there is no constraint on the relation between X; and Oi, since X; is a fixed 
quantity. Again, we aSsume that E{od = o. 
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Model (4.24), which we obtained when replacing Xi by X; - 0;, is still applicable for 
the Berkson caSe: 

(4.28) 

The expected value of the error term, E {s; - ,8, oil, is zero as before under conditions (4.25a) 
and (4.25b), since E{s;} = 0 and E{o;} = O. However, Si - ,8,0; is now uncorrelated with 
X;, since X; is a constant for the Berkson case. Hence, the following conditions of an 
ordinary regression model are met: 

1. The error terms have expectation zero. 
2. The predictor variable is a constant, and hence the error terms are not correlated with it. 

Thus, least squares procedures can be applied for the Berkson case without modific~tion, 
and the estimators bo and b, will be unbiased. If we can make the standard normality and 
constant variance assumptions for the errors Si - ,8,0;, the usual tests and interval estimates 
can be utilized. 

4.6 Inverse Predictions 

At times, a regression model of Yon X is used to make a prediction of the value of X which 
gave rise to a new observation Y. This is known as an inverse prediction. We illustrate 
inverse predictions by two examples: 

1. A trade association analyst has regressed the selling price of a product (Y) on its cost 
(X) for the IS member firms of the association. The selling price Yh(new) for another firm 
not belonging to the trade association is known, and it is desired to estimate the cost Xh(new) 

for this firm. 

2. A regression analysis of the amount of decrease in cholesterol level (Y) achieved 
with a given dosage of a neW drug (X) has been conducted, based on observations for 
50 patients. A physician is treating a new patient for whom the cholesterol level should 
decrease by the amount Yi,(new)' It is desired to estimate the appropriate dosage level Xh(new) 

to be administered to bring about the needed cholesterol decrease Yh(new)' 

In inverse predictions, regression model (2.1) is assumed as before: 

Yi =,80 + ,8,Xi + S; (4.29) 

The estimated regression function based on n observations is obtained as usual: 

Y = bo+b,X (4.30) 

A neW observation Yh(new) becomes available, and it is desired to estimate the level Xh(new) 

that gave rise to this new observation. A natural point estimator is obtained by solving (4.30) 
for X, given Yh(new): 

X~ _ Y"(new) - bo 
h(new) - b, (4.31) 

where Xh(new) denotes the point estimator of the new level Xh(new), Figure 4.2 contains 
a representation of this point estimator for an example to be discussed shortly. It can be 



Example 

FIGURE 4.2 
Scatter Plot 
andFitted 
Regression 
line-
CaHbration 
Example. 

Chapter 4 Sil11J1ltaneous Inferences and Other Topics in Regression Analysis 169 

shown that the estimator X h(new) is the maximum likelihood estimator of X h(new) for normal 
error regression model (2.1). 

Approximate 1 - a confidence limits for Xh(new) are: 

Xh(new) ± t(l - aj2; n - 2)s{predX} (4.32) 

where: 
~ - 2 

S2{ redX} = MSE [1 + ~ + (Xh(new) - X) ] 
p bi n L(X; _X)2 

(4.32a) 

A medical researcher studied a new, quick method for measuring low concentration of 
galactose (sugar) in the blood. Twelve samples were used in the study containing known 
concentrations (X), with three samples at each of four different levels. The measured 
concentration (Y) Was then observed for each sample. Linear regression model (2.1) WaS 
fitted with the following results: 

; 

n = 12 

s{bd = .0142 

bo = -.100 

X = 5.500 

b, = 1.017 

Y = 5.492 

Y = -.100 + 1.017X 

MSE= .0272 

L(X; - X)2 = 135 

The data and the estimated regression line are plotted in Figure 4.2. 
The researcher first wished to make sure that there is a linear association between the 

two variables. A test of Ho: f3, =0 versus Ha: f3, ¥oO, utilizing test statistic t* = bds{b,} = 
1.017 ;'0142=71.6, WaS conducted for a = .05. Since t(.975; 10) = 2.228 and It*1 = 
71.6> 2.228, it was concluded that f3, ¥o 0, or that a linear association exists between the 
measured concentration and the actual concentration. 

The researcher now wishes to Use the regression relation to ascertain the actual con­
centration Xh(new) for a new patient for whom the quick procedure yielded a measured 
concentration of Yh(new) = 6.52. It is desired to estimate Xh(new) by means of a 95 percent 
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confidence interval. Using (4.31) and (4.32a), we obtain: 

A 6.52 - (-.100) 
X"(new) = 0 = 6.509 

1.17 

2 .0272 [ I (6.509 - 5.500)2] 0 8 
s {predX} = (1.017)2 1 + 12 + 135 =. 2 7 

so that s{predX} = .1694. We require t(.975; 10) = 2.228, and using (4.32) We obtain the 
confidence limits 6.509 ± 2.228(.1694). Hence, the 95 percent confidence interval is: 

6.13 .:s Xh(new) :5. 6.89 

Thus, it can be concluded with 95 percent confidence that the actual galactose concentration 

for the patient is between 6.13 and 6.89. This is approximately a ±6 percent error, which 
is considered reasonable by the researcher. 

Comments 

1. The inverse prediction problem is also known as a calibration problem since it is applicable 
when inexpensive, quick, and approximate measurements (y) are related to precise, often expensive, 
and time-consuming measurements (X) based on n observations. The resulting regression model is 
then used to estimate the precise measurement X"(new) for a new approximate measurement Yh(new). 

We illustrated this use in the calibration example. 

2. The approximate confidence interval (4.32) is appropriate if the quantity: 

[t(l - a/2; n - 2)fMSE 

bTL(Xi _X)2 

is small, say less than .1. For the calibration example, this quantity is: 

(2.228)2(.0272) = .00097 
(1.017)2(135) 

so that the approximate confidence interval is appropriate here. 

(4.33) 

3. Simultaneous prediction intervals based on g different new observed measurements Yh(new) , 

with a 1 - a family confidence coefficient, are easily obtained by using either the Bonferroni or the 
Scheffe procedures discussed in Section 4.3. The value of t(I - a/2; n - 2) in (4.32) is replaced by 
either B =t(I - a/2g; n - 2) or S = [gF(I - a; g, n - 2)]1/2. 

4. The inverse prediction problem has aroused controversy among statisticians. Some statisticians 
have suggested that inverse predictions should be made in direct fashion by regressing X on Y. This 
regression is called irwerse regression. • 

4.7 Choice of· X Levels 

When regression data are obtained by experiment, the levels of X at which observations 

on Y are to be taken are under the control of the experimenter. Among other things, the 
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experimenter will have to consider: 

1. How many levels of X should be investigated? 
2. What shall the two extreme levels be? 
3. How shall the other levels of X, if any, be spaced? 
4. How many observations should be taken at each level of X? 

There is no single anSwer to these questions, since different pUrposeS of the regression 
analysis lead to different answers. The possible objectives in regression analysis are varied, 
as we have noted earlier. The main objective may be to estimate the slope of the regression 
line or, in some cases, to estimate the intercept. In many cases, the main objective is to 
predict One or more new observations or to estimate one or more mean responses. When 
the regression function is curvilinear, the main objective may be to locate the maximum or 
minimum mean response. At still other times, the main purpose is to determine the nature 
of the regression function. 

To illustrate how the purpose affects the design, consider the variances of bo, bl, Yh , an~ 
for predicting Yh(new), which were developed earlier for regression model (2.1): 

; a 2 b - a 2 
-[
1 X2] 

{ o} - n + L(Xi - X)2 

a 2 

a 2 {b } - ---=-­
I - L(Xi _X)2 

a 2{y } = a 2[.!. (Xh _X)2 ] 
h n + L(Xi _X)2 

a 2{pred} = a 2 [1 + .!. + ":-'Xh - X)2 2] 
n LjXi -X) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

If the main purpOSe ofthe regression analysis is to estimate the slope f31, the variance of b l 
is minimized if L(Xi - X)2 is maximized. This is accomplished by using two levels of X, 
at the two extremes for the scope of the model, and placing half of the observations at each 
of the two levels. Of course, if one Were not sure of the linearity of the regression function, 
one would be he§>itant to use only two levels since they would provide no information about 
possible departures from linearity. If the main purpose is to estimate the intercept f3o, the 
number and placement of levels does not affect the variance of bo as long as X = O. On the 
other hand, to estimate the mean response or to predict a neW observation at the level Xh , 

the relevant variance is minimized by using X levels so that X = Xh. 
Although the number and spacing of X levels depends very much on the major purpose 

of the regression analysis, the general advice given by D. R. Cox is still relevant: 

Use two levels when the object is primarily to e~mine whether or not ... (the predictor 
variable) ... has an effect and in which direction that effect is. Use three levels whenever a 
description ofthe response curve by its slope and curvature is likely to be adequate; this 
should cover most cases. Use four levels if further examination ofthe shape ofthe response 
curve is important. Use more than four levels when it is required to estimate the detailed 
shape of the response curve, or when the curve iJ; expected to rise to an asymptotic value, or 
in general to show features not adequately described by slope and curvature. Except in these 
last cases it is generally satisfactory to use equally spaced levels with equal numbers of 
observations per level (Ref. 4.4). 

I 
i 
j 
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Problems 4.1. When joint confidence intervals for f30 and f3I are developed by the Bonferroni method with 
a family confidence coefficient of 90 percent, does this imply that 10 percent of the time the 
confidence interval for f30 will be incorrect? That 5 percent of the time the confidence interval 
for f30 will be incorrect and 5 percent of the time that for f3I will be incorrect? Discuss. 

4.2. Refer to Problem 2.1. Suppose the student combines the two confidence intet\fa'ls into a confi­
dence set. What can you say about the family confidence coefficient for this set? 

*4.3. Refer to Copier maintenance Problem 1.20. 

a. Will bo and b l tend to err in the same direction or in opposite directions here? Explain. 

b. Obtain Bonferroni joint confidence intervals for f30 and f3I, using a 95 percent family confi­
dence coefficient. 

c. A consultant has suggested that f30 should be 0 and f3I should equal 14.0. Do your joint 
confidence intervals in part (b) support this view? 

*4.4. Refer to Airfreight breakage Problem 1.21. 

a. Will bo and b i tend to err in the same direction or in opposite directions here? Explain. 

b. Obtain Bonferroni joint confidence intervals for f30 and f31, using a 99 percent family confi­
dence coefficient. Interpret your confidence intervals. 

4.5. Refer to Plastic hardness Problem 1.22. 

a Obtain Bonferroni joint confidence intervals for f30 and f3I, using a 90 percent family con­
fidence coefficient. Interpret your confidence intervals. 

b. Are bo and b l positively or negatively correlated here? Is this reflected in your joint confi­
dence intervals in part (a)? 

c. What is the meaning of the family confidence coefficient in part (a)? 

*4.6. Refer to Muscle mass Problem 1.27. 

a. Obtain Bonferroni joint confidence intervals for f30 and f3I, using a 99 percent family confi­
dence coefficient. Interpret your confidence intervals. 

b. Will bo and b l tend to err in the same direction or in opposite directions here? Explain. 

c. A researcher has suggested that f30 should equal approximately 160 and that f3I should be 
between -1.9 and - 1.5. Do thejoint confidence intervals in part (a) support this expectation? 

*4.7. Refer to Copier maintenance Problem 1.20. 

a. Estimate the expected number of minutes spent when there are 3, 5, and 7 copiers to be 
serviced, respectively. Use interval estimates with a 90 percent family confidence coefficient 
based on the Working-HoteIIing procedure. 

b. Two service calls for preventive maintenance are scheduled in which the numbers of copiers 
to be serviced are 4 and 7, respectively. A family of prediction intervals for the times to 
be spent on these calls is desired with a 90 percent family confidence coefficient. Which 
procedure, Scheffe or Bonferroni, will provide tighter prediction limits here? 

c. Obtain the family of prediction intervals required in part (b), using the more efficient 
procedure. 
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*4.8. Refer to Airfreight breakage Problem 1.21. 

a It is desired to obtain interval estimates of the mean number of broken ampules when there 
are 0, I, and 2 transfers for a shipment, using a 95 percent family confidence coefficient. 
Obtain the desired confidence intervals, using the WOIking-Hotelling procedure. 

b. Are the confidence intervals obtained in part (a) more efficient than Bonferroni intervals 
here? Explain. 

c. The next three shipments will make 0, 1, and 2 transfers, respectively. Obtain prediction 
intervals for the number of broken ampules for each of these three shipments, using the 
Scheffe procedure and a 95 percent family confidence coefficient. 

d. WOUld the Bonferroni procedure have been more efficient in developing the prediction 
intervals in part (c)? Explain. 

4.9. Refer to Plastic hardness Problem 1.22. 

a. Management wishes to obtain interval estimates ofthe mean hardness when the elapsed time 
is 20, 30, and 40 hours, respectively. Calculate the desired confidence intervals1. using the 
Bonferroni procedure and a 90 percent family confidence coefficient. What is the meaning 
ofthe family confidence coefficient here? 

b. Is the Bonferroni procedure employed in part (a) the most efficient one that could be 
employed here? Explain. 

c. The next two test items will be measured after 30 and 40 hours of elapsed time, respectively. 
Predict the hardness for each of these two items, using the most efficient procedure and a 
90 percent family confidence coefficient. 

*4.10. Refer to Muscle mass Problem 1.27. 

a. The nutritionist is particularly interested in the mean muscle mass for women aged 45, 55, and 
65. Obtain joint confidence intervals for the means of interest using the Working-HoteIIing 
procedure and a 95 percent family confidence coefficient. 

b. Is the Working-Hotelling procedure the most efficient one to be employed in part (a)? 
Explain. 

c. Three additional women aged 48, 59, and 74 have contacted the nutritionist. Predict the 
muscle mass for each of these three women using the Bonferroni procedure and a 95 percent 
family confidence coefficient. 

d. Subsequently, the nutritionist wishes to predict the muscle mass for a fourth woman aged 
-64, with a family confidence coefficientof 95 percent for the four predictions. Will the three 
prediction intervals in part (c) have to be recalculated? Would this also be true if the Scheffe 
procedure had been used in constructing the prediction intervals? 

4.1 I. A behavioral scientist said, "I am never sure whether the regression line goes through the origin. 
Hence, I will not use such a model." Comment. 

4.12. 1Ypographical errors. Shown below are the number of galleys for a manuscript (X) and 
the total dollar cost of correcting typographical errors (Y) in a random sample of recent orders 
handled by a firm specializiQg in technical manuscripts. Since Y involves variable costs only, an 
analyst wished to determine whether regression-through-the-origin model (4.10) is appropriate 
for studying the relation between the two variables. 

i: 1 2 3 

7 12 10 
128 213 191 

4' 5 

10' 14 
178 250 

6 

25 
446 

7 g 

30 25 
540 457 

9 

18 
324 

10 

10 
177 

a Fit regression model (4.10) and state the estimated regression function. 

11 

4 
75 

12 

6 
107 
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b. Plot the estimated regression function and the data. Does a linear regression function through 
the origin appear to provide a good fit here? Comment. 

c. In estimating costs of handling prospective orders, management has used a standard of 
$17.50 per galley for the cost of correcting typographical errors. Test whether or not this 
standard should be revised; usea = .02. State the alternatives, decision rule, and conclusion. 

d. Obtain a prediction interval for the correction cost on a forthcoming job involving 10 galleys. 
Use a confidence coefficient of 98 pen:ent. 

4.13. Refer to 1Ypographical errors Problem 4. I 2. 

a. Obtain the residuals ei. Do they sum to zero? Plot the residuals against the fitted values Y,-. 
What conclusions can be drawn from your plot? 

b. Conduct a formal test for lack of fit of linear regression through the originiJlse a = .01. 
State the alternatives, decision rule, and conclusion. What is the P-value offhe test? 

4.14. Refer to Grade pOint average Problem 1.19. Assume that linear regression through the origin 
model (4.10) is appropriate. 

a. Fit regression model (4.10) and state the estimated re~ession function. 

b. Estimate fJl with a 95 percent confidence interval. Interpret your interval estimate. 

c. Estimate the mean freshman GPA for students whose ACT test score is 30. Use a 95 percent 
confidence interval. 

4.15. Refer to Grade point average Problem 4.14. 

a. Plot the fitted regression line and the data. Does the linear regression function through the 
origin appear to be a good fit here? 

b. Obtain the residuals ei. Do they sum to zero? Plot the residuals against the fitted values Yi . 

What conclusions can be drawn from your plot? 

c. Conduct a formal test for lack of fit of linear regression through the origin; use a = .005. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

*4.16. Refer to Copier maintenance Problem 1.20. Assume that linear regression through the origin 
model (4.10) is appropriate. 

a. Obtain the estimated regression function. 

b. Estimate fJ, with a 90 percent confidence mtervaI. Interpret your interval estimate. 

c. Predict the service time on a new call in which six copiers are to be serviced. Use a 90 percent 
prediction interval. 

*4.17. Refer to Copier maintenance Problem 4.16. 

a. Plot the fitted regression line and the data. Does the linear regression function through the 
origin appear to be a good fit here? 

b. Obtain the residuals ei. Do they sum to zero? Plot the residuals against the fitted values t. 
What conclusions can be drawn from your plot? 

c. Conduct a formal test for lack of fit of linear regression through the origin; use a = .01. 
State the alternatives, decision rule, and conclusion. What is the P-value ofthe test? 

4.18. Refer to Plastic hardness Problem 1.22. Suppose that errors arise in X because the laboratory 
technician is instructed to measure the hardness of the ith specimen (Yi ) at a prerecorded 
elapsed time (Xi), but the timing is imperfect so the true elapsed time varies at random from 
the prerecorded elapsed time. Will ordinary least squares estimates be biased here? Discuss. 

4.19. Referto Grade point average Problem l.19. A new student earned a grade point average of 
3.4 in the freshman year. 
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Projects 
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a. Obtain a 90 percent confidence interval for the student's ACT test score. Interpret your 
confidence interval. 

b. Is criterion (4.33) as to the appropriateness of the approximate confidence interval met here? 

4.20. Refer to Plastic hardness Problem 1.22. The measurement of a new test item showed 238 BrineII 
units of hardness. 

4.21. 

4.22. 

4.23. 

4.24. 

4.25. 

4.26. 

a. Obtain a 99 percent confidence interval for the elapsed time before the hardness was mea­
sured. Interpret your confidence interval. 

b. Is criterion (4.33) as to the appropriateness of the approximate confidence interval met here? 

When the predictor variable is so coded that X = 0 and the normal error regression model (2.1) 
applies, are bo and bl independent? Are the joint confidence intervals for f30 and f31 then 
independent? 

Derive an extension of the Bonferroni inequality (4.2a) for the case of three staternk:nts, each 
with statement confidence coefficient 1 - ct. 

Show that forthe fitted least squares regression line through the origin (4.15), L Xiei = O. 

Show that Y as defined in (4.15) forIinear regression through the origin is an unbiased estimator 
of E{Y}. 

Derive the formula for S2{y h} given in Table 4.1 for linear regression through the origin. 

Refer to the CDI data set in Appendix C.2 and Project 1.43. Consider the regression relation 
of number of active physicians to total population. 

a Obtain Bonferroni joint confidence intervals for f30 and f3" using a 95 percent family con­
fidence coefficient. 

b. An investigator has suggested that f30 shOUld be -100 and f31 shOUld be .0028. Do the joint 
confidence intervals in part (a) support this view? Discuss. 

c. It is desired to estimate the expected number of active physicians for counties with total 
popUlation of X = 500, 1,000,5,000 thousands with family confidence coefficient .90. 
Which procedure, the WoIking-HoteIIing or the Bonferroni, is more efficient here? 

d. Obtain the family of interval estimates required in part (c), using the more efficient procedure. 
Interpret your confidence intervals. 

4.27. Refer to the SENIC data set in Appendix C.l and Project 1.45. Consider the regression ~Iation 
of average length of stay to infection risk. 

a Obtain Bonferronijoint confidence intervals for f30 and f31, using a 90 percent family con­
fidence coefficient. 

b. A researcher suggested that f30 should be approximately 7 and f31 shOUld be approximately 1. 
Do the joint intervals in part (a) support this expectation? Discuss. 

c. It is desired to estimate the expected hospital stay for persons with infection risks X = 
2,3,4,5 with family confidence coefficient .<;l5. Which procedure, the WOIking-HoteIling 
or the Bonferroni, is more efficient here? 

d. Obtain the family of interval estimates required in part (c), ulling the more efficient procedure. 
Interpret your confidence intervals, 



Chapter 

Matrix Approach to Simple 
Linear Regression Analysis 

Matrix algebra is widely used for mathematical and statistical analysis. The matrix approach 
is practically a necessity in mUltiple regression analysis, since it permits extensive systems 
of equations and large arrays of data to be denoted. compactly and operated upon efficiently. 

In this chapter, We first take up a brief introduction to matrix algebra. (A more compre­
hensi ve treatment of matrix algebra may be found in specialized texts such as Reference 5.1.) 
Then we apply matrix methods to the simple linear regression model discussed in previ­
ous chapters. Although matrix algebra is not really required for simple linear regression, 
the application of matrix methods to this Case will provide a useful transition to multiple 
regression, which will be taken up in Parts II and III. 

Readers familiar with matrix algebra may wish to SCan the introductory parts of this 
chapter and focus upon the later parts dealing with the USe of matrix methods in regression 
analysis. 

5.1 Matrices 

Definition of Matrix 

176 

A matrix is a rectangular array of elements arranged in rows and columns. An example of 
a matrix is: 

Column Column 
1 2 

Row 1 [16,000 !;] Row 2 33,000 
Row 3 21,000 35 

The elements of this particular matrix are numbers representing income (column 1) and 
age (column 2) of three persons. The elements are arranged by row (person) and column 

. (characteristic of person). Thus, the element in the first row and first column (16,000) 
represents the income ofthe first person. The element in the first row and second column (23) 
represents the age of the first person. The dimension of the matrix is 3 x 2, i.e., 3 rows by 
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2 columns. [fwe wanted to present income and age for 1,000 persons in a matrix with the 
Same format as the one earlier, we would require a 1,000 x 2 matrix. 

Other examples of matrices are: 

[~ 1~] [~ 7 
15 

12 
9 l~] 

These two matrices have dimensions of 2 x 2 and 2 x 4, respectively. Note that in giving the 
dimension of a matrix, we always specify the number of rows first and then the number of 
columns. As in ordinary algebra, we may USe symbols to identify the elements of a matrix: 

j=l j=2 j=3 

~ : ; [ :~: :~~ :~: ] 
Note that the first subscript identifies the row number and the second the colunb number. 
We shall Use the general notation aij for the element in the ith row and the jth column. In 
our above example, i = 1,2 and j = 1,2,3. 

A matrix may be denoted by a symbol such as A, X, or Z. The symbol is in boldface to 
identify that it refers to a matrix. Thus, We might define for the above matrix; 

Reference to the matrix A then implies reference to the 2 x 3 array just given. 
Another notation for the matrix A just given is: 

A = [aU] i = 1,2;j = 1,2,3 

This notation avoids the need for writing out all elements of the matrix by stating only the 
general element. It can only be used, of course, when the elements of a matrix are symbols. 

To summarize, a matrix with r rows and c columns will be represented either in full: 

all al2 alj ale 

a2l a22 a2j a2c 

A= 
ail ai2 aij aie 

, (S.l) 

arl a r 2 arj are 

or in abbreviated form: 

i = 1, ... , r; j = 1, ... , c 

or simply by a boldface symbol, such as A. 

Comments 

1. Do not think of a matrix as a number. It is a set of elements arranged in an array. Only when 
the matrix has dimension 1 x 1 is there a single number in a matrix, in which case one can think of 
it interchangeably as either a matrix or a number. 
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2. The following is not a matrix: 

since the numbers are not arranged in columns and rows. • 
Square Matrix 

Vector 

Transpose 

A matrix is said to be square if the number of rows equals the number of columns. Two 
examples are: 

al2 a13] 
a22 a23 
a32 a33 

A matrix containing only one column is called a coZ'fmn vector or simply a vector. Two 
eXamples are: 

A= U] c= [~l 
The vector A is a 3 x 1 matrix, and the vector C is a 5 x 1 matrix. 

A matrix containing only one row is called a row vector. Two examples are: 

B' = [15 25 50) F' = [[I /2) 

We Use the prime symbol for row vectors for reasons to be seen shortly. Note that the row 
vector B' is a 1 x 3 matrix and the row vector F' is a 1 x 2 matrix. 

A single subscript suffices to identify the elements of a vector. 

The transpose of a matrix A is another matrix, denoted by A', that is obtained by inter­
changing corresponding columns and rows of the matrix A. 

For eXample, if: 

then the transpose A' is: 

[

2 
A = 7 

3x2 3 

A' _ [2 
2x3 - 5 

I~] 
7 3] 

10 4 

Note that the first column of A is the first row of A', and similarly the second column of A 
is the second row of A'. Correspondingly, the first row of A has become the first column 
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of A', and so on. Note that the dimension of A, indicated under the symbol A, becomes 
reversed for the dimension of A'. 

As another example, consider: 

[ 4] C - 7 
3xl 10 

C = [4 7 10] 
Ix3 

Thus, the transpose of a column vector is a row vector, and vice versa. This is the reason 
why we used the symbol B' earlier to identify a row vector, since it may be thought of as 
the transpose of a column vector B. 

In general, we have: 

A= 
[a;, a;" 1 = [aij] i = 1, ... ,r;j = 1, ... ,C 

rXe /''\. arl arc 
Row Column 
index index 

A/= 
[a;, ~, 1 = [aj;] j = 1, ... , c;i = 1, ... , r 

exr /''\. 
ale arc 

Row Column 

(5.3) 

index index 

Thus, the element in the ith row and the jth column in A is found in the jth row and ith 
column in A'. 

Equality of Matrices 
Two matrices A and B are said to be equal if they have the Same dimension and if all 
corresponding elements are equal. Conversely, if two matrices are equal, their corresponding 
elements alJ! equaL For example, if: 

A= [ ::] B= m 3xl 3xl 

then A = B implies: 

al =:= 4 ,b =7 a3 = 3 

Similarly, if: 

[au .,,] [17 ~] A= a2l a22 B = 14 
3x2 3x2 13 

a3l a32 
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then A = B implies: 

a" = 17 
a21 = 14 
a31 = 13 

al2 = 2 
a22 = 5 
a32 = 9 

In regression analysis, one basic matrix is the vector Y, consisting of the n observations on 
the response variable: 

Y= 
nxl 

Note that the transpose Y' is the row vector: 

Y,J 

(5.4) 

(5.5) 

Another basic matrix in regression analysis is the X matrix, which is defined as follows for 
simple linear regression analysis: . 

(5.6) 

The matrix X consists of a column of Is and a column containing the n observations on the 
predictor variable X. Note that the transpose of X is: 

X' _ [ 1 
2Xtl - XI L] (5.7) 

The X matrix is often referred to as the design matrix. 

5.2 Matrix Addition and Subtraction 

Adding or subtracting two matrices requires that they have the Same dimension. The sum, 
or difference, of two matrices is another matrix whose elements each consist of the sum, or 
difference, of the corresponding elements of the two matrices. Suppose: 

A= [H] B= [H] 3x2 3x2 

then: 

[1+1 4+2] 
[: Ii] A+B= 2+2 5+3 

3x2 3 + 3 6 + 4 
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Similarly: 

[

I - I 4 - 2] 
A-B= 2-2 5-3 

3x2 3 - 3 6 - 4 

In general, if: 

B = [bij] i = 1, ... ,r;j = 1, ... ,C 
rxc 

then: 

A +B = [aij + bij ] and A - B = [aij - bij ] (5.8) 
rxc rxc 

Formula (5.8) generalizes in an obvious way to addition and subtraction of more than two 
matrices. Note also that A + B = B + A, as in ordinary algebra 1.. 

The regression model: 

i = 1, . .. ,n 

Can be written compactly in matrix notation. First, let us define the vector of the mean 
responses: 

[

E{Yd] E{Y
2

} 

E{Y} = . 

nxl E{~n} 
(5.9) 

and the vector of the error terms: 

(5.10) 

Recalling the definition of the observations vector Yin (5.4), we can write the resression 
model as follows: 

Y = E{Y} + E 
nx] nxl nxl 

because: 

[

YI]- [E{Ytl] [SI] [E{Ytl+SI] Y2 E{Y2} S2 E{Y2} + S2 

L Ei~n} + S~l = E{~Yni + Sn 
Thus, the observations vector Y equals the sum of two vectors, a vector containing the 
expected values and another containing the error terms. 
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5.3 Matrix Multiplication 

Multiplication of a Matrix by a Scalar 
A scalar is an ordinary number or a symbol representing a number. In mUltiplication of a 
matrix by a scalar, every element of the matrix is mUltiplied by the scalar. For example, 
suppose the matrix A is given by: 

Then 4A, where 4 is the scalar, equals: 

Similarly, kA equals: 

where k denotes a scalar. 
If every element of a matrix has a common factor, this factor can be taken outside the 

matrix and treated as a scalar. For example: 

[ 9 27] [3 9] 
15 18 = 3 5 6 

Similarly: 

[ ~ ~l = ~ [5 2] 
3 8 k 3 8 

k k 

In general, if A = [aij] and k is a scalar, we have: 

(S.l1) 

Multiplication of a Matrix by a Matrix 
Multiplication of a matrix by a matrix may appear somewhat complicated at first, but a little 
practice will make it a routine operation. 

Consider the two matrices: 

B _ [4 6] 
2x2 - 5 8 

The product AB will be a 2 x 2 matrix whose elements are obtained by finding the cross 
products of rows of A with columns of B and summing the cross products. For instance, to 

find the element in the first row and the first column of the product AB, we work with the 
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first row of A and the first column of B, as follows: 

A B 

~:: ~ [I~ ~I] [rn ~] Row 1 

Col. 1 CoL 2 

We take the cross products and sum: 

2(4) + 5(5) = 33 

The number 33 is the element in the first row and first column of the matrix AB. 
To find the element in the first row and second column of AB, we work with the first row 

of A and the second column of B: 

A B AB 

Row 1 [D] [4 f6l] 
Row2 4 I 5 ~ 

[33 52] Row 1 

CoL 1 CoL 2 CoL 1 CoL 2 

The sum of the cross products is: 

2(6) + 5(8) = 52 

Continuing this process, We find the product AB to be: 

~~ = [~n [ ~ ~] = [~~ ;~] 
Let us consider another example: 

[3] B - 5 
3xl 2 

AB- 1 3 4 5 _ 26 [3] 2XI-[O 58] 2 -[41] 

When obtaining the product AB, we say that A is postmultiplied by B or B is premultiplied 
by A. The reason forthis precise terminology is that multiplication rules for ordinary algebra 
do not apply to matrix algebra. In ordinary algebra, xy = yx. In matrix algebra, AB i= BA 
usually. In fact, even though the product AB may be defined, the product BA may not be 
defined at alL 

In general, the product AB is defined only when the number of columns in A equals the 
number of rows in B so that there will be corresponding terms in the cross products. Thus, 
in our previous two examples, we had: 

Equal 

A/'\.B 
2x2 2x2 

'" / Dimension 
of product 

AB 
2x2 

Equal 

A/'\. B 
2x3 3xl 

'" / Dimension 
ofproducr 

AB 
2xl 

'I 

,I 
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Note that the dimension of the product AB is given by the number of rows in A and the 
number of columns in B. Note also that in the second CaSe the product BA would not be 
defined since the number of columns in B is not equal to the number of rows in A: 

Unequal 

B /'\. A 
3xl 2x3 

Here is another example of matrix mUltiplication: 

AB= 

In general, if A has dimension r x c and B has dimension c x s, the product AB is a matrix 
of dimension r x s whose element in the ith row and'1th column is: 

c 

Lai~'bkj 
k=1 

so that: 

i = 1, ... , r; j = 1, ... ) s (5.12) 

Thus, in the foregoing example, the element in the first row and second column of the 
product AB is: 

3 

Lalkbk2 = allb l2 + al2b22 + al3b32 
k=1 

as indeed we found by taking the cross products of the elements in the first row of A and 
second column of B and summing. 

1. 

2. [2 3 5] [~] ~ [2' + 3' + 5'] ~ [38] 

Here, the product is a 1 x 1 matrix, which is equivalent to a scalar. Thus, the matrix product 
here equals the number 38. 

3. [1 
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A product frequently needed is Y'Y, where Y is the vector of observations on the response 
variable as defined in (5.4): 

YIZ ] [~;] = [Y~+Yi+···+y,n = [LY/] (5.13) 

YIZ 

Note that Y'Y is a 1 x 1 matrix, or a scalar. We thus have a compact way of writing a sum 
of squared terms: Y'y = L Y? 

We also will need X'X, which is a 2 x 2 matrix, where X is defined in (5.6): 

X'X = [1 
2x2 XI 

1. (5.14) 

and X'Y, which is a 2 x 1 matrix: 

X'Y= [ 1 
2xl XI 

(5.15) 

5.4 Special Types of Matrices 

Certain special types of matrices arise regularly in regression analysis. We consider the 
most important of these. 

Symmetric Matrix 
If A = A', A is said to be symmetric. Thus, A below is symmetric: 

[
1 4 6] 

A = 4 2 5 
3x3 6. 5 3 

A symmetric matrix necessarily is square. Symmetric matrices arise typically in regression 
analysis when We premultiply a matrix, say, X, by its transpose, X'. The resulting matrix, 
X'X, is symmetric, as Can readily be se~n from (5.14). 

Diagonal Matrix 
A diagonal matrix is a square matrix whose off-diagonal ele~ments are all zeros, such as: . 

[~ 
0 !l [~ 

0 0 

~] 1 0 A= a2 B= 0 10 3x3 0 4x4 

0 0 
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We will often not show all zeros for a diagonal matrix, presenting it in the form: 

A= 
3x3 

B= 
4x4 

4 

o 

o 

10 

5 

Two important types of diagonal matrices are the identity matrix and the scalar matrix. 

Identity Matrix. The identity matrix or unit matrix is denoted by I. It is a diagonal matrix 
whose elements on the main diagonal are allIs. Premultiplying or postmult-$lying any r x r 
matrix A by the r x r identity matrix I leaves A unchanged. For example: 

IA = [~ ~ ~] [:~: 
o 0 1 a31 

Similarly, we have: 

Note that the identity matrix I therefore corresponds to the number 1 in ordinary algebra, 
since we have there that 1 . x = x . I = x. 

In general, we have for any r x r matrix A: 

AI=IA=A (5.16) 

Thus, the identity matrix can be inserted or dropped from a matrix expression whenever it 
is convenient to do so. 

Scalar Matrix. A scalar matrix is a diagonal matrix whose main-diagonal elements are 
the Same. Two examples of scalar matrices are: 

[

k 0 0] o k 0 
o 0 k 

A scalar matrix Can be expressed as kl, where k is the scalar. For instance: 

o 0] 
1 0 = kl 
o I 

MUltiplying an r x r matrix A by the r x r scalar matrix kl is equivalent to mUltiplying 
A by the scalar k. 
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Vector and Matrix with All Elements Unity 

Zero Vector 

A column vector with all elements 1 will be denoted by 1: 

[11 1 
1 = . 

rxl ~ 

and a square matrix with all elements 1 will be denoted by J: 

J = 
rxr 

For instance, we have: 

[1] 1 - I 
3x I I 

[; 1] 

J = 
3x3 

Note that for an n x 1 vector 1 we obtain: 

and: 

11' = 
nXn 

(5.17) 

(5.18) 

= J 
nXtz 

A zero vector is a vector containing only zeroS. The zero column vector will be denoted 
by 0: 

'0 = 

m 
(5.19) 

rxl 

For example, we have: 

o = m 3xl 
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5.5 Linear Dependence and Rank of Matrix 

linear Dependence 
Consider the following matrix: 

[
1 2 5 1] 

A= 2 2 10 6 
3 4 15 1 

Let us think now of the columns of this matrix as vectors. Thus, We view A as being made 
up of four column vectors. It happens here that the columns are interrelated in a special 
manner. Note that the third column vector is a mUltiple of the first column vectoP."'· 

We say that the columns of A are linearly dependent. They contain redundant information, 
so to speak, since one column Can be obtained as a line'ar combination of the others. 

We define the set of c column vectors C 1, ••• , Cc in an r x c matrix to be linearly 
dependent if one vector can be expressed as a linear combination of the others. If no vector 
in the set Can be so expressed, we define the set of vectors to be linearly independent. A 
more general, though equivalent, definition is: 

When c scalars k., ... , kc, not all zero, can be found such that: 

klCI + k2Cz + ... + kcCc = 0 

where 0 denotes the zero column vector, the c column vectors are linearly (S.20) 
dependent. If the only set of scalars for which the equality holds is 
kl = 0, ... , kc = 0, the set of c column vectors is linearly independent. 

To illustrate for our example, kl = 5, k2 = 0, k3 = -1, k4 = 0 leads to: 

Hence, the column vectors are linearly dependent. Note that some of the k j equal zero here. 
For linear dependence, it is only required that not all k j be zero. 

Rank of Matrix 
The rank of a matrix is defined to be the maximum number of linearly independent columns 
in the matrix. We know that the rank of A in our earlier example cannot be 4, since the four 
columns are linearly dependent. We can, however, find three columns (1, 2, and 4) which 
are linearly independent. There are no scalars k l, k2, k4 such that kl C 1 + k2C2 + k4C4 = 0 
other than kl = k2 = k4 = O. Thus, the rank of A in our example is 3. 

The rank of a matrix is unique and Can equivalently be defined as the maximum number 
of linearly independent rows. It follows that the rank of an r x c matrix Cannot exceed 
min (r , c), the minimum of the two values rand c. 
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When a matrix is the product of two matrices, its rank cannot exceed the smaller of the 
two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C cannot exceed 
min (rank A, rank B). 

5.6 Inverse of a Matrix 

Examples 

1 
In ordinary algebra, the inverse of a number is its reciprocaL Thus, the inverse of 6 is -. A 
number multiplied by its inverse always equals 1: 6 

1 1 
6·-=-·6=1 

6 6 
I 

x . - = x . X-I = X-I. X = 1 
x 

In matrix algebra, the inverse of a matrix A is another matrix, denoted by A-I, such th~t: 

A-IA = AA- I = 1 (5.21) 

where 1 is the identity matrix. Thus, again, the identity matrix 1 plays the same role as the 
number 1 in ordinary algebra. An inverse of a matrix is defined only for square matrices. 
E'ven so, many square matrices do not have inverses. If a square matrix does have an inverse, 
the inverse is unique. 

1. The inverse of the matrix: 

is: 

A-I _ [-.1 .4] 
2x2 - .3 -.2 

since: 

or: 

AA-
I 

= [~ 1] [-:~ _:~] = [~ ~] =1 

2. The inverse of the matrix: 

[
3 0 0] 

A= 0,4 0 
3x! 0 0 2 

is: 

J 0 0 -
3 

A-I = 0 
1 

0 
3x3 4 

0 0 
1 
2 
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since: 
1 

0 0 -
3 

[~ 
0 

~] [~ 
0 

~] =1 
A-IA= 0 

1 
0 4 1 = 

4 0 0 

0 0 
2 

Note that the inverse of a diagonal matrix is a diagonal matrix consisting simply of the 
reciprocals of the elements on the diagonal. 

Finding the Inverse 
up to this point, the inverse of a matrix A has been given, and we have only ch~~ked to 
make sure it is the inverse by seeing whether or not A -I A = I. But how does one find the 
inverse, and when does it exist? 

An inverse of a square r x r matrix exists if the rank of the matrix is r. Such a matrix is 
said to be nonsingular or ofjull rank. An r x r matrix with rank less than r is said to be 
singular or not offull rank, and does not have an inverse. The inverse of an r x r matrix of 
full rank also has rank r. 

Finding the inverse of a matrix can often require a large amount of computing. We shall 
take the approach in this book that the inverse of a 2 x 2 matrix and a 3 x 3 matrix can 
be calculated by hand. For any larger matrix, one ordinarily UseS a computer to find the 
inverse, unless the matrix is of a special form such as a diagonal matrix. It Can be shown 
that the inverses for 2 x 2 and 3 x 3 matrices are as follows: 

1. If: 

then: 

where: 

A= 
2x2 

[ ~ -:] 
-e a 
- -
D D 

D = ad -be 

(5.22) 

(5.22a) 

D is called the determinant ofthe matrix A. If A were singular, its determinant would equal 
zero and nO inverse of A would exist. 

2. If: 

[~ 
b 

{] B= e 
3x3 h 

then: 

[~ 
b rr [~ 

B :] B-1 = e E (5.23) 
3x3 

h H 
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Where: 

B = -(bk - eh)/Z C = (bf - ce)/Z A = (ek - fh)/Z 

D = -(dk - fg)/z 

G = (dh - eg)/Z 

E = (ak - eg)/Z F = -(af - ed)/Z (S.23a) 

H = -(ah - bg)/Z K = (ae - bd)/Z 

and: 

Z = a(ek - fh) - b(dk - fg) + e(dh - eg) 

Z is called the determinant of the matrix B. 

Let us Use (5.22) to find the inverse of: 

We have: 

Hence: 

A = [~ ~] 

a=2 b=4 
e=3 d=1 

D = ad - be = 2(1) - 4(3) = -10 

A-I = [-~o 
-3 
-10 

~~l = [-.1 .4] 
2 .3 -.2 

-10 

as WaS given in an earlier example. 

(S.23b) 

When an inverse A -I has been obtained by hand calculations or from a computer program 
for which the accuracy of inverting a matrix is not known, it may be wise to compute 
A -I A to check whether the product equals the identity matrix, allowing for minor rounding 
departures from 0 and 1. 

The principal inverse matrix encountered in regression analysis is the inverse of the matrix 
X'X in (5.14): 

Using rule (5.22), We have: 

so that: 

X'X= 
[ 

n 

2x2 LXi 

a=n 

e=LXi 

b=LXi • 

d = '" X~ . 6 I 



I' 
I 
I 
i 
I' 

! I 
! ' I I 

1 
i 
I 

i 

:1 

, 
I ~ 
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Hence: 

nL(X~ -Xf -LXi 1 
nL(Xi - X)2 

Since L Xi = nX and L(Xi - X)2 = Lxi - nX2, We Can simplify (5.24): 

[ 

1 x2 

-+ 
n x· -X 2 (X'X)-I = L( ~ ) 

2x2 -X 

L(Xi - X)2 

Uses of Inverse Matrix 
In ordinary algebra, We solve an equation of the type?' 

Sy =20 

by multiplying both sides of the equation by the inverse of 5, namely: 

and we obtain the solution: 

1 1 
S(Sy) = 5(20) 

1 
y = -(20) = 4 

5 
In matrix algebra, if We have an equation: 

AY=C 

We correspondingly premultiply both sides by A -I, assuming A has an invers 

A-lAY = A-IC 

Since A -lAY = IY = Y, we obtain the solution: 

Y=A-IC 

To illustrate this Use, suppose we have two simultaneous equations: 

2YI +4Y2 = 20 

3YI + Y2 = 10 

which can be written as follows in matrix notation: 

The solution of these equations then is: 
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Earlier We found the required inverse, so We obtain:, 

[ YI] = [-.1 _.4] [20] = [2] 
Y2 .3.2 10 4 

Hence, YI = 2 and Y2 = 4 satisfy these two equations. 

5.7 Some Basic Results for Matrices 

We list here, without proof, some basic results for matrices which we will utilize in later 
work. 

A+B=B+A 

(A + B) + C = A + (B + C) 

(AB)C = A(BC) 

C(A+B) = CA+CB 

k(A + B) = kA + kB 

(A')' = A 

CA+B)' = A' +B' 

CAB)' = B'A' 

(ABC)' = C'B'A' 

(AB)-I = B-'A-I 

(ABC)-I = C-IB-IA- I 

(A-I)-l = A 

(A')-l = (A-I)' 

5.8 Random Vectors and Matrices 

(5.25) 
1.. (5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

A random vector or a random matrix contains elements that are random variables. Thus, 
the observations vector Y in (5.4) is a random vector since the Yi elements are random 
variables. 

Expectation of Random Vector or Matrix 
Suppose we have n = 3 obse~ations in the observations vector y-

Y = [i~l 
• 3x I Y

3 

The expected value of Y is a vector, denoted by E{Y}, that is defined as follows: 
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Thus, the expected value of a random vector is a vector whose elements are the expected 
values of the random variables that are the elements of the random vector. Similarly, the 
expectation of a random matrix is a matrix whose elements are the expected values of the 
corresponding random variables in the original matrix. We encountered a vector of expected 
values earlier in (5.9). 

In general, for a random vector Y the expectation is: 

E{Y} = [E{Y;}] i = 1, ... ,n (5.38) 
Ilxl 

and for a random matrix Y with dimension n x p, the expectation is: 

E{Y} = [E{Yij }] i = 1, ... ,n; j = 1, ... , p (5.39) 
IlXP 

Suppose the number of caseS in a regression application is n = 3. The three error terms £" 

£2, £3 each have expectation zero. For the error terms vector: 

we have: 

E{e} = 0 
3x' 3x' 

since: 

[ ~~:~~l = [~l 
E{£3} 0 

Variance-Covariance Matrix of Random Vector 
Consider again the random vector Y consisting of three observations Y" Y20 Y3. The variances 
of the three random variables, a 2 {y;}, and the covariances between any two of the random 
variables, a{Y;, Yj }, are assembled in the variance-covariance matrix of Y, denoted by 
(T2{y}, in the following form: 

[ 

a2{Yd a{Y" Y2 } a{Y" Y3}] 

(T2{y} = a{Y2' Yd a 2{Y2} a{Y2, Y3} 

a{Y3, Yd a{Y3, Y2} a 2{Y3} 

(5.40) 

Note that the variances are on the main diagonal, and the covariance a {y;, Yj } is found 
in the ith row and jth column of the matrix. Thus, a{Y20 Yd is found in the second row, 
first column, and a {Y" Y2 } is found in the first row, second column. Remember, of course, 
that a{Y20 Yd = a{Y" Y2}· Since a{Y;, Yj } = a{Yj, Y;} for all i i= j, (T2{y} is a symmetric 
matrix. 

It follows readily that: 

(T2{y} = E{[Y - E{Y}][Y - EfY}]'} (5.41) 
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For our illustration, We have: 

Multiplying the two matrices and then taking expectations, we obtain: 

Location in Product Term Expected Value 

Row 1, column 1 (Yl - E {Y1})z UZ{Yl } 
Row 1, column 2 (Y1 - E{Yl})(YZ - E{Yz}) U{Yl, Yzl 
Row 1, column 3 (Y1 - E {Y1 })(Y3 - E {Y3 }) U{Yl' Y31 
Row 2, column 1 (Yz - E{YZ})(Y1 - E{Y1 }) u{Yz, Y,j 

~ etc. etc. etc. 

This, of course, leads to the variance-covariance matrix in (5.40). Remember the definitions 
" of variance and covariance in (A.IS) and (A.2I), respectively, when taking expectations. 

To generalize, the variance-covariance matrix for an n x I random vector Y is: 

a 2{Yd a{Y" Y2} a{Y" Y,,} 

a{Y2, Yd a 2{Y2} a{Y2' Yn} 
(f2{y} = (S.42) 

nXn 

a{Yn' Yd a{Y,,, Y2} a 2{Yn} 

Note again that (f2{y} is a symmetric matrix. 

Let us return to the example based on n = 3 cases. Suppose that the three error terms have 
constant variance, a 2{s;} = a 2, and are uncorrelated so that a{si' Sj} = 0 for i i= j. The 
variance-Govariance matrix for the random vector E of the previous example is therefore as 
follows: 

Note that all variances are a 2 and all covariances are zero. Note also that this variance­
covariance matrix is a scalar matrix, with the common variance a 2 the scalar. Hence, We 
can express the variance-covariatlce matrix in the following simple fashion: 

~{E} = a 21 
3x3 3x3 

since: 
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Some Basic Results 

Example 

Frequently, we shall encounter a random vector W that is obtained by premultiplying the 
random vector Y by a constant matrix A (a matrix whose elements are fixed): 

W=AY 

Some basic results for this case are: 

E{A} = A 

E{W} = E{AY} = AE{Y} 

a2{W} = a2{AY} = Aa2{Y}A' 

where (T2{y} is the variance-covariance matrix ofY. 

As a simple illustration ofthe Use ofthese results, com:iider: 

W A Y 
2x' 2x2 2x' 

We then have by (5.45): 

[I -1] [E{Yd] = [E{Yd - E{Y2}] E{W} = 
2xl 1 1 E{Y2} E{Yd + E{Y2} 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

[

a 2{Yd + a 2{Y2} - 2a{Y, , Y21 a 2{Yd - a 2{Y2} ] 

- a 2{Yd - a 2{Y2} a 2{Yd + a 2{Y21 + 2a{Y" Y2} 

Thus: 

a 2{Wd = a 2{y, - Y2} = a 2{Yd + a 2{Y21 - 2a{Y" Y21 

a 2{W2} = a 2{y, + Y2} = a 2{Yd + a 2{Y2} + 2o:{Y[, Y2} 

a{W" W2} = a{Y, - Y2, Y, + Y2} = a 2{Yd - a 2{Y2} 

Multivariate Normal Distribution 
Density Function. The density function for the multivariate normal distribution is best 
given in matrix form. We first need to define some vectors and matrices. The observations 
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vector Y containing an observation on each of the p Y variables is defined as usual: 

(5.47) 

The mean vector E{Y}, denoted by Il-, contains the expected values for each of the p Y 
variables: 

[

IL11 IL2 
Il-= 

pxl ~p 
(5.48) 

Finally, the variance-covariance matrix (T2{y} is denoted by 1: and contains as always the 
variances and covariances of the p Y variables: 

[a' 
al2 ... 

a"1 
I 

a21 a
2 ... a2p 2 

1: = (5.49) 
pxp : 

apl a p2 a
2 
p 

Here, a~ denotes the variance of YI , al2 denotes the covariance of YI and Y2. and the like. 
The density function ofthe multivariate normal distribution Can now be stated as follows: 

I(y) - 1 exp [-!(Y -1I)'1:- I (y - II)] 
- (2Jr)P/211:11/2 2 I'" I'" 

(5.50) 

Here, 11: 1 is the determinant of the variance-covariance matrix 1:. When there are p = 2 
variables, the multivariate normal density function (5.50) simplifies to the bivariate normal 
density function (2.74). 

The multivariate normal density function has properties that correspond to the ones de­
scribed for the bivariate normal distribution. For instance, if YI , ••• , Yp are jointly normally 
distributed (Le., they follow the muIi:ivariate normal distribution), the marginal probability 
distribution of each variable Yk is normal, with mean ILk and standard deviation ak. 

-
Simple Linear Regression Model in Matrix Terms 

We are now ready to develop simple lmear regression in matrix terms. Remember again that 
we will not present any new results, but .shall only state in matrix terms the results obtained 
earlier. We begin with the normal error regression model (2.1): 

i = 1, .. . ,n (5.51) 
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This implies: 

Y, = f30 + f3,X, + S, 

Y2 = f30 + f3,X2 + S2 (5.51a) 

We defined earlier the observations vector Yin (5.4), the X matrix in (5.6), and the E vector 
in (5.10). Let us repeat these definitions and also define the ~ vector of the regression 
coefficients: 

~ _ [f3o] 
2x, - f3, rl S2 

E = 
IlX' ~n 

(5.52) 

Now we can write (5.51a) in matrix terms comractly as follows: 

Y=X ~+E 
nx' nx22x' IlX' 

(5.53) 

since: 

[

f30 + f3'X'] [S'] [f30 + f3,X, + SI] f30 + f3,X2 S2 f30 + f3,X2 + S2 

= . +. = . . . . . . . 

f30 + f3,Xn SIl f30 + f3,Xn + Sn 

Note that X~ is the vector of the expected values of the Yi observations since E {Yd = 
f30 + f3,Xi ; hence: 

E{Y} = X~ (5.54) 
Ilxl Ilxl 

where E{Y} is defined in (5.9). 
The column of Is in the X matrix may be viewed as consisting of the constant Xo == 1 

in the alternative regression model (1.5): 

where Xo == 1 

Thus, the X matrix may be considered to contain a column vector consisting of Is and 
another column vector consisting of the predictor variable observations Xi. 

With respect to the error terms, regression model (2.1) aSsumes that E{Si} = 0, a 2{Si} = 
a 2, and that the Si are independent normal random variables. The condition E {Si} = 0 in 
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matrix terms is: 

E{E} = 0 (5.55) 
Ilxl nxl 

since (5.55) states: 

[
E{Sd] [0] 

::~:: ~ r 
The condition that the error terms have constant variance a 2 and that all covariances 
a{si, Sj} for i i=j are zero (since the Si are independent) is expressed in matrix terms 
through the variance-covariance matrix of the error terms: 

[

a
2 ° ° .. . ° a 2 ° .. . 

(T2{E}= : : : 
nxn ... 

° ° ° ... 
(5.56) 

Since this is a scalar matrix, We know from the earlier example that it can be expressed in 
the following simple fashion: 

(5.56a) 

Thus, the normal error regression model (2.1) in matrix terms is: 

(5.57) 

where: 

E is a vector of independen t normal random variables with E{ E} = 0 and 
(T2{E} = a 21 

5.10 Least Squares Estimation of Regression Parameters 

Normal Equations 
The normal equations (1.9): 

in matrix terms are: 

nbo+b l LXi = LYi 

bOLXi 4-b, Lxi = LXiYi 

X'X b =X'Y 
• 2x2 2x I 2x I 

where b is the vector of the least squares regression coefficients: 

b - [bo] 
2x' - b l 

(5.58) 

(5.59) 

(5.59a) 
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To see this, recall that we obtained X'X in (5.14) and X'Y in (5.15). Equation (5.59) thus 
states: 

or: 

These are precisely the normal equations in (5.58). 

Estimated Regression Coefficients 

Example 

To obtain the estimated regression coefficients from the normal equations (5.59) by matrix 
methods, We premultiply both sides by the inverse ofX~X (we assume this exists): 

(X'X)-I X'Xb = (X'X)-I X'y 

We then find, since (X'X)-IX'X = I and Ib = b: 

b = (X'X)-I X'y 
2x I 2x2 2x I 

(5.60) 

The estimators ho and hI in b are the Same as those given earlier in (1. lOa) and (1. lOb). We 
shall demonstrate this by an example. 

We shall USe matrix methods to obtain the estimated regression coefficients for the Toluca 
Company example. The data On the Y and X variables Were given in Table 1.1. Using these 
data, we define the Y observations vector and the X matrix as follows: 

121 1 30 

[

399] 
(5.61a) Y = : 

[

1 80] 
(5.61 b) X = : : 

323 1 70 

We now require the following matrix products: 

X'X_[11 
- 80 30 

X,Y=[11 
80 30 

7~] 
[

1 80] 1 30 

1 70 

[ 
25 1,750] 

- 1,750 142,300 

1 121 7,807 

[

399] 

70 1 3~ ~ [617,180 1 

(5.61) 

(5.62) 

(5.63) 
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Using (5.22), we find the inverse ofX'X: 

(X'X)-I = [ .287475 
-.003535 

-.003535 ] 
.00005051 

(5.64) 

In subsequent matrix calculations utilizing this inverse matrix and other matrix results, we 
shall actually utilize more digits for the matrix elements than are shown. 

Finally, we employ (5.60) to obtain: 

b = [ho] = (X'X)-IX'Y = [ .287475 
hi -.003535 

-.003535 ] [ 7,807] 
.00005051 617,180 

[
62.37 ] 

- 3.5702 (5.65) 

or ho = 62.37 and hi = 3.5702. These results agree with the ones in Chapter 1. AJy differ­
ences would have been due to rounding effects. 

Comments 

" 1. To derive the normal equations by the method of least squares, we minimize the quantity: 

In matrix notation: 

Q = (Y - X~)'(Y - X~) (5.66) 

Expanding, we obtain: 

Q = y'y - ~'X'Y - Y'X~ + WX'X~ 

since (X~)' = WX' by (5.32). Note now that Y'X~ is 1 x 1, hence is equal to its transpose, which 
according to (5.33) is ~'X'Y. Thus, we find: 

Q = Y'y - 2~'X'Y + ~'X'X~ (5.67) 

To find the value of ~ that minimizes Q, we differentiate with respect to {3o and {31. Let: 

(5.68) 

Then it follows that: 

-a
Q 

(Q) = -2X'Y +2X'X~ at' . (5.69) 

Equating to the zero vector, dividing by 2, m)d substituting b for ~ giVI,:8 the matrix form of the least 
squares normal equations in (5.59). 

2. A comparison of the normal equations and X'X shows that whenever the columns of X'X are 
linearly dependent, the normal equations will be linearly dependent also. No unique solutions can 
then be obtained for bo and b l . Fortunately, in most regression applications, the columns of X'X are 
linearly independent, leading to unique solutions for bo and b l . • 
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5.11 Fitted Values and Residuals 

Fitted Values 

Example 

Let the vector of the fitted values Yi be denoted by Y: 

(5.70) 

In matrix notation, we then have: 

Y = X b 
Ilxl Ilx22xl 

(5.71) 

because: 

[
YI] [1 XI] [bO+bIXI] !' ~ ~ ~' [::1 ~ bo+t,X, 
Yn 1 XII bo + b l XII 

For the Toluca Company example, we obtain the vector of fitted values using the matrices 
in (5.61b) and (5.65): 

[

1 80] [347.98] ~ _ _ 1 30 [62.37 ] _ 169.47 
Y-Xb- .. 3 0 - . :: .57 2 : 

1 70 312.28 

(5.72) 

The fitted values are the same, of course, as in Table 1.2. 

Hat Matrix. We can express the matrix result for Y in (5.71) as follows by using the 
expression for bin (5.60): 

or, equivalently: 

Y = H Y (5.73) 
nxl Ilxn nxl 

where: 

H = X(X'X)-IX' (5.73a) 
nXn 

We see from (5.73) that the fitted values Yi can be expressed as linear combinations of 
the response variable observations Yi , with the coefficients being elements of the matrix 
H. The H matrix involves only the observations on the predictor variable X, as is evident 
from (5.73a). 

The square n x n matrix H is called the hat matrix. It plays an important role in diagnostics 
for regression analysis, as we shall see in Chapter 10 when we consider whether regression 
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results are unduly influenced by one or a few observations. The matrix H is symmetric and 
has the special property (called idempotency): 

HH=H 

In general, a matrix M is said to be idempotent if MM = M. 

Let the vector of the residuals ei = Yi - Y; be denoted bye: 

In matrix notation, we then have: 

e = 
Ilxl 

e Y - Y = Y -Xb 
nxl Ilxl nxl nxl nxl 

(5.74) 

(5.75) 

(5.76) 

For the Toluca Company example, We obtain the vector of the residuals by using the results 
in (5.61a) and (5.72): 

[

399] [347.98] [51.02] 121 169.47 -48.47 
e= . - . = . . . . . . . 

323 312.28 10.72 

(5.77) 

The residuals are the same as in Table 1.2. 

Variance-Covariance Matrix of Residuals. The residuals ei, like the fitted values Yi , 

can be expressed as linear combinations of the response variable observations Yi , using the 
result in (5.73) forY: 

e=Y - Y =Y -HY= (I-H)Y 

We thus have the important result: 

e=(I-H)Y (5.78) 
nxl IlXtz nxtz nxl 

where H is the hat matrix defined in (5.53a). The matrix I - H, like the matrix H, is 
symmetric and idempotent. ' 

The variance-covariance m~trix of the vector of residuals e involves the matrix I - H: 

(5.79) 
IZxn 

and is estimated by: 

s2{e} = MSE(I - H) (5.80) 
nXtz 
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Comment 
The variance-covariance matrix of e in (5.79) can be derived by means of (5.46). Since e = (I - H) Y, 
we obtain: 

(T2{e) = (I - H)(T2{Y}(I - H)' 

Now (T2{Y}=(T2{E}=u2I for the normal error model according to (5.56a). Also, (I-H)'"" 
I - H because of the symmetry of the matrix. Hence: 

(T2(e) = u 2(I - H)I(I - H) 

= u 2(I - H)(I - H) 

In view of the fact that the matrix I - H is idempotent, we know th~~l- H) (I - H) :::= 

1- H and we obtain formula (5.79). • 

5.12 Analysis of Variance Results 

Sums of Squares 
To see how the sums of squares are expressed in matrix notation, we begin with the total SUm 
of squares ssro, defined in (2.43). It will be convenient to Use an algebraically equivalent 

expression: 

ssro = l)Y; - y)2 = Ly;2 _ ('L:;)2 

We know from (5.13) that: 

(5.81) 

The subtraction term ('Ly;)2 In in matrix form USeS J, the matrix of Is defined in (5.18), 
as follows: 

(5.82) 

For instance, if n = 2, we have: 

Hence, it follows that: 

SSTO = Y'Y - (~) Y'JY (5.83) 

Just as 'LY? is represented by Y'Y in matrix terms, so SSE = 'L ei = 'LeY; - y;)2 can 
be represented as follows: 

SSE = e'e = (Y - Xb)'(Y - Xb) (5.84) 

which can be shown to equal: 

SSE = y'y - b'X'Y (S.84a) 
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Finally, it Can be shown that: 

SSR = b'X'Y - (~) Y'JY (5.85) 

Let us find SSE for the Toluca Company example by matrix methods, using (5.84a). Using 
(5.61a), We obtain: 

Y'Y = [399 121 
[

399] 121 
323] : = 2,745,173 

323 

and using (5.65) and (5.63), we find: 

b'X'Y = [62.37 3.5702] [61;:~~~] = 2,690,348 

Hence: 

SSE = Y'Y - b'X'Y = 2,745,173 - 2,690,348 = 54,825 

which is the Same result as that obtained in Chapter 1. Any difference would have been due 
to rounding effects. 

Comment 

To illustrate the derivation of the sums of squares expressions in matrix notation, consider SSE: 

SSE = e' e = (y - Xb)' (Y - Xb) = y'y - 2b'X'Y + b'X'Xb 

In substituting for the rightmost b we obtain by (5.60): 

SSE = y'y - 2b'X'Y + b'X'X(X'X) -IX'Y 

= y'y - 2b'X'Y + b'IX'Y 

In dropping I and subtracting, we obtain the result in (5.84a). • 
Sums of Squares as Quadratic Forms 

The ANOVA sums of squares Can be shown to be quadratic forms. An example of a quadratic 
form of the observations Y; when n = 2 is: 

(5.86) 
-

Note that this expression is a second-degree polynomial containing terms involving the 
squares of the observations and the cross product. We Can express (5.86) in matrix terms as 
follows: 

(S.86a) 

where A is a symmetric matrix. 
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In general, a quadratic form is defined as: 
1Z 1Z 

Y'AY= ~~aijYiYj 
lxl L...L... where aij = aji (5.87) 

i=l j=l 

A is a symmetric n x n matrix and is called the matrix of the quadratic form. 
The ANOVA sums of squares ssro, SSE, and SSR are all quadratic forms, as Can be 

seen by reexpressing b'X'. From (5.71), we know, using (5.32), that: 

b'X' = (Xb)' = Y' 
We now use the result in (5.73) to obtain: 

b'X' = (HY)' ,,/) 

Since H is a symmetric matrix so that H' = H, we finally obtain, using (5.32): 

b'X' =Y'H 

This result enables us to express the ANOVA sums of squares as follows: 

SSTO = Y' [I -_(~)~] Y 
SSE = Y'(I- H)Y 

(5.88) 

(S.89a) 

(S.89b) 

(S.89c) 

Each ofthese sums of squares can now be seen to be of the form Y' AY, where the three A 
matrices are: 

1 - (~) J (S.90a) 

I-H (S.90b) 

H - (~) J (S.9Oc) 

Since each of these A matrices is symmetric, SSTO, SSE, and SSR are quadratic forms, 
with the matrices ofthe quadratic forms given in (5.90). Quadratic forms play an important 
role in statistics because all sums of squares in the analysis of variance for linear statistical 
models Can be expressed as quadratic forms. 

5.13 Inferences in Regression Analysis 

As We Saw in earlier chapters, all interval estimates are ofthe following form: point estimator 
plus and minus a certain number of estimated standard deviations of the point estimator. 
Similarly, all tests require the point estimator and the estimated standard deviation of the 
point estimator or, in the Case of analysis of variance tests, various sums of squares. Matrix 
algebra is of principal help in inference making when obtaining the estimated standard 
deviations and sums of squares. We have already given the matrix equivalents of the sums 
of squares for the analysis of variance. We focus here chiefly on the matrix eXpressions for 
the estimated variances of point estimators of interest. 
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Regression Coefficients 

Example 

The variance-covariance matrix of b: 

is: 

(T2{b} = a 2(X'X)-1 
2x2 

or, from (5.24a): 

~ {b} = [:2 + =E::-~:-~:-~_~_2 X=)C-=-2 

2x2 -Xa2 

EeXi - X)2 

(S.91) 

(S.92) 

(S.92a) 
1.. 

When MSE is substituted for a 2 in (5.92a), We obtain the estimated variance-covariance 
matrix of b, denoted by S2 {b}: 

[

MSE X2MSE 
--+==---~ 

s2{b} = MSE(X'X)-I = n ~eXi - X)2 
2x2 -XMSE 

E(X i - X)2 

-XMSE 1 EeXi - X)2 

MSE 
(S.93) 

In (5.92a), you will recognize the variances of bo in (2.22b) and of b l in (2.3b) and the 
covariance of bo and b l in (4.5). Likewise, the estimated variances in (5.93) are familiar 
from earlier chapters. 

We wish to find s2{bo} and s2{bd for the Toluca Company example by matrix methods. 
Using the results in Figure 2.2 and in (5.64), We obtain: 

2{b} = MSE(X'X)-I = 2384 [ .287475 
s , -.003535 

= [685.34 -8.428 ] 
-8.428 .12040 

-.003535 ] 
.00005051 

(S.94) 

Thus, s2{bo} = 685.34 and s2{bd = '.12040. These are the same as the results obtained in 
Chapter 2. 

Comment 

To derive the variance-covariance-matrix of b, recall that: . 
b = (X'X)-IX'Y .= AY 

where A is a constant matrix: 

Hence. by (5.46) we have: 
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Now (12{y) = u 2I. Further, it follows from (5.32) and the fact that (X'X)-l is symmetric that: 

We find therefore: 

A' = X(X'X)-l 

(12{b) = (X'X)-IX'u2IX(X'X)-1 

= u 2 (X'X)-IX'X(X,X)-1 

= U 2 (X'X)-II 

= u 2 (X'X)-1 

,/ . 
Mean Response 

Example 

To estimate the mean response at Xh, let us define the vector: 

or 
-'1" 

X~= [1 Xh] (5.95) 
Ix2 

The fitted value in matrix notation then is: 

Yh = X~b (5.96) 

since: 

Note that X~b is a 1 x 1 matrix; hence, We Can write the final result as a scalar. 
The variance of Yh , given earlier in (2.29b), in matrix notation is: 

a 2{YhJ = a2X~(X'X)-IXh (5.97) 

The variance of Yh in (5.93) Can be expressed as a function of (12 {b J, the variance-covariance 
matrix of the estimated regression coefficients, by making USe of the result in (5.92): 

a 2{YhJ = X~~{bJXh (5.97a) 

The estimated variance of Yh , given earlier in (2.30), in matrix notation is: 

S2{YhJ = MSE(X~(X'X)-IXh) (5.98) 

We wish to find S2{YhJ for the Toluca Company eXample when Xh = 65. We define: 

X~ = [1 65] 

and Use the result in (5.94) to obtain: 

S2{YhJ = X~s2{bJXh 

= [1 65] [685.34 
-8.428 

-8.428 ] [ 1] 
.12040 65 = 98.37 

This is the same result as that obtained in Chapter 2. 
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Comment 

The result in (5.97a) can be derived directly by using (5.46), since Yh = X;,b; 

U
2 {Yh} = X;,u2 {blXh 

Hence: 

or: 

u 2{i\1 = u 2{bol + 2X"u{bo, bd + X;,u2{bd 

Using the results from (5.92a), we obtain: 

2 y: _ u 2 
U

2X2 2X,,(-X)u2 X;,u2 

U { hl- -;; + E(Xi _ X)2 + E(Xi - X)2 + E(Xi - X)2 

which reduces to the familiar expression; 

(5.99) 

(5.99a) 

Thus, we see explicitly that the variance expression in (5.99a) contains contributions from u 2 {bo}, 
u 2{bd, andu{bo,bd, which it must according to (A.30b) since Yh = bo+b1Xh is a linear combination 
ofbo andb l · • 

Prediction of New Observation 
The estimated variance s2{pred}, given earlier in (2.38), in matrix notation is; 

s2{pred} = MSE(l + X~(X'X)-IXh) (5.100) 

Cited 5.1. Graybill, F. A. Matrices with Applications in Statistics. 2nd ed. Belmont, Calif.: Wadsworth, 

Reference 2002. 

Problems 5.1. For the matrices below, obtain (1) A +B, (2) A - B, (3) AC, (4) AB', (5) B'A. 

A = [~ i 1 . B.= [i n 
State the dimension of each resulting matrix. 

C=[381] 
540 

5.2. For the matrices below, obtain (1) A + C, (2) A - C, (3) B' A, (4) AC, (5) C' A. 

State the dimension of each resulting matrix. 

5.3. Show how the following expressions are written in terms of matrices: (1) Ii - Yi ei, 

(2) E Xiei = O. Assume i = 1, ... , 4. 
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*5.4. Flavor deterioration. The results shown below were obtained in a small-scale experiment to 
study the relation between 0 F of storage temperature (X) and number of weeks before flavor 
deterioration of a food product begins to occur (Y). 

i: 

Xi: 
Yi; 

S 
7.S 

2 

4 
9.0 

3 

o 
10.2 

4 

-4 
11.0 

5 

-S 
11.7 

Assume that first-order regression model (2.1) is applicable. Using matrix methods, find (1) 
Y'Y, (2) XIX, (3) X/Y. 

5.5. Consumer finance. The data below show, for a consumer finance company operating in six 
cities, the number of competing loan companies operating in the city (X) and the number per 
thousand of the company's loans made in that city that are currently delinquent (Y); 

I: 2 3 4 5 €/F' 
Xi: 4 1 2 3 3 4 
Yi: 16 5 10 15 13 22 

'.0 

Assume that first-order regression model (2.1) is apI'ificable. Using matrix.methods, find (1) 
y/y, (2) XX, (3) Xv. 

*5.6. Refer to Airfreight breakage Problem 1.21. Using matrix methods, find (1) Y'Y, (2) XIX, 
(3) X/Y. 

5.7. Refer to Plastic hardness Problem 1.22. Using matrix methods, find (1) y/y, (2) XX, (3) XY. 

5.8. Let B be defined as follows; 

B= 1 0 5 [
1 5 0] 
105 

a. Are the column vectors of B linearly dependent? 

b. What is the rank of B? 

c. What must be the determinant of B? 

5.9. Let A be defined as follows: 

A= 0 3 1 [
0 1 8] 
055 

a. Are the column vectors of A linearly dependent? 

b. Restate definition (5.20) in terms of row vectors. Are the row vectors of A linearly dependent? 

c. What is the rank of A? 

d. Calculate the determinant of A. 

5.10. Find the inverse of each of the following matrices: 

A= [~ ~] [ 

4 3 
B= 6 5 

101 
1~] 

Check in each case that the resulting matrix is indeed the inverse. 
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5.11. Find the inverse of the following matrix: 

[
5 1 3] 

A= 4 0 5 
196 

Check that the resulting matrix is indeed the inverse. 

*5.12. Refer to Flavor deterioration Problem 5.4. Find (X'X)-I. 

5.13. Refer to Consumer finance Problem 5.5. Find (X'X)-I. 

*5.14. Consider the simultaneous equations: 

4YI +7Y2 = 25 

2YI +3Y2 = 12 

a. Write these equations in matrix notation. 

b. Using matrix methods, find the solutions for YI and Y2· 

5.15. Consider the simultaneous equations: 

5YI +2Y2 = 8 

23y, + 7Y2 = 28 

a. Write these equations in matrix notation. 

b. Using matrix methods, find the solutions for YI and Y2· 

5.16. Consider the estimated linear regression function in the form of (1.15). Write expressions in 
this form for the fitted values Y; in matrix terms for i = 1, ... ,5. 

5.17. Consider the following functions of the random variables YI. Y2• and Y3 : 

WI = YI + Y2 + Y3 

W2 = YI -Y2 

W3 = YI - Y2 - Y3 

a. State the above in matrix notation. 

b. Find the expectation of the random vector W. 

c. Find the variance-covariance matrix of W. 

*5.18. Consider the following functions of the random variables Y" Y2• Y3, and Y4: 

1 
WI = 4 (Y, + Y2 + Y3 + Y4) 

1 1 
W2 = -(YI + Y2) - -(Y3 + Y4) 

2 2 

a. State the above in matrix notation. 

b. Find the expectation of the random vector W. 

c. Find the variance-covariance matrix of W. 

*5.19. Find the matrix A of the quadratic form: 

3Yf + lOY,:2 + 17Yi 

5.20. Find the matrix A of the quadratic form: 

• 7Y~ - 8YIY2 + 8Yi 
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*5.21. For the matrix: 

A= [; n 
find the quadratic form of the observations Y I and Y2 • 

5.22. For the matrix: 

[
] 0 4] 

A= 0 3 0 
409 

find the quadratic form of the observations Y I , Y2 , and Y3 • 

*5.23. Refer to Flavor deterioration Problems 5.4 and 5.12. 

a. Using matrix methods, obtain the following: (1) vector of estimated regJ;e~ion coefficients, 
(2) vector of residuals, (3) SSR, (4) SSE, (5) estimated variance-covariance matrix of b, 
(6) point estimare of E {Y/r} when X/r = -6, (7) estimated variance of YIz when X/r = -6. 

b. Whar simplifications arose from the spacing of the X levels in the experiment? 

c. Find the har matrix H. 

d. Finds2{e}. 

5.24. Refer to Consumer finance Problems 5.5 and 5.13. 

a. Using matrix methods, obtain the following: (1) vector of estimated regression coefficients, 
(2) vector of residuals, (3) SSR, (4) SSE, (5) estimated variance-covariance matrix of b, 
(6) point estimate of E{Yh } when X/r = 4, (7) s2{pred} when XIz = 4. 

b. From your estimated variance-covariance matrix in part (a5), obtain the following: 
(1) s{bo, bl }; (2) s2{bo}; (3) s{bd· 

c. Find the hat matrix H. 

d. Find s2{e}. 

*5.25. Refer to Airfreight breakage Problems 1.21 and 5.6. 

a. Using matrix methods, obtain the following: (1) (X'Xr', (2) b, (3) e, (4) H, (5) SSE, 
(6) s2{b), (7) Yh when X'I = 2, (8) s2{Yhl when Xh = 2. 

b. From part (a6), obtain the following: (1) s2{b l }; (2) s{bo, bl}; (3) s{bo}. 

c. Find the matrix of the quadratic form for SSR. 

5.26. Refer to Plastic hardness Problems 1.22 and 5.7. 

a. Using matrix methods, obtain the following: (1) (X,X)-I, (2) b, (3) Y, (4) H, (5) SSE, 
(6) s2{b), (7) s2{pred} when X" = 30. 

b. From part (a6), obtain the following: (1) s2{bo}; (2) s{bo, bl }; (3) s{bl }. 

c. Obtain the matrix of the quadratic form for SSE. 

Exercises 5.27. Refer to regression-through-the-originmodel (4.10). Set up the expectation vector fore. Assume 
that i = 1, ... ,4. 

5.28. Consider model (4.10) for regression through the origin and the estimator b l given in (4.14). 
Obtain (4.14) by utilizing (5.60) with X suitably defined. 

5.29. Consider the least squares estimator b given in (5.60). Using matrix methods, show thar b is an 
unbiased estimator. 

5.30. Show that Y/r in (5.96) can be expressed in matrix terms as b'X/I . 

5.31. Obtain an expression for the variance-covariance matrix of the fitted values Yi , i = 1, ... , n, 

in terms of the hat matrix. 



Multiple Linear 
Regression 

Part 



Chapter 

Multiple Regression I 
.".d"'. 

Multiple regression analysis is one of the most widely used of all statistical methods. In 
this chapter, we first discuss a variety of multiple regression models. Then we present the 
basic statistical results for multiple regression in matrix form. Since the matrix expressions 
for multiple regression are the same as for simple linear regression, we state the reSUlts 
without much discussion. We conclude the chapter with an example, illustrating a variety 
of inferences and residual analyses in multiple regression analysis. 

6.1 Multiple Regression Models 

Need for Several Predictor Variables 

214 

When We first introduced regression analysis in Chapter I, we spoke of regression models 
containing a number of predictor variables. We mentioned a regression model where the 
response variable was direct operating cost for a branch office of a consumer finance chain, 
and four predictor variables were considered, including average number ofloans outstanding 
at the branch and total number of new loan applications processed by the branch. We also 
mentioned a tractor purchase study where the response variable was volume of tractor 
purchases in a sales territory, and the nine predictor variables included number of farms in 
the territory and quantity of crop production in the territory. In addition, we mentioned a 
study of short children where the response variable was the peak plasma growth hormone 
level, and the 14 predictor variables included gender, age, and various body measurements. 
In all these examples, a single predictor variable in the model would have provided an 
inadequate description since a number of key variables affect the response variable in 
important and distinctive ways. Furthermore, in situations of this type, we frequently find 
that predictions ofthe response variable based on a model containing only a single predictor 
variable are too imprecise to be useful. We noted the imprecise predictions with a single 
predictor variable in the Toluca Company example in Chapter 2. A more complex model, 
containing additional predictor variables. typically is more helpful in providing sufficiently 
precise predictions of the response variable. 

In each of the examples just mentioned, the analysis was based on observational data be­
cause the predictor variables were not controlled, usually because they were not susceptible 
to direct controL Multiple regression analysis is also highly useful in experimental situations 
where the experimenter Can control the predictor variables. An experimenter typically will 
wish to investigate a number of predictor variables Simultaneously because almost always 
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more than one key predictor variable influences the response. For example, in a study of 
productivity of work crews, the experimenter may wish to control both the size of the crew 
and the level of bonus pay. Similarly, in a study of responsiveness to a drug, the experimenter 
may wish to control both the dose of the drug and the method of administration. 

The multiple regression models which we now describe can be utilized for either obser­
vational data or for experimental data from a completely randomized design. 

First-Order Model with Two Predictor Variables 

FIGURE 6.1 
Response 
Function is a 
Plane-Sales 
Promotion 
Example. 

When there are two predictor variables Xl and X2 , the regression model: 

Yi = f30 + f3 I X iI + f32 X i2 + £i (6.1) 

is called a first-order model with two predictor variables. A first-order model, as We noted 
in Chapter 1, is linear in the predictor variables. Yi denotes as usual the response in the 
ith trial, and XiI and X i2 are the values of the two predictor vari;bles in the ith trial. The 
parameters of the model are f3o, f3" and f32, and the error term is £i. L 

Assuming that E{£;} = 0, the regression function for model (6.1) is: 

(6.2) 

Analogous to simple linear regression, where the regression function E {Y} = f30 + f3 I X is 
a line, regression function (6.2) is a plane. Figure 6.1 contains a representation of a portion 
of the response plane: 

E{Y} = 10 + 2X I + 5X2 (6.3) 

Note that any pOint on the response plane (6.3) corresponds to the mean response E{Y} at 
the given combination oflevels of Xl and X2• 

Figure 6.1 also shows an observation Yi corresponding to the levels (XiI, X i2 ) of the two 
predictor variables. Note that the vertical rule in Figure 6.1 between Yi and the response plane 
represents the difference between Yi and the mean E {Yi } of the probability distribution of 
Y for the given (Xii, X i2 ) combination. Hence, the vertical distance from Yi to the response 
plane represents the error term £i = Yi - E{Y;}. 

Xz 

E{Y} = 10 + 2Xl + 5Xz 

Y 

130 = 10 
Response Plane 

Xl 
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Example 

Frequently the regression function in multiple regression is called a regression surjace 
or a response surjace. In Figure 6.1, the response surface is a plane, but in other cases the 
response surface may be more complex in nature. 

Meaning of Regression Coefficients. Let us now consider the meaning of the regression 
coefficients in the multiple regression function (6.3). The parameter f30 = lO is the Y in­
tercept of the regression plane. If the scope of the model includes XI = 0, X2 = 0, then 
f30 = lO represents the mean response E{Y} at XI = 0, X2 = O. Otherwise, f30 does not 
have any particular meaning as a separate term in the regression model. 

The parameter f31 indicates the change in the mean response E{Y} per unit increase in 
XI when X2 is held constant. Likewise, f32 indicates the change in the mean reSponSe per 
unit increase in X2 when X I is held constant. To See this for our examQW, SUppOse X2 is 
held at the level X2 = 2. The regression function (6.3) now is; ,,;P-' 

E{Y} = lO + 2X I + 5(2) = 20 + 2X I X 2 =2 (6.4) 

Note that this response function is a straight line with slope f31 = 2. The same is true for 
any other value of X2; only the intercept of the' responSe function will differ. Hence, f31 =2 
indicates that the mean reSponSe E {Y} increases by 2 with a unit increase in XI when X2 is 
constant, no matter what the level of X2. We confirm therefore that f31 indicates the change 
in E {Y} with a unit increase in X I when X2 is held constant. 

Similarly, f32 = 5 in regression function (6.3) indicates that the mean response E{Y} 
increases by 5 with a unit increase in X2 when X I is held constant. 

When the effect of XI on the mean response does not depend on the level of X2 , and 
correspondingly the effect of X2 does not depend on the level of X I, the two predictor 
variables are said to have additive effects or not to interact. Thus, the first-order regression 
model (6.1) is designed for predictor variables whose effects on the mean response are 
additive or do not interact. 

The parameters f31 and f32 are sometimes called partial regression coefficients because 
they reflect the partial effect of one predictor variable when the other predictor variable is 
included in the model and is held constant. 

The response plane (6.3) shown in Figure 6.1 is for a regression model relating test market 
sales (Y, in lO thousand dollars) to point-of-sale expenditures (XI, in thousand dollars) and 
TV expenditures (X2, in thousand dollars). Since f31 =2, if point-of-sale expenditures in 
a locality are increased by one unit (l thousand dollars) while TV expenditures are held 
constant, expected sales increase by 2 units (20 thousand dollars). Similarly, since f32 = 5, 
if TV expenditures in a locality are increased by 1 thousand dollars and point-of-sale 
expenditures are held constant, expected sales increase by 50 thousand dollars. 

Comments 

1. A regression model for which the response surface is a plane can be used either in its own right 
when it is appropriate, or as an approximation to a more complex response surface. Many complex 
response surfaces can be approximated well by a plane for limited ranges of Xl and X2 . 
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2. We can readily establish the meaning of f3l and f3z by calculus, taking partial derivatives of the 
response surface (6.2) with respect to Xl and X2 in tum: 

aE{Y} 
~=f3l 

aE{Y} 

aX2 = f3z 

The partial derivatives measure the rate of change in E {Y} with respect to one predictor variable when 
the other is held constant • 

First-Order Model with More than Two Predictor Variables 
We consider now the case where there are p - I predictor variables X I, ... , X p-l. The 
regression model: 

Yi = f30 + f3l X il + f32 X i2 + ... + f3 p-I X i,P-I,+ £i 

is called a first-order model with p - 1 predictor variables. It can also be written: 

p-I 

Yi = 130 + L f3k X ik + £i 

k=1 

or, if We let XiO == 1, it can be written as: 

p-I 

Yi = Lf3kX ik + £i 

k=O 

where XiO == I 

L 

Assuming that E {£i} = 0, the responSe function for regression model (6.5) is: 

E{Y} = fJo + f3l X l + f32 X 2 + ... + f3p-IXp-1 

(6.5) 

(6.Sa) 

(6.Sb) 

(6.6) 

This response function is a hyperplane, which is a plane in more than two dimensions. It 
is no longer possible to picture this response surface, as we Were able to do in Figure 6.1 
for the caSe of two predictor variables. Nevertheless, the meaning of the parameters is 
analogous to the case of two predictor variables. The parameter 13k indicates the change in 
the mean response E{Y} with a unit increase in the predictor variable Xk> when all other 
predictor variables in the regression model are held constant. Note again that the effect 
of any -predictor variable on the mean response is the same for regression model (6.5) no 
matter what are the levels at which the other predictor variables are held. Hence, first­
order regression model (6.5) is designed for predictor variables whose effects on the mean 
response are additive and therefore do ~ot interact. 

Comment 
When p - 1 = 1, regression model (6.5) reduces to: 

. 
which is the simple linear regression model considered in earlier chapters. • 

General linear Regression Model 
In general, the variables X I, ... , X p_1 in a regression model do not need to represent 
different predictor variables, as we shall shortly See. We therefore define the general linear 
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regression model, with normal error terms, simply in terms of X variables: 

Yi = f30 + f3I X il + f3zXi2 + ... + f3 p- 1X i,p-1 + £i 

where: 

f3o, f3" •• - , f3 p-1 are parameters 

Xii, ... , Xi,p-I are known constants 

£i are independent N (0, 0-
2

) 

i = 1,. _.,n 

If we let XiO == 1, regression model (6.7) can be written as follows: 

Yi = f30XiO + f3I X il + f32 X i2 +. -. + f3 p- 1X i,p-1 + £,;,.4"­

where XiO == 1, or: 
p-I 

Yi = I: f3k X ik + £i 

k=O 

where XiO == 1 

The responSe function for regression modet(6.7) is, since E {£i} = 0: 

(6.7) 

(6.7a) 

(6.7b) 

(6.8) 

Thus, the general linear regression model with normal error terms implies that the obser­
vations Yi are independent normal variables, with mean E{Yd as given by (6.8) and with 
constant variance 0-

2
• 

This general linear model encompasses a vast variety of situations. We consider a few 
of these now. 

p - 1 Predictor Variables. When X I, ... , X p_1 represent p - 1 different predictor vari­
ables, generallinearregression model (6.7) is, as we have seen, a first-order model in which 
there are no interaction effects between the predictor variables. The example in Figure 6.1 
involves a first-order model with two predictor variables. 

Qualitative Predictor Variables. The generallinearregression model (6.7) encompasses 
not only quantitative predictor variables but also qualitative ones, such as gender (male, 
female) or disability status (not disabled, partially disabled, fully disabled). We Use indicator 
variables that take on the values 0 and 1 to identify the classes of a qualitative variable. 

Consider a regression analysis to predict the length of hospital stay (Y) based on the age 
(X d and gender (X2 ) of the patient. We define X2 as follows: 

X = {I if patient female 
2 0 if patient male 

The first-order regression model then is as follows: 

Yi = f30 + f3I X iI + f32 X i2 + £i 

where: 

Xii = patient's age 

X- _ { I if patient female 
12 - 0 if patient male 

(6.9) 
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The response function for regression model (6.9) is: 

E{Y} = f30 + f31X, + f32 X2 (6.10) 

For male patients, X2 = 0 and response function (6.10) becomes: 

Male patients (6.10a) 

For female patients, X2 = 1 and response function (6.10) becomes: 

Female patients (6.10b) 

These two response functions represent parallel straight lines with different intercepts. 
In general, we represent a qualitative variable with c classes by means of c - 1 indicator 

variables. For instance, if in the hospital stay example the qualitative variable disability 
status is to be added as another predictor variable, it can be represented as follows by the 
two indicator variables X3 and X4: 

if patient not disabled 
otherwise 

if patient partially disabled 
otherwise 

The first-order model with age, gender, and disability status as predictor variables then is: 

where: 

Xi] = patient's age 

X- _ {I if patient female 
,2 - 0 if patient male 

X. _ {I if patient not disabled 
,3 - 0 otherwise 

{
I if patient partially disabled 

Xi4 = 0 otherwise 

(6.11) 

In Chapter 8 we present a comprehensive discussion of how to model qualitative predictor 
variables and how to interpret regression mndels containing qualitative predictor variables. 

Polynomial Regression. Polynomial regression models are special cases of the general 
linear regression model. They contain squared and higher-order terms of the predictor vari­
able(s), making the response function curvilinear. The following is a polynomial regres'sion 
model with one predictor variable: 

-Yi = f30 + f31 X i + f32X; + £i (6.12) 

Figure 1.3 on page 5 shows an example of a polynomial regression function with one 
predictor variable. 

Despite the curvilinear nature onhe response function for regression model (6.12), it is 
a special CaSe of general linear regression model (6.7). If We let Xil = Xi and XiZ = X;, 
We can write (6.12) as follows: 

Yi = f30 + f31 X il + f3zXiZ + £i 
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which is in the form of general linear regression model (6.7). While (6.12) illustrates a curvi­
linearregression model where the response function is quadratic, models with higher-degree 
polynomial response functions are also particular caSeS of the general linear regression 
model. We shall discuss polynomial regression models in more detail in Chapter 8. 

Transformed Variables. Models with transformed variables involve complex, curvilinear 
reSponse functions, yet still are special caseS of the general linear regression model. Consider 
the following model with a transformed Y variable: 

(6.13) 

Here, the response surface is complex, yet model (6.13) can still be treated as a general 
linear regression model. If we let Y( = log Yi, we can write regressi9.JlJ'inodel (6.13) as 
follows: 

Y; = f30 + f3IXiI + /32Xi2 + f33X i3 + £i 

which is in the form of general linear regression model (6.7). The response variable just 
happens to be the logarithm of Y. 

Many models can be transformed into the g'enerallinear regression model. For instance, 
the model: 

1 
Yi= ------------------­

f30 + f3I XiI + f3zX i2 + £i 
(6.14) 

can be transformed to the general linear regression model by letting Y: = 1/ Yi • We then 
have: 

Y( = f30 + f31 Xii + f3zX i2 + £i 

Interaction Effects. When the effects of the predictor variables on the response variable 
are not additive, the effect of one predictor variable depends on the levels of the other pre­
dictor variableS. The general linear regression model (6.7) encompasses regression models 
with nonadditive or interacting effects. An example of a nonadditive regression model with 
two predictor variables XI and X2 is the following: 

(6.15) 

Here, the response function is complex because of the interaction term f33XilXiZ. Yet 
regression model (6.15) is a special case of the general linear regression model. Let Xi3 = 
Xil Xi2 and then write (6.15) as follows: 

Yi = f30 + f31 Xii + f32 X i2 + f33 X i3 + £i 

We see that this model is in the form of general linear regression model (6.7). We shall 
discuss regression models with interaction effects in more detail in Chapter 8. 

Combination of Cases. A regression model may combine several of the elements we have 
just noted and still be treated as a general linear regression model. Consider the following 
regression model containing linear and quadratic terms for each of two predictor variables 
and an interaction term represented by the cross-product term: 

(6.16) 
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FIGURE 6.2 Additional Examples of Response Functions. 

y 

(a) (b) 

Let us define: 

Zil = Xii Zi2 = X;I Zi3 = Xi2 Zi4 = X;2 ZiS = XilXiZ 

We can then write regression model (6.16) as follows: 

Yi = f30 + f3I ZiI + f32 Z i2 + f33 Z i3 + f34 Z i4 + f3SZiS + £i 

which is in the form of general linear regression model (6.7). 
The generallinearregression model (6.7) includes many complex models, some of which 

may be highly complex. Figure 6.2 illustrates two complex response surfaces when there 
are two predictor variables, that can be represented by generallinearregression model (6.7). 

Meaning of Linear in General Linear Regression Model. It should be clear from the 
various examples that generallinearregression model (6.7) is not restricted to linearresponse 
surfaces. The term linear model refers to the fact that model (6.7) is linear in the parameters; 
it does-not refer to the shape of the response surface. 

We say that a regression model is linear in the parameters when it can be written in the 
form: 

(6.17) 

where the terms CiO, Ci I, etc., are coefficients involving the predictor variables. For example, 
first-order model (6.1) in two predicto~ variables: 

1'i = f30 + f3I XiI + f32 X iZ + £i 

is linear in the parameters, with CiO = 1, Cil = Xii, and Ci2 = Xi2 . 
An example of a nonlinear regre&sion model is the following: 

Yi = f30 exp(f31 X;) + £i 

This is a nonlinear regression model because it cannot be expressed in the form of (6.17). 
We shall discuss nonlinear regression models in Part III. 
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6.2 General Linear Regression Model in Matrix Terms 

We now present the principal results for the general linear regression m~del (6.7) in matrix 
terms. This model, as noted, encompasses a wide variety of particular caSeS. The results to 
be presented are applicable to all of these. 

It is a remarkable property of matrix algebra that the results for the general linear regres­
sion model (6.7) in matrix notation appear exactly as those for the simple linear regression 
model (5.57). Only the degrees of freedom and other constants related to the number of X 
variables and the dimensions of some matrices are different. Hence, We are able to present 
the results very concisely. 

The matrix notation, to be sure, may hide enormous computational complexities. To find 
the inverse of a 10 x 10 matrix A requires a tremendous amount of ~putation, yet it is 
simply represented as A-I. Our reason for emphasizing matrix algebra is that it indicates 
the essential conceptual steps in the solution. The actual computations will, in all but the 
very simplest cases, be done by computer. Hence, it does not matter to us whether (X'X)-I 
represents finding the inverse of a 2 x 2 or a 10 x lifmatrix. The important point is to know 
what the inverse of the matrix represents. 

To express general linear regression model (6.7): 

in matrix terms, we need to define the following matrices: 

(6.18a) (6.18b) 

n [' 
XII X I2 

X .. ,_. I 
Y2 1 X 21 X 22 X 2•p- I 

¥= X= 
nxl : nxp ~ 

Yn Xnl X n2 Xn,p-I 

(6.18) 
(6.18c) 

~ = 
pxl 

Note that the ¥ and E vectors are the same as for simple linear regression. The ~ vector 
contains additional regression parameters, and the X matrix contains a column of Is as well 
as a column of the n observations for each of the p - 1 X variables in the regression model. 
The row subscript for each element X ik in the X matrix identifies the trial or case, and the 
column subscript identifies the X variable. 

In matrix terms, the general linear regression model (6.7) is: 

Y=X ~+E 
Ilxl nxp IlXP Ilxl 

(6.19) 
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where: 

Y is a vector of responses 

~ is a vector of parameters 

X is a matrix of constants 

E is a vector of independent normal random variables with expectation 

E{ E} = 0 and variance-covariance matrix: 

Consequently, the random vector Y has expectation: 

E{Y} =X~ 
nx1 

and the variance-covariance matrix of Y is the same as that of E: 

6.3 Estimation of Regression Coefficients 

(6.20) 

(6.21) 

The least squares criterion (1.8) is generalized as follows for general linear regression 
model (6.7): 

n 

Q = LOi - f30 - f31 Xil - ... - f3P_ 1Xi ,P_I)2 (6.22) 
i=1 

The least squares estimators are those values of f3o, f3I> ... , f3 p -1 that minimize Q. Let us 
denote the vector of the least squares estimated regression coefficients bo, bI> ... , bp - 1 as b: 

(6.23) 

The least squares normal equations for the general linear regression model (6.19) are: 

• X'Xb=X'Y (6.24) 

and the least squares estimators are: 

b = (X'X) -1 (X'X) Y 
2xl 2x2 2x1 

(6.25) 



224 Part Two Multiple Lineal' Regression 

The method of maximum likelihood leads to the same estimators for normal error regres­
sion model (6.19) as those obtained by the method ofleast squares in (6.25). The likelihood 
function in (1.26) generalizes directly for multiple regression as follows: 

1 [I Il ] L(~, 0'2) = (21W2)'1/2 exp - 20'2 ~(Y; - f30 - f3I Xil - '" - f3 p -1 Xi .p _ I)2 (6.26) 

Maximizing this likelihood function with respect to f3o, f31, ... , f3 p -1 leads to the estimators 
in (6.25). These estimators are least squares and maximum likelihood estimators and have 
all the properties mentioned in Chapter 1: they are minimum variance unbiased, consistent, 
and sufficient. 

6.4 Fitted Values and Residuals 

Let the vector of the fitted values Yi be denoted by ¥ and the vector of the residual terms 
ei = Y; - Y; be denoted bye: -'1" 

(6.27a) (6.27b) 

The fitted values are represented by: 

and the residual terms by: 

e =¥-¥=¥-Xb 
Ilxl 

e = 
Ilxl 

(6.27) 

(6.28) 

(6.29) 

The vector of the fitted values ¥ can be expressed in terms of the hat matrix H as follows: 

(6.30) 

where: 

H = X(X'X)-IX' (6.30a) 
IlXn 

Similarly, the vector of residuals can be expressed as follows: 

e = (I-H)¥ 
Ilxl 

(6.31) 

.The variance-covariance matrix of the residuals is: 

(6.32) 
nXIl 
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which is estimated by: 

s2{e} = MSE(I - II) (6.33) 
IlXIl 

6.5 Analysis of Variance Results 

Sums of Squares and Mean Squares 

TABLE 6.1 
ANOVA Table 
for General 
Linear 
Regression 
Model (6.19). 

The sums of squares for the analysis of variance in matrix terms are, from (5.89): 

SSTO = y'y - (~) Y'JY = Y' [1- (~) J] Y t 

SSE = e'e = (Y - Xb)'(Y - Xb) = Y'Y - b'X'Y = Y'(I - H)Y 

SSR = b'X'Y - (~) Y'JY = y' [H- (~) J] Y 

(6.34) 

(6.35) 

~.36) 

where J is an n x n matrix of Is defined in (5.18) and H is the hat matrix defined in (6.30a). 
SSTO, as usual, has n - 1 degrees of freedom associated with it. SSE has n - p degrees 

, of freedom associated with it since p parameters need to be estimated in the regression 
function for model (6.19). Finally, SSR has p - 1 degrees of freedom associated with it, 
representing the number of X variables X I, ... , X p_1 • 

Table 6.1 shows these analysis of variance results, as well as the mean squares MSR and 
MSE: 

MSR= SSR 
p-1 
SSE 

MSE=-­
n-p 

(6.37) 

(6.38) 

The expectation of MSE is 0'2, as for simple linear regression. The expectation of MSR 
is 0'2 plus a quantity that is nonnegative. For instance, when p - 1 = 2, we have: 

2 1 [ 2~ - 2 2~ - 2 E{MSR} = a + 2: f3 1 L,.(Xii - Xl) + f32 L,.(Xi2 - X 2) 

+ 2f31f32 L(Xn - X1)(Xi2 - X2)] 

Note that if both f31 and f32 equal zero, E{MSR} = 0'2. Otherwise E{MSR} > 0'2. 

Source of 
Variation SS_ df MS 

Regression SSR = b'X'Y - (~)-Y'JY 1>-1 MSR= SSR 
p-l 

MSE= SSE Error SSE = Y'Y - b'X'Y n- p . n- p 

Total ssm ==Y'Y - (~) Y'JY n-i 
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F Test for Regression Relation 
To test whether there is a regression relation between the response variable Y and the set of 
X variables X (, ... , X p_ (, i.e., to choose between the alternatives: 

Ho: fJl = fJ2 = ... = fJp-1 = 0 

Ha: not all fJk (k = 1, ... , p - 1) equal zero 

we Use the test statistic: 

F* = MSR 
MSE 

The decision rule to control the Type 1 error at ex is: 

If F* .:'S F(l - ex; p - 1, n - p), conclude Ho 

If F* > F(l - ex; p - 1, n - p), conclude HlI 

(6.39a) 

(6.39b) 

(6. 39c) 

The existence of a regression relation by itself does not, of course, ensure that useful 
predictions can be made by using it. 

Note that when p - I = 1, this test reduces to the F test in (2.60) for testing in simple 
linear regression whether or not fJl = o. 

Coefficient of Multiple Determination 
The coefficient of multiple determination, denoted by R2, is defined as follows: 

R2 = SSR = 1 _ SSE (6.40) 
SSTO SSTO 

It measures the proportionate reduction of total variation in Y associated with the use of the 
set of X variables X I, ... , X p_l. The coefficient of multiple determination R2 reduces to the 
coefficient of simple determination in (2.72) for simple linear regression when p - 1 = 1, 
i.e., when one X variable is in regression model (6.19). Just as before, we have: 

o .:'S R2 .:'S 1 (6.41) 

where R2 assumeS the value 0 when all bk = 0 (k = 1, ... , p - 1), and the value 1 when 
all Y observations fall directly on the fitted regression surface, Le., when Yi = Yi for all i. 

Adding more X variables to the regression model can only increase R2 and never reduce 
it, because SSE can never become larger with more X variables and SSTO is always the 
same for a given set of responses. Since R2 usually can be made larger by including a larger 
number of predictor variables, it is sometimes suggested that a modified measure be used 
that adjusts for the number of X variables in the model. The adjusted coefficient of multiple 
determination, denoted by R;, adjusts R2 by dividing each sum of squares by its associated 
degrees of freedom: 

SSE 

2 n - P (n - 1) SSE 
Ra = 1 - SSTO = 1 - n _ p SSTO (6.42) 

n-l 

This adjusted coefficient of multiple determination may actually become smaller when 
another X variable is introduced into the model, because any decrease in SSE may be more 
than offset by the loss of a degree of freedom in the denominator n - p. 
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Comments 
1. To distinguish between the coefficients of determination for simple and multiple regression, 

we shall from now on refer to the former as the coefficient of simple determination. 

2. It can be shown that the coefficient of multiple determination R2 can be viewed as a coefficient 
of simple determination between the responses Y; and the fitted values Y;. 

3. A large value of R2 does not necessarily imply that the fitted model is a useful one. For instance, 
observations may have been taken at only a few levels of the predictor variables. Despite a high R2 
in this case, the fitted model may not be useful if most predictions require extrapolations outside the 
region of observations. Again, even though R2 is large, MSE may still be too large for inferences to 
be useful when high precision is required. • 

Coefficient of Multiple Correlation ~,' 

" 

The coefficient of multiple correlation R is the positive square root of R2: 

R =-JR2 
When there is one X variable in regression model (6.19), i.e., when p-l = 1, the coefficient 
of mUltiple correlation R equals in absolute value the correlation coefficient r in (2.73) for 
simple correlation. 

6.6 Inferences about Regression Parameters 

The least squares and maximum likelihood estimators in b are unbiased: 

E{b} = ~ (6.44) 

The variance-covariance matrix (J2{b}: 

[ 

a2{bo} 

a{bl , bo} 

a{bp~h bo} 

a{bo, bP_ Il ] 
a{bh bp- l } 

a 2 {bp _Il 

(6.45) 

is given by: 

(J2{b} = a 2(X'X)-1 (6.46) 
pxp 

The estimated variance-covariance matrix s2{b}: 

[ s'tho) 
, s{bo, bIl 

s2{b} = s{b7, bo} s2{bIl 

pxp 

S{bp~I' bolo s{bp- l , bIl 

s{bo, bP_ l }] 

s{bh bp-d 

s2{bp_ l } 

(6.47) 

is given by: 

s2{b} = MSE(X'X)-l (6.48) 
pxp 
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From s2{b}, one can obtain s2{bo}, s2{bd, or whatever other variance is needed, or any 
needed covariances. 

Interval Estimation of Pk 

Tests for Pk 

For the normal error regression model (6.19), we have: 

k = 0, 1, ... , p - 1 

Hence, the confidence limits for fh with 1 - a confidence coefficient are: 

bk ± t(l- a/2;n - p)s{bk } 

Tests for 13k are set up in the usual fashion. To teSt: 

Ho: 13k = 0 

Ha: 13k =I- 0 

we may USe the test statistic: 

and the decision rule: 

If It*1 .:'S t(l - a/2; n - p), conclude Ho 

Otherwise conclude Ha 

(6.49) 

(6.50) 

(6.51 a) 

(6.51 b) 

(6.51c) 

The power of the t test can be obtained as explained in Chapter 2, with the degrees of 
freedom modified to n - p. 

As with simple linear regression, an F test can also be conducted to determine whether 
or not 13k = 0 in mUltiple regression models. We discuss this test in Chapter 7. 

Joint Inferences 
The Bonferroni joint confidence intervals can be used to estimate several regression c0-

efficients simultaneously. If g parameters are to be estimated jointly (where g.:'S p), the 
confidence limits with family confidence coefficient 1 - a are: 

(6.52) 

where: 

B = t(l- a/2g;n - p) (6.52a) 

In Chapter 7, we discuss tests concerning subsets of the regression parameters. 
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Estimation of Mean Response and Prediction 
of New Observation 

Interval Estimation of E {Yh } 

For given values of XI, ... , X p- h denoted by Xhl>.'" Xh,p-l> the mean responSe is 
denoted by E{Yh }. We define the vector X,,: 

(6.53) 

so that the mean response to be estimated is: 

E{Yh } = X~~ ~6.54) 

The estimated mean response corresponding to Xh • denoted by Yh • is: 

Yh = X~b (6.55) 

" This estimator is unbiased: 

(6.56) 

and its variance is: 

(6.57) 

This variance can be expressed as a function of the variance-covariance matrix of the 
estimated regression cOefficients: 

(6.57a) 

Note from (6.57a) that the variancea2{Yh} is a function of the variancesa2{bd of the regres­
sion coefficients and of the covariances a{bb bk,} between pairs of regression coefficients, 
just as in si.mple linear regression. The estimated variance S2{Yh} is given by: 

(6.58) 

The 1 - a confidence limits for E{Yh } are: 

Yh ± t(l - a12; n - p)s{Yh } (6.59) 

Confidence Region for Regression Surface ' 
The 1-a confidence region for the-entire regression surface is an extension of the Working­
Hotelling confidence band (2.40) for the regression line when there is one predictor variable. 
Boundary points of the confidence regio~ at Xh are obtained from: 

(6.60) 
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where: 

W2 = pF(I - a; p, 11 - p) (6.60a) 

The confidence coefficient I - a provides assuranCe that the region contains the entire 
regression surface Over all combinations of values of the X variables. 

Simultaneous Confidence Intervals for Several Mean Responses 
To estimate a number of mean responses E {Yh } corresponding to different Xi' vectors with 
family confidence coefficient I - a, we can employ two basic approaches: 

l. Use the Working-Hotelling confidence region bounds (6.60) for the severql X" vectOrs 
cf> 

of interest: .. 

(6.61) 

where YI" W, and s{Yi,} are defined in (6.55), (6.60a), and (6.58), respectively. Since the 
Working-Hotelling confidence region Covers the mean ~sponses for all possible X h vec­
tors with confidence coefficient I - a, the selected boundary values will COver the mean 
responses for the X" vectors of interest with family confidence coefficient greater than I-ex. 

2. Use Bonferroni simultaneous confidence intervals. When g interval estimates are to 
be made, the Bonferroni confidence limits are: 

(6.62) 

where: 

B = t(l - a/2g; n - p) (6.62a) 

For any particular application, we can compare the W and B multiples to See which 
procedure will lead to narrower confidence intervals. If the Xil levels are not specified in 
advance but are determined as the analysis proceeds, it is better to use the Working-Hotelling 
limits (6.61) since the family for this procedure includes all possible XI1 levels. 

Prediction of New Observation Yh(new) 

The 1 - a prediction limits for a new observation Y"(new) corresponding to Xi" the specified 
values of the X variables, are: 

Y" ±t(l-a/2;n - p)s{pred} 

where: 

s2{pred} = MSE + s2{i\} = MSE(1 + X~,(X/X)-IX,,) 

and s2{Yh} is given by (6.58). 

Prediction of Mean of m New Observations at Xh 

(6.63) 

(6.63a) 

When In new observations are to be selected at the same levels Xi' and their mean Yh(new) is 
to be predicted, the 1 - a prediction limits are: 

Yll ± t(l - a/2; n - p)s{predmean} (6.64) 
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where: 

MSE ~ (1 ) s2{predmean} = --;:;;- + S2{Yh} = MSE m + X~(X/X)-IXh (6.64a) 

Predictions of 9 New Observations 

" 

Simultaneous Scheffe prediction limits for g new observations at g different levels Xh with 
family confidence coefficient 1 - ex are given by: 

1'" ± Ss{pred} (6.65) 

where: 

S2 = gF(I- ex;g, n - p) (6.65a) 

and s2{pred} is given by (6.63a). 
Alternatively, Bonferroni simultaneous prediction limits can be used. For g predictions 

with family confidence coefficient I - ex, they are: 1.. 

Yh ± Bs{pred} (6.66) 

where: 

B = t(l- ex/2g;n - p) (6.66a) 

A comparison of S and B in advance of any particular USe will indicate which procedure 
will lead to narrower prediction intervals. 

Caution about Hidden Extrapolations 

FIGURE 6.3 
Region of 
Observations 
on Xl andX2 

Jointly, 
Compared with 
Ranges of Xl 
andX2 

Individually. 

When estimating a mean response or predicting a new observation in mUltiple regression, 
one needs to be particularly careful that the estimate or prediction does not fall outside the 
scope of the model. The danger, of course, is that the model may not be appropriate when it 
is extended outside the region of the observations. In multiple regression, it is particularly 
easy to lose track of this region since the levels of X I, ... , X p_1 jointly define the region. 
Thus, one cannot merely look at the ranges of each predictor variable. Consider Figure 6.3, 
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where the shaded region is the region of observations for a multiple regression application 
with two predictor variables and the circled dot represents the values (XIII, X i12 ) for which 
a prediction is to be made. The circled dot is within the ranges of the predictor variables 
XI and X2 individually, yet is well outside the joint region of observations. It is easy to 
spot this extrapolation when there are only two predictor variables, but it becomes much 
more difficult when the number of predictor variables is large. We discuss in Chapter 10 
a procedure for identifying hidden extrapolations when there are more than two predictor 
vaJiables. 

6.8 Diagnostics and Relnedial Measures 

Diagnostics play an impol1ant role in the development and evaluation of multiple regression 
models. Most of the diagnostic procedures for simple linear regression that we described in 
Chapter 3 C3lTY Over directly to multiple regression. We review these diagnostic procedures 
now, as well as the remedial measures for simple linear regression that carryover directly 
to multiple regression. 

Many specialized diagnostics and remedial procedures for multiple regression have also 
been developed. Some important oneS will be discussed in Chapters 10 and 11. 

Scatter Plot Matrix 

FIGURE 6.4 
SYGRAPH 
Scatter Plot 
Matrix and 
Correlation 
Matrix­
Dwaine Studios 
Example. 

Box plots, sequence plots, stem-and-leaf plots, and dot plots for each of the predictor vari­
ables and for the response variable can provide helpful, preliminary univariate information 
about these variables. Scatter plots of the response variable against each predictor variable 
can aid in determining the nature and strength of the bivariate relationships between each of 
the predictor vaJiables and the response variable and in identifying gaps in the data points as 
well as outlying data points. Scatter plots of each predictor variable against each of the other 
predictor variables are helpful for studying the bivariate relationships among the predictor 
variables and for finding gaps and detecting outliers. 

Analysis is facilitated if tl1ese scatter plots are assembled in a scatter plot matrix, such 
as in Figure 6.4. In this figure, the Y variable for anyone scatter plot is the name found in 

(a) Scatter Plot Matrix 

.0 " w • • 

SALES 

TARGTPOP 

.. DISPOINC 

(b) Correlation Matrix 

SALES TARGTPOP DISPOINC 

SALES 1.000 
TARGTPOP 
DISPOINC 

.945 
1.000 

.836 

.781 
1.000 
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its row, and the X variable is the name found in its column. Thus, the scatter plot matrix in 
Figure 6.4 shows in the first row the plols of Y (SALES) against X I (TARGE1POP) and 
X2 (DISPOINC), of XI against Y and X2 in the second row, and of X2 against Y and XI 
in the third row. These variables are described on page 236. Alternatively, by viewing the 
first column, one Can compare the plots of X I and X2 each against Y, and similarly for the 
other two columns. A scatter plot matrix facilitates the study of the relationships among 
the variables by comparing the scatter plots wi thin a row or a column. Examples in this and 
subsequent chapters will illustrate the usefulness of scatter plot matrices. 

A complement to the scatter plot matrix that may be useful at times is the correlation ma­
trix. This matrix contains the coefficients of simple correlation rYl, rY2, ... , rY,p_1 between 
Y and each of the predictor variables, as well as all of the coefficients of simple correlation 
among the predictor variables-rl2 between XI and X2 , r(3 between XI and X3 , etc. The 
format of the correlation matrix follows that of the scatter plot matrix: 

1.. 

rn rY2 

'Y'H] 1 rl2 rl,p-l 
(6.67) 

rl,p-l r2.p-1 1 

Note that the correlation matrix is symmetric and that its main diagonal contains Is because 
the coefficient of correlation between a variable and itself is I. Many statistics packages 
provide the correlation matrix as an option. Since this matrix is symmetric, the lower (or 
upper) triangular block of elements is frequently omitted in the output. 

Some interactive statistics packages enable the USer to employ brushing with scatter plot 
matrices. When a point in a scatter plot is brushed, it is given a distinctive appearanCe on the 
computer screen in each scatter plot in the matrix. The case corresponding to the brushed 
point may also be identified. Brushing is helpful to see whether a case that is outlying in 
one scatter plot is also outlying in some or all of the other plots. Brushing may also be 
applied to a group of points to see, for instance, Whether a group of caSeS that does not fit 
the relationship for the remaining caseS in one scatter plot also follows a distinct pattern in 
any of the other scatter plots. 

Three-Dimensional Scatter Plots 
Some interactive statistics packages provide three-dimensional scatter plots or point clouds, 
and permit spinning of these plots to enable the viewer to See the point cloud from different 
perspectives. This can be very helpful for identifying patterns that are only apparent from 
certain perspectives. Figure 6.6 O'n page 238 illustrates a three-dimensional scatter plot and 
the use of spinning. 

R~sidual Plots 
A plot of the residuals against the fitted values is useful for assessing the appropriateness of 
the multiple regression function and the constancy of the variance of the error terms, as well 
as for providing information about outliers, just as for simple linear regression. Similarly, 
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a plot of the residuals against time or against some other sequence can provide diagnostic 
information about possible correlations between the error terms in multiple regression. Box 
plots and normal probability plots of the residuals are useful for examining whether the 
error terms are reasonably normally distributed. 

In addition, residuals should be plotted against each of the predictor variables. Each of 
these plots can provide further information about the adequacy of the regression function 
with respect to that predictor vaIiable (e.g., whether a curvature effect is required for that 
variable) and about possible variation in the magnitude of the error variance in relation to 
that predictor variable. 

Residuals should also be plotted against imp011ant predictor variables that Were omitted 
from the model, to See if the omitted variables have substantial additiQJ.WI effects On the 
response variable that have not yet been recognized in the regression model. Also, residuals 
should be plotted against interaction terms for potential interaction effects not included in 
the regression model, such as against XI X2 , XI X3 , and X2 X 3 , to See whether some or all 
of these interaction terms are required in the model. 

A plot of the absolute residuals or the squared residuals against the fitted values is useful 
for examining the constancy of the variance of the error terms. If nonconstancy is detected, a 
plot of the absolute residuals or the squared residuals against each of the predictor vaIiables 
may identify one or several of the predictor variables to which the magnitude of the error 
variability is related. 

Correlation Test for Normality 
The correlation test for normality described in Chapter 3 carries forward directly to multiple 
regression. The expected values of the ordered residuals under normality are calculated 
according to (3.6), and the coefficient of correlation between the residuals and the expected 
values under normality is then obtained. Table B.6 is employed to aSSess whether or not 
the magnitude of the correlation coefficient supports the reasonableness of the normality 
assumption. 

Brown-Forsythe Test for Constancy of Error Variance 
The Brown-Forsythe test statistic (3.9) for assessing the constancy of the error variance can 
be used readily in multiple regression when the error variance increases or decreases with 
one of the predictor variables. To conduct the Brown-Forsythe test, we divide the data set 
into two groups, as for simple linear regression, where one group consists of cases where 
the level of the predictor variable is relatively low and the other group consists of cases 
where the level of the predictor variable is relatively high. The Brown-Forsythe test then 
proceeds as for simple linear regression. 

Breusch-Pagan Test for Constancy of Error Variance 
The Breusch-Pagan test (3.11) for constancy ofthe error variance in multiple regression is 
carried out exactly the same as for simple linear regression when the elTor variance increases 
or decreases with one of the predictor variables. The squared residuals are simply regressed 
against the predictor vaIiable to obtain the regression sum of squares SSR*, and the test 
proceeds as before, using the elTor sum of squares SSE for the full multiple regression 
model. 
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When the error variance is a function of more than one predictor variable, a multiple 
regression of the squared residuals against these predictor variables is conducted and the 
regression sum of squares SSR* is obtained. The test statistic again UseS SSE for the full 
multiple regression model, but now the chi-square distribution involves q degrees of free­
dom, where q is the number of predictor variables against which the squared residuals are 
regressed. 

F Test for Lack of Fit 
The lack of fit F test described in Chapter 3 for simple linear regression can be carried Over 
to test whether the mUltiple regression response function: .;" 

E{Y} = fJo + fJ1X1 + ... + fJp-1Xp- 1 

is an appropriate response surface. Repeat observations in multiple regression are~eplicate 
observations on Y corresponding to levels of each of the X variables that are constant from 
trial to trial. Thus, with two predictor variables, repeat observations require that X I and X 2 

each remain at given levels from trial to trial. 
Once the ANOVA table, shown in Table 6.1, has been obtained, SSE is decomposed into 

pure error and lack of fit components. The pure error sum of squares SSPE is obtained by first 
calculating for each replicate group the sum of squared deviations of the Y observations 
around the group mean, where a replicate group has the same values for each of the X 
variables. Let c denote the number of groups with distinct sets of levels for the X variables, 
and let the mean of the Y observations for the jth group be denoted by f j. Then the sum 
of squares for the jth group is giVen by (3.17), and the pure error sum of squares is the sum 
of these sums of squares, as given by (3.16). The lack of fit sum of squares SSLF equals the 
difference SSE - SSPE, as indicated by (3.24). 

The number of degrees of freedom associated with SSPE is n - c, and the number of 
degrees of freedom associated with SSLF is (n - p) - (n - c) = c - p. Thus, for testing 
the alternatives: 

Ho: E{Y} = fJo + fJ1X1 + ... + {Jp-1Xp- 1 

Ha: E{Y} =f. fJo + fJ1X1 + ... + fJp-1Xp-1 
(6.68a) 

the appropriate test statistic is: 

F* = SSLF -7 SSPE = MSLF 
c- p n-c MSPE 

(6.68b) 

Where SSLF and SSPE are given by (3.24) and (3.16), respectively, and the appropriate 
decision rule is: ' 

Comment 

If F* S F(1 - ex; c - p, n - ~), conclude Ho 

If F* > F(l - ex; c - p, n - c), conclude Ha 
(6.68c) 

When replicate observations are not available, an approximate lack of fit test can be conducted 
if there are cases that have similar X/r vectors. These cases are grouped together and treated as 
pseudoreplicates, and the test for lack of fit is then carried out using these groupings of similar 
cases. • 
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Remedial Measures 
The remedial measures described in Chapter 3 are also applicable to multiple regression. 
When a more complex model is required to recognize curvature or interaction effects, the 
multiple regression model can be expanded to include these effects. For example, X~ might 
be added as a variable to take into account a curvature effect of X2 , or XIX} might be 
added as a variable to recognize an interaction effect between XI and X3 on the response 
variable. Alternatively, transformations on the response and/or the predictor variables can 
be made, following the principles discussed in Chapter 3, to remedy model deficiencies. 
Transformations on the response variable Y may be helpful when the distributions ofthe error 
terms are quite skewed and the variance of the error terms is not constant. Transformations 
of some of the predictor variables may be helpful when the effects,flf" these variables are 
curvilinear. In addition, transformations on Yandlor the predictor variables may be helpful 
in eliminating or substantially reducing interaction effects. 

As with simple linear regression, the usefulness of potential transformations needs to be 
examined by means of residual plots and other diagnostic tools to determine whether the 
multiple regression model for the transformed data is appropriate. 

Box-Cox Transformations. The Box-Cox procedure for determining an appropriate 
power transformation on Y for simple linear regression models described in Chapter 3 
is aL.,o applicable to multiple regression models. The standardized variable Win (3.36) is 
again obtained for different values of the parameter A and is now regressed against the set 
of X variables in the multiple regression model to find that value of A that minimizes the 
error sum of squares SSE. 

Box and Tidwell (Ref. 6.1) have also developed an iterative approach for ascertaining 
appropriate power transformations for each predictor variable in a multiple regression model 
when transformations on the predictor variables may be required. 

6.9 An Example-lVlultiple Regression with Two 
Predictor Variables 

Setting 

In this section, we shall develop a multiple regression application with two predictor vari­
ables. We shaH illustrate several diagnostic procedures and several types ofinferences that 
might be made for this application. We shall set up the necessary calculations in matrix 
format but, for ease of viewing, show fewer significant digits for the elements of the matrices 
than are used in the actual calculations. 

Dwaine Studios, Inc., operates portrait studios in 21 cities of medium size. These studios 
specialize in p0l1raits of children. The company is considering an expansion into other 
cities of medium size and wishes to investigate whether sales (Y) in a community can be 

predicted from the number of persons aged 16 or younger in the community (XI) and the 
per capita disposable personal income in the community (X2 ). Data on these variables for 
the most recent year for the 21 cities in which Dwaine Studios is now operating are shown 
in Figure 6.5b. Sales are expressed in thousands of dollars and are labeled Yor SALES; 
the number of persons aged 16 or younger is expressed in thousands of persons and is 



FIGURE 6.5 
SYSTAT 
Multiple 
Regression 
Output and 
Basic 
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Studios 
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(a) Multiple Regression Output 
DEP VAR, SALES N, 21 MULTIPLE R, 0.957 SQUARED MULTIPLE R, 

0.917 
ADJUSTED SQUARED MULTIPLE R, .907 STANDARD ERROR OF ESTIMATE, 

11.0074 

VARIAB[£ COEFFICIENT STD ERRDR sm COEF TOrnRANCE 

CONSTANT -68.8571 60.0170 0.0000 
TARGTPOP 
DISPOINC 

1.4546 
9.3655 

0.2118 
4.0640 

0.7484 0.3898 
0.2511 0.3896 

ANALYSIS OF VARIANCE 

T 

-1.1473 

6.8682 
2.3045 

SOURCE SUM-DF-SQUARES DF MEAN-SQUARE F-RATIO 

P(2 TAIL) 

0.2663 
0.0000 
0.0333 

REGRESSION 
RESIDUAL 

24015.2821 12007.6411 
121.1626 

99.1035 0.0000 
2180.9274 18 

INVERSE (X' X) 

29.7289 
0.0722 0.00037 

-1.9926 -0.0056 0.1363 

CASE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14~ 

IS, 
16 
17 
18 
19 
20 
21 

(b) Basic Data 
XI X2 Y FITTED RESIDUAL 

68.5 16.7 174.4 187.184 -12.7841 
45.2 16.8 164.4 154.229 10.1706 
91.3 18.2 244.2 234.396 9.8037 
47.8 16.3 154.6 153.329 1.2715 
46.9 17.3 181.6 161.3S5 20.2151 
66.1 18.2 207.5 197.741 9.7586 
49.5 15.9 152.8 152.055 0.7449 
52.0 17.2 163.2 167.867 -4.6666 
48.9 16.6 145.4 157.738 -12.3382 
38.4 16.0 137.2 136.846 0.3540 
67.9 18.3 241.9 230.387 11.5126 

72.8 17.1 191.1 197.185 -6.0649 
88.4 17.4 232.0 222.686 9.3143 
42.9 15.8 145.3 141.518 3.7816 

52.5 17.B 161.1 174.213 -13.1132 

85.7 18.4 209.7 228.124 -18.4239 
41.3 16.5 146.4 145.747 0.6530 
51.7 16.3 144. 0 ~159. 001 -15.0013 
89.6 18.1 232.6 230.987 1.6130 
82.7 19.1 224.1 230.316 -6.2160 
52.3 16.0 166.5 157.064 9.4356 

labeled Xl or TARGTPOP for target population; and per capita disposable personal income 
is expressed in thousands of dollars and labeled X2 or DISPOINC for disposable income. 

The first-order regression model: 

(6.69) 

with normal error terms is expected to be appropriate, on the basis of the SYGRAPH 
scatter plot matrix in Figure 6.4a. Note the linear relation between target population and 
sales and between disposable income and sales. Also note that there is more scatter in the 
latter relationship. Finally note that there is also some linear relationship between the two 
predictor variables. The correlation matrix in Figure 6.4b bears out these visual impressions 
from the scatter plot matrix. 

A SYGRAPH plot of the point clo~d is shown in Figure 6.6a. By spinning the axes, We 
obtain the perSpective in Figure 6.6b which supports the tentative conclusion that a response 
plane may be a reasonable regression function to utilize here. 

Basic Calculations 
The X and Y matrices for the Dwaine Studios example are as follows: 

68.5 

45.2 

52.3 

16.71 16.8 

16.0 l 
~::::l y= 

166.5 

(6.70) 
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FIGURE 6.6 SYGRAPH Plot of Point Cloud before and after Spinning-Dwaine Studios Exa 
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[i 
68.5 16. 

X'h [6:5 1 5;3] 45.2 16. 
45.2 

16.7 16.8 16.0 
52.3 16. 

[ 2\.0 1,302.4 3600] 
X'X = 1,302.4 87,707.9 22,609.2 

360.0 22,609.2 6,190.3 

X'Y~ [6:5 
1 

1 ] [:~~l 45.2 52.3 . 

16.7 16.8 16.0 . 
166.5 

[ 3.8W] 
X'V = 249,643 

66,073 
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3. 

Using (5.23), we obtain: 

[ 

21.0 

(X'X)-l = 1,302.4 

360.0 

1,302.4 360.0 

87,707.9 22,609.2 

22,609.2 6,190.3 

(X/X)-I = .0722 .00037 -.0056 
[ 

29.7289 .0722 -1.9926] 

-l.9926 -.0056 .1363 
:;., 

]

-1 

(6.73) 

Algebraic Equivalents. Note that X'X for the first-order regression model (6.69) with 
two predictor variables is: 

or: 

I:: Xii 

I:: X;I 

I:: Xi2 Xil 

For the Dwaine Studios example, we have: 

n = 21 

[

1 Xu X12] 
1 X21 X22 

~ ;1l1 ;1l2 

LXii = 68.5 + 45.2 + ... = 1,302.4 

L Xil X i2 = 68.5(16.7) + 45.2(16.8) + ... = 22,609.2 

etc. 

These elements are found in (6.71). 

(6.74) 

Also note that X'V for the first-order regression model (6.69) with two predictor 
variables is: 

[ 

1 1 

X'V = XlI X21 
XI2 - X 22 

For the Dwaine Studios example, we have: 

L Y; = 174.4+'1~.4+ ... = 3,820 

LXii Y; = 68.5(174.4) + 45.2(164.4) + ... = 249,643 

L XnY; = 16.7(174.4) + 16.8(164.4) + ... = 66,073 

These are the elements found in (6.72). 

(6.75) 
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Estimated Regression Function 

FIGURE 6.7 
S-Plus Plot of 
Estimated 
Regression 
Surface-
Dwaine Studios 
Example. 

The least squares estimates b are readily obtained by (6.25), using our basic calculations 
in (6.72) and (6.73): 

[ 

29.7289 

b = (X'X)-IX'y = .0722 

-1.9926 

.0722 -1.9926] 

.00037 - .0056 

- .0056 .1363 
[ 

3,820] 
249,643 

66,073 

which yields: 

[

-68.857] 
1.455 

9.366 

(6.76) 

and the estimated regression function is: 

y = -68.857 + 1.455 X I + 9.366X2 

A three-dimensional plot of the estimated reg~~ssion function, with the responses SUper­
imposed, is shown in Figure 6.7. The residuals are represented by the small vertical lines 
connecting the responses to the estimated regression surface. 

This estimated regression function indicates that mean sales are expected to increase by 
1.455 thousand dollars when the target population increases by 1 thousand persons aged 
16 years or younger, holding per capita disposable personal income constant, and that mean 
sales are expected to increase by 9.366 thousand dollars when per capita income increases 
by 1 thousand dollars, holding the target population constant. 

Figure 6.5a contains SYSTAT multiple regression output for the Dwaine Studios exam­
ple. The estimated regression coefficients are shown in the column labeled COEFFICIENT; 
the output shows one more decimal place than we have given in the text. 

The SYSTAT output also contains the inverse of the X'X matrix that we calculated 
earlier; only the lower portion of the symmetric matrix is shown. The results are the same 
as in (6.73). 

300 

250 

V) 

~ 

'" Vl 200 

150 
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Algebraic Version of Normal Equations. The normal equations in algebraic form fo 
the caSe of two predictor variables can be obtained readily from (6.74) and (6.75). We have 

(X'X)b= X'y 

from which we obtain the normal equations: 

L Yi = nbo + b l L Xii + b2 L Xi2 

LXilYi = boLXil +b1L X71 +b2LXi1Xi2 

L X;zYi = bo L X;z + b l L Xil Xi2 + b2 L X72 

Fitted'Values and Residuals 

(6.77) 

To examine the appropriateness of regression model (6.69) for the data at hand, We require 
the fitted values it and the residuals ej = Yi - it. We obtain by (6.28): 

[1.1 = [! 
Further, by (6.29) we find: 

68.5 

45.2 

52.3 

¥=Xb 

16.7] [187.2] 16.8 [-68.857]_ 154.2 
· 1.455 - . · . 
· 9.366 . 

16.0 157.1 

e=¥-¥ 

[::] [:::]-l:~;;j = [-:~~] 
e21 166.5 157.1 9.4 , 

Figure 6. 5b shows the computer output for the fitted values and residuals to more decimal 
places than we have presented. 

nalysis of Appropriateness of Model . 
We begin our analysis of the appropriateness of regression model (6.69) for the Dwaine 
Studios example by considering the plot of the residuals e against the fitted values Y in 
Figure 6.8a. This plot does not suggest any systematic deviations from the response plane, 
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FIGURE 6.8 
SYGRAPH 
Diagnostic 
Plots-Dwaine 
Studios 
Example. 

Multiple Linear Regression 

(a) Residual Plot against Y (b) Residual Plot against Xl 
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(c) Residual Plot against Xz (d) Residual Plot against X1X1 
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nor that the variance of the error terms varies with the level of Y. Plots of the residuals e 
against Xl and X2 in Figures 6.8b and 6.8c, respectively, are entirely consistent with the 
conclusions of good fit by the response function and constant variance of the error terms. 

In multiple regression applications, there is frequently the possibility of interaction ef­
fects being present. To examine this for the Dwaine Studios example, we plotted the resid­
uals e against the interaction term X I X2 in Figure 6.8d. A systematic pattern in this plot 
would suggest that an interaction effect may be present, so that a responSe function of the 
type: 

. might be more appropriate. Figure 6.8d dOeS not exhibit any systematic pattern; hence, nO 

interaction effects reflected by the model term f33X1X2 appear to be present. 



FIGURE 6.9 
Additional 
Diagnostic 
Plots-Dwaine 
Studios 
Example. 

Chapter 6 Multiple Regression I 243 

(a) (b) 

Plot of Absolute Normal Probability Plot 
Residuals against Y 
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Figure 6.9 contains two additional diagnostic plots. Figure 6.9a presents a plot of the 
absolute residuals against the fitted values. There is no indication of nonconstancy of the 
error varianCe. Figure 6.9b contains a normal probability plot of the residuals. The pattern 
is moderately linear. The coefficient of correlation between the ordered residuals and their 
expected values under normality is .980. This high value (the interpolated critical value in 
Table B.6 for n = 21 and ex = .05 is .9525) helps to confirm the reasonableness of the 
conclusion that the error terms are fairly normally distributed. 

Since the Dwaine Studios data are cross-sectional and do not involve a time sequence, 
a time sequence plot is not relevant here. Thus, all of the diagnostics support the Use of 
regression model (6.69) for the Dwaine Studios example. 

Analysis of Variance 
To test whether sales are related to target population and per capita disposable income, we 
require the ANOVA table. The basic quantities needed are: 

Y'y = (174.4 164.4 . . . 166.5] [::::] 

166.5 

= 721,072.40 

(~) Y'JY = ~[174.4 164.4 
n 21 

= (3,820.0)2 = 694,876.19 
21 

I] [174.4] 1 164.4 
· . · . · . 
1 166.5 
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Thus: 

SSTO = y'y - (~) Y'JY = 721,072.40 - 694,876.19 = 26,196.21 

and, from our results in (6.72) and (6.76): 

SSE = y'y - b'X'Y 

= 721,072.40 - [-68.857 1.455 9.366] [24~::~1 
66,073 

= 721,072.40 - 718,891.47 = 2,180.93 

Finally, we obtain by subtraction: 

SSR = SSTO - SSE = 26,196.21 - 2,180.93 = 24,015.28 
," 

These sums of squares are shown in the SYSTAT ANOYA table in Figure 6.5a. AlSo 
shown in the ANOYA table are degrees of freedom and mean squares. Note that three 
regression parameters had to be estimated; hence, 21 - 3 = 18 degrees of freedom are 
associated with SSE. Also, the number of degrees of freedom associated with SSR is 
2-the number of X variables in the modeL 

Test of Regression Relation. To test whether sales are related to target population and 
per capita disposable income: 

Ho: f31 = 0 and f32 = 0 

H,,: not both f31 and f32 equal zero 

we use test statistic (6.39b): 

F* - MSR _ 12,007.64 = 99.1 
- MSE - 121.1626 

Thi~ test statistic is labeled F-RATIO in the SYSTAT output. For ex = .05, we require 
F(.95; 2. 18) = 3.55. Since F" = 99.1 > 3.55, we conclude H", that sales are related to 
target population and per capita disposable income. The P-value for this test is .0000, as 
shown in the SYSTAT output labeled P. 

Whether the regression relati on is useful for making predictions of sales or estimates of 
mean sales still remains to be Seen. 

Coefficient of Multiple Determination. For our example, we have by (6.40): 

7 SSR 24,015.28 
R- = --- = = .917 

SSTO 26,196.21 

Thus, when the two predictor variables, target popUlation and per capita disposable income, 
are considered, the variation in sales is reduced by 91.7 percent. The coefficient of multiple 
determination is shown in the SYSTAT output labeled SQUARED MULTIPLE R. Also 
shown in the output is the coefficient of multiple correlation R = .957 and the adjusted 
coefficient of mUltiple determination (6.42), R~ = .907, which is labeled in the output 
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ADJUSTED SQUARED MULTIPLE R. Note that adjusting for the number of predictor 
variables in the model had only a small effect here on R2. 

Estimation of Regression Parameters 
Dwaine Studios is not interested in the parameter f30 since it falls far outside the scope of 
the model. It is desired to estimate fJl and fJ2 jointly with family confidence coefficient .90. 
We shall USe the simultaneous Bonferroni confidence limits (6.52). 

First, we need the estimated variance-covariance matrix s2{b}: 

8
2{b} = MSE(X'X)-I 

MSE is given in Figure 6.5a, and (X'X)-I was obtained in (6.73)."Hence: 

s2{b} = 121.1626 .0722 
[ 

29.7289 

[

3,602.0 

= 8.748 

-241.43 

-1.9926 

8.748 

.0448 

-.679 

The two estimated variances we require are: 

.0722 -1.9926] 

.00037 -.0056 

-.0056 .1363 

-241.43] 
-.679 

16.514 

s2{bd = .0448 or s{bd = .212 

s2{b2} = 16.514 or s{b2} = 4.06 

(6.78) 

These estimated standard deviations are shown in the SYSTAT output in Figure 6.5a, labeled 
SID ERROR, to four decimal places. 

Next, we require for g = 2 simultaneous estimates: 

B = t[1 - .10/2(2); 18] = t(.975; 18) = 2.101 

The two pairs of simultaneous confidence limits therefore are 1.455 ± 2.101(.212) and 
9.366 ± 2.101 (4.06), which yield the confidence intervals: 

1.01 .:::: fJI .:::: 1.90 

.84.:::: fJ2':::: 17.9 

With family confidence Coefficient .90, we conclude that fJl falls between 1.01 and 1.90 
and that fJ2 falls between .84 and 17.9. I 

Note that the simultaneous confidence intervals suggest that both fJl and fJ2 are positive, 
which is in accord with theoretical expectations that sales should increase with higher target 
population and higher per capita disposable income, the other variable being held constant. . . 

~irn.ation of Mean Response 
Dwaine Studios would like to estimate expected (mean) sales in cities with target population 
Xhl = 65.4 thousand persons aged 16 years or younger and per capita disposable income 
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Xh2 = 17.6 thousand dollars with a 95 percent confidence interval. We define: 

The point estimate of mean sales is by (6.55): 

Yh = X~b = [1 65.4 17.6] [-6~::~~] = 191.1.!1,r 

9.366 

The estimated variance by (6.58), using the results in (6.78), is: 

= 7.656 

or: 

8.748 

.0448 

-.679 

-241.43] [ 1 ] 
-.679 65.4 

16.514 17.6 

For confidence coefficient .95, we need t(.975; 18) = 2.101, and we obtain by (6.59) 
the confidence limits 191.10 ± 2.101 (2.77). The confidence interval for E {Yh } therefore 
IS: 

Thus, with confidence coefficient .95, we estimate that mean sales in cities with target 
population of 65.4 thousand persons aged 16 years or younger and per capita disposable 
income of 17.6 thousand dollars are somewhere between 185.3 and 196.9 thousand dollars. 
Dwaine Studios considers this confidence interval to provide information about expected 
(average) sales in communities of this size and income level that is precise enough for 
planning purposes. 

Algebraic Version of Estimated Variance s2{i".}. Since by (6.58): 

it follows for the case of two predictor variables in a first-order model: 

S2{Yh} = s2{boJ + Xh l S2{bd + Xh2S2{b2} + 2Xh1 S{bo, bd 

+ 2Xh2S{bo, b2} + 2XhIXh2S{bl, b2} (6.79) 
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Prediction Limits for New Observations 

" 

Dwaine Studios as part of a possible expansion program would like to predict sales for two 
neW cities, with the following characteristics: 

City A City B 

Xh1 65.4 53.1 
Xh2 17.6 17.7 

:.lor 

Prediction intervals with a 90 percent family confidence coefficieht are desired. Note that 
the two new cities have characteristics that fall well within the pattern of the 2t cities on 
which the regression analysis is based. 

To determine which simultaneous prediction intervals are best here, we find S as given 
in (6.65a) and B as given in (6.66a) for g = 2 and 1 - ex = .90: 

S2 = 2F(.90; 2, 18) = 2(2.62) = 5.24 S = 2.29 

and: 

B = t[1 - .10/2(2); 18] = t(.975; 18) = 2.101 

Hence, the Bonferroni limits are more efficient here. 
For city A, We USe the results obtained when estimating mean sales, since the levels of 

the predictor variables are the same here. We have from before: 

MSE = 121.1626 

Hence, by (6.63a): 

s2{pred} = MSE + S2{Yh} = 121.1626 + 7.656 = 128.82 

or: 

s{pred} = 11.35 

In similar fushion, we obtain for city B (calculations not shown): 

Yh = 174.15 s{pred} = 11.93 

We previously found that the Bonferroni multiple is B = 2.101. Hence, by (6.66) the simul­
taneous Bonferroni prediction limits with family confidence coefficient .90 are 191.10 ± 
2.101(11.35) and 174.15 ± 2.HH(I1.93), leading to the simultaneous prediction intervals: 

City A: 167.3 :s Yh(ne~) :s 214.9 

City B: 149.1 :s Yh(new) :s 199.2· 

With family confidence coefficient .90, We predict that sales in the two cities will be within 
the indicated limits. Dwaine Studios considers these prediction limits to be somewhat useful 
for planning purposes, but would prefer tighter intervals for predicting sales for a particular 
city. A consulting firm has been engaged to see if additional or alternative predictor variables 
can be found that will lead to tighter prediction intervals. 
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Note incidentally that even though the coefficient of multiple determination, R2 = .917, 
is high, the prediction limits here are not fully satisfactory. This serves as another reminder 
that a high value of R2 does not necessarily indicate that precise predictions can be made. 

Cited 6.1. Box, G. E. P .. ,md P. W. Tidwell. "Transformations of the Independent Variables," Technometrics 

Reference 4 (1962), pp. 531-50. 

Problems 6.1. Set up the X matrix ,md ~ vectOl' for each of the following regl'ession models (assume i == 
1. ." .4): 

a. Y; = f30 + f31 Xii + fh.X iI Xi2 + B; 

b. log Y; = f30 + {31 Xii + f32Xi2 + B; 

6.2. Set up the X matlix and ~ vector for e,lch of the following regression models (assume i == 
I, ... ,5): 

a. Y; = f31 Xii + f32X;2 + {33X;1 + B; 

b . .JY; = f30 + f31 X; I + fh. loglo X;2 + Bi 

6.3. A student stated: "Adding predictOl' variables to a regression model can never reduce R2, so we 
should include ,lll avail<lble predictor v,uiables in the model." Comment. 

6.4. Why is it not meaningful to attach a sign to the coefficient of multiple correlation R, although 
we do so for the coefficient of simple correlation r12? 

6.5. Brand preference. In ,l sm,lll-scale experimental study of the relation between degree ofbnmd 
liking (Y) and moisture content (XI) and sweetness (X2 ) of the product, the following results 
were obtained from the expeliment based on a completely randomized design (dat'l ,He coded): 

i: 2 

Xil : 4 4 
X;2: 2 4 
Y;: 64 73 

3 

4 
2 

61 

14 

10 
4 

95 

lS 

10 
2 

94 

16 

10 
4 

100 

a. Obwin the scatter plot matrix and the con'el,ltion m,ltrix. Wh,lt inform,ltion do these diag­
nostic aids provide here? 

b. Fit leglession model (6.1) to the d,lta. State the estimated regression function. How is hi 
interpreted here? 

c. Obtain the lesiduals ,md prep,lre ,l box plot of the residuals. Wh,lt information does this plot 
provide? 

d. Plot the residuals against Y, XI, X2 , and XI X 2 on separate graphs. Also prepare a normal 
probability plot. Interpret the plots and summ,uize your findings. 

e. Conduct the Breusch-P,lgan test for constancy of the elTor varhmce, assuming log al = 
Yo + YI X;I + Y2 Xi2: use ex = .01. State the altern,ltives, decision rule, ,lnd conclusion. 

f. Conduct a formal test for lack of fit of the first-order regression function; use ex = .01. State 
the altern,ltives, decision rule, and conclusion. 

6.6. Refer to Brand preference Problem 6.5. Assllme that reglession model (6.1) with independent 
normal error terms is appropriate. 

a. Test whether thele is a regression relation, using ex = .0 I. State the ,llternatives, decision 
rule, and conclusion. Wh,lt does your test imply about f31 and f32? 
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b. What is the P-value of the test in part (a)? 

c. Estimate flt and f32jointly by the Bonferroni procedure, using a 99 percent family confidence 
coefficient Interpret your results. 

6.7. Refer to Brand preference Problem 6.5. 

a Calculate the coefficient of multiple determination R2. How is it interpreted here? 

b. Calculate the coefficient of simple determination R2 between Y; and Yi . Does it equal the 
coefficient of multiple determinatiOn in part (a)? 

6.8. Refer to Brand preference Problem 6.5. Assume that regression model (6.1) with independent 
normal error terms is appropriate. 

a. Obtain an interval estimate of E {Y,,} when X"I = 5 and X"2 = 4. Use a 99 percent confidence 
coefficient. Interpret your interval estimate. c< 

b. Obtain a prediction interval for a new observation Y"(new) when X"I = 5 and X"2 = 4. Use a 
99 percent confidence coefficient. 

*6.9. Grocery retailer. A large, national grocery retailer tracks productivity and costs of\ts facilities 
closely. Data below were obtained from a single distribution center for a one-year period. Each 
data point for each variable represents one week of activity. The variables included are the 
number of cases shipped (XI)' the indirect costs of the total labor hours as a percentage (X2 ), 

a qualitative predictor called holiday that is coded 1 if the week has a holiday and 0 otherwise 
(X3), and the total labor hours (Y). 

;; 2 3 50 51 52 

Xil: 305,657 328,476 317,164 290,455 411,750 292,087 
X;2: 7.17 6.20 4.61 7.99 7.83 7.77 
Xi3: ° ° ° ° ° ° Y;: 4264 4496 4317 4499 4186 4342 

a. Prepare separate stem-and-leaf plots for the number of cases shipped Xi I and the indirect 
cost of the total hours Xi2. Are there any outlying cases present? Are there any gaps in the 
data? 

b. The cases are given in consecutive weeks. Prepare a time plot for each predictor variable. 
- What do the plots show? 

c. Obtain the scatter plot matrix and the correlation matrix. What information do these diag­
nostic aids provide here? 

*6.10. Refer to Grocery retailer Problem 6.9. 

a. Fit regression model (6.5) to the data for three predictor variables. State the estim~ted 
regression function. How are b l , b2 , and b3 interpreted here? 

b. Obtain the residuals and prepare a,box plot of the residuals. What information does this plot 
provide? 

c. Plot the residuals against Y, X I, X2 , X3, and X I X2 on separate graphs. Also prepare a normal 
probability plot. Interpret the plots and su~arize your findings. 

d. Prepare a time plot of the residuals. Is there any indication.o1:hat the error terms are correlated? 
Discuss. 

e. Divide the 52 cases into two groups, placing the 26 cases with the smallest fitted values 
Y; into group I and the other 26 cases into group 2. Conduct the Brown-Forsythe test for 
constancy of the error variance, using (){ = .01. State the decision rule and conclusion. 
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*6.11. Refel' to Grocery retailer Problem 6.9. Assume that regression model (6.5) fOi' three predictor 
variables with independent nonnal error terms is appropliate. 

a. Test whethel' there is a regression relation, using level of significance .05. State the alterna­
tives, decision nJle, and conclusion. What does yom' test result imply about fJl' f32, and fJ3? 
What is the P-value of the test? 

b. Estimate fJl and fJ3jointly by the Bonferroni procedure, using a 95 percent family confidence 
coefficient. Interpret your results. 

c. Calculate the coefficient of multiple determination R'l. How is this measm-e interpl-eted hel-e? 

*6.12. Refer to Grocery retailer Problem 6.9. Assume that regl-ession model (6.5) fonhree p1-edictor 
variables with independent normal error tenns is appropriate. 

a. Management desires simultaneous inten'<ll estimates ofthe totallabol' hours for the following 
five typical weekly shipments: ,,,/.'" 

2 3 4 5 

302,000 
7.20 
o 

245,000 
7.40 
o 

280,000 350,000 
7.00 
o 

295,000 
6.70 
1 

-.- 6.90 
o 

Obtain the family of estimates using a 95 percent family confidence coefficient. Employ the 
Working-Hotelling 01' the Bonfemmi p1"ocedure, whichevel' is mOl-e efficient. 

b. FOI' the data in Problem 6.9 on which the regression fit is based, would you consider a 
shipment of 400,000 cases with an indirect percentage of 7.20 on a nonholiday week to be 
within the scope of the model? What about a shipment of 400,000 cases with an indil-ect 
percentage of9.9 on a nonholiday week? Support your answers by p1"eparing a l-elevant plot. 

*6.13. Refer to Grocery retailer Problem 6.9. Assume that regression model (6.5) for three predictor 
vmiables with independent normal el1"Or telms is app1"Opriate. Fom' separate shipments with the 
following chm'acteristics must be processed next month: 

230,000 
7.50 
o 

2 

250,000 
7.30 
o 

3 

280,000 
7.10 
o 

4 

340,000 
6.90 
o 

Management desires p1-edictions of the handling times for these shipments so that the actual 
handling times can be compared with the pl-edicted times to determine whether any are out of 
line. Develop the needed predictions, using the most efficient approach and a family confidence 
coefficient of 95 percent. 

*6.14. Refel' to Grocery retailer Problem 6.9. Assume that l-egression model (6.5) for three predicta' 
variables with independent nonnal en"Or terms is appropriate. Three new shipments are to be 
l-eceived, each with XiII = 282,000, XiII = 7.10, and X lt3 = O. 

a. Obtain a 95 percent pl-ediction interval fOl' the mean handling time fOl' these shipments. 

b. Convert the inteJ:val obtained in part (a) into a 95 percent prediction interval for the total 
labol' hours for the three shipments. 

*6.15. Patient satisfaction. A hospital administrator wished to study the l-elation between patient 
satisfaction (Y) and patient's age (X I, in years), severity of illness (X2, an index), and anxiety 
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level (X3 , an index). The administrator randomly selected 46 patients and collected the data 
presented below, where larger values of Y, X 2 , and X3 are, respectively, associated with more 
s,Hisfaction, increased severity of illness, and more anxiety. 

;: 2 3 44 45 46 

Xil: 50 36 40 45 37 28 
Xi2 : 51 46 48 51 53 46 
Xi3: 2.3 2.3 2.2 2.2 2.1 1.8 
Yi : 48 57 66 68 59 92 

~..r 

a. Prepare a stem-and-Ieaf plot for each of the predictor variables. Are any noteworthy features 
revealed by these plots? 

b. Obtain the scatter plot matrix and the correlation matrix. Interpret these andl.state your 
principal findings. 

c. Fit regression model (6.5) for three predictor variables to the data and state the estimated 
regression function. How is b2 interpreted here? 

d. Obtain the residuals and prepare a box plot of the residuals. Do there appear to be any 
outliers? 

e. Plot the residuals against Y, each of the predictor variables, and each two-factor interaction 
term on separate graphs. Also prepare a normal probability plot. Interpret your plots and 
summarize your findings. 

f. Can you conduct a formal test for lack of fit here? 

g. Conduct the Breusch-Pagan test for constancy of the error variance, assuming log ai
2 = 

Yo + YlXil + Y.lX;z + Y3Xi3; use 0' = .01. State the alternatives, decision rule, and 
conclusion. 

*6.16. Refer to Patient satisfaction Problem 6.15. Assume that regression model (6.5) for three 
predictor variables with independent normal error terms is appropriate. 

a. Test whether there is a regression relation; use 0' = .10. State the alternatives, decision rule, 
and conclusion. What does your test imply about fJl' fJ2, and fJ3? What is the P-value of the 
test? 

b. Obtain joint interval estimates of fJI. fJ2' and fJ3, using a 90 percent family confidence 
coefficient. Interpret your results. 

c. Calculate the coefficient of multiple determination. What does it indicate here? 

*6.17. Refer to Patient satisfaction Problem 6.15. Assume that regression model (6.5) for three 
predictor variables with independent normal error terms is appropriate. 

a. Obtain an interval estimate ofthe mean satisfaction when X/l1 = 35, X/l2 = 45, and X/l3 = 2.2. 
Use a 90 percent confidence coefficient. Interpret your confidence intervaL 

b. Obtain a prediction interval for a new patient's satisfaction when X/l1 = 35, X/l2 = 45, and 
X/l3 = 2.2. Use a 90 percent confidence coefficient. Interpret your prediction interval 

6.18. Commercial properties. A commercial real estate company evaluates vacancy rates, square 
footage, rental rates, and operating expenses for commercial properties in a large metropolitan 
area in order to provide clients with quantitative information upon which to make rental deci­
sions. The data below are taken from 81 suburban commercial properties that are the newest, 
best located, most attractive, and expensive for five specific geographic areas. Shown here are 

Ii 
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;: 

Xil : 

Xi2 : 
Xi3 : 
Xi4: 
Yi : 

the age (XI), operating expenses and taxes (Xl), vacancy rates (X3), total square footage (X4 ), 

<lnd rental rates (Y). 

2 3 79 80 81 

14 16 15 11 14 
5.02 8.19 3.00 11.97 11.27 12.68 
0.14 0.27 0 0.14 0.03 0.03 

123,000 104,079 39,998 254,700 434,746 201,930 
13.50 12.00 10.50 15.00 15.25 14.50 

a. Prepare a stem-and-Ieaf plot for each predictor vmiable. What inf0fl;lation do these plots 
provide? 

b. Obtain the scatter plot matrix and the correlation matrix. Interpret these and state your 
principal findings. 

c. Fit regression model (6.5) for four predictor..-variables to the data. State the estimated 
regression function. 

d. Obtain the residuals and prepare a box plot of the residuals. Does the distribution appear to 
be fairly symmetrical? 

e. Plot the residuals against Y, each predictor variable, and each two-factor interaction tenn on 
separate graphs. Also prepare a normal probability plot. Analyze yom' plots and summalize 
yom' findings. 

f. Can you conduct a fonnal test for lack of fit here? 

g. Divide the 81 cases into two groups. placing the 40 cases with the smallest fitted values t 
into group I and the remaining cases into group 2. Conduct the Brown-Forsythe test for 
constancy of the error variance, using ex = .05. State the decision rule and conclusion. 

6.19. Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) forfour 
predictor variables with independent nQ1111al error terms is approp1iate. 

a. Test whether there is a regression relation; use ex = .05. State the alternatives. decision rule, 
and conclusion. What does your test imply about !31, !32, fJ3, and fJ4? What is the P-value 
of the test? 

b. Estimate fJl, fh., fJ3, and fJ4 jointly by the Bonferroni procedure, using a 95 percent family 
confidence coefficient. Interpret your results. 

c. CalcUlate R2 and interpret this measure. 

6.20. Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) for four 
predictQ1' valiables with independent normal error terms is appropriate. The researcher wishes 
to obtain simultaneous interval estimates of the mean rental rates for four typical properties 
specified as follows: 

2 3 4 

Xl: 5.0 6.0 14.0 12.0 
X2: 8.25 8.50 11.50 10.25 
X3: 0 0.23 0.11 0 
X4: 250,000 270,000 300,000 310,000 

Obtain the family of estimates using a 95 percent family confidence coefficient. Employ the 
most efficient p1·ocedure. 
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621. Refer to Commercial properties Problem 6.18. Assume that regression model (6.5) for four 
predictor variables with independent normal error terms is appropriate. Three properties with 
the following characteristics did not have any rental information available. 

2 3 

Xl: 4.0 6.0 12.0 
X2: 10.0 11.5 12.5 
X3: 0.10 0 0.32 
X4: 80,000 120,000 340,000 

$. 

Develop separate prediction intervals for the rental rates of these properties, using a 95 per­
cent statement confidence coefficient in each case. Can the rental rates of theslthree prop­
erties be predicted fairly precisely? What is the family confidence level for the set of three 
predictions? 

622. For each of the following regression models, indicate whether it is a general linear regres­
sion model. If it is not, state whether it can be expressed in the form of (6.7) by a suitable 
transformation: 

~~=~+~~+~~~~+~~+~ 
b. Y; = Si exp(f3o + f31Xn + fJzx12) 

c. Yi = loglO(f31Xn) + f32Xi2 + Si 

d. Yi = 130 exp(f3, Xn) + Si 

e. ~ = [1 + exp(f3o + f3,Xn + Si)r' 

6.23. (Calculus needed.) Consider the multiple regression model: 

Yi = f31Xn + f32Xi2 + Si i = 1, "" n 

where the Si are uncorrelated, with E{s;} = 0 and a 2{s;} = a 2
• 

a.' State the least squares criterion and derive the least squares estimators of 131 and 132. 

b. Assuming that the Si are independent normal random variables, state the likelihood function 
and obtain the maximum likelihood estimators of 131 and 132. Are these the same as the least 
squares estimators? 

6.24. (Calculus needed.) Consider the multiple regression model: 

Yi = 130 + f31Xn +lf32X ;1 + f33 X i2 + Si 

where the Si are independent N (0, a 2
). 

i = 1, ... , n 

a. State the least squares criterion and derive the least squares normal equations. 

b. State the likelihood function an~ explain why the maxim{dm likelihood estimators will be 
the same as the least squares estimators. 

6.25. An analyst wanted to fit the regression model Yi = ~ + 131 Xii + f32Xi2 + f33Xi3 + Si, 
i = 1, ... , n, by the method of least squares when it is known that 132 = 4. How can the analyst 
obtain the desired fit by using a multiple regression computer program? 

6.26. For regression model (6.1), show that the coefficient of simple determination between Y; and 
Y; equals the coefficient of multiple determination R2. 
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Projects 

627. In a small-scale regression study, the fOllowing data were obtained: 

i: 2 3 4 5 6 

Xil : 7 4 16 3 21 8 
Xi2: 33 41 7 49 5 31 
Y;: 42 33 75 28 91 55 

Assume that regression model (6.1) with independent normal en'or terms is appropriate. Using 
matrix methods, obtain (a) b; (b) e; (c) H; (d) SSR; (e) s2{b}; (f) Yi/ when Xi" = 10, X/J2 = 30; 
(g) s2{YiJ} when X/JI = 10, X/J2 = 30. 

J;:P'" 
628. Refer to the CDI data set in Appendix C.2. You have been asked to ~~luate two alternative 

models for predicting the number of acti ve physicians (Y) in a CD!. Proposed model I includes 
as predictor variables total population (X I), land area (X2 ), and total personal income (X}). 

Proposed model II includes as predictor vcu-iables population density (X I, total population 
divided by land area), percent of population greatef'lhan 64 years old (X2 ), and total personal 
income (X}). 

a. Prepare a stem-and-Ieaf plot for each ofthe predictor variables. What noteworthy information 
is provided by your plots? 

b. Obtain the scatter plot matrix and the correlation matrix for each proposed model. Summarize 
the information provided. 

c. For each proposed model, fit the first-order regression model (6.5) with three predictcr 
variables. 

d. Calculate R2 for each model. Is one model clearly preferable in tenTIS of this measure? 

e. For each model, obtain the residuals and plot them against Y, each of the three predictor 
variables, and each of the two-factor interaction terms. Also prepare a normal probability 
plot for each of the two fitted models. InteqJ1"et your plots and state your findings. Is one 
model clearly preferable in terms of appropriateness? 

6.29. Refer to the CDI data set in Appendix C.2. 

a. For each geographic region, regress the number of serious crimes in a CDI (Y) against 
population density (X" total population divided by land area), per capita personal income 
(X2 ), and percent high school graduates (X3 ). Use first-order regression model (6.5) with 
three predictor variables. State the estimated regression functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 

c. Calculate MSE and R2 for each region. Are these measures similar for the four regions? 
Discuss. 

d. Obtain the residuals for each fitted model and prepare a box plot of the residuals for each 
fitted modeL Interpret your plots and state your findings. 

6.30. Referto the SENIC data set in Appendix C.1.1\vo models have been proposed for predicting the 
average length of patient stay in a hospital (Y). Model I utilizes as pl'edictor variables age (XI)' 
infection risk (X2 ), and availablefacilities and services (X}). Model II uses as predictor variables 
number of beds (X)), infection risk (X2 ), and available facilities and services (X}). 

a. PJ'epare a stem-and-Ieaf plot for each of the predictor variables. What information do these 
plots provide? 

b. Obtain the scatter plot matrix and the correlation matrix for each proposed model. Interpret 
these and state your principal findings. 
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c. For each of the two proposed models, fit first-order regression model (6.5) with three pre­
dictor variables. 

d. Calculate R2 for each modeL Is one model clearly preferable in terms of this measure? 

e. For each model, obtain the residuals and plot them against Y, each of the three predictor 
variables, and each of the two-factor interaction terms. Also prepare a normal probability 
plot of the residuals for each of the two fitted models. Interpret your plots and state your 
findings. Is one model clearly more appropriate than the other? 

6.31. Refer to the SENIC data set in Appendix C.l. 

a. For each geographic region, regress infection risk (Y) against the predictor variables age 
(X,), routine culturing ratio (X2 ), average daily census (X3),,;and available facilities and 
services (X4 ). Use first-order regression model (6.5) with four predictor variables. State the 
estimated regression functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 1. 
c. Calculate MSE and R2 for each region. Are these measures similar for the four regions? 

Discuss. 

d. Obtain the residuals for each fitted model and prepare a box plot of the residuals for each 
fitted model Interpret the plots and state your findings. 

:1 



Chapter 

Multiple Regression II 

In this chapter, we take up some specialized topics that are unique to multiple regression. 
These include extra sums of squares, which are lIseful for conducting a variety of tests about 
the regression coefficients, the standardized version of the multiple regression model, and 
multicollinearity, a condition where the predictor V:'lriables are highly cOlTelated. 

7.1 Extra SUIns of Square~ 

Basic Ideas 

Example 

256 

An extra sum of squares measures the marginal reduction in the error sum of squares 
when one or several predictor variables are added to the regression model, given that other 
predictor variables are already in the model. Equivalently, one can view an extra sum of 
squares as measuring the marginal increase in the regression sum of squares when one or 
several predictor variables are added to the regression model. 

We first utilize an example to illustrate these ideas, and then we present definitions of 
extra sums of squares and discuss a variety of uses of extra sums of squares in tests about 
regression coefficients. 

Table 7. I contains a portion of the data for a study of the relation of amount of body fat 
(Y) to several possible predictor variables, based on a sample of 20 healthy females 25-
34 years old. The possible predictor variables are triceps skinfold thickness (X I), thigh 
circumference (X2), and midarm circumference (X3). The amount of body fat in Table 7.1 
for each of the 20 persons was obtained by a cumbersome and expensive procedure requiring 
the immersion of the person in water. It would therefore be very helpful if a regression 
model wi th some or all of these predictor vmiables could provide reliable esti mates of the 
amount of body fat since the measurements needed for the predictor vadables m'e easy to 
obtain. 

Table 7.2 contains some of the main regression results when body fat (Y) is regressed 
(1) on tIiceps skinfold thickness (X ,) alone, (2) on thigh circumference (X2 ) alone, (3) on 
X, and X 2 only, and (4) on all three predictor variables. To keep track of the regression 
model that is fitted, we shall modify our notation slightly. The regression sum of squares 
when X, only is in the model is, according to Table 7.2£1,352.27. This sum of squares 
will be denoted by SSR( X,). The error sum of squm'es for this model will be denoted by 
SSE(X d; according to Table 7.2:'1 it is SSE(X I) = 143.12. 



TABLE 7.1 
Basic 
Data-Body 
Fat Example. 

TABLE 7.2 
Regression 
Results for 
Several Fitted 
Models-Body 
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Similarly, Table 7.2c indicates that when Xl and X2 are in the regression model, 
the regression sum of squares is SSR(XI> X2) = 385.44 and the error sum of squares is 
SSE (XI> X 2) = 109.95. 

Notice that the error sum of squares when Xl and X2 are in the model, SSE(X}, X2) = 
109.95, is smaller than w hen the model contains only X I> SSE( X I) = 143.12. The difference 
is called an extra sum of squares and will be denoted by SSR(X2IXI): 

Subject 
r 
1 
2 
3 

18 
.19 
20 

Sourte of 
Variation 

Regression 
Error 
Total 

Variable 

Xl 

Source of 
Variation 

Regression 
Error 
Total 

Variable 

X2 

SSR(X2IXI ) = SSE(Xd - SSE(XI , X 2) 

= 143.12 - 109.95 = 33.17 

Triceps Thigh 
circumference 

MfParm 
Skinfold Thickness Circui:i1ference 

Xjf 

19.5 
·24.7 
30.7 

30.2 
'22.7 
25.2 

,XrJ. 

43:1 
49.8' 
51.9 

58.6 
.4~.2 
51.0 

(a)~ Regression of Y o.n )(1 
f~ ~1.49t5+:8572.xl 

~X;~ 

2~.1 
28;2 
37~0 

'24.6 
27:1 
27.5 

,55 df 

352.27 1 
143.12 18 
495.39. 19 

Estimated 
Regression Coefficient 

Estimated 
Stan(fard Deviation 

b l = .8572. sIb,} ='.1288 

(b). Regression of Y on X2 

f = -23.634 +- .8565X2 

55 

3£1.97 
1 J 3.42 
495.39 

Estimated' 
Regre~sion'Coeffident 

b2 = .8565 

df 

1 
18 
19 

E;timated 
Standard Deviation 

s{b2} = .1 TOp 

Body Fat 

~ 
y/ 

11.9 
22.8 
18.7 

25.4 
14.8 
21.1 

M5 

352.27 
7.95 

t* 

6.66 

M5 

381.97 
6.30 

t* 

7.79 

(continued) 
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TABLE 7.2 
(Continued). 

Multiple Linear Regressio/l 

(c) Regression of Y on Xl and X2 
5> = -19.174 + .2224Xl + .6594X2 

Source of 
Variation SS df MS 

Regression 385.44 2 192.72 
Error 109.95 17 6.47 
Total 495.39 19 

Estimated Estimated 
Variable Regression Coefficient Standard Deviation t* 

Xl bl = .2224 s{bl } = .3034.,.,.-?' .73 
X2 b2 = .6594 s{b2} = .2912 2.26 

(d) Regression of Y On XlI X2, and X3 
5> = 117.08+4.334Xl - 2.857X2 - 2.186X3 

Source of 
Variation SS df MS 

Regression 396.98 3 132.33 
Error 98.41 16 6.15 
Total 495.39 19 

Estimated Estimated 
Variable Regression Coefficient Standard Deviation t* 

Xl bl = 4.334 s{bd = 3.016 1.44 
X2 b2 = -2.857 s{b2} = 2.582 -loll 
X3 b3 = -2.186 s{b3} = 1.596 -1.37 

This reduction in the error sum of squares is the result of adding X 2 to the regression model 
when X, is already included in the model. Thus, the extra sum of squares SSR(X1IX,) 
measures the marginal effect of adding X 2 to the regression model when X, is already in 
the model. The notation SSR(X2 IX ,) reflects this additional or extra reduction in the errOr 
sum of squares associated with X2 , given that X, is already included in the model. 

The extra sum ofsquaresSSR(X2 /X I ) equivalently can be viewed as the marginal increase 
in the regression sum of squares: 

SSR(X2 /Xd = SSR(X" X2 ) - SSR(X,) 

= 385.44 - 352.27 = 33.17 

The reason for the equivalence of the marginal reduction in the error sum of squares and 
the marginal increase in the regression sum of squares is the basic analysis of variance 
identity (2.50): 

SSTO = SSR + SSE 

Since SSTO measures the variability of the Yj observations and hence does not depend on 
the regression model fitted, any reduction in SSE implies an identical increa<;e in SSR. 
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We can consider other extra sums of squares, such as the marginal effect of adding X 3 to 
the regression model when X, and X2 are already in the model. We find from Tables 7.2c 
and 7.2d that: 

or, equivalently: 

SSR(X3/X" X 2) = SSE(X" X2) - SSE(X" X 2, X3) 

= lO9.95 - 98.41 = 11.54 

SSR(X3/X" X 2) = SSR(X" X2, X3) - SSR(XI> X2) 

= 396.98 - 385.44 = 11.54 . 
"" 

We can even consider the marginal effect of adding several variables, such as adding 
both X2 and X3 to the regression model already containing X, (see Tables 7.2a and 7.2d): 

l, 

or, equiValently: 

SSR(X2, X3/X,) = SSE(X,) - SSE(X" X2, X 3 ) 

= 143.12 - 98.41 = 44.71 

SSR(X2, X3/X,) = SSR(X" X2, X3) - SSR(X,) 

= 396.98 - 352.27 = 44.71 

We assemble now our earlier definitions of extra sums of squares and provide some addi­
tional oneS. As we noted earlier, an extra sum of squares always involves the difference 
between the error sum of squares for the regression model containing the X variable(s) 
already in the model and the error sum of squares for the regression model containing both 
the original X variable(s) and the new X variable(s). Equivalently, an extra sum of squares 
involves the difference between the two corresponding regression sums of squares. 

Thus, we define: 

SSR(XdX2) = SSE(X2) - SSE(X" X 2) (7.la) 

or, equivalently: 

SSR(XdX2) = SSR(X" X 2) - SSR(X2) (7.lb) 

If X2 is the extra variable, We define: 

(7.2a) 

or, equivalently: 

(7.2b) 

Extensions for three or more variables are straightforward. For example, We define: 

(7.3a) 

or: 

(7.3b) 
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and: 

(7.4a) 

or: 

SSR(X2 , X,IX I ) = SSR(X I , X2 , X 3 ) - SSR(Xil (7.4b) 

Decomposition of SSR into Extra Sums of Squares 
In multiple regression, unlike simple linear regression, we can obtain a variety of decom­
positions of the regression sum of squares SSR into extra slims of squares. Let us consider 
the caSe of two X variables. We begin with the identity (2.50) for variable X I: 

(7.5) 

where the notation now shows explicitly that X I is the X variable in the model. Replacing 
SSE(X,) by its equivalent in (7.2a), we obtain: 

(7.6) 

We now make use of the same identity for multiple regression with two X variables as 
in (7.5) for a single X variable, namely: 

(7.7) 

Solving (7.7) for SSE(X
" 

X2 ) and using this expression in (7.6) lead to: 

(7.8) 

Thus, we have decomposed the regression sum of squares SSR(X I, X2) into two marginal 
components: (I) SSR(X ,), measuring the contribution by including XI tUone in the model, 
and (2) SSR(X2IX I ), measuring the additional contribution when X2 is included, given that 
X I is already in the model. 

Of course, the order of the X variables is arbitrary. Here, We can also obtain the 
decomposition: 

SSR(X I, X 2) = SSR(X 2) + SSR(X II X 2) (7.9) 

We show in Figure 7.1 schematic representations of the two decompositions of 
SSR(X I , X2) for the body fat example. The total bar on the left represents SSTO and 
presents decomposition (7.9). The unshaded component of this bar is SSR(X2), and the 
combined shaded area represents SSE(X2). The latter area in turn is the combination of the 
extra sum of squares SSR(XdX2) and the error sum of squares SSE(X I , X2) when both 
X I and X 2 are included in the model. Similarly, the bar on the right in Figure 7.1 showS 
decomposition (7.8). Note in both cases how the extra sum of squares can be viewed either 
as a reduction in the error sum of squares or as an increase in the regression sum of squares 
when the second predictor variable is added to the regression model. 

When the regression model contains three X variables, a variety of decompositions of 
SSR(X" X2 , X3 ) can be obtained. We illustrate three of these: 

SSR(X I , X2 , X,) = SSR(Xd + SSR(X2IXd + SSR(X3 IX I , X2) 

SSR(X I , X2 , X3 ) = SSR(X2) + SSR(X3 IX2) + SSR(X I IX2, X3 ) 

SSR(X I , X2 • X3) = SSR(Xd + SSR(X2, X 3 IX I ) 

(7.10a) 

(7.10b) 

(7.1Oe) 
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FIGURE 7.1 Schematic Representation of Extra Sums of Squares-Body Fat Example. 

ssm = 495.39 ssm = 495.39 

SSR(X2) = 381.97 SSR(Xl1 Xz) = 385.44 
SSR(Xl) = 352.27 

-of.> 

SSR(Xllxz) = 3.47 ---+-
-+- SSR(XzIX1) = 33.17 

L 

SSE(Xz) = 11 3.42 SSE(Xl1 Xz) = 109.95 
SSE(Xl ) = 143.12 

~ 

TABLE 7.3 
Example of 
ANOVA Table 
witb 
Decomposition 
IiSSRfor 
Three X 
Variables. 

Source of 
Variation 55 elf M5 

Regression SSR(Xl1 XZI X3) 3 MSR(Xl, XZI X3) 
Xl SSR(Xl ) 1 MSR(Xl) 
XzIX, SSR(XzIX1)" . 1 MSR(XzIX1) 
X31Xl1 Xz SSR(X31 Xi I Xz) 1 MSi?(X3IXl1 Xz) 
Error SSE(X'li XZ/ X3) n-4 MSE(Xl1 XZI X3) 
Total SSTQ n-l 

It is obvious that the number of possible decompositions becomes vast as the number of 
X vari~bles in the regression model increaseS. 

ANOVA Table Containing Decomposition of SSR 
ANOVA tables can be constructed containing decompositions of the regression sum of 
squares into extra sums of squareS. Table 7.3 contains the ANOVA table decomposition 
for the caSe of three X variables often uSed in regression packages, and Table 7.4 contains 
this same decomposition for the body fat example. The decomposition involves single extra 
X variables. I 

Note that each extra sum of squares involving a single extra X variable has associated 
with it one degree of freedom. The resulting mean squares are constructed as usuaL For 
example, MSR(X2 IX1) in Table 7.3 is obtained as follows: 

MSR(X:tIXI) = SSR(X2 IX1) 

I 

Extra sums of squares involving two extra X variables, such as SSR(X2 , X3 IX1), have 
two degrees of freedom associated with them. This follows because We can expreSS such 
an extra sum of squares as a sum of two extra sums of squares, each associated with one 
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TABLE 7.4 
ANOVA Table 
with 
Decomposition 
of SSR-Body 
Fat Example 
with Three 
Predictor 
Variables. 

Multiple Linear Regression 

Source of 
Variation SS df MS 

Regression 396.98 3 132.33 
X, 352.27 352.27 
XzIX, 33.17 33.17 
X3 IX" XZ 11.54 1 11.54 
Error 98.41 16 6.15 
Total 495.39 19 

·o~ 

degree of freedom. For example, by definition of the extra sums of squlires, we have: 

(7.11) 

The mean square MSR(X2 , X, IX I ) is therefore obtained as follows: 

Many computer regression packages provide decompositions of SSR into single-degree­
of-freedom extra sums of squares, usually in the order in which the X variables are entered 
into the modeL Thus, if the X variables are entered in the order X" X2 , X3 , the extra Sums 
of squares given in the output are: 

SSR(X I ) 

SSR(X2 IX I ) 

SSR(X3 IX" X 2) 

If an extra sum of squares involving several extra X variables is desired, it can be obtained 
by summing appropriate single-degree-of-freedom extra sums of squares. For instance, to 
obtain SSR(X2 , X3 IX,) in Our earlier illustration, we would utilize (7.11) and simply add 
SSR(X2 IX,) and SSR(X3IX" X 2 ). 

If the extra sum of squares SSR(X" X31X2 ) were desired with a computer package 
that provides single-degree-of-freedom extra sums of squares in the order in which the X 
variables are entered, the X variables would need to be entered in the order X 2, X I, X3 or 
X 2, X 3, X I. The first ordering would give: 

SSR(X2 ) 

SSR(X Ii X 2 ) 

SSR(X3IX" X2 ) 

The sum of the last two extra sums of squares will yield SSR(X" X 3 IX2). 

The reason why extra sums of squares are of interest is that they occur in a variety 
of tests about regression coefficients where the question of concern is whether certain X 
variables can be dropped from the regression modeL We turn next to this uSe of extra sums of 
squares. 
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7.2 Uses of Extra Sums of Squares in Tests 
for Regression Coefficients 

Test whether a Single 13k = 0 
When We wish to test whether the term fJkXk can be dropped from a multiple regression 
model, we are interested in the alternatives: 

Ho: fJk = 0 

Ha: fJk =1= 0 

We already know that test statistic (6.51b): 

* bk 
t =--

s{bd 

is appropriate for this teSt. 
Equivalently, We can USe the general linear test approach described in Section 2.8. We 

;I now show that this approach involves an extra sum of squares. Let US consider the first-order 
regression model with three predictor variables: 

Full model (7.12) 

To test the alternatives: 

(7.13) 

We fit the full model and obtain the error sum of squares SSE(F). We noW explicitly show 
the variables in the full model, as follows: 

The degrees of freedom associated with SSE(F) are dfF = n - 4 since there are four 
parameters in the regression function for the full model (7.12). 

The reduced model when Ho in (7.13) holds is: 

li = fJo + fJl Xii + fJ2Xi2 + 8; 

We next fit this reduced model and obtain: 

Reduced model 

SSE(R) ::::! SSE(XI> X 2 ) 

There are dfR = n - 3 degrees of freedom associate<! with the reduced model. 
The general linear test statistic (2.70): 

F* = SSE(R)'- SSE(F) -7- SSE(F) 

dfR ...?dh dh 

here becomes: 

(7.14) 
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Example 

Note that the difference between the two error sums of squares in the numerator term is the 
extra sum of squares (7.3a): 

Hence the general linear test statistic here is: 

F* = SSR(X3 IX h X2) -:- SSE(X" X2, X 3) = MSR(X3 IX I , X2) 

1 n - 4 MSE(XJ, X 2 , X 3 ) 
(7.15) 

We thus see that the test whether or not tl3 = 0 is a marginal test, given that X I and X2 

are already in the modeL We also note that the extra sum of squares SSR(X3 IX" X2) has 
one degree of freedom associated with it, just as we noted earlier. ",If>-

Test statistic (7.15) shows that we do not need to fit both the full model and the reduced 
model to uSe the general linear test approach here. A single computer run can provide a fit 
of the full model and the appropriate extra sum of squares. 

In the body fat example, we wish to test for the model with all three predictor variables 
whether midarm circumference (X 3) can be dropped from the modeL The test alternatives 
are those of (7.13). Table 7.4 contains the ANOYA results from a computer fit of the full 
regression model (7.12), including the extra sums of squares when the predictor variables 
are entered in the order X" X2 , X 3. Hence, test statistic (7.15) here is: 

F* = SSR(X3IX I , X 2 ) -:- SSE(X" X2, X 3) 

1 n-4 
11.54 98.41 

= -1- -:-~ = 1.88 

For ex = .01, we require F(.99; 1, 16) = 8.53. Since F* = 1.88 :s 8.53, we conclude Ho, 
that X3 can be dropped from the regression model that already contains XI and X2 • 

Note from Table 7.2d that the t* test statistic here is: 

* b3 -2.186 
t = -- = -- = -1.37 

s{b3 } 1.596 

Since (t*)2 = (-1.37)2 = 1.88 = F*, we See that the two test statistics are equivalent, just 
as for simple linear regression. 

Comment 

The F* test statistic (7.15) to test whether or not f33 = 0 is called a partial F test statistic to distinguish 
it from the F* statistic in (6.39b) fol"testing whether all f3k = 0, Le., whetherol"not there is a regression 
relation between Y and the set of X vaI;ables. The latter test is called the overall F test. • 

Test whether Several 13k = 0 
In multiple regression we are frequently interested in whether several terms in the regression 
model can be dropped. For example, we may wish to know whether both tl2X 2 and {lJX3 
can be dropped from the full model (7.12). The alternatives here are: 

Ho: tl2 = tl3 = 0 

HlI : not both tl2 and tl3 equal zero 
(7.16) 
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With the general linear test approach, the reduced model under Ho is: 

Reduced model (7.17) 

and the error sum of squares for the reduced model is: 

SSE(R) = SSE(X,) 

This error sum of squares has d f R = n - 2 degrees of freedom associated with it. 
The general linear test statistic (2.70) thus becomes here: 

* SSE(X,) - SSE(X" X2 , X3) SSE(X" X2 , X3) F= -;----'-----
(n - 2) - (n - 4) n -",4 

Again the difference between the two error sums of squares in the numerator term is an 
extra sum of squares, namely: 

Hence, the test statistic becomes: 

SSR(X2 , X3 IX,) SSE(X" X2 , X3 ) MSR(X2 , X3 IX,) 
F* = -;- = ---'------

2 n - 4 MSE(X" X2 , X3 ) 
(7.18) 

Note that SSR(X2 , X3 IX,) has two degrees of freedom associated with it, as we pointed out 
earlier. 

We wish to test in the body fat example for the model with all three predictor variables 
whether both thigh circumference (X2) and midarm circumference (X3 ) can be dropped 
from the full regression model (7.12). The alternatives are those in (7.16). The appropriate 
extra sum of squares can be obtained from Table 7.4, using (7.11): 

SSR(X2 , X3 IX,) = SSR(X2 IX,) + SSR(X3 IX" X2) 

= 33.17 + 11.54 = 44.71 

Test statistic (7.18) therefore is: 

F* = SSR(X2;X3 IX ,) -;-MSE(X" X
2

, X
3

) 

44.71 
= -2- -;- 6.15 = 3.63 

For ex = .05, we require F(.95; 2, 16) = 3.63. Since F* = 3.63 is at the boundary of the 
decision rule (the P-value of the test statistic is .05), we may wish to make further analyses 
before deciding whether X2 and X3 should be dropped from the regression model that 
already contains X,. 

Comments 
1. For testing whether a single f3k equals zero, two equivalenrtest statistics are available: the t* 

test statistic and the F* general linear test :;tatistic. When testing whether several f3k equal zero, only 
the general linear test statistic F* is available. 

2. General linear test statistic (2.70) for testing whether several X variables can be dropped 
from the general linear regression model (6.7) can be expressed in terms of the coefficients of 
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multiple determination for the full and reduced models. Denoting these by R} and R~, respectively, 
we have: 

F* = R} - R~ -;- 1 - R} 
dfi? -dfr dfle (7.19) 

Specifically for testing the altel11atives in (7.16) for the body fat example, test statistic (7.19) becomes: 

r = R~1123 - R~II -'- 1 - R~il23 
(n - 2) - (n - 4)' n - 4 (7.20) 

.,.p~ 

where R~1123 denotes the coefficient of multiple detelmination when Y is regressed on XI. X2• and 
X3 , and R~II denotes the coefficient when Y is regressed on XI alone. 

We see from Table 7.4 that R~1123 =396.98/495.39 = .80135 and R~iI =352.27/495.39 = .71110. 
Hence, we obtain by substituting in (7.20): 

.80135 - .71110 
F' - -----::---------::---,-

(20 - 2) - (20 - 4) 

I - .80135 6 
--16"--- = 3. 3 

This is the same result as before. Note that R~II cOlTesponds to the coefficient of simple determinatioo 
R2 between Y and X I. 

Test statistic (7.19) is not appropriate when the full and reduced regression models do not contain 
the intercept term 130. In that case, the general linear test statistic in the form (2.70) must be used .• 

7.3 Summary of Tests Concerning Regression Coefficients 

We have already discussed how to conduct several types of tests concerning regression 
coefficients in a multiple regression model. For completeness, we summarize here these 
tests as well as some additional types of testS. 

Test whether All Pk=O 
This is the overall F test (6.39) of whether or not there is a regression relation between the 
response variable Y and the set of X variables. The alternatives are: 

Ho: tll = tl2 = ... = tll'-I = 0 

n,: not all fJk (k = 1, ... , p - 1) equal zero 

and the test statistic is: 

F* = SSR(XJ, ... , XI'_I) -'- SSE(XJ, ... , Xl'-I) 

p-l . n-p 
MSR 

MSE 

If Ho holds, F* ~ F(p - 1, n - p). Large values of F* lead to conclusion Ro. 

(7.21) 

(7.21, 
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Test whether a Single 13k = 0 
This is a partial F test of whether a particular regression coefficient fJk equals zero. The 
alternatives are: 

and the test statistic is: 

Ho: fJk = 0 

Ha: fJk =1= 0 

F* = SSR(XkIX" ... , Xk-l> Xk+l> ... , Xp_') -:- SSE(X" ... , Xp_,) 

1 .n- p 

MSR(XkIX" ... , Xk-l> Xk+l> ... , Xp-l) 

MSE 

';k 

(7.23) 

(7.24) 

If Ho holds, F* ~ F(l, n - p). Large values of F* lead to conclusion Ha.lStatistics 
packages that provide extra sums of squares permit USe of this test without having to fit the 
reduced model. 

An equivalent test statistic is (6.5lb): 

* bk 
t =--

s{bd 
(7.25) 

If Ho holds, t* ~ ten - p). Large values of It*llead to conclusion Ha. 
Since the two tests are equivalent, the choice is usually made in terms of available 

information provided by the regression package output. 

Jest whether Some 13k = 0 
This is another partial F test. Here, the alternatives are: 

Ho: fJq = fJq+, = ... = fJp-, = 0 

Ha: not all of the fJk in Ho equal zero 
(7.26) 

where for convenience, we arrange the model so that the last p - q coefficients are the oneS 
to be tested. The test statistic is: 

F* = SSR(Xq, ... , Xp-lIX1, ... , Xq-l) ...:. SSE(Xl> ... , Xp-l) 

p-q n-p 
MSR(Xq, ... , Xp-lIXl> ... , Xq_,) 

MSE 
(7. 0P) 

If Ho holds, F* ~ F(p - q, n - p). ~ge values of F* lead to conclusion Ha. 
Note that test statistic (7.21) actually encompasSes the two earlier caSeS. If q = 1, the 

test is whether all regression coefficients equal Zero. If q = p - 1, the test is whether a 
single regression coefficient equals zero. Also note that test statistic (7.27) can be calculated 
without having to fit the reduced model if the regression package provides the needed extra 
sums of squareS: 

SSR(Xq, ... , X p-I1X" ... , Xq_,) 

= SSR(XqIXl>"" Xq_,) + ... + SSR(Xp_dXl,"" Xp- 2) (7.28) 
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Other Tests 

TeSt statistic (7.27) can be stated equivalently in terms of the coefficients of multiple 
determination for the full and reduced models when these models contain the intercept term 
flo, as follows: 

R2 - R2 I - R2 
F* = YiI"'I'-1 YII"''l-1 -:- YiI"'I'-1 

p-q n-p 
(7.29) 

where Rh,,,I'-' denotes the coefficient of multiple determination when Y is regressed on 
all X vmiables, and Rt\I ... q_, denotes the coefficient when Y is regressed on X I, ... , Xq_

1 
only. 

When tests about regression coefficients are desired that do not involve testing whether one 
or several flk equal zero, extra sums of squares cannot be used and the general linear test 
approach requires separate fittings of the full and reduced models. For instance, for the full 
model containing three X variables: 

Yi = flo + fll Xii + fl2 Xi2 + fl3 Xi3 + Ci 

we might wish to test: 

Ho: fll = fh 

H,,: fll f= fl2 

Full model (7.30) 

(7.31) 

The procedure would be to fit the full model (7.30), and then the reduced model: 

Reduced model (7.32) 

where flc denotes the common coefficient for fll and fl2 under Ho and Xii + Xi2 is the 
corresponding new X variable. We then use the general F* test statistic (2.70) with I and 
n - 4 degrees of freedom. 

Another example where extra sums of squares cannot be used is in the following test for 
regression model (7.30): 

Ho: fll = 3, fl3 = 5 

Ha: not both equalities in Ho hold 

Here, the reduced model would be: 

Reduced model 

(7.33) 

(7.34) 

Note the new response variable Y - 3X I - 5X 3 in the reduced model, since fll XI andtlJX3 

m'e known constants under Ho. We then USe the general linear test statistic F* in (2.70) with 
2 and n - 4 degrees of freedom. 

7.4 Coefficients of Partial Detennination 

Extra sums of squares are not only USeful for tests on the regression coefficients of a multiple 
regression model, but they m'e also encountered in descriptive ffiea<;ures of relationship called 
coefficients of partial determination. Recall that the coefficient of multiple determination, 
R2, measureS the proportionate reduction in the variation of Y achieved by the introduction 
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of the entire set of X variables considered in the modeL A coefficient of partial determination, 
in contrast, meaSures the marginal contribution of one X variable when all others are already 
included in the modeL 

Two Predictor Variables 
We first consider a first-order multiple regression model with two predictor variables, as 
given in (6.1): 

SSE(X2) measureS the variation in Y when X2 is included in the modeL SSE(XIo X2) 
measures the variation in Y when both Xl and X2 are included i~ the modeL Hence, the 
relative marginal reduction in the variation in Y associated with X\ when X2 is already in 
the model is: 

SSE(X2) - SSE(XJ, X2) 

SSE(X2) 

SSR(XIIX2) 

SSE(X2) 

This measure is the coefficient of partial determination between Y and X I, given that X2 is 
in the modeL We denote this meaSure by R~1i2: 

R2 _ _ SS_E_(_X_2_) _-_S_S_E_(X_I_' _X_2) 
Yl12 - SSE(X2) 

SSR(XI IX2) 

SSE(X2) 
(7.35) 

Thus, R~1i2 meaSureS the proportionate reduction in the variation in Y remaining after X2 

is included in the model that is gained by also including Xl in the model. 
The coefficient of partial determination between Y and X2, given that X I is in the model, 

is defined correspondingly: 

R2 __ SS_R_(_X_21_X_I) 
Y211 - SSE(XI) 

(7.36) 

General Case ,:,",,'f_, . 

The generalization of coefficients of partial determination to three or more X variables in 
the model is immediate. For instance: 

R2 _ SSR(XIIX2, X3) 
Yl123 - SSE(X2, X3) (7.37) 

R2 _ SSR(X2IXJ, X 3 ) 

Y2113 - SSE(Xlo X3) , 
(7.38) 

-R2 _ SSR(X3 IXlo X2) 

Y3112 - SSE(X) , X2) 
(7.39) 

2 SSR(X4 IXJ, X2 , X3 ) 

RY41123'= SSE(XI , X2, X3) (7.40) 

Note that in the subscripts to R2, the entries to the left of the vertical bar show in turn 
the variable taken as the reSponse and the X variable being added. The entries to the right 
of the vertical bar show the X variables already in the modeL 
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Example 

Multiple Lillear Regress/oil 

For the body fat example, we can obtain a variety of coefficients of partial determination. 
Here ar'e three (Tables 7.2 and 7.4): 

R;211 = SSR(X2 IX1) = 33.17 = .232 
SSE(X 1) 143.12 

SSR(X3 IXJ, X2 ) = ~ = .105 
SSE(X I , X2) 109.95 

7 SSR(XdX2) 3.47 
RYI12 = ----- = --- = .031 

SSE(X2 ) 113.42 

We See that when X 2 is added to the regression model containing XI here, the error sum 
of squar'es SSE(X I) is reduced by 23.2 percent. The error sum of squares for the model 
containing both X I and X 2 is only reduced by another 10.5 percent when X 3 is added to the 
model. Finally, if the regression model already contains X2 , adding XI reduces SSE(X2) 
by only 3.1 percent. 

Comments 
I. The coefficients of pallial determination can take on values between 0 and I, as the definitions 

readily indicate. 

2. A coefficient of partial determination can be interpreted as a coefficient ofsimple detelmination. 
Consider a multiple regression model with two X variables. Suppose we regress Y on X} and obtain 
the residuals: 

where Y i (X2 ) denotes the fitted values of Y when X} is in the model. Suppose we further regress XI 
on X2 and obtain the residuals: 

where Xii (X}) denotes the fitted values of XI in the regression of XI on X 2 • The coefficient of simple 
determination R} between these two sets of residuals equals the coefficiem of partial detelmination 
R}112' TIlliS, this coefficient measures the relation between Y and XI when both of these variables 
have been adjusted for their linear relationships to X2 • 

3. The plot of the residuals ei(YIX2 ) against ei (X ilX2) provides a graphical representation of the 
strength of the relationship between Y and X!, adjusted for X 2. Such plots of residuals, called added 
l'ar;nble plots or p[/rtinl regression plots, are discussed in Section 10.1. • 

Coefficients of Partial Correlation 
The square root of a coefficient of partial determination is called a coefficient of partial 
correlation. It is given the same sign as that of the corresponding regression coefficientinthe 
fitted regression function. Coefficients of partial correlation ar'e frequently used in practice, 
although they do not have as clear a meaning as coefficients of partial determination. One 
USe of partial correlation coefficients is in computer routines for finding the best predict~( 
variable to be selected next for inclusion in the regression model. We discuss this uselfi 
Chapter 9. 
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For the body fat example, we have: 

rY211 = -J.232 = .482 

rY3112 = -.J:105 = -.324 

rYI12 = -J.031 = .176 

Note that the coefficients rY211 and rYI12 are positive because we See from Table 7.2c that 
b2 = .6594 and b l = .2224 are positive. Similarly, rY3112 is negative because we See from 
Table 7.2d that b3 = -2.186 is negative. 

Comment 
Coefficients of partial determination can be expressed in terms of simple or other partial correlation 
coefficients. For example: 1-

2 2 (rY2 - rl2r Yl )2 

RY211 = [rY21.1 = ( 2)( 2) 1- rl2 1- rYi 

(7.41) 

R2 _ [ ]2 _ (rY213 - r1213 r Yl13)2 
Y2113 - rY2113 - ( 2) ( 2) 1 - r l213 I - rYll3 

(7.42) 

where ry I denotes the coefficient of simple correlation between Y and X I, rl2 denotes the coefficient 
of simple correlation between X I and X2, and so on. Extensions are straightforward. • 

7:5 Standardized Multiple Regression Model 

A standardized form of the general multiple regression model (6.7) is employed to control 
roundoff errorS in normal equations calculations and to permit comparisons of the estimated 
regression coefficients in common units. 

lJoundoff Errors in Normal Equations Calculations 

. - , 

The results from normal equations calculations can be sensitive to rounding of data in 
intermediate stages of calculations. When the number of X variables is small-say, three 
or less-roundoff effects can be controlled by carrying a sufficient number of digits in 
intermediate calculations. Indeed, most computer regression programs USe double-precision 
arithmetic in all computations to control roundoff effects. Still, with a large number of 
X variables, serious roundoff effects can arise despite the use of many digits in intermediate 
calculations. 

Roundoff errors tend to enter normal equatio'ns calculations primarily when the inverse 
ofX'X is taken. Of course, any errorS in (X'X)-l may be magnified in calculating band 
other subsequent statistics. The danger of serious roundoff errors in (X'X)-l is particularly 
great when (1) X'X has a determinant that is, close to zero and/or (2) the elements ofX'X 
differ substantially in order of magnitude. The first condition arises when some or all of the 
X variables are highly intercorrelated. We shall discuss this situation in Section 7.6. 

The second condition arises when the X variables have substantially different magnitudes 
so that the entries in the X'X matrix COver a wide range, say, from 15 to 49,000,000. A 
solution for this condition is to transform the variableS and thereby reparameterize the 
regression model into the standardized regression model. 
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The transformation £0 obtain the standardized regression model, called the correlation 
fr(IIlSfOrt1Ultio/l, makes all entries in the X'X matrix for the transformed vmiables fall between 
-I and I inclusive, so that the calculation of the inverse matrix becomes much less Subject 
to roundoff errors due to dissimilar orders of magnitudes than with the original variables. 

Comment 
In order to avoid the computational difficulties inherent in inverting the X'X matrix, many statistical 
packages use an entirely different computational approach that involves decomposing the X mattix into 
a product of several matrices with special propenies. The X matrix is often first modified by centering 
each of the variables (i.e., using the deviations around the mean) to further improve computational 
accuracy. Information on decomposition strategies may be found in texts on statistical ""mputing, 
such as Reference 7.1. • 

lack of Comparability in Regression Coefficients 
A second difficulty with the nonstandardized multiple regress~on model (6.7) is that ordinar­
ily regression coefficients cannot be compared because of differences in the unit'> involved. 
We cite two examples. 

I. When considering the fitted response function: 

y = 200 + 20,000X, + .2X2 

one may be tempted to conclude that X I is the only important predictor vmiable, and that 
X 2. has little effect on the response variable Y. A little reflection should make One wary of 
this conclusion. The reason is that we do not know the units involved. Suppose the units are: 

Y in dollars 
X I in thousand dollars 
X2 in cents 

In that event, the effect on the mean response of a $1,000 increase in X I (i.e., a I-unit 
increase) when X2 is constant would be an increase of $20,000. This is exactly the same 
as the effect of a $1,000 increase in X 2. (i.e., a 1 OO,OOO-unit increase) when X I is constant, 
despite the difference in the regression coefficients. 

2. In the Dwaine Studios example of Figure 6.5, we cannot make any comparison be­
tween b l and b2 because X I is in units of thousand persons aged 16 or younger, whereas 
X2 is in units of thousand dollars of per capita disposable income. 

Correlation Transformation 
Use of the correlation transformation helps with controlling roundoff errors and, byexpress­
ing the regression coefficients in the same units, may be of help when these coefficients 
are compared. We shall first describe the correlation transformation and then the resulting 
standardized regression model. , 

The con-elation transformation is a simple modification of the usual standw·dization ofa 
variable. Standardizing a variable, a'> in (A.37), involves centering and scaling the variable~ 
Centeril1g involves taking the difference between each observation and the mea~ of ~ 
observations for the variable; scaling involves expressing the centered observations m units 
ofthe standard deviation of the observations for the variable. Thus, the usual standardizations 
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of the response variable Y and the predictor variables Xl, ... , X p _ 1 are as follows: 

Yi - Y 
(7.43a) 

Sy 

(k = 1, ... , p - 1) (7.43b) 

where Y and Xk are the respective means of the Y and the Xk observations, and Sy and Sk 
are the respective standard deviations defined as follows: 

Sy = 
n-l 

(7.43c) 

(k=l, ... ,p-l) (7.43d) 

The correlation transformation is a simple function of the standardized variables in 
(7.43a, b): 

(7.44a) 

(k=l, ... ,p-l) (7.44b) 

St~ndardized Regression Model 
The regression model with the transformed variables Y* and Xi; as defined by the correlation 
transformation in (7.44) is called a standardized regression model and is as follows: 

(7.45) 

The reason why there is no intercept parameter in the standardized regression model (7.45) is 
that the least squares or maximum likelihood calculations always would lead to an estimated 
intercept term of zero if an intercept parameter were present in the model. 

It is easy to show that the parameters fJt, ... , fJ;-1 in the standardized regression model 
and the original parameters fJo, fJl, ... , fJp-1 in the ordinary multiple regression model (6.7) , 
are related as follows: 

fJk = (::) fJ: (k = 1, ... , p..!... 1) (7.46a) 

fJo = Y - fJIX I - ... - {3P- I Xp- 1 (7.46b) 

We see that the standardized regression coefficients fJ;; and the original regression coeffi­
cients fJk (k = 1, ... , p - 1) are related by simple scaling factors involving ratios of standard 
deviations. 
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X'X Matrix for Transformed Variables 
In order to be able to study the special nature of the X'X matrix and the least squares nann 1 
equations when the vm'iables have been transformed by the correlation transformation: 
need to decompose the colTelation matrix in (6.67) containing all pairwise correlation~; 
ficients among the respollse and predictor variables Y, XI, X 2, ... , X 1'-1 into two matrices. 

I. The first matrix, denoted by r x x' is called the correlation mntrix of the X variables. It 
has as its elements the coefficients of simple correlation between all pairs of the X V'l'·:.!bies .. , 
This mau'ix is defined as follows: . 

-- r 1'21 rxx (;I-I)x(I'-I) 
rl'_1.1 

'-1.1'_1] 
1'2.1':;:1 

I 

(7.47) 

Here, 1'12 again denotes the coefficient of simple correlation between X 1 and X2 , and so i, 

On. Note that the main diagonal consists of Is because the coefficient of simple correlation; 
between a variable and itself is 1. The correlation matrix r x x is symmetric; remember that .: 
rH' = rk'k' Because of the symmeu)' of this matrix, computer printouts frequently omit the: 
lower or upper u'iangular block of elements. . 

2. The second matrix, denoted by r y x, is a vector containing the coefficients of simple: 
correlation between the response variable Y and each of the X variables, denoted again by 
rYl, rY2, etc.: 

r 

ryt ] rn 
= 

rY'~-1 
(7.48)' 

Now we are ready to consider the X'X matrix for the transformed variables in tht;' 
standm'dized regression model (7.45). The X matrix here is: 

xr'I'_I] 
X;,I'_I 

X' 11.// - 1 

(7.49)' 

Remember that the standardized regression model (7.45) does not contain an intercept term; 
hence, there is no column of I s in the X matrix. It cm1 be shown that the X'X matrix forth~ 
transformed variables is simply the correlation matrix of the X variables defined in (7.47); 

XX = rxx (1'-I)X(I'-1) (7.50 

Since the X'X matrix for the transformed variables consists of coefficients of correlatio 
between the X variables, all of its elements are between -I and I and thus are of tho 
same order of magnitude. As we pointed out earlier, this can be of great help in contrOlIin 
roundoff elTors when invel1ing the X'X matrix. 
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Comment 
We illustrate that the X'X matrix for the transformed variables is the correlation matrix of the X 
variables by considering two entries in the matrix: 

1. In the upper left corner of X'X we have: 

~(X;I)2=~(XiI-XI)2 =L(XiI -XI)2 7s~=1 
~ ~ .J/1-=1SI n-l 

2. In the first row, second column of X'X, we have: 

n - 1 SIS2 

_ L(Xn - X I)(Xi2 - X2) 

- [L(XiI - X 1)2 L(Xi2 - X2)2] 1/2 

But this equals r12, the coefficient of correlation between X I and X2, by (2.84). • 
Estimated Standardized Regression Coefficients 

The least squares normal equations (6.24) for the ordinary multiple regression model: 

X'Xb=X'Y 

and the least squares estimators (6.25): 

b = (X'X)-lX'Y 

can be expressed simply for the transformed variables. It can be shown that for the trans­
formed variables, X'Y becomes: 

X'y = ryX 
(p-l)xl 

(7.51) 

where ryX is defined in (7.48) as the vector of the coefficients of simple correlation between 
Y and each X variable. It nOw follows from (7.50) and (7.51) that the least squares nor­
mal equations and estimators of the regression coefficients of the standardized regression 
model (7.45) are as follows: 

rxxb = ryX (7.52a) 

(7.52b) 

where: 

[ :~ 1 b = 2 

(p-I)xl *: 
b

p
_

1 

(7.52c) 

The regression coefficients bi, ... , b;_l are often called standardized regression 
coefficients. 
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Example 

The return to the estimated regression coefficients for regression model (6.7) in the 
original variables is accomplished by employing the relations: 

(SY) * h = Sk bk (k = 1, ... , p - 1) (7.53a) 

(7.53b) 

Comment 
When there are two X variables in the regression model, i.e., when p - 1 = 2, we can readily see Lilt 
algebraic form of the standardized regression coefficients. We have: 

_ [1 r12] 
[xx - rl2 1 

_I I [1 -rI2] [xx =--
1- r?2 -r12 I 

Hence, by (7.52b) we obtain: 

Thus: 

b---1 [I 
- 1- r2 -r12 

12 

(7.54a) 

(7. 54b) 

(7.54c) 

(7.55) 

(7.55a) 

(7.55b) 

• 
Table 7.5a repeats a portion of the original data for the Dwaine Studios example in Fig­
ure 6.5b, and Table 7.5b contains the data transformed according to the correlation trans­
formation (7.44). We illustrate the calculation of the transformed data for the first case, 
using the means and standard deviations in Table 7.5a (differences in the last digit of the 
transformed data are due to rounding effects): 

Y: = 1 (Y1 - Y) 
.In=l Sy 

xrl = 1 (Xll - XI) 
.In=l SI 

= 1 (174.4 - 181.90) 
. .J2f=l 36.191 

= 1 (68.5 - 62.019) 
.J2f=l 18.620 

= -.04634 = .07783 

* _ 1 (X12 - X2) _ 1 (16.7 - 17.143) _ 8 X 12 - c---1 - ~ - -.1020 
.y n - 1 S2 .y21 - 1 .97035 



TABLE 7.5 
Correlation 
Transforma­
tion and Fitted 
Standardized 
Regression 
Model­
Dwaine Studios 
Example. 

Case 

20 
21 

; 

20 
21 

Sales 
Y, 

174.4 
164.4 

224.1 
1'66;5 

)'=181.90 
Sy =' 36.191 

'. (ill. OrigrnalData 

Target 
Population 

Xii' 
68.5" 
45.2 
~ •• -0 - • 

82.7 
·52:3 

Xl == 62:01'9 
sl=18.620 

(b)'Transfotrhed 'D~a 

,r 
/ ~~04637 

-.10815 

.26070 
-'.09518 

.,0;7783 
-.20198 

.24835 
-.11671 
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Per'Capita 
Disposable Income 

" Xii 
1'6:7 
16;8 

19.1 
16.0 

Xl= 17:143 
s~=:97035 

'" ,xt;'" 
-,10205 
,-.07901 

.451OQ 
- . .26336 

(c),Fitted Standardized Model 

When fitting the standardized regression model (7.45) to the transformed data, we obtain 
the fitted model in Table 7.5c: 

Y* = .7484Xr + .2511X; 

The standardized regression coefficients bi = .7484 and b; = .2511 are shown in the 
SYSTAT regression output in Figure 6.5a on page 237, labeled STO COEF. We see from 
the standardized regression coefficients that an increase of one standard deviation of Xl 
(target population) when X2 (per capita disposable income) is fixed leads to a much larger 
increase in expected sales (in units of standard deviations of Y) than does an increase of 
one standard deviation of X2 when Xl is fixed. 

To shift from the standardized regression coefficients bi and bi back to the regression 
coefficients for the model with the original variables, we employ (7.53). Using the data in 
Table 7.5, we obtain: • 

(
SY) 36.191 

bl = - br = -6-(·7484) = 1.4546 
Sl 18. 20 

(SY) * 36.191 bz = - b2 = --(.2511) = 9.3652 
S2 .97035 

bo = Y - blXl - bzX2 = 181.90 - 1.4546(62.019) - 9.3652(17.143) = -68.860 
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7.6 

The estimated regression function for the multiple regression model in the original variables 
therefore is: 

y = -68.860+ 1.455X, +9.365X2 

This is the same fitted regression function we obtained in Chapter 6, except for slight 
rounding effect differences. Here, b l and b2 cannot be compared directly because X, is in 
units of thousands of persons and X2 is in units of thousands of dollars. 

Sometimes the standardized regression coefficients b7 = .7484 and b~ = .2511 are in­
terpreted as showing that target population (Xd has a much greater impact On sales than 
per capita disposable income (X2) because b7 is much larger than b~. However, as wecwill 
see in the next section, one must be cautious about interpreting any regression coefficient, 
whether standardized or not. The reason is that when the predictor variables are cOlTelated 
among themselves, as here, the regression coefficients are affected by the other predictor 
variables in the model. For the Dwaine Studios data, the cOlTelation between XI and X? is 
r'2 = .781, as shown in the correlation matrix in Figure 6.4b on page 232. -

The magnitudes of the standardized regression coefficients are affected not only by 
the presence of cOlTelations among the predictor variables but also by the spacings of the 
observations on each of these variables. Sometimes these spacings may be quite arbitrary. 
Hence, it is ordinarily not wise to interpret the magnitudes of standardized regression 
coefficients as reflecting the comparative importance of the predictor variables. 

Comments 
1. Some computer packages present both the regression coefficients bk for the model in the original 

variables as well as the standardized coefficients b;, as in the SYSTAT output in Figure 6.5a. The 
standardized coefficients are sometimes labeled beta coefficients in printouts. 

2. Some computer printouts show the magnitude of the determinant of the correlation matrix of 
the X variables. A near-zero value for this determinant implies both a high degree oflinear association 
among the X variables and a high potential for roundoff elTors. For two X variables, this determinant 
is seen from (7.54) to be I - ri2' which approaches 0 as rf2 approaches I. 

3. It is possible to use the correlation transformation with a computer package that does not 
pennit regression through the origin, because the intercept coefficient bi) will always be zero for data 
so transformed. The other regression coefficients will also be correct. 

4. Use of the standardized variables (7.43) without the correlation transformation modifica­
tion in (7.44) will lead to the same standardized regression coefficients as those in (7.52b) for the 
correlation-transformed variables. However, the elements of the X'X matrix will not then be bOlmded 
between - I and I. • 

Multicollinearity and Its Effects 

In multiple regression analysis, the nature and significance of the relations between the 
predictor or explanatory variables and the response variable are often of particular interest 
Some questions frequently asked are: 

1. What is the relative importance of the effects of the different predictor variables? 
2. What is the magnitude of the effect of a given predictor variable on the response variable? 
3. Can any predictor variable be dropped from the model because it has little or no effect 

on the response variable? 
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4. Should any predictor variables not yet included in the model be considered for possible 
inclusion? 

If the predictor variables included in the model are (l) uncorrelated among themselves 
and (2) uncorrelated with any other predictor variables that are related to the response 
variable but are omitted from the model, relatively simple answers can be given to these 
questions. Unfortunately, in many nonexperimental situations in business, economics, and 
the social and biological sciences, the predictor or explanatory variables tend to be correlated 
among themselves and with other variables that are related to the response variable but are 
not included in the model. For example, in a regression of family food expenditures on 
the explanatory variables family income, family savings, and age of head of household, 
the explanatory variables will be correlated among themselves. Further, they will also be 
correlated with other socioeconomic variables not included in the model that do affect 
family food expenditures, such as family size. 

When the predictor variables are correlated among themselves, intercorrelation or multi­
collinearity among them is said to exist. (Sometimes the latter term is reserved for those 
instance~ when the correlation among the predictor variables is very high.) We shall explore 
a variety of interrelated problems created by multicollinearity among the predictor variables. 
First, however, we examine the situation when the predictor variables are not correlated. 

Uncorrelated Predictor Variables 

TABLE 7.6 
Uncorrelated 
Predictor 
Variables-
Work Crew 
Productivity 
Example. 

Table 7.6 contains data for a small-scale experiment on the effect of work crew size (Xl) 
and level of bonus pay (X2) on crew productivity (Y). The predictor variables Xl and X2 are 
uncorrelated here, i.e., rf2 = 0, where r~2 denotes the coefficient of simple determination 
between Xl and X2• Table 7.7a contains the fitted regression function and the analysis of 
variance table when both Xl and X2 are included in the model. Table 7.7b contains the same 
information when only Xl is included in the model, and Table 7.7c contains this information 
when only X2 is in the model. 

An important feature to note in Table 7.7 is that the regression coefficient for Xl. hi = 
5.375, is the same whether only Xl is included in the model or both predictor variables are 
included. The same holds for bz = 9.250. This is the result of the two predictor variables 
being uncorrelated. 

Bonus Pay 
Case Crew Size (dollars) Crew Productivity 

XI1 Xi2- y/ 

1 4 2 '" 42 
2 4 2 39 
3 4 3 48 
4 4 3 51 
5 6 2 49 
6 6 2 53 
7 6 3 61 
8 6 3 60 
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TABLE 7.7 
Regression 
Results when 
Predictor 
Variables Are 
Uncorrelated­
Work Crew 
Productivity 
Example. 

Multiple L;/lear Regre.\c\·;oll 

Source of 
Variation 

Regression 
Error 
Total 

Source of 
Variation 

Regression 
Error 
Total 

Source of 
Variation 

Regression 
Error 

Total 

(a) Regression of Y on Xl and Xz 
Y = .375 + 5.375Xl + 9.250Xz 

SS 

402.250 
17.625 

419.875 

df 

2 
5 
7 

(b) Regression of Yon Xl 
Y = 23.500 + 5.375Xl 

SS df 

231.125 1 
188.750 6 
419.875 7~ 

J 

(c) Regression of Yon Xz 
Y = 27.250 + 9.250Xz 

SS 

171.125 
248.750 
419.875 

df 

1 
6 

7 

MS 

201.125 
3.525 

.. / 

MS 

231.125 
31.458 

MS 

171.125 
41.458 

Thus, when the predictor variables are un correlated, the effects ascribed to them by a 
first-order regression model are the same nO matter which other of these predictor variables 
are included in the model. This is a strong argument for controlled experiments whenever 
possible, since experimental control permits choosing the levels of the predictor variables 
so as to make these variables un correlated. 

Another important feature of Table 7.7 is related to the error sum" of squares. Note from 
Table 7.7 that the extra sum of squares SSR( X, IX 2) equals the regression sum of squares 
SSR(X,) when only X, is in the regression model: 

SSR(XdX2) = SSE(X2) - SSE(X" X2) 

= 248.750-17.625 = 231.125 

SSR(X,) = 231.125 

Similarly, the extra sum of squares SSR(X2 IX,) equals SSR(X2), the regression sum of 
squares when only X2 is in the regression model: 

SSR(X2IX,) = SSE(X,) - SSE(X" X2) 

= 188.750 - 17.625 = 171.125 

SSR(X2) = 171.125 
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In general, when two or more predictor variables are uncorrelated, the marginal contribu­
tion of one predictor variable in reducing the error sum of squares when the other predictor 
variables are in the model is exactly the same as when this predictor variable is in the model 
alone. 

Comment 

To show that the regression coefficient of X I is unchanged when X2 is added to the regression model 
in the case where XI and X2 are uncorrelated, consider the following algebraic expression for b l in 
the first-order multiple regression model with two predictor variables: 

(7.56) 
t 

where, as before, rY2 denotes the coefficient of simple correlation between Y and X2, and rl2 denotes 
the coefficient of simple correlation between X I and X2 • 

If XI and X2 are uncorrelated, rl2 = 0, and (7.56) reduces to: 

b _ L:(Xil - XIKY; - Y) 
I - L:(Xil - X 1)2 

when rl2 = 0 (7.56a) 

But (7.56a) is the estimator of the slope for the simple linear regression of Y On X I, per (1.1 Oa). 
Hence, when X I and X2 are uncorrelated, adding X2 to the regression model does not change the 

regression coefficient for X I; correspondingly, adding X I to the regression model does not change 
the regression coefficient for X2• • 

Nature of Problem when Predictor Variables Are Perfectly Correlated 

TABLE 7.8 
Example of 
Perfectly 
Correlated 
Predictor 
Variables. 

To see the essential nature of the problem of multicollinearity, we shall employ a simple 
example where the two predictor variables are perfectly correlated. The data in Table 7.8 
refer to four sample observations on a response variable and two predictor variables. Mr. A 
was asked to fit the first-order multiple regression function: 

Case 
r Xil 

2 
8 
6' 

10 

Xi2 Vi ... 
6 23 
9 83 
8 63 

10 103 

Fitted Values for 
Regression Function 

'(7~58) (7~59) 

23 .23 
'83 '" :83 
63 63 

"-103 103 
;Resp0r)se;Functions: 

f=~87 T,X1 . + 18Xt (7.58) 
?== -7+9)(1+ 2Xz" (7;59) 

(7.57) 
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FIGURE 7.2 
Two Response 
Planes That 
Intersect when 
X2 =5+.5Xl. 

He returned in a short time with the fitted response function: 

Y=-87+X,+18X 2 (7.58) 

He was proud because the response function fits the data perfectly. The fitted values are 
shown in Table 7.8. 

It so happened that Ms. B also was asked to fit the response function (7.57) to the same 
data, and she proudly obtained: 

(7.59) 

Her response function also fits the data perfectly. as shown in Table 7.8. 
Indeed, it can be shown that infinitely many response functions will fit the data in 

Table 7.8 perfectly. The reason is that the predictor variables X, and X 2 are perfectly 
related. according to the relation: 

(7.60) 

Note that the fitted response functions (7.58) and (7.59) are entirely different response 
surfaces, as may be seen in Figure 7.2. The two response surfaces have the same fitted 
values only when they intersect This occurs when X, and X2 follow relation (7.60). i.e., 
when X2 = 5 + .5X,. 

Thus. when X, and X2 are perfectly related and, as in our example, the data do not 
contain any random error component, many different response functions will lead to the 
same perfectly fitted values for the observations and to the same fitted values for any 
other (X " X2) combinations following the relation between X I and X2 . Yet these response 
functions are not the same and will lead to different fitted values for (X I, X 2) combinations 
that do not follow the relation between X, and X 2. 

Two key implications of this example are: 

I. The perfect relation between X, and X 2 did not inhibit our ability to obtain a good til 
to the data. 
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2. Since many different response functions provide the same good fit, we cannot interpret 
anyone set of regression coefficients as reflecting the effects of the different predictor 
variables. Thus, in response function (7.58), hI = I and hz = 18 do not imply that X2 is the 
key predictor variable and Xl plays little role, because response function (7.59) provides 
an equally good fit and its regression coefficients have opposite comparative magnitudes. 

Effects of Multicollinearity 
In practice, we seldom find predictor variables that are perfectly related or data that do not 
contain some random error component. Nevertheless, the implications just noted for our 
idealized example still have relevance. t, 

1. The fact that some or all predictor variables are correlated among themselves does 
not, in general, inhibit our ability to obtain a good fit nor does it tend to affect inferences 1. 
about mean responses or predictions of new observations, provided these inferences are 
made within the region of observations. (Figure 6.3 on p. 231 illustrates the concept of the 
regi0V of observations for the case of two predictor variables.) 

2: The counterpart in real life to the many different regression functions providing equally 
good fits to the data in ouridealized example is that the estimated regression coefficients tend 
to have large sampling variability when the predictor variables are highly correlated. Thus, 
the estimated regression coefficients tend to vary widely from one sample to the next when 
the predictor variables are highly correlated. As a result, only imprecise information may 
be available about the individual true regression coefficients. Indeed, many of the estimated 
regression coefficients individually may be statistically not significant even though a definite 
statistical relation exists between the response variable and the set of predictor variables. 

3. The common interpretation of a regression coefficient as measuring the change in the 
expected value of the response variable when the given predictor variable is increased by 
one unit while all other predictor variables are held constant is not fully applicable when 
multicollinearity exists. It may be conceptually feasible to think of varying one predictor 
variable and hol~ng the others constant, but it may not be possible in practice to do so 
for predictor variables that are highly correlated. For example, in a regression model for 
predicting crop yield from amount of rainfall and hours of sunshine, the relation between the 
two predictor variables makes it unrealistic to consider varying one while holding the other 
constant. Therefore, the simple interpretation of the regression coefficients as measuring 
marginal effects is often unwarranted with highly correlated predictor variables. 

We illustrate these effects of multicollinearity'by returning to the body fat example. A 
portion of the basic data was given in Table 7.1, and regression results for different fitted 
models were presented in Table 7.2. Figure 7.3 contains the scatter plot matrix and the 
correlation matrix of the predictor variables. It is evident from the scatter plot matrix that 
predictor variables X I and X2 are highly correlated; the correlation matrix of the X variables 
shows that the coefficient of simple correlation is rl2 = .924. On the other hand, X 3 is not so 
highly related to Xl and X2 individually; the correlation matrix shows that the correlation 
coefficients are rl3 = .458 and r23 = .085. (But X3 is highly correlated with Xl and X2 
together; the coefficient of multiple determination when X3 is regressed on Xl and X2 
is .998.) 
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FIGURE 7.3 
Scatter Plot 
Matrix and 
Correlation 
Matrix of the 
Predictor 
Variables­
Body Fat 
Example. 

(a) Scatter Plot Matrix of X Variables 

Xl ". . " " " .. 
". 

. . ~ .. . : X2 ". . . 
¥ '. 

co: 1> . . : . X3 .. .. 0 • . " . . . . : 0 " 
'0 

(b) Correlation Matrix of X Variables 

[

1.0 
rxx = .924 

.458 

.924 
1.0 

.085 
.4

58

1 .085 
1.0 

Effects on Regression Coefficients. Note from Table 7.2->that the regression coefficient 
for X I, triceps skinfold thickness, varies markedly depending on which other variables are 
included in the model: 

Variables in Model b 1 bz 

Xl .8572 
X2 .8565 
Xl, X2 .2224 .6594 
Xl, X2, X3 4.334 -2.857 

The story is the same for the regression coefficient for X2 • Indeed, the regression c0-

efficient h? even changes sign when X 3 is added to the model that includes X I and X2 • 

The important conclusion we must draw is: When predictor variables are correlated, the 
regression coefficient of anyone variable depends on which other predictor variables are 
included in the model and which ones are left out. Thus, a regression coefficient does not 
reflect any inherent effect of the panicular predictor variable on the response variable but 
only a marginal or pattial effect, given whatever other correlated predictor variables are 
included in the model. 

Comment 

Another illustration of how intercorrelated predictor variables that are omitted from the regression 
model can influence the regression coefficients in the regression model is provided by an analyst who 
was perplexed about the sign of a regression coefficient in the fitted regression model. The analyst had 
found in a regression of territory company sales on terJ"itory population size, per capita income, and 
some other predictor variables that the regression coefficient for population size was negative, and this 
conclusion was supported by a confidence interval For the regression coefficient. A consultant noted 
that the analyst did not include the major competitor's market penetrdtion as a predictor variable in 
the model. The competitor was most active and effective in ten·itories with large populations, thereby 
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keeping company sales down in these territories. The result of the omission of this predictor variable 
from the model was a negative coefficient for the population size variable. • 

Effects on Extra Sums of Squares. When predictor variables are correlated, the marginal 
contribution of anyone predictor variable in reducing the error sum of squares varies, 
depending on which other variables are already in the regression model,just as for regression 
coefficients. For example, Table 7.2 provides the following extra sums of squares for Xl: 

SSR(X1) = 352.27 

SSR(XtlX2) = 3.47 

The reason why SSR(XtlX2) is so small compared with SSR(X1) is that x'. and X2 are 
highly correlated with each other and with the response variable. Thus, when X2 is already 
in the regression model, the marginal contribution of Xl in reducing the error sum of squares 
is comparatively small because X2 contains much of the same information as Xl. t 

The same story is found in Table 7.2 for X 2• Here SSR(X2 IXd = 33.17, which is much 
smaller than SSR(X2 ) = 381. 97. The important conclusion is this: When predictor variables 
are correlated, there is no unique sum of squares that can be ascribed to anyone predictor 
variable as reflecting its effect in reducing the total variation in Y. The reduction in the 
total variation ascribed to a predictor variable must be viewed in the context of the other 
correlated predictor variables already included in the model. 

Comments 
1. Multicollinearity also affects the coefficients of partial determination through its effects on the 

extra sums of squares. Note from Table 7.2 for the body fat example, for instance, that XI is highly 
correlated with Y: 

2 SSR(X I ) 352.27 
RYI = ssro = 495.39 =.71 

However, the coefficient of partial determination between Y and Xb when X2 is already in the 
regression model, is much smaller: 

The reason for the small coefficient of partial determination here is, as we have seen, that XI and 
X2 are highly correlated with each other and with the response variable. Hence, XI provides only 
relatively limited additional information beyond that furnished by X2 • 

2. The extra sum of squares for a predictor variable after other correlated predictor variables are 
in the model need not neceSSarily be smaller than before these other variables are in the model, as we 
found in the body fat example. In special cases, it can be larger. Consider the following special data 
set and its correlation matrix: 

Y XI X2 

20 5 25 
20 10 30 
o 5 5 
1 10 10 

Y XI 

Y [1.0 .026 
XI • 1.0 
X2 

X2 

.976] 

.243 
1.0 
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Here. Y and X} are highly positively correlated, but Y and X I are practically uncorrelated. In additio 
X I and X 2 are moderately positively correlated. The extra sum of squares for X I when it is the on~ 
variable in the model for this data set is SSR(X I) = .25, but when X2 already is in the model the extr 
SLim of squares is SSR(X IIX}) = 18.0 I. Similarly, we have for these data: a 

SSR(X2IXd = 380.25 

The increase in the extra sums of squares with the addition of the other predictor variable in the model is 
related to the special situation here that X I is practically uncon-elated with Y but moderately con-elated 
with X}, which in turn is highly correlated with Y. The general point even here still holds-the extra 
Sliln of squares is affected by the other correlated predictor variables already in the model. 

When SSR(X II Xl) > SSR(X I), as in the example just cited, the variable X 2 is sometimes called 
a slIppressor variable. Since SSR(X2IX I) > SSR(X2) in the example, the variable XI would also be 
called a suppressor variable. .'" • 

Effects on s(bd. Note from Table 7.2 for the body fat example how much more imprecise 
the estimated regression coefficients hi and b2 become as more predictor variables are added 
to the regression model: 

Variables in Model s{bd s{b2 } 

Xl .1288 
X2 .1100 
X" X2 .3034 .2912 
Xl, X2 , X3 3.016 2.582 

Again, the high degree of mUlticollinearity among the predictor variables is responsible for 
the inflated variability of the estimated regression coefficients. 

Effects on Fitted Values and Predictions. Notice in Table 7.2 for the body fat example 
that the high multicollinearity among the predictor variables does not prevent the mean 
square enor, measuring the variability of the elTor terms, from being steadily reduced as 
additional variables are added to the regression model: 

Variables in Model MSE 

Xl 7.95 
X" X2 6.47 
X"X2,X3 6.15 

Furthermore, the precision of fitted values within the range of the observations on the 
predictor variables is not eroded with the addition of correlated predictor variables into 
the regression model. Consider the estimation of mean body fat when the only predictor 
variable in the model is triceps skinfold thickness (XI) for Xiii = 25.0. The fitted value 
and its estimated standard deviation are (calculations not shown): 

When the highly con-elated predictor variable thigh circumference (X2 ) is also included 
in the model, the estimated mean body fat and its estimated standard deviation are as follows 
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for XIII = 25.0 and Xh2 = 50.0: 

Yh = 19.36 

Thus, the precision of the estimated mean response is equally good as before, despite the 
addition of the second predictor variable that is highly correlated with the first one. This 
stability in the precision of the estimated mean response occurred despite the fact that the 
estimated standard deviation of b l became substantially larger when X2 was added to the 
model (Table 7.2). The essential reason for the stability is that the covariance between bl 

and b2 is negative, which plays a strong counteracting influence to the increase in s2{b, 1 in 
determining the value of s2{Yhl as given in (6.79). 

When all three predictor variables are included in the model, the estima~ed mean body 
fat and its estimated standard deviation are as follows for Xhl = 25.0, X fz 2 = 50.0, and 
Xh3 = 29.0: 

Yh = 19.19 

Thus, the addition of the third predictor variable, which is highly correlated with the first two 
predictor variables together, also does not materially affect the precision of the estimated 
me{ln response. 

Effects on Simultaneous Tests of Pko A not infrequent abuse in the analysis of multiple 
regression models is to examine the t* statistic in (6.51 b): 

* bk t =--
s{bd 

for each regression coefficient in tum to decide whether fh = 0 for k = 1, ... , p - 1. Even 
if a simultaneous inference procedure is used, and often it is not, problems still exist when 
the predictor variables are highly correlated. 

Suppose we wish to test whether fh = 0 and fh = 0 in the body fat example regression 
model with two predictor variables of Table 7.2c. Controlling the family level of significance 
at .05, we require with the Bonferroni method that each of the two t tests be conducted with 
level of significance .025. Hence, we need t(.9875; 17) = 2.46. Since both t* statistics 
in Table 7.2c have absolute values that do not exceed 2.46, we would conclude from the 
two separate tests that fh = 0 and that fh = O. Yet the proper F test for Ho: fh = f3z = 0 
would lead to the conclusion Ha> that not both coefficients equal zero. This can be seen 
from Table 7.2c, where we find F* = MSR/MSE= 192.72/6.47= 29.8, which far exceeds 
F(.95; 2, 17) = 3.59. 

The reason for this apparently paradoxical result is that each t* test is a marginal test, 
as we have seen in (7.15) from the perspectiv!i of the general linear test approach. Thus, 
a small SSR( X ,I X 2) here indicates thaJ X, does not provide much additional information 
beyond X2, which already is in the model; hence, we are led to the conclusion that fJ, = O. 
Similarly, we are led to conclude fJ2 = 0 here because SSR(X2IX 1) is small, indicating that 
X2 does not provide much more additional information when Xl is1already in the model. 
But the two tests of the marginal effects of X 1 and X 2 together are not equivalent to testing 
whether there is a regression relation between Y and the two predictor variables. The reason 
is that the reduced model for each of the separate tests contains the other predictor variable, 
whereas the reduced model for testing whether both fJl = 0 and f3z = 0 would contain 
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neither predictor variable. The proper F test shows that there is a definite regression relation 
here between Y and X t and X2 . 

The same paradox would be encountered in Table 7.2d for the regression model with 
three predictor variables if three simultaneous tests on the regression coefficient'> Were 

conducted at family level of significance .05. 

Comments 

I. It was noted in Section 7.5 that a near-zero determinant of X'X is a potential source of serious 
roundoff er.rors in normal equations calculations. Severe mu.ltico."ine~rity has the e~fect of making 
this determmant come close to zero. Thus, under severe multtcollineanty, the regressIOn coefficients 
may be subject to large roundoff errors as well as large sampling variances. Hence, it is patticularly 
advisable to employ the correlation transformation (7.44) in normal equations cal.cHlations when 
multicollinearity is present. 

2. Just as high intercorrelations among the predictor variables tend to make the estimated re­
gression coefficients imprecise (i.e., erratic from sample to sample), so do the coefficients of partial 
correlation between the response variable and each predictor variable tend to become erratic from 
sample to sample when the predictor variables are highly correl~ted. 

3. The effect of intercorrelations among the predictor variables on the standard deviations ofthe 
estimated regression coefficients can be seen readily when the variables in the model are transformed 
by means of the correlation transformation (7.44). Consider the first-order model with two predictor 
variables: 

Yj = 130 + 131 Xii + f32Xn + E'j 

This model in the variables transformed by (7.44) becomes: 

The (X'X) , matrix for this standardized model is given by (7.50) and (7.54c): 

(X'X)-' = cl = _1_ [ I -1"12] 
xx I - I"f2 -1"12 I 

(7.61) 

(7.62) 

(7.63) 

Hence, the variance-covariance matrix of the estimated regression coefficients is by (6.46) and (7.63): 

(7.64) 

where (a")2 is the error term variance for the standardized model (7.62). We see that the estimated 
regression coefficients bl' and bi have the same variance here: 

a2{bf) = a 2 {b:;1 = (a*): 
1-1",2 

(7.65) 

and that each ofthese variances become larger as the correlation between X, and X 2 increases. Indeed, 
as X, and X 2 approach perfect correlation (i.e., as I" l2 approaches I), the variances of b;' and b; become 
larger without limit. 

4. We noted in our discussion of simultaneous tests of the regression coefficients that it is possi­
ble that a set of predictor variables is related to the response variable, yet all of the individual tests 
on the regression coefficients will lead to the conclusion that they equal zero because of the multi­
collinearity among the predictor variables. This apparently paradoxical result is also possible under 
special circumstances when there is no multicollinearity among the predictor variables. The special 
circumstances are not likely to be found in practice. however. • 
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Need for More Powerful Diagnostics for Multicollinearity 

Cited 
Reference 

Problems 

As we have seen, multicollinearity among the predictor variables can have important con­

sequences for interpreting and using a fitted regression model. The diagnostic tool con­
sidered here for identifying multicollinearity-namely, the pairwise coefficients of simple 

correlation between the predictor variables-is frequently helpful. Often, however, serious 

multicollinearity exists without being disclosed by the pairwise correlation coefficients. In 

Chapter 10, we present a more powerful tool for identifying the existence of serious multi­
collinearity. Some remedial measures for lessening the effects of multicollinearity will be 

considered in Chapter 11. 

7.1. Kennedy, W. J., Jr., and J. E. Gentle. Statistical Computing. New York: Marcel Dekker, 1980. 

7.I. State the number of degrees of freedom that are associated with each of the following extra 
sums of squares: (1) SSR(XtlX2 ); (2) SSR(X2 IXt, X 3); (3) SSR(X" X2 1X3, X4); (4) SSR(X" 

X2 , X31X4, Xs)· 
1.2. Explain in what sense the regression sum of squares SSR(X,) is an extra sum of squares. 

7.3. Refer to Brand preference Problem 6.5. 

a. Obtain the analysis of variance table that decomposes the regression sum of squares into 
extra sums of squares associated with X, and with X2 , given X,. 

b. Test whether X2 can be dropped from the regression model given that XI is retained. Use 
the F* test statistic and level of significance .01. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

*7.4. Refer to Grocery retailer Problem 6.9. 

a. Obtain the analysis of variance table that decomposes the regression sum of squares into 
extra sums of squares associated with X,; with X 3 , given X,; and with X 2 , given X, and X 3 . 

b. Test whether X 2 can be dropped from the regression model given that X, and X 3 are retained. 
Use the F* test statistic and ex = .05. State the alternatives, decision rule, and conclusion. 
What is the P-value of the test? 

c. Does SSR(X,) +SSR(X2 IX,) equal SSR(X2) +SSR(XtlX2) here? Must this always be the 
case? 

*7.5. Refer to Patient satisfaction Problem 6.15. 

a Obtain the analysis of variance table that decomposes the regression sum of squares into 
extra sums of squares associated with X 2 ; with X" given X 2; and with X 3 , given X2 and X,. 

b. Test whether X3 can be dropped from the regression model given that X, and X2 are retained. 
Use the F* test statistic and level of significance .025. State the alternatives, decision rule, 
and conclusion. What is the P -yalue of the test? 

*7.6. Refer to Patient satisfaction Problem 6.15. Test whether both X2 and X3 can be dropped from 
the regression mOdel given that X! is retained. Use ex ~ .025. State the alternatives, decision 
rule, and conclusion. What is the P-valu~ of the test? 

7.7. Refer to Commercial properties Problem !S.18. 

a Obtain the analysis of variance table that decomposes the regression sum of squares into 
extra sums of squares associated with X 4; with X" given X4; with X 2 , given X, and X4; 
and with X 3 , given X" X2 and X4. 



290 Part Two Multiple Line(/r Regressio/1 

b. Test whether X3 can be dropped from the regression model given that XI, X2 and X
4 

a 
retained. Use the F* tesl statistic and level of significance .01. State the alternatives, decisi re 
rule, and conclusion. What is the P-value of the test? on 

7.8. Refer to Commercial properties Problems 6.18 and 7.7. Test whether both X2 and X3 Can be 
dropped from the regression model given that XI and X4 are retained; use ex = .01. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

*7.9. Refer to Patient satisfaction Problem 6.15. Test whether,81 = -1.0 and,82 = 0; use ex == .025 
State the alternatives, full and reduced models, decision rule, and conclusion. . 

7.10. Refer to Commercial properties Problem 6.18. Test whether,81 = -. I and ,82 == .4; Use 
ex = .0 I. State the alternatives, full and reduced models, decision rule, and conclusion. 

7.1 \. Refer to the work crew productivity example in Table 7.6. 

a. Calculate R~I' R~2' Rf2' Rh2' Rb I' and R2. Explain what each coefficien': measures and 
interpret your results. 

b. Are any of the results obtained in palt (a) special because the two predictor vatiables are 
uncorrelated? 

7.12. Referto Brand preference Problem 6.5. Calculate R~I' R~2' Rf2' R~112' R~2P' and R2. Explain 
what each coefficient measures and interpret your results. 

*7.13. Refer to Grocery retailer Problem 6.9. Calculate R~I' R~2' Rf2' Rh 12' R~2P' R~2113' and R2. 
Explain what each coefficient measures and interpret your results. 

*7.14. Refer to Patient satisfaction Problem 6. 15. 

a. Calculate R~'I' R~Ii2' and Rh23' How is the degree of marginal linear association between 
Y and XI affected, when adjusted for X 2? When adjusted for both X2 and X3? 

b. Make a similar analysis to that in patt (a) for the degree of marginal linear association 
between Y and X 2 . Are your findings similar to those in part (a) for Y and XI? 

7.15. Refer to Commercial properties Problems 6.18 and 7.7. Calculate RL, R~" R~'114' Rf4' 

R~2114' R~31124' and R2. Explain what each coefficient measures and interpret your results. 
How is the degree of marginal linear association between Y and X 1 affected, when adjusted 
for X4 ? 

7.16. Refer to Brand preference Problem 6.5. 

a. Transform the variables by means of the correlation transformation (7.44) and fit the stan­
dardized regression model (7.45). 

b. Interpret the standardized regression coefficient br. 
c. Transfonn the estimated standardized regression coefficients by means of (7.53) back to the 

ones for the fitted regression model in the original variables. Verify that they are the same 
as the ones obtained in Problem 6.5b. 

*7.17. Refer to Grocery retailer Problem 6.9. 

a. Transfonn the variables by means of the correlation transformation (7.44) and fit the 
standardized regression model (7.45). 

b. Calculate the coefficients of determination between all pairs of predictor variables. Is it 
meaningful here to consider the standardized regression coefficients to reflect the effect of 
one predictor variable when the others are held constant? 

c. Transform the estimated standardized regression coefficients by means of (7.53) back to the 
ones for the fitted regression model in the original variables. Verify that they are the same 
as the ones obtained in Problem 6. lOa. 

*7.18. Refer to Patient satisfaction Problem 6.15. 
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a. Transform the variables by means of the correlation transformation (7.44) and fit the 
standardized regression model (7.4S). 

b. Calculate the coefficients of determination between all pairs of predictor variables. Do these 
indicate that it is meaningful here to consider the standardized regression coefficients as 
indicating the effect of one predictor variable when the others are held constant? 

c. Transform the estimated standardized regression coefficients by means of (7.S3) back to the 
ones for the fitted regression model in the original variables. Verify that they are the same 
as the ones obtained in Problem 6.1Sc. 

7.19. Refer to Commercial properties Problem 6.18. 

7.20. 

a. Transform the variables by means of the correlation transformation (7.44) and fit the stan­
dardized regression model (7.4S). 

b. Interpret the standardized regression coefficient b;. 
c. Transform the estimated standardized regression coefficients by means of (7.S3) back to the 

ones for the fitted regression model in the original variables. Verify that they are the stme 
as the ones obtained in Problem 6.18c. 

A speaker stated in a workshop on applied regression analysis: "In business and the social 
sciences, some degree of multicollinearity in survey data is practically inevitable." Does this 
statement apply equally to experimental data? 

7.21. Refer to the example of perfectly correlated predictor variables in Table 7.8. 

a. Develop another response function, like response functions (7.S8) and (7.S9), that fits the 
data perfectly. 

b. What is the intersection of the infinitely many response surfaces that fit the data perfectly? 

7.22. The progress report of a research analyst to the supervisor stated: "All the estimated regression 
coefficients in our model with three predictor variables to predict sales are statistically sig­
nificant. Our new preliminary model with seven predictor variables, which includes the three 
variables of our smaller model, is less satisfactory because only two of the seven regression 
coefficients are statistically significant. Yet in some initial trials the expanded model is giving 
more precise sales predictions than the smaller model. The reasons fOr this anomaly are now 
being investigated." Comment. 

7.23. Two authors wrote as follows: "Our research utilized a mUltiple regression model. Two of 
the predictor variables important in our theory turned out to be highly correlated in our data 
set. This'made it difficult to assess the individual effects of each of these variables separately. 
We retained both variables in our mOdel, however, because the high coefficient of multiple 
determination makes this difficulty unimportant." Comment. 

7.24. Refer to Brand preference Problem 6.S. 

a. Fit first-order simple linear regression model (2.1) for relating brand liking (Y) to moisture 
content (X,). State the fitted regression function. 

b. Compare the estimated regression coeffiyient for moisture content obtained in part (a) with 
the corresponding coefficient Q.btained in Problem 6.Sb. What do you find? 

c. Does SSR(X,) equal SSR(XIIX2 ) here? If not, is the difference substantial? 

d. Refer to the correlation matrix obtained in Probleo'; 6.Sa. What bearing does this have on 
your findings in parts (b) and (c)? 

*7.2S. Refer to Grocery retailer Problem 6.9. 

a. Fit first-order simple linear regression model (2.1) for relating total hours required to handle 
shipment (Y) to total number of cases shipped (X,). State the fitted regression function. 
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Exercises 

b. Compare the estimated regression coefficient for total cases shipped obtained in part (a) 
with the corresponding coefficient obtained in Problem 6.1 Oa. What do you find? 

c. Does SSR(X,) equal SSR(X I1X2 ) here? If not, is the ditference substantial? 

d. Refer to the correlation matrix obtained in Problem 6.9c. What bearing does this have on 
your findings in patts (b) and (c)? 

*7.26. Refer to Patient satisfaction Problem 6.15. 

a. Fit first-order linear regression model (6.1) for relating patient satisfaction (Y) to patient's 
age (Xd and severity of illness (X2 ). State the fitted regression function. 

b. Compare the estimated regression coefficients for patient's age and severity of illness ob­
tained in part (u) with the corresponding coefficients obtained in Problem 6.15c. What do 
you find? g 

c. Does SSR(Xd equal SSR(XIIX3) here? Does SSR(XI ) equal SSR(X2 IX3)i' 
d. Refer to the con-elation matrix obtuined in Problem 6.15b. What bearing does it have on 

your findings in patts (b) and (c)? 

7.27. Refer to Commercial properties Problem 6.18. 

a. Fit first-order linear regression model (6.1) tor relating rental rates (Y) to property age (X,) 

and size (X4 ). State the fitted regression function. 

b. Compare the estimated regression coefficients for property age and size with the corre­
sponding coefficients obtained in Problem 6.18c. What do you find? 

c. Does SSR(X4 ) equal SSR(X4 IX3 ) here? Does SSR(X,) equal SSR(X ,IX3)? 

d. Refer to the con'elation matrix obtained in Problem 6.18b. What bearing does this have on 
your findings in patts (b) and (c)? 

7.28. a. Define each of the following extm sums of squares: (I) SSR(X5IX d; (2) SSR(X3, X 4 IX,); 

(3) SSR(X4 IX,. X:>., X 3). 

b. For a multiple regression model with five X variables, what is the relevant extm sum of 
squares for testing whether or not /35 = O? whether or not /32 = /34 = O? 

7.29. Show that: 

a. SSR(X,. Xl, X 3 , X 4 ) = SSR(Xd +SSR(XI , X31Xd +SSR(X4 IX" X2, X3). 

b. SSR(X 1, Xl, X 3 , X 4 ) = SSR(X2. X 3) + SSR(XIIXI , X 3) + SSR(X4 IX" X 2 , X3)' 

7.30. Refer to Brand preference Problem 6.5. 

a. Regress Y on Xl using simple linear regression model (2.1) and obtain the residuals. 

b. Regress X I on X 2 using simple linear regression model (2.1) and obtain the residuals. 

c. Calculate the coefficient of simple correlation between the two sets of residuals and show 
that it equals fY1l2' 

7.3 I. The following regression model is being considered in a water resources study: 

State the reduced models for testing whether or not: (I) /33 = /34 = 0, (2) /33 = 0, (3) f31 == 
/32 = 5, (4) /34 = 7. 

7.32. The following regression model is being considered in a market research study: 
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State the reduced models for testing whether or not: (1) fJI = th = 0, (2) fJo = 0, (3) fJ3 = 5, 
(4) flo = 10, (5) f31 = 132· 

7.33. Show the equivalence of the expressions in (7.36) and (7.41) for R~2I1. 

7.34. Refer to the work crew productivity example in Table 7.6. 

a. For the variables transformed according to (7.44), obtain: (1) X'X, (2) X'V, (3) b, (4) s2{b}. 

b. Show that the standardized regression coefficients obtained in part (a3) are related to the 
regression coefficients for the regression model in the original variables according to (7.53). 

7.35. Derive the relations between the fJk and fJt in (7.46a) for p - 1 = 2. 

7.36. Derive the expression for X'Y in (7.51) for standardized regression model (7.30.) for p - I = 2. 

7.37. Refer to the CD} data set in Appendix C.2. For predicting the number of aCtive physicians (Y) 
in a county, it has been decided to include total population (X I) and total personal income (X2 ) 

as predictor variables. The question now is whether an additional predictor variable woulli be 
helpful in the model and, if so, which variable would be most helpful. Assume that a first-order 
multiple regression model is appropriate. 

a. For each of the following variables, calculate the coefficient of partial determination given 
that XI and X2 are included in the model: land area (X3 ), percent of population 65 or older 
(X4), number of hospital beds (Xs), and total serious crimes (X6 ). 

b. On the basis of the results in part (a), which of the four additional predictor variables is best? 
Is the extra sum of squares associated with this variable larger than those for the other three 
variables? 

c. Using the F* test statistic, test whether or not the variable determined to be best in part (b) 
is helpful in the regression model when XI and X2 are included in the model; use ex = .Ol. 
State the alternatives, decision rule, and conclusion. Would the F* test statistics for the other 
three potential predictor variables be as large as the one here? Discuss. 

7.38. Refer to the SENIC data set in Appendix c.l. For predicting the average length of stay of 
patients in a hospital (Y), it has been decided to include age (XI) and infection risk (X2) as 
predictor variables. The question now is whether an additional predictor variable would be 
helpful in the model and, if so, which variable would be most helpful. Assume that a first-order 
multiple regression model is appropriate. 

a. For each of the following variables, calculate the coefficient of partial determination given 
that X I and X2 are included in the model: routine culturing ratio (X3 ), average daily census 
(X4), number of nurses (Xs), and available facilities and services (X6 ). 

b. On the basis of the results in part (a), which ofthe four additional predictor variables is best? 
Is the extra sum of squares associated with this variable larger than those for the other three 
variables? 

c. Using the F* test statistic, test whether 9r not the variable determined to be best in part (b) 
is helpful in the regression mosIel when X I and X2 are included in the model; use ex = .05. 
State the alternatives, decision rule, and conclusion. Would the F* test statistics for the other 
three potential predictor variables be as large as the one here? Discuss. 
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--------------------------------------------------------------------

Regression Models 
for Quantitative 
and Qualitative Predictors . 

[n this chapter, we consider in greater detail standard modeling techniques for quantitative 
predictors, for qualitative predictors, and for regression models containing both quantitative 
and qualitative predictors. These techniques include the use of interaction and polynomial 
terms for quantitative predictors, and the use of indicator variables for qualitative predictors. 

8.1 Polynonrial Regression Models 

We first consider polynomial regression models for quantitative predictor variables. They 
are among the most frequently used curvilinear response models in practice because they 
are handled easily as a special case of the general linear regression model (6.7). Next, we 

discuss several commonly used polynomial regression models. Then we present a case to 
illustrate some ofthe major issues encountered with polynomial regression models. 

Uses of Polynomial Models 

294 

Polynomial regression models have two basic types of uses: 

l. When the true curvilinear response function is indeed a polynomial function. 
2. When the true curvilinear response function is unknown (or complex) but a polynomial 

function is a good approximation to the true function. 

The second type of use, where the polynomial function is employed as an approximation 
when the shape of the true curvilinear response function is unknown, is very common. It 
may be viewed as a nonparametric approach to obtaining information about the shape of 
the response function. 

A main danger in using polynomial regression models, as we shaH see, is that extrap­
olations may be hazardous with these models, especially those with higher-order tenns. 
Polynomial regression models may provide good fits for the data at hand, but may tum in 
unexpected directions when extrapolated beyond the range of the data. 



Chapter 8 Regression Models for Quantitative and Qualitative Predictors 29S 

One Predictor Variable-Second Order 
" Polynomial regression models may contain one, two, or more than two predictor variables. 

FIGURE 8.1 
Examples of 
Second-Order 
Polynomial 
Response 
Functions. 

Further, each predictor variable may be present in various powers. We begin by considering 
a polynomial regression model with one predictor variable raised to the first and second 
powers: 

(8.1) 

where: 

Xi = Xi - X 
.~;: 

This polynomial model is called a second-order model with one predictor variable because 
the single predictor variable is expressed in the model to the first and second powers. Note 
that the predictor variable is centered-in other words, expressed as a deviation around its 
mean X-and that the ith centered observation is denoted by Xi. The reason for using a 
centered predictor variable in the polynomial regression model is that X and X 2 often will be 
highly correlated. This, as we noted in Section 7.5, can cause serious computational difficul­
ties whep the XIX matrix is inverted for estimating the regression coefficients in the normal 
equations calculations. Centering the predictor variable often reduces the multicollinear­
ity substantially, as we shall illustrate in an example, and tends to avoid computational 
difficulties. 

The regression coefficients in polynomial regression are frequently written in a slightly 
different fashion, to reflect the pattern of the exponents: 

Yi = fJo + fJ,xi + fJll X; + 8i 

We shall employ this latter notation in this section. 
The response function for regression model (8.2) is: 

E{Y} = fJo + fJIX + fJllX 2 

(8.2) 

(8.3) 

This response function is a parabola and is frequently called a quadratic response function. 
Figure 8.1 contains t~o examples of second-order polynomial response functions. 
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Th~ regression c~efficient fJ? repre~ents the mean resp?nse of Y when x = 0, i.e., wh 
X = X. The regressIOn coefficient fJI IS often called the linear effect coefficient, and f3 ~ 
caned the quadratic effect coefficient. illS 

Comments 

I. The danger of extrapolating a polynomial response function is illustrated by the response functi 
in Figure 8.la. If this function is extrapolated beyond x = 2, it actually turns downward, wh.Dnh 

. h b '., IC mig t not e appropnate m a given case. 
2. The algebraic version of the least squares nornml equations: 

X'Xb=X'Y 
lP 

for the second-order polynomial regression model (8.2) can be readily obtaih~d from (6.77) b 
replacing Xii by Xi and X i2 by x'f. Since LXi = 0, this yields the nonnal equations: Y 

One Predictor Variable-Third Order 
The regression model: 

where: 

Xi = Xi - X 

(8.4) 

• 

(8.5) 

is a third-order model with one predictor variable. The response function for regression 
model (8.5) is: 

(8.6) 

Figure 8.2 contains two examples of third-order polynomial response functions. 

One Predictor Variable-Higher Orders 
Polynomial models with the predictor variable present in higher powers than the third 
should be employed with special caution. The interpretation of the coefficients becomes 
difficult for such models, and the models may be highly erratic for interpolations and even 
small extrapolations. It must be recognized in this connection that a polynomiall11odel of 
sufficiently high order can always be found to fit <k'lta containing no repeat observations 
perfectly. For instance, the fitted polynomial regression function for One predictor variable 
of order n - I will pass through aU n observed Yvalues. One needs to be wary, therefore, of 
using high-order polynomials for the sole purpose of obtaining a good fit. Such regression 
functions may not show clearly the basic elements ofthe regression relation between X and 
Y and may lead to erratic interpolations and extrapolations. 
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Y 

30 

20 

10 E{Y} = 22.45 + 1.45x + .15x2 + .35x3 

OL-__ L-__ L-__ L-__ L-__ L-_ 

-2 -1 0 2 x 

(a) 

Two Predictor Variables-Second Order 
. The regression model: 

Y 

30 

OL-__ L-__ L-__ L-__ L-__ ~-

-2 -1 0 i x 

(b) 

Y; = {Jo + {JIXil + {J2 Xi2 + {JIIX;, + {J22X;2 + {J12XilX i2 + 8i 

where: 

Xil=XiI-X, 

Xi2 = X i2 - X2 

is a second-order model with two predictor variables. The response function is: 

E{Y} = fJo + {J,x, + {J2X 2 + {JllX~ + {J22X~ + {J12X IX 2 

(8.7) 

(8.8) 

which is the equation of a conic section. Note that regression model (8.7) contains separate 
linear and quadratic components for each of the two predictor variables and a cross-product 
term. The latter represents the interaction effect between Xl and X2, as we noted in Chapter 6. 
The coefficient {J12 is often called the interaction effect coefficient. 

Figure 8.3 contains a representation of the response surface and the contour curves for 
a second-order response function with two predictor variables: 

E{Y} = 1,740 - 4x~ - 3x~ - 3XIX2 

The contour curves correspond to different,response levels and show the various combi­
nations of levels of the two predictor variables that yield the same level of response. Note 
that the response surface in Figure 8.3a has a maximum at Xl = 0 and X2 = O. Figure 6.2b 
presents another type of second-order polynomial response function with two predictor 
variables, this one containing a saddle point. 

Comment 

The cross-product term fJI2XIX2 in (8.8) is considered to be a second-order term, the same as fJllxi 

or i322xi. The reason can be seen by writing the latter terms as fJlIXIXI and fJ22X2X2, respectively .• 
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FIGURE 8.3 Example of a Quadratic Response Surface-ElY} = 1,740 - 4x; - 3xi - 3XIX2. 
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Three Predictor Variables-Second Order 
The second-order regression model with three predictor variables is: 

where: 

Yi = f30 + fhxil + fhX i2 + {hxi3 + fhlX;l + f3zzX;2 + fJ33 X ;3 

+ fJ,2 XilXi2 + fJ13 X ilXi3 + fJ23Xi2Xi3 + 8i 

Xii = Xii - Xl 
Xi2 = X i2 - X2 

Xi3 = X i3 - X3 

The response function for this regression model is: 

E {Y} = fJo + fJIXl + fhX2 + {hX3 + fJllX~ + fJ22X~ + fJ33Xi 

+ fJ12 X IX 2 + fJ13 X ,X3 + th3X2X 3 

(8.9) 

(8.10) 

The coefficients fJ12, fJ13, and fJ23 are interaction effect coefficients for interactions between 
pairs of predictor variables. 

Implementation of Polynomial Regression Models 
Fitting of Polynomial Models. Fitting of polynomial regression models presents no new 
problems since, as we have seen in Chapter 6, they are special cases of the general linear 
regression model (6.7). Hence, all earlier results on fitting apply, as do the earlier results on 
making inferences. 
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Hierarchical Approach to Fitting. When using a polynomial regression model as an 
approximation to the true regression function, statisticians will often fit a second-order or 
third-order model and then explore whether a lower-order model is adequate. For instance, 
with one predictor variable, the model: 

Yi = fJo + fJlxi + fJIIX; + fJIIIX; + E; 

may be fitted with the hope that the cubic term and perhaps even the qUadratic term can be 
dropped. Thus, one would wish to test whether or not fJ 111 = 0, or whether or not both fJll = 0 
and fJ1I1 = O. The decomposition of SSR into extra sums of squares therefore proceeds as 
follows: 

SSR(x) 

SSR(x2Ix) 

SSR(x 3 Ix, X2) 

To test whether fJllI = 0, the appropriate extra sum of squares is SSR(x3 Ix, x 2). If, in­
stead, one wishes to test whether a linear term is adequate, i.e., whether fJII = fJIII = 0, the 
appropriate extra sum of squares is SSR(X2, x 3 lx) = SSR(x2Ix) + SSR(x 3 Ix, x 2). 

With the hierarchical approach, if a polynomial term of a given order is retained, then 
all related terms of lower order are also retained in the model. Thus, one would not drop 
the quadratic term of a predictor variable but retain the cubic term in the model. Since the 
quadratic term is of lower order, it is viewed as providing more basic information about the 
shape of the response function; the cubic term is of higher order and is viewed as providing 
refinements in the specification of the shape of the response function. The hierarchical 
approach to testing operates similarly for polynomial regression models with two or more 
predictor variables. Here, for instance, an interaction term (second power) would not be 
retained without also retaining the terms for the predictor variables to the first power. 

Regression Function in Tenns of X. After a polynomial regression model has been 
developed, we often wish to express the final model in terms of the original variables rather 
than keeping it in terms of the centered variables. This can be done readily. For example, the 
fitted second-order model for one predictor variable that is expressed in terms of centered 
values x = X - X: 

Y = bo + blx + bllX
2 

becomes in terms of the original X variable: 

where: 

Y = Yo + q X + q I X2 

b~ = bo - blX + bll X 2 

q = bl - 2bll X 

b;1 = bll 

(8.11) 

(8.12) 

(8.12a) 

(8.12b) 

(8.12e) 

The fitted values and residuals for the regression function in terms of X are exactly the 
same as for the regression function in terms of the centered values x. The reason, as we 
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noted earlier, for utilizing a model that is expressed in terms of centered observations is to 
reduce potential calculational difficulties due to multicollinearity among X, X2, X3, etc 
inherent in polynomial regression. ., 

Comment 

The estimated standard deviations of the regression coefficients in tenTIS of the centered vatiables x 
in (8.1 I) do not apply to the regression coefficients in terms of the original variables X in (8.12).1£ 
the estimated standard deviations for the regression coefficients in terms of X are desired, they may 
be obtained by lIsing (5.46), where the transformation matrix A is developed from (8. I 2a-c). • 

Case Example 

TABLE 8.1 

Cell 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Setting. A researcher studied the effects of the charge rate and temperature On the life 
of a new type of power cell in a preliminary small-scale expetiment. The charge rate (Xl) 

was controlled at three levels (.6, 1.0, and 1.4 amperes) and the ambient temperature (X
2
) 

was controlled at three levels (l0, 20, 30°C). Factors pertaining to the discharge of the 
power cell were held at fixed levels. The life of the power c~dl (Y) was measured in tenns 
of the number of discharge-charge cycles that a power cell underwent before it failed. The 
data obtained in the study are contained in Table 8.1, columns 1-3. 

The researcher was not sure about the nature of the response function in the range of the 
factors studied. Hence, the researcher decided to fit the second-order polynomial regression 
model (8.7): 

Yi = f30 + f3I Xi! + f32 Xi2 + f3n x;1 + f3n x ;2 + f312 Xi1 Xi2 + Ei (8.13) 

for which the response function is: 

E{Y} = f30 + f3l xl + f32 X2 + f3n x ; + f3n x i + f312 X IX2 (8.14) 

Data-Power Cells Example. 

(1) (2) (3) (4) (5) (6) (7) (8) 
Number of Charge 

Coded Values 
Cycles Rate Temperature 

Yi Xn X/2 Xil Xi2 Xfi x12 XIl Xi2 

150 .6 10 -1 -1 1 1 
86 1.0 10 0 -1 0 1 0 
49 1.4 10 1 -1 1 1 -1 

288 .6 20 -1 0 1 0 0 
157 1.0 20 0 0 0 0 0 
131 1.0 20 0 0 0 0 0 
184 1.0 20 0 0 0 0 0 
109 1.4 20 0 1 0 0 
279 .6 30 -1 1 -1 
235 1.0 30 0 0 0 
224 1.4 30 1 

Xl = 1.0 X2 = 20 

Setting [ldapted from: S. M. Sidik. H. F. Leibecki. and J. M. B07.ek. Cycie.\ Till Failure l~rSil\'er-Z;lIc Cells with Competing Faiillre MIJl1eJ-Pre!im;llliry Dam 
Al1l1l\'sis. NASA TechnicHI Memorandum 815-56.1980. 
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Because of the balanced nature of the Xl and X2 levels studied, the researcher not only 
centered the variables Xl and X2 around their respective means but also scaled them in 
convenient units, as follows: 

Xii - Xl Xii - 1.0 
Xii = 

.4 .4 

Xi2 - X2 Xi2 - 20 
(8.15) 

Xi2 = 
10 10 

Here, the denominator used for each predictor variable is the absolute difference between 
adjacent levels of the variable. These centered and scaled variables are shown in columns 4 
and 5 of Table 8.1. Note that the codings defined in (8.15) lead to simple coded values, -1, 
0, and 1. The squared and cross-product terms are shown in columns 6-8 of"rable 8.1. 

Use of the coded variables Xj and X2 rather than the original variables Xl aild X2 reduces 
the correlations between the first power and second power terms markedly here: 

Correlation between 

Xl and xi: 
Xl and xi: 

.991 

0.0 

Correlation between 

X2 and X~: 

X2 and xi: 

.986 

0.0 

The correlations for the coded variables are zero here because of the balance of the design 
of the experimental levels of the two explanatory variables. Similarly, the correlations 
between the cross-product termXjX2 and each of the terms x], x?, X2, xi are reduced to zero 
here from levels between .60 and .76 for the corresponding terms in the original variables. 
Low levels of multicollinearity can be helpful in avoiding computational inaccuracies. 

The researcher was particularly interested in whether interaction effects and curvature 
effects are required in the model for the range of the X variables considered. 

Fitting of Mode I. Figure 8.4 contains the basic regression results for the fit of model (8.13) 
with the SAS regression package. Using the estimated regression coefficients (labeled 
Parameter Estimate), we see that the estimated regression function is as follows: 

~ - 2 2 
Y = 162.84 - 55.83Xj + 75.50X2 + 27.39x l - 1O.61x2 + 1 1. 50xjX2 (8.16) 

Residual Plots. The researcher first investigated the appropriateness of regression 
model (8.13) for the data at hand. Plots of the residuals against Y, Xl> and X2 are shown 
in Figure 8.5, as is also a normal probability plot. None of these plots suggest any gross 
inadequacies of regression model (8.13). The coefficient of correlation between the ordered 
residuals and their expected values under normality is .974, which supports the assumption 
of normality of the error terms (see Ta~le B.6). ' 

Test of Fit. Since there are three replications at Xl = 0, X2 = 0, another indication of the 
adequacy of regression model (8.13) can be obtained by th~ formal test in (6.68) of the good­
ness of fit of the regression function (8.14). 'The pure error sum of squares (3.16) is simple 
to obtain here, because there is only one combipation of levels at which replications Occur: 

SSPE = (157 - 157.33)2 + (131 - 157.33)2 + (184 - 157.33)2 

= 1,404.67 
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FIGURE 8.4 
SAS 
Regression 
Output for 
Second-Order 
Polynomial 
Model 
(8.13)-Power 
Cells Example. 

Model: MODELl 
Dependent Variable: Y 

Analysis of Variance 

Sum of Mean 
Source DF Squares Square F Value Prob>F 

Model 5 55365.56140 11073.11228 10(565 0.0109 
Error 5 5240.43860 1048.08772 
C Total 10 60606.00000 

Root MSE 32.37418 R-square 0.9135 
Dep Mean 172.00000 Adj R-sq 0.8271 
C.V. 18.82220 

Parameter Estimates J 
Parameter Standard T for HO: 

Variable DF Estimate Error Parameter=O Prob > ITI 

INTERCEP 1 162.842105 16.60760542 9.805 0.0002 
Xl 1 -55.833333 13.21670483 -4.224 0.0083 
X2 1 75.500000 13.21670483 51'712 0.0023 
X1SQ 1 27.394737 20.34007956 1.347 0.2359 
X2SQ 1 -10.605263 20.34007956 01 -0.521 0.6244 
X1X2 1 11.500000 16.18709146 0.710 0.5092 

Variable DF Type I SS 

INTERCEP 1 325424 
Xl 1 18704 
X2 1 34202 
X1SQ 1 1645.966667 
X2SQ 1 284.928070 
X1X2 1 529.000000 

Since there are c = 9 distinct combinations of levels of the X variables here, there are 
n - c = II - 9 = 2 degrees of freedom associated with SSPE. Further, SSE = 5,240.44 
according to Figure 8.4; hence the lack of fit sum of squares (3.24) is: 

SSLF = SSE - SSPE = 5,240.44 - 1,404.67 = 3,835.77 

with which c - P = 9 - 6 = 3 degrees of freedom are associated. (Remember that p = 6 
regression coefficients in model (8.13) had to be estimated.) Hence, test statistic (6.68b) for 
testing the adequacy of the regression function (8.14) is: 

F* = SSLF -:- SSPE = 3,835.77 -:- 1,404.67 = 1.82 
c-p n-c 3 2 

For a = .05, we require F(.95; 3, 2) = 19.2. Since F* = 1.82 S 19.2, we conclude 
according to decision rule (6.68c) that the second-order polynomial regression function 
(8.14) is a good fit. 

Coefficient of Multiple Detennination. Figure 8.4 shows that the coefficient of multiple 
determination (labeled R-square) is R2 = .9135. Thus, the variation in the lives of the power 
cells is reduced by about 91 percent when the first-order and second-order relations to the 
charge rate and ambient temperature are utilized. Note that the adjusted coefficient of mul­
tiple correlation (labeled Adj R-sq) is R~ = .8271. This coefficient is considerably smaller 
here than the unadjusted coefficient because of the relatively large number of parameters in 
the polynomial regression function with two predictor variables. 
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(a) Residual Plot against Y (b) Residual Plot against xl 
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(c) Residual Plot against x2 (d) Normal Probability Plot 
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Partial F Test. The researcher now turned to consider whether a first-order model would 
be sufficient. The test alternatives are: 

Ho: f311 = i322 = f3'2 = 0 

Ha: not all f3s iI} Ho equal zero 

The partial F test statistic (7.27) here is: 

. 
In anticipation of this test, the researcher entered the X variables in the SAS regression 
program in the order x], X2, x?, x~, XIX2, as may be seen at the bottom of Figure 8.4. The 
extra sums of squares are labeled Type I SS. The first sum of squares shown is not relevant 
here. The second one is SSR(x,) = 18,704, the third one is SSR(X2IxI) = 34,202, and so 
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FIGURE 8.6 
S-Plus Plot of 
Fitted 
Response Plane 
(8.19)-Power 
Cells Example. 

on. The required extra sum of squares is therefore obtained as follows: 

SSR(x~, x~, xlx2lx" X2) = SSR(xflx" X2) + SSR(xilx" X2, xD 
+ SSR(XIX2Ixl, X2, x~, xi) 

= l,646.0 + 284.9 + 529.0 = 2,459.9 

We also require the error mean square. We find in Figure 8.4 that it is MSE = 1 ,048. 1. Hence 
the test statistic is: 

* 2,459.9 
F = -3- -7- l,048.l = .78 

For level of significance ex = .05, we require F(.95; 3. 5) = 5.4 L Since F* =. i8 .s: 5.41, 
we conclude Hu, that no curvature and interaction effects are needed, so that a first-order 
model is adequate for the range of the charge rates and temperatures considered. 

First-Order Model. On the basis of this analysis, the researcher decided to consider the 
first-order model: 

Yi = {3o + {3l xil + (32Xi2 + Ei 

A fit of this model yielded the estimated response function: 

y = l72.00- 55.83x, + 75.50X2 
(12.67) 02.67) 

(8.17) 

(8.18) 

Note that the regression coefficients b l and b2 are the same as in (8.l6) for the fitted second­
order model. This is a result of the choices of the X I and X2 levels studied. The num­
bers in parentheses under the estimated regression coefficients are their estimated standard 
deviations. A variety of residual plots for this first-order model were made and analyzed 
by the researcher (not shown here), which confirmed the appropriateness of first-order 
model (8.l7). 

Fitted First-Order ModeIin Terms of X. The fitted first-order regression function (8.l8) 
can be transformed back to the original variables by utilizing (8.15). We obtain: 

y= l60.58-l39.58X, +7.55X2 (8.19) 

Figure 8.6 contains an S-Plus regression-scatter plot of the fitted response plane. The 
researcher used this fitted response surface for investigating the effects of charge rate and 
temperature on the life of this new type of power cell. 
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Estimation of Regression Coefficients. The researcher wished to estimate the linear 
effects of the two predictor variables in the first-order model, with a 90 percent family 
confidence coefficient, by means of the Bonferroni method. Here, g = 2 statements are 
desired; hence, by (6.52a), we have: 

B = t[1 - .10/2(2)] = t(.975; 8) = 2.306 

The estimated standard deviations of bI and hz in (8.18) apply to the model in the coded vari­
ables. Since only first-order terms are involved in this fitted model, we obtain the estimated 
standard deviations of ~ and b'2 for the fitted model (8.19) in the original variables as follows: 

I (I) 12.67 s{bI } = - s{bd = -- = 31.68 
.4 .4 

s{b21 = 10 s{hzl = ----w- = 1.267 I ( I ) 12.67 

t 
The Bonferroni confidence limits by (6.52) therefore are -139.58 ± 2.306(31.68) and 

7.55 ± 2.306(1.267), yielding the confidence limits: 

-212.6:::: fh :::: -66.5 4.6 .:S fh .:S 10.5 

With confidence .90, we conclude that the mean number of charge/discharge cycles before 
failure decreases by 66 to 213 cycles with a unit increase in the charge rate for given ambient 
temperature, and increases by 5 to 10 cycles with a unit increase of ambient temperature 
for given charge rate. The researcher was satisfied with the precision of these estimates for 
this initial small-scale study. 

Some Further Comments on Polynomial Regression 
1. The use of polynomial models is not without drawbacks. Such models can be more 

expensive in degrees of freedom than alternative nonlinear models or linear models with 
transformed variables. Another potential drawback is that serious multicollinearity may be 
present even when the predictor variables are centered. 

2. An alternative to using centered variables in polynomial regression is to use orthog­
onal polynomials. Orthogonal polynomials are llllcorrelated. Some computer packages use 
orthogonal polynomials in their polynomial regression routines and present the final fitted 
results in terms of both the orthogonal polynomials and the original polynomials. Orthog­
onal polynomials are discussed in specialized texts such as Reference 8.1. 

3. Sometimes a quadratic response function is fitted for the purpose of establishing the 
linearity of the response function when repeat observations are not available for directly 
testing the linearity of the response function. Fitting the quadratic model: , 

(8.20) 

and testing whether fJII = 0 does not, however, necessarily establish that a linear response 
function is appropriate. Figure 8.2a provide.s an example. If sample data were obtained for 
the response function in Figure 8.2a, model (8.20) fitted, and a test on fJII made, it likely 
would lead to the conclusion that fJl1 = O. Yet a linear response function clearly might not 
be appropriate. Examination of residuals would disclose this lack of fit and should always 
accompany formal testing of polynomial regression coefficients. 
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8.2 Interaction Regression :Models ----We have previously noted that regression models with cross-Rroduct interaction effects 
such as regression model (6 .. l5), are speci.al ~ases of. generalline~r regression model (6.7): 
We also encountered regressIOn models wIth ll1teractIOn effects bnefly when we considered 
polynomial regression models, such as model (8.7). Now we consider in some detail re­
gression models with interaction effects, including their interpretation and implementation. 

I nteraction Effects 
A regression model with p - 1 predictor variables contains additive effects if the response 
function can be written in the form: 

(8.21) 

where 11, fz, ... , j~'-I can be any functions, not necessarily simple ones. For instance, 
the following response function with two predictor variables can be expressed in the form 
of (8.2l): 

We say here that the effects of X I and X2 on Y are additive. 
In contrast, the following regression function: 

cannot be expressed in the form (8.2l). Hence, this latter regression model is not additive, 
or, equivalently, it contains an interaction effect. 

A simple and commonly used means of modeling the interaction effect of two predictor 
variables on the response variable is by a cross-product term, such as {>OX, X2 in the above 
response function. The cross-product term is called an interaction term. More specifically, 
it is sometimes called a linear-by-linear or a bilinear interaction term. When there are three 
predictor variables whose effects On the response variable are linear, but the effects On Yof 

X, and X 2 and of X I and X 3 are interacting, the response function would be modeled as 
follows using cross-product terms: 

Interpretation of Interaction Regression Models with linear Effects 
We shall explain the influence of interaction effects On the shape of the response function 
and On the interpretation of the regression coefficients by first considering the simple case of 
two quantitative predictor variables where each has a linear effect on the response variable. 

Interpretation of Regression Coefficients. The regression model for two quantitative 
predictor variables with linear effects On Yand interacting effects of X I and X2 on Y 
represented by a cross-product term is a<; follows: 

(8.22) 
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The meaning of the regression coefficients fh and fh here is not the same as that given earlier 
because of the interaction term fhXil Xi2• The regression coefficients fJl and fJ2 no longer 
indicate the change in the mean response with a unit increase of the predictor variable, with 
the other predictor variable held constant at any given level. It can be shown that the change 
in the mean response with a unit increase in X I when X2 is held constant is: 

(8.23) 

Similarly, the change in the mean response with a unit increase in X 2 when XI is held 
constant is: 

(8.24) 

Hence, in regression model (8.22) both the effect of X I for given level of X2 and the effect 
of X 2 for given level of XI depend on the level of the other predictor variable. ' 

We shall illustrate how the effect of one predictor variable depends on the level of the 
other predictor variable in regression model (8.22) by returning to the sales promotion 
response function shown in Figure 6.1 on page 215. The response function (6.3) for this 
example, relating locality sales (Y) to pOint-of-sale expenditures (X 1) and TV expenditures 
(X2 ),. is additive: 

E{Y} = 10 + 2X1 + 5X2 (8.25) 

In Figure 8.7a, we show the response function E{Y} as a function of XI when X 2 = 1 
and when X2 = 3. Note that the two response functions are parallel-that is, the mean 
sales response increases by the same amount fJ1 = 2 with a unit increase of point-of-sale 
expenditures whether TV expenditures are X2 = 1 or X2 = 3. The plot in Figure 8.7a is 
called a conditional effects plot because it shows the effects of X I on the mean response 
conditional on different levels of the other predictor variable. 

In Figure 8.7b, we consider the same response function but with the cross-product term 
.5X 1 X2 added for interaction effect of the two types of promotional expenditures on sales: 

(8.26) 

FIGURE 8.7 Illustration of Reinforcement and Interference Interaction Effects-Sales Promotion Example. 

(b) (c) 
(a) Reinforcement Interference 

Additive Model Interaction Effect Interaction Effect 
Y y Y 

60 60 60 

45 45 45 X2 = 3: E{Y} = 25 + .5Xl 

30 30 

15 15 15 
X2 = 1: E{Y} = 15 + 2Xl X2 = 1: E{Y} = 15 + 1.5Xl 

0 5 10 Xl 0 5 10 Xl 0 5 10 Xl 
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We again use a conditional effects plot to show the response function E{Y} a<; afUnct' 
.. ; 10n 

of X, condltional On X2 = I and on X2 = 3. Note that the slopes of the response functions 
plotted against X, now differ for X2 = I and X2 = 3. The slope of the response functio 
when X2 = 1 is by (8.23): n 

fJ, + fJJ X2 = 2 + .5(l) = 2.5 

and when X2 = 3, the slope is: 

Thus, a unit increase in point-of-sale expenditures has a larger effect on sales w-ilen TV 
expenditures are at a higher level than when they are at a lower level. 

Hence, fJ, in regression model (8.22) containing a cross-product term for interaction 
effect nO longer indicates the change in the mean response for a unit increase in X, for any 
given X2 level. That effect in this model depends on the level of X 2 • Although the mean 
response in regression model (8.22) when X 2 is constant is stiH*a linear function of X" now 
both the intercept and the slope of the response function change as the level at which X

2 
is 

held constant is varied. The same holds when the mean response is regarded as a fUnction 
of X 2 , with X, constant. 

Note that a<; a result of the interaction effect in regression model (8.26), the increase 
in sales with a unit increase in point-of-sale expenditures is greater, the higher the level 
of TV expenditures, as shown by the larger slope of the response function when X2 ==3 
than when X2 = 1. A similar increase in the slope occurs if the response function againsr 
X2 is considered for higher levels of X,. When the regression coefficients fJ, and fJ2 are 
positive, we say that the interaction effect between the two quantitative variables is of a 
reinforcement or synergistic type when the slope of the response function against one of the 
predictor variables increases for higher levels of the other predictor variable (Le., when f33 

is positive). 
[f the sign of fh in regression model (8.26) were negative: 

(8.27) 

the result of the interaction effect of the two types of promotional expenditures on sales 
would be that the increase in sales with a unit increase in point-of-sale expenditures becomes 
smaller, the higher the level of TV expenditures. This effect is shown in the conditional 
effects plot in Figure 8.7c. The two response functions for X2 = I and X2 = 3 are again 
nonparallel, but now the slope of the response function is smaller for the higher level of 
TV expenditures. A similar decrease in the slope would occur if the response function 
against X 2 is considered for higher levels of X,. When the regression coefficients fJ, and 
fJ2 are positive, we say that the interaction effect between two quantitative variables is of 
an interference or antagonistic type when the slope of the response function against one of 
the predictor variables decreases for higher levels of the other predictor variable (Le., when 
fJ3 is negative). 

Comments 
I. When the signs of fJ, and fJ2 in regression model (8.22) are negative, a negative fh is usually 

viewed as a reinforcement type of interaction effect and a positive fJ3 as an interference type of effect 



Chapter 8 Regression Models/or Quantitative and Qualitative Predictors 309 

2. To derive (8.23) and (8.24), we differentiate: 

E{Y} = {3o + {3IXl + {32X2 + {33 Xl X2 

with respect to Xl and X2, respectively: 

• 
Shape of Response Function. Figure 8.8 shows for the sales promotion example the 
impact ofthe interaction effect on the shape of the response function. Figure 8.8a presents the 
additive response function in (8.25), and Figures 8.8b and 8.8c present the respons~ functions 
with the reinforcement interaction effect in (8.26) and with the interference interaction effect 
in (8.27), respectively. Note that the additive response function is a plane, but that the two 
response functions with interaction effects are not. Also note in Figures 8.8b and 8.8c that 
the mean response as a function of X b for any given level of X2, is no longer parallel to the 
same function at a different level of X2 , for either type of interaction effect. 

We can also illustrate the difference in the shape of the response function when the 
two p~dictor variables do and do not interact by representing the response surface by 
means of a contour diagram. As we noted previously, such a diagram shows for different 
response levels the various combinations of levels of the two predictor variables that yield 
the same level of response. Figure 8.8d shows a contour diagram for the additive response 
surface in Figure 8.8a when the two predictor variables do not interact. Note that the contour 
curves are straight lines and that the contour lines are parallel and hence equally spaced. 
Figures 8.8e and 8.8f show contour diagrams for the response surfaces in Figures 8.8b 
and 8.8c, respectively, where the two predictor variables interact. Note that the contour 
curves are no longer straight lines and that the contour curves are not parallel here. For 
instance, in Figure 8.8e the vertical distance between the contours for E {Y} = 200 and 
E{Y} =400 at Xl = 10 is much larger than at Xl = 50. 

In general, additive or non interacting predictor variables lead to parallel contour curves, 
whereas interacting predictor variables lead to nonparallel contour curves. 

Interpretation of Interaction Regression Models with Curvilinear Effects 
When one or more of the predictor variables in a regression model have curvilinear effects 
on the response variable, the presence of interaction effects again leads to response functions 
whose contour curves are not parallel. Figure 8.9a shows the response surface for a study 
of the volume of a quick bread: 

'2! 2 E{Y} = 65 + 3Xl +4X: -lOXl - l5X2 + 35XI X2 

Here, Y is the percentage increase in the volume of the quick pread from baking, Xl is the 
amount of a leavening agent (coded), and X2 is the oven temperature (coded). Figure 8.9b 
shows contour curves for this response function. Note the lack of parallelism in the contour 
curves, reflecting the interaction effect. Figure 8.10 presents a conditional effects plot to 
show in a simple fashion the nature of the interaction in the relation of oven temperature (X2 ) 

to the mean volume when leavening agent amount (X 1) is held constant at different levels. 
Note that increasing oven temperature increases volume when leavening agent amount is 
high, and the opposite is true when leavening agent amount is low. 
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,",URE 8.9 Response Surface and Contour Curves for Curvilinear Regression Model with Interaction 
::eet.,--QuiCk Bread Volume Example. 
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Implementation of Interaction Regression Models 
The fitting of interaction regression models is routine, once the appropriate cross-product 
terms have been added to the data set. Two considerations need to be kept in mind when 
developing regression models with interaction effects. 

1. When interaction terms are added to a regression model, high multicollinearities may 
exist between some of the predictor variables and spme of the interaction terms, as well as 
among some of the interaction terms. A partial remedy to improve computational accuracy 
is to center the predictor variables; i.e., to use Xik = Xik - Xk . 

2. When the number of predictor variables in the regression model is large, the poten­
tial number of interaction terms can become very large. For example, if eight predictor 
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Example 

variables are present in the regression model in linear terms, there are potentially 28 pair­
wise intel·action terms that could be added to (he regressiol1 model. The <k'lta set would need 
to be quite large before 36 X variables could be used in the regression model. 

it is therefore desirable to identify in advance, whenever possible, those interactions 
that are most likely to influence the response variable in important ways. In addition to 
utilizing a priori knowledge, one can plot the residuals for the additive regression model 
against the different interaction terms to determine which ones appear to be influential 
in affecting the response variable. When the number of predictor variables is large, these 
plots may need to be limited to intemction terms involving those predictor variables that 
appear to be the most important on the basis of the initial fit of the additive rer;ression 
model. 

We wish to test formally in the body fat example of Table 7.1 whether interaction terms be­
tween the three predictor variables should be included in the regression model. We therefore 
need to consider the following regression model: • 

This regression model requires that we obtain the new variables X I X 2 , X IX}, and X2X3 
and add these X variables to the ones in Table 7. L We find upon examining these X variables 
that some of the predictor variables are highly correlated with some of the interaction 
terms, and that there are also some high correlations among the interaction terms. For 
example, the correlation between XI and XIX! is .989 and that between XIX} and X2X3 

is .998. 
We shall therefore use centered variables in the regression model: 

where: 

Xii = Xii - XI = Xii - 25.305 

Xi! = X i2 - X 2 = Xi2 - 5 L \70 

Xi} = Xi} - X} = Xi} - 27.620 

Upon obtaining the cross-product terms using the centered variables, we find that the in­
tercorrelations involving the cross-product terms are now smaller. For example, the largest 
correlation, which was between X I X3 and X2 X}, is reduced from .998 to .89L Other Cor­
relations are reduced in absolute magnitude even more. 

Fitting regression model (8.29) yields the following estimated regression function, mean 
square error, and extra sums of squares: 

Y = 20.53 + 3.438.-1:1 - 2.095x2 - 1.616x} + .00888x1X2 - .08479x1X3 + .09042x2X3 

MSE = 6.745 
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Variable 

Xl 
X2 
X3 
X1 X2 
X1 X3 
X2 X3 

Extra Sum of Squares 

SSR(Xl) = 352.270 
SSR(X2Ixl) = 33.169 

SSR(X3Ixl, X2) = 11.546 
SSR(X1X2Ixl, Xli X3) = 1.496 

SSR(X1X3Ixl, X2, X3, X1X2) = 2.704 
SSR(X2X3Ix" Xli X3, X1X2, X1X3) = 6.515 

We wish to test whether any interaction terms are needed: 

Ho: fJ4 = fJ5 = fJ6 = 0 

Ha: not all fJs in Ho equal zero 

The partial F test statistic (7.27) requires here the following extra sum of squares: 

and the test statistic is: 

SSR(XIX2, XIX3, X2X31X}, X2, X3) 
F* - ...:...MSE - 3 . 

10.715 
= -3- --:- 6.745 = .53 

For level of significance a = .05, we require F(.95; 3,13) = 3.4l. Since F* = .53 :::: 3.41, 
we conclude Ho, that the interaction terms are not needed in the regression mOdel. The 
P-value of this test is .67. 

8.3 Qualitative Predictors 

As mentioned in Chapter 6, qualitative, as well as quantitative, predictor variables can be 
used in regression models. Many predictor variables of interest in business, economics, 
and the social and biological sciences are qualitative. Examples of qualitative predictor 
variables are gender (male, female), purchase status (purchase, no purchase), and disability 
status (not disabled, partly disabled, fully disabled). 

In a study of innovation in the insurance industry, an economist wished to relate the speed 
with which a particular insurance innovation is adopted (Y) to the size of the insurance firm 
(Xl) and the type of firm. The response variable is measJ,lfed by the number of months 
elapsed between the time the first firm adopted the innovation and the time the given firm 
adopted the innovation. The first predictor variable, size of firm, iS1quantitative, and is 
measured by the amount of total assets of the filJll. The second predictor variable, type of 
firm, is qualitative and is composed of two classes-stock companies and mutual companies. 
In order that such a qualitative variable can be used in a regression mOdel, quantitative 
indicators for the classes of the qualitative variable must be employed. 
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Qualitative Predictor with Two Classes 
There are many ways of quantitatively identifying the classes of a qualitative variable. We 
shall use indicator variables that take on the values 0 and 1. These indicator variables are 
easy to use and are widely employed, but they are by no means the only way to quantify a 
qualitative variable. 

For the insurance innovation example, where the qualitative predictor variable has two 
classes, we might define two indicator variables X1 and X3 as follows: 

if stock company 
otherwise 

if mutual company 
otherwise 

A first-order model then would be the following: 

(8.30) 

(8.31) 

This intuitive approach of setting up an indicator variable for each class of the qualitative 
predictor variable unfortunately leads to computational difficulties. To see why, suppose 
we have n = 4 observations, the first two being stock firms (for which X2 = 1 and X 3 = 0), 
and the second two being mutual firms (for which X2 = 0 and X3 = l). The X matrix would 
then be: 

XI X 2 

x- [: 
XII 
X21 

- 1 X3I 0 
1 X 41 0 

Note that the first column is equal to the sum of the Xl. and X3 columns, so that the columns 
are linearly dependent according to definition (5.20). This has a serious effect on the X'X 
matrix: 

b' ~w 
XII 

1] 
X'X = 

X21 X31 X21 

1 0 X31 0 
0 X41 0 

4 

4 LXii 2 2 
;=1 

4 4 2 4 

LXii Lxii LXii LXii 
;=1 i=1 ;=1 i=3 

2 

2 LX;I 2 0 
;=-1 

4 

2 LXii 0 2 
1=3 
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We see that the first column of the X'X matrix equals the sum of the last two columns, 
so that the columns are linearly dependent. Hence, the X'X matrix does not have an inverse, 
and no unique estimators of the regression coefficients can be found. 

A simple way out of this difficulty is to drop one of the indicator variables. In our 
example, we might drop X3 • Dropping one indicator variable is not the only way out of the 
difficulty, but it leads to simple interpretations of the parameters. In general, therefore, we 
shall follow the principle: 

Comment 

A qualitative variable with c classes will be represented by c - 1 
indicator variables, each taking on the values 0 and 1. 

(8.32) 

Indicator variables are frequently also called dwnmy variables or binary variables. Tlie latter term 
has reference to the binary number system containing only 0 and I. • 

Interpretation of Regression Coefficients 
Returning to the insurance innovation example, suppose that we drop the indicator variable 
X3 from regression model (8.31) so that the model becomes: , 

(8.33) 

where: 

Xi! = size of firm 

X. = {I if stock company 
,2 0 if mutual company 

The response function for this regression model is: 

(8.34) 

To understand the meaning of the regression coefficients in this model, consider first the 
case of a mutual firm. For such a firm, X2 = 0 and response function (8.34) becomes: 

Mutual firms (8.34a) 

Thus, the response function for mutual firms is a straight line, with Y intercept f30 and slope 
fh. This response function is shown in Figure 8.11. 

For a stock firm, X2 = 1 and response function (8.34) becomes: 

Stock firms (8.34b) 

This also is a straight line, with the same slope fh but with Y intercept f30 + fh. This response 
function is also shown in Figure 8.11. _ ' 

Let us consider now the meaning of the regression coefficients in response function (8.34) 
with specific reference to the insurance innovation example. We see that the mean time 
elapsed before the innovation is adopted, E{Y}, is a linear function of size of firm (Xl)' 
with the same slope fh for both types of firms: fh indicates how much higher (lower) the 
response function for stock firms is than the one for mutual firms, for any given size of firm. 
Thus, fh measures the differential effect of type of firm. In general, fh shows how much 
higher (lower) the mean response line is for the class coded 1 than the line for the class 
coded 0, for any given level of Xl. 
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FIGURE 8.11 
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In the insurance innovation example, the economist studied 10 mutual firms and 10 stock 
firms. The basic data are shown in Table 8.2, columns 1-3. The indicator coding for type 
of firm is shown in column 4. Note that X2 = 1 for each stock firm and X2 = 0 for each 
mutual firm. 

The fitting of regression model (8.33) is now straightforward. Table 8.3 presents the key 
results from a computer run regressing Y on X, and X2• The fitted response function is: 

Y = 33.87407 - .10l74X, + 8.05547X2 

Figure 8.12 contains the fitted response function for each type of firm, together with the 
actual observations. 

The economist was most interested in the effect of type of firm (X2 ) on the elapsed time 
for the innovation to be adopted and wished to obtain a 95 percent confidence intelvaI for 
fh. We require t(.975; 17) = 2.110 and obtain from the results in Table 8.3 the confidence 
limits 8.05547 ± 2.110(1.45911). The confidence interval for f3z therefore is: 

4.98 :S fh :S 11.13 

Thus, wi.th 95 percent confidence, we conclude that stock companies tend to adopt the inno· 
vation somewhere between 5 and 11 months later, on the average, than mutual companies 
for any given size of firm. 

A formal test of: 

Ho: f3z = 0 

Ha: fh =f:. 0 



TABLE 8.2 
J)ataand 
Indicator 
Coding-
Insurance 
Innovation 
Example. 

TABLE 8.3 
Regression 
Results for Fit 
of Regression 
Model (8.33)­
Insurance 
Innovation 
Example. 
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(1) (2) (3) 
Number of Size of Firm 

Firm Months, Elapsed' (millibn dollars) Type of 
)(il Firm ; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

" 13 .' 

14 
15 
16 
17 
18 
19 
20 

Regression 
CoeffiCient 

f30 
f31 

f3z 

Yj 

17 151 Mutual 
26. 92 Mutual 
21 175 Mutual 
30 31 Mutual 
22 104 'Mutual 

0 277 Mutual 
12 210 Mutual. 
19 12Q Mutual 

4 290 Mutual 
16 238 MutuaL 
28 164 Stock 
15 272 Stock 
11 295 Stock 
38 68 Stock 
31 85 Stock 
21 224 Stock 
20 166 Stock 
13 305 Stock 
30 124 Stock 
14 246 Stock 

(a) Regressibn Coefficients 

.Estimated 
- Regression Coefficient 

33.87407 
"-.101]4 
8.05547 

. . 

Estimated· 
. Standard Deviation 

1.81386 
.00889 

1.45911 

(b)Anal)r~s of variance . 

Source of 
Variation 55 df M5 

Regression 1,504.41 
_. 

2 752.20 
Error 176.39 17 10.38 
Tbtal 1,~80~80 19 

(4) 
Indicator 

Code 
Xj2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

tOo 

18.68 
-J1:44 

5.52 

(5) 

Xil Xj2 

,0 
0 
0 
0 

~ 0 

~ 0 
0 
0 
0 
0 

164 
272 
295 

68 
85 

224 
166 
305 
124 
246 

with level of significance .05 would lead to Ha , that type of firm has an effect, since the 
95 percent confidence interval for fh does not include zero. 

The economist also carried out other analyses, some of which will be described shortly. 

Comment 

The reader may wonder why we did not simply fit separate regressions for stock firms and mutual 
firms in our example, and instead adopted the approach of fitting one regression with an indicator 
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variable. There are two reasons for this. Since the model assumes equal slopes and the same constant 
error term variance for each type of firm, the common slope /31 can best be estimated by pooling 
the two types of firms. Also, other inferences, such as for /30 and /h., can be made more precisely by 
working with one regression model containing an indicator variable since more degrees of freedom 
will then be associated with MSE. • 

Qualitative Predictor with More than Two Classes 
If a qualitative predictor variable has more than two classes, we require additional indicator 
varIables in the regression model. Consider the regression of tool wear (Y) on tool speed 
(XI) and tool model, where the latter is a qualitative variable with four classes (MI, M2, 
M3, M4). We therefore require three indicator variables. Let us define them as follows: 

X2 = {~ if tool model Ml 
otherwise 

X3 = {~ if tool model M2 
otherwise 

(8.35) 

X4 = g if tool model M3 
otherwise 

First-Order Model. A first-order regression model is: 

(8.36) 
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For this model, the data input for the X variables would be as follows: 

Tool Model Xl X2 X3 X4 

M1 Xil 0 0 
M2 Xil 0 1 0 
M3 XI1 0 0 1 
M4 Xil 0 0 0 

The response function for regression model (8.36) is: 

(8.37) 

To understand the meaning of the regression coefficients, consider first what response 
function (8.37) becomes for tool models M4 for, which X2 = 0, X3 = 0, and X4 = 0: 

Tool models M4 (8.37a) 

For tool models MI, X2 = I, X3 = 0, and X4 = 0, and response function (8.37) becomes: 

Tool models MI 

Similarly, response functions (8.37) becomes for tool models M2 and M3: 

E{Y} = (f3o + {h) + f3I X 1 

E{Y} = (fJo + f34) + f3 IX 1 

Tool models M2 

Tool models M3 

(8.37b) 

(8.37c) 

(8.37d) 

Thus, response function (8.37) implies that the regression of tool wear on tool speed is 
linear, with the same ~lope for all four tool models. The coefficients {3z, /33, and f34 indicate, 
respectively, how much higher (lower) the response functions for tool models MI, M2, and 
M3 are than the one for,tool models M4, for any given level of tool speed. Thus, f32' /33, and 
f34 measure the differential effects of the qualitative variable classes on the height of the 
response function for any given level of Xl, always compared with the class for which X2 = 
X3 = X4 = O. Figure 8.13 illustrates a possible arrangement of the response functions. 

When using regression model (8.36), we may wish to estimate differential effects other 
than against tool models M4. This can be done by estimating differences between regression 
coefficients. For instance, f34 - f33 measures how much higher (lower) the response function 
for tool models M3 is than the response function for todl models M2 for any given level of 
tool speed, as may be seen by comparing (8.3ic) and (8.37d). The point estimator of this 
quantity is, of course, b4 - ~, and the estimated variance of this estimator is: 

(8.38) 

The needed variances and covariance can be readily ob'tained from the estimated variance­
covariance matrix of the regression coefficients. 

Time Series Applications 
Economists and business analysts frequently use time series data in regression analysis. 
Indicator variables often are useful for time series regression models. For instance, savings 
(Y) may be regressed on income (X), where both the savings and income data are annual 
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FIGURE 8.13 
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data for a number of years. The model employed might be: 

t = 1, ... ,n (8.39) 

where Yt and Xt are savings and income, respectively, for time period t. Suppose that the 
period covered includes both peacetime and wartime years, and that this factor should be 
recognized since savings in wartime years tend to be higher. The following model might 
then be appropriate: 

(8.40) 

where: 

Xtl = income 

X 2 _ {I if period t peacetime 
t - 0 otherwise 

Note that regression model (8.40) assumes that the marginal propensity to save ({3,) is 
constant in both peacetime and wartime years, and that only the height of the response 
function is affected by this qualitative variable. 

Anot~er use of indicator variables in time series applications Occurs when monthly 
or quarterly data are used. Suppose that quarterly sales (Y) are regressed on quarterly 
advertising expenditures (Xl) and quarterly disposable personal income (X~). If seasonal 
effects also have an influence on quarterly sales, a first-orderregression model incorporating 
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seasonal effects would be: 

where: 

Xtl = quarterly advertising expenditures 

XI2 = quarterly disposable personal income 

X _ {I if first quarter 
13 - 0 otherwise 

{
I if second quarter 

XI4 = 0 otherwise 

{
I if third quarter 

XIS = 0 otherwise 

(8.41) 

Regression models for time series data are susceptible to correlated error terms. It is 
particularly important in these cases to examine whether the modeling of the time series 
components of the data is adequate to make the error terms uncorrelated. We discuss in 
Chapter 12 a test for correlated error terms and a regression model that is often useful when 
the error terms are correlated. 

8.4 Some Considerations in Using Indicator Variables 

Indicator Variables versus Allocated Codes 
An alternative to the use of indicator variables for a qualitative predictor variable is to em­
ploy allocated codes. Consider, for instance, the predictor variable "frequency of product 
use" which has three classes: frequent user, occasional user, nonuser. With the allocated 
codes approach, a single X variable is employed and values are assigned to the classes; for 
instance: 

Class Xl 

Frequent user 3 
Occasional user ' 2 
Nonuser 1 

The allocated codes are, of course, arbitrary and could be other sets oftlUmbers. The first­
order model with allocated codes for our example, assuming no other predictor variables, 
would be: 

Y; = f30 + f3tX il + 8; (8.42) 

The basic difficulty with allocated codes is that they define a metric for the classes of the 
qualitative variable that may not be reasonable. To see this concretely, consider the mean 
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responses with regression model (8.42) for the three classes of the qualitative variable: 

Class 

Frequent user 
Occasional user 
Nonuser 

Note the key implication: 

E{Y} 

E {V} = f30 + f3l(3) = f30 + 3f31 
E {Y} = f30 + f31 (2) = f30 + 2f3l 
E {Y} = f30 + f3l (1) = f30 + f3l 

E{Ylfrequent user} - E{Yloccasional user} = E{Yloccasional user} - E{~!9onuser} = fJ, 

Thus, the coding 1,2,3 implies that the mean response changes by the same amount when 
going from a nonuser to an occasional user as when going from an occasional user to a 
frequent user. This may not be in accord with reality and is the result of the coding 1,2,3, 
which assigns equal distances between the three user classes. Other allocated codes may, of 
course, imply different spacings of the classes of the qualitative variable, but these would 
ordinarily still be arbitrary. 

Indicator variables, in contrast, make no assumptions about the spacing of the classes 
and rely on the data to show the differential effects that occur. If, for the same example, two 
indicator variables, say, X, and X2 , are employed to represent the qualitative variable, as 
follows: 

Class 

Frequent user 
Occasional user 
Nonuser 

the first-order regression model would be: 

Xl 

1 
o 
o 

o 
1 
o 

Yj = f30 + f3,XjI + f32Xj2 + Ej 

Here, f3, measures the differential effect: 

E{Ylfrequent user} - E{Ylnonuser} 

and f32 measures the differential effect: 

E{Yloccasional user} - E{Ylnonuser} 

(8.43) 

Thus, f3z measures the differential effect between occasional user and nonuser, and f3, - fJ2 
measures the differential effect between frequent user and occasional user. Notice that there 
are no arbitrary restIictions to be satisfied by these two differential effects. Also note that 
if f3, = 2f32' then equal spacing between the three classes would exist. 

Indicator Variables versus Quantitative Variables 
Indicator variables can be used even if the predictor variable is quantitative. For instance, the 
quantitative variable age may be transformed by grouping ages into classes such as under 
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21,21-34,35-49, etc. Indicator variables are then used for the classes of this new predictor 
variable. At first sight, this may seem to be a questionable approach because information 
about the actual ages is thrown away. Furthermore, additional parameters are placed into 
the model, which leads to a reduction of the degrees of freedom associated with MSE. 

Nevertheless, there are occasions when replacement of a quantitative variable by indicator 
variables may be appropriate. Consider a large-scale survey in which the relation between 
liquid assets (Y) and age (X) of head of household is to be studied. Two thousand households 
were included in the study, so that the loss of 10 or 20 degrees of freedom is immaterial. 
The analyst is very much in doubt about the shape of the regression function, which could 
be highly complex, and hence may utilize the indicator variable approach in order to obtain 
information about the shape ofthe response function without making any'assumptions about 
its functional form. 

Thus, for large data sets use of indicator variables can serve as an alternative to lowess 
and other nonparametric fits of the response function. t 

Other Codings for Indicator Variables 
As stated earlier, many different codings of indicator variables are possible. We now describe 

. ~two alternatives to our 0, 1 coding for c - 1 indicator variables for a qualitative variable 
with c classes. We illustrate these alternative codings for the insurance innovation example, 
where Y is time to adopt an innovation, Xl is size of insurance firm, and the second predictor 
variable is type of company (stock, mutual). 

The first alternative coding is: 

X2 = { 1 
-1 

if stock company 
if mutual company 

For this coding, the first-order linear regression model: 

has the response function: 

This response function becomes for the two types of companies: 

E{Y} = (130 + fJz) + fhX j 

E{Y} = (f3o - f32) + f3 j X j 

, 

Stock firms 

Mutual firms 

(8.44) 

(8.45) 

(8.46) 

(8.46a) 

(8.46b) 

Thus, 130 here may be viewed as an ~'average" intercept of the regression line, from which 
the stock company and mutual company intercepts differ by f32 in opposite directions. A test 
whether the regression lines are the same for both typeS' of companies involves Ho: fJz = 0, 
Ha: fJz t= 0. • 

A second alternative coding scheme is to use a 0, 1 indicator variable for each of the c 
classes of the qualitative variable and to drop the intercept term in the regression model. 
For the insurance innovation example, the model would be: 

(8.47) 
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where: 

X;I = size of finn 

{ 
1 if stock company 

X·o -
1- - 0 otherwise 

{ 
1 if mutual company 

Xn = 0 otherwise 

Here, the two response functions are: 

E{Y} = fh + f3I X I 
E{Y} = f3, + f3l x , 

Stock firms 

Mutual finns 

(SASa) 

(SASb) 

A test of whether or not the two regression lines are the same would involve the alternatives 
Ho: f32 = f3" Ha: f32 #- f33. This type of test, discussed in Section 7.3, cannot be conducted 
by using extra sums of squares and requires the fitting of,both the fuB and reduced mOdels. 

8.5 Modeling Interactions between Quantitative 
and Qualitative Predictors 

In the insurance innovation example, the economist actually did not begin the analysis with 
regression model (8.33) because of the possibility of interaction effects between size of 
firm and type of firm on the response variable. Even though one of the predictor variables 
in the regression model here is qualitative, interaction effects can still be introduced into 
the model in the usual manner, by including cross-product tenns. A first-order regression 
model with an added interaction term for the insurance innovation example is: 

(S.49) 

where: 

Xii = size of finn 

X.o = {l if stock company 
1- 0 otherwise 

The response function for this regression model is: 

E{Y} = f30 + f3, X, + f32 X 2 + f33 X , X2 (S.50) 

Meaning of Regression Coefficients 
The meaning ofthe regression coefficients in response function (8.50) can best be understood 
by examining the nature of this function for each type of firm. For a mutual firm, X2 = 0 
and hence X I X2 = O. Response function (8.50) therefore becomes for mutual firms: 

Mutual films (S.50a) 

This response function is shown in Figure 8.14. Note that the Y intercept is f3{) and the slope 
is f31 for the response function for mutual firms. 
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Number of 
Months Elapsed 

y 

f30 

o 

Chapter 8 Regression Modelsfor Quantitative and Qualitative Predictors 325 

Stock Firms Response Function: 
E{Y} = (/30 + Ih) + (/31 :- f33)X1 

Mutual Firms Response FUnction: 
E{Y} = f30 + f31 Xl 

Xl 
Size of Firm 

For stock firms, X2 = 1 and hence X I X2 = X I. Response function (8.50) therefore be­
comes for stock firms: 

or: 

Stock firms (S.SOb) 

This response function is also shown in Figure 8.14. Note that the response function for 
stock firms has Y intercept fJo + fJ2 and slope fJI + fJ3. 

We see that fJ2 here indicates how much greater (smaller) is the Y intercept of the response 
function for the class coded 1 than that for the class coded O. Similarly, fJ3 indicates how 
much greater (smaller) is the slope of the response function for the class coded 1 than that 
for the class coded O. Because both the intercept and the slope differ for the two classes in 
regression model (8.49), it is no longer true that fJz indicates how much higher (lower) one 
response function is than the other for any given level of Xl. Figure 8.14 shows that the 
effect of type of firm with regressiOB model (8.49) depends on X], the size of the firm. For 
smaller firms, according to Figure 8.14, mutual firms t~nd to innovate more quickly, but for 
larger firms stock firms tend to innovate more quickly. Thus, when interaction effects are 
present, the effect of the qualitative predictor variable can be studied only by comparing the 
regression functions within the scope of the !llodel for the different classes of the qualitative 
variable. 

Figure 8.15 illustrates another possible interaction pattern for the insurance innovation 
example. Here, mutual firms tend to introduce the innovation more quickly than stock firms 
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FIGURE 8.15 
Another 
Illustration of 
Regression 
Model (8.49) 
with Indicator 
Variable X2 

and Interaction 
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Insurance 
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Example. 
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for all sizes of firms in the scope of the model. but the differential effect is much smaller 
for large firms than for small ones. 

The interactions portrayed in Figures 8.14 and 8.15 can no longer be viewed as reinforcing 
or interfering types of interactions because One of the predictor variables here is qualitative. 
When one of the predictor variables is qualitative and the other quantitative, nonparallel 
response functions that do not intersect within the scope of the model (as in Figure 8.15) are 
sometimes said to represent an ordinal interaction. When the response functions intersect 
within the scope of the model (as in Figure 8.14), the interaction is then said to beadisordinal 
interaction. 

Since the economist was concerned that inreraction effects between size and type of firm 
may be present, the initial regression model fitted was model (8.49): 

The values for the interaction term X I X2 for [he insurance innovation example are shown 
in Table 8.2, column 5, on page 317. Note that this column contains 0 for mutual companies 
and Xii for stock companies. 

Again, the regression fit is routine. Basic results from a computer run regressing Y on 
X I, X2 , and X I X2 are shown in Table 8.4. To test for the presence of interaction effects: 

Ho: fh = 0 

HlI : fh i- 0 

the economist used the t~ statistic from Table 8.4n: 

-.0004171 
----=-.02 

.0\833 



TABLE 8.4 
Regression 
ResUlts for Fit 
of Regression 
Model (8.49) 
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Interaction 
Term­
Insurance 
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(a) Regression Coefficients 

Estimated· 
Regression Coe~cient 

33.83837 
-.10153 
8.13125 
-.0004171 

Estimated 
Standard Deviation 

2.44065 
.01305 

3.65405 
.01833 

(b) Analysis of Variance 

Source of 
Variation 55 df M5 

Regression 1,504.42 3 501.47 
Error 176.38 16 11.02 
Total 1,680.80 19 

t* 

13.86 
-7.78 

2.23 
-.02 

... 
.~ 

¥ ..;. 

For level of significance .05, we require t(.975; 16) = 2.120. Since I t* I = .02 ::s 2.120, 
we conclude Ro, that fh = O. The conclusion of no interaction effects is supported by the 
two-sided P-value for the test, which is very high, namely, .98. It was because ofthis result 
that the economist adopted regression model (8.33) with no interaction term, which we 
discussed earlier. 

Comment 

Fitting regression model (8.49) yields the same response functions as would fitting separate regressions 
for stock firms and mutual firms. An advantage of using model (8.49) with an indicator variable is 
that one regression run will yield both fitted regressions. 

Another advantage is that tests for comparing the regression functions for the different classes of 
the qualitative variable can be clearly seen to involve tests of regression coefficients in a general linear 
model. For instance, Figure 8.14 for the insurance innovation example shows that a test of whether 
the two regression functions have the same slope involves: 

Ho: f33 = 0 

Ha: f33 =I- 0 

Similarly, Figure 8.14 shows that a test of whether the two regression functions are identical involves: 

Ho: f32 = f33 ~ 0 

Ha: Dot both f32 = 0 and f33 = 0 

• 
8.6 More Complex Models 

We now briefly consider more complex models involving quantitative and qualitative 
predictor variables. 
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More than One Qualitative Predictor Variable 
Regression models can readily be constructed for cases where two or more of the predictor 
variables are qualitative. Consider the regression of advertising expenditures (Y) on sal 
(X I), type of firm (incorporated, not incorporared), and quality of sales management (hi; 
low). We may define: ' 

if firm incorporated 
otherwise 

if quality of sales management high 
otherwise 

(8.51) 

First-Order Model. A first-order regression model for the above example iii: 

(8.52) 

This model implies that the response function of advertising expenditures on sales is linear, 
with the same slope for all "type of firm-quality of sales management" combinations 
and fh and fh indicate the additive differential effects of type of firm and quality of sale~ 
management on the height of the regression line for any given levels of X I and the other 
predictor variable. 

First-Order Model with Certain Interactions Added. A first-order regression model 
to which me added interaction effect'> between each pair of the predictor variables for the 
advertising example is: 

Note the implications of this model: 

Type of 
Firm 

Incorporated 
Not incorporated 
Incorporated 
Not incorporated 

Quality of Sales 
Management 

High 
High 
Low 
Low 

Response Function 

ElY} = (f3o + f32 + f33 + (36) + (fh + f34 + {35)X1 

ElY} = (f3o + (33) + (fh + (35)X 1 
E {Y) = ({3o + {32) + ({31 + {34)XI 
ElY} = f30 +f31 XI 

Not only are all response functions different for the various "type of firm-quality of sales 
management" combinations, but the differential effects of one qualitative variable on the 
intercept depend On the pmticular cla<;s of the other qualitative vmiable. For instance, when 
we move from "not incorporated-low qual ity" to "incorporated-low quality," the intercept 
changes by fh. But if we move from "not incorporated-high quality" to "incorporated­
high quality," the intercept changes by fh + f36. 
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Qualitative Predictor Variables Only 
Regression models containing only qualitative predictor variables can also be constructed. 
With reference to our advertising example, we could regress advertising expenditures only 
on type of firm and quality of sales management. The first-order regression model then 
would be: 

(8.54) 

where Xi2 and Xi3 are defined in (8.51). 

Comments 
i.{~ 

1. Models in which all explanatory variables are qualitative are called analysis of variance 
models. 

2. Models containing some quantitative and some qualitative explanatory variables, where the 
chief explanatory variables of interest are qualitative and the quantitative variables are introduced 
primarily to reduce the variance of the error terms, are called analysis of covariance models. 

• 
8.7 CompaTison of Two or More Regression Functions 

Frequently we encounter regressions for two or more populations and wish to study their 
similarities and differences. We present three examples. 

1. A company operates two production lines for making soap bars. For each line, the 
relation between the speed of the line and the amount of scrap for the day was studied. 
A scatter plot of the data for the two production lines suggests that the regression relation 
between prodUction line speed and amount of scrap is linear but not the same for the two 
production lines. The slopes appear to be about the same, but the heights of the regression 
lines seem to differ. A formal test is desired to determine whether or not the two regres­
sion lines are identical. If it is found that the two regression lines are not the same, an 
investigation is to be made of why the difference in scrap yield exists. 

2. An economist is studying the relation between amount of savings and level of income 
for middle-income families from urban and rural areas, based on independent samples from 
the two populations. Each of the two relations can be modeled by linear regression. The 
economist wishes to compare whether, at given income levels, urban and rural families 
tend to save the same amount-i.e., whether the two regression lines are the same. If they 
are not, the economist wishes to explore whether at least the amounts of savings out of an 
additional dollar of income are the saple for th~ two groups-i.e., whether the slopes of the 
two regression lines are the same. 

3. Two instruments were constructed for a company to identical specifications to measure 
pressure in an industrial process. A study was then made for each instrument of the relation 
between its gauge readings and actual pressures as determined by an almost exact but slow 
and costly method. If the two regression lin~s are the same, a single calibration schedule 
can be developed for the two instruments; otherwise, two different calibration schedules 
will be required. 
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When it is reasonable to assume that the error term variances in the regression models 
for the ~ifferent popul~tions ~ equal, we can use. indicator variables to test the equality 
of the different regressIOn functIOns. If the error vanances are not equal, transformations of 
the response variable may equalize them at least approximately. 

We have already seen how regression models with indicator variables that contain inter­
action terms permit testing of the equality of regression functions for the different classes 
of a qualitative variable. This methodology can be used directly for testing the equality of 
regressi on functions for different populations. We simply consider the different populations 
as classes of a predictor variable, define indicator variables for the different populations, and 
develop a regression model containing appropriate interaction terms. Since no new princi­
ples arise in the testing of the equality of regression functions for different populations, we 
immediately proceed with two of the earlier examples to illustrate the atfProach. 

Soap Production Lines Example 

TABLE 8.5 
Data-Soap 
Production 
Lines Example 
(all data are 
coded). 

The data on amount of scrap (Y) and line speed (X,) for the soap production lines example 
are presented in Table 8.5. The variable X2 is a cod~ for the production line. A symbolic 
scatter plot of the data, using different symbols for the two production lines, is shOwn in 
Figure 8.16. J 

Tentative Model. On the basis of the symbolic scatter plot in Figure 8.16, the analyst 
decided to tentatively fit regression model (8.49). This model assumes that the regression 
relation between amount of scrap and line speed is linear for both production lines and that 
the variances of the error terms are the same, but permits the two regression lines to have 
different slopes and intercepts: 

Yi = fJo + fJ,Xil + fJ2 Xi2 + fJ3Xii Xi2 + 8; (8.55) 

Production Line 1 Production Lil)e 2 

Amount Line Amount Jine 
Case of Scrap Speed Case of Scrap Speed 

y, X/1 Xi2 y; ,XIl X12 1_ 

1 218 100 1_ 16 140 105 0 
2 248 125 1 17 277 215 0 
3 360 220 1 18 384 ?7Q 0 
4 351 205 1 19 341 255 0; 
5 470 300 1 20 2J5 175 0 
6 394 255 1 21 180 135 0 
7 332 225 1 22 260 200 0 
8 321 175 1 23 361 275 0 
9 410 270 1 24 252 155, 6 

JO 260 170 1 25 422 320 0 
11 241 155 1 26 273 190 0 
12 331 190 1 17 410 295 0 
13 275 140 
14 425 290 1 
15 367 265 1 



FIGURE 8.16 
SymbOlic 
Scatter 
Plot-SoaP 
production 
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where: 

Xii = line speed 

X. _ {I if production line I 
,2 - 0 if production line 2 

i = 1,2, ... ,27 

N Ole that for purposes of this mOdel, the 15 cases for production line I and the 12 cases for 
production line 2 are combined into one group of 27 cases. 

Diagnostics. A fit of regression model (8.55) to the data in Table 8.5 led to the results 
presented in Table 8.6 and the following fitted regression function: 

y = 7.57 + 1.322X1 + 90.39X2 - .1767X,X2 

Plots of the residuals against Y are shown in Figure 8.17 for each production line. Two plots 
are used in order to facilitate the diagnosis of possible differences between the two produc­
tion lines. Both plots in Figure 8.17 are reasonably consistent with regression model (8.55). 
The splits between positive and negative residuals of 10 to 5 for production line 1 and 4 to 
8 for production line 2 can be accounted for by randomness of the outcomes. Plots of the 
residuals against X2 and a normal probability plot of the residuals (not shown) also support 
the appropriateness of the fitted model. For the latter plot, the coefficient of correlation 
between the ordered residuals and their expected values under normality is .990. This is 
sufficiently high according to Table B.6 to support the assumption of normality of the error 
terms. 

Finally, the analyst desired to make ,a formal test of the equality of the variances of 
the error terms for the two production lines, using the Brown-Forsythe test described in 
Section 3.6. Separate linear regression models were fitted to the data for the two production 
lines, the residuals were obtained, and the absolute deviations dn and di2 in (3.8) of the 
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TABLE 8.6 
Regression 
Results for Fit 
of Regression 
Model (8.55)­
Soap 
Production 
Lines Example. 

FIGURE 8.17 
Residual Plots 
against 
Y-Soap 
Production 
Lines Example. 
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40 

20 
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(a) Regression Coefficients 
" < 

Estimated 
Regression 
Coefficient 

7.57 
1.322 

90.39 
-.1767 

Estimat~d 
Standard 
Deviation 

20.87 
.09262. 

28.35 
.1288 

(b) Analysj~ 9f Variance 

55 ,df 

169,165 3 
149,661 1 
18~694 1 

810 J 
9,904 23 

179,069 26 

(a) Production Line 1 

• • • • • 
• • • •• 

• 

• 
•• • 

o 100 200 300 400 Y 

residuals around the median residual for each 
The results were as follows: 

Production Line 1 

Y =97.965 + 1.145Xl 
al =16.132 

L:<~l - al)Z = 2,952.20 
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The pooled variance S2 in (3.9a) therefore is: 

S2 = 2,952.20 + 2,045.82 = 199.921 
27-2 

Hence, the pooled standard deviation is s = 14.139, and the test statistic in (3.9) is: 

16.132 - 12.648 
t~F = = .636 

14.139) 1 + I 
15 12 

For a = .05, we require t(.975; 25) = 2.060. Since I t~F I = .636:::: 2.060, we conclude 
that the error term variances for the two prodUction lines do .not differ. The two-sided 
P-value for this test is .53. 7' 

At this point, the analyst was satisfied about the aptness of regression model (8.55) 
with normal error terms and was ready to proceed with comparing the regres~on relation 
between amount of scrap and line speed for the two production lines. 

Inferences about 1\vo Regression Lines. Identity of the regression functions for the two 
production lines is tested by considering the alternatives: 

Ho: fh= fh =0 
Ha: not both fh = 0 and fh = 0 

(8.56) 

The appropriate test statistic is given by (7.27): 

F* = SSR(X2 , X,X2 IX,) --:- SSE(X" X2 , X,X2) 

2 n-4 
(8.56a) 

where n represents the combined sample size for both populations. Using the regression 
results in Table 8.6, we find: 

SSR(X2 , X,X2 IX,) = SSR(X2 IX,) + SSR(X 1X2 IX" X2 ) 

= 18,694 + 810 = 19,504 

F* = 19,504 --:- 9,904 = 22.65 
2 23 

To control a at level .01, we require F(.99; 2, 23) = 5.67. Since F* = 22.65 > 5.67, we 
conclude Ha. that the regression functions for the two prodUction lines are not identical. 

Next, the analyst examined whether the slopes of the regression lines are the same. The 
alternatives here are: 

Ho: fh = 0 
, Ha: fh =1= 0 

(8.57) 

and the appropriate test statistic is either the t* statistic (7.25) or the partial F test statis­
tic (7.24): 

F* = SSR(XJ X2 IX" X2 ) --:- SSE(X1, X2 , X,X2 ) 

1 n-4 
(8.57a) 

Using the regression results in Table 8.6 and the partial F test statistic, we obtain: 

F* = 810 --:- 9,904 = 1.88 
1 23 
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For ex = .01, we require F(.99; 1,23) = 7.88. Since F* = 1.88:::: 7.88, we conclude H, 
that the slopes of the regression functions for the two production lines are the same. 0, 

. Using the Bonferroni il~equ~lity (4.2~, t~e analyst can therefore conclude at family sig­
mficance level .02 that a gIven Increase III line speed leads to the same amount of increase 
in expected scrap in each of the two production lines, but that the expected amoUnt of scrap 
for any given line speed differs by a constant amount for the two production lines. 

We can estimate this constant difference in the regression lines by obtaining a confidence 
interval for th. For a 95 percent confidence interval, we require t(.975; 23) = 2.069. Using 
the results in Table 8.6, we obtain the confidence limits 90.39 ± 2.069(28.35). Hence, the 
confidence interval for fh is: 

31.7 :::: th :::: 149.0 

We thus conclude, with 95 percent confidence, that the mean amount of scrap for production 
line I, at any given line speed, exceeds that for production line 2 by somewhere between 
32 and 149. 

Instrument Calibration Study Example 
The engineer making the calibration study believed that the regression fUnctions relat­
ing gauge reading (Y) to actual pressure (XI) for both instmments are second-order 
polynomials: 

E{Y} = 130 + 131 Xl + 132 xi 
but that they might differ for the two instruments. Hence, the model employed (using a 
centered variable for X I to reduce multicollinearity problems-see Section 8.1) was: 

where: 

Xi! = Xi I - X I = centered actual pressure 

X'7 _ {I if instmment B 
1- - 0 otherwise 

Note that for instrument A, where X2 = 0, the response function is: 

(8.58) 

Instrument A (8.59a) 

and for instrument B, where X2 = 1, the response function is: 

Instrument B (8.59b) 

Hence, the test for equality of the two response functions involves the alternatives: 

Ho: 133 = 134 = 135 = 0 

H,,: not all 13k in Ho equal zero 

and the appropriate test statistic is (7.27): 

(8.60) 

F* = SSR(X2,XIX2.xlX2Ix l,xD . SSE(XI.X~,X2,XIX2,xfX2) (8.6Oa) 
3 . n-6 

where n represents the combined sample size for both populations. 
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Comments 

1. The approach just described is completely general. If three or more populations are involved, 
additional indicator variables are simply added to the model. 

2. The use of indicator variables for testing whether two or more regression functions are the 
same is equivalent to the general linear test approach where fitting the full model involves fitting 
separate regressions to the data from each population, and fitting the reduced model involves fitting 
one regression to the combined data. • 
8.1. Draper, N. R., and H. Smith. Applied Regression Analysis. 3rd ed. New York: John Wiley & 

Sons, 1998. 

8.1. Prepare a contour plot for the quadratic response surface E{Y} = 140 + 4x~ - 2x}+ 5XIX2. 

Describe the shape of the response surface. 

8.2. Prepare a contour plot for the quadratic response surface E{Y} = 124 - 3x? - 2xi - 6XIX2. 

Describe the shape of the response surface. 

8.3. A junior investment analyst used a polynomial regression model of relatively high order in a 
research seminar on municipal bonds and obtained an R2 of .991 in the regression of net interest 
yield of bond (Y) on industrial diversity index of municipality (X) for seven bond issues. A 
classmate, unimpressed, said: "You overfitted. Your curve follows the random effects in the 
data" 

a. Comment on the criticism. 

b. Might R~ defined in (6.42) be more appropriate than R2 as a descriptive measure hereT­

*8.4. Refer to Muscle mass Problem 1.27. Second-order regression model (8.2) with independent 
normal error terms is expected to be appropriate. 

a Fit regression model (8.2). Plot the fitted regression function and the data. Does the quadratic 
regression function appear to be a good fit here? Find R2. 

b. Test whether or not there is a regression relation; use (){ = .05. State the alternatives, decision 
rule, and conclusion. 

c. -Estimate the mean muscle mass for women aged 48 years; use a 95 percent confidence 
interval. Interpret your interval. 

d. Predict the muscle mass for a woman whose age is 48 years; use a 95 percent prediction 
interval. Interpret your interval. 

e. Test whether the quadratic term can be dropped from the regression model; use (){ = .05. 
State the alternatives, decision rule, and conclusion. 

f. Express the fitted regression function obtained in part (a) in terms of the original variable X. 

g. Calculate the coefficient of simple 'correlation between X and X2 and between x and x 2 • Is 
the use of a centered variable helpful here? 

*8.5. Refer to Muscle mass Problems 1.27 and 8.4. 

a Obtain the residuals from the fit in 8.4a and plot them against Y and against x on separate 
graphs. Also prepare a normal pr~bability plot. Interpret your plots. 

b. Test formally for lack of fit of the quadratic regression function; use (){ = .05. State the 
alternatives, decision rule, and conclusion. What assumptions did you make implicitly in 
this test? 
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c. Fitthird-order model (8.6) and test whetherornot ,6111 = 0: usea = .05. State the alternatives 
deci~ion rule, and conclusion. Is your conclusion consistent with your finding in pan (b)?' 

8.6. Steroid level. An endocrinologist was interested in exploring the relationship between the level 
of a steroid (Y) and age (X) in healthy female subjects whose ages ranged from 8 to 25 years 
She collected a sample of 27 healthy females in this age range. The data are given below: . 

i: 

Xi: 
Yi: 

23 
27.1 

2 

19 
22.1 

3 

25 
21.9 

25 

13 
12.8 

26 

14 
20.8 

27 

18 
20.6 

a. Fit regression model (8.2). Plotthe fitted regression function and the data. Does the qUadratic 
regression function appear to be a good fit here? Find R2. .. '0 

b. Test whether or not there is a regression relation; usea = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test'? 

c. Obtain joint interval estimates for the mean steroid level of females aged 10, 15. and 20 
respectively. Use the most efficient simultllpeous estimation procedure and a 99 perce~ 
family confidence coefficient. Interpret your intervals. 

d. Predict the steroid levels of females aged IS using a 99 percent prediction interval. Interpret 
your interval. 

e. Test whether the quadratic term can be dropped from the model; use a = .01. State the 
alternatives, decision mle, and conclusion. 

f. Express the fitted regression function obtained in part (a) in terms ofthe original variable X. 

8.7. Refer to Steroid level Problem 8.6. 

a. Obtain the residuals and plot them against the fitted values and against x on separate graphs. 
Also prepare a normal probability plot. What do your plots show? 

b. Test formally for lack of fit. Control the risk of a Type I en'or at .01. State the alternatives, 
decision rule, and conclusion. What assumptions did you make implicitly in this test? 

8.8. Referto Commercial properties Problems 6.18 and 7.7. The vacancy rate predictor (X3) does 
not appear to be needed when propeny age (X I)' operating expenses and taxes (Xl)' and total 
square footage (X-I) are included in the model as predictors of rental rates (Y). 

a. The age of the property (X I) appears to exhibit some curvature when plotted against the 
rental rates (Y). Fit a polynomial regression model with centered property age (XI), 

the square of centered property age (Xf), operating expenses and taxes (Xl), and total 
square footage (X4 ). Plot the Y observations against the fitted values. Does the response 
function provide a good fit? 

b. Calculate R~. What information does this measure provide? 

c. Test whether or not the the square of centered property age (x~) can be dropped from the 
model; use a = .05. State the alternatives, decision mle. and conclusion. What is the p-value 
of the test? 

d, Estimate the mean rental rate when XI = 8. X1 = 16, and X4 = 250,000; use a 95 percent 
confidence interval. Interpret your interval. 

e. Express the fitted response function obtained in pmt (a) in the original X variables. 

8.9. Consider the response function E{Y} = 25 + 3X I + 4X1 + 1.5X IX1 . 

a. Prepare a conditional effects plot of the response function against X I when X2 = 3 and 
when X1 = 6. How is the interaction effect of X I and X 2 on Y apparent from this graph? 
Describe the nature of the interaction effect. 
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b. Plot a set of contour curves for the response surface. How is the interaction effect of X I and 
X2 on Y apparent from this graph? 

8.10. Consider the response function E{Y} = 14 + 7XI + 5X2 - 4XIX2 • 

a. Prepare a conditional effects plot of the response function againstX2 when XI = 1 and when 
X I = 4. How does the graph indicate that the effects of X I and X2 on Y are not additive? 
What is the nature of the interaction effect? 

b. Plot a set of contour curves for the response surface. How does the graph indicate that the 
effects of XI and X2 on Y are not additive? 

8.11. Refer to Brand preference Problem 6.5. 

a. Fit regression model (8.22). 

b. Test whether or not the interaction term can be dropped from th~,model; use ct = .05. State 
the alternatives, decision rule, and conclusion. 

8.12. A student who used a regression model that included indicator variables was upset when 
receiving only the following output on the multiple regression printout: XTRA1'1SPOSE X 
SINGULAR. What is a likely source of the difficulty? 

8.13. Refer to regression model (8.33). Portray graphically the response curves for this model if 
fJo = 25.3, fJl = .20, and fJ2 = -12.1. 

8.14. In a regression study offactors affecting learning time for a certain task (measured in minutes), 
gender of learner was included as a predictor variable (X2) that was coded X2 = 1 if male and 
o if female. It was found that b2 = 22.3 and s{~} = 3.8. An observer questioned whether the 
coding scheme for gender is fair because it results in a positive coefficient, leading to longer 
learning times for males than females. Comment. 

8.15. Refer to Copier maintenance Problem 1.20. The users of the copiers are either training in­
stitutions that use a small model, or business firms that use a large, commercial modeL An 
analyst at Tri-City wishes to fit a regression model including both number of copiers serviced 
(XI) and type of copier (X2 ) as predictor variables and estimate the effect of copier model 
(S-small, L-large) on number of minutes spent on the service call. Records show that the 
models serviced in the 45 calls were: 

i: 2 3 43 44 45 

s L L L L L 

Assume that regression model (8.33) is appropriate, and let X2 = I if small model and 0 iflarge, 
commercial model. 

a. Explain the meaning of all regression coefficients in the model. 

b. Fit the regression model and state the estimated regression function. 

c. Estimate the effect of copier model on mean service time with a 95 percent confidence 
interval. Interpret your interval eSfimate. 

d. Why would the analyst Wish to include X I, number of copiers, in the regression model when 
interest is in estimating the effect of type of copier model on service time? 

e. Obtain the residuals and plot them against X; X2 • Is there any indication that an interaction 
term in the regression model w.ould be helpful? 

8.16. Refer to Grade point average Problem 1.19. An assistant to the director of admissions con­
jectured that the predictive power of the model could be imprOVed by adding information on 
whether the student had chosen a major field of concentration at the time the application was 
submitted. Assume that regression model (8.33) is appropriate, where X I is entrance test score 
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and X2 = I if student had indicated a major field of concentration at the time of applicatio 
and 0 if the major field was undecided. Data for X2 were as follows: n 

i: 2 3 118 119 120 

o o o 

a. Explain how each regression coefficient in model (8.33) is interpreted here. 

b. Fit the regression model and state the estimated regression function. 

c. Test whether the X2 variable can be dropped from the regression model; use CI = .01. State 
the alternatives. decision rule. and conclusion. 

d. Obtain the residuals for regression model (S.33) and plot them ag~nst X1X1.1s there any 
evidence in your plot that it would be helpful to include an interaction term in the model? 

8.17. Refer to regression models (8.33) and (8.49). Would the conclusion that f32 = 0 have the same 
implication for each of these models? Explain. 

S.I8. Refer to regression model (8.49). POl1ray graphically the response curves for this model if 
f3u = 25, f31 = .30, fh = -12.5, and f33 = .05. Describe the nature of the interaction effect. 

*8.19. Refer to Copier maintenance Problems 1.20 and 8.15. 

a. Fit regression model (8.49) and state the estimated regression function. 

b. Test whether the interaction term can be dropped from the model; control the CI Iisk at .10. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? lfthe 
interaction term cannot be dropped from the model. describe the nature of the interaction 
effect. 

8.20. Refer to Grade point average Problems 1.19 and 8.16. 

a. Fit regression model (8.49) and state the estimated regression function. 

b. Test whether the interaction telm can be dropped from the model; use (){ = .05. State the 
alternatives. decision rule, and conclusion. If the interaction term cannot be dropped from 
the model. describe the nature of the interaction effect. 

8.21. In a regression analysis of on-the-job head injuries of warehouse laborers caused by fulling 
objects, Y is a measure of sevelity of the injury, X I is an index lefiecting both the weight of 
the object and the distance it fell, and X2 and X3 are indicator variables for nature of head 
protection worn at the time of the accident, coded as follows: 

Type of Protection 

Hard hat 
Bump cap 
None 

1 
o 
o 

o 
1 
o 

The response function to be used in the study is E{Y} = f30 + f3IXI + fhX 2 + {33X3. 

a. Develop the response function for each type of protection category. 

b. For each of the following questions, specify the alternatives Ho and H" for the appropriate 
test: (I) With X I fixed, does wearing a bump cap reduce the expected severity of injury as 
compared with wearing no protection? (2) With X I fixed, is the expected severity of irUury 
the same when wearing a hard hat as when wearing a bump cap? 

8.22. Refer to tool wear regression model (8.36). Suppose the indicator variables had been defined as 
follows: X, = I if tool model M2 and 0 otherwise. X 3 = I if tool model M3 and 0 otherwise. 
X-I = I ift~olmodel M4 and 0 otherwise. Indicate the ~eaning of each of the following: (l)fi3. 

(2) f3-1 - f:33. (3) f31. 
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8.23. A marketing research trainee in the national office of a chain of shoe stores used the following 
response function to study seasonal (winter, spring, summer, fall) effects on sales of a certain 
line of shoes: E{Y} = f30 + f31X1 + f32X 2 + f33X3. The Xs are indicator variables defined as 
follows: X I = 1 if winter and 0 otherwise, X 2 = I if spring and 0 otherwise, X 3 = I if fall and 0 
otherwise. After fitting the model, the trainee tested the regression coefficients f3k (k = 0, ... , 3) 
and came to the following set of conclusions at an .05 family level of significance: f30 i= 0, 
f31 = 0, f32 i= 0, f33 i= O. In the report the trainee then wrote: "Results of regression analysis 
show that climatic and other seasonal factors have no influence in determining sales of this 
shoe line in the winter. Seasonal influences do exist in the other seasons." Do you agree with 
this interpretation of the test results? Discuss. 

8.24. Assessed valuations. A tax consultant studied the current relation between selling price and 
assessed valuation of one-family residential dwellings in a large taX district by obtaining data 
for a random sample of 16 recent "arm's-length" sales transactions of one-family dwellings 
located on comer lots and for a random sample of 48 recent sales of one-family dwellings not 
located on corger lots. In the data that follow, both selling price (Y) and assessecl valuation 
(Xd are expressed in thousand dollars, whereas lot location (X2) is coded 1 for comer lots 
and 0 for non-comer lots. 

i: 2 3 62 63 64 

Xii: 76.4 74.3 69.6 79.4 74.7 71.5 
Xj2 : 0 0 9 0 0 1 

Yj: 78.8 73.8 64.6 97.6 84.4 70.5 

Assume that the error variances in the two populations are equal and that regression model (8.49) 
is appropriate. 

» 

a. Plot the sample data for the two populations as a symbolic scatter plot. Does the regression 
relation appear to be the same for the two populations? 

b. Test for identity of the regression functions for dwellings on comer lots and dwellings in 
other locations; control the risk of Type I error at .05. State the alternatives, decision rule, 
and conclusion. 

c. Plot the estimated regression functions for the two populations and describe the nature of 
the differences between them. 

8.25. R",fer to Grocery retailer Problems 6.9 and 7.4. 

a. Fit regression model (8.58) using the number of cases shipped (X d and the binary variable 
(X3 ) as predictors. 

b. Test whether or not the interaction terms and the quadratic term can be dropped from the 
model; use a = .05. State the alternatives, decision rule, and conclusion. What is the P-value 
of the test? 

8.26. In time series analysis, the X variable representing time usually is defined to take on values 
1, 2, etc., for the successive time peri~ds. Does this represent an allocated code when the time 
periods are actually 1989, 1990, etc.? 

8.27. An analyst wishes to include number of older siblings in family as a predictor variable in a re­
gression analysis offactors affecting maturation in eighth graders. The number of older siblings 
in the sample observations ranges from 0 to 4. Discuss whetller this variable should be placed 
in the model as an ordinary quantitati.ve variable or by means of four 0, I indicator variables. 

8.28. Refer to regression model (8.31) for the insurance innovation study. Suppose f30 were dropped 
from the model to eliminate the linear dependence in the X matrix so that the model becomes 
Y; = f3 1X il + f32Xj2 + f33Xi3 + Cj. What is the meaning here of each of the regression coeffi­
cients f31, f32, and f33? 



340 Part Two Multiple Lillear RegresslOlI 

Exercises ----8.29. Consider the second-order regression model with one predictor variable in (8.2) and the fol-
lowing two set~ of X values: 

Set I: 1.0 1.5 I.l I.3 1.9 .8 1.2 1.4 
Set 2: 12 123 17 415 71 283 38 

For each set, calculate the coefficient of correlation between X and X 2
, then between x and x2 

Also calculate the coefficients of con'elation between X and X' and between x and x3• Wha; 
genel1llizations are suggested by your results? 

8.30. (Calculus needed.) Refer to second-orderresponse function (8.3). Explain precisely the meaning 
of the linear effect coefficient f31 and the quadl1ltic effect coefficient f311' 

8.31. a. Derive the expressions for b~, b'I' and b'll in (8.12). ..... 

b. Using (5.46). obtain the variance-covariance matrix for the regression coefficients pertaining 
to the original X variable in terms of the variance-covariance matrix for the regresSion 
coefficients penaining to the transfOimed x variable. 

8.32. How are the normal equations (8.4) simplified if tb,e X values are equally spaced, such as the 
time series representation XI = I, X 2 = 2, ... , XII = II? 

8.33. Refer to the instrument calibration study example in Section 8.7. Suppose that three instruments 
(A, B, C) had been developed to identical specifications, that the regression functions relating 
gauge reading (Y) to actual pressure (X I) are second-order polynomials for each instrument, 
that the error variances are the same, and that the polynomial coefficients may differ from one 
instrument to the next. Let X 3 denote a second indicator variable, where X 3 = I if instrument 
C and 0 otherwise. 

a. Expand regression model (8.58) to cover this situation. 

b. State the alternatives. define the test statistic. and give the decision rule for each of the 
following tests when the level of significance is .0\: (1) test whether the second-orderre· 
gression functions for the three instruments are identical, (2) test whether all three regression 
functions have the same intercept, (3) test whether both the linear and quadl1ltic effects are 
the same in all three regression functions. 

8.34. In a regression study, three types of banks were involved, namely, commercial, mutual savings, 
and savings and loan. Consider the following system of indicator variables for type of bank: 

Type of Bank Xz X3 

Commercial 1 0 
Mutual savings 0 1 
Savings and loan -1 -1 

a. Develop a first-order linear regression model for relating last year's profit or loss (Y) to size 
of bank (Xd and type of bank (Xz, X 3). 

b. State the response functions for the three types of banks. 

c. Interpret each of the following quantities: (1) f32, (2) f33, (3) - f32 - f33. 

8.35. Refer to regression model (8.54) and exclude variable X 3. 

a. Obtain the X'X matrix for this special case of a single qualitative predictor variable, for 
i = I •.... 11 when 111 firms are not incorporated. 

b. Using (6.25), find b. 

c. Using (6.35) and (6.36), find SSE and SSR. 
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8.36. Refer to the CDI data set in Appendix C.2. Itis desired to fit second-order regression model (8.2) 
for relating number of active physicians (Y) to total population (X). 

a. Fit the second-order regression model. Plot the residuals against the fitted values. How well 
does the second-order model appear to fit the data? 

b. Obtain R2 for the second-order regression model. Also obtain the coefficient of simple 
determination for the first-order regression model. Has the addition of the quadratic term in 
the regression model substantially increased the coefficient of determination? 

c. Test whether the quadratic term can be dropped from the regression model; use ct = .05. 
State the alternatives, decision rule, and conclusion. 

8.3? Refer to the CDI data set in Appendix C.2. A regression model relating serious crime rate 
(Y, total serious crimes divided by total population) to population den;ity (X I, total population 
divided by land area) and unemployment rate (X3 ) is to be constructed. 

a. Fit second-order regression model (8.8). Plot the residuals against the fitted valUfs. How 
well does the second-order model appear to fit the data? What is R2? 

b. Test whether or not all quadratic and interaction terms can be dropped from the regression 
model; use ct = .01. State the alternatives, decision rule, and conclusion. 

c. Instead of the predictor variable population density, total population (Xd and land area 
(X2 ) are to be employed as separate predictor variables, in addition to unemployment rate 
(X3 ). The regression model should contain linear and quadratic terms for total population, 
and linear terms only for land area and unemployment rate. (No interaction terms are to be 
included in this model.) Fit this regression model and obtain R2. Is this coefficient of multiple 
determination substantially different from the one for the regression model in part (a)? 

8.38. Refer to the SENIC data set in Appendix C.l. Second-order regression model (8.2) is to ~e 

fitted for relating number of nurses (Y) to available facilities and services (X). 

a. Fit the second-order regression model. Plot the residuals against the fitted values. How well 
does the second-order model appear to fit the data? 

b. Obtain R2 for the second-order regression model. Also obtain the coefficient of simple 
determination for the first-order regression model. Has the addition of the quadratic term in 
the regression model substantially increased the coefficient of determination? 

c. Test whether the quadratic term can be dropped from the regression model; use ct = .01. 
State the alternatives, decision rule, and conclusion. 

8.39. Refer to the CDI data set in Appendix C.2. The number of active physicians (Y) is to be 
regressed against total population (Xd, total personal income (X2 ), and geographic region 
(X3, X 4 , Xs). 

a. Fit a first-order regression model. Let X3 = I if NE and 0 otherwise, X4 = I if NC and 0 
otherwise, and Xs = I if Sand 0 otherwise. 

b. Examine whether the effect for the northeastern region on number of active physicians 
differs from the effect for the north c~tral region by constructing an appropriate 90 percent 
confidence interval. Interpret your interval estimate. 

c. Test whether any geographic effects are present;'use ct = .10. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

8.40. Refer to the SENIC data set in Appendix c.l. Infection risk (Y) is to be regressed against length 
of stay (X d, age (X2 ), routine chest X:ray ratio (X3 ), and medical school affiliation (X4 ). 

a Fit a first-order regression model. Let X4 = I if hospital has medical school affiliation and 
o if not. 
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b. Estimate the effect of medical school atliliation on infccIion risk using a 9S percent confi_ 
dence interval. Interpret your interval estimate. 

c. It has been suggested thut the effect of medical school affiliation on infection risk may intet 
with the effects of age and routine chest X-ray ratio. Add approprime interaction terms": 
the regression model. tit the revised regression model. and te~t whether the interaction term 
are hclpful: use CI = .10. State the alternatives. decision rule. and conclusion. s 

8.41. Refer to the SENIC data set in Appendix C.I. Length of stay (Y) is to be regressed on a"e 
(X d, routine culturing raIio (Xl), average daily census (X3). available facilities and servi~ 
(KIl, and region (X,. X(), X 7). 

a. Fit a first-order regression model. Let X, = I if NE and 0 otherwise, Xc, = I ifNC und 0 
otherwise. and X 7 = I if Sand 0 otherwise. 

b. Test whether the routine culturing ratio can be dropped from the -rnodel; use a level of 
significance of .05. State the alternatives, decision rule, and conclusion. 

c. Examine whether the etfect on length of stay for hospitals located in the westem region differs 
(mm that for hospitals located in the other three regions by constructing an uPPlUpriate 
confidence interval for each pairwise comparison. Use the Bonfen'oni procedure with a 
95 percent family confidence coefficient. Summarize your findings. 

8.42. Refer to Market share data set in Appendix C.3. Company executives want to be able to 

predict market share of their product (Y) based on merchandise price (X d, the gross Nielsen 
rating pOints (Xl, an index of the amount of advertising exposure that the product received); 
the presence or absence of a wholesale pticing discount (X3 = I if discount present: otherwise 
X3 = 0); the presence or absence ofa package promotion dmingthe period (X4 = I if promotion 
present: otherwise X4 = 0): and year (X,). Code year as a nominal level variable and lise 2000 
as the referent year. 

a. Fit a first-order regression model. Plot the residuals against the fitted values. How well does 
the first-order model appear to Ilt the data? 

b. Re-fitthe model in parr (a). after adding all second-orderterrns involving only the quantitative 
predictors. Test whether or not all quadratic and interaction terms can be dropped from the 
regression model: use CI = .05. State the alternatives. decision rule, and conclusion. 

c. In part (a), test whetheradvettising index (X2) and year (X,) can be dropped from the model; 
use (){ = .05. State the alternatives, decision rule, and conclusion. 

8.43. Refer to University admissions data set in Appendix C.4. The director of admis~ions at a state 
university wished to determine how accurately students' grade-point averages ut the end oftheir 
freshman year (Y) can be predicted from the entrance examination (ACT) test score (X 2 ): the 
high school class rank (X I, a percentile where 99 indicates student is at or near the top of his 
or her c1,tss and f indicates student is at or near the bottom of the class); and the academic year 
(Xi). The academic year variable covers the years 1996 through 2000. Develop a prediction 
model for the director of admissions. Justify your choice of model. Assess your model's ability 
to predict and discuss its use as a tool for admissions decisions. 



Chapter 

Buildrng the Regression 
Model I: Model Selection 
and Validation 

In earlier chapters, we considered how to fit simple and mUltiple regression models and how 
to make inferences from these models. In this chapter, we first present an overview of the 
model-building and model-validation process. Then we consider in more detail some special 
issues in the selection of the predictor variables for exploratory observational studies. We 
conclude the chapter with a detailed description of methods for validating regression models. 

9.1 Overview of Model-Building Process 

At the risk of oversimplifying, we present in Figure 9.1 a strategy for the building of a 
regression model. This strategy involves three or, sometimes, four phases: 

1. Data collection and preparation 
2. Reduction of explanatory or predictor variables (for exploratory observational studies) 
3. Model refinement and selection 
4. Model validation 

We consider each of these phases in tum. 

Data Collection 
The data collection requirements for building a regression model vary with the nature of 
the study. It is useful to distinguish four types of studies. 

-
Controlled Experiments. In a controlled experiment, the experimenter controls the 
levels of the explanatory variables and assigns ~ treatment, consisting of a combination 
of levels of the explanatory variable~, to each experimental ;:lllit and observes the response. 
For example, an experimenter studied the effects of the size of a graphic presentation and 
the time allowed for analysis of the accuracy with which the analysis of the presentation is 
carried out. Here, the response variable is a measure of the accuracy of the analysis, and the 
explanatory variables are the size of the graphic presentation and the time allowed. Junior 
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executives were used as the experimental units. A treatment consisted of a particular com­
bination of size of presentation and length of time allowed. In controlled experiments, the 
explanatory variables are often called factors or control variables. 

The data collection requirements for controlled expefunents are straightforward, though 
not necessarily simple. Observations for each experimental unit are needed on the response 
variable and on the level of each of the control variables used for that experimental unit. 
There may be difficult measurement and scaling problems for the response variable that are 
unique to the area of application. 

Controlled Experiments with Covariates. Statistical design of experiments uses sup­
plemental information, such as characteristics of the experimental qnits, in designing the 
experiment so as to reduce the variance of the experimental error terms in the regression 
model. Sometimes, however, it is not possible to incorporate this supplemental infQrmation 
into the design of the experiment. Instead, it may be possible for the experimenter to incor­
porate this information into the regression model and thereby reduce the error variance by 
including uncontrolled variables or covariates in the model. 

In our previous example involving the accuracy of analysis of graphic presentations, 
the experimenter suspected that gender and number of years of education could affect the 
accuracy responses in important ways. Because of time constraints, the experimenter was 
able to use only a completely randomized design, which does not incorporate any supple­
mental information into the design. The experimenter therefore also collected data on two 
uncontrolled variables (gender and number of years of education of the junior executives) 
in case that use of these covariates in the regression model would make the analysis -of 
the effects of the explanatory variables (size of graphic presentation, time allowed) on the 
accuracy response more precise. 

Confirmatory Observational Studies. These studies, based on observational, not experi­
mental, data, are intended to test (i.e., to confirm or not to confirm) hypotheses derived from 
previous studies or from hunches. For these studies, data are collected for explanatory vari­
ables that previous studies have shown to affect the response variable, as well as for the new 
variable or variables involved in the hypothesis. In this context, the explanatory variable(s) 
involved in the hypothesis are sometimes called the primary variables, and the explanatory 
variables that are included to reflect existing knowledge are called the control variables 
(known risk factors in epidemiology). The control variables here are not controlled as in 
an experimental study, but they are used to account for known influences on the response 
variable. For example, in an observational study of the effect of vitamin E supplements 
on the occurrence of a certain type of cancer, known risk factors, such as age, gender, and 
race, would be included as control vari~bles and the amount of vitamin E supplements 
taken daily would be the primary explanatory variable. The response variable would be the 
occurrence of the particular type of cancer during the period under consideration. (The use 
of qualitative response variables in a r~gression model will be ",considered in Chapter 14.) 

Data collection for confirmatory observational studies involves obtaining observations on 
the response variable, the control variables, and the primary explanatory variable(s). Here, as 
in controlled experiments, there may be important and complex problems of measurement, 
such as how to obtain reliable data on the amount of vitamin supplements taken daily. 

Exploratory Observational Studies. In the social, behavioral, and health sciences, man­
agement, and other fields, it is often not possible to conduct controlled experiments. 

if 

il ,~ 

'I 

II 

II 
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Furthermore. adequate knowledge for conducting confirmatory observational studies m 
be lacking. As a result, many studies in these fields are exploratory observational studt

y 

where investigators search for explanatory variables that might be related to the respoU: 
variable. To complicate matters further, any available theoretical models may inVOlve ex­
planatory variables that are not directly measurable, such as a family's future earnings ov 
the next 10 years. Under these conditions, investigators are often forced to prospect for e: 
planatory variables that could conceivably be related to the response variable Under study. 
Obviously, such a set of potentially useful explanatory variables can be large. For exam_ 
ple, a company's sales of portable dishwashers in a disu'ict may be atfected by population 
size, per capita income, percent of population in urban areas, percent of population under 
50 years of age, percent of families with children at home, etc., etc.! 

After a lengthy list of potentially useful explanatory variables has 'been compiled, some 
of these variables can be quickly screened out. An explanatory variable (I) may not be 
fundamental to the problem, (2) may be subject to large measurement errors, and/or (3) may 
effectively duplicate another explanatory variable in the list. Explanatory vmiables that 
cannot be rnea<;ured may either be deleted or replaced by proxy variables that are highly 
correlated with them. 

The number of cases to be collected for an exploratory observational regression study 
depends on the size of the pool of potentially useful explanatory variables available at this 
stage. More cases are required when the pool is large than when it is smaiL A general rule 
of thumb states that there should be at least 6 to 10 cases for every variable in the PO()\. 
The actual data collection for the pool of potentially useful explanatory variables and for 
the response vm'iable again may involve important issues of measurement, just as for the 
other types of studies. 

Data Preparation 
Once the data have been collected, edit checks should be performed and plots prepared 
to identify gross data errors as well as extreme outliers. Difficulties with data errors are 
especially prevalent in Im'ge data sets and should be corrected or resolved before the model 
building begins. Whenever possible, the investigator should carefully monitor and control 
the data collection process to reduce the likelihood of data eITors. 

Preliminary Model Investigation 
Once the data have been properly edited, the fonnal modeling process can begin. A va­
riety of diagnostics should be employed to identify (I) the functional forms in which the 
explanatory variables should enter the regression model and (2) important interactions that 
should be included in the modeL Scatter plots and residual plots m'e useful for determining 
relationships and their strengths. Selected explanatory variables can be titted in regression 
functions to explore relationships, possible strong interactions. and the need for transfor­
mations. Whenever possible, of course, one should also rely on the investigator's prior 
knowledge and expeitise to suggest appropriate transfonnations and interactions to inves­
tigate, This is particularly important when the number of potentially useful explanatory 
vm'iables is large. In this case, it may be very difficult to investigate all possible pair­
WIse interactions, and prior knowledge should be lIsed to identify the important ones. The 
diagnostic procedures explained in previous chapters and in Chapter 10 should be used as 
resources in this phase of model building. 
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It duction of Explanatory Variables 
,e Controlled Experiments. The reduction of explanatory variables in the model-building 

phase is usually not an important issue for controlled experiments. The experimenter has 
chosen the explanatory variables for investigation, and a regression model is to be devel­
oped that will enable the investigator to study the effects 'of these variables on the response 
variable. After the model has been developed, including the use of appropriate functional 
forms for the variables and the inclusion of important interaction terms, the inferential proce­
dures considered in previous chapters will be used to determine whether the explanatory vari­
ables have effects on the response variable and, ifso, the nature and magnitude of the effects. 

Controlled Experiments with Covariates. In studies of controlled experiments with 
covariates, some reduction of the covariates may take place bec~i:tse investigators often 
cannot be sure in advance that the selected covariates will be helpful in reducing the error 
variance. For instance, the investigator in our graphic presentation example mal wish to 
examine at this stage of the model-building process whether gender and number of years 
of education are related to the accuracy response, as had been anticipated. If not, the 
investigator would wish to drop them as not being helpful in reducing the model error 
variance and, therefore, in the analysis of the effects of the explanatory variables on the 
response variable. The number of covariates considered in controlled experiments is usually 
small, so no special problems are encountered in determining whether some or all of the 
covariates should be dropped from the regression model. 

Confirmatory Observational Studies. Generally, no reduction of explanatory variables 
should take place in confirmatory observational studies. The control variables were chosen 
on the basis of prior knowledge and should be retained for comparison with earlier studies 
even if some of the control variables tum out not to lead to any error variance reduction 
in the study at hand. The primary variables are the ones whose influence on the response 
variable is to be examined and therefore need to be present in the model. 

Exploratory Observational Studies. In exploratory observational studies, the number of 
explanatory variables that remain after the initial screening typically is still large. Further, 
many of these variables frequently will be highly intercorrelated. Hence, the investigator 
usually -will wish to reduce the number of explanatory variables to be used in the final 
model. There are several reasons for this. A regression model with numerous explanatory 
variables may be difficult to maintain. Further, regression models with a limited number of 
explanatory variables are easier to work with and understand. Finally, the presence of many 
highly intercorrelated explanatory variables may substantially increase the sampling v~ri­
ation of the regression coefficients, detract from the model's descriptive abilities, increase 
the problem of roundoff errors (as notc:d in Chapter 7), and not improve, or even worsen, 
the model's predictive ability . ..An actual worsening of the model's predictive ability can 
occur when explanatory variables are kept in the regression model that are not related to 
the response variable, given the other explanatory variables in the model. In that case, the 
variances of the fitted values a 2 {Yd tend to become larger with the inclusion of the useless 
additional explanatory variables. • 

Hence, once the investigator has tentatively decided upon the functional form of the 
regression relations (whether given variables are to appear in linear form, quadratic form, 
etc.) and whether any interaction terms are to be included, the next step in many exploratory 
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observational studies is to identify a few "good" subsets of X variables for fUIther inte 
sive study. These subsets should include not only the potential explanatory vruiables ~­
first-order form bUt also any needed quadratic and other curvature terms and any necessa n 
. . ry 
ll1teractIon tenllS. 

The identification of "good" subsets of potentially useful explanatory variables to be 
included in the final regression model and the determination of appropriate functional 
and interaction relations for these variables usually constitute some of the most diffiCUlt 
problems in regression analysis. Since the uses of regression models vary, no one subset of 
explanatory vruiables may always be "best." For instrulce. a descriptive lise of a regression 
model typically will emphasize precise estimation of the regression coefficients, whereas 
a predictive use will focus on the prediction errors. Often, different subsets of the pool of 
potential explanatory vru·iables will best serve these varying purposes': Even for a given 
purpose, it is often found that several subsets are about equally "good" according to a given 
criterion, and the choice among these "good" subsets needs to be made on the basis of 
additional considerations. 

The choice of a few appropriate subsets of explanatory variables for final consideration 
in exploratory observational studies needs to be done with great care. Elimination of key 
explanatory vruiables can seriously drunage the explanatory power of the model and lead 
to biased estimates of regression coefficients, mean responses, and predictions of new 
observations, as well as biased estimates of the elTor variance. The bias in these estimates is 
related to the fact that with observational data, the error terms in an underfitted regression 
model may reflect nonrandom effects of the explrulatory variables not incorporated in the 
regression model. Important omitted explanatory vru·iables are sometimes called latent 
explanatory variables. 

On the other hand, if too many explanatory variables are included in the subset, then this 
overfitted model will often result in variances of estimated parameters that ru·e larger than 
those for simpler models. 

Another danger with observational data is that important explanatory variables may be 
observed only over narrow ranges. As a result, such important explanatory variables may 
be omitted just because they occur in the sample within a narrow range of values and 
therefore turn out to be statistically nonsignificant. 

Another consideration in identifying subsets of explanatory vru·iables is that these subsets 
need to be small enough so that maintenance cost'> are manageable and analysis is tacilitated, 
yet lru·ge enough so that adequate description, control, or prediction is possible. 

A vru·iety of computerized approaches have been developed to assist the investigator 
in reducing the number of potential explanatory variables in an exploratory observational 
study when these vruiables ru·e correlated among themselves. We present two of these 
approaches in this chapter. TIle first, which is practical for pools of explanatory variables 
that are small or moderate in size, considers all possible subsets of explanatory variables 
that can be developed from the pool of potential explanatory variables and identifies those 
subsets that ru·e "good" according to a criterion specified by the investigator. The second 
approach employs automatic seru·ch procedures to ardve at a single subset of the explanatory 
vru·iables. This approach is recommended pIimarily for reductions involving large pools of 
explrulatory variables. 

Even though computerized approaches can be very helpful in identifying appropriate 
subsets for detailed, final consideration, the process of developing a useful regression model 
must be pragmatic and needs to utilize large doses of subjective judgment. Explanatory 
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variables that are considered essential should be included in the regression model before 
any computerized assistance is sought. Further, computerized approaches that identify only 
a single subset of explanatory variables as ''best'' need to be supplemented so that additional 
subsets are also considered before the final regression mopel is decided upon. 

Comments 
1. All too often, unwary investigators will screen a set of explanatory variables by fitting the 

regression model containing the entire set of potential X variables and then simply dropping those 
for which the t* statistic (7.25): 

* bk t ---
k - s{bd 

has a small absolute value. As we know from Chapter 7, this procedure can lead to the dropping 
of import~t interco~lated explanatory variables .. Clearl~, a good search procedure mUf be. able 
to handle Important mtercorrelated explanatory van abIes m such a way that not all of them will be 
dropped. 

2. Controlled experiments can usually avoid many of PIe problems in exploratory observational 
studies. For example, the effects of latent predictor variables are minimized by using randomization. 
In addition, adequate ranges of the explanatory variables can be selected and correlations among the 
explanatory variables can be eliminated by appropriate choices of their levels. • 

Model Refinement and Selection 
At this stage in the model-building process, the tentative regression model, or the several 
"good" regression models in the case of exploratory observational studies, need to ~e 
checked in detail for curvature and interaction effects. Residual plots are helpful in deciding 
whether one model is to be preferred over another. In addition, the diagnostic checks to 
be described in Chapter 10 are useful for identifying influential outlying observations, 
multicollinearity, etc. 

The selection of the ultimate regression model often depends greatly upon these diag­
nostic results. For example, one fitted model may be very much influenced by a single case, 
whereas another is not. Again, one fitted model may show correlations among the error 
terms, whereas another does not. 

When repeat observations are available, formal tests for lack of fit can be made. In 
any case, a variety of residual plots and analyses can be employed to identify any lack of 
fit, outliers, and influential observations. For instance, residual plots against cross-product 
and/or power terms not included in the regression model can be useful in identifying ways 
in which the model fit can be improved further. 

When an automatic selection procedure is utilized for an exploratory observational study 
and only a single model is identified as "best," other models should also be explored. One 
procedure is to use the number of explanatory variables in the model identified as ''best'' as 
an estimate of the number of explanatory variables.needed in the regression model. Then 
the investigator explores and identifies other candidate models with approximately the same 
number of explanatory variables identified by the automatic procedure. 

Eventually, after thorough checking and various remedial actions, such as transforma­
tions, the investigator narrows the number of competing models to one or just a few. At this 
point, it is good statistical practice to assess the validity of the remaining candidates through 
model validation studies. These methods can be used to help decide upon a final regression 
model, and to determine how well the model will perform in practice. 
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Model Validation 
Model validity refers to the stability and reasonableness of the regression coefficients, the 
plausibility and usability of the regression function, and the ability to generalize infer_ 
ences drawn from the regression analysis. Validation is a useful and necessary pan of the 
model-building process. Several methods of assessing model validity will be described in 
Section 9.6. 

9.2 SurgieallJnit EXHlllple 

TABLE 9.1 

Case 
Number 

1 
2 
3 

52 
53 
54 

With the completion of this overview of the model-building process for.~:j"egression study, 
we next present an example that will be used to illustrate all stages of this process as they 
are taken up in this and the following two chapters. A hospital surgical unit was interested 
in predicting survival in patients undergoing a particulm· type of liver operation. A random 
selection of 108 patients wa<; available for analysis. Fi~om each patient record, the following 
information was extracted from the preoperation evaluation: 

Xl blood clotting score 
X 2 prognostic index 
X3 enzyme function test score 
X4 liver function test score 

age, in years 
indicator variable for gender (0 = male, I = female) 
indicator vmiables for history of alcohol use: 

Alcohol Use 

None 
Moderate 
Severe 

o 
1 
o 

Xs 

o 
o 

These constitute the pool of potential explanatory or predictor variables for a predictive 
regression model. The response variable is survival time, which was ascertained in a follow-
up study. A portion of the data on the potential predictor vm·iables and the response variable is 
presented in Table 9.1. These data have already been screened and properly edited for errors. 

Potential Predictor Variables and Response Variable-Surgical Unit Example. 

Blood- Ale. Ale. 
Clotting Prognostic Enzyme liver Use: Use: Survival 

Score Index Test Test Age Gender Mod. Heavy TIme 
Xil Xi2 X/3 Xi4 XiS Xi6 XI7 XiS Yi Y: = InYi 

6.7 62 81 2.59 50 0 1 0 695 6.544 
5.1 59 66 1.70 39 0 0 0 403 5.999 
7.4 57 83 2.16 55 0 0 0 710 6.565 

6.4 85 40 1.21 58 0 0 1 579 6.361 
6.4 59 85 2.33 63 0 1 0 550 6.310 
8.8 78 72 3.20 56 0 0 0 651 6.478 
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To illustrate the model-building procedures discussed in this and the next section, we will 
use only the first four explanatory variables. By limiting the numbecof potential explanatory 
variables, we can explain the procedures without overwhelming the reader with masses of 
computer printouts. We will also use only the first 54 of the 108 patients. 

Since the pool of predictor variables is small, a reasonably full exploration of relation­
ships and of possible strong interaction effects is possible at this stage of data preparation. 
Stem-and-Ieaf plots were prepared for each of the predictor variables (not shown). These 
highlighted several cases as outlying with respect to the explanatory variables. The investi­
gator was thereby alerted to examine later the influence of these cases. A scatter plot matrix 
and the correlation matrix were also obtained (not shown). _ 

A first-order regression model based on all predictor variables w~s fitted to serve as a 
starting point. A plot of residuals against predicted values for this fitted model is shown 
in Figure 9.2a. The plot suggests that both curvature and nonconstant error variapce are 
apparent. In addition, some departure from normality is suggested by the normal probability 
plot of residuals in Figure 9.2b. 

To make the distribution of the error terms more nearly normal and to see if the same 
transformation would also reduce the apparent curvature, the investigator examined the 

(a) ReSidual Plot for Y (b) Normal Plotfor Y 

1000 1000 

ro 500 ro 500 
::l ::l 
"0 . "0 . . 'Vi . 'Vi /. (I) . I·, .. (I) 
0::: '" . r:r: 

0 • •• ODD .D D: •• : 0 

-: .. ..... ' , .. .... . 
-500 

0 500 1000 1500 
-500 

-3 -2 -1 0 2 3 
Predicted value Expected value 

(c) Residual Plot tor In Y (d) Normal Plotfor InY 
0.6 0.6 

0.4 0.4 

. . . . ,~ .. 
0.2 .' 0.2 ro ... ro . /' ::l . , ::l 

"0 "0 
'Vi 0 'Vi 0 '" (I) . . ' 0 

(I) ,. 
0::: 0::: . . . . . / -0.2 .. . -0.2 . ~ 

'. '. " .... 
-0.4 -0.4 . . 

5 5.5 6 6.5 7 7.5 -3 -2 -1 0 2 3 
Predicted value Expected value 



352 Part Two Multiple Linear Regression 

FIGURE 9.3 
JMPScatter 
Plot Matrix 
and 
Correlation 
Matrix when 
Response 
Variable Is 
Y'-Surgical 
Unit Example. 

logarithmic transformation Y' = In Y. Data for the transformed response variable are also 
given in Table 9.1. Figure 9.2c shows a plot of residuals against fitted values when Y' is 
regressed on all four predictor variables in a first-order model; also the normal probability 
plot of residuals for the transformed data shows that the distribution of the error terms is 
more nearly normal. 

The investigator also obtained a scatter plot matrix and the correlation matrix with the 
transformed Y variable; these are presented in Figure 9.3. In addition, various scatter and 

Multivariate Correlations 

LnSurvival Bloodclot Progindex Enzyme .Jiver 

LnSurvival 1.0000 0.2462 0.4699 0.6539 0.6493 

Bloodclot 0.2462 1.0000 0.0901 -0.1496 0.5024 

Progindex 0.4699 0.0901 1.0000 -0.0236 0.3690 

Enzyme 0.6539 -0.1496 -0.0236 1.0000 0.4164 
--1' 

Liver 0.6493 0.5024 0.3690 0.4164 1.0000 
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residual plots were obtained (not shown here). All of these plots indicate that each of the 
predictor variables is linearly associated with Y', with X3 and X4 showing the highest 
degrees of association and X I the lowest. The scatter plot matrix and the correlation matrix 
further show intercorrelations among the potential predictor variables. In particular, X4 has 
moderately high pairwise correlations with X b X 2 , and X 3• 

On the basis of these analyses, the investigator concluded to use, at this stage of the 
model-building process, Y' = In Y as the response variable, to represent the predictor vari­
ables in linear terms, and not to include any interaction terms. The next stage in the model­
building process is to examine whether all of the potential predictor variables are needed 
or whether a subset of them is adequate. A number of useful measures have been devel­
oped to assess the adequacy of the various subsets. We now turn'<to a discussion of these 
measures. 

9.3 Criteria for Model Selection 

From any set of p - 1 predictors, 2P-
I alternative models can be constructed. This calcu-

~ lation is based on the fact that each predictor can be either included or excluded from the 
model. For example, the 24 = 16 different possible subset models that can be formed from 
the pool of four X variables in the surgical unit example are listed in Table 9.2. First, there 
is the regression model with no X variables, i.e., the model Yi = f30 + 8i. Then there are 
the regression models with one X variable (XI. X 2 , X 3 , X 4 ), with two X variables (Xl and 
X 2 , Xl and X 3 , Xl and X4 , X2 and X 3 , X2 and X 4 , X3 and X 4 ), and so on. 

TABLE 9.2 SSE P' R;, R~.p, C P' AIC P' SBC P' and PRESS P Values for All Possible Regression 
ModeIs-Surgical Unit Example. 

c X~ (1) (2) (3) (4) (5) (6) (7) (8) 
!Vfu:ii'ibles 
[i~j~04~1 p SSEp R2 R~.p Cp AICp SBCp PRESSp p 

~ff[J~ 1 - 12.808 0.000 0.000 151.498 -75.703 -73.714 13.296 
2 12.031 0·961 0:043 141.164 -77.079 -73.101 13.512 

~~ 2 9.979 9.221 0.206 108.556 -87.178 -'-83.200 10.744 
~i 2 7.332 0.428 0.417 66.489 -103.827 -99.849 8.327 

Jl:Xz 2 7.409 0.422 0.410 67.715 -103·262 -99.284 8,025 
3 9.443 0.263 0.234 102.031 -88.162 -82.195 11.062 

o~~>f~3 3 5.781 0.549 0.531 43.852 -114.658 -108.691 6.988 
X'WiX4 3 7.299 0.430 0.408 " 67.972 -l02.067 -96.100 8.472 

~i~~ 
3 4.312 0.663 -..0.650 20.520 -130.483 -124.516 5.065 
3 6,622 0.483 0.463 57.215~ -107.324 -101.357 7.476 
3 5.130 0.599 0.584 33.504 -121.113 -115.146 6:121 
4 3.109 0.757 0.743. 3.391 -146."61 -138.205 3.914 
4 6.570 0.487 0.456 58.392 -105.748 -97.792 7.903 
4 4.968 0.612 0.589 32.932 -,--120.844 -112.888 6.207 

.l!:·;~:·;~, X4 

4 3.614 0.718 0.701 11.424 -138.023 -130.067 4.597 
5 3.084 0.759 0.740 5.000 -144.590 -134.645 4.069 
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In most circumstances, it will be impossible for an analyst to make a detailed examinatio 
of all possible regression models. For instance, when there are 10 potential X variables i~ 
the poo\' there would be 2)(1 = 1,024 possible regression models. With the availability of 
high-speed computers and efficient algorithms, running all possible regression models for 
10 potential X variables is not time consuming. Still, the sheer volume of 1,024 alternative 
models to examine carefully would be an overwhelming task for a data analyst. 

Model selection procedures, also known as subset selection or variables selection proce­
dures, have been developed to identify a small group of regression models that are "good" 
according to a specified criterion. A detailed examination can then be made of a limited 
number of the more promising or "candidate" models, leading to the sekction of the final 
regression model to be employed. This limited number might consist of three to six "good" 
subsets according to the criteria specified, so the investigator can then carefully study these 
regression models for choosing the final model. 

While many criteria for comparing the regression models have been developed, we will 
focus on six: R~, R~,,,, C,,, AlC", SEC", and PRESS". Before doing so, we will need to 
develop some notation. We shall denote the number of potential X variables in the pool by 
P - I. We assume throughout this chapter that all regression models contain an intercept 
term f3o. Hence, the regression function containing all potential X variables contains P 
parameters, and the function with no X valiables contains one parameter (f3o). 

The number of X variables in a subset will be denoted by p - I, as always, so that there 
are p parameters in the regression function for this subset of X variables. Thus, we have: 

(9.1) 

We will assume that the number of observations exceeds the maximum number of 
potential parameters: 

17 > P (9.2) 

and, indeed, it is highly desirable that 11 be substantially larger than P, as we noted earlier. 
so that sound results can be obtained. 

R~ or SSE p Criterion 
The R~ criterion calls for the use of the coefficient of multiple determination R2. defined 
in (6.40), in order to identify several "good" subsets of X variables-in other words, subsets 
for which R2 is high. We show the number of parameters in the regression model as a 
subscript of R". Thus R;, indicates that there are p parameters, or p - I X variables, in the 

regression function on which R;, is based. 

The R;, criterion is equivalent to using the enor sum of squares SSE" as the criterion 
(we again show the number of parameters in the regression model as a subscript). With the 
SSE" criterion, subsets for which SSE" is small are considered "good." The equivalence of 
the R~ and SSE" criteria follows from (6.40): 

R" = 1- SSE" 
" SSTO 

(9.3) 

Since the denominator SSTO is constant for all possible regression models, R;, varies 
inversely with SSE". 
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The R; criterion is not intended to identify the subsets that maximize this criterion. 
We know that R; can never decrease as additional X variables are included in the model. 
Hence, R; will be a maximum when all P - 1 potential X variables are included in the 
regression model. The intent in using the R; criterion is to find the point where adding more 
X variables is not worthwhile because it leads to a very small increase in R;. Often, this 
point is reached when only a limited number of X variables is included in the regression 
model. Clearly, the determination of where diminishing returns set in is ajudgmental one. 

Thble 9.2 for the surgical unit example shows in columns 1 and 2 the number of parameters 
in the regression function and the error sum of squares for each possiple regression model. 
In column 3 are given the R; values. The results were obtained from a series of computer 
runs. For instance, when X4 is the only X variable in the regression model, we obtain: 

2 SSE(X4 ) 7.409 
R2 = 1 - = 1 - --, = .422 

SSTO 12.808 

t 

Note that SSTO = SSEI = 12.808. 
Figure 9.4a contains a plot of the R; values against p, the number of parameters in the 

regression model. The maximum R; value for the possible subsets each consisting of p - 1 
predictor variables, denoted by max(R;), appears at the top of the graph for each p. These 
points are connected by solid lines to show the impact of adding additional X variables. 
Figure 9.4a makes it clear that little increase in max(R;) takes place after three X variables 
are included in the model. Hence, consideration of the subsets (XI, X2, X 3 ) for which 
R~ = .757 (as shown in column 3 of Table 9.2) and (X2, X 3 , X 4 ) for which R~ = .718 
appears to be reasonable according to the R; criterion. 

Note that variables X3 and X 4 , correlate most highly with the response variable, yet this 
pair does not appear together in the max(R;) model for p = 4. This suggests that Xl> X 2 , 

and X3 contain much of the information presented by X 4 • Note also that the coefficient 
of multiple detennination associated with subset (X2' X 3 , X 4 ), R~ = .718, is somewhat 
smaller than R~ = .757 for subset (Xl, X 2 , X3)' 

R~,p or MSE p Criterion 
Since R; does not take account of the number of parameters in the regression model 
and since max(R;) can never decrease as p increases, the adjusted coefficient of mUltiple 
determination R~,p in (6.42) has been suggested as an alternative criterion: 

2 (n -1) SSE p MSE p 
Ra,p = 1 - n..L p SSTO = 1 - SSTO (9.4) 

n-l 

This coefficient takes the number of parameters in the regression model into account through 
the degrees of freedom. It can be seeg from (9.4) that R~,p ~creases if and only if MSE p 

decreases since SSTO / (n - 1) is fixed f?r the given Y observations. Hence, R~,p and MSE p 

provide equivalent information. We shall consider here the criterion R~,p' again showing 
the number of parameters in the regression model as a subscript of the criterion. The largest 
R~,p for a given number of parameters in the mOdel, max(R~,p), can, indeed, decrease as 
p increases. This occurs when the increase in max(R;) becomes so small that it is not 
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sufficient to offset the loss of an additional degree of freedom. Users of the R~,p criterion 

seek to find a few subsets for which R~,p is at the maximum or so close to the maximum 
that adding more variables is not worthwhile. 

The R~,p values for all possible regression models for the surgical unit example are shown 
in Table 9.2, column 4. For instance, we have for the regression model containing only X4: 

R2 = 1- (n -1) SSE(X4 ) = I _ (53) 7.409 =.410 
a,2 n - 2 SSTO 52 12.808 

Figure 9.4b contains the R~,p plot for the surgical unit example. We have again connected 

the max(R~,p) values by solid lines. The story told by the R~.p plot in Figure 9.4b is very 

similar to that told by the R~ plot in Figure 9.4a. Consideration of the subsets (XI' X2• 

X 3 ) and (X2 , X 3 , X 4 ) appears to be reasonable according to the R~,p criterion. Notice that 

~~,4 = .743 is maximized for subset (XI. X2, X3 ), and that adding X4 to this subset-thus 
using all fourpredictors-decreases the criterion slightly: R~.5 = .740. 
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MalloWS' C p Criterion 
This criterion is concerned with the total mean squared error of the n fitted values for each 
subset regression model. The mean squared error concept involves the total error in each 
fitted value: 

t-J.L; (9.5) 

where J.L; is the true mean response when the levels of the predictor variables X k are those 
for the ith case. This total error is made up of a bias component and a random error 
component: 

1. The bias component for the i th fitted value Y;, also called the model error component, 
is: 

t 
(9.5a) 

~where E {Yd is the expectation of the ith fitted value for the given regression model. If 
. the fitted model is not correct, E{Yd will differ from the true mean response J.L; and the 

difference represents the bias of the fitted model. 

2. The random error component for tis: 

(9.5b) 

This component represents the deviation of the fitted value Y; for the given sample from the 
expected value when the i th fitted value is obtained by fitting the same regression model to 
all possible samples. 

The mean squared error for Y; is defined as the expected value of the square of the total 
error in (9.5)-in other words, the expected value of: 

It can be shown that this expected value is: 

(9.6) 

where 02{Yd is the variance of the fitted value Y;. We see from (9.6) that the mean squared 
error for the fitted value f; is the snm of the squared bias and the variance of Y;. 

The total mean squared error for all n fitted values ,f; is the sum of the n individual mean 
squared errors in (9.6): 

n n n 
"'"' A 2 2 AO

",", A 2 ",",2
A 

L..)(E{Yd-J.L;) +0 {Y;}] = L...,(E{Y;}-J.L;) + L...,0 {Yd (9.7) 
;=1 ;=1 ;=1 
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The criterion measure, denoted by r", is simply the total mean squared error in (9.7) divide 
b -, h . d Y (r. t e true error vanance: 

(9.8) 

The model which includes all P - I potential X variables is assumed to have be 
carefully chosen so that MSE(X 1, •••• Xp-d i~ an unbiased estimator of (}2. It can then: 
shown that an estimator of r" is C1,: 

SSE1, C 1, = - (11 - 2p) 
MSE(X 1, ... , X p_1) (9.9) 

where SSE" is the error sum of squares for the fitted subset regression model with p 
parameters (i.e., with p - I X variables). 

When there is no bias in the regression model with p - I X variables so that E (Yi } == II. 

"''' the expected value of Cp is approximately p: ". 

when E(Yi } == IJi (9.10) 

Thus, when the C" values for all possible regression models are plotted against p, those 
models with little bias will tend to fall near the line C" = p. Models with substantial bias will 
tend to fall considerably above this line. CI' values below the line C p = p are interpreted as 
showing no bias, being below the line due to sampling error. The C p value for the regression 
model containing all P - I X variables is, by definition, P. The CI' measure assumes that 
MSE(X I ••••• X P_I) is an unbiased estimator of (}2, which is equivalent to assuming that 
this model contains no bias. 

In using the CI' criterion, we seek to identify subsets of X variables for which (I) the 
C p value is small and (2) the C" value is near p. Subsets with small CI' values have a small 
total mean squared elTor, and when the C" value is also near p, the bias of the regression 
model is small. It may sometimes occur that the regression model based on a subset of X 
variables with a small C" value involves substantial bias. In that case, one may at times 
prefer a regression model based on a somewhat larger subset of X variables for which the 
CI' value is only slightly larger but which does not involve a substantial bias component 
Reference 9.l contains extended discussions of applications of the C" cl1terion. 

Table 9.2, column 5, contains the C" values for all possible regression models for the surgical 
unit example. For instance, when X4 is the only X variable in the regression model, the Cp 

value is: 

SSE(X",) 
C2 = SSE(X

1
,X

2
,X

3
,X

4
) -\11-2(2)] 

11-5 
7.409 

= 3.084 - [54 - 2(2)] = 67.715 

49 

The CI' values for all possible regression models are plotted in Figure 9.4c. We find that 
C I' is mini mized for subset (X 10 X 2, X 3)' Notice that C I' = 3.391 < P = 4 for this mode\, 
indicating little or no bias in the regression model. 
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Note that use of all potential X variables (X I, X 2 , X 3 , X 4 ) results in a C p value of exactly 
P, as expected; here, C5 = 5.00. Also note that Use of subset (X2 , X 3 , X 4 ) with Cp value 
C4 = 11.424 would be poor because of the substantial bias with this model. Thus, the C p 

criterion suggests only one subset (X I, X2, X 3 ) for the surgical unit example. 

Comments 
I. Effective use of the Cp criterion requires careful development of the pool of P -1 potential X vari­

ables, with the predictor variables expressed in appropriate form (linear, quadratic, transformed), 
and important interactions included, so that MSE(X" ... , X p_ 1) provides an unbiased estimate 
of the error variance u 2

• 

2. The C p criterion places mcyoremphasis on the fit ofthe subset model for the n sample observations. 
At times, a modification of the C p criterion that emphasizes new observationS"to be predicted may 
be preferable. 

3. To see why C p as defined in (9.9) is an estimator of r p, we need to utilize two results that we shall 
simply state. First, it can be shown that: i. 

/I 

~ 2 ~ 2 LU {Yi } = pu (9.11) 
i=1 

Thus, the total random error of the n fitted values Yt increases as the number of variables in the 
regression model increases. 

Further, it can be shown that: 

(9.12) 

Hence, r pin (9.8) can be expressed as follows: 

(9.13) 

Replacing E{SSEp} by the estimator SSEp and using MSE(X" ... , X p_ 1) as an estimator of u 2 

yields Cp in (9.9). 
4. To show that the Cp value for the regression model containing all P - 1 X variables is P, we 

substitute in (9.9), as follows: 

SSE(X" .,., X p_ 1) 
Cp = -(n-2P) 

SSE(X" ... , X p_ 1) 

n-P 

= (n - P) -'-- (n - 2P) 

=P 

• 
Ale p and SBC p Criteria 

We have seen that both R~.p and C p are model selection criteria that penalize models 
having large numbers of predictors. Two popular alternatives that also provide penalties 
for adding predictors are Akaike's information criterion (AICp ) and Schwarz' Bayesian 
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criterion (SBCp)' We search for models that have small values of AlCI, or SBCp, where 
these criteria are given by: 

AlCp = 11 In SSEI' - n Inn + 21' 

SBCp = nln SSEI' - 11 In 11 + [In nIp 

(9.14) 

(9.15) 

Notice that for both of these measures, the first term is nln SSEI" which decreases as p 
increases, The second term is fixed (for a given sample size 11), and the third term increases 
with the number of parameters, p. Models with small SSEI' will do well by these criteria 
as long as the penalties-2p for AlCp and [In nlp for SBCI'-are not too large. [f n > 8 
the penalty for SBCp is larger than that for AlCI,; hence the SBCp criteJ'ion tends to f;'or 
more parsimonious models. 

Table 9.2, columns 6 and 7, contains the AlC I, and SBC I' values for all possible regression 
models for the surgical unit example. When X4 is the only X variable in the regression 
model, the AlC I' value is: 

AlC2 = 111nSSE2 - n Inn + 2p 

= 54 In 7.409 - 54 In 54 + 2(2) = -103.262 

Similarly, the SBCp value is: 

SBC2 = n InSSE2 - n Inn + [lnn]p 

= 54 In 7.409 - 54 In 54 + lin 54](2) = -99.284 

The AlC I' and SBCp values for all possible regression models are plotted in Figures 9.4d 
and e. We find that both of these criteria are minimized for subset (X" X2 , X3 ). 

PRESS p Criterion 
The PRESSp (prediction sum of squares) criterion is a measure of how well the use of the 
fitted values for a subset model can predict the observed responses Yj • The error sum of 
squares, SSE = L: (Yi - Vi )2, is also such a measure. The PRESS meaSllre differs from SSE 
in that each fitted value Vi for the PRESS criterion is obtained by deleting the ith Case from 
the data set, estimating the regression function for the subset model from the remaining 
n - I cases, and then using the fitted regression function to obtain the predicted value fi(il 

for the ith case. We use the notation Yi(i) now for the fitted value to indicate, by the first 
subscript i, that it is a predicted value for the ith case and, by the second subscript (i), that 
the ith case was omitted when the regression function was fitted. 

The PRESS prediction error for the ith case then is: 

(9.16) 

<wd the PRESS I' criterion is the sum of the squared prediction errors over all 11 cases: 
II 

(9.17) 

Models with small PRESSp values are considered good candidate models. The reaSon is 
that when the prediction errors Yi - Vi(i) are small, so are the squared prediction enors and 
the sum of the squared prediction eITors. Thus, models with small PRESSp values fit well 
in the sense of having small prediction errors. 
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PRESS p values can be calculated without requiring n separate regression runs, each time 
deleting one of the n cases. The relationship in (10.21) and (1O.21a), to be explained in the 
next chapter, enables one to calculate all }ri(i) values from a single regression rUll. 

Table 9.2, column 8, contains the PRESSp values for all possible regression models for the 
surgical unit example. The PRESSp values are plotted in Figure 9.4f. The message given 
by the PRESSp values in Table 9.2 and plot in Figure 9.4f is very similar to that told by 
the other criteria. We find that subsets (Xi> X2, X3) and (X2, X3, X4 ) have small PRESS 
values; in fact, the set of all X variables (X I, X2, X3, X4 ) involves a slightly larger PRESS 
value than subset (X I, X2, X3). The subset (X2, X3, X4) involves a PRESS value of 4.597, 
which is moderately larger than the PRESS value of 3.914 for subsef;(Xi> X2, X3). 

Comment 

PRESS values can also be useful for model validation, as will be explained in Section 9.6. t • 

9.4 Automatic Search Procedures for Model Selection 

As noted in the previous section, the number of possible models, 2P- I , grows rapidly with 
the number of predictors. Evaluating all of the possible alternatives can be a daunting 
endeavor. To simplify the task, a variety of automatic computer-search procedures have 
been developed. In this section, we will review the two most common approaches, namely 
"best" subsets regression and stepwise regression. 

For the remainder of this chapter, we will employ the full set of eight predictors from 
the surgical unit data. Recall that these predictors are displayed in Table 9.1 on page 350 
and described there as well. 

"Best" Subsets Algorithms 

~mple 

Time-saving algorithms have been developed in which the best subsets according to a 
specified criterion are identified without requiring the fitting of all of the possible subset 
regression models. In fact, these algorithms require the calculation of only a small fraction 
of all possIble regression models. For instance, if the C p criterion is to be employed and the 
five best subsets according to this criterion are to be identified, these algorithms search for 
the five subsets of X variables with the smallest Cp values using much less computational 
effort than when all possible subsets are evaluated. These algorithms are called "best" 
subsets algorithms. Not only do these algorithms provide the best subsets according to the 
specified criterion, but they often also identify several "good" subsets for each possible 
number of X variables in the model to give the investigator additional helpful information 
in making the final selection of tHe subset of X variables to be employed in the regression 
model. 

When the pool of potential X variables is very large, say greater than 30 or 40, even 
the "best" subset algorithms may require excessive computer time. Under these conditions, 
one of the stepwise regression procedur~, described later in this section, may need to be 
employed to assist in the selection of X variables. 

For the eight predictors in the surgical unit example, We know there are 28 = 256 possible 
models. Plots of the six model selection criteria discussed in this chapter are displayed in 
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Figure 9.5. The best values of each criterion for each p have been connected with solid 
lines. These best values are also displayed in Table 9.3. The overall optimum criterion values 
have been underlined in each column of the table. Notice that the choice of a "best" model 
depends on the criterion. For example, a seven- or eight-parameter model is identified as 
best by the R~.p criterion (both have max(R~.I') = .823), a six-parameter model is identified 
by the Cp criterion (min(C7 ) = 5.541), and a seven-parameter model is identified by the 
AICp criterion (min(AIC7 ) = -163.834). As is frequently the case, the SBC I' criterion 
identifies a more parsimonious model as best. In this case both the SBC p and PRESS I' criteria 
point to five-parameter models (min(SBC5) = -153.406 and min(PRESS5 ) = 2.738). As 
previously emphasized, our objective at this stage is not to identify a single best model; we 
hope to identify a small set of promising models for further study. 

Figure 9.6 contains, for the surgical unit example, MINITAB output for the "best" subsets 
algorithm. Here, we specified that the best two subsets be identified for each number of 
variables in the regression model. The MINITAB algOlithm uses the R~ criterion, but also 
shows for each of the "best" subsets the R~.I" C 1" and JMSE{) (labeled S) values. The 
right-most columns of the tabulation show the X variables in the subset. From the figure 
it is seen that the best subset, according to the R~.I' criterion, is either the seven-parameter 
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(1) (2) (3) (4) (5) (6) (7) 
p SSEp R2 

p R~,p Cp AICp SBCp PRESSp 

1 12.80,8 0.000 O.QOO 240.452 -75.703 -73.714 13.296 
2 7.332 0.428 0.417 117.409 -103.827 -99.849 8.025 
3 4.312 0.663 0.650 50.472 -130.483 -124.516 5.065 
4 2.843 0.778 0.765 18.914 -150.985 -143.029 3.469 
5 2.179 0.830 0.816 5.751 -163351 -r53;.~()6 2.738 
6 2.082 0.837 0.821 5.541 -163.805 -151.871 2.739 
7 2.005 0.843 0.823 5.787 -163.834 ~149.911 2.772 
8 1.972 0.846 0.823 7.029 -162.736 -'::"46.824 2.809 
9 1.971 0.846 0.819 9.000 -160.771 ---;,42.870 2.931 

l 

Response is InSurviv 
B P H 
1 r H i 
o 0 E Gis 
o g n L est 
d i z i nth 
cnyvAdme 
Idmegeoa 

Vars R-Sq R-SqCadj) C-p S o e ere r d v 

1 42.8 41. 7 117 .4 0.37549 X 

1 42.2 41.0 119.2 0.37746 X 

2 66.3 65.0 50.5 0.29079 X X 

2 59.9 58.4 69.1 0.31715 X X 

3 77.8 76.5 18.9 0.23845 X X X 

3 75.7 74.3 25.0 0.24934 X X X 

4 83.0 81.6 5.8 0.21087 X X X X 

4 81.4 79.9 10.3 0.22023 X X X X 

5 83.7 82.1 5.5 0.20827 X X X X X 

5 83.6 81.9 6.0 0.20931 X X X X X 

6 84.3 82.3 5.8 0.20655 X X X X X X 

6 83.9 81.9 7.0 0.20934 X X X XXX 

7 84.6 82.3 7.0 0.20705 X X X X X X X 

7 84.4 82.0 7.7 0.20867 XXXXXX X 

8 84.6 81.9 9.0 0.20927 XXXXXXXX 

model based on all predictors except Liver (X4) and Histmod (history of moderate alcohol 
use-X 7), or the eight-parameter mod~l based on all predict0l]' except Liver (X4 ). The R;,p 
criterion value for both of these models is .823. 

The all-possible-regressions procedute leads to the identification of a small number of 
subsets that are "good" according to a specified criterion. In the surgical unit example, two 
of the four criteria-SBep and PRESSp-pointed to models with 4 predictors, while the 
other criteria favored larger models. Consequently, one may wish at times to consider more 
than one criterion in evaluating possible subsets of X variables. 
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Once the investigator has identified a few "good" subsets for intensive examination , a 
final choice of the model variables mllst be made. This choice, a<; indicated by our model_ 
building strategy in Figure 9.1, is aided by residual analyses (and other diagnostics to be 
covered in Chapter 10) and by the investigator's knowledge of the subject under stUdy, and 
is finally confirmed through model validation studies. 

Stepwise Regression Methods 
In those occa<;ional ca<;es when the pool of potential X variables contains 30 to 40 or even 
more variables, use of a "best" subsets algorithm may not be feasible. An automatic search 
procedure that develops the "best" subset of X variables sequentially may then be helpful. 
The forward stepwise regression procedure is probably the most widely used of the automatic 
search methods. It was developed to economize on computational efforts. as compared with 
the vm·ious all-possible-regressions procedures. Essentially, this search method develops a 
sequence of regression models, at each step adding. or deleting an X variable. The criterion 
for adding or deleting an X vm·iable can be stated equivalently in terms of el1ur SUm of 
squares reduction, coefficient of partial correlation, t* statistic, or F* statistic. 

An essential difference between stepwise procedures and the "best" subsets algorithm i~ 
that stepwise search procedures end with the identification of a single regression model as 
"best." With the "best" subsets algorithm, on the other hand. several regression models can 
be identified as "good" for final consideration. The identification of a single regression model 
a<; "best" by the stepwise procedures is a m~or weakness of these procedures. Experienoe 
has shown that each of the stepwise search procedures can sometimes err by identifying a 
suboptimal regression model a<; "best." In addition, the identification of a single regression 
model may hide the fact that several other regression models may also be "good." Finally, 
the "goodhess" of a regression model can only be established by a thorough examination 
using a variety of diagnostics. 

What then can we do on those occasions when the pool of potential X vm·iables is very 
Im·ge and an automatic search procedure must be utilized? Ba<;ically, we should use the 
subset identified by the automatic sem·ch procedure a<; a stmting point for searching for 
other "good" subsets. One possibility is to treat the number of X vm·iables in the regression 
model identified by the automatic search procedure as being about the right subset size and 
then use the "best" subsets procedure for subsets of this and nearby sizes. 

Forward Stepwise Regression 
We shall describe the forward stepwise regression search algorithm in terms of the t' 
statistics (2.17) and their associated P -values for the usual tests of regression pm·umeters. 

I. The stepwise regression routine first fits a simple linear regression model for each of 
the P - I potential X variables. For each simple linemTegression model, the f* statistic (2.17) 
for testing whether or not the slope is zero is obtained: 

* bk 
tk =--

s{bd 
(9.18) 

The X vm·iable with the Im·gest t* value is the candidate for first addition. If this f* value 
exceeds a predetermined level, or if the conesponding P-value is less than a predeter­
mined ex, the X variable is added. Otherwise, the program terminates with no X variable 
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considered sufficiently helpful to enter the regression model. Since the degrees of freedom 
associated with MSE vary depending on the number of X variables in the model, and since 
repeated tests on the same data are undertaken, fixed t* limits for adding or deleting a 
variable have no precise probabilistic meaning. For this reason, software programs often 
favor the use of predetermined a-limits. 

2. Assume X7 is the variable entered at step 1. The stepwise regression routine now 
fits all regression models with two X variables, where X7 is one of the pair. For each 
such regression model, the t* test statistic corresponding to the newly added predictor Xk 
is obtained. This is the statistic for testing whether or not 13k = 0 when X7 and X k are 
the variables in the model. The X variable with the largest t* valUe-or equivalently, the 
smallest P -value-is the candidate for addition at the second stage: If this t* value exceeds 
a predetermined level (i.e., the P-value falls below a predetermined level), the second X 
variable is added. Otherwise, the program terminates. J t 

3. Suppose X3 is added at the second stage. Now the stepwise regression routine examines 
whether any of the other X variables already in the model should be dropped. For our 
illustration, there is at this stage only one other X variable in the model, X7 , so that only 
one t* test statistic is obtained: 

t*-~ 
7 - s{b7 } 

(9.19) 

At later stages, there would be a number of these t* ~tatistics, one for each of the variables 
in the model besides the one last added. The variable for which this t* value is smallest (or 
equivalently the variable for which the P-value is largest) is the candidate for deletion. If 
this t* value falls below-or the P-value exceeds-a predetermined limit, the variable is 
dropped from the model; otherwise, it is retained. 

4. Suppose X7 is retained so that both X3 and X7 are now in the model. The stepwise 
regression routine now examines which X variable is the next candidate for addition, then 
examines whether any of the variables already in the model should now be dropped, and 
so on u!ltil no further X variables can either be added or deleted, at which point the search 
terminates. 

Note that the stepwise regression algorithm allows an X variable, brought into the model 
at an earlier stage, to be dropped subsequently if it is no longer helpful in conjunction with 
variables added at later stages. 

Figure 9.7 shows MINITAB computer printout for the forward stepwise regression proce­
dure for the surgical unit example. The maximum acceptable a limit for adding a variable 
is 0.10 and the minimum acceptable a limit for removing a variable is 0.15, as shown at the 
top of Figure 9.7. 

We now follow through the steps: 

1. At the start of the stepwise search, no X variable is in the model so that the model 
to be fitted is Y; = 130 + 8;. In step 1, the t* statistics (9.18) and corresponding P-values 
are calculated for each potential X variable, and the predictor having the smallest P-value 
(largest t* value) is chosen to enter the equation. We see that Enzyme (X3 ) had the largest 
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FIGURE 9.7 
MINITAB 
Forward 
Stepwise 
Regression 
Output-
Surgical Unit 
Example. 

Multiple Linear Regression 

Alpha-to-Enter: 0.1 Alpha-to-Remove: 0.15 

Response is lnSurviv on 8 predictors, with N = 54 

Step 1 2 3 4 
Constant 5.264 4.351 4.291 3.852 

Enzyme 0.0151 0.0154 0.0145 0.0155 
T-Value 6.23 8.19 9.33 11.07 
P-Value 0.000 0.000 0.000 0.000 

Proglnde 0.0141 0.0149 0.0142 
T-Value 5.98 7.68 8.20 J 
P-Value 0.000 0.000 0.000 

Histheav 0.429 0.353 
T-Value 5.08 4.57 
P-Value 0.000 O.OOG" 

Bloodclo 
, 

0.073 
T-Value 3.86 
P-Value 0.000 

S 0.375 0.291 0.238 0.211 
R-Sq 42.76 66.33 77.80 82.99 
R-Sq(adj) 41.66 65.01 76.47 81.60 
C-p 117.4 50.5 18.9 5.8 

test statistic: 

* b3 .015124 
t3 = s{b

3
} = .002427 = 6.23 

The P-value for this test statistic is 0.000, which falls below the maximum acceptable 
a-to-enter value of 0.10; hence Enzyme (X3 ) is added to the model. 

2. At this stage, step 1 has been completed. The current regression model contains 
Enzyme (X3 ), and the printollt displays, near the top of the column labeled "Step 1;' the 
regression coefficient for Enzyme (0.0151), the t* value for this coefficient (6.23), and the 
corresponding P-value (0.000). At the bottom of column 1, a number of variables-selection 
criteria, including R; (42.76), R;,l (41.66), and C1 (117.4) are also provided. 

Next, all regression models containing X3 and another X variable are fitted, and the t* 
statistics calculated. They are now: 

MSR(Xk IX3) 

MSE(X3 , X k ) 

Progindex (X2 ) has the highest t* value, and its P-value (0.000) falls below 0.10, so that 
X2 now enters the model. 
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3. The column labeled Step 2 in Figure 9.7 summarizes the si tuation at this point. Enzyme 
and Progindex (X3 and X2) are now in the mOdel, and information about this model is 
provided. At this point, a test whether Enzyme (X3) should be dropped is undertaken, but 
because the P-value (0.000) corresponding to X3 is not above 0.15, this variable is retained. 

4. Next, all regression models containing X2, X3, and one of the remaining potential X 
variables are fitted. The appropriate t* statistics now are: 

MSR(Xk IX2, X3) 

MSE(X2, X3, Xd 

The predictor labeled Histheavy (Xs) had the largest tt value ,(P-value = 0.(00) and 
was next added to the model. 

5. The column labeled Step 3 in Figure 9.7 summarizes the situation at this point. X 2 , 

X 3 , and Xs are now in the model. Next, a test is undertaken to determine whedler X2 or 
X3 should be dropped. Since both of the corresponding P-values are less than 0.15, neither 
predictor is dropped from the model. 

6. At step 4 Bloodclot (X d is added, and no terms previously included were dropped. 
The right-most column of Figure 9.7 summarizes the addition of variable Xl into the model 
containing variables X2, X3, and Xs. Next, a test is undertaken to determine whether either 
X 2 , X 3 , or Xs should be dropped. Since all P-values are less than 0.15 (all are 0.0(0), all 
variables are retained. 

7. Finally, the stepwise regression routine considers adding one of X4 , X5 , X6 , or X7 to 
the model containing XI. X2, X3, and Xs. In each case, the P-values are greater than Q-JO 
(not shown); therefore, no additional variables can be added to the model and the search 
process is terminated. 

Thus, the stepwise search algorithm identifies (XI. X2, X3, Xs) as the "best" subset of 
X variables. This model also happens to be the model identified by both the SBC p and 
PRESSp criteria in our previous analyses based on an assessment of "best" subset selection. 

Comments 
1. The choice of a-to-enter and a-to-remove values essentially represents a balancing of opposing 

tendencies. Simulation studies have shown that for large pools of uncorrelated predictor variables that 
have been generated to be uncorrelated with the response variable, use of large or moderately large 
a-to-enter values as the entry criterion results in a procedure that is too liberal; that is, it allows 
too many predictor variables into the model. On the other hand, models produced by an automatic 
selection procedure with small a-to-enter values are often underspecified, resulting in u 2 being badly 
overestimated and the procedure being too conservative (see, for example, References 9.2 and 9.3). 

2. The maximum acceptable a-to-enter value should never be larger than the minimum acceptable 
a-to-remove value; otherwise. cycling is possible where a variable is continually entered and removed. 

3. The order in which variables enter the regression'model does not reflect their importance. At 
times, a variable may enter the model. only to be dropped at a later stage because it can be predicted 
well from the other predictors that have bren subsequently added. '" • 

Other Stepwise Procedures 
Other stepwise procedures are available to find a "best" subset of predictor variables. We 
mention two of these. 
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Forward Selection. The forward selection search procedure is a simplified version of 
forward stepwise regression, omitting the test whether a variable once entered into the 
model should be dropped. 

Backward Elimination. The backward elimination search procedure is the opPOsite of 
fOIward selection. It begins with the model containing all potential X variables and identifies 
the one with the largest P-value. If the maximum P-value is greater than a predetermined 
limit, that X variable is dropped. The model with the remaining P - 2 X variables is 
then fitted, and the next candidate for dropping is identified. This process continues until 
no further X variables can be dropped. A stepwise modification can also be adapted that 
allows variables eliminated earlier to be added later: this modification is called the backward 
stepwise regression procedure. ,,_ 

Comment 
For small and moderate numbers of variables in the pool of potential X variables, some statisticians 
argue for backward stepwise search over forward stepwise search (see Refel'ence 9.4). A potential 
disadvantage of the forward stepwise approach is that tpe MSE-and hence s {bk }-will lend to be 
inflated during the initial steps, because important predictors have been omitted. This in tum leads 
to t: test siIltistics (9.18) that are too small. For the backward stepwise procedure, MSE values tend 
to be mOre nearly unbiased because important predictors are retained at each step. An argument in 
favor of the backward stepwise procedure can also be made in sItuations where it is useful as a firsl 
step to look at each X variable in the regression function adjusted for all the other X variables in 
the pool. • 

9.5 SOlTIe Final COlTIlTIents on AutolTIatic 
Model Selection Procedures 

Our discussion of the m<uor automatic selection procedures for identifying the "best" subset 
of X variables has focused on the main conceptual issues and not on options, variations, 
and refinements available with particular computer packages. It is essential that the specific 
features of the package employed be fully understood so that intelligent use of the package 
can be made. In some packages. there is an option for regression models through the origin. 
Some packages permit variables to be brought into the model and tested in pairs or other 
groupings instead of singly. to save computing time or for other rea<;ons. Some packages. 
once a "best" regression model is identified, will fit all the possible regression models with 
the same number of variables and will develop information for each model so that a final 
choice can be made by the user. Some stepwise programs have options for forcing variables 
into the regression model; such variables are not removed even if their P-values become 

too large. 
The diversity of these options and special features serves to emphasize a point made 

earlier: there is no unique way of searching for "good" subsets of X variables, and subjective 
elements must play an important role in the search process. 

We have considered a number of important issues related to exploratory model building. 
but there are many others. (A good discussion of many of these issues may be found in Refer­
ence 9_5.) Most important for good model building is the recognition that no automatic search 
procedure will always find the "best" mOdel, and that. indeed. there may exist several "good" 
regression models whose appropriateness for the purpose at hand needs to be investigated. 
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Judgment needs to play an important role in model building for exploratory studies. 
Some explanatory variables may be known to be more fundamental than others and there­
fore should be retained in the regression model if the primary purpose is to develop a good 
explanatory model. When a qualitative predictor variable is represented in the pool of poten­
tial X variables by a number of indicator variables (e.g., geographic region is represented by 
several indicator variables), it is often appropriate to keep these indicator variables together 
as a group to represent the qualitative variable, even if a subset containing only some of 
the indicator variables is "better" according to the criterion employed. Similarly, if second­
order terms X~ or interaction terms XkX", need to be present in a regression model, one 
would ordinarily wish to have the first-order terms in the model as representing the main 
effects. 

The selection of a subset regression model for exploratory observational studies has 
been the subject of much recent research. Reference 9.5 provides information about many 
of these studies. New methods of identifying the "best" subset have been proposedt,including 
methods based on deleting one case at a time and on bo<?,tstrapping. With the first method, the 
criteri on is evaluated for identified subsets n times, each time with one case omitted, in order 
to select the "best" subset. With bootstrapping, repeated samples of cases are selected with 
replacement from the data set (alternatively, repeated samples of residuals from the model 
fitted to all X variables are selected with replacement to obtain observed Y values), and the 
criterion is evaluated for identified subsets in order to select the "best" subset. Research 
by Breiman and Spector (Ref. 9.7) has evaluated these methods from the standpoint of the 
closeness of the selected model to the true model and has fO.llnd the two methods promising, 
the bootstrap method requiring larger data sets. 

An important issue in exploratory model building that we have not yet considered is 
the bias in estimated regression coefficients and in estimated mean responses, as well as in 
their estimated standard deviations, that may result when the coefficients and error mean 
square for the finally selected regression model are estimated from the same data that were 
used for selecting the modeL Sometimes, these biases may be substantial (see, for example, 
References 9.5 and 9.6). In the next section, we will show how one can examine whether the 
estimated regression coefficients and error mean square are biased to a substantial extent. 

9.6 Model Validation 
The final step in the mOdel-building process is the validation of the selected regression 
models. Model validation usually involves checking a candidate model against independent 
data. Three basic ways of validating a regression model are: 

1. Collection of new data to check the model and its predictive ability. 
2. Comparison of results with theoretical expectations, earlier empirical results, and 

simulation results. • 
3. Use of a holdout sample to check the model and its predictive ability . 

. 
When a regression model is used in a controlled experiment, a repetition of the experiment 

and its analysis serVes to validate the findings in the initial study if similar results for the 
regression coefficients, predictive ability, and the like are obtained. Similarly, findings in 
confirmatory observational studies are validated by a repetition of the study with other data. 
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As we noted in Section 9, I, there m'e generally no extensive problems in the selection of 
predictor variables in controlled experiments and confirmatory observational studies, In 
contrast, explanatory observational studies frequently involve lm'ge pools of explanatory 
variables mld the selection of a subset of these for the final regression model. For these 
studies, validation of the regression model involves also the appropriateness of the variables 
selected, as well as the magnitudes of the regression coefficients, the predictive ability of 
the model, and the like. Our discussion of validation will focus primarily on issues that arise 
in validating regression models for exploratory observational studies. A good discussion 
of the need for replicating any study to establish the generalizability of the findings may 
be found in Reference 9.8. References 9.9 and 9. \0 provide helpful presentations of issues 
m'ising in the validation of regression models. 

Collection of New Data to Check Model 
The best means of model validation is through the collection of new data. The purpose 
of collecting new data is to be able to examine whether the regression model developed 
from the earlier data is still applicable for the new data. If so, one has assurance about the 
applicability of the model to data beyond tho,se on which the model is based. 

Methods of Checking Validity. There are a vm'iety of methods of examining the validity 
of the regression model against the new data. One validation method is to reestimate the 
model form chosen earlier using the new data. The estimated regression coefficients and 
various characteristics of the fitted model m'e then compared for consistency to those of the 
regression model based on the em'lier data. If the results are consistent, they provide strong 
support that the chosen regression model is applicable under broader circumstances than 
those related to the original data. 

A second validation method is designed to calibrate the predictive capability of the 
selected regression model. When a regression model is developed from given data, it is 
inevitable that the selected model is chosen, at least in large part, because it fit'> well the 
data at hand. For a different set of random outcomes, one may likely have anived at a 
different model in telIDS of the predictor valiables selected andlor their functional forms 
and interaction teIIDS present in the model. A result of this model development process is 
that the error mean square MSE will tend to understate the inherent variability in making 
future predictions from the selected model. 

A means of mea'>uring the actual predictive capability of the selected regression model 
is to use this model to predict each case in the new data set and then to calculate the mean 
of the squm'ed prediction errors, to be denoted by MSPR, which stands for mean squared 
prediction error: 

",,,* (Y,. - y')2 
MSPR = L,i=l I I 

n* 
(9.20) 

where: 

Yj is the value of the response valiable in the ith validation case 

Yj is the predicted value for the ith validation case based on the mOdel-building dataset 

n* is the number of cases in the validation data set 
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If the mean squared prediction error MSPR is fairly close to MSEbased on the regression 
fit to the model-building data set, then the error mean square MSE for the selected regression 
model is not seriously biased and gives an appropriate indication of the predictive ability of 
the model. If the mean squared prediction error is much larger than MSE, one should rely 
on the mean squared prediction error as an indicator of how well the selected regression 
model will predict in the future. 

Difficulties in Replicating a Study. Difficulties often arise when new data are collected 
to validate a regression model, especially with observational studies. Even with controlled 
experiments, however, there may be difficulties in replicating an earlier study in identical 
fashion. For instance, the laboratory equipment for the new study to be conducted in a 
different laboratory may differ from that used in the initial study, resulting in somewhat 
different calibrations for the response measurements. '" 

The difficulties in replicating a study are particularly acute in the social sciences where 
controlled experiments often are not feasible. Repetition of an observational stud~ usually 
involves different conditions, the differences being relat9d to changes in setting antr/or time. 
For instance, a study investigating the relation between amount of delegation of authority 
by executives in a firm to the age of the executive was repeated in another firm which 
has a somewhat different management philosophy. As another example, a study relating 
consumer purchases of a product to special promotional incentives was repeated in another 
year when the business climate differed substantially from that during the initial study. 

It may be thought that an inability to reproduce a study identically makes the replication 
study useless for validation purposes. This is not the case. No single study is fully useful 
until we know how much the results of the study can be generalized. If a replication study for 
which the conditions of the setting differ only slightly from those of the initial study yi~Jds 
substantially different regression results, then we learn that the results of the initial study 
cannot be readily generalized. On the other hand, if the conditions differ substantially and 
the regression results are still similar, we find that the regression results can be generalized to 
apply under substantially varying conditions. Still another possibility is that the regression 
results for the replication study differ substantially from those of the initial study, the 
differences being related to changes in the setting. This information may be useful for 
enriching the regression model by including new explanatory variables that make the model 
more widely applicable. 

Comment 

When the new data are collected under controlled conditions in an experiment, it is desirable to inclUde 
data points of mqjor interest to check out the model predictions. If the model is to be used for making 
predictions over the entire range of the X observations, a possibility is to include data points that are 
uniformly distributed over the X space. ' • 

€,pmparison with Theory, Empirical Evidence, or Simulation Results 
In some cases, theory, simulation rdmlts, or previous empi'rical results may be helpful in 
determining whether the selected model is reasonable. Comparisons of regression coeffi­
cients and predictions with theoretical expectations, previous empirical results, or simulation 
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results should be made. Unfortunately, there is often little theory that can be used to validate 
regression models. 

Data Splitting 
By far the preferred method to validate a regression model is through the collection of new 
data. Often, however, this is neither practical nor feasible. An alternative when the data set 
is large enough is to split the data into two sets. The first set, called the model-buildi11g set or 
the training sample, is used to develop the model. The second data set, called the validation 
or prediction set, is used to evaluate the reasonableness and predictive abil ity of the selected 
model. This validation procedure is often called cross-validation. Data splitting in effect i~ 
an attempt to simulate replication of the study. 

The validation data set is used for validation in the same way as When new data are 
collected. The regression coefficients can be reestimated for the selected model and then 
compm'ed for consistency with the coefficients obtained from the model-building data set. 
Also, predictions can be made for the data in the validation data set from the reb1fession 
model developed from the model-building data set·,to calibrate the predictive ability of this 
regression model for the new data. When the calibration data set is large enough, One can 
also study how the "good" models considered in the model selection phase fare with the 
new data. 

Data sets are often split equally into mOdel-building and validation data sets. It is impor­
tant, however, that the mOdel-building data set be sufficiently large so that a reliable model 
can be developed. Recall in this connection that the number of cases should be at least 6 to 
10 times the number of variables in the pool of predictor variables. Thus, when 10 variables 
are in the pool, the model-building data set should contain at least 60 to 100 cases. If the 
entire data set is not large enough under these circumstances for making an equal split, the 
validation data set will need to be smaller than the model-building data set. 

Splits of the data can be made at random. Another possibility is to match cases in pairs 
and place one of each pair into one of the two split data sets. When data are collected 
sequentially in time, it is often useful to pick a point in time to divide the data. Generally, 
the earlier data are selected for the mOdel-bUilding set and the later data for the validation 
set. When seasonal or cyclical effects are present in the data (e.g., sales data), the split 
should be made at a point where the cycles are balanced. 

Use of time or some other characteristic of the data to split the data set provides the 
opportunity to test the generalizability of the model since conditions may differ for the two 
data sets. Data in the validation set may have been created under different causal conditions 
than those of the model-building set. In some cases, data in the validation set may represent 
extrapolations with respect to the data in the model-bUilding set (e.g., sales data collected 
over time may contain a strong U'end component). Such differential conditions may leadto 
a lack of validity of the model based on the model-building data set and indicate a need to 
broaden the regression model so that it is applicable under a broader scope of conditions. 

A possible drawback of data splitting is that the variances of the estimated regression 
coefficients developed from the model-building data set will usually be Im-ger than those 
that would have been obtained from the fit to the entire data set. If the model-building data 
set is reasonably large, however, these variances generally will not be that much Im-gerthan 
those for the entire data set. In any case, once the model has been validated, it is customary 
practice to use the entire data set for estimating the final regression model. 



TABLE 9.4 

Chapter 9 Building the Regression Modell: Model Selection and Validation 373 

In the surgical unit example, three models Were favored by the various model-selection 
criteria. The SBCp and PRESSp criteria favored the four-predictor model: 

Y: = f30 + f3, Xii + f32 X i2 + f33 Xi3 + f3SXiS + 8i 

C p was minimized by the five-predictor model: 

Y: = f30 + f3 I XiI + fhXi2 + f33 X i3 + f35 Xi5 + f3SX iS + 8i 

Modell (9.21) 

Model 2 (9.22) 

while the R;,p and AICp criteria were optimized by the six-predictor model: 

Model 3 (9.23) 

We wish to assess the validity of these three models, both intern~ly and externally. 
Some evidence of the internal validity of these fitted models call, be obtained through 

an examination of the various model-selection criteria. Table 9.4 summarizes the fits of 
the three candidate models to the original (training) data set in columns (1), (3),tand (5). 
We first consider the SSEp, PRESSp and Cp criterion values. Recall that the PRESSp value 
is always larger than SSEp because the regression fit for the ith case when this case is 
deleted in fitting can neVer be as good as that when the ith case is included. A PRESSp 

Regression Results for Candidate Models (9.21), (9.22), and (9.23) Based on Model-Building and 
Validation Data Sets-Surgical Unit Example. 
t--~ 

(1) (2) (3) (4) (5) (6) ! 
Modell Modell Model 2 Model 2) Modell Modell 

: ltii!i~~~~ 
Training Validation Training Validat:iQn Traini(lg Va lid ati()n 
D~taS~t Data Set. Data Set Data Set Data.$et Data Set 

i , 5 5 6 6 T 7 
bJ 3.8524 3.6350 3.8671 3.6143 4.0540. 3.4699 

'~"I)' 0~1927 0.2894 0.1906 0.2907 0.2348 '-03468 
; 
" 0.0733 0.Og5~ 0.0712 0;0999 0.0715 0.0987 , 

i i'~!l 0;0190 0.0319 ~.01.88 0.0323 0;0186. 0.0325 
I" 0.0142 0.01'64 0.0139 0~0159 0.013R: 0.0162 
; ;{} 0.0017 0:0023' 0.0017 0;0024 0.0017 0.0024 
~ , 0.0155 0.0156 0:0151 6.0154 0~0151 0;0156 
~ "1~ 0;0014 0.0020 6.0014 0.0020 0.0014 0.002l 
- ., -0.0035 0.0025 

.iP"J 0.0026 0.0033 
~ 'i: 0.086~· 0.073l 0;0873 0.0727-

" - 0.05~2 '0.0792 p.0577 0.0795 
rD.:' 0:3530 0.1860 0:3627 

I, 
'0.)886 0.3509 0.1931 

", !t, 0~0772 0.0964 "{);0765 0;0966 0.0764 0.0972 
I· 

~ 7 " ,,- <_ 

3.6822 Ii' 2.1788 3.7951 2.0820, 3.1288 2~0052 
: 1lI11'~i~ 2;7378 4;5219 2.7827 4.6536 2]723' 4.8981 

5.7508 6.2094 5.5406. ].3331 .... 5:7874 8.7166 
'1 ~, 0.6LJ:is 0.0775 0.0434 0;0777 '&:0427' 0.0783 tr, .,,. 

0:0794' ~~.'. 0:0773 0~b764 
'o:ifr60 0:6824 0:8205' 0.6815 0;8234' 0~6787 

~ '~;3~; " > 
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TABLE 9.5 Potential Predictor Variables and Response Variable-Surgical Unit Example. 

Blood- Ale. Ale. ----Case Clotting Prognostic Enzyme liver Use: Use: Survival 
Number 

55 
56 
57 

106 
107 
108 

Score Index Test Test Age Gender Mod. Heavy Time 
XIl XI 2 XI3 XI4 XiS Xi6 Xi7 XiS Yi Yi =:: In Y; 
7.1 23 78 1.93 45 0 1 0 302 5.710 
4.9 66 91 3.05 34 0 0 767 6.642 
6.4 90 35 1.06 39 0 487 6.188 

6.9 90 33 2.78 48 0 0 655 6.485 
7.9 45 55 2.46 43 0 1 0 377 5.932 
4.5 68 60 2.07 59 0 0 0 ,,:'642 6.465 

value reasonably close to SSE I, supports the validjty of the fitted regression model and of 
MSE!, as an indicator of the predictive capability of this model. In this case, all three of the 
candidate models have PRESS/I values that are reasonably close to SSEI'. For example, for 
Model I, PRESS!, = 2.7378 and SSEI' = 2.1788. Recall also that if CfJ ~ p, this suggests that 
there is little or no bias in the regression model. This is the case for the three models under 
consideration. The Cs, Ce" and C7 values for the three models are, respectively, 5.7508, 
5.5406, and 5.7874. 

To validate the selected regression model extemally, 54 additional cases had been held 
out for a validation data set. A portion of the data for these ca<;es is shown in Table 9.5. The 
correlation matrix for these new data (not shown) is quite similar to the one in Figure 9.3 for 
the model-building data set. The estimated regression coefficients, their estimated standard 
deviations, and various model-selection criteria when regression models (9.21), (9.22), and 
(9.23) are fitted to the validation data set are shown in Table 9.4, columns 2, 4, and 6. 
Note the excellent agreement between the two sets of estimated regression coetlicients, and 
the two sets of regression coetlicient standard errors. For example, for Model I fit to the 
training data, h, = .0733; when fit to the validation data, we obtain b, = .0958. In view 
of the magnitude of the cOlTesponding standard errors (.0190 and .0319), these values are 
reasonably close. 

A review of Table 9.4 shows that most of the estimated coetlicients agree quite closely. 
However, it is noteworthy that bs in Model 3-the coefficient of age-is negative for the 
training data (bs = -0.0035), and positive for the validation data (bs = 0.0025). This is 
certainly a cause for concern, and it raises doubts about the validity of Model 3. 

To calibrate the predictive ability of the regression models fitted from the training data 
set, the mean squared prediction errors MSPR in (9.20) were calculated for the 54 caseS in 
the validation data set in Table 9.5 for each of the three candidate models; they are .0773, 
.0764, and .0794, respectively. The mean squared prediction error generally will be larger 
than MSE IJ based on the training data set because entirely new data are involved in the 
validation data set. 1,1 this case, the relevant MSE IJ valUes for the three models are .0445, 
.0434, and .0427. The fact that MSPR here does not differ too greatly from MSE IJ implies 
that the error mean square MSE IJ based on the training data set is a reasonably valid indicator 
of the predictive ability of the fitted regression model. The closeness of the three MSPR 
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values suggest that the three candidate models perform comparably in terms of predictive 

accuracy. 
As a consequence of the concerns noted earlier about Model 3, this model was eliminated 

from further consideration. The final selection was based on the principle of parsimony. 
While Models I and 2 performed comparably in the validation study, Modell achieves this 
level of performance with one fewer parameter. For this reason, Model ] was ultimately 
chosen by the investigator as the final model. 

Comments 

1. Algorithms are available to split data so that the two data sets have similar statistical properties. 
The reader is referred to Reference 9.11 for a discussion of this and other issues associated with 
validation of regression models. .1-[ 

2. Refinements of data spl itting have been proposed. With the double cr6ss-validation procedure, 
for example, the model is built for each half of the split data and then tested on the othfr half of 
the data. Thus, two measures of consistency and predictive ability are obtained from the two fitted 
models. For smaller data sets, a procedure called K-fold cross-validation is often used. With this 
procedure, the data are first split into K roughly equal parts. For k = 1, 2, ... , K, we use the kth part 
as the validation set, fit the model using the other k - 1 parts, and obtain the predicted sum of squares 
for error. The K estimates of prediction errOr are then combined to produce a K-fold cross-validation 
estimate. Note that when K = n, the K -fold cross-validation estimate is the identical to the PRESSp 

statistic. 

3. For small data sets where data splitting is impractical, the PRESS criterion in (9.17), considered 
earlier for use in subset selection, can be employed as a form of data splitting to assess the precision 
of model predictions. Recall that with this procedure, each data point is predicted from the least 
squares fitted regression function developed from the remaining n - 1 data points. A fairly close 
agreement between PRESS and SSE suggests that MSE may be a reasonably valid indicator of the 
selected model's predictive capability. Variations of PRESS for validation have also been proposed, 
whereby m cases are held out for validation and the remaining n - m cases are used to fit the 
model. Reference 9.11 discusses these procedures, as well as issues dealing with optimal splitting of 
data sets. 

4. When regression models built on observational data do not predict well outside the range of 
the X observations in the data set, the usual reason is the existence of multicollinearity among the 
X variabks. Chapter 11 introduces possible solutions for this difficulty including ridge regression or 
other biased estimation techniques. 

5. If a data set for an exploratory observational study is very large, it can be divided into three parts. 
The first part is used for model training, the second part for cross-validation and model selection, and 
the third part for testing and calibrating the final model (Reference 9.10). This approach avoids any 
bias resulting from estimating the regression parameters from the same data set used for developing 
the model. A disadvantage of this procedure is that the parameter estimates are derived from a smaller 
data set and hence are more imprecise than if the original data set were divided into two parts for 
model building and validation. Consequently, the division of a data set into three parts is used in 
practice only when the available data set is very large. • 

9.1. Daniel, c., and F. S. Wood. Fitting Equptions to Data: Computer Analysis of Multifactor Data. 
2nd ed. New York: John Wiley & Sons, 1999. 

9.2. Freedman, D. A. "A Note on Screening Regression Equations," The American Statistician 37 
(1983), pp. 152-55. 
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Problems 

9.3. 

9.4. 

9.5. 
9.6. 

9,7. 

9.8. 

9.9. 

9.10. 

9.11. 

Pope. P. T. andJ. T Webster. "The Use or an F -Statistic in Stepwise Regression." 7ecll/}oll1etri 
14 ( 1972). pp. 327-40. es 

Ma11lcl, N. "Why Stepdown Procedures in Variable Selection," li:chllO/l!elrio' 12 (1970 
~~I ~5 ~ pp.o_ -_ . 

Miller. A. J. Sl/b,I'e{ Selection ill Regre,I·.I·i(J/I. 2nd ed. London: Chapman 'Jl1d Hall. 2002. 
Faraway, J .1. "On the Cost of Data Analy!;is," .I0!lnI(t/ oj"COII!J1l1t(f(iOlW/lIl1c/ CHI/Ji!iclI/ StCITistics 
I (1992),pp.213-29. 
Breiman, L. and P. Spector. "Submodcl Selection and Evaluation itl Regression. The X -R.mdom 
Case," Ill/ef/wtioll(!/ Stmi.I'tic({/ Rel'ie\!' 60 (1992). pp. 291 -319. 
Lindsay, R. M .. and A. S. C. Ehrenberg. "The Design or Replicated Studies," '/he Allle/iean 
Statisticiall 47 (1993), pp. 217-28. 
Snee, R. D. "Validation or Regression Models: Methods and Examples," Tecl!llol!1etrics 19 
(1977). pp. 415-28. 
Hastie, T, Tibshimni, R., and 1. Friedman. Tile £/elllellt,l' (?(Stllti,l'tim/ Learnillg: Data Milling, 

Inj"erence. am/ Predictiol!. New York: Springer-Verlag. 200 I. 
Stone. M. "Cross-validatory Choice and Assessment of Statistical Prediction," jOltnw[ cfthe 
Roya/ St(l(i.I'tim/ Socierr B 36 (1974), pp. 111-47. 

< 

9.1. A speaker stated: "In well-designed experiments involving quantitative explanatory variables, 
a procedllre for reducing the number of explamltory vuriable~ after the data are obtained is not 
necessary." Discuss. 

9.2. The dean of a graduate school wishes to predict the grade point avemge in graduate wort< for 
recent applicants. List 11 dozen variables that might be useful explanatory vUliables here. 

9.3. Two researchers. investigating factors affecting summer attendance at privately operated 
beaches on Lake Ontario. collected information on attendance and I I explanatory vaJiables for 
42 beaches. Two summers were studied. of relatively hot and relatively cool weather. r~pec­
tively. A "best" subset~ algorithm now is to be used to reduce the number of expl.mutory 
variables for the final regression model. 

a. Should the variable~ reduction be done for both summers combined, or should it be done 
separately for each summer? Explain the problems involved and how you might handle 
them. 

b. Will the "best" subsets selection procedure choose those explanatory variables that are most 
impOitant in a causal sense for dete]111ining beach attendance? 

9.4. In forward stepwise regression. whilt advantage is there in using a relatively small a-to-enter 
value for adding vadables? What advantage is there in using a larger a-to-enter value? 

9.5. In forward stepwise regression, why should the a-to-enter value for adding variables never 
exceed the a-to-remove value for deleting variables? 

9.6. Prepare a flowchmt of each of the following selection methods: ( I ) forward stepwise regression. 
(2) forward selection. (3) backward elimination. 

9.7. An engineer has stated: "Reduction or the number of explanatory vari,lbles should always be 
done using the objective forward stepwise regression plDcedure." Discuss. 

9.S. An attendee ut a regression modeling short course stated: "I rarely see validation or regression 
models mentioned in published papers. so it must really not be an impottant component of 
model building." Comment. 

*9.9. Refer to Patient satisfaction Problem 6.15. The hospital administrator wishes to dete1111ine the 
best subset or predictor variables for predicting patient satisraction. 
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a. Indicate which subset of predictor variables you would recommend as best for predicting 
patient satisfaction according to each of the following criteria: (1) R~.p' (2) A/Cp, (3) Cp , 

(4) PRESSp ' Support your recommendations with appropriate graphs. 

b. Do the four criteria in part (a) identify the same best subset? Does this always happen? 

c. Would forward stepwise regression have any advantages here as a screening procedure over 
the all-possible-regressions procedure? 

Job proficiency. A personnel officer in a governmental agency administered four newly de­
veloped aptitude tests to each of 25 applicants for entry-level clerical positions in the agency. 
For purpose of the study, all 25 applicants were accepted for positions irrespective of their test 
scores. After a probationary period, each applicant was rated for proficiency on the job. The 
scores on the fourtests (Xl' X2 , X3 , X4 ) and the job proficiency score (Y) for the 25 employees 
were as follows: 

Test Score }Job ProfIciency 
Subject Score 

X/1 X/2 XI3 X/4 y/ t. 
86 110 100 87 88 

2 62 97 99 100 80 
3 110 107 103 103 96 

23 104 73 93 80 78 
24 94 121 115 104 115 
25 91 129 97 83 83 

a. Prepare separate stem-and-Ieaf plots of the test scores for each of the four newly developed 
aptitude tests. Are there any noteworthy features in these plots? Comment 

b. Obtain the scatter plot matrix. Also obtain the correlation matrix of the X variables. What do 
the scatter pi ots suggest about the nature of the functional relati onsli.ip between the response 
variable Y and each of the predictor variables? Are any serious multicollinearity problems 
evident? Explain. 

c. Fit the multiple regression function containing all four predictor variables as first-order 
terms. Does it appear that all predictor variables should be retained? 

*9.11. Refer to Job proficiency Problem 9.10. 

a. Using only first-order terms for the predictor variables in the pool of potential X variables, 
find the four best subset regression models according to the R~.p criterion. 

b. Since there is relatively little difference in R~.p for the four best subset models, what other 
criteria would you use to help in the selection of the best model? Discuss. 

9.12. Refer to Market share data set in Appendix C.3 and Problem 8.42. 

a. Using only first-order terms for predictor variables, find the three best subset regression 
models according to the SECp criterion. 

b. Is your finding here in.agreement with what you found in Problem 8.42 (b) and (c)? 

9.13. Lung pressure. Increased arterial blood pres~ure in the lungs frequently leads to the devel­
opment of heart failure in patients with chronic obstructive pulmonary disease (COPD). The 
standard method for determining arterial lung pressure is invasive, technically difficult, and 
involves some risk to the patient. Radionuclide imaging is a noninvasive, less risky method for 
estimating arterial pressure in the iungs. To investigate the predictive ability of this method, a 
cardiologist collected data on 19 mild-to-moderate COPD patients. The data that follow on the 
next page include the invasive measure of systolic pulmonary arterial pressure (Y) and three 
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potential noninvasive predictor vmiables. Two were obtuined by using radionuclide imau' 
emptying rate of blood into the pumping chamber or the heart (X I) and ejcctiol\ !"ate Of~~­
pumped out of the heart itlto the lungs (X 2 )-and the third predictor variable tne<lsures a bl: 
gas (X J ). 

a. Prepare separatc dot plot~ for each of the three predictor variablcs. Are there any noteworth 
features in these plots? ConllTIent. y 

b. Obtuin the scatter plot matrix. Also obtain the con'elation matrix of the X v<lriables. What do 
thc scatter plots suggest about the nature or the functional rel1ltionship between Y 1Inct each 
of the predictor v1lriables? Are <lny serious multicollinearity problems evidetlt? Explain. 

c. Fit the multiple regression function containing the three predictor variables us first-Order 
terms. Does it <ippear that all predictor variables should be retained? 

Sublect 
Xil Xi2 Xi3 

45 36 45 
2 30 28 40 
3 11 16 42 

17 27 51 44 
18 37 32 54 
19 34 40 36 

Adapted rrom A. T. Marmor cl al.. ··Improved Radiolludidc 
Metbod for A~se~slllcl)i of Pulmonary Anery Pressure 
in COI'O:' C/ww ~~ f 1986).pp. (>.1-69. 

9.14. Refer to Lung pressure Problem 9.13. 

Yi 

49 
55 
85 

29 
40 
31 

a. Using first-order and second-order telms for each of the three predictor variables (centered 
around the mean) in the pool of potential X vari<ibles (including cross products of the first­
order terms), fitld the three best hierurchical subset regression models according to the R~,,) 
criterion. 

b. Is there much difference in R2 for the three best subset models? 
"-f' 

9.15. Kidney function. Creatinine clearance (Y) is an important measure of kidney function, but is 
difficult to obt<iin in a elinical ofllce setting because it requires 24-hour urine collection. To 
determine whether this measure can be predicted from some data that are easily available, a 
kidney specialist obtained the data th1lt fOllow for 33 male subjects. The predictor vari,lbles are 
serum creatinine concentration (Xt>, age (X2 ), and weight (X,;). 

Subject 
Xn X/2 XI3 

.71 38 71 
2 1.48 78 69 
3 2.21 69 85 

31 1.53 70 75 
32 1.58 63 62 
33 1.37 68 52 

Adapted rrom W. J. Sbib nod S. Weisberg. "A~scssll1g lnllllcncc 
II) Multiple Lmear Rcgrcs.;;iol) with Lm:ompLelc Dala:" 
"/l'("IIIIOIIU'n-;CS ::?R ( IlJR6). pp. ~31 ---1.0 

Yi 

132 
53 
50 

52 
73 
57 
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a. Prepare separate dot plots for each of the three predictor variables. Are there any noteworthy 
features in these plots? Comment. 

b. Obtain the scatter plot matrix. Also obtain the correlation matrix ofthe X variables. What do 
the scatter plots suggest about the nature of the functional relationship between the response 
variable Y and each predictor variable? Discuss. Are any serious multicollinearity problems 
evident? Explain. 

c. Fit the multiple regression function containing the three predictor variables as first-order 
terms. Does it appear that all predictor variables should be retained? 

9.16. Refer to Kidney function Problem 9.15. 

a. Using first-order and second-order terms for each of the three predictor variables (centered 
around the mean) in the pool of potential X variables (including ero$; products of the first­
order terms), find the three best hierarchical subset regression models according to the Cp 

criterion. 

h Is there much difference in C p for the three best subset models? t 
*9.17. Refer to Patient satisfaction Problems 6.15 and 9.9. The nospital administrator was interested 

to learn how the forward stepwise selection procedure and some of its variations would perform 
here. 

a. Determine the subset of variables that is selected as best by the forward stepwise regression 
procedure, using F limits of 3.0 and 2.9 to add or delete a variable, respectively. Show your 
steps. 

b. To what level of significance in any individual test is the F limit of 3.0 for adding a variable 
approximately equivalent here? 

c. Determine the subset of variables that is selected as best by the forward selection procedure, 
using an F limit of 3.0 to add a variable. Show your steps. 

d. Determine the subset of variables that is selected as best by the backward elimination 
procedure, using an F limit of 2.9 to delete a variable. Show your steps. 

e. Compare the results of the three selection procedures. How consistent are these results? 
How do the results compare with those for all possible regressions in Problem 9.9? 

*9.18. Refer to Job proficiency Problems 9.10 and 9.11. 

a. Using forward stepwise regression, find the best subset of predictor variables to predict job 
proficiency. Use ct limits of .05 and .lD for adding or deleting a variable, respectively. 

h How does the best subset according to forward stepwise regression compare with the best 
subset according to the R~.p criterion obtained in Problem 9.11 a? 

9.19. Refer to Kidney function Problems 9.15 and 9.16. 

9.20. 

a. Using the same pool of potential X variables as in Problem 9.16a, find the best subset of 
variables according to forward stepwise regression with ct limits of .lD and .15 to add or' 
delete a variable, respectively. 

I 

h How does the best subset ag:ording to forward stepwise regression compare with the best 
subset according to the R~.p criterion obtained in Problem 9.16a? 

Refer to Market share data set in Appendix C.3 and Problems 8A2 and 9.12. 

a. Using forward stepwise regression, find the best subset of~redictor variables to predict 
market share of their product Use ct limits of .lD and .15 for adding or deleting a predictor, 
respectively. • 

b. How does the best subset according to forward stepwise regression compare with the best 
subset according to the SEC p criterion used in 9. 12a? 

;1 
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Exercise 

*9.21. Refer 10 Job proficiency Problems 9.10 and 9.1 X. To as.~ess iJ1lcrnally the predictive ability of 
the regression model identified in Problem 9.1 X. compute the PI?ESS statistic and COnlpare it 
to SSE. What docs this compaL"ison suggest about the validity of MSE as an indiC1uor of the 
predictive ability or the fitted mode!'? 

*9.22. Refer to Job proficiency Pmblems 9.1 () <Jnd 9.1 X. To assess extemally the V.1lidity of the 
regression model identified in Problem 9.1 R. 25 '1dditional applicants for entL'y-lcvel cleL'ica! 
position)' in the ,1gency weL'e similady tested and hiLed irL'cspcctive of theiL"test SCOl"es. The data 
follow. 

Test Score 
lob Proficiency 

Subject Score 
Xi! Xi2 Xi3 X/4 :"Yi 

26 65 109 88 84 58 
27 85 90 104 98 92 
28 93 73 91 82 71 

48 115 119 102 '. 94 95 
49 129 70 94 95 81 
50 136 104 106 104 109 

a. Obtain I he correlation matrix of the X variables for the validation data set and compare it 
with that obtained in Problem 9.1 Ob for the model-building data set. Are the two cOl"L-elation 
mutrices reasonably similar? 

b. Fit the Legression model identified in Problem 9.1 ga to the validation dl1ta set. Compare the 
estimated regression coefficients and their estimated standard deviations to those obtained 
in Problem 9.18a. Also compme the elTor mean squares ,md coefficients of multiple de­
termination. Do the estimates for the validation dat,1 set appear to be reasonably similar to 
those obtuined for the model-building data set? 

c. Calculate the mean squared prediction errOL' in (9.20) and compare it to MSE obtained fmm 
the model-building dma sel. Is there evidence of a substantial bias problenl in MSE here? Is 
this conclusion consistent with your finding in Problem 9.21? Discuss. 

d. Combine the model-building data set in Problem 9.10 with the valid1Ltion data set and fit the 
selected LegLession model to the combined data. AL'e the estimuted stundurd deviations of 
the estimated L'egL'ession coefficients appreciably leduced now from those obtained for the 
model-building data set? 

9.23. Refer to Lung pressure Problems 9.13 and 9.14. The validity of the regression model ideLltified 
as best in Problem 9.14a is to be assessed internally. 

a. Calculate the PRESS statistic and compaLe it to SSE. What does this comparison suggest 
about the vulidity of MSE as an indicator of the predictive ability of the fitted model? 

b. C<1se 8 alone accoUllts for approximately one-half of the entiLe PRESS statistic. Would you 
reCOL11Lllend modification of the model because of the strong impact of this case? What are 
some corrective action options that would lessen the etl"ect of case 8? Discus~. 

9.24 The tme quadrutic regression function is E{ Y 1= 15 + 20X + 3X2. The fitted linear regression 
function is Y = 13 + 40X. for which E{hul = 10and E{bll = 45. Whal1Lre thebiasands11111pling 
elTor cOll1pol1ent~ of the mean squared error for Xi = 10 and for Xi = 207 
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9.25. Refer to the SENIC data set in Appendix C.l. Length of stay (Y) is to be predicted, and the 
pool of potential predictor variables includes all other variables in the data set except medical 
school affiliation and region. It is believed that a model with 10gLO Y as the response variable 
and the predictor variables in first-order terms with no interaction terms will be appropriate. 
Consider cases 57-1l3 to constitute the model-building data set to be used for the following 
analyses. 

a. Prepare separate dot plots for each of the predictor variables. Are there any noteworthy 
features in these plots? Comment. 

b. Obtain the scatter plot matrix. Also obtain the correlation matrix of the X variables. Is there 
evidence of strong linear pairwise associations among the predictor variables here? 

c. Obtain the three best subsets according to the C p criterion, Whicbi:of these subset models 
appears to have the smallest bias? .j 

9.26. Refer to the CDI data set in Appendix C.2. A public safety official wishes to predict the rate of 
serious crimes in a COl (Y, total number of serious crimes per 100,000 population). the pool 
of potential predictor variables includes all other variables' in the data set except total population, 
total serious crimes, county, state, and region. It is believed that a model with predictor variables 
in first-order terms with no interaction terms will be appropriate. Consider the even-numbered 

" cases to constitute the model-building data set to be used for the following analyses. 

a. Prepare separate stem-and-leaf plots for each of the predictor variables. Are there any 
noteworthy features in these plots? Comment. 

b. Obtain the scatter plot matrix. Also obtain the correlation matrix of the X variables. Is there 
evidence of strong linear pairwise associations among the predictor variables here? 

c. Using the SECp criterion, obtain the three best subsets. 

9.27. Refer to the SENIC data set in Appendix C.l and Project 9.25. The regression model identified 
as best in Project 9.25 is to be validated by means of the validation data set consisting of 
cases 1-56. 

a. Fit the regression model identified in Project 9.25 as best to the validation data set. Compare 
the estimated regression coefficients and their estimated standard deviations with those ob­
tained in Project 9.25. Also compare the error mean squares and coefficients of multiple 
determination. Does the model fitted to the validation data set yield similar estimates as the 
J.11odel fitted to the model-building data set? 

b. Calculate the mean squared prediction error in (9.20) and compare it to MSE obtained from 
the model-building data set. Is there evidence of a substantial bias problem in MSE here? 

c. Combine the model-building and validation data sets and fit the selected regression model 
to the combined data. Are the estimated regression coefficients and their estimated standard 
deviations appreciably different from those for the model-building data set? Should you 
expect any differences in the estimates? Explain. . 

9.28. Refer to the CDI data set in AppendiX C.2 and Project 9.26. The regression model identified 
as best in Project 9.26c is toile validated by means of the validation data set consisting of the 
odd-numbered CDIs. 

a. Fit the regression model identified in Project 9.26 as best to the validation data set. Com­
pare the estimated regression coefficients and their estimated standard deviations with those 
obtained in Project 9.26c. Also compare the error mean squares and coefficients of multi­
ple determination. Does the model fitted to the validation data set yield similar estimates as 
the model fitted to the model-building data set? 
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b. Calculate the mean squared prediction error in (9.20) and compare it to MSH obtained from 
the model-building data set. Is there evidence of a substantial bias problem in MSE here? 

c. Fit the selected regression model to the combined model-building and validation dat,1 Sets 
Are the estimated regressiot1coefticienrs and their estimated ~tandard devimions appreciabl . 
dilTerent from those for the modellitted to the model-building data set? Should you expe; 
any difrerences in the estinl<Jtes"! Explain. 

----------------------------------------------------------------------------------------------
Case 
Studies 

9.29. Refer to the Website developer dara set in Appendix C6. Management is intcrested in de­
tennining what variables have thc grcatest impact on production output in the relC<1se of new 
customer websites. Data on 13 three-person website developmem tean)s eonsisting or a pmject 
matlager, a designer. and a developer are provided inlhe data sel. Production data from January 
200 I through August 2002 inelude four potential predictors; ( I ) the change in the website de­
velopment process. (2) the size of the backlog of orders, (3) the te,1m effect, and (4) the number 
of months experience of each team. Develop a beSl subsel model for predicting production 
output. Justify your choice of model. Assess your rnodel's ability to predict and discuss its use 
as a tool for management decisions. 

9.30. Refer to the Prostate cancer dala set in Appendix C5. Serum prostate-specific antigen (PSA) 
was determined in 97 men with advanced prostate cancer. PSA is a well-established sctrening 
test for prostate cancer and the oncologists wanted to examine the cort"eiation between level 
of PSA and a number of clinical measures for men who were about to undergo radical prosta­
tectomy. The measures are cancer volume, prostate weight. patient age, the amount of benign 
prostatic hyperplasia. seminal vesicle invasion, capsular penetration, and Gleason score. Select 
a random sample of 65 observations to use as the model-building data set. DeVelop a best subset 
model for predicting PSA. Justify your choice of model. Assess your model's ability to predict 
and discuss its usefulness to the oncologists. 

9.31. Refer to Real estate sales data set in Appendix C7. Residential sales that occurred during the 
year 2002 were av,1ilable from a city in the midwest. Dat,1 on 522 arms-length transactions 
include sale~ price, style. finished square feet, number of bedrooms, pool. lot size. year built, 
air conditioning, and whether or not the lot is adjacent to a highway. The city tax assessor was 
interested in predicting sales price based on the demographic variable information given above. 
Select a random sample of 300 observations to ltse in the model-building data set. Developa 
best subset tnodel for predicting sales price. Justify your choice of model. Assess your model's 
ability to predict and discuss its use as a tool for predictitlg sales price. 

9.32. Refer to Prostate cancer Case Study 9.30. The regression model identified in Case Study 9.30 
is to be validated by means of the validation d'1ta set consisting of those cases not selected for 
the model-building datu set. 

a. Fil the regression model identified in Case Study 9.30 to the validation data set. Compare 
the estimated regression coefficients and their estimated standard errors with those obtained 
in Case Study 9.30. Also compare the error mean square and coefficients of multiple de· 
termination. Does the model fitted to the validation data set yield similar estimates as the 
model titted to the model-building data set? 

b. Calculate the mean squared prediction error (9.20) and compare it to MSE obtained from 
the model-building data set. Is there evidence 01',1 substantial bias problem in MSE here? 

9.33. Refer w Real estate sales Case Study 9.31. The regression model identified in Case Study 9.31 
is to be validated by meatls of the validation data set consisting oftl1ose cases not selected for 
the model building data set. 
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a. Fit the regression model identified in Case Study 9.31 to the validation data set. Compare 
the estimated regression coefficients and their estimated standard errorS with those obtained 
in Case Study 9.31. Also compare the errOr mean square and coefficients of multiple de­
termination. Does the model fitted to the validation data set yield similar estimates as the 
model fitted to the model-building data set? 

b. Calculate the mean squared prediction error (9.20) and compare it to MSE obtained from 
the model-building data set. Is there evidence of a substantial bias problem in MSE here? 
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-----------------------------------------------------------------------

Building the Regression 
Model II: Diagnostics 

In this chapter we take up a number of refined diagnostics for checking the adequacy of 
a regression model. These include methods for detecting improper functional form for a 
predictor variable, outliers, influential observations, and multicollinearity. We conclude the 
chapter by illustrating the use of these diagnostic procedures in the surgical unit example. 
In the following chapter, we take up some remedial measures that mt! useful when the 
diagnostic procedures indicate model inadequacies. 

ModeJ Ade()1mq for a Predictor 
Variahle-Adderl-Variable Plots 

We discussed in Chapters 3 and 6 how a plot of residuals against a predictor variable in 
the regression model can be used to check whether a curvature effect for that variable is 
required in the model. We also described the plotting of residuals against predictor variables 
not yet in the regression model to determine whether it would be helpful to add one or more 
of these vm'iables to the model. 

A limitation of these residual plots is that t11ey may not properly show the nature of the 
marginal effect of a predictor variable, given the other predictor variables in the model. 
Added-variable plots, also called partial regression plots and adjusted variable plots, are 
refined residual plots that provide graphic information about the mm'ginal importance ofa 
predictor vm'iable Xk , given the other predictor vm'iables already in the modeL In addition, 
these plots can at times be useful for identifying the nature of the mm'ginal relation fora 
predictor variable in the reglt!ssion model. 

Added-variable plots consider the mm'ginal role of a predictor vm'iable X~, given that the 
other predictor variables under consideration are already in the model. In an added-variable 
plot, both the response variable Y and the predictor vm'iable Xk under consideration are re­
glt!ssed against the other predictor vm'iables in the It!glt!ssion model and the It!siduals are 
obtained for each. These residuals reflect the pmt of each variable that is not linearly asSO­
ciated with the other predictor variables already in the regression model. The plot of these 
residuals against each other (1) shows the marginal importance of this vm'iable in reducing 
the residual variability and (2) may provide information about the nature of the marginal 



FIGURE 10.1 
Prototype 
Added­
variable 
Plots. 

Chapter 10 Building the Regression Model II: Diagnostics 385 

e(YIXz) 

o e(X1IXz) 

(a) 

e(YIXz) 

o e(X11Xz) 

(b) 

e(YIXz) 

o e(X1IXz) 

(c) 

regression relation for the predictor variable Xk under consideration for possible inclusion t 
in the regression model. 

To make these ideas more specific, we consider a first-order multiple regression model 
with two predictor variables X I and X 2• The extension to more than two predictor variables is 
dire<;1f. Suppose we are concerned about the nature of the regression effect for X!, given that 
X2 is already in the model. We regress Y on X2 and obtain the fitted values and residuals: 

Yi (X2 ) = bo + b2X i2 

ei(YIX2 ) = Yi - Yi (X2) 

(10.la) 

(10.lb) 

The notation here indicates explicitly the response and predictor variables in the fitted 
model. We also regress X I on X2 and obtain: 

Xii (X2) = b~ + biXi2 

ei(XIIX2) = Xii - Xii (X2) 

(10.2a) 

(10.2b) 

The added-variable plot for predictor variable X I consists of a plot of the Y residuals e(YIX2 ) 

against the X I residuals e(X I1X2). 

Figure 10.1 contains several prototype added-variable plots for our example, where X2 

is already in the regression model and Xl is under consideration to be added. Figure 1O.Ia 
shows a horizontal band, indicating that X I contains no additional information useful for 
predicting Y beyond that contained in X 2, so that it is not helpful to add X I to the regression 
model here. 

Figure 10.Ib shows a linear band with a nonzero slope. This plot indicates that a linear 
term in XI may be a helpful addition to the regression model already containing X2. It 
can be shown that the slope of the least squares line through the origin fitted to the plotted 
residuals is b I , the regression coefficient of X I if this variable were added to the regression 
model already containing X 2 • 

Figure I O.Ic shows a curvilinear band, indicating that the ~ddition of X I to the regression 
model may be helpful and suggesting the possibl6 nature of the curvatureeffect by the pattern 
shown. • 

Added-variable plots, in addition to providing information about the possible nature of 
the marginal relationship for a predictor variable, given the other predictor variables already 
in the regression model, also provide information about the strength of this relationship. To 
see how this additional information is provided, consider Figure 10.2. Figure 1 0.2a illustrates 
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FIGURE 10.2 Illustration of Deviations in an Added-Variable Plot. 
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o 

an added-variable plot for X, when Xl is already in the model, based on n = 3 cases. The 
ve,tical deviations of the plotted points around the hoy,izontal line e(Y I Xl) = 0 shown in 
Figure 10,2a repregent the Y residuals when X] alone is in the regression model. When 
these deviations are squared and summed, we obtain the error sum of squares SSE(X2), 

Figure I 0,2b shows the same plotted points, but here the vertical deviations of these points 
are around the least squares line through the origin with slope h" These deviations are the 
residuals e(YIX" Xl) when both XI and Xl are in the regression model. Hence, the sum 
of the squares of these deviations is the error sum of squares SSE(X" Xl), 

The difference between the two sums of squared deviations in Figures I 0,2a and IO.2b 
according to (7,la) is the extra sum of squares SSR(X ,I X}). Hence, the di1ference in the 
magnitudes of the two sets of deviations provides information about the marginal strength 
of the linear relation of X, to the response variable, given that Xl is in the modeL If the 
scatter of the points around the line through the origin with slope h, is much less than the 
scatter around the horizontal line, inclusion of the variable X, in the regression model will 
provide a substantial further reduction in the en'or sum of squares. 

Added-variable plots are also useful for uncovering outlying data points that may have a 
strong influence in estimating the relationship of the predictor variable Xk to the response 
variable, given the other predictor variables already in the modeL 

Example 1 Table 10.1 shows a portion of the data on average annual income of managers during the past 
two years (X,), a score measuring each manager's risk aversion (X}), and the amount of life 
insurance carried (Y) for a sample of 18 managers in the 30-39 age group. Risk aversion 
wa<; measured by a standard questionnaire administered to each manager: the higher the 
score, the greater the degree of risk aversion. Income and risk aversion are mildly comlated 
here, the coefficient of correlation being n2 = .254. 

A fit of the first-order regression model yields: 

Y = -205.72+6.2880X, +4.738X] (10.3) 

The residuals for this fitted model are plotted against X, in Figure 10.3a. This residual 
·plot clearly suggests that a linear relation for X, is not appropriate in the model alreadY 
containing Xl' To obtain more information about the nature of this relationship. we shall 
use an added-variable plot. We regress Yand X, each against Xl. When doing this, we 
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EI~URE 10.3 Residual Plot and Added-Variable Plot-Life Insurance Example. 

(a) Residual Plot against Xl (b) Added-Variable Plot for Xl 
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obtain: 

Y(X2 ) = 50,70 + 15,54X2 

XI (X2) = 40.779 + 1.718X2 
I 

(10.4a) 

(10.4b) 

The residuals from these two fitted_models are plotted against each other in the added-
variable plot in Figure 10.3b. This plot also contains the least squares line through the 
origin, which has slope hi = 6.2880. The added-variable plot suggests that the curvilinear 
relation between Yand X I when X2 is alre~dy in the regression mlildel is strongly positive, 
and that a slight concave upward shape may be present. The suggested concavity of the 
relationship is also evident from the vertical deviations around the line through the origin 
with slope hI' These deviations are positive at the left, negative in the middle, and positive 
again at the right. Overall, the deviations from linearity appear to be modest in the range of 
the predictor variables, 
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Example 2 

Note also that the scatter of the points around the leust squares line thltlugh the origin with 
slope b l = 6.2880 is much smaller than is the scutter uround the horizontal line e( YIX2) ==0 
indicating that adding X I to the regression model with a linear relation will substantial\ ' 
reduce the en'or sum of squares. I n fact, the coefficient of partial determination for the line~ 
effect of X I is R?, 112 = .984. Incorporating a curvilinear etfect for X I will lead to only a 
modest further reduction in the error SUill of squures since the plotted points are already 
quite close to the linear relation through the origin with slope b I. 

Finally, the added-variable plot in Figure 10.3b shows one outlying case. in the upper 
right corner. The influence of this case needs to be investigilted by procedures to be explained 
later in this chapter. 

For the body fat example in Table 7.1 (page 257), we consider here the regression of body fat 
(Y) only on triceps skinfold thickness (X I) and thigh cirt:umference (X 2)' We omit the third 
predictor variable (X 3 , midarm circumference) to focus the discussion of added-variable 
plots on its essentials. Recall that X I and X 2 arc highly cmrelated (1'12 = .92). The fitted 
regression function was obtained in Table 7.2c (page 258): 

y = -19.174 + .2224X 1+ .6594X2 

Figures IOAa and 10Ac contain plot:> of the residuals against X I and X2• respectively. 
These plots do not indicate any lack of fit for the linear terms in the regression model or the 
existence of unequal variances of the en'or terms. 

Figures 10Ab and lOAd contain the added-variable plots for X I and X 2, respectively, 
when the other predictor variable is already in the regression modeL Both plots also show 
the line through the origin with slope equal to the regression coefficient for the predictor 
variable if it were added to the fitted model. These two plots provide some useful additional 
information. The scatter in Figure 10Ab follows the prototype in Figure 10.1 a, suggesting 
that X I is of little additional help in the model when X 2 is already present. This information 
is not provided by the regular residual plot in Figure 10.4iL The fact that X I appears to be 
of little marginal help when X 2 is already in the regression model is in al:cord with earlier 
findings in Chapter 7. We saw there that the coefficient of partial determination is only 
R~ 112 = .03 I and that the t* statistic for b I is only .73. 

The added-variable plot for X2 in Figure 10.4d follows the prototype in Figure 10.lb, 
showing a linear scatter with positive slope. We also ~ee in Figure lOAd that there is 
somewhat less variability around the line with slope h than around the horizontal line 
e( Y I X I) = O. This suggests that: (\) variable X 2 may be helpful in the regression model 
even when X I is already in the model. and (2) a linear term in X 2 appears to be adequate 
because no curvilinear relation is suggested by the scatter of points. Thus. the added­
variable plot for X 2 in Figure lOAd clllnplements the regular residual plot in Figure 10Ac 
by indicating the potential usefulness of thigh circumference (X 2) in the regression model 
when triceps skinfold thickness (X I) is already in the model. This information is consistent 
with the t* statistic for b2 of 2.26 in Table 7.2c and the moderate coefficient of partial 
determination of R~21 I = .232. Finally, the added-variable plot in Figure lOAd reveals the 
presence of one potentially influential case (case 3) in the lower left corner. The influence 
of this case will be investigated in greater detail in Section 10.4. 
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(a) Residual Plot against Xl (b) Added-Variable Plot for Xl 
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Comments 

1. An added-variable plot only suggests the nature of the functional relation in which a predictor 
variable should be added to the regression model bUf does not provide an analytic expression of the 
relation. Furthermore, the relation shown is for Xk adjusted for the other predictor variables in the 
regression model, not for Xk directly. Hence, a variety of transformations or curvature effect terms 
may need to be investigated and additional residual plots utilized to identify the best transformation 
or curvature effect terms. 

2. Added-variable plots need to be used with" caution for identifying the nature of the marginal 
effect of a pnidictor variable. These plots may not show the proper form of the marginal effect of a 
predictor variable if the functional relations for some or all of the predictor variables already in the 
regression model are misspecified. For example, if X2 and X3 are related in a curvilinear fashion to 
the response variable but the regression model uses linear terms only, the added-variable plots for X2 
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10.2 

and X, may not show the proper relMionships to the response variuble, especially when the pred' 
vuriubles are correlated. Since added-variable plots for the severul predictor variubles are all conc~tor 
with marginal effects only, they may therefore not be effective when the relations of the predictor e.d 
abies to the response variable are complex. Also, added-variable plots may not detect interactione;;n­
that are present. Finally, high multicollinearity among the predictor variables may cause the adde~~ 
variable plots to show an improper functional relation for the marginal effect of a predictor variable. 

3. When several added-variable plots are required for a set of predictor variables, it is not ne _ 
essary to fit entirely new regression 1110dels each time. Computational pL"Ocedures are available th~ 
economi7.e on the calculations required; these are explained in specialized texts such as Reference to. I t 

4. Any fitted multiple regression function can be obtained from a sequence of fitted partial regre~ 
sions. To illustrate this, consider again the life insurance example, where the fitted regression of Y on 
Xl is given in (I OAa) and !he fitted regression of X I on X] is given ~n (I OAb).:If we now regress the 
residuals e(YIX]) = y - Y(X]) on the residuals e(X l1X1 ) = X I - X I (X1 ), using regression through 
the origin, we obtain (calculations not shown): 

e(YIX~) = 6.2880[e(XdX~)1 (lO.S) 
-. 

By simple substitution, using (IOAa) and (I OAb). we obtain: 

lY - (50.70+ 15.54X1 )] = 6.2880lX! - (40.779 + 1.718X1)] 

or: 

Y = -205.72 + 6.2880Xl + 4.737X1 (10.6) 

where the solution for Y is the fitted value Y when X I and X2 are included in the regression model. 
Note that the fitted regression function in (10.6) is the sal11e as when the regression l110del was fitted 
to X I and X 1 directly in (10.3). except for a minor difference due to l"Ounding effects. 

5. A residual plot closely related to the added-variable plot is the partial residual plot. This plot 

also is used as an aid for identifying the nature of the relationship for a predictor variable Xk under 
consideration for addition to the regression model. The partial residual plot takes as the stHrting point 
the usual residuals ei = Y, - Y i when the model including XA is fitted, to which the regression effect 
for X k is added. Specifically, the partial residuals for examining the effect of predictor variable Xh 

denoted by Pi (X d, are defined as follows: 

(10.7) 

Thus. for a partial residual, we add the etfect of X k, as reflected by the fittedl110del term bkXik, back 
onto the residual. A plot of these parrial residuals against X k is referred to as a parrial residUal plot. 
The reader is referred to References 10.2 and 10.3 for more details on partial residual plots. • 

IdentiJyiug Outlying Y Observatiolls-Studentized 
Deleted Residuah 

Outlying Cases 
Frequently in regression analysis applications, the data set contains some cases that are out-­

lying or extreme; that is, the observations for these cases are well separated from the 

remainder of the data. These outlying cases may involve large residuals and often have 

dramatic effects on the fitted least squares regression function. It is therefore important to 
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study the outlying cases carefully and decide whether they should be retained or elinjinated, 
and if retained, whether their influence should be reduced in the fitting process and/or the 
regression model should be revised. 

A case may be outlying or extreme with respect to its Y value, its X value(s), or both. 
Figure 10.5 illustrates this for the case of regression with a single predictor variable. In the 
scatter plot in Figure 10.5, case I is outlying with respect to its Yvalue, given X. Note that 
this point falls far outside the scatter, although its X value is near the middle of the range of 
observations on the predictor variable. Cases 2, 3, and 4 are outlying with respect to their 
X values since they have much larger X values than those for the other cases; cases 3 and 
4 are also outlying with respect to their Yvalues, given X. 

Not all oUtlying cases have a strong influence on the fitted regression function. Case 1 
in Figure 10.5 may not be too influential because a number of other cases have similar 
X values that will keep the fitted regression function from being displaced too far by the 
outlying case. Likewise, case 2 may not be too influential because its Yvalue is consistent 
with the regression relation displayed by the nonextreme cases. Cases 3 and 4, on'the other 
hand, are likely to be very influential in affecting the fit of the regression function. They 
are outlying with regard to their X values, and their Y values are not consistent with the 
regression relation for the other cases. 

A basic step in any regression analysis is to determine if the regression model under 
consideration is heavily influenced by one or a few cases in the data set. For regression 
with one or two predictor variables, it is relatively simple to identify outlying cases with 
respect to their X or Y values by means of box plots, stem-and-Ieaf plots, scatter plots, and 
residual plots, and to study whether they are influential in affecting the fitted regression 
function. When more than two predictor variables are included in the regression model, 
however, the identification of outlying cases by simple graphic means becomes difficult 
because single-variable or two-variable examinations do not necessarily help find outliers 
relative to a multivariable regression model. Some yruvariate outliers may not be extreme 
in a mUltiple regression model, and, conversely, some multivariable outliers may not be 
detectable in single-variable or two-variable analyses. 

We now discuss the use of some refilled measures for identifying cases with oUtlying 
Y observations. In the following section we take up the identification of cases that are 
multivariable outliers with respect to their X values. 
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Residuals and Semistudentized Residuals 

Hat Matrix 

The detection of outlying or extreme Y observations based on an examination of the residual 
hal', been considered in earlier chapters. We utilized there either the residual ei: s 

ei = Yi - Yi (10.8) 

or the semistudentized residuals e7: 
e· * I e ----

i - ,JMSE (10.9) 

We introduce now two refinements to make the analysis of residuals more effective for 
identifying outlYIng Yobservations. These refinements require the use of the hat matrix, 
which we encountered in Chapters 5 and 6. 

The hat matrix waS defined in (6.30a): 

H = X(X'X)-IX' 
"Xu 

(10.10) 

We noted in (6.30) that the fitted values Y i can be expressed as linear combinations of the 
observations Yi through the hat matrix: 

(10.11) 

and similarly we noted in (6.31) that the residuals ei can also be expressed as linear com­
binations of the observations Y, by means of the hat matrix: 

e = (I - H)Y (10.12) 

Fmther, we noted in (6.32) that the variance-covariance matrix of the residuals involves 
the hat matrix: 

Therefore, the variance ofresidual ei, denoted by (j2{e;}, is: 

(j2{e;} = (j2(\ - hii ) 

(10.13) 

(10.14) 

where h ii is the ith element on the main diagonal of the hat matrix, and the covariance 
between residuals ei and e j (i i- j) is: 

(10.15) 

where hi} is the element in the ith row and jth column of the hat matrix. 
These variances and covariances are estimated by using MSE as the estimator of the error 

variance (j2: 

s2{e;} = MSE(l - hii ) 

s{ei, e;} = -hij(MSE) i i- j 

We shall illustrate these different roles of the hat matrix by an example. 

(10.16a) 

(10.16b) 
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(a) Data and Basic Results 

(1) (2) (~) (4) (5) (6) (7) 
i X/1 X'2 'YI i>1 el 'hl/ s2{e,} 

1 14 25 301 282.2 18.8 .?877 352.0 
2 19 32, 327 332.3 -5.3 .9513 28.0 
3 12 22 246 ?60.0 -14.0 .6614 194.6 
4 11 15 187 186.5 .5 .9996 .2 

(b) H (c)s2{e} 

[ .3877 
.1727 .4553 

-

0151 [ 352.0 -99.3 -~1.8 
9.0] , .1727 .9513 -.1284 .0044, -99.3 28.0 <f3.8 -2.5 

-" 
" .4553 -.1284 .6614 .0117 ' -261.8 73.8 1'94.6 -6.7 
• -:-.0157 .0044 .0117 .9996 9.0 -2.5 -6.7 .2 t 

A small data set based on n = 4 cases for examining the regression relation between 
a response variable Yand two predictor variables XI and X2 is shown in Table 1O.2a, 
columns 1-3. The fitted first-order model and the error mean square are: 

Y = 80.93 - 5.84XI + 11.32X2 

MSE= 574.9 
(10.17) 

The fitted values and the residuals for the four cases are shown in columns 4 and 5 of 
Table 1O.2a. 

The hat matrix for these data is shown in Table 10.2b. It was obtained by means of(1O.l0) 
for the X matrix: 

14 25] 19 32 
12 22 
11 15 

Note from (10.10) that the hat matrix is solely a function of the predictor variable(s). Also 
note from Table 1O.2b that the hat matrix is symmetric. The diagonal elements hii of the 
hat matrix are repeated in column 6 of Table 1O.2a 

We illustrate that the fitted values are linear combinations of the Y values by calculating 
Y I by means of (10.11): 

Y I = hll YI + h l2 Y2 + h 13 Y3 + h l4 Y4 

= .3877(301) + .1727(327) + .4553(246) - .0157(187) 

= 282.2 

This is the same result, except for possible rounding effects, as obtained from the fitted 
regression function (10.17): 

Y I = 80.93 - 5.84(14) + 11.32(25) = 282.2 
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The estimated variance-C~lV<lriance I~1atrix of the residuals, s"{e} ~ MSE(I - H),is shown 
in Table 10.2c. It wa<; obtamed by uSIng MSE = 574.9. The estImated variances of th 
residuals are shown in the main diagonal of the variance-covariance matrix in Table 102 e 
and are repeated in column 7 of Table 10.2a. We illustrate their direct calculation for c~ ~ 
by using ( 10.16a): 

s"{ed = 574.9( I - .3877) = 352.0 

We see from Table 10.2a, column 7, that the residuals do not have constant variance 
In fact, the variances differ greatly here because the data set is so small. As we shall not~ 
in Section 10.3, residuals for cases that are outlying with respect to t\:le X variables have 
smaller variances. 

Note also that the covariances in the matrix in Table 10.2c are not zero; hence, pairs of 
residuals are correlated, some positively and some negatively. We noted this cOlTclation in 
Chapter 3, but also pointed out there that the correlfltions become very small for larger data 
sets. 

Comment 
The diagonal element hii of the hat matrix can be obtained directly fL"Om: 

(10.18) 

where: 

r 
I 1 Xi.! 

x, = . 
}xf • 

/ Xi.~'-I 
(10.18a) 

Note that Xi corresponds to the X/I vector in (6.53) except that Xi pertains to the ith case, and that X; 
is simply the ith row of the X matrix, pertaining to the ith case. • 

Studentized Residuals 
The first refinement in nlaking residuals more effective for detecting outlying Y observa­
tions involves recognition of the fact that the residuals e; may have substantially different 
variances (}l{e;l. It is therefore appropriate to consider the magnitude of each ei relative to 
its estimated standard deviation to give recognition to differences in the sampling eITors of 
the residuals. We see from (10. 16a) that an estimator of the standard deviation of e; is: 

sled = JMSE(l - hi;) (10.19) 

The ratio of ei to s{ei} is called the studentiz.ed residual and will be denoted by ri; 

e, 
r·---

I - s{e;} 
(10.20) 

While the residuals ei will have substantially different sampling variations if their standard 
deviations differ markedly, the studentized residuals ri have constant variance (when the 
model is appropriate). Studentized residuals often are called internally studentized residuals. 
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Deleted Residuals 
The second refinement to make residuals more effective for detecting outlying Y observa­
tions is to measure the ith residual ei = Yi - Yi when the fitted regression is based on all 
of the cases except the ith one. The reason for this refinement is that if Yi is far outlying, 
the fitted least squares regression function based on all cases including the ith one may be 
influenced to come close to Yio yielding a fitted value Yi near Y;. In that event, the residual 
ei will be small and will not disclose that YI is outlying. On the other hand, if the ith case 
is excluded before the regression function is fitted, the least squares fitted value Yi is not 
influenced by the outlying Yi observation, and the residual for the ith case will then tend to 
be larger and therefore more likely to disclose the outlying Yobservation. 

The procedure then is to delete the ith case, fit the regression furi"ction to the remaining 
n - 1 cases, and obtain the point estimate of the expected value whe6~the X levels are those 
of the ith case, to be denoted by Yi(I)' The difference between the actual observed value Yi 

and the estimated expected value Yi(i) will be denoted by d i : t 

(10.21 ) 

" The difference di is called the deleted residual for the i th case. We encountered this same 
difference in (9.16), where it was called the PRESS prediction error for the ith case. 

An algebraically equivalent expression for di that does not require a recomputation of 
the fitted regression function omitting the ith case is: 

e· 
d i =--'-

1 - hli 
(10.21 a) 

where ei is the ordinary residual for the ith case and h ii is the ith diagonal element in the 
hat matrix, as given in (10.18). Note that the larger is the value hii' the larger will be the 
deleted residual as compared to the ordinary residual. 

Thus, deleted residuals will at times identify outlying Y observations wh~l! ordinary 
residuals would not identify these; at other times deleted residuals lead to the same identi­
fications as ordinary residuals. 

Note that a deleted residual also corresponds to the prediction error for a new observation 
in the numerator of (2.35). There, we are predicting a new n + 1 observation from the fitted 
regression function based on the earlier n cases. Modifying the earlier notation for the 
context of deleted residuals, where n - 1 cases are used for predicting the "new" nth case, 
we can restate the result in (6.63a) to obtain the estimated variance of di : 

(10.22) 

where Xi is the X observations vector ~10.18a) for the ith case, MSE(i) is the mean square 
error when the ith case is omitted in fitting the regression function, and X(t> is the X matrix 
with the ith case deleted. An algebraically equiv~lent expression for s2{di } is: 

It follows from (6.63) that: 

-s2{dd = MSE(i) (10.22a) 
1 - h ii 

di 
-- ~ ten - p - 1) 
s{d;} 

(10.23) 
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Remember that 11 - I cases are used here in predicting the ith observation; hence, the 
degrees of freedom are (11 - I) - p = 11 - P - I. 

Studentized Deleted Residuals 

Example 

Combining the above two refinements, we utilize for diagnosis of outlying or extreme 
Y observations the deleted residual di in (I 0.21) and studentize it by dividing it by its 
estimated standard deviation given by (l0.22). The studentized deleted residual, denoted 
by ti, therefore is: 

di 
ti=--

sId;} (10.24) 

It follows from (10.21 a) and (I 0.22a) that an algebraically equivalent expression for ti is: 

(10.24a) 

The studentized deleted residual t; in (10.24) is also called an externally studentized 
residual, in contrast to the internally studentized residual ri in (10.20). We know from 0 0.23) 
that each studentized deleted residual t; follows the t distribution with 11 - P - I degrees 
of freedom. The ti, however, are not independent. 

Fortunately, the studentized deleted residuals t, in (l0.24) can be calculated without 
having to fit new regression functions each time a different case is omitted. A simple 
relationship exists between MSE and MSE(i): 

e? 
(11 - p)MSE = (11 - P - I)MSE(i) + --' -

1 - hi; 
(10.25) 

Using this relationship in (l0.24a) yields the following equivalent expression for t;: 

l1-p-1 
[ ]

1/2 

t; = e; 2 
SSE(l - h;i) - e; 

(10.26) 

Thus, the studentized deleted residuals t; can be calculated from the residuals e;, the error 
sum of squares SSE, and the hat matrix values h;;, all for the fitted regression based on the 
11 cases. 

Test for Outliers. We identify as outlying Yobservations those cases whose studentized 
deleted residuals are large in absolute value. In addition, we can conduct a formal test 
by means of the Bonferroni test procedure of whether the case with the largest absolute 
studentized deleted residual is an outlier. Since we do not know in advance which case will 
have the largest absolute value It; \, we consider the family of tests to include 11 tests, one 
for each case. If the regression model is appropriate, so that no case is outlying because of 
a change in the model, then each studentized deleted residual will follow the t distribution 
with 11 - P - I degrees of freedom. The appropriate Bonferroni critical value therefure is 
t(l - a/211; 11 - P - I). Note that the test is two-sided since we are not concerned with the 
direction of the residuals but only with their absolute values. 

For the body fat example with two predictor variables (X" X 2 ), we wish to examine 
whether there are outlying Y observations. Table 10.3 presents the residuals e; in column 1, 



TABLE 10.3 
Residuals, 
Diagonal 
Elements of the 
JIat Matrix, 
and 
Studentized 
Oeleted 
Residuals­
Body Fat 
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Variables. 
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(1) (2) (3) 
; er -h

ll tf 

1 -1.6&3, .201 .-.730 
2 3.643 .059 1.534 
3 -3.176 .372 -1.656 
4_ -3.158 .111 -1.348 
5 .000 .248 .000 
6 -.361 .129 -.148 
7 .716 .156 .298 
8 4:01S .096 1.760 ,iy 
9 2.655 .115 1.117 ,-

10 -2.475 .1]0 ~1.034 
, 

11 .336 .120 .137 
i 12 2:226 .109 .923 

13 -3:947 .OS -1.825 
14 3.447 .1'48 1'.524 
15 .571 .333 .267 
16 .642- .095 .25.8 
lZ -.851 .106 :344 
18 -.783 .197 .335 
1Q -2,857 .067 -1.176 
20 1.040 .050 .409 

the diagonal elements hii of the hat matrix in column 2, and the studentized deleted residuals 
ti in column 3. We illustrate the calculation of the studentized deleted residual for the first 
case. The X values for this case, given in Table 7.1, are XII = 19.5 and XI2=43.1. Using 
the fitted regression function from Table 7.2c, we obtain: 

i\ = -19.174 + .2224(19.5) + .6594(43.1) = 13.583 

Since 1) = 11.9, the residual for this case is el = 11.9 - 13.583 = - 1.683. We also know 
from Table 7.2c that SSE = 109.95 and from Table 10.3 that hll = .201. Hence, by (10.26), 
we find: 

t = -1.683 = -.730 [ 
20 - 3 - 1 ] 1/2 

1 109.95(1- .201) - (-1.683)2 

Note from Table 10.3, column 3, that cases 3, 8, and 13 have the largest absolute studen­
tized deleted residuals. Incidentally, consideration of the residuals ei (shown in Table 10.3, 
column 1) here would have identified cases 2,8, and 13 as the most outlying ones, but not 
case 3. 

We would like to test whether case 13, which has the largest absolute studentized 
deleted residual, is an outlier resulting from a change in~the model. We shall use the 
Bonferroni simultaneous test procedure with a family significance level of a = .10. We 
therefore require: 

t(1 - aJ2n; n - p - 1) = t(.9975; 16) = 3.252 
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Since \tI3\ = 1.825 ::s 3.252, we conclude that case 13 is not an outlier. Still, we llli h 
wish to investigate whether case 13 and perhaps a few other outlying cases are infiuen~ ~ 
in determining the fitted regression function because the Bonferroni procedure provide I 

. f' h f' I' sa very conservatIve test or t e presence 0 an out ler. 

10.3 Identifying Outlyiug X Ohservatious-llal lVIatrix 
Leverage Values 

Use of Hat Matrix for Identifying Outlying X Observations 

FIGURE 10.6 
Illustration of 
Leverage 
Values as 
Distance 
Measures-
Table 10.2 
Example. 

The hat matrix, as we saw, plays an important role in determining c'the magnitude of a 
studentized deleted residual and therefore in identifying outlying Y observations. The hat 
matrix also is helpful in directly identifying outlying X observations. In particular, the 
diagonal elements of the hat matrix are a useful indicator in a multivariable setting of 
whether or not a case is outlying with respect to its X values. 

The diagonal elements hi; of the hat matrix have some useful properties. In particular 
their values are always between 0 and I and their sum is p: ' 

/I 

0< h < I - 11_ Lh;;=p (10.27) 
;=1 

where p is the number of regression parameters in the regression function including the 
intercept term. In addition, it can be shown that hi; is a measure of the distance between 
the X values for the i th case and the means of the X values for alln cases. Thus, a large value 
hI; indicates that the ith case is distant from the center of all X observations. The diagonal 
clement hi; in this context is called the leverage (in terms of the X values) of the ith case. 

Figure 10.6 illustrates the role of the leverage values hi; as distance measures for our 
earlier example in Table 10.2. Figure 10.6 shows a scatter plot of X 2 against XI for the 
four cases, and the center of the four cases located at (X I, X 2)' This center is called 
the centlVid. Here, the centroid is (X I = 14.0, Xz = 23.5). In addition, Figure 10.6 shows 
the leverage value for each case. Note that cases I and 3, which are closest to the centroid, 
have the smallest leverage values, while cases 2 and 4, which are farthest from the center, 
have the largest leverage values. Note also that the four leverage values sum to p = 3. 

X2 

35 

h22 = .951 3 ~® 

25 hll = .3877 ~® 

"" 
D-+-- (Xl, X2) 

"-
h33 ~ .6614 

15 Ii> 

"-
h44 = .9996 

0 10 15 20 Xl 
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If the ith case is outlying in terms of its X observations and therefore has a large leverage 
value hi;, it exercises substantial leverage in determining the fitted value :Vi. This is so for 
the following reasons: 

1. The fitted value Yi is a linear combination of the observed Y values, as shown 
by (10.11), and hii is the weight of observation Yi in determining this fitted value. Thus, the 
larger is hii' the more important is Yi in determining :Vi' Remember that hu is a function 
only of the X values, so hu measures the role of the X values in determining how important 
Yi is in affecting the fitted value :Vi' 

2. The larger is hii' the smaller is the variance of the residual ei, as we noted earlier 
from (10.14). Hence, the larger is hii' the closer the fitted value Yi~,will tend to be to the 
observed value Yi. In the extreme case where hii = 1, the variance &2{ed equals 0, so the 
fitted value Yi is then forced to equal the observed value Yi. ,-

A leverage value h ii is usually considered to be larg~ if it is more than twice aharge as 
the mean leverage value, denoted by h, which according to (10.27) is: 

h = 2:7=1 hii = £ (10.28) 
n n 

Hence, leverage values greater than 2p/n are considered by this rule to indicate outlying 
cases with regard to their X values. Another suggested guideline is that hii values exceeding 
.5 indicate very high leverage, whereas those between .2 and .5 indicate moderate leverage. 
Additional evidence of an outlying case is the existence of a gap between the leverage values 
for most of the cases and the unusually large leverage value(s). 

The rules just mentioned for identifying cases that are outlying with respect to their 
X values are intended for data sets that are reasonably large, relative to the number -of 
parameters in the regression function. They are not applicable, for instance, to the simple 
example in Table 10.2 where there are n = 4 cases and p = 3 parameters in the regression 
function. Here, the mean leverage value is 3/4 = .75, and one cannot obtain a-leverage 
value twice as large as the mean value since leverage values cannot exceed 1.0. 

We continue with the body fat example of Table 7.1. We again use only the two predictor 
variables-triceps skinfold thickness (Xd and thigh circumference (X2 ) so that the results 
using the hat matrix can be compared to simple graphic plots. Figure 10.7 contains a scatter 

X2 
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plot of X] against X I, where the data points are identified by their case number. We note fro 
Figure 10.7 that cases 15 and 3 appear to be outlying ones with respect to the pattern of t: 
X values. Case 15 is outlying for X I and at the low end of the range for Xz, whereas case ~ 
is outlying in terms of the pattern of multicollinearity, though it is not outlying for either of 
the predictor variables separately. Cases I and 5 also appear to be somewhat extreffiC. 

Table 10.3, column 2, contains the leverage values hii for the body fat example. Note that 
the two largest leverage values are h~3 = .372 and h !5.!5 = .333. Both exceed the criterion 
of twice the mean leverage value, 2p/n = 2(3)/20 = .30, and both are separated by a 
substantial gap from the next largest leverage values, 1155 = .248 and h" = .201. Having 
identified cases 3 and 15 as outlying in terms of their X values, we shan need to ascertain 
how influential these cases are in the fitting of the regression function. 

Use of Hat Matrix to Identify Hidden Extrapolation 

10.4 

We have seen that the hat matrix is useful in the mOdel-building stage for identifying cases 
that are outlying with respect to their X values an<l that, therefore, may be influential in 
affecting the fitted model. The hat matrix is also useful after the model has been selected 
and fitted for determining whether an inference for a mean response or a new observation 
involves a substantial extrapolation beyond the range of the data. When there arc only two 
predictor variables, it is easy to see from a scatter plot of X 2 against X I whether an inference 
for a particular (X I, X 2) set of values is outlying beyond the range of the data, such as from 
Figure 10.7. This simple graphic analysis is no longer available with larger numbers of 
predictor variables, where extrapolations may be hidden. 

To spot hidden extrapolations, we can utilize the direct leverage calculation in (10.18) 
for the new set of X values for which inferences are to be made: 

(10.29) 

where Xncw is the vector containing the X values for which an inference about a mean 
response or a new observation is to be made, and the X matrix is the one based on the data 
set used for fitting the regression model. If hnew.new is wen within the range of leverage 
values h;; for the cases in the data set, no extrapolation is involved. On the other hand, if 
hncw.new is much larger than the leverage values for the cases in the data set, an extrapolation 
is indicated. 

Identifying Influential Cases-DFFITS, Cook~s Distance~ 
and DFBETAS Measures 

After identifying cases that are outlying with respect to their Y values andlor their X 
values, the next step is to asceltain whether or not these outlying cases are influential. We 
shall consider a case to be influential if its exclusion causes major changes in the fitted 
regression function. As noted in Figure 10.5, not all outlying cases need be influential. For 
example, case I in Figure 10.5 may not affect the fitted regression function to any substantial 
extent. 

We take up three measures of influence that are widely used in practice, each based on 
the omission of a single case to measure its influence. 



Chapter 10 BUilding the Regression Mode/II: Diagnostics 401 

I 
tluence on Single Fitted Value-DFFlTS n ~ 

A useful measure of the influence that case i has on the fitted value Y i is given by: 

Example 

(DFFlTS)i = Yi - Yi(i) 
JMSE(i) hi; 

(10.30) 

The letters DFstand for the difference between the fitted value Y i for the ith case when alln 
cases are used in fitting the regression function and the predicted value Yi(i) for the ith case 
obtained when the ith case is omitted in fitting the regression function. The denominator 
of (10.30) is the estimated standard deviation of Yi , but it uses the error mean square when 
the ith case is omitted in fitting the regression function for estimating the error variance a 2

. 

The denominator provides a standardization so that the value (DFFirS){ for the ith case 
represents the number of estimated standard deviations of Y i that the fitt~d value Y; increases 
or decreases with the inclusion of the ith case in fitting the regression model. 

It can be shown that the DFFITS values can be computed by using only the resulk from 
fitting the entire data set, as follows: 

[ 
n - p - I ] 1/2 ( hii ) 1/2 (hi;) 1/2 

(DFFlTS); = e; 2 -- = ti --
SSE(1 - hii ) - ei 1 - hii 1 - hii 

(10.30a) 

Note from the last expression that the DFFITS value for the ith case is a studentized deleted 
residual, as given in (10.26), increased or decreased by a factor that is a function of the 
leverage value for this case. If case i is an X outlier and has a high leverage value, this 
factor will be greater than 1 and (DFFITS); will tend to be large absolutely. 

As a guideline for identifying influential cases, we suggest considering a case influential 
if the absolute value of DFFITS exceeds 1 for small to medium data sets and 2-J P In for 
large data sets. 

Table 10.4, column 1, lists the DFFITS values for the body fat example with two predictor 
variables. To illustrate the calculations, consider the DFFITS value for case 3, which was 
identified as outlying with respect to its X values. From Table 10.3, we know that the 
studentiied deleted residual for this case is t3 = -1.656 and the leverage value is h33 = .372. 
Hence, using (1O.30a) we obtain: 

( 
.372 ) 1/2 

(DFFITSh = -1.656 = -1.27 
1 - .372 

The only DFFITS value in Table 10.4 that exceeds our guideline for a medium-size 
data set is for case 3, where I (DFFITSh I ;= 1.273. This value is somewhat larger than our 
guideline of 1. However, the val~ is close enough to 1 that the case may not be influential 
enough to require remedial action. 

Comment 
The estimated variance of Y; used in the denominator of (10.30) is developed from the relation 
Y = HY in (10.11). Using (5.46), we obtain: 
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TABLE 10.4 
DFFITS, 
Cook's 
Distances, and 
DFBETAS-
Body Fat 
Example with 
Two Predictor 
Variables. 

Multiple Linear Regression 

(1) (2) (3) (4) (5) 
DFBfTAS 

(DFFlTS)r D; bo b1 b2 

1 -.366 .046 -.305 -.132 .23.2 
2 .384 .046 .173 ~ . i 15 -.143 
3 -1.273 .490 -.847 -1.183 1.067 
4 -.476 .072 -.102 -.294 .196· 
5 .000 .000 .000 .000 .000 
6 -.057 .001 .040 .040 -.044 
7 .128 .006 -.078 -.016 .O~ 
8 .575 .098 .261 .391 -.3 
9 .402 .053 -.151 -.295 .247 

10 -.364 .044 .238 .245 -.269 
11 .051 .001 -.009 .017 -.003 
12 .321 .035 -.131 -1f .023 .070 
13 -.851 .212 .119 .592 -.390 
14 .636 .125 .452 .113 -.298 
15 .189 .013 -.003 -.125 .069 
16 .084 .002 .009 ·.043 ~:02,5 

17 -.118 .005 .080 .055 -.076 
18 -.166 .010 .132 .075 -.116 
1~ -.315 .032 -.130 -.004 .064 
20 .094 .003 .010 .002 -.003 

Since H is a symmetric matrix, so H' = H, and it is also idempotent, so HH = H, we obtain: 

(T2{"V} = u 2H (10.31) 

Hence, the variance of iT i is: 
2 ~ 2 

u {Yd =U hii (10.32) 

where hii is the ith diagonal element of the hat matrix. The error term variance u 2 is estimated 
in (10.30) by the error mean squareMSE(i) obtained when the ith case is omitted in fitting the regression 
~d • 

Influence on All Fitted Values-Cook's Distance 
In contrast to the DFFITS measure in (10.30), which considers the influence of the ith case 
on the fitted value Yi for this case, Cook's distance measure considers the influence of 
the ith case on all n fitted values. Cook's distance measure, denoted by Di , is an aggregate 
influence measure, showing the effect of the i th case on all n fitted values: 

"" (~ ~ )2 
D. _ ~j=1 Y j - Yj(i) 

l - pMSE 
(10.33) 

Note that the numemtor involves similar differences as in the DFFITS measure, but here 
each of the n fitted values Yj is compared with the corresponding fitted value Y j(i) when the 
ith case is deleted in fitting the regression model. These differences are then squared and 
summed, so that the aggregate influence of the ith case is measured without regard to the 
signs of the effects. Finally, the denominator serves as a standardizing measure. In matrix 
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terms, Cook's distance measure can be expressed as follows: 

D. - (V - V(i))'(V - V(i») 
1- pMSE (lO.33a) 

Here, Vas usual is the vector of the fitted values when all n cases are used for the regression 
fit and V (i) is the vector of the fitted values when the i th case is deleted. 

For interpreting Cook's distance measure, it has been found useful to relate Di to the 
F(p, n - p) distribution and ascertain the corresponding percentile value. If the percentile 
value is less than about 10 or 20 percent, the i th case has little app~t influence on the fitted 
values. If, on the other hand, the percentile value is near 50 percent or more, the fitted values 
obtained with and without the i th case should be considered to differ substantially, implying 
that the ith case has a major influence on the fit of the regression function. i 

Fortunately, Cook's distance measure Di can be calculated without fitting a new re­
gression function each time a different case is deleted. An algebraically equivalent expres­
sion is: 

el [ hi; ] 
Di = pMSE (1 - h ii )2 (lO.33b) 

Note from (10.33b) that Di depends on two factors: (1) the size of the residual ei and (2) 
the levemge value hu. The larger either ei or h ii is, the larger Di is. Thus, the ith case can 
be influential: (1) by having a large residual ei and only a modemte leverage value hii,.or 
(2) by having a large leverage value hu with only a modemtely sized residual ei, or (3tby 
having both a large residual ei and a large levemge value h ii . 

For the body fat example with two predictor variables, Table 10.4, column 2, presents the 
Di values. To illustmte the calculations, we consider again case 3, which is outlying with 
regard to its X values. We know from Table 1O.3thate3 = -3.176andh33 = .372. Further, 
MSE = 6.47 according to Table 7.2c and p = 3 for the model with two predictor variables. 
Hence, we obtain: 

D = = 490 
(-3.176)2 [ .372 ] 

3 3(6.47) (1 - .372)2 . 

We note from Table 10.4, column 2 that case 3 clearly has the largest Di value, with the 
next largest distance measure Dl3 = .212 being substantially smaller. Figure 10.8 presents 
the information provided by Cook's distance measure about the influence of each case in 
two different plots. Shown in Figure 1O.8a is a proportional influence plot of the residuals ei 
against the corresponding fittedValues Y i, the size of the plotted points being proportional 
to Cook's distance measure D i • Figure 1O.8b presents the information about the Cook's 
distance measures in the form of an index influence plot, wh~re Cook's distance measure 
Di is plotted against the corresponding case index i. Both plots in Figure 10.8 clearly show 
that one case stands out as most influential (case 3) and that all the other cases are much less 
influential The proportional influence plot in Figure 1O.8a shows that the residual for the 
most influential case is large negative, but does not identify the case. The index influence 
plot in Figure 1O.8b, on the other hand, identifies the most influential case as case 3 but 
does not provide any information about the magnitude of the residual for this case. 
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FIGURE 10.8 Proportional Influence Plot (Points Porportional in Size to Cook's Distance Measure) and Iud 
Influence Plot-Body Fat Example with Two Predictor Variables. ex 
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To assess the magnitude of the influence of case 3 (D3 = .490), we refer to the corre­
sponding F distribution, namely, F(p, 17 - p) = F(3, 17). We find that .490 is the 30.6th 
percenti Ie of this distribution. Hence, it appears that case 3 does influence the regression fit, 
but the extent of the influence may not be large enough to call for consideration of remedial 
measures. 

Influence on the Regression Coefficients-DFBETAS 
A measure of the influence of the i th case on each regression coefficient bk (k = 0, I, ... , 
p - 1) is the difference between the estimated regression coefficient bk based on all 17 cases 
and the regression coefficient obtained when the ith case is omitted, to be denoted by bk(i). 

When this difference is divided by an estimate of the standard deviation of bk , we obtain 
the measure DFBETAS: 

(DFBETASh(i) = b k - bk(i) 

.jMSE(ilckk 
k = 0, I, ... , p - I (10.34) 

where Ckk is the kth diagonal element of (X'X)- L. Recall from (6.46) that the variance­
covariance matrix of the regression coefficients is given by (J2{b] = (}2(X'X)-L. Hence the 
variance of bk is: 

(10.35) 

The erfOr term variance (}2 here is estimated by MSE(i), the error mean square obtained 
when the ith case is deleted in fitting the regression model. 

The DFBETAS value by its sign indicates whether inclusion of a case leads to an increase 
or a decrease in the estimated regression coefficient, and its absolute magnitude shows 
the size of the difference relative to the estimated standard deviation of the regression 
coefficient. A large absolute value of (DFBETASh(i) is indicative of a large impact onhe 
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ith case on the kth regression coefficient. As a guideline for identifying influential cases, 
we recommend considering a case influential if the absolute value of DFBETAS exceeds 1 
for small to medium data sets and 2/ In for large data sets. 

For the body fat example with two predictor variables, Table 10.4 lists the DFBETAS values 
in columns 3, 4, and 5. Note that case 3, which is outlying with respect to its X values, 
is the only case that exceeds our guideline of 1 for medium-size data sets for both hI and 
hz. Thus, case 3 is again tagged as potentially influentiaL Again, however, the DFBETAS 
values do not exceed 1 by very much so that case 3 may not be so influential as to require 
remedial action. ~ 

Comment 
i 

Cook's distance measure of the aggregate influence of a case-on the n fitted values, which was defined 
in (10.33), is algebraically equivalent to a measure of the aggregate influence of a case on the p 
regression coefficients. In fact, Cook's distance measure was originally derived from the concept of 
a confidence region for all p regression coefficients f3k (k = 0, 1, ... , p - 1) simultaneously. It can 
be shown that the boundary of this joint confidence region for the normal error multiple regression 
model (6.19) is given by: 

(b - (i),X'X(b - (i) 
-=--------=--'-----'-'- = F(1 - a; p, n - p) 

pMSE 
(10.36) 

Cook's distance measure Di uses the same structure for measuring the combined impact of the ith 
case on the differences in the estimated regression coefficients: 

D. _ (b - b(il )'X'X(b - b(i)) 
,- pMSE (10.37) 

where b(il is the vector of the estimated regression coefficients obtained when the ith case is omitted 
and b, as usual, is the vector when all n cases are used. The expressions for Cook's distance measure 
in (l0.33a) and (10.37) are algebraically identical. • 

Influence on Inferences 

~ample 

To round out the determination of influential cases, it is usually a good idea to examine in a 
direct fashion the inferences from the fitted regression model that would be made with and 
without the case(s) of concern. If the inferences are not essentially changed, there is little 
need to think of remedial actions for the cases diagnosed as influentiaL On the other hand, 
serious changes in the inferences druwn from the fitted model when a case is omitted will 
require considerution of remedial measures. 

In the body fat example with two predictor variables, cases 3 and 15 were identified as 
outlying X observations and cases 8.and 13 as outlying Y observations. All three influence 
measures (DFFITS, Cook's distance, and DFBETAS) identified only case 3 as influential, 
and, indeed, suggested that its influence may be of marginal importance so that remedial 
measures might not be required. 

The analyst in the body fat example was primarily interested in the fit of the regression 
model because the model was intended to be used for making predictions within the runge 
of the observations on the predictor variables in the data set. Hence, the analyst considered 
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the fitted regression functions with and without case 3: 

With case 3: Y = -19.174 + .2224X L + .6594Xl 

Without case 3: Y = -12.428 + .5641 XL + .3635X2 

Because of the high multicollinearity between X Land X2 • the analyst was not surprised 
by the shifts in the magnitudes of bL and bl when case 3 is omitted. Rel11ember that the 
estimated standard deviations of the coefficients, given in Table 7.2c, are very large and 
that a single case can change the estimated coefficients substantially when the predictor 
variables are highly con·e1ated. 

To examine the effect of case 3 on inferences to be made from the fitted regression 
function in the range of the X observations in a direct fashion, the analyst calculated for 
each of the 20 cases the relative difference between the fitted value' Yi based on all 20 cases 
and the fitted value Y;(3) obtained when case 3 is omitted. The measure of interest Was the 
average absolute percent difference: 

L: l)~ I 100 II \ f.(1 ~,y '\ 
i=L Yi 

11 

This mean difference is 3, I percent; further. 17 of the 20 differences are less than 5 percent 
(calculations not shown). On the basis of this direct evidence about the effect of case 3 On 

the inferences to be nlade, the analyst was satisfied that case 3 does not exercise undue 
influence so that no remedial action is required for handling this case. 

Some Final Comments 

10.5 

Analysis of outlying and influential cases is a necessary conlponent of good regression 
analysis. However, it is neither automatic nor foolproof and requires good judgment by the 
analyst. The methods described often work well, but at times are ineffective. For example. 
if two influential outlying cases are nearly coincident, as depicted in Figure 10.5 by cases 3 
and 4. an analysis that deletes one case at a time and estimates the change in tit will result in 
virtually no change for these two outlying cases. The reason is that the retained outlying case 
will mask the effect of the deleted outlying case. Extensions of the single-case diagnostic 
procedures described here have been developed that involve deleting two or more cases 
at a time. However, the computational requirements for these extensions are much more 
demanding than for the single-case diagnostics. Reference 10.4 describes some of these 
extensions. 

Remedial measures for outlying cases that are determined to be highly influential by the 
diagnostic procedures will be discussed in the next chapter. 

Multicollinearity Diagnostics-Variance luflation Fac.tor 

When we discussed multicollinearity in Chapter 7, we noted some key problems that typi­
cally arise when the predictor variables being considered for the regression model are highly 
correlated among themselves: 

I. Adding or deleting a predictor variable changes the regression coefficients, 
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2. The extra sum of squares associated with a predictor variable varies, depending upon 
which other predictor variables are already included in the model. 

3. The estimated standard deviations of the regression coefficients become large when 
the predictor variables in the regression model are highly correlated with each other. 

4. The estimated regression coefficients individually may not be statistically significant 
even though a definite statistical relation exists between the response variable and the set 
of predictor variables. 

These problems can also arise without substantial multicollinearity being present, but only 
under unusual circumstances not likely to be found in practice. 

We first consider some informal diagnostics for multicollinearity and then a highly useful 
formal diagnostic, the variance inflation factor. ' 

Informal Diagnostics 

~ample 

Indications of the presence of serious multicollinearity are given by the following informal 
diagnostics: 

1. Large changes in the estimated regression coefficients when a predictor variable is added 
or deleted, or when an observation is altered or deleted. 

2. Nonsignificant results in individual tests on the regression coefficients for important 
predictor variables. 

3. Estimated regression coefficients with an algebraic sign that is the opposite of that 
expected from theoretical considerations or prior experience. 

4. Large coefficients of simple correlation between pairs of predictor variables in the cor­
relation matrix rxx. 

5. Wide confidence intervals for the regressi on coefficients representing important predictor 
variables. 

We consider again the body fat example of Table 7.1, this time with all three predictor 
variables-triceps skinfold thickness (X d, thigh circumference (X2 ), and midarm circum­
ference (X3). We noted in Chapter 7 that the predictor variables triceps skinfold thickness 
and thigh circumference are highly correlated with each other. We also noted large changes 
in the estimated regression coefficients and their estimated standard deviations when a vari­
able was added, nonsignificant results in individual tests on anticipated important variables, 
and an estimated negative coefficient when a positive coefficient was expected. These are all 
informal indications that suggest serious multicollinearity among the predictor variables. 

Comment 
The informal methods just described have important limitations. They do not provide quantitative 
measurements of the impact of multicollinearity and they may not identify the nature of the multi­
collinearity. For instance, if predictor variables X I, X2, and X3 have low pairwise correlations, then 
the examination of simple correlation ccrefficients may not disclo~e the existence of relations among 
groups of predictor variables, such as a high correlation between Xl and a linear combination of X2 

and X3• 

Another limitation of the informal diagnostic methods is that sometimes the observed behavior 
may occur without multicollinearity being present. • 
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Variance Inflation Factor 
A formal method of detecting the presence of l11ulticollinearity that is widely accepted is 
use of vcu'iance inflation factors. These factors l11easure how much the variances of the 
estimated regression coefficients are inflated as compared to when the predictor variables 
are not linearly related. 

To understand the significance of variance inflation factors, we begin with the precision 
of least squares estimated regression coefficients, which is measured by their variances. We 
know from (6.46) that the variance-covariance l11atrix of the estimated regression coeffi­
cients is: 

(10.38) 

For purposes of measuring the impact of 111ulticollinemity, it is useful to work with the 
standardized regression model (7.45), which is obtained by transforming the variables by 
means of the correlation transformation (7.44). When the standardized regression model is 
fitted, the estimated regression coefficients bf are standardized coefficients that are related 
to the estimated regression coefficients for the untransformed variables according to (7.53). 
The variance-covariance matrix of the estimated standardized regression coefficients is ob­
tained from (10.38) by llsing the result in (7.50), which states that the X'X matrix for the 
transformed variables is the correlation matrix of the X variables rx x. Hence, we obtain: 

(10.39) 

where rxx is the matrix of the pairwise simple correlation coefficients among the X vari­
ables, as defined in (7.47), and «(}")~ is the error term variance for the transformed model. 

Note from (10.39) that the variance of br (k = I, ... , p - I) is equal to the following, 
letting (VIFh denote the kth diagonal element of the matrix rx~: 

(10.40) 

The diagonal element (VIFh is called the variance infiationfactor (VIF) for b;. It can be 
shown that this variance inflation factor is equal to: 

( »)-1 (VIFh = 1- R; k = 1,2 ..... p- I (10.41) 

where Ri is the coefficient of multiple determination when Xk is regressed on the p - 2 
other X variables in the model. Hence, we have: 

({}*)2 
(}2{b;) = __ 0 

1- Ri: 
(10.42) 

We presented in (7.65) the special results for (}~{b:J when p - I = 2, for which R~ :::: rf2' 
the coefficient of simple determination between X 1 and X 2. 

The variance inflation factor (VlFh is equal to I when R~ = 0, i.e., when X~ isnot linearly 
related to the other X variables. When Rl of- 0, then (VlF)~ is greater than I, indicating an 
inflated variance for b; as a result of the intercorrelations among the X variables. When Xk 
has a pelfect linear association with the other X variables in the model so that Ri :::: I, then 
(VIF)k and (}2lb;'J are unbounded. 
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Diagnostic Uses. The largest VIF value among all X variables is often used as an indicator 
of the severity of multicollinearity. A maximum VIF value in excess of lOis frequently taken 
as an indication that multicollinearity may be unduly influencing the least squares estimates. 

The mean of the VIF values also provides information about the severity of the multi­
collinearity in terms of how far the estimated standardized regression coefficients b~ are 
from the true values f3~. It can be shown that the expected value of the sum of these squared 
errors (b~ - f3;;f is given by: 

E {~(b~ - f3k)2} = (a*)2 ~(VIFh (10.43) 

Thus, large VIF values result, on the average, in larger differeljlces between the estimated 
and true standardized regression coefficients. ,; 

When no X variable is linearly related to the others in theOregression model, R~ == 0; 
hence, (VIFh == 1, their sum is p - 1, and the expected value of the sum cit'the squared 
errors is: 

E{~(b~ - f3;)2} = (a*)\p -1) when (VIF)k == I (10.43a) 

A ratio of the results in (l0.43) and (1O.43a) provides useful information about the effect 
of multicollinearity on the sum of the squared errors: 

(a*)2 'L(VIFh 

(a*)2(p - 1) 

'L(VIFh 
p-l 

Note that this ratio is simply the mean of the VIF values, to be denoted by (VIF): _ 

,",p-l(VIF) 
(VIF) = ~k=l k 

p-l 
(10.44) 

Mean VIF values considerably larger than 1 are indicative of serious multicollinearity 
problems. 

Table 10.5 contains the estimated standardized regression coefficients and the VIF values for 
the body fat example with three predictor variables (calculations not shown). The maximum 
of the VIFvaluesis 708.84 and their mean value is (VIF) = 459.26. Thus, the expected sum 
of the squared errors in the least squares standardized regression coefficients is nearly 460 
times as large as it would be if the X variables were uncorrelated. In addition, all three VIF 
values greatly exceed 10, which again indicates that serious multicollinearity problems exist. 

Variable 

~; 
X2 

zX:~ 

:b{ 

4;2'637 
~2:9287 
~!li5614 

lV/F)/( 
r, '708~84' 

5'64.34;.. 
.l04~61 

'(V/F) = 45926,; 
, ~-' 



410 Part Two Multiple Li/lear Regressio/l 

10.6 

It is interesting to note that (VIFh = 105 despite the fact that both r~3 and r} ( 
b I H .. h . I I -38ee Figure 7.3 ~ are not arge. ere IS an tn~ta~ce w ~re.x 3 IS s.t,:)Og y re ated. to X I and X 

together (Rl, = .990), even though the paIrwIse coefficIents of sll11ple detefl11Ination ar 2 

large. Exa~ination of the pailwise correlations does not disclose this l11ulticollinearit;. not 

Comments 
I. Some cOillputer regression programs use the reciprocal of the variance inflation factor to det 

instances where an X variable should not be allowed into the fitted regression model because ofexc ect 
sively high interdependence between this variable and the othcr X variables in the model. Toleran~ 
limits for 1/(VIFh = 1- Rl frequently lIsed are .01, .001, or .0001, below which the variableisn~ 
entered into the model. 

2. A limitation of vmiance inflation factors for detectillg multicolnilearities is that they Cannot 
distinguish between several sin1Llltaneous l11ulticollinemities. 

3. A nLlIllber of other formal methods for detecting multiCOllinearity have been pmposed. These 
are more complex than variance inflation factors and are discussed in specialized texts such as Ref­
erences 10.5 and 10.6. • 

Surgical Unit Excunple-Collliuued 

In Chapter 9 we developed a regression model for the surgical unit example (data in 
Table 9.1). Recall that validation studies in Section 9.6 led to the selection of model (9.21), 
the model containing variables X I, X2, X3, and Xs. We will now utilize this rcgressionmodel 
to demonstrate a more in-depth study of curvature, interaction effects, multicollinearity, and 
influential cases using residuals and other diagnostics. 

To examine interaction effects further, a regression model containing first-order terms 
in X I, X~, X3, and Xg was fitted and added-variable plots for the six two-factor interaction 
terms, XI X2, XI X3, XI X~, X2X3, X~Xs, and X3 XS, were examined. These plots (not 
shown) did not suggest that any strong two-variable interactions are present and need to be 
included in the l11ode!. The absence of any strong interactions was also noted by fitting a 
regression model containing X I, X2 , X3, and Xs in first-order terms and all two-vRIiable 
interaction terms. The P-value of the formal F test statistic (7.19) for dropping all of the 
interaction terms frol11 the model containing both the first-order effects and the interaction 
effects is .35, indicating that interaction effects are not present. 

Figure 10.9 contains some of the additional diagnostic plots that were generated to check 
on the adequacy of the first-order model: 

(10.45) 

where Y/ = In Yi • The following pointf> arc worth noting: 

I. The residual plot against the fitted values in Figure 1 0.9a shows no evidence of serious 
departures from the model. 

2. One of the three candidate models (9.23) subjected to validation studies in Section 9.6 
contained X 5 (patient age) as a predictor. The regression coefficient for age (b5) was negative 
in l110del (9.23), but when the same model was fit to the validation data, the sign of b5 became 
positive. We will now use a residual plot and an added-variable plot to study graphically 
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(a) Residual Plot against Predicted 
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the strength of the marginal relationship between Xs and the response, when X" X2 , X3, 
and Xs are already in the modeL Figure 10.9b shows the plot of the residuals for the model 
containing X" X2 , X3, and Xs against Xs, the predictor variable not in the model. This 
plot shows no need to include patient age (Xs) in the model to predict logarithm of survival 
time. A better view of this marginal relationship is provided by the added-variable plot in 
Figure 1O.9c. The slope coefficient bs can be seen again to be slightly negative as depicted 
by the solid line in the added-variable plot. Overall, however, the marginal relationship 
between Xs and Y' is weak. The P-vlllue of the formal t test (9.18) for dropping Xs from 
the model containing X" X~, X3, Xs and Xs is 0.194. In addition, the plot shows that the 
negative slope is driven largely by one or two outliers-one in the upper left region of 
the plot, and one in the lower right region. In'this way the added-variable plot provides 
additional support for dropping Xs: 

3. The normal probability plot of the residuals in Figure 10.9d shows little departure from 
linearity. The coefficient of correlation between the ordered residuals and their expected 
values under normality is .982, which is larger than the critical value for significance level.05 
in Table B.6. 
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Multicollinearity was studied by calculating the variance inflation factors: 

Variable (VIFh 

Xl 1.10 
X2 1.02 
X3 1.05 
Xs 1.09 

As may be seen from these results, multicollinearity among the four predictor variables is 
not a problem. -

Figure 10.10 contains index plots of four key regression diagnostics, namely the deleted 
studentized residuals ti in Figure 10.1 Oa. the leverage values h il in Figure 10.1 Ob, Cook's 
distances D; in Figure 10.1 Oc, and DFFlTS; values in Figure 10.1 Od. These plots suggest 
further study of cases 17, 28, and 38. Table 10.6 lists numerical diagnostic values for 
these cases. The measufCS presented in columns 1-5 are the residuals e; in (10.8), the 
studentized deleted residuals t; in (10.24), the leverage values flii in (10.18), the Cook's 
distance measures D; in (10.33), and the (DFFlTS)i values in (10.30). The following are 
noteworthy points about the diagnostics in Table 10.6: 

I. Case 17 was identified as outlying with regard to its Yvalue according to its studentized 
deleted residua\. outlying by more than three standard deviations. We test formally whether 
case 17 is outlying by means of the Bonferroni test procedure. For a family significance 
level of a = .05 and sample size 11 = 54. we require t (I-a/2n; /1- fJ -I) = t(.99954;49) 
= 3.528. Since Itnl = 3.3696 .:::: 3.528, the formal outlier test indicates that case 22 is not 
an outlier. Still, tl7 is very close to the critical value, and although this case does not appear 
to be outlying to any substantial extent, we may wish to investigate the influence of case 17 
to remove any doubts. 

2. With 2p/n = 2(5)/54 = .185 as a guide for identifying outlying X observations, 
cases 23, 28, 32, 38, 42, and 52 were identified as outlying according to their leverage 
values. Incidentally, the univariate dot plots identify only cases 28 and 38 as outlying. Here 
we see the value of multivariable outlier identification. 

3. To detelmine the influence of cases 17,23,28.32,38,42,32, and 52, we consider their 
Cook's distance and DFFITS values. According to each of these measures, case 17 is the 
most influential, with Cook's distance D17 =.3306 and (DFFlTS) 17 = 1.4151. Refwing 
to the F distribution with 5 and 49 degrees of freedom, we note that the Cook's value 
corresponds to the I I th percentile. It thus appears that the influence of case 38 is not large 
enough to warrant remedial measures, and consequently the other outlying cases also do 
not appear to be overly influential. 

A direct check of the influence of case 17 on the inferences of interest was also conducted. 
Here, the inferences of primary interest are in the fit of the regression model because the 
model is intended to be used for making predictions in the range of the X observations. 
Hence, each fitted value Yi based on al154 observations was compared with the fitted value 
Y i( L 7) when case 17 is deleted in fitting the regression model. The average of the absolute 
percent differences: 
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FIGURE 10.10 Diagnostic Plots for Surgical Unit Example-Regression Model (10.45). 
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is only .42 percent. and the largest absolute percent ditference (which is for case 17) is onl 

1.77 percent. Thus, Case 17 does not have such a disproportionate influence on the fi~ 
values that remedial action would be required. 

4. In summary, the diagnostic analyses identified a number of potential problems, but 
none of these was considered to be selious enough to require further remedial action. 
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10. I. A student asked: "Why is it necessary to peLfortn diagnostic checks of the fit when R2 is 
large?" COl11ment. 

10.2. A researcher stated: "One good thing about added-variable plots is that they are extremely 
useful for ideLltifyiLlg model adequacy even when the predictor variables are not properly 
specified in the regression Lllode\." Comment. 

I 0.3. A student suggested: "If extremely influential outlying cases are detected in a data set, simply 
discard these cases from the dalll set." Comment. 

10.4. Describe several informal methods that can be helpful in identifying multicolliLlearity among 
the X variables in a mUltiple regression mode\. 

10.5. Refer to Brand preference Pl'Oblem 6.5b. 

a. Prepare an added-variable plot for each of the predictor variables. 

b. Do your plots in part (a) suggest that the regression relatioLlships in the fitted regression 
function in Pl'Oblenl 6.5b are inappropriate for any of the predictor variables'? Explain. 

c. ObtaiLl the fitted regression function in Pl'Oblel11 6.5b by separately regressing both Yand 
X2 on XL, and then regressing the residuals in an appropriate fashion. 

10.6. Refer to Grocery retailer Pl'Oblem 6.9. 

a. Fit regressionl11odel (6.1) to the data using X I and X2 only. 

b. Prepare an added-variable plot for each of the predictor variables XI and X 2• 

c. Do your plots in putt (a) suggest that the regression relationships in the fitted regressior 
function in part (a) are inappl'Opriate for any of the predictor variables? Explain. 

(I. Obtain the fitted regression function in part (a) by separately regressing both Yand X2 or 
X I, aLld then regressing the residuals in an appl'Opriate fashion. 

10.7. Refer to Patient satisfaction Pl'Oblel11 6.15c. 

a. Prepare an added-variable plot for each of the predictor variables. 

b. Do your plots in pan (a) suggest that the regression relationships in the titted regression 
function in Pl'Oblem 6.15c are inappropriate for any of the predictor vaLiables? Explain. 
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10.8. Refer to Commercial properties Problem 6.18c. 

a. Prepare an added-variable plot for each of the predictor variables. 

b. Do your plots in part (a) suggest that the regression relationships in the fitted regres­
sion function in Problem 6.18c are inappropriate for any of the predictor variables? 
Explain. 

10.9. Refer to Brand preference Problem 6.5. 

a Obtain the studentized deleted residuals and identify any outlying Yobservations. Use the 
Bonferroni outlier test procedure with ct = .10. State the decision rule and conclusion. 

b. Obtain the diagonal elements of the hat matrix, and provide an explanation for the pattern 
in these elements. 

c. Are any of the observations outlying with regard to their X,:alues according to the rule of 
thumb stated in the chapter? 

d. Management wishes to estimate the mean degree of brand liking for moisture content 
XL = 10 and sweetness X2 = 3. Construct a scatter plot of X2 against XL bd determine 
visually whether this prediction involves an extrapolation beyond the range of the data. 
Also, use (10.29) to determine whether an extrapolation is involved. Do your conclusions 
from the two methods agree? 

e. The largest absolute studentized deleted residual is for case 14. Obtain the DFFlTS, 
DFBETAS, and Cook's distance values for this case to assess the influence of this case. 
What do you conclude? 

f. Calculate the average absolute percent difference in the fitted values with and without 
case 14. What does this measure indicate about the influence of case 14? 

g. Calculate Cook's distance D; for each case and prepare an index plot. Are any cases 
influential according to this measure? 

* 10.10. Refer to Grocery retailer Problems 6.9 and 6.10. 

a. Obtain the studentized deleted residuals and identify any outlying Yobservations. Use the 
Bonferroni outlier test procedure with ct = .05. State the decision rule and conclusion. 

b. Obtain the diagonal element of the hat matrix. Identify any outlying X ooservations using 
the rule of thumb presented in the chapter. 

c. Management wishes to predict the total labor hours required to handle the next shipment 
containing XL = 300,000 cases whose indirect costs of the total hours is X2 = 7.2 and 
X3 = 0 (no holiday in week). Construct a scatter plot of X2 against XL and determine 
visually whether this prediction involves an extrapolation beyond the range of the data. 
Also, use (10.29) to determine whether an extrapolation is involved. Do your conclusions 
from the two methods agree? 

d. Cases 16,22,43, and 48 appear to be outlying X observations, and cases 10,32,38, !lnd 40 
appear to be outlying Yobservations. Obtain the DFFlTS, DFBETAS, and Cook's distance 
values for each of these cases to assess their influence. What do you conclude? 

e. Calculate the averam: absolute percent difference in the fitted values with and without each 
of these cases. What does this measure indicate about the influence of each of the cases? 

f. Calculate Cook's distance D; for each Case and prepare an index plot. Are any cases 
influential according to this,measure? 

* 10.11. Refer to Patient satisfaction Problem 6.15. 

a. Obtain the studentized deleted residuals and identify any outlying Yobservations. Use the 
Bonferroni outlier test procedure with ct = .10. State the decision rule and conclusion. 

b. Obtain the diagonal elements of the hat matrix. Identify any outlying X observations. 
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c. Hospital management wishes to esIimate mean patient satisfaction for patients who are 
XI = 30 years old, whose index of illness severity is X 2 = 58, and whose index of anxiety 
level is X, = 2.0. Use (10.29) to determine whether this estimate will involve a hidden 
extrapolation. 

d. The Ihree largest absolute studentized deleted residuals are for cases II, 17, and 27. Obtain 
the DFFITS, DFBETAS, and Cook's distance values for this case to assess its influence 
What do you conclude') . 

e. Calculate the average absolute percent ditference in the fitted values with and without each 
of these cases. What does this measure indicate about the influence of each of these cases? 

f. Calculate Cook's distance D; for each case and prepare an index plot. Are ally cases 
inl1uential according to this measure'? 

10.12. Refer to Commercial Properties Problem 6.18. 

a. Obtain the studentizetl deletetl residuals anti identify any outlying Y observations. Use the 
Bonferroni out! ier test procedure with ex = .0 I. State the decision rule and conclUsion. 

b. Obtain the diagonal elements of the hat matrix. Identify any outlying X observations. 

c. The researcher wishes to estimate the rental rates of a property whose age is 10 years, 
whose operating expenses and taxes are 12.00, whose ocupancy rate is 0.05, and whose 
square footage is 350,000. Use (10.29) to determine whether this estimate will illVolve a 
hidden extrapolation. 

d. Cases 61, 8, 3, and 53 appear to be outlying X observations, and cases 6 and 62 appear 
to be outlying Yobservations. ObtaiLl the DFFITS, DFBETAS, and Cook's distance values 
for each case to assess its inl1uence. What do you conclude'? 

e. Calculate the average absolute percent difference in the fittetl values with and without each 
of the cases. What does this l11easure indicate about the inl1uence of each case'? 

f. Calculate Cook's distance D; for each case anti prepm'e an intlex plot. Are any cases 
inl1uential according to this measure'? 

10.13. Cosmetics sales. An assistant in the district sales office of a national cosmetics firm obtained 
data, shown below, on advertising expenditures and sales last year in the district's44 ten-itories. 
X I denotes expenditures for point-of-sale displays in beauty salons anti department stores (in 

thousand dollars), and X2 and X3 represent the corresponding expenditures for local media 
advertising and prorated ~hare of national media adveL1ising, respectively. Y denote~ sales (in 
thousand cases). The assistant was instructed to estimate the increase in expected sales when 
X I is increased by I thousand dollars and X 2 and X.l are held constant, anti was told to use 
an ordinary multiple regression model with linear tel111S for the predictor variables and with 
independent n0I111<11 error terms. 

i: 2 3 42 43 44 

Xn: 5.6 4.1 3.7 3.6 3.9 5.5 
X;2: 5.6 4.8 3.5 3.7 3.6 5.0 

Xi3: 3.8 4.8 3.6 4.4 2.9 5.5 
Y;: 12.85 11.55 12.78 10.47 11.03 12.31 

a. State the regression model to be employed ,md fit it to the data. 

b. Test whether there is a regression relation between sales and the three predictor vruiables; 
use ex = .05. State the altematives, decision rule, and conclusion. 

c. Test for each of the regression coetficients I-h (k = I. 2. 3) individually whether or nOt 

I-h = 0; use ex = .05 each time. Do the conclusions ofthese tests cOLTespond to that obtained 

in part (b)? 
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d. Obtain the correlation matrix of the X variables. 

e. What do the results in parts (b), (c), and (d) suggest about the suitability of the data for the 
research objective? 

10.14. Refer to Cosmetics sales Problem 10.13. 

a. Obtain the three variance inflation factors. What do these suggest about the effects of 
mUlticollinearity here? 

h The assistant eventually decided to drop variables X2 and X3 from the model "to clear up 
the picture." Fit the assistant's revised model Is the assistant now in a better position to 
achieve the research objective? 

c. Why would an experiment here be more effective in providing suitable data to meet the 
research objective? How would you design such an experiment? What regression model 
would you employ? " 

10.15. Refer to Brand preference Problem 6.5a. 

a. What do the scatter plot matrix and the correlation matrix show about hairwise linear 
associations among the predictor variables? J 

h Find the two variance inflation factors. Why are they both equal to I? 

* I 0.16. Refer to Grocery retailer Problem 6.9c. 

a. What do the scatter plot matrix and the correlation matrix show about pairwise linear 
associations among the predictor variables? 

b. Find the three variance inflation factors. Do they indicate that a serious mUlticollinearity 
problem exists here? 

*10.17. Refer to Patient satisfaction Problem 6. I 5b. 

a. What do the scatter plot matrix and the correlation matrix show about pairwise linear 
associations among the predictor variables? 

b. Obtain the three variance inflation factors. What do these results suggest about the effects 
of multicollinearity here? Are these results more revealing than those in part (a)? 

10.18. Refer to Commercial properties Problem 6.1 8b. 

a. What do the scatter plot matrix and the correlation matrix show about pairwise linear 
associations among the predictor variables? 

h Obtain the four variance inflation factors. Do they indicate that a serious mUlticollinearity 
problem exists here? 

10.19. Refer to Job proficiency Problems 9.1 0 and 9.11. The subset model containing only first-order 
terms in Xl and X3 is to be evaluated in detail. 

a. Obtain the residuals and plot them separately against Y, each of the four predictor variabl es, 
and the cross-product term X I X3 . On the basis of these plots, should any modifications in 
the regression model be investigated? 

b. Prepare separate added-variable plots against e(XdX3) and e(X3IXd. Do these plots 
suggest that any modifications in the model form are warranted? 

c. Prepare a normal probability plot of tho residuals. Also obtain the coefficient of corre­
lation between the ordered residuals and their expected values under normality. Test the 
reasonableness of the norntality assumptions, using table B.6 and ct = .01. What do you 
conclude? 

d. Obtain the studentized deleted residuals and identify any outlying Y observations. 
Use the Bonferroni outlier test procedure with ct = .05. State the decision rule and 
conclusion. 
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e. Obtain the diagonal elements of the hat matrix. Using the rule of thumb in the text, identify 

any outlying X observations. Are yow' findings consistent with those in ProblelTI 9. IDa? 
Should they be? Comment. 

f. Cases 7 and 18 appear to be moderately outlying with respect to their X values, and 
case 16 is reasonably far outlying with respect to its Yvalue. Obtall1 DFFITS. DFBETAS 
al1(\ Cook's distance values for these GL~eS to assess their inf1uence. What do you conclUde? 

g. Obtain the variance inf1ation factors. What do they indicate? 

10.20. Refer to Lung pressure Problems 9.13 and 9.14. The subset regres,ion model COntain_ 

ing first-order terms for XI and X~ and the cross-product term XI X~ is LO be evaluated in 
detail. 

a. Obtain the residuals and plot them separately against Y and e.ach of the three predictor 
variables. On the basis of these plots. should any further modification~ of the regression 
model be attempted') 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Does the normality 
assumption appear to be reasonable here? 

c. Obtain the vilriance infhltion factors. Are there ill1y indications that serious multicollinearity 
problems are present? Explain. 

d. Obtain the studentized deleted residuals and identify ill1y outlying Y observations. Use the 
Bonferroni outlier test procedure with 0' = .05. SUite the decision rule and conclusion. 

e. Obtain the diagonal elell1ents of the hilt matrix. Using the rule of thumb in the text, identify 

any outlying X observiltions. Are your findings consistent with those in Problem 9.13a? 
Should they be? Discuss. 

f. Cases 3, 8, imd 15 are modermely far outlying with respect to their X values, and case 7 is 

relatively far outlying with respect to its Y value. Obtain DFFITS, DFBETAS, and Cook's 
distance values for these cases to ilssess their inf1uence. What do you conclude? 

*10.21. Refer to Kidney function Problem 9.15 and the regression model fitted in part (c). 

a. Obtain the variance inflation factors. Are there indications that serious multicollinearity 
problems exist here? Explain. 

b. Obtain the residU<lls and plot them sepilrately against Y and each of the predictor variables. 

Also prepare a normal probability plot of the residuals. 

c. Prepare separate added-variable plots against e(XdX~, X 3 ), e(X2IX I• X3), and 

e(X\IXIo X 2 ). 

d. Do the plots in pilrts (b) and (cl suggest that the regression model should be modified? 

*10.22. Refer to Kidney function Problems 9.15 and 10.21. Theoretical arguments suggest use of the 

following regression function: 

a. Fit the regression function based on theoretical considerations. 

b. Obtaill the residuals ill1d plot them sepm'ately against Y and each predictor variable in the 

fitted model. Also prepare a normal probability plot of the residuals. Have the difficulties 

noted in Problem 10.21 now largely been eliminated? 

c. Obtain the variance inf1ation factors. Are there indications thm serious multicollinearity 

problems exist here? Explain. 

d. Obtain the studentized deleted residuals and identify any outlying Y observations. Use the 

Bonferroni outlier test procedure with 0' = .10. State the decision rule ill1d conclusion. 
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e. Obtain the diagonal elements of the hat matrix. Using the rule of thumb in the text, identify 
any outlying X observations. 

f. Cases 28 and 29 are relatively far outlying with respect to their Yvalues. Obtain DFFlTS, 
DFBETAS, and Cook's distance values for these cases to assess their influence. What do 
you conclude? 

10.23. Show that (10.37) is algebraically equivalent to (1O.33a). 

10.24. If n = p and the X matrix is invertible, use (5.34) and (5.37) to show that the hat matrix H is 
given by the p x p identity matrix. In this case, what are hu and Y;? 

10.25. Show that (10.26) follows from (1O.24a) and (10.25). 4, 

10.26. Prove (9.11), using (10.27) and Exercise 5.31. 

i 

10.27. RefertotheSENICdatasetinAppendixC.l and Project 9.25. The regression model containing 
age, routine chest X-ray ratio, and average daily census in first-order terms is to be evaluated 
in detail based on the model-building data set. 

a. Obtain the residuals and plot them separately against Y, each of the predictor variables in 
the model, and each of the related cross-product terms. On the basis of these plots, should 
any modifications of the model be made? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of corre­
lation between the ordered residuals and their expected values under normality. Test the 
reasonableness ofthe normality assumption, using Table B.6 and ct = .05. What do.you 
conclude? 

c. Obtain the scatter plot matrix, the correlation matrix of the X variables, and the variance 
inflation factors. Are there any indications that serious multicollinearity problems are 
present? Explain. 

d. Obtain the studentized deleted residuals and prepare a dot plot of these residuals. Are any 
outliers present? Use the Bonferroni outlier test procedure with ct = .01. State the decision 
rule and conclusion . 

.e. Obtain the diagonal elements of the hat matrix. Using the rule of thumb in the text, identify 
any outlying X observations. 

f. Cases 62, 75, 106, and 112 are moderately outlying with respect to their X values, and 
case 87 is reasonably far outlying with respect to its Yvalue. Obtain DFFlTS, DFBETAS, 
and Cook's distance values for these cases to assess their influence. What do you 
conclude? 

10.28. Refer to the CDI data set in Appendix C.2 and Project 9.26. The regression model containing 
variables 6, 8,9, 13, 14, and 15 in'first-order terms is to be evaluated in detail based on the 
model-building data set. -

a. Obtain the residuals and plot them separately against Y, each predictor variable in the model, 
and the related cross-product term. On the basis of these plots, should any modifications 
in the model be made? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of corre­
lation between the ordered residuals and their expected values under normality. Test the 
reasonableness of the normality assumption, using Table B.6 and ct = .01. What do you 
conclude? 
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Case 
Studies 

c. Obtain the scatter plot matrix, the correlation matrix of the X variables, and the varl.anc 
inflation factors. Are there any indications that serious multicollinearity problems are 

. e 
present? Explam. 

d. Obtain the studentized deleted residuals and prepare a dot plot of these residuals. Are an 
outliers present? Use the Bonferroni outlier test pl'OCedure with ct = .05. State the decisioY 

rule and conclusion. n 

e. Obtain the diagonal elements of the hat matrix. Using the rule of thumb in the text, identify 
any outlying X observations. 

f. Cases 2, 8, 48, 128, 206, and 404 are outlying with respect to their X values, and Cases 2 
and 6 are reasonably far outlying with respect to their Yvalues. ObtainDFFITS, DFBETAS 
and Cook's distance values for these cases to assess their influ~n~~ What do you conclude? 

-",;:9-

10.29. Refer to the Website developer data set in Appendix C.6 and Case Study 9.29. For the best 
subset model developed in Case Study 9.29, perform appropriate diagnostic checks to evaluate 
outliers and assess their influence. Do any s~ous multicollinearity problems exist here? 

10.30. Refer to the Prostate cancer data set in Appendix C.S and Case Study 9.30. For the best 
subset model developed in Case Study 9.30, perform appropriate diagnostic checks to evaluate 
outliers and assess their influence. Do any serious multicollinearity problems exist here? 

10.31. Refer to the Real estate data set in Appendix C.7 and Case Study 9.31. For the best sub-
set model developed in Case Study 9.31, perform appropriate diagnostic checks to evaluate 
outliers and assess their influence. Do any serious multicollinearity problems exist here? 



Chapter 

Building the Regression 
Model III: Rellledial1 
Measures i 

When the diagnostics indicate that a regression model is not apprQpriate or that one or sev­
eral cases are very influential, remedial meaSUres may need to be taken. In earlier chapters, 
we discussed some remedial measures, such as transformations to linearize the regression 
relation, to make the error distributions more nearly normal, or to make the variances of 
the error terms more nearly equal. In this chapter, we take up some additional remedial 
measures to deal with unequal error variances, a high degree of multicollinearity, and influ­
ential observations. We next consider two methods for nonparametric regre.ssion in detail, 
lowess and regression trees. Since these remedial measures and alternative approaches of­
ten involve relatively complex estimation procedures, we consider next a general approach, 
called bootstrapping, for evaluating the precision of these complex estima!l?rs. We con­
clude the chapter by presenting a case that illustrates some of the issues that arise in model 
building. 

11.1 Unequal Error Variances Remedial Measures-Weighted 
Least Squares 

We explained in Chapters 3 and 6 how transformations of Y may be helpful in reducing or 
eliminating unequal variances of the error terms. A difficulty with transformati ons of Yis that 
they may create an inappropriate reg'ression relationship. When an appropriate regression 
relationship has been foundout the variances of the error terms are unequal, an alternative 
to transformations is weighted least squares,.a procedure based on a generalization of 
multiple regression model (6.7). We shall now denote the variance of the error term Ci by 
u? to recognize that different error terms may have diffhent variances. The generalized 
multiple regression model can then be expressed as follows: 

(11.1) 

421 
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where: 

{30. {3l o ••• , {31'-1 arc parameters 

Xii •...• Xi.p-I arc known constants 

Ci arc independent N(O. 0/) 

i = I. .... n 

The variance-covariance matrix of the error terms for the generalized multiple regression 
model (I I. I ) is more complex than before: 

0 
0 0 0-

I 

0 
0 

0 
(J2{E} = 

ui 
(11.2) 

lEXU 

0 0 0 
U/~ 

The estimation of the regression coefficients in general ized model (11.1) could be done by 
using the estimators in (6.25) for regression model (6.7) with equal error variances. These 
estimators arc still unbiased and consistent for generalized regression model (11.1), but they 
no longer have minimum variance. To obtain unbiased estimators with minimum variance, 
we must take into account that the different Y observations for the n cases no longer have 
the same reliability. Observations with small variances provide more reliable information 
about the regression function than those with large variances. We shall first consider the 
estimation of the regression coefficients when the error variances u? arc known. This case 
is usually unrealistic. but it pfOvides guidance as to how to proceed when the error variances 
arc not known. 

Error Variances Known 
When the em)!" variances u? arc known, we Can usc the method of maximum likelihood to 
obtain estimators of the regression coefficients in generalized regression model (11.1). The 
likelihood function in (6.26) for the case of equal error variances u 2 is modified by replacing 
the u2 terms with the respective variances up and expressing the likelihood function in the 
first form of (1.26): 

(11.3) 

where ~ as usual denotes the vector of the regression coefficients. We define the reciprocal 
of the variance up as the weight Wi: 

Wi = ----0 
u·-

I 

(11.4) 

We can then express the likelihood function (11.3) as follows, after making some 
simplifications: 
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We find the maximum likelihood estimators of the regression coefficients by maximizing 
L({i) in (11.5) with respect to /30, {3" ... , {3p-I' Since the error variances u/ and hence 
the weights Wi are assumed to be known, maximizing L({i) with respect to the regression 
coefficients is equivalent to minimizing the exponential term: 

n 

Qw = L Wi(Yi - f30 - {3I X il - ... - {3p_ IX i ,P_I)2 

l=1 

(11.6) 

This term to be minimized for obtaining the maximum likelihood estimators is also the 
weighted least squares criterion, denoted by Qw' Thus, the methods of maximum likeli­
hood and weighted least squares lead to the same estimators for the generalized multiple 
regression model (11.1), as is also the case for the ordinary multiple regression model (6.7). 

Note how the weighted least squares criterion (11.6) generalizes th~ ordinary least squares 
criterion in (6.22) by replacing equal weights of 1 by Wi. Since the weight Wi is ~versely 
related to the variance u?, it reflects the amount of inf~rmation contained in the observa­
tion Yi. Thus, an observation Yi that has a large variance receives less weight than another 
observation that has a smaller variance. Intuitively, this is reasonable. The more precise is 
Y; (i.e., the smaller is u?), the more information Yi provides about E{Yi} and therefore the 

" more weight it should receive in fitting the regression function. 
It is easiest to express the maximum likelihood and weighted least squares estimators of 

the regression coefficients for model (11.1) in matrix terms. Let the matrix W be a diagonal 
matrix containing the weights Wi: 

[

WI 

o 
W= 
nxn ~ 

o 

o 
The normal equations can then be expressed as follows: 

(X'WX)bw = X'WY 

(11.1) 

(11.8) 

and the weighted least squares and maximum likelihood estimators of the regression coef­
ficients are: 

bw = (X'WX) -I X'WY 
pxl 

(11.9) 

where bw is the vector of the estimated regression coefficients obtained by weighted leas.t 
squares. The variance-covariance matrix of the weighted least squares estimated regression 
coefficients is: 

_ (}'2 {bw } = (X'WX)-I (11.10) 
pxp 

Note that this variance-covariance matrix is known since the variances u? are assumed to 
be known. .-

The weighted least squares and maximum likelihood estimators of the regression co­
efficients in (11.9) are unbiased, consistent, and have minimum variance among unbiased 
linear estimators. Thus, when the weights are known, bw generally exhibits less variability 
than the ordinary least squares estimator b. 



424 Part Two Mllitiple Lillellr Regressioll 

Many computer regression packages will provide the weighted least squares estimated 
regression coefficients. The user simply needs to provide the weights Wi. 

Error Variances Known up to Proportionality Constant 
We now relax the requirement that the variances u? are known by considering the caSe 
where only the relative magnitudes of the variances are known. For instance, if we know 
that u} is twice as large as u~, we might use the weights WI = I, W2 = 1/2. In that case 
the relative weights Wi are a constant multiple of the unknown true weights 1/ ur ' 

(11.11) 

where k is the proportionality constant. It can be shown that the weighted least squares and 
muximum likelihood estimators are unaffected by the unknown prop0l1ionaiity constantk 
and are still given by (11.9). The reaSon is that the proportionality constant k appears on 
both sides of the normal equations (11.8) and cancels out. The variance-covariance matrix 
of the weighted least squares regression coefficients is now as follows: 

(J2{bw } = k(X'WX)-1 
pxp 

(11.12) 

This matrix is unknown because the propOltionality constant k is not known. It can be 
estimated, however. The estimated variance-covariance matrix of the regression coefficients 
bu, is: 

(11.13) 
pxp 

where MSEw is based on the weighted squared residuals: 

L w·(Y. - 1')2 L w·e2 
MSE

w 
= I I I = I I 

I1-P n-p 
(ll.13a) 

Thus, MSEu• here is an estimator of the proportionality constant k. 

Error Variances Unknown 
If the variances u/ were known, or even known up to a proportionality constant, the use of 
weighted least squat'es with weights W, would be straightforward. Unfortunately, one rarely 
has knowledge of the variances u/. We are then forced to use estimates of the variances. 
These can be obtained in a variety of ways. We discuss two methods of obtaining estimates 
of the variances ur 
Estimation of Variance Function Or Standard Deviation Function. The first method 
of obtaining estimates of the enor term variances u/ is based on empirical findings that the 
magnitudes of u? and Ui often vary in a regular fashion with one or several predictor variables 
Xk or with the mean response E{Y;}. Figure 3.4c, for example, shows atypical "megaphone" 
prototype residual plot where u? increase~ a<; the predictor variable X becomes larger. Su:h 
a relationship between u? and one or several predictor variables can be estimated because 
the squared residual e~ obtained from an ordinary least squares regression fit is an estimate 
of u?, provided that the regression function is appropriate. We know from (A.15a) that 



Chapter 11 Building the Regression Model Ill: Remedial Measures 425 

the variance of the error term Ci, denoted by a?, can be expressed as follows: 

(11.14) 

Since E {Ci} = 0 according to the regression model, we obtain: 

(11.15) 

Hence, the squared residual el is an estimator of a? Furthermore, the absolute residual lei I 
is an estimator of the standard deviation ai, since ai = IRI. 

We can therefore estimate the variance function describing the relation of a? to relevant 
predictor variables by first fitting the regression model usi{lg unweighted least squares 
and then regressing the squared residuals ei against the apPropriate predictor variables. 
Alternatively, we can estimate the standard deviation function describing the relation of 
ai to relevant predictor variables by regressing the absolute residuals lei liobtained from 
fitting the regression model using unweighted least squares against the appropriate predictor 
variables. If there are any outliers in the data, it is generally advisable to estimate the standard 
deviation function rather than the variance function, because regressing absolute residuals 
is less affected by outliers than regressing squared residuals. Reference 11.1 provides a 
detailed discussion of the issues encountered in estimating variance and standard deviation 
functions. 

We illustrate the use of some possible variance and standard deviation functions: 

1. A residual plot against XI exhibits a megaphone shape. Regress the absolute residuals 
against XI. 

2. A residual plot against Y exhibits a megaphone shape. Regress the absolute residuals 
against Y. 

3. A plot of the squared residuals against X3 exhibits an upward tendency. Regress the 
squared residuals against X 3 . 

4. A plot of the residuals against X2 suggests that the variance increases mpidly with 
increases in X2 up to a point and then increases more slowly. Regress the absolute 
residuals against X2 and xi. 

Mter the variance function or the standard deviation function -is estimated, the fitted 
values from this function are used to obtain the estimated weights: 

1 
Wi = (8i)2 

1 
Wi=-;::­

Vi 

where Si is fitted value from standard deviation function (1) .16a) 

where Vi is fitted value from variance function (11.16b) 

The estimated weights are then placed in the ~eight matrix Win (11.7) and the estimated 
regression coefficients are obtained by (11. 9), as follows: 

(11.17) 

The weighted error mean square MSEw may be viewed here as an estimator of the propor­
tionality constant kin (11.11). If the modeling of the variance or standard deviation function 
is done well, the proportionality constant will be near 1 and MSEw should then be near 1. 
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We !;ummarize the estimation process: 

I. Fit the regression model by unweighted least squares and analyze the residuals. 
2. Estimate the variance function or the standard deviation function by regressing either 

the squared residuals or the absolute residuals on the appropriate predictor(s). 
3. Usc the fitted values from the estimated variance or standard deviation function to obtain 

the weights Wi. 

4. Estimate the regression coefficients using these weights. 

If the estimated coefficients differ substantiall y from the estimated regression coefficients 
obtained by ordinary least squares, it is usually adv isable to iterate the weighted least squares 
process by using the residuals from the weighted least squares fit to reestimate the vruiance 
or stand,Lrd deviation function and then obtain revised weights: Often one or two iterations 
arc sufficient to stabilize the estimated regression coefficients. This iteration process is often 
called iteratively reweighted least squares. 

Use of Replicates Or Near Replicates. A second method of obtaining estimates of the 
error term variances a? can be utilized in designed experiments where replicate observa­
tions arc made at each combination of levels of the predictor variables. If the number of 
replications is large, the weights Wi may be obtained directly from the sample variances of 
the Y observations at each combination of levels of the X variables. Otherwise, the sample 
variances or sample standard deviations should first be regressed against appropriate pre. 
dictor variables to estimate the variance or standard deviation function, from which the 
weights can then be obtained. Note that each case in a replicate group receives the same 
weight with this method. 

In observational studies, replicate observations often arc not present. Ncar replicates may 
then be used. For example, if the residual plot against X L shows a megaphone appearance, 
cases with similar X L values can be grouped together and the variance of the residuals in 
each group calculated. The reciprocals of these variances arc then used as the weights Wi 

if the number of replications is large. Otherwise, a variance or standard deviation function 
may be estimated to obtain the weights. Again. all cases in a ncar-replicate group receive 
the same weight. If the estimated regression coefficients differ substantially from those 
obtained with ordinruy least squares, the procedure may be iterated, as when an estimated 
variance or standard deviation function is used. 

Inference Procedures when Weights Are Estimated. When the error variances (J? are 
unknown so that the weights W, need to be estimated, which almost always is the case, 
the variance-covariance matrix of the estimated regression coefficients is usually estimate<!' 
by means of (11.13), using the estimated weights, provided the sample size is not very 
small. Confidence intervals for regression coefficients arc then obtained by means of(6.50), 
with the estimated standard deviation slb".d obtained from the matrix (11.13). Confidence 
intervals for mean responses arc obtained by means of (6.59), using sl{b/l'} from (11.13) 
in (6.58). These inference procedures are now only approximate, however, becausethe 
estimation of the variances ap introduces another source of variability. The approximation 
is often quite good when the sample size is not too small. One means of determini~~ 
whether the approximation is good is to usc bootstrapping, a statistical procedure that wi/f 
be explained in Section I 1.5. 



Example 

TABLE 11.1 
Weighted Least 
Squares-
Blood Pressure 
Example. 
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Use of Ordinary Least Squares with Unequal Error Variances. If one uses b (not 
bw ) with unequal error variances, the ordinary least squares estimators of the regression 
coefficients are still unbiased and consistent, but they are no longer minimum variance 
estimators. Also, (12{b} is no longer given by a 2(X'X)-I. The correct variance-covariance 
matrix is: 

If error variances are unequal and unknown, an appropriate estimator of (12{b} can still be 
obtained using ordinary least squares. The White estimator (Ref. 11.2) is: 

where: 
i 

[~ ~ , ~l 
o 0 e~ 

80= 
nxn 

and where e" ... , en are the ordinary least squares estimators of the residuals. White's 
estimator is sometimes referred to as a robust covariance matrix, because it can be used 
to make appropriate inferences about the regression parameters based on ordinary least 
squares, without having to specify the form of the non constant error variance. 

A health researcher, interested in studying the relationship between diastolic blood pressure 
and age among healthy adult women 20 to 60 years old, collected data on 54 SUbjects. A 
portion of the data is presented in Table 11.1, columns] and 2. The scatter plot of the data 
in Figure 11.1 a strongly suggests a linear relationship between diastolic blooo pressure and 
age but also indicates that the error term variance increases with age. The researcher fitted a 
linear regression function by unweighted least squares to conduct some preliminary analyses 
of the residuals. The fitted regression function and the estimated standard deviations of bo 

(1) (2) (3) (4) (5) (6) 
Diastolic 

.810od 
Subi~ct Ag~ Pressure 

'j X, Y, ei led 5, WI 
1 27 -73 1.18 Li8 3.801 .06921 
2 21 66 -2.34 2.34 2.612 .14656 
3 22 63 -5.92 5.92 2.810 .12662 

"" 
-?2 52 100 13'.68 13.68 8.756 .01304 
53 58 80 -9:80 9.80 9.944 .01011 
54 57 109 19.78 19.78 9;746 .01053 
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FIGURE 11.1 Diagnostic Plots Detecting Unequal Error Variances-Blood Pressure Example. 
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(11.18) 

The residuals are shown in Table 11.1, column 3, and the absolute residuals are presented in 
column 4. Figufe 11.1 a presents this estimated regression function. Figure I 1.1 b presents 
a plot of the residuals against X, which confirms the nonconstant error variance. A plot 
of the absolute residuals against X in Figure 11.lc suggests that a linear relation between 
the eLTOf standard deviation and X may be reasonable. The analyst therefore regressed the 
absolute residuals against X and obtained: 

s = -1.54946 + .198172X (11.19) 

Here, s denotes the estimated expected standard deviation. The estimated standard deviation 
function in (11.19) is shown in Figure 11.1 c. 

To obtain the weights Wi, the analyst obtained the fitted values from the standard deviation 
function in (11.19). For example, for case 1, for which XL = 27, the fitted value is: 

SL = -1.54946 + .198172(27) = 3.801 

The fitted values are shown in Table I 1.1, column 5. The weights are then obtained by 
using (l1.16a). For case 1, we obtain: 

I 
WL = (SL)2 = -(3-.8-0-1)""-2 = .0692 

The weights Wi afe shown in Table 11.1, column 6. 
Using these weights in a regression program that has weighted least squares capability, 

the analyst obtained the following estimated fegression function: 

j> = 55.566 + .59634X (11.20) 
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Note that the estimated regression coefficients are not much different from those in (11.18) 
obtained with unweighted least squares. Since the regression coefficients changed only a 
little, the analyst concluded that there was no need to reestimate the standard deviation 
function and the weights based on the residuals for the weighted regression in (11.20). 

The analyst next obtained the estimated variance-covariance matrix of the estimated 
regression coefficients by means of (11.13) to find the approximate estimated standard 
deviation s {bw1 } = .07924. It is interesting to note that this standard deviation is somewhat 
smaller than the standard deviation of the estimate obtained by ordinary least squares 
in (11.18), .09695. The reduction of about 18 percent is the result of the recognition of 
unequal error variances when using weighted least squares. 

To obtain an approximate 95 percent confidence interval for f3.~ the analyst employed 
(6.50) and required t(.975; 52) = 2.007. The confidence limits tli~n are .59634 ± 2.007 
(.07924) and the approximate 95 percent confidence interval is: 

i 

.437 .:::: f31 ::; .755 J 

We shall consider the appropriateness of this inference approximation in Section 11.5. 

Comments 
1. The condition of the error variance not being constant over all cases is called heteroscedasticity, 

in contrast to the condition of equal error variances, called homoscedasticity. 

2. Heteroscedasticity is inherent when the response in regression analysis follows a distribution in 
which the variance is functionally related to the mean. (Significant nonnormality in Y is encountered 
as well in most such cases.) Consider, in this connection, a regression analysis where Xis the sp~ed 
of a machine which puts a plastic coating on cable and Y is the number of blemishes in the coating 
per thousand feet of cable. If Y is Poisson distributed with a mean which increases as X increases, 
the distributions of Y cannot have constant variance at all levels of X since the variance of a Poisson 
variable equals the mean, which is increasing with X. 

3. Estimation of the weights by means of an estimated variance or standard deviation function or 
by means of groups of replicates or near replicates can be very helpful when there are major differences 
in the variances of the error terms. When the differences are only small or modest, however, weighted 
least squares with these approximate methods will not be particularly helpful. 

4. The weighted least squares output of some multiple regression software packages includes R2, 
the coefficient of mUltiple determination. Users of these packages need to treat this measure with 
caution, because R2 does not have a clear-cut meaning for weighted least squares. 

5. The weighted least squares estimators of the regression coefficients in (11.9) for the case of 
known error variances u? can be derived readily. The derivation also shows that weighted least squares 
may be viewed as ordinary least squares of transformed variab les. The generalized multiple regression 
model in ( 11.1) may be expressed as follows i~ matrix form: 

where: 

E{E} = 0 
02{E} = W-1 

(11.21) 

Note that the variance-covariance matrix of the error terms in (11.2) is the inverse of the weight matrix 
defined in (11.7). 
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We now define a diagonal nlatrix containing the square roots of the weights Wi and denote it 
byWI/2: 

lJWo 
0 

0 fo 
WIf2 = 

llXU : 

0 0 1J (11.22) 

Note that W lf2 is symmetric and that W I/2W I/2 = W. The latter relation also holds for the corre­
sponding inverse matrices: W- 1f2W- I/2 = W- 1• 

We premultiply the terms on both sides of regression model (11.21) by W lf2 and obtain: 

which can be expressed as: 

where: 

Y
III 

= Wlf2y 

XU' = WI/2X 

€w = Wlf2€ 

By (S.4S) and (S.46), we obtain: 

E{€w} = WI/2E{€} = W lf2 0 = 0 

02{€w} = WI/20
2{€}Wlf2 = W I/2W- 1W lf2 

= W lf2W- Lf2W- If2W lj2 = I 

(11.23) 

(1l.23a) 

(11.23b) 

(11.24a) 

(11.24b) 

Thus, regression model (ll.23a) invol ves independent elTor terms with mean zero and constant 
variance u? == 1. We can therefore apply standard regression procedures to this transformed regression 
modeL 

For example. the ordinary least squares estimators of the regression coefficients in (6.2S) here 
become: 

Using the definitions in (11.23b), we obtain the result for weighted least squ<U'es given in (11.9): 

bu. = [(WI/2X)'WI/2Xrl (WIf2X)'WI/2y 

= (X'WI/2WL/2X)-IX'WI/2WI/2y 

= (X'WX)-IX'WY 

6. Weighted least squares is a special case of generalized least squares where the error terms not 
only 111ay have different variances but pairs of en'or terms may also be cOITelated. 

7. For simpk linear regression, the weighted least squares normal equations in (11.8) become: 

L WiYi = bU'o L Wi +bu•1 L wiX; 

LWiXi Y; = bwo LW;Xi +bU'1 Lw;xi 
(11.25) 
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and the weighted least squares estimators bwo and bw ! in (11.9) are: 

" v LWiXi LW;Yi 
~ WiXi'i - - LWi 

bw ! = ---------~~~--~-

L 
2 (LWi X;)' 

Wi Xi - " 
~Wi 

(11.26a) 

(11.26b) 

Note thatif all weights are equal so Wi is identically equal toa constant, the normal equations (11.25) 
for weighted least squares reduce to the ones for unweighted least squares in (1.9) and the weighted 
least squares estimators (11.26) reduce to the ones for unweighted least squfes in (1.10). • 

Multicollinearity Remedial Measures-Ridge Regressiort 

We consider first some remedial measures for serious multicollinearity that can be imple­
mented with ordinary least squares, and then take up ridge regression, a method of over­
coming serious multicollinearity problems by modifying the method ofleast squares.' 

Some Remedial Measures 
1. As we saw in Chapter 7, the presence of serious multicollinearity often does not affect 

the usefulness of the fitted model for estimating mean responses or making predictions, 
provided that the values of the predictor variables for which inferences are ~o be made 
follow the same multicollinearity pattern as the data on which the regression model is based. 
Hence, one remedial measure is to restrict the use of the fitted regression model to inferences 
for values of the predictor variables that follow the same pattern of multicollinearity. 

2. In polynomial regression models, as we noted in Chapter 7, use of centered data 
for the predictor variable(s) serves to reduce the multicollinearity among the first-order, 
second-order, and higher-order terms for any given predictor variable. 

3. One or several predictor variables may be dropped from the model in order to lessen 
the multicollinearity and thereby reduce the standard errors of the estimated regression 
coefficients of the predictor variables remaining in the model. This remedial measure has two 
important limitations. First, no direct information is obtained about the dropped predictor 
variables. Second, the magnitudes of the regression coefficients for the predictor variables 
remaining in the model are affected by the correlated predictor variables not included in the 
model. 

4. Sometimes it is possible tOjldd some cases that break the pattern of multicollinearity. 
Often, however, this option is not available. In business and economics, for instance, many 
predictor variables cannot be controlled, so that new cases will tend to show the same 
intercorrelation patterns as the earlier QIles. 

5. In some economic studies, it is pqssible to estimate the regression coefficients for 
different predictor variables from different sets of data and thereby avoid the problems of 
multicollinearity. Demand studies, for instance, may use both cross-section and time series 
data to this end. Suppose the predictor variables in a demand study are price and income, 
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and the relation to be estimated is: 

(11.27) 

where Y is demand, X I is income, and X2 is price. The income coefficient 131 may then be 
estimated from cross-section data. The demand variable Y is thereupon adjusted: 

(11.28) 

Finally, the price coefficient f32 is estimated by regressing the adjusted demand variable Y' 
on X2 . 

6. Another remedial measure for multicollinearity that can be used with ordinary least 
squares is to form one or several composite indexes based on the highly coo·elated prediCtor 
variables, an index being a linear combination of the correlated predictor vatiables. The 
methodology of principal components provides cOmposite indexes that are uncorrelated. 
Often, a few of these composite indexes capture much of the information contained in 
the predictor variables. These few uncoo·elated composite indexes are then uscd in the 
regression analysis as predictor variables instead of the original highly correlated predictor 
variables. A limitation of principal components regression, also called latent root regression, 
is that it may be difficult to attach concrete meanings to the indexes. 

More information about these remedial approaches as wen as about Bayesian regression, 
where prior information about the regression coefficients is incorporated into the estimation 
procedure, may be obtained from specialized works such as Reference 11.3. 

Ridge Regression 

FIGURE 11.2 
Biased 
Estimator with 
SmaU Variance 
MayBe 
Preferable to 
Unbiased 
Estimator ·with 
Large 
Variance. 

Biased Estimation. Ridge regression is one of several methods that have been proposed to 
remedy multicollineruity problems by modifying the method of least squares to allow biased 
estimators of the regression coefficients. When an estimator has only a small bias and is 
substantially more precise than an unbiased estimator, it may well be the preferred estimator 
since it will have a larger probability of being close to the true parameter value. Figure 11.2 
ilIustrates this situation. Estimator b is unbiased but imprecise, whereas estimator bR is 
much more precise but has a small bias. The probability that bR falls near the true valuep 
is much greater than that for the unbiased estimator b. 

--- Sampling Distribution of 
Biased Estimator bR 

Sampling Distribution of 
Unbiased Estimator b 

Statistic 

Parameter 
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A measure of the combined effect of bias and sampling variation is the mean squared 
error, a concept that we encountered in Chapter 9 in connection with the C p criterion. 
Here, the mean squared error is the expected value of the squared deviation of the biased 
estimator bR from the true parameter fJ. As before, this expected value is the sum of the 
variance of the estimator and the squared bias: 

(11.29) 

Note that if the estimator is unbiased, the mean squared error is identical to the variance of 
the estimator. .~; 

'; 
Ridge Estimators. For ordinary least squares, the normal equations are given by (6.24): 

(X'X)b = X'Y (~1.30) 
When all variables are transformed by the correlation transformation (7.44), the transformed 
regression model is given by (7.45): 

yt = fJ~ X;l + fJ; X72 + ... + fJ;-1 X;'P_l + s; 
and the least squares normal equations are given by (7.52a): 

rxxb = ryX 

(11.31) 

(11.32) 

where rxx is the correlation matrix of the X variables defined in (7.47) andryx is the vector 
of coefficients of simple correlation between Y and each X variable defined in (7.48). .. 

The ridge standardized regression estimators are obtained by introducing into the least 
squares normal equations (11.32) a biasing constant c 2: 0, in the following form: 

(rxx + cl)bR = ryX - (11.33) 

where b R is the vector of the standardized ridge regression coefficients b:: 

R [:~ I b = 
(p-l)x 1 1 

b
p

_
1 

(11.33a) 

and I is the (p - 1) x (p - 1) identity matrix. Solution of the normal equations (11.33) 
yields the ridge standardized regression cQefficients: 

(11.34) 

The constant c reflects the amount of bias in the estUTIators. When c = 0, (11.34) reduces to 
the ordinary least squares regression coefficients in standardiz~d form, as given in (7.52b). 
When c > 0, the ridge regression coefficients are biased but tend to be more stable (i.e., 
less variable) than ordinary least squares ~stimators. 

Choice of Biasing Constant c. It can be shown that the bias component of the total 
mean squared error of the ridge regression estimator b R increases as c gets larger (with all b: tending toward zero) while the variance component becomes smaller. It can further be 
shown that there always exists some value c for which the ridge regression estimator b R has 
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Example 

a smaller total mean squared error than the ordinary least squares estimator b. The difficulty 
is that the optimum value of c varies from one application to another and is unknown. 

A commonly used method of determining the bia~ing constant c is based on the ridge 
trace and the variance inflation factors (V1F)k in (10041). The ridge trace is a simultaneous 
plot of the values of the p - 1 estimated riclge stanclarclized regression coeffiCients for 
different values of c, usually between 0 ancl I. Extensive experience has inclicatecl that the 
estimated regression coefficient'> bt may fluctuate widely as c is changed slightly from 0 
and some may even change signs. Gradually, however, these wide fluctuations cea'>e and th~ 
magnitudes of the regression coefficients tend to move slowly toward zero a<; c is increased 
further. At the same time, the values of (VIF)k tend to fall rapidly as c is changed from 0, and 
gradually the (VIFh values also tend to change only moderately as c is increa<;ed further 
One therefore examines the ridge trace and the VIF values and choose·s the smallest valu~ 
of c where it is deemed that the regression coefficients first become stable in the ridge trace 
and the VIF values have become sufficiently small. The choice is thus ajuclgmental one . 

. 
In the body fat example with three preclictor variables in Table 7.1, we noted previously 
several informal indications of severe multicollinearity in the clata. Incleecl, in the fitted 
model with three predictor variables (Table 7.2d), the estimated regression coefficient bz 
is negative even though it was expected that amount of body fat is positively related to 
thigh circumference. Ridge regression calculations were made for the body fat example 
data in Table 7.1 (calculations not shown). The ridge standardized regression coefficients 
for selected values of c are presented in Table 11.2, and the variance inflation factors are 
given in Table 11.3. The coefficients of mUltiple determination RZ m'e also shown in the 
latter table. Figure 11.3 presents the riclge trace of the estimated stanclarclizecl regression 
coefficients based on calculations for many more values of c than those shown in Table 11.2. 
To facilitate the analysis, the horizontal c scale in Figure 11.3 is logarithmic. 

TABLE 11.2 Ridge Estimated Standardized 
Regression Coefficients for Different Biasing TABLE 11.3 VIF Values for Regression Coefficients 
Constants c-Body Fat Example with Three and R2 for Different Biasing Constants c-Body Fat 
Predictor Variables. Example with Three Predictor Variables. 

c b R 
1 b R 

2 br c (VIF) 1 (VIF)2 (VIF)3 R2 

.000 4.264 -2.929 -1.561 .000 708.84 564.34 104.61 .8014 

.002 1.441 -AlB -04813 .002 50.56 40.45 8.28 ]901 

.004 1.006 -.0248 -.3149 .004 16.98 13.73 3.36 ]864 

.006 .8300 .1314 -.2472 .006 8.50 6.98 2.19 .7847 

.008 .7343 .2158 -.2103 .008 5.15 4.30 1.62 .7838 

.010 .6742 .2684 -.1870 .010 3049 2.98 1.38 .7832 

.020 .5463 .3774 -.1369 .020 1.10 1.08 1.01 ]818 

.030 .5004 .4134 -.1181 .030 .63 ]0 .92 .7812 

.040 .4760 .4302 -.1076 .040 045 .56 .88 .7808 

.050 .4605 .4392 -.1005 .050 .37 .49 .85 ]804 

.100 .4234 .4490 -.0812 .100 .25 .37 .76 .7784 

.500 .3.377 .3791 -.0295 .500 .15 .21 040 .7427 
1.000 .2798 .3101 -.0059 1.000 .11 .14 .23 .6818 
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Note the instability in Figure 11.3 of the regression coefficients for very sm~ll values 
of c. The estimated regression coefficient bf, in fact, Jchanges signs. Also note~he rapid 
decrease in the VIF values in Table 11.3. It was decided to employ C = .02 here because for 
this value of the biasing constant the ridge regression coefficients have VIF values near 1 
and the estimated regression coefficients appear to have become reasonably stable. The 
resulting fitted model for C = .02 is: 

Y* = .5463X~ + .3774X; - .1369X; 

Transforming back to the original variables by (7.53), we obtain: 

Y = -7.3978 + .5553X t + .3681X2 - . 1917X3 

where Y = 20.195, XI = 25.305, X2 = 51.170, X3 = 27.620, sy;"5.106, SI = 5.623, 
S2 = 5.235, and S3 = 3.647. 

The improper sign on the estimate for fh. has now been eliminated, and the estimated 
regression coefficients are more in line with prior expectations. The sum o{tlie squared 
residuals for the transformed variables, which increases with c, has only increased from 
.1986 at c = 0 to .2182 at c = .02 while R2 decreased from .80l4 to .7818. These changes 
are relatively modest. The estimated mean body fat when X hl = 25.0, X h2 = 50.0, and 
X h3 =29.0 is 19.33 for the ridge regression at c= .02 compared to 19.19 utilizing the 
ordinary least squares solution. Thus, the ridge solution at c =.02 appears to be quite 
satisfactory here and a reasonable alternative to the ordinary least squares solution. 

Comments 

1. The normal equations (11.33) for the, ridge estimators are as follows: 

(1 +c)bf + 

(11.35) 
... : 

rp-I,tbf + rp-ubf + ... + (l + c)b;_t = rY,p-l 

where rij is the coefficient of simple correlation between the ith and jth X variables and rYj is the 
coefficient of simple correlation between the response variable Y and the jth X variable. 
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2. VIF values for ridge regression coefficients bII are defined analogously to those for ordinary 
least squares regression coefficients. Namely, the VIF value for bt measures how large is the varianc 
of b{ relative to what the variallce would be if the predictor variables were uncorrelmed. It c e 
be shown that the VI F values for the ridge regres~ion coefficients bt are the diagonal elements of ~ 
following (p - I) x (p - I) matrix; 

(11.36) 

3. The coefficient of multiple determination R2, which for ordinary le<tst squares is given in (6.40): 

? SSE 
R- = 1--- (11.37) 

SSTO 

can be defined an<tlogously for ridge regression. A simplification occurs, however, bequse the tOla! 
sum of squares for the correlation-transformed dependent variable Y* in (7.44a) ~s; 

(11.38) 

The fitted values with ridge regression are: 

YA * I /I X* I /I 'X' i =}! II + ... + 7 /,-1 ;.,,-! (11.39) 

where the X:k are the X vatiables transformed according to the correlation transform<ttion (7.44b). 
The error sunl of squares, as w;ual, is: 

~ A? 

SSE/I = L(Yi• - Y,*)- (11.40) 

where yt is given in (1\.39). R2 for ddge regression then becomes: 

R~ = I-SSE/I (11.41) 

4. Ridge regression estimates can be obtained by the method of penalized least squares. The 
penalized least ~quares criterion combines the usual sum of squared errors with a pen<tlty for large 
regression coefficients: 

The penalty is a biasing constant, c, times the sum of squares of the regression coefficients. Large 
absolute regression parameters lead to a large penalty; thus, it can be seen that for c> 0 tile "best" 
coefficients generally will be smaller in absolute magn.itlLde than the ordinary least squ<tres estimates. 
For this reason, ridge estimators are sometimes referred to as shrinkage estimators. 

5. Ridge regression estimates tend to be stable in the sense that they are usually little affected by 
small changc.'! in the data on which the fitted regression is based. In contrast, ordinary least squares 
estimates may be highly unstable ullder these conditions when the predictor variables are highly 
multicollinear. Predictions of new observations made from lidge estitl1ated regression functions tend 
to be more precise than predictions made from ordinary least squares regression functions when 
the predictor variables are correlated alld the new observations follow the same multicollinearity 
pattern (see, for instance, Reference 11.4). The prediction precisioll advantage with ridge regression 

is especially great when the intercolTelations among the predictor variables are high. 

6. Ridge estimated regression functions at times will provide good estimates of mean responses 
or predictions of new observations for levels of the predictor variables outside the region of the obser­
vations on which the regression function is based. In contrast, estimated regression functions based 
on ordinary ~east squares may perform quite poorly in such circumstances. Of course, any estimation 
or prediction well outside the region of the observations should always be made with great caution. 
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7. A major limitation of ridge regression is that ordinary inference procedures are not applicable 
and exact distributional properties are not known. Bootstrapping, a computer-intensive procedure to 
be discussed in Section 11.5, can be employed to evaluate the precision of ridge regression coefficients. 
Another limitation of ridge regression is that the choice of the biasing constant c is a judgmental one. 
Although a variety of formal methods have been developed for making this choice, these have their 
own limitations. 

8. The ridge regression procedures have been generalized to allow for differing biasing constants 
for the different estimated regression coefficients; see, for instance, Reference 11.3. 

9. Ridge regression can be used to help in reducing the number of potential predictor variables in 
exploratory observational studies by analyzing the ridge trace. Variables whose ridge trace is unstable, 
with the coefficient tending toward the value of zero, are dropped with this approach. Also, variables 
whose ridge trace is stable but at a very small value are dropped. Finally, variai;JJes with unstable ridge 
traces that do not tend toward zero are considered as candidates for dropping. ~ • 

11.3 Remedial Measures for Influential Cases-J Robust Regres~ion 

We noted in Chapter 10 that the hat matrix and studentized deleted residuals are valuable 
tools for identifying cases that are outlying with respect to the X and Y variables. In 

, addition, we considered there how to measure the influence of these outlying cases on 
the fitted values and estimated regression coefficients by means of the DFFITS, Cook's 
distance, and DFBETAS measures. The reason for our concern with outlying cases is that 
the method of least squares is particularly susceptible to these cases, resulting sometimes 
in a seriously distorted fitted model for the remaining cases. A crucial question that arises 
now is how to handle highly influential cases. 

A first step is to examine whether an outlying case is the result of a recording error, 
breakdown of a measurement instrument, or the like. For instance, in a study of the waiting 
time in a telephone reservation system, one waiting time was recorded as 1,000 rings. This 
observation was so extreme and umealistic that it was clearly erroneous. If erronl;QUS data 
can be corrected, this should be done. Often, however, erroneous data cannot be corrected 
later on and should be discarded. Many times, unfortunately, it is not possible after the 
data have been obtained to tell for certain whether the observations for an outlying case are 
erroneous. -Such cases should usually not be discarded. 

If an outlying influential case is not clearly erroneous, the next step should be to examine 
the adequacy of the model. Scientists frequently have primary interest in the outlying cases 
because they deviate from the currently accepted model. Examination of these outlying 
cases may provide important clues as to how the model needs to be modified. In a study 
of the yield of a process, a first-order model was fitted for the two important factors under 
consideration because previous studies haq not found any i.nteraction effects between these 
factors on the yield. One case i12 the current study was outlying and highly influential, 
with extremely high yield; it corresponded to unusually high levels of the two factors. The 
tentative conclusion drawn was that an interaction effect is present; this was subsequently 
confirmed in a follow-up study. The imnroved model, resultingJrom the outlying case, led 
to greatly improved process productivity. 

Outlying cases may also lead to the finding of other types of model inadequacies, such as 
the omission of an important variable or the choice of an incorrect functional form (e.g., a 
quadratic function instead of an exponential function). The analysis of outlying influential 
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cases can frequently lead to valuable in~ights for strengthening the model such that the 
outlying ca~e is no longer an outlier but is accounted for by the model. 

Discarding of outlying influential ca~es that are not clearly erroneous and that cannot be 
accounted for by model il11provel11ent~ should be done only rarely, such as when the model 
is not intended to cover the special circumstances related to the outl ying case~. For example 
a few cases in an industnal ~tudy were outlying and highly influential. These Cases occurred 
early in the study. when the plant wa~ in transition from one process to the new one under 
study. Discarding of these early cases was deemed to be reasonable since the model was 
intended for use after the new proce~s had stabilized. 

An alternative to discarding outlying cases that is less severe is to dampen the influence 
of these cases. That is the purpose of robust regression. 

Robust Regression 
Robust regression procedures dampen the influence of outlying cases, as compared to 
ordinary lea'>t squares estimation, in an effort to" provide a better fit for the majority of 
case~. They are useful when a known, smooth regression function is to be fitted to data that 
are '"noisy;' with a number of outlying cases, so that the assumption of a normal distribution 
for the error terms is not appropriate. Robust regression procedures are also useful when 
automated regression analysis is required. For example, a complex measurement instrument 
used for internal medical examinations must be calibrated for each use. There is nO time fa-a 
thorough identification of outlying cases and an analysis of their influence, nor for a careful 
consideration of remedial measures. Instead, an automated regression calibration must be 
used. Robust regression procedures will automatically guard against undue influence of 
outlying cases in this situation. 

Numerous robust regression procedures have been developed. They are described in 
specialized texts, such a<; References 11.5 and 11.6. We mention briefly a few of these pro­
cedures and then describe in more detail one commonly used procedure based on iteratively 
reweighted least squares. 

LAR or LAD Regression. Least absolute residuals (LAR) or least absolute deviations 
(LAD) regression, also called minimum L 1-l1orm regression, is one of the most widely used 
robust regression procedures. It is insensitive to both outlying data values and inadequacies 
of the model employed. The method of least absolute residuals estimates the regression 
coefficients by minimizing the sum of the absolute deviations of the Y observations from 
their means. The criterion to be minimized, denoted by LJ, is: 

II 

LI = L IY; - ({:Jo + fJ,X i , + '" + fJp-1 Xi.p-I)I (11.42) 
;=1 

Since absolute deviations rather than squared ones are involved here, the LAR method 
places less emphasis on outlying observations than does the method of least squares. 

The estimated LAR regression coefficients can be obtained by linear programming tech­
niques. Details about computational aspects may be found in specialized texts, such as 
Reference 11.7. The LAR fitted regression model differs from the least squares fitted model 
in that the residuals ordinarily will not sum to zero. Also, the solution for the estimated 
regression coefficients with the method of least absolute residuals may not be unique. 
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IRLS Robust Regression. Itemtively reweighted least squares (IRLS) robust regression 
uses the weighted least squares procedures discussed in Section 11.1 to dampen the influence 
of outlying observations. Instead of weights based on the error variances, IRLS robust 
regression uses weights based on how far outlying a case is, as measured by the residual for 
that case. The weights are revised with each itemtion until a robust fit has been obtained. 
We shall discuss this procedure in more detail shortly. 

LMS Regression. Least median of squares (LMS) regression replaces the sum of squared 
deviations in ordinary least squares by the median of the squared deviations, which is a robust 
estimator of location. The criterion for this procedure is to minimize the median squared 
deviation: 

median{[Yi - ({3o + {31 XiI + ... + {3p-t X i,p-'i?f} (11.43) 
., 

with respect to the regressi on coefficients. Thus, this procedure leads to estimated regressi on 
coefficients bo, b t , ... , bp - t that minimize the median of the squared residuals. i 

Other Robust Regression Procedures. There are many other robust regression pro­
cedures. Some involve trimming one or seveml of the extreme squared deviations before 
applying the least squares criterion; others are based on mnks. Many of the robust regressi on 
procedures require extensive computing. 

IRIS Robust Regression 
Itemtively reweighted least squares was encountered in Section 11.1 as a remedial measure 
for unequal error variances in connection with the obtaining of weights from an estimated 
variance or standard deviation function. For robust regression, weighted least squares is 
used to reduce the influence of outlying cases by employing weights that vary inversely 
with the size of the residual. Outlying cases that have large residuals are thereby given 
smaller weights. The weights are revised as each itemtion yields new residuals until the 
estimation process stabilizes. A summary of the steps follows: 

1. Choose a weight function for weighting the cases. 
2. Obtain starting weights for all cases. 
3. Use ,the starting weights in weighted least squares and obtain the residuals from the fitted 

regression function. 
4. Use the residuals in step 3 to obtain revised weights. 
5. Continue the itemtions until convergence is obtained. 

We now discuss each of the steps in IRLS robust regression. 

Weight Function. Many weight functions have been proposed for dampening the influ­
ence of outlying cases. 1\vo widely used weight functions are the Huber and bisquare weight 
functions: 

w ~ {:345 lur::::: 1.345 

Huber: (11.44) 

.Iul 
lui> 1.345 

Bisquare: w~u-c~sr lui::::: 4.685 
(11.45) 

lui> 4.685 
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FIGURE 11.4 
Two Weight 
Functions Used 
in IRLS Robust 
Regression. 

(a) Huber Weight Function 

w = {~.345/IUI 
lui <; 1.345 

lui> 1.345 

'~l~~_ 
-1.345 0 1.345 u 

(b) Bisquare Weight Function 

lui :so 4.685 

lui> 4.685 

'~l ,~, 
-4.685 0 4.685"U 

As before, w denotes the weight, and II denotes the scaled residual- to be defined shonly. 
The constant 1.345 in the Huber weight function and the constant 4.685 in the bisquare 
weight function are called tllning constants. They were chosen to make the IRLS robust 
procedure 95 percent efficient for data generated by the normal error regression model (6.7). 
Figure I 1.4 shows graphs of the two weight funetions. Note how the weight w according 
to each weight function declines as the absolute scaled residual gets larger, and that each 
weight function is symmetric around u = O. Also note that the Huber weight function does 
not reduce the weight of a ca<;e from 1.0 until the absolute scaled residual exceeds 1.345, 
and that all cases receive some positive weight, no matter how large the ab,olute scaled 
residual. In contrast, the bisquare weight function reduces the weights of all cases from 
1.0 (unless the residual is zero). In addition, the bisquare weight function gives weight 0 
to all cases whose absolute scaled residual exceeds 4.685, thereby entirely exclUding these 
extreme cases. 

Starting Values. Calculations with some of the weight functions are very sensitive to the 
starting values; with others, this is less of a problem. When the Huber weight function is 
employed. the initial residuals may be those obtained from an ordinary least squares fit 
The bisquare function calculations. on the other hand, are more sensitive to the starting 
values. To obtain good starting values for the bisquare weight function, the Huber weight 
function is often used to obtain an initial fObust regression fit, and the residuals for this fit 
are then employed as starting values for several iterations with the bisquare weight function. 
Alternatively, least absolute residuals regression in (11.42) may be used to obtain starting 
residuals when the bisquare weight function is used. 

Scaled Residuals. The weight functions (I 1.44) and (I 1.45) are each designed to be used 
with scaled residuals. The semistudentized residuals in (3.5) are scaled residuals and could 
be employed. However, in the presence of outlying observations, .J MSE is not a resistant 
estimator of the error term standard deviation (); the magnitude of JMSE can be greatly 
influenced by one or several outlying observations. Also, .JMSE is not a robu,t estimator 
of a when the distribution of the error terms is far from normal. Instead, the resistLmt and 
robust median absolute deviation (MAD) estimator is often employed: 

I 
MAD = -- median{lei - median{e;}l} 

.6745 
(11.46) 

The constant .6745 provides an unbiased estimate of a for independent observations from 
a normal distribution. Here, it serves to provide an estimate that is approximately unbiased. 
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The scaled residual Ui based on (11.46) then is: 

ei u,---,- MAD (11.47) 

Number of Iterations. The iterative process of obtaining a new fit, new residuals and 
thereby new weights, and then refitting with the new weights continues until the process 
converges. Convergence can be measured by observing whether the weights change rela­
tively little, whether the residuals change relatively little, whether the estimated regression 
coefficients change relatively little, or whether the fitted values change relatively little. 

The Educational Testing Service Study America's Smallest School: The Family (Ref. 11.8) 
investigated the relation of educational achievement of student~to their home environ­
ment. Although earlier studies examined the relation of educationcil achievement to family 
socioeconomic status (e.g., parents' education, family income, pctrents' occupation), this 
study employed more direct measures of the home environment. Specifically, tILe relation 
of educational achievement of eighth-grade students in mathematics to the following five 
explanatory variables was investigated: 

PARENTS (X I)-percentage of eighth-grade students with both parents living at home 

ROMELIB (X2)-percentage of eighth-grade students with three or more types of 
reading materials at home (books, encyclopedias, magazines, newspapers) 

READING (X3)-percentage of eighth-grade students who read more than 10 pages 
a day 

TVWATCR (X4)-percentage of eighth-grade students who watch TV for six hours or 
more per day 

ABSENCES (X5)-percentage of eighth-grade students absent three days-or more last 
month 

Data on average mathematics proficiency (MATHPROF) and the home ~mironment 
variables were obtained from the 1990 National Assessment of Educational Progress for 
37 states, the District of Columbia, Guam, and the Virgin Islands. A portion of the data is 
shown in Table 11.4. 

Our first example of robust regression using iterativ:ely reweighted least squares involves 
only one predictor, ROMELIB (X2 ). In this way, simple plots can be used to present the 
data and the fitted regression function. 

Figure 11.5a presents a scatter plot of the data, together with a plot of a first-order 
(simple linear) regression model fit by ordinary least squares and a lowess smooth. 1;'he 
lowess smooth suggests that the relationship between home reading resources and average 
mathematics proficiency is curvilinear---.-possibly second order-for the majority of states, 
but three points are clear outliel]. The District of Columbia and the Virgin Islands are outliers 
with respect to mathematics proficiency (Y), and Guam appears to be an outlier with respect 
to both mathematics proficiency and availab Ie reading resources (X). Figure ] 1.5b presents 
a plot against X of the residuals obtained from the fitted first-order model in Figure 11.5a. 
This plot shows clearly the three outlying Y cases. Note also from the residual plot that 
there is a group of six states with low reading resources levels, between 68 and 73, whose 
average mathematics proficiency scores are all above the fitted regression line. This is 
another indication that a second-order polynomial model may be appropriate. 
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FIGURE 11.5 
Comparison 
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Multiple linear Regression 

(a) Lowess and Unear Regression Fits 
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TABLE 11.4 Data Set-Mathematics Proficiency Example. 

~' 

(State 

?Alabama 
~;Aiizoi;la 
"Afl<ijf}.saS 

m;~illjfpmia 

MATHPROF 
Y 

252 
259 
256 
256 

23J 

231 

258 

PARENTS HOMELIB 
Xl X2 

75 78 
75 73 
;77 77 
78 68 

47 76 

81 64 

77 70 

READING TVWATCH ,ABSENCES 
X ,3 X4 )(5, 

34, 18. ,18 
41' '') fi 26 
,2~ 20 ,23 
42 1'1. 28 

,0,.',. 

'24 33 37 
.-~ .. ' ... 

:32 ~o 28 
,,';-. J .. 

~ 
:34 1'5 18 ~p'~T~as 

'iK ~v.~9inJslands 218 63 76 23 27 }.22 n 16 

i~eta 
264 78 ~2 24 
256 82 80 '36. 16 25. 
274 81 86 \:38 8 21 
272 85 86 43 7 23 

Source: ETS POlicy Information Center, America's Smallest School: The Family (Princeton, New Jersey: EducationaL Testing Service, L992). 

Second-order model (8.2): 

(11.48) 

was next fit, again using ordinary least squares. Recall that this model requires calculation 
of the centered predictor Xi2 = Xi2 - X i2 and its square, Xf2' A plot of the fit of the second­
order model, superimposed on a scatter-plot of the data, is shown in Figure 11-:5c. Though 
improved, the fit is again unsatisfactory: the six points that fell above the first-order fit are 
still above the fitted second-order model. The regression line is clearly being influenced by 
the three outliers identified above. The Cook's distance measures for the second-order fit 
are displayed in an index plot in Figure 11.5d. The plot confirms the influence of Guam and 
the Virgin Islands. 

In an effort to dampen the effect of the three outliers, we shall fit second-order model (8.2) 
robustly, using iteratively reweighted least squares and the Huber weight function (11.44). 
We illustrate the calculations for case 1, Alabama. The regression model to be fitted is the 
first-order model. An ordinary least squares fit of this model yields: 

~, 2 
Y =_258.436 + 1.8327x2 + 0.06491x2 (11.49) 

The residual for Alabama is eL = -2.4109. The residuals are shown in Column 1 of 
Table 11.5. The median of the 40 residuals is median{ei} = 0.7063. Hence,eL - median{ei} = 
- 2.4109 - 0.7063 = -3.1172, and the absolute deviation1s leL - median{ei}I = 3.1172. 
The median of the 40 absolute deviations is: 

median{lei - median{ei}I} = 3.1488 
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TABLE 11.5 Iteratively HUber·Reweighted Least Squares Calculations-Mathematics Proficiency Example. 

1 
2 
3 
4 

8 

11 

36 
37 
38 
39 
40 

--(1) (2) (3) (4) (5) (6) (7) (8) 
Iteration 0 Iteration 1 Iteration 2 Iteration 7 

e/ 

-2.4109 
10.5724 

3.0454 
10.3104 

-20.6282 

-14.8358 

-33.6282 
2.4659 

-1.7129 
3.2658 
1.2658 

Ui Wi e, Wi ei Wi er 
-0.51643 1.00000 -3.7542 1.00000 -4.0354 1.00000 -4.1269 

2.26466 0.59391 8.4297 0.71515 7.4848 0.86011 6.7698 
0.65234 1.00000 1.5411 1.00000 1.1559 1.00000 0.9731 
2.20853 0.60900 7.3822 0.81663 5.4138 1.00000 3.6583 

-4.41866 0.30439 -22.2929 0.27042 -22.7964 0.25263 -23.0873 

-3.17791 0.42323 -18.3824 0.32795 -21.4287 0.24019 -24.3167 

-7.20333 0.18672 -35.2929 0.17081 -35.7964 0.16161 -36.0873 
0.52821 1.00000 1.7722 1.00000 -<' 1.7627 1.00000 1.8699 

-0.36691 1.00000 -2.7325 1.00000 -2.8490 1.00000 -2.8079 
0.69954 1.00000 3.2305 1.00cfoo 3.2624 1.00000 3.3014 
0.27113 1.00000 1.2305 1.00000 1.2624 1.00000 1.3014 

so that the MAD estimator (11.46) is: 

MAD = 3.1488 = 4.6683 
.6745 

Hence, the scaled residual (11.47) for Alabama is: 

-2.4109 
ilL = 

4.6683 
= -.5164 

The scaled residuals are shown in Table I 1.5, column 2. Since III tI = .5164 S 1.345, the 
initial Huber weight for Alabama is w! = 1.0. The initial weights are shown in Table 11.5, 
column 3. To interpret these weights, remember that ordinary least squares may be viewed 
a<; a special ca~e of weighted lea';t squares with the weights for all cases being equal to I. 
We note in column 3 that the initial weights for cases 8. I I. and 36 (District of Columbia, 
Guam, and Virgin Islands) are substantially reduced, and that the weights for some other 
states are reduced somewhat. 

The first iteration of weighted least squares uses the initial weights in column 3, leading 
to the fitted regression model: 

j> = 259.390 + 1.6701x2 + 0.06463xi (11.50) 

This fitted regression function differs considerably from the ordinary least squares fit 
in ( I 1.49). The coefficient of Xl has decreased from bl = 1.8327 to b1 = 1.670 I, while the 
curvature term bn = 0.06463 changed little from its previous value of hn = 0.06491. This 
ha,; permitted the estimated regression function to increase for smaller values of X2 and to 
therefore conform more closely to the six values that previously fell above the fitted line. 

Iteration 2 uses the residuals in column 4 of Table I 1.5, scales them, and obtains revised 
Huber weights. whiCh are then used in iteration 2 of weighted least square~. The weights 
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obtained for the eighth iteration differed relatively little from those for the seventh iteration; 
hence the iteration process was stopped with the seventh iteration. The final weights are 
shown in Table 11.5, column 7. Note that only minor changes in the weights occurred 
between iterations 2 and 7. Use of the weights in column 7 leads to the final fitted model: 

Y = 259.421 + 1.5649x2 + 0.08016xi (11.51) 

The residuals for the final fit are shown in Table 11.5, column 8. Just as the weights changed 
only moderately between iterations 2 and 7, so the residuals changed only to a small extent 
after iteration 2. Note that the coefficient of the curvature term did change a bit more 
substantially-from b22 = .06463 to b22 = .08016. '" 

Figure 11.5e shows the scatter plot and the IRLS fitted second-order iegression function, 
and Figure ll.5f contains an index plot of the weights used in the final iteration. The robust 
fit now tracks the responses to the 37 states extremely well, and the fit to the six casef that 
were previously above the regression line is now satisfactoJY. The plot of the final weIghts 
in Figure 11.5f shows clearly the downweighting of the three outliers. 

We conclude from the robust fit in Figure ll.5e that there is a clear upward-curving 
" relationship between availability of reading resources in the home and average mathematics 

proficiency at the state level. This does not necessarily imply a causal relation, of course. 
The availability of reading resources may be positively correlated with other variables that 
are causally related to mathematics proficiency. 

We shall explore from a descriptive perspective the relationship between average mathemat­
ics proficiency and the five home environment variables. A MINITAB scatter plot matrix of 
the data is presented in Figure 11.6a and the correlation matrix is presented in Figure 11.6b. 
The scatter plot matrix also shows the lowess nonparametric regression fits, where q = .9 
(the proportion defining a neighborhood) is used in the local fitting. 

We see from the first row of the scatter plot matrix that average mathematics prQJidency 
is related to each of the five explanatory variables and that there are three clear outliers. 
They are District of Columbia, Guam, and Virgin Islands, as noted earlier in this section. 
The lowess fits show positive relations for PARENTS, ROMELlB, and READING and a 
negative relation for ABSENCES. The lowess fit for TVWATCR is distorted because of the 
outliers. If these are ignored, the relation is negative. The correlation matrix shows fairly 
strong linear association with average mathematics proficiency for all explanatory variables 
except ABSENCES, where the degree of linear association is moderate. 

The relationships with mathematics proficiency found in Figure 11. 6a must be interpreted 
with caution. We see from the remainder of the scatter plot matrix and from the correlation 
matrix in Figure 11.6b that the explanatory. variables are correlated with each other, some 
fairly strongly. Also, some of the explanatory variables are correlated with other important 
variables not considered in this study. For example, the percentage of students with both 
parents at home is related to family income. • 

For simplicity, we consider only first-order terms in this ex.ample. An initial fit of the 
first-order model to the data using ordinary least squares yields the following estimated 
regression function: • 

Y = 155.03 + .3911X1 + .8639X2 + .3616X3 - .8467 X4 + .1923X5 (11.52) 
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FIGURE 11.6 
Scatter Plot 
Matrix with 
Lowess 
Smooths, and 
Correlation 
Matrix­
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Proficiency 
Example. 
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(b) Correlation Matrix 

MATHPROF PARENTS HOMELIB READING TVWATCH 

PARENTS 0.741 
HOMELIB 0.745 0.395 
READING 0.717 0.693 0.377 
TVWATCH -0.873 -0.831 -0.594 -0.792 
ABSENCES -0.480 -0.565 -0.443 -0.357 0.512 

The signs of the regression coefficients, except for b5, are in the expected directions. The 
coefficient of multiple determination for this fitted model is R2 = .86, suggesting that the 
explanatory variables are strongly related to average mathematics proficiency. 

Table 11.6 presents some diagnostics for the fitted model in (11.52): leverage hu, studen· 
tized deleted residual ti, and Cook's distance Di . We see that the District of Columbia, Guam 
Texas, and Virgin Islands have leverage values equal to or exceeding 2p / n = 12/40 == .30 
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; State hu t; D; 

1 Alabama .16 -.05 .00 
2 Arizona .19 04.0 ,,01 
3 Arkansas .16 1.41 .06 
4 California .29 .10 "~PO 

8 D.C. .69 1041 fl. 

11 Guam .34 -2.83 .57 

35 Texas .30 2.25 .33 ~. 

36 VirginJslands .32 -5.21 1.21 
37 Virginia .06 .90 .01 
38 WesLVirginia .13 "'-'.91 .02 i 
39 WiSconsin .08 .39 .OQ 
40 Wyoming .08 -.91 .01 

We also see that the Virgin Islands is outlying with respect to its Y value; the absolute 
value of its studentized deleted residual t36 = -5.21 exceeds the Bonferroni critical value 
at a = .05 of t(1 - al2n; n - p - 1) = t(.99938; 33) = 3.53. Of these outlying cases, 
the Virgin Islands is clearly influential according to Cook's distance measure, and Dis­
trict of Columbia and Guam are somewhat influential; the 50th percentile of the F (6, 34) 
distribution is .91, and the 25th percentile is .57. _, 

Residual plots against each of the explanatory variables and against Y (not shown here) 
presented no strong indication of nonconstancy of the error variance for the states aside from 
the outliers. Since the explanatory variables are correlated among themselves, the qu_estion 
arises whether a simpler model can be obtained with almost as much descriptive ability as 
the model containing all five explanatory variables. Figure 11.7 presents the MINITAB best 
subsets regression output, showing the two models with highest R2 for each number of X 
variables. We see that the two best models for three variables (p = 4 parameters) contain 
relatively little bias according to the c;, criterion and have R2 values almost as high as the 
model with all five variables. 

We explore now one of these two models, the one containing HOMELlB, READING, 
and TVWATCH. In view of the outlying and influential cases, we employ IRLS robust 
regression with the Huber weight function (11.44). We find that after eight iterations, the 
weights change very little, so the iteration process is ended with the eighth iteration. The 
final robust fitted regression functi~n is: ' 

Y = 207.83 + .7942X2 + .1637X3 - 1.1695X4 (11.53) 

The signs of the regression coefficients agree with expectation~. For comparison, the re­
gression function fitted by ordinary least squares is: 

Y = 199.61 + .7804X2 + .4012X3 - 1.1565X4 (11.54) 
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Adj. TIN C E 
Vars R-sq R-sq C-p S S B G H S 

1 76,3 75.7 22,0 6.5079 X 
1 55.5 54,3 72.8 8.9157 X 
2 84,2 83.4 4.6 5.3810 X X 
2 79.2 78,1 16,8 6,1743 X X 
3 85,1 83.9 4.4 5,2939 X X X 
3 85,1 83.8 4.5 5.3062 X X X 
4 85.9 84,3 4,5 5.2327 X X X X 
4 85,4 83,7 5,8 5 ,3285~ X X X X 
5 86.1 84,1 6.0 5.2680 X X X X X 

Notice that the robust regression led to a deemphasis of X3 (READING). with the other 
regression coefficients remaining almost the same. 

To obtain an indication of how well the robust regression model (11.53) describes the 
relation between average mathematics proficiency of eighth-grade students and the three 
home environment variables, we have ranked the 40 states according to their average math­
ematics proficiency score and according to their corresponding fitted value, The Spearman 
rank correlation coefficient (2.97), is .945, This indicates a fairly good ability of the three 
explanatory variables to distinguish between states whose average mathematics proficiency 
is very high or very low. 

The analysis of the mathematics proficiency data set in Table 11.4 presented here is by 
no means exhaustive, We have not analyzed higher-order effects, nor have we explored 
other subsets that might be reasonable to use. We have not recognized that the precision of 
the state data varies because the data are based on samples of different sizes, nor have we 
considered other explanatory variables that are related to mathematics proficiency, such as 
parents' education and family income, Furthermore, we have analyzed state averages, which 
may obscut'e important insights into relations between the variables at the family level. 

Comments 

I, Robust regression requires knowledge of the regression function, When the <Lppropriate re­
gression function is not clear. nonparall1etric regression may be useful. Nonp<trametric regression is 
discussed in Section I 1.4, 

2, Robust regression c<tn be employed LO identify outliers in situations where there are multiple 
outliers whose presence is nULsked WiLh di<tgnostic measures that delete one case at <L time, Cases 
whose final weights are relatively sm<LII are outlying, 

3, As illustrated by the nUlthematics proficiency example. robust regression is often useful for 
confirming the reaso!1<Lbleness of ordinary least sqmLres results, When robust regression yields similar 
results to ordinary least squmes (for example, the residuals are similar). one obutins some reassurance 
that ordin<try le<tst squares is not unduly inf1uenced by oUllying c<tses. 
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4. A limitation of robust regression is that the evaluation of the precision of the estimated regression 
coefficients is more complex than for ordinary least squares. Some large-sample results have been 
obtained (see, for example, Reference 11.5), but they may not perform well in the presence of outliers. 
Bootstrapping (to be discussed in Section 11.5) may also be used for evaluating the preciSion of robust 
regression results. 

5. When the Huber, bisquare, and other weight functions are based on the scaled residuals 
in (11.47), they primarily reduce the influence of cases that are outlying with respect to their Y 
values. To make the robust regression fit more sensitive to cases that are outlying with respect to their 
X values, studentized residuals in (10.20) or studentized deleted residuals in (10.24) may be used 
instead of the scaled residuals in (11.47). Again, JMSE may be replaced by MAD in (11.46) for better 
resistance and robustness when calculating the studentized or studentized deleted residuals. 

In addition, the weights Wi obtained from the weight function may be modified to reduce directly 
the influence of cases with large X leverage. One suggestion is to multiply'"the weight function weight 
Wi by Jl - hit, where hll is the leverage value of the ith case defined in (10.18). 

Methods that reduce the influence of cases that are outlying with respect to their X values are 
called bounded influence regression methods. i • 

11.4 Nonparametric Regression: Lowess Method 
~nd Regression Trees 

We considered nonparametric regression in Chapter 3 when there is one predictor variable 
in the regression model. We noted there that nonparametric regression fits are useful for 
exploring the nature of the response function, to con finn the nature of a particular response 
function that has been fitted to the data, and to obtain estimates of mean responses withl?ut 
specifying the nature of the response function. 

Nonparametric regression can be extended to multiple regression when there are tw~ or 
more predictor variables. Additional complexities are encountered, however, when making 
this extension. With more than two predictor variables, it is not possible to show the fitted 
response surface graphically, so one cannot see its appearance. Unlike parametric r~gression, 
no analytic expression for the response surface is provided by nonparametric regression. 
Also, as the number of predictor variables increases, there may be fewer and fewer cases in 
a neighborhood, leading to erratic smoothing. This latter problem is less serious when the 
predictor variables are highly correlated and interest in the response surface is confined to 
the region of the X observations. 

Numerous procedures have been developed for fitting a response surface when there 
are two or more predictor variables without specifying the nature of the response function. 
Reference 11.9 discusses a number of these procedures. These include locally weighted 
regressions (Ref. 11.10), regression trees (Ref. 11.11), projection pursuit (Ref. 11.12), and 
smoothing splines (Ref. 11.13). We disciIss the lowess method and regression trees in this 
section. We first extend the lowess method to multiple regression. In doing so, we will be 
able to describe it in far greater detail because we have established the necessary foundation 
of weighted least squares in Section 11.1. 

lowess Method 
We described the lowess method briefly in Chapter 3 for regression with one predictor 
variable. The lowess method for multiple regression, developed by Cleveland and Devlin 
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Example. 

(Ref. I 1.10), assumes that the predictor variables have already been selected, that the re. 
sponse function is smooth, and that appropriate transformations have been made or other 
remedial steps taken so that the error terms are approximately normally diStributed with 
constant variance. For any combination of X levels, the lowess method fit~ either a first­
order model or a second-order model based on cases in the neighborhood, with more 
distant cases in the neighborhood receiving smaller weights. We shall explain the lowess 
method for the case of two predictor variables when we wish to obtain the fitted valUe 

at (X"" X,d· 

Distance Measure. We need a distance measure showing how fm' each case is from 
(X'II. X"2)' Usually, a Euclidean distance measure is employed. For the ith case, this 
measure is denoted by di and is defined: 

(11.55) 

When the predictor variables m'C mea<;ured on different scales, each should be scaled by 
dividing it by its standard deviation. The median absolute deviation estimator in (I 1.46) 
can be used in place of the standard deviation if outliers are present. 

Weight Function. The neighborhood about the point (X"" X"2) is defined in telms of 
the proportion q of cases that are nearest to the point. Let dq denote the Euclidean distance 
of the furthest case in the neighborhood. The weight function used in the lowess method is 
the tricube weight function, which is defined as follows: 

di <dlJ 

di ::::dq 
(11.56) 

Thus, cases outside the neighborhood receive weight zero and cases within the neighborhood 
receive weights between 0 and I, the weight decreasing with gl'Cater distance. In this way, 
the mean response at (X'd, X"Z) is estimated locally. 

The choice of the proportion if defining the neighborhood requires a balancing of two 
opposing tendencies. The Im'ger is q, the smoothef will be the fit but at the same time the 
greater may be the bias in the fitted value. A choice of if between .4 and .6 may often be 
appropriate. 

Local Fitting. Given the weights for the n cases based on (I 1.55) and (I 1.56), weighted 
least squm'Cs is then used to fit either the fi rst -order model (6. I) or the second-order 
model (6.16). The second-order model is helpful when the response sUlface has substantial 
curvature; moderate curvilinem'ities can be detected by using the first-order model. After 
the regression model is fitted by weighted lea~t sqUat'Cs, the fitted value Y" at (X'/I, X"2) then 
serves as the nonparametric estimate of the mean response at these X levels. By recalculat­
ing the weights for different (X"I, X"z) levels, fitting the response function l'Cpeatedly, and 
each time obtaining the fitted value Y,p we obtain information about the response surface 
without making any assumptions about the nature of the response function. 

We shall fit a nonparametric regressIOn function fOf the life insurance example in Chapter 10. 
A portion of the data for a second group of ~ 8 managers is given in Table 11.7, columns 1-
3. The relation between amount of life insurance canied (Y) and income (X I) and risk 
avefsion (X 2) is to be investigated, the data pertaining to managers in the 30-39 age group. 



TABLE 11.7 
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forNon-
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Insurance 
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(1) (2) (3) . ,(4y (5) 
; XIl Xj2 Y, 'cJ, Wi 

1 66.290 7 240 3.01.3 0 
2 40.964 5 ~3 1.143 .300. 
3 72.996 10 31] 4.212 (j 

16 79.380 1 316 3.461 0 
17 52.766 8 154 2.663 Q 
18 55.916 6 164 2.188 ,0 

~ii:: 
; 

The local fitting will be done using the first-order model in (6.1) b~ause the number of 
available cases is not too large. For the same reason, the proportion of cases defil!ing the 
local neighborhoods is set at q = .5; in other words, eac]1local neighborhood is to consist 
of half of the cases. 

The exploration of the response surface begins at Xh 1 = 30, Xh2 = 3. To obtain a locally 
fitted value at Xh 1 = 30, Xh2 = 3, we need to obtain the Euclidean distances of each case 
from this point We shall use the sample standard deviations of the two predictor variables to 
standardize the variables in obtaining the Euclidean distance since the two variables are mea­
sured on different scales. The sample standard deviations are Sl = 14.739 and S2 = 2.3044. 
For case 1, the Euclidean distance from Xhl = 30, Xh2 = 3 is obtained as follows: 

_ [(66.290-30)2 (7-3 )2]1/2_ dl - + - 3.013 
14.739 2.3044 

The Euclidean distances are shown in Table 11.7, column 4. The Euclidean distance of the 
furthest case in the neighborhood of Xh 1 = 30, Xh2 = 3 for q = .5 is for the ninth case when 
these are ordered according to their Euclidean distance. It is dq = 1.653. Since d, == 3.013 > 
1.653, the weight assigned for case 1 is WI = O. For case 2, the Euclidean distance is 
d2 = 1.143. Since this is less than 1.653, the weight for case 2 is: 

W2 = [1 - (1.143/1.653)3]3 = .300 

The weights are shown in Table 11.7, column 5. 
The fitted first-order regression function using these weights is: 

Y = -134.076 + 3.571X, + 1O.532X2 

The fitted value for Xh! = 30, Xh2 = 3 therefore is: 

Yh = -134.076 + 3.5'71 (30) + 10.532(3) = 4.65 

In the same fashion, locally fitted values at other. values of Xhl and Xh2 are calculated. 
Figure 11.8a contains a contour plot of the fitted response surface. The surface clearly 
ascends as Xl increases, but the effect 6f X2 is more difficult to see from the contour plot. 
The effect of X2 can be seen more easily by the conditional effects plots of Y against 
Xl at low, middle, and high levels of X2 in Figure 11.8b. The conditional effects plots in 
Figure 11.8b are also called two-variable conditioning plots. Note that the expected amount 
of life insurance carried increases with income (X I) at all levels of risk aversion (X2). The 
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FIGURE 11.8 Contour and Conditioning Plots for Lowess Nonparametric Regression-Life Insurance 
Example. 
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response functions for X 2 = 3 and X2 = 6 appear to be approximately linear. The dip in the 
left part of the response function for X2 = 9 may be the result of an interaction or of noisy 
data and inadequate smoothing. Note also from Figure 11.8b that the expected amount of 
life insurance carried at the higher income levels increases as the risk aversion becomes 
very high. 

Comments 

1. The fitted nonparametric response surface can be used, just as for simple regression. for exam­
ining the appropriateness of a fitted parametric regression model. If the fitted nonpanulletric response 
surface falls within the confidence band in (6.60) for the parametric regression function. the nonpara­
metric fit supports the appropriateness of the parametric regression function. 

2. Reference 11.10 discusses a procedure to assist in choosing the proportion q for defining a 
local neighborhood. It also describes how the precision of any fitted value Yb obtained with lowess 
nonparametric multiple regression can be approximated. 



Chapter 11 Building the Regression Model III: Remedial Measures 453 

3. The assumptions of normality and constant variance of the error terms required by the lowess 
nonparametric procedure can be checked in the usual fashion. The residuals are obtained by fitting 
the lowess nonparametric regression function for each case and calculating ej = Yj - Yi as usual. 
These residuals will not have the least squares property of summing to zero, but can be examined for 
normality and constancy of variance. The residuals can also serve to identify outliers that might not 
be disclosed by standard diagnostic procedures. 

4. A discussion of some of the advantages of the lowess smoothing procedure is presented in 
Reference 11.14. • 

Regression Trees 

TABLE 11.8 
Data Set aud 
5·Region 
Regression 
Tree Fit-
Steroid Level 
Example. 

Regression trees are a very powerful, yet conceptually simple, rn~thod of nonparametric 
regression. For the case of a single predictor, the range of the predictor is partitioned into 
segments and within each segment the estimated regression fit is given by the mean of 
the responses in the segment. For two or more predictors, the X space is partit¥>ned into 
rectangular regions, and again, the estimated regressivn surface is given by the mean of 
the responses in each rectangle. Regression trees have become a popular alternative to 
multiple regression for exploratory studies, especially for extremely large data sets. Along 
with neural networks (see Chapter 13), regression trees are one of the standard methods 
used in the emerging field of data mining. Regression trees are easy to calculate, require 
virtually no assumptions, and are simple to interpret: 

One Predictor Tree: Steroid Level Example. Figure 1.3 on page 5 presents data on age 
and level of a steroid in plasma for 27 healthy females between 8 and 25 years of age. 
The data are shown in the first two columns of Tablf< 11.8. A regression tree based on five 
regions is obtained by partitioning the range of X (age) into five segments ouegions, .and 
using the sample average of the Y responses in each region for the fitted regression surface. 
We will use R5! through R55 to denote the regions of a 5-region tree, and YRs ) through YRss 

to denote the corresponding sample averages. These values are shown for the §..teroid level 
example in columns 4-6 of Table 11.8. The fitted regression tree is shown in Figure 11.9a. 
Note that the regression tree is a step function that steps up rapidly for girls between the 
ages of 8 and 14, after which point steroid level is roughly constant. 

A plQt of residuals versus fitted values is shown in Figure 11.9b. Note that the variance 
of the residuals in each region seems roughly constant, an indication that further splitting 
may be unnecessary. We discuss the determination of appropriate tree size below. 

(1) (2) (3) (4) (5) (6) 
Steroid Region Fitted 

Case Level Age Number Region :Value 
; Yj Xj - k RSk YRSk 

1 .27.1 23 ,8:::;X<9 3.550 
2 22.1 19 2 9:::;X<10 8.133 
3 2,1 .. 9 25 . 3 10:::; X <-13 13.675 

,4 13:::; X < 14 16.950 
25 12.8 13 5 14:::; X <25 22.200 
2(> 20:8 14 

" 

27 20.6 18 
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FIGURE 11.9 
Fitted 
Regression 
Tree, Residual 
Plot, and 
Regression 
Tree 
Diagram-
Steroid Level 
Example. 
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Determining the predicted value for a given X h is accomplished with the help of a 
tree diagram, such as the one shown in Figure 11.9c. Suppose we wish to determine the 
predicted value at X h = 12.5. Starting at node I-the root node-we ask, "Is Age < 131" 
Since 12.5 < 13, we follow the left branch to node 2 where we ask, "Is Age < 1O?,' Since 
Age is not less than 10, we branch right to the terminal node labeled Leaf 3, where we find 
from Table 11.8 that YRS3 = 13.675. Tree diagrams such as that shown in Figure 11.9c are 
particularly helpful when more than a single predictor is present. 

Growing a Regression Tree. To find a "best" regression tree, it is necessary to specify the 
number of regions, r, and the boundaries, or split points, between the regions. The process 
of determining a best value for r and the associated split points is referred to as growing 
the tree. 

First consider the case of a single predictor, and assume that the range of X is to be 
divided into r = 2 regions, R2L and R 22 • We need to find the split point Xs that optimally 
divides the data into two sets. The best point is chosen to minimize the error sum of squares 



EIGURE 11.10 
Growing the 
Regression 
Ti-ee-Steroid 

Level Example. 

Chapter 11 Building the Regression Model III: Remedial Measures 455 

30 

o 8 
o 00 (jj 20 

.3 o o 

""0 o ·e o 
~ 10 

00 o 
o 

Vl 

o 
o 

o 0 

30 

10 15 
Age 

(a) 

o 8 
o o~ 

o 0 

o 
0--0 

o 0 
o 

~ 

o 
o 0 

10 15 
Age 

(c) 

o 
Q 

o o 

20 

o 
o 

o o 

20 

for the resulting regression tree: 

o 
o 

o o 
o 

25 

o 
o 

9 o 
o 

25 

30 

o 8 
00 o 

o 

o 
0--0 

o 0 
o 

~ 

o 
o 0 

10 

30 

o 

15 
Age 

(b) 

o 8 
o o~ 

o o 

o 
--0 

00 0 

CL 
o 
-0 

o 0 

10 15 
Age 

(d) 

where SSE(Rrj ) is the sum of squared residuals in region Rrj : 
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For the steroid level data, the best split point is shown in Figure 1 1. lOa to be Xs = 13.0. 
For this tree, we have: 

for which we obtain: 

R21 = {XIX < 13} 

R22 = {XIX:::: 13} , 

SSE = SSE(R21 ) + SSE(R22) = 238.55 -f' 167.79 = 406.35 

From (2.72), the coefficient of determination' for the regression treeis: 

R2 = 1 _ SSE = 1"- 406.35 = .684 
SSTO 1284.8 

Also, MSE = SSE/en - r) = 406.35/(27 - 2) = 16.254. 
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FIGURE 11.11 
Regression 
Tree Growth­
Two-Predictor 
Example. 

At this point. there are two regions, and growing the tree further will require the idenffi_ 
cation of a third region. We have two choices: (I) we can work sequentially and split On: of 
the two existing regions. or (2) start from scratch and identify simultaneously two entir I 
new split points that globally minimize the resulting SSE criterion. The second appro e ~ 
will always lead to a criterion value that is at least as good as the first; however, as the: 
grows, so do the computational demands associated this approach (particularly if there ~ 

I . F . . II IS more t lan one predIctor). or thIS reason, regreSSIon trees are genera y grown sequentiall 
according to the following rule: If the tree currently is based on r regions. we determine;' 
best split .point for each of the regions, and then split the region that leads to the greates~ 
decrease tn SSE. 

For the steroid-level example. the next step involves splitting R2L at Xs = 10, resultinu 
• • b 
tn three regIOns: 

R2! = {XIX < 10} 

R32 = {XIIO.:5 X < 13} 

R33 = {XIX 2:"13} 

A plot of this tree is shown in Figure 11.1 Ob. Continuing this process, we next split R33 at 
Xs = 14, and a final split occurs at Xs = 19. The 4-region and 5-region regression trees are 
shown in Figul"es I 1.1 Oc and 11.1 Od. 

For two or more predictors, the procedure is the same, except that in addition to deter­
mining the best region and split point, we must also determine the best predictor upon which 
to base the split. The rule is as follows: assuming the tree is based curt'ently on r rectangular 
regions, we determine the best split point for each of the r regions for each of the p - 1 
predictors, and then implement a new split based on the region and predictor that leads to 
the largest decrease in SSE. Note that we are choosing the best predictor-and-split-pomt 
combination from r (p - I) possibilities. 

This process is illustrated for two predictors in Figure 11.11. We first consider splitting 
the rectangular X space either on the basis of XI or X 2 • We find the best split points XI, 
and X2.' for X! and X2 respectively, and then we base our next partition on the split point 
that leads to the greatest decrease in SSE. According to Figure 11.1 I a, the first split is based 
on X!, resulting in two rectangular regions R2L and R22' For each of these two regions, we 
determine the best predictor upon which to split and the associated split point, and choose 
the combination that leads to the largest decrease in SSE. Figure I 1.11 b indicates that legion 
R22 was partitioned in this step on the basis of X2 • Finally, in the third split. region R3L is 
partitioned on the basis of X L, resulting in a 4-region tree, as shown in Figure II. lie. 

(a) 

Branch 1-to 2 Regions 
Best split based on Xl 

(b) 

Branch 2-to 3 Regions 
Best split based on X2 in R22 

(c) 

Branch 3-to 4 Regions 
Best split based on Xl in R3l 

R43 
-

R4l R42 
R44 
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Determining the Number of Regions, r. If the tree-growing process is allowed to con­
tinue indefinitely, there will eventually be n regions, with each region containing a single 
observation, and further partitioning will be impossible. A "best" number of regions will 
generally fall between 1 and n, and is usually chosen through validation studies. For exam­
ple, for each split we determine, in addition to SSE, the mean square for prediction error 
MSPR for data in a hold-out or validation sample. We then choose the tree that minimizes 
MSPR. 

We illustrate the use of regression trees with the University admissions data set in Ap­
pendix C.4. We fit GPA at the end of freshman year (Y) as a function of ACT entrance test 
score (X d and high school rank (X2 ). The data consist of 705 ca&'es, and a random sample 
of n* = 353 records was selected for the validation set. Figure l'1.12a provides a plot of 
MSPR versus the number of regions, or terminal nodes. The plot shows that the ability to 
predict improves as nodes are added until r = 5, for which MSPR = .318 (i'JoE for this 

FIGURE 11.12 S·PJus Regression Tree Results-University Admissions Example. 
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11.5 

model is .322). For r > 5. the ability to predict responses in the validation set deteriorate 
as the number of regions increases. A plot of MSE is also included, and as expected, MS~ 
deCl·eases monotonically with the size of the tree. The fitted regression tree surface is show 
in Figure I 1.12b and the cOlTesponding tree diagram is shown in Figure 11.12c. n 

A plot of residuals versus predicted values is shown for this tree in Figure 11.12d. Note 
that the variance of the residuals appears to be somewhat constant, and indication that 
further partitions may not be required. 

It is instructive to compare qualitatively the fit of the regression tree to the fit obtained 
using standard regression methods. Using a full second-order model leads to the equation: 

A 2 2 
Y = 1.77 - .0223X 1 + .0780Xz + .OOOI87X 1 - .OO133X2 + .000342X 1XZ 

MSPR for the second-order regression model is .296. which is slightly better than the value 
obtained by the regression tree (,318). Interestingly the MSE value obtained by the sccond­
order regression model (.333) is about the same as that obtained by the regression tree 
(.322). 

In summary, the regression tree sUlface suggests as expected that college GPA increases 
with both ACT score and high school rank. Overall, high school rank seems to have a 
slightly more pronounced effect than ACT score. For this tree, R2 is .256 for the training 
data set, and .157 for the validation data set. We conclude that GPA following freshman 
year is related to high school rank and ACT score, but the fraction of variation in OPA 
explained by these predictors is quite small. 

Comments 

I. The number of regions I" is sometimes chosen by minimizing the cost complexity critel1on: 

C.(r) = ~SSE(R,.d + AI" 

k=l 

The cost complexity criterion has two components: the sum of squared residuals plus a penalty, Ar, 
for the number of regions r employed. The tuning parameter A :::. 0 determines the balance between 
the size of the tree (complexity) and the goodness of fit. Larger values of A lead to smaller trees. 
Note that this criterion is a form of penali:ed least squares. which, as we commented in Section 11.2, 
can be used to obtain ridge regression estimates. Penalized least squares is also used in connection 
with neural networks as described in Section 13.6. A "besl" value for A is generally chosen through 
validation studies. 

2. Regression trees are often llsed when the response Y is qualitative. In such cases, predicting 
a response at X" is equivalent to determining to which response category X" belongs. This is a 
classification problem, and the resulting tree is referred to as a classification tree. Details are provided 
in References ILl I and ILl5. • 

Renledial Measures for Evaluating Precision 
in NOlJ~tandard Situations-Bootstrapping 

For standard fitted regression models, methods described in earlier chapters are available for 
evaluating the precision of estil11ated regression coefficients, fitted values, and predictions of 
new observations. However, in many nonstandard situations, such as when nonconstanterror 
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variances are estimated by iteratively reweighted least squares or when robust regression 
estimation is used, standard methods for evaluating the precision may not be available or 
may only be approximately applicable when the sample size is large. Bootstrapping was 
developed by Efron (Ref. 11.16) to provide estimates of the precision of sample estimates 
for these complex cases. A number of bootstrap methods have now been developed. The 
bootstrap method that we shall explain is simple in principle and nonparametric in nature. 
like all bootstrap methods, it requires extensive computer calculations. 

General Procedure 
We shall explain the bootstrap method in terms of evaluating the precision of an estimated 
regression coefficient. The explanation applies identically to any othe1:,cestimate, such as a 
fitted value. Suppose that we have fitted a regression model (simple o~ multiple) by some 
procedure and obtained the estimated regression coefficient b I; we now wish to evaluate the 
precision of this estimate by the bootstrap method. In essence, the bootstrap method caLls for 
the selection from the observed sample data of a random sample of size n with replacement. 
Sampling with replacement implies that the bootstrap sample may contain some duplicate 
data from the original sample and omit some other data in the original sample. Next, the 

" bootstrap method calculates the estimated regression coefficient from the bootstrap sample, 
using the same fitting procedure as employed for the original fitting. This leads to the first 
bootstrap estimate bf. This process is repeated a large number of times; each time a bootstrap 
sample of size n is selected with replacement from the original sample and the estimated 
regression coefficient is obtained for the bootstrap sample. The estimated standard deviation 
of all of the bootstrap estimates b~, denoted by s* {btl, is an estimate of the variability of 
the sampling distribution of b l and therefore is a measure of the precision of bl. 

Bootstrap Sampling 
Bootstrap sampling for regression can be done in two basic ways. When the regression 
function being fitted is a good model for the data, the error terms have constant variance, 
and the predictor variable(s) can be regarded as fixed, fixed X sampling is appropriate. Here 
the residuals ei from the original fitting are regarded as the sample data to be sampled with 
replacement. After a bootstrap sample of the residuals of size n has been obtained, denoted 
by eT, ...• e~, the bootstrap sample residuals are added to the fitted values from the original 
fitting to obtain new bootstrap Yvalues, denoted by Yr, ... , V;: 

(11.57) 

These bootstrap y* values are then regressed on the original X variable(s) by the same 
procedure used initially to obtain the bootstrap estimate bf. 

When there is some doubt about the adequacy of the regression function being fitted, the 
error variances are not constant, and/or the predictor variables cannot be regarded as fixed, 
random X sampling is appropriate. For simple regression, the pairs of X and Y data in the 
original sample are considered to be the data to be sampled with replacement. Thus, this 
second procedure samples cases with replacement n times, yielding a bootstrap sample of 
n pairs of (X*, Y*) values. This bootstrap. sample is then used for obtaining the bootstmp 
estimate bf, as with fixed X sampling. 

The number of bootstrap samples to be selected for evaluating the precision of an 
estimate depends on the special circumstances of each application. Sometimes, as few 
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as 50 bootstrap samples are sufficient. Often, 200-500 bootstrap samples are adeqUate. 0 
can observe the variability of the bootstrap estimates by calculating s* {bi} as the numb

ne 

of bootstrap samples is increased. When s*{bi} stabilizes fairly reasonably, bOOlstrapPi; 
can be terminated. 

Bootstrap Confidence Intervals 

Examples 

Example 1-
Toluca 
Company 

Bootstrapping can also be used to arrive at approximate confidence intervals. Much research 
is ongoing on different procedures for obtaining bootstrap confidence intervals (see, for 
example, References I 1.17 and 11.18). A relatively simple procedure for setting up a 1 - 0: 

confidence interval is the reflection method. This procedure often produces a rf'aSOnable 
approximation, but not always. The reflection method confidence interval fOI f31 is based 
on the (a/2) 100 and (1 - (/2) 100 percentiles of the bootstrap distribution of b~. These 
percentiles are denoted by bf(a/2) and bf(1 - a/2), respectively. The distances of these 
percentiles from b l , the estimate of fJl from the original sample, are denoted by d l and d

7
: . -

ell = b l - b~(a/2) 

dz = b;(1 - (/2) - bl 

The approximate I - a confidence interval for f31 then is: 

bl - d2 S f31 S bl + d l 

(11.58a) 

(1l.58b) 

(11.59) 

Bootstrap confidence intervals by the reflection method require a larger number of boot­
strap samples than do bootstrap estimates of precision because tail percentiles are required. 
About 500 bootstrap samples may be a reasonable minimum number for reflection bootstrap 
confidence intervals. 

We illustrate the bootstrap method by two examples. [n the first one, standard analytical 
methods are available and bootstrapping is used simply to show that it produces similar 
results. In the second example, the estimation procedure is complex, and boot<.;trapping 
provides a means for assessing the precision of the estimate. 

We use the Toluca Company example of Table 1.1 to illustrate how the bootstrap method 
approximates standard analytical results. We found in Chapter 2 that the estimate of the 
slope f31 is b l = 3.5702, that the estimated precision of this estimate is s{b l } = .3470, and 
that the 95 percent confidence interval for f31 is 2.85 S f31 S 4.29. 

To evaluate the precision of the estimate h = 3.5702 by the bootstrap method, we shall 
use fixed X sampling. Here, the simple linear regression function fits the data well, the errOf 
variance appears to be constant, and it is reasonable to consider a repetition of the study 
with the same lot sizes. A portion of the data on lot size (X) and work hours (Y) is repeated 
in Table 11.9, columns 1 and 2. The fitted values and residuals obtained from the original 
sample are repeated from Table 1.2 in columns 3 and 4. Column 5 of Table 11.9 shows the 
first bootstrap sample of n residuals et, selected from column 4 with replacement. Finally, 
cqlumn 6 shows the first bootstrap sample Yt observations. For example, by (11.57), we 
obtain Yt = YI + ei = 347.98 - 19.88 = 328.1. 

When the Yt values in column 6 are regressed against the X values in column 1, based 
on simple linear regression model (2.1), we obtain bt = 3.7564. In the same way, 999 other 
bootstrap samples were selected and bi obtained for each. Figure 11.13 contains a histogram 
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(2) (3) 

Original Sample 

YI }II 

399 347.98 
121 169.47 
221 240.88 

244 
342 
323 

205.17 
347.98 
312.28 

,·rth 

(4) 

51.02 
-48.47 
-19.88 

38.83 
-5.98 
10.72 

2.40 2.88 3.36 3.84 4.32 4.80 

Bootstrap bi 

bi (.025) = 2.940 s*{bi} = .3251 bi (.975) = 4.211 

(5) (6) 

Bootstrap Sample 1 

et' 
-19.88 

10.72 
-6.68 

4.02 
-45.17 

51.02 

y.* 
I 

328.1 
180.2 
234.2 

209.2 
~ 302.8 
',363.3 

of the 1,000 bootstrap bt estimates. Note that this bootstrap sampling distribution is fairly 
symmetrical and appears to be close to a normal distribution. We also see in Figure 11.13 
that the standard deviation of the 1,000 bT estimates is s*{bn = .3251, which is quite close 
to the analytical estimate s{b l } = .3470. 

To obta in an approximate 95 percent confidence interval for f31 by the bootstrap reflection 
method, we note in Figure 11.13 that the 2.5th and 97.5th percentiles of the bootstrap sam­
pling distribution are bTC.025) = 2.940 and bT(.975) =4.211, respectively. Using (11.58), 
we obtain: 

d 1 = 3.5702 - 2.940 = .630 

dz = 4.211 - 3.5702 = .641 • 

Finally, we use (11.59) to obtain the confidence limits 3.5702 + .630 = 4.20 and 
3.5702 - .641 = 2.93 so that the approximate 95 percent confidence interval for f31 is: 

2.93 :s f31 .:s 4.20 

Note that these limits are quite close to the confidence limits 2.85 and 4.29 obtained by 
analytical methods. 

i 



462 Part Two Multiple Ullear Regression 

Example2-
Blood 
Pressure 

TABLE 11.10 
Bootstrapping 
with Random 
XSampling-
Blood Pressure 
Example. 

For the blood pressure example in Table I 1.1, the analyst used weighted least squar 
in order to recognize the unequal error variances und fitted a standard deviation fUncti es 
to estimate the unknown weights. The standard inference procedures employed by t~n 
analyst for estimating the precision of the estimated regression coefficient bu·1 === .5963~ 
and for obtaining a confidence interval fiJI" fJl are therefore only approximate. To examin 
whether the approximation is good here, we shall evaluate the precision of the estimat~ 
regression coefficient in a way that recognizes the impreciseness of the weights by usinu 
bootstrapping. The X variable (age) probably should be regarded as random and the erto~ 
variance varies with the level of X, so we shall use random X sampling. Table 11.10 repeats 
from Table 11.1 the original data for age (X) and diastolic blood pressure (Y) in columns I 
and 2. Columns 3 and 4 contain the (Xr, Y;*) observations for the first bootstrap sample 
selected with replacement from columns I and 2. When we now regres:" y* on X' by 
ordinary least squares, we obtain the fitted regression function: 

Y* = 50.384 + .7432X* . 
The residuals for this fitted function are shown in column 5. When the absolute values of 
these residuals are regressed on X*, the fitted standard deviation function obtained is: 

s* = -5.409 + .32745X* 

The fitted values sr are shown in column 6. Finally, the weights wt = 1 /(srf are shown in 
column 7. For example, wr = 1/(10.64)2 = .0088. Finally, Y* is regressed on X* by using 
the weights in column 7, to yield the bootstrap estimate bf = .838. 

This process was repeated 1,000 times. The histogram of the 1,000 bootstrap values br 
is shown in Figure 11.14 and appears to approximate a normal distribution. The standanl 
deviation of the 1,000 bootstrap values is shown in Figure 11.14; it is s*{bf} = .0825. When 
we compare this precision with that obtained by the approximate use of (11.13), .0825 versus 
.07924, we see that recognition of the use of estimated weights has led here only to a small 
increase in the estimated standard deviation. Hence. the variability in b",1 a<;sociatcd with 
the use of estimated variances in the weights is not substantial and the standard inference 
procedures therefore provide a good approximation here. 

A 95 percent bootstrap confidence interval for f31 can be obtained from (11.59) by 
using the percentiles b7(.025) = .4375 and hT(.975) = .7583 shown in Figure lLl4. The 

(1) (2) (3) (4) (5) (6) (7) 

Original Sample Bootstrap Sample 1 

Xi Yi X~ 
I 

y.* 
I e~ 

I s7 wi I 

1 27 73 49 101 14.20 10.64 .0088 
2 21 66 34 73 -2.65 5.72 .0305 
3 22 63 49 101 14.20 10.64 .0088 

·52 52 100 46 89 4.43 9.65 .0107 
53 58 80 27 73 2.55 3.43 .0850 
54 57 109 40 70 -10.11 7.69 .0169 
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approximate 95 percent confidence limits are [recall from (11.20) that bWI = .59634]: 

bWI - dz = .59634 - (.7583 - .59634) = .4344 

bwl + d l = .59634 + (.59634 - .4375) = .7552 

and the confidence interval for f31 is: 

.434:s f31 :s .755 

Note that this confidence interval is almost the same as that obtained earlier by standard 
inference procedures (.437 :s f31 :s .755). This again confirms that it is appropriate to-use 
standard inference procedures here even though the weights were estimated. 

Comment 
The reason why dJ is associated with the upper confidence limit in (11.59) and d2 with the lower 
limit is that the upper (I - a/2) 100 percentile in the sampling distribution of b l identifies the lower 
confidence limit for f3" whereas the lower (a/2) 100 percentile identifies the upper confidence limit 
To see this, consider the sampling distribution for b" for which we can state with probability I - a 
that bl will fall between: 

(11.60) 

whereb l (a/2) andbl(l- a/2) denote the (a/2) 100 and (1- a/2) 100 percentiles of the sampling 
distribution of b l • We now express these percentiles in terms of distances from the mean of the 
sampling distribution, E{bd = f31: 

and obtain: 

DI = f31 - b l (a/2) 

D2 = bl (1 - a/2) - f31 

bl (a/2) = f31 - DI 
bl(l- a/2) = f31 + D2 

(11.61) 

(11.62) 
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11.6 

Substituting (11.62) into (11.60) and rearranging the inequalities so that fJl is in the middle leads to 
the limits: 

The confidence interval in (11.59) is obtained by replacing 0 1 and O2 by d l and d2, which involve 
using the ~ercentile~ of t~e ~oo~strap. sampling. distribution as .estimat~s of the corresponding per~ 
centiles ot the sampling cliswbutlon ot hi and usmg hi as the estlillate ot the mean fJl of the sampling 
distribution. • 

Case Exatnp]e-lVI~DOT Traffic Estinlatioll 

Traffic monitoring involves the collection of many types of data, such as traffic volume 
traffic composition, vehicle speeds, and vehicle weights. These data provide information fa; 
highway planning, engineering design, and traffic control, as well as for legislative decisions 
concerning budget allocation, selection of state highway routes, aI~d the setting of speed 
limits. One of the most important traffic monitoring variables is the average annual daily 
traffic (AADT) for a section of road or highway. AADT is defined as the average, over a 
year, of the number of vehicles that pass through a particular section of a road each day. 
Information on AADT is often collected by means of automatic traffic recorders (ATRs). 
Since it is not possible to install these recorders on all state road segments because of 
the expense involved, Cheng (Ref. 11.19) investigated the use of regression analysis for 
estimating AADT for road sections that are not monitored in the state of Minnesota. 

The AADT Database 
Seven potential predictors of traffic volume were chosen from the Minnesota Department 
of Transportation (MNDOT) road-log database, including type of road section, population 
density in the vicinity of road section, number of lanes in road section, and road sec­
tion's width. Four of the seven variables were qualitative. requiring 19 indicator variables. 
Preliminary regression analysis indicated that the large number of levels of two of the qual­
itative variables was not helpfuL Consequently, judgment and statistical information about 
marginal reductions in the en'or slim of squares were used to collapse the categcries, so 
only 10 instead of 19 indicator variables remained in the AADT database. 

The variables included in the initial analysis were as follows: 

CTYPOP (XI )-population of county in which road section is located (best pro:<y 
available for population density in immediate vicinity of road section) 

LANES (X2 )-number of lanes in road section 

WIDTH (X 3)-width of road section (in feet) 

CONTROL (X4)-two-category qualitative variable indicating whether or not there is 
control of access to road section (1 = access control; 2 = no access control) 

CLASS (X5 , X6 , X 7 )-four-category qualitative variable indicating road section 
func:tion (I = rural interstate; 2 = rural noninterstate; 3 = urban interstate. 
4 = urban noninterstate) 

TRUCK (Xg , X 9, X 10, X II )-five-category qualitative variable indicating availability 
status of road section to trucks (e.g., tonnage and time-of-year restrictions) 
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TABLE 11.11 Data-MNDOT Traffic Estimation Example. r- .... 
Access Function Truck 

; 1i6ad 
I ~1fQn 

1 
'J: 
3 

; "1}2' 
'120 
"'til 

. MDT 
, 'y; 

1;616 
1,329 
'.~;933 

H;905 
:1'5,408 

1;266 

County 
Population 

X/1 

13,404 
52,314 
30,982 

459,784 
459,784 

43,784 

Lanes Width 
X;2 X;3 

2 52 
2 60 
2 57 

4 68 
2 40 
2 44 

Control Class Route Locale 
Category Category Category Category 

X,4 (X's to X/7) (XIS to' Xi.11) (X/,12, X,,13) 

2 2 5 1 
2 2 5 1 
2 4 5 2 

2 4 5 2 
2 4 5 3 

-~. 

2 4 5 2 

Source: C Cheng, "Optimal Sampling for Traffic Volume Estimation," unpublished Ph.D. dissertation, University of Minnesota, Carlson School of Management, 1992. 

LOCALE (X 12, X 13)-three-category qualitative variable indicating type of locale 
(1 = rural; 2 = urban, population :s 50,000; 3 = urban, population> 50,000) , 

A portion of the data is shown in Table 11.11. Altogether, complete records for 121 ATRs 
were available. For conciseness, only the category is shown for a qualitative variable and 
not the coding of the indicator variables. 

Model Development 
A SYSTAT scatter plot matrix of the data set, with lowess fits added, is presented in Fig­
ure 11.15. We see from the first row of the matrix that several of the predictor variables 
are related to AADT. The lowess fits suggest a potentially curvilinear relationship between 
LANES and AADT. Although the lowess fits of AADT to the qualitative categories desig­
nated 1, 2, 3, etc., are meaningless, they do highlight the average traffic volume for each 
category. For example, the lowess fit of AADT to CLASS shows that average AADT for 
the third category of CLASS is higher than for the other three categories. The scatter plot 
matrix also suggests that the variability of AADT may be increasing with some predictor 
variables, for instance, with CTYPOP. 

An initial regression fit of a first-order model with ordinary least squares, using all 
predictor variables, indicated that CTYPOP and LANES are important variables. Regression 
diagnostics for this initial fit suggested two potential problems. First, the residual plot 
against predicted values revealed that the error variance might not be constant. Also, the 
maximum variance inflation factor (10.41) was 24.55, suggesting a severe degree of multi­
collinearity. The maximum Cook's distance measure (10.33) was .2076, indicating that 
none of the individual cases is particularly influential. Since many of the variables appeared 
to be unimportant, we next considered the use of subset selection procedures to identify 
promising, initial models. 

The SAS all-possible-regressions procedure, PROC RSQUARE, was used for subset 
selection. To reduce the volume of computation, CTYPOP and LANES were forced to be 
included. The SAS output is given in Figure 11.16. The left column indicates the number 
of X variables in the model, i.e., p - 1. The names of the qualitative variables identify the 
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FIGURE 11.15 SYSTAT Scatter Plot Matrix-MNDOT Traffic Estimation Example. 
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predictor vmiable and the category for which the indicator variable is coded 1. Forexample, 
CLASS I refers to the first indicator variable for the predictor variable CLASS; i.e., it refers 
to Xs, which is coded 1 for category 1 (rural interstate). Two simple models look particularly 
promising. The three-variable model consisting of X I (CTYPOP), X2 (LANES). and X1 
(CLASS = 3) stands out as the best tJu'ee-variable model, with R2 = .805 and c;, = 5.23. 
Since p = 4 for this model, the Cp statistic suggests that this m~del contains little bias. 
The best four-variable model includes X I (CTYPOP), X2 (LANES), X4 (CONTROL::::: I), 
and X 5 (CLASS = I). With this model, some improvements in the selection criteria are 
realized: R~ = .812 and Cp = 2.65. On the basis of these results, it was decided to investigate 
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N = 121 Regression Models for Dependent Variable: AADT 

R-square C(p) Variables in Model 
In 

2 0.694589 69.7231 CTYPOP LANES 

NOTE: The above variables are included in all models to follow 

3 0.804522 5.2315 CLASS3 
3 0.751353 37.3903 CONTROL 1 
3 0.725755 52.8725 TRUCKl 
3 0.704495 65.7318 LOCALE2 
3 0.704250 65.8798 CLASSl 

4 0.812099 2.6490 CONTROLl CLASSl 
4 0.810364 3.6986 CLASS3 LOCALE2 
4 0.808001 5.1275 CLASS3 LOCALEl 
4 0.807122 5.6590 CLASS2 CLASS3 
4, 0.806300 6.1562 CLASS3 TRUCK4 

--------------------------------------------
5 0.816245 2.1414 CONTROLl CLASSl LOCALE2 
5 0.815842 2.3848 CONTROLl CLASSl LOCALEl 
5 0.814362 3.2803 CONTROLl CLASSl CLASS2 
5 0.813901 3.5589 CONTROLl CLASSl TRUCK4 
5 0.812788 4.2321 CONTROLl CLASSl TRUCK2 

6 0.818304 2.8958 WIDTH CONTROLl CLASSl LOCALEl 
6 0.817992 3.0845 CONTROLl CLASSl TRUCK4 LOCALE2 
6 0.817915 3.1309 CONTROLl CLASSl TRUCK2 LOCALE2 
6 0.817741 3.2367 CONTROLl CLASSl TRUCK2 LOCALEl 
6 0.817738 3.2383 WIDTH CONTROLl CLASSl LOCALE2 

7 0.820443 3.6023 WIDTH CONTROLl CLASSl TRUCK4 LOCALEl 
7 0.819942 3.9050 WIDTH CONTROLl CLASSl TRUCK4 LOCALE2 
7 0.819473 4.1891 WIDTH CONTROLl CLASSl TRUCK2 LOCALEl 
7 0.819180 4.3663 CONTROLl CLASSl TRUCK2 TRUCK4 LOCALE2 
7 0.819007 4.4705 WIDTH CONTROLl CLASSl CLASS2 LOCALEl 

a model based on the five predictor variables included in these two models: X I (CTYPOP), 
X2 (LANES), X4 (CONTROL = I), Xs (CLASS = 1), and X7 (CLASS = 3). Note that be­
cause X6 (CLASS = 2) has been dropped from further consideration, the rural noninterstate 
(CLASS = 2) and urban non interstate (CLASS = 4) categories Of the CLASS variable have 
been collapsed into one category. • 

Figure 11.17a contains a plot of the studentized residuals against the fitted values for the 
five-variable model. The plot reveals two potential problems: (1) The residuals tend to be 
positive for small and large values of Y and negative for intermediate values, suggesting a 
curvilinearity in the response function. (2) The variability of the residuals tends to increase 
with increasing Y, indicating nonconstancy of the error variance. 
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FIGURE 11.17 Plots of Studentized Residuals versus Fitted Values--MNDOT Traffic Estimation Example. 
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Curvilinearity was investigated next, together with possible interaction effects. A squared 
term for each of the two quantitative variables (CTYPOP and LANES) was added to the 
pool of potential X variables. To reduce potential multicollinearity problems, each of these 
variables was first centered. In addition, nine cross-product terms were added to the pool 
of potential X variables, consisting of the cross products of the X variables for the fOOf 
predictor variables. 

The SAS all-possible-regressions procedure was run again for this enlarged pool of 
potential X variables (output not shown). Analysis of the results suggested a model with five 
X variables: CTYPOP, LANES, LANES2, CONTROLI , and CTYPOP x CONTROLI. For 
this model, R~ is .925, and all P-values for the regression coefficients are 0+. Although this 

model docs not have the largest R~ value among five-term models, it is desirable bccauseitis 
easy to interpret and docs not differ substantially ii'om other models favorably identified by 
the C:;, or R~ criteria. A plot of the studentized residuals against Y, shown in Figure 11.17b, 
indicates that curvilinearity is no longer present. Also, neither Cook's distance measure 
(maximum = .47) nor the variance inflation factors (maximum = 2.5) revealed serious 
problems at this stage. Nonconstancy of the en-or term variance has persisted, however, as 
confirmed by the Breusch-Pagan test. 

Weighted Least Squares Estimation 
To remedy the problem with nonconstancy of the error term variance, weighted least squares 
was implemented by developing a standard deviation function. Residual plots indicatedtbat 
the absolute residuals vary with CTYPOP and LANES. A fit of a first-order model where 
the absolute residuals are regressed on CTYPOP and LANES yielded an estimated standard 
deviation function for which R2 = .386 and the P-values for the regression coefficients fur 
CTYPOP and LANES are .001 and 0+. Note that, as is often th; case, the R2 valuefor 
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The regression equation is 
AADT = 9602 + 0.0146 CTYPOP + 6162 LANES + 16556 CONTROL1 + 2250 LANES2 

+ 0.0637 POPXCTL1 

Predictor Coef Stdev t-ratio p 
Constant 9602 1432 6.71 0.000 
CTYFOP 0.014567 0.003047 4.78 0.000 
LANES 6161.8 933.9 6.60 0.000 
CONTROL 1 16556 2966 5.58 0.000 
LANES2 2249.7 755.8 2.98 0.004 
POPXCTL1 0.063696 0.008421 7.56 0.000 

~ 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 5 919.55 183.91 93.13 0.000 
Error 115 227.10 1.97 
Total 120 1146.65 

, 
the estimated standard deviation function (.386) is substantially smaller than that for the 
estimated response function (.925). 

Using the weights obtained from the standard deviation function, weighted least squares 
estimates of the regression coefficients were obtained. Since some of the estimated regres­
sion coefficients differed substantially from those obtained with unweighted least squares, 
the residuals from the weighted least squares fit were used to reestimate the standard devi­
ation function, and revised weights were obtained. Two more iterations of this iteratively 
reweighted least squares process led to stable estimated coefficients. 

MINITAB regression results for the weighted least squares fit based on the final weights 
are shown in Figure 11.18. Note that the signs of the regression coefficients are all positive, 
as might be expected: 

CTYPOP: Traffic increases with local population density 

LANES: Traffic increases with number of lanes 

CON1ROLl: Traffic is highest for road sections under access control 

LANES2 : An upward-curving parabola is consistent with the shape of the lowess fit of 
AADT to LANES in Figure 11.15 

CTYPOP x CON1ROLl: Traffic increase with access control is more pronounced for 
higher popUlation density 

Figure 11.19a contains a plot of the stu<kntized residuals against the fitted values, and 
Figure 11.19b contains a normal probability plot of the studeI1tized residuals. Notice that 
the variability of the studentized residuals is now approximately constant. While the nor­
mal probability plot in Figure 11.19b indicates some departure from normality (this was 
confirmed by the correlation test for normality), the d~parture does not appear to be serious, 
particularly in view of the large sample size. 

To assess the usefulness of the model for estimating AADT, approximate 95 percent 
confidence intervals for mean traffic for typical rural, suburban, and urban road sections 
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FIGURE 11.19 
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TABLE 11.12 
Example. 
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(1) (2) (3) (4) (5) (6) (7) 
Confidence limits 

CTYPOP LANES CONTROll Yh s{Yh } lower Upper 

113,571 2 ° 3,365 354 2,663 4,066 
222,229 4 ° 16,379 1,827 12,758 19,999 i 
941,411 6 1 116,024 6,597 102,953 129,095 

were constructed. The level~ of the predictor variables for these road sections are given in 
Table 11.12, columns 1-3. The estimated mean traffic is given in column 4. The approxi­
mate estimated standard deviation~ of the estimated mean responses for each of these road 
sections, shown in column 5, were obtained by using S2 {bu'} from (11.13) in (6.58): 

(11.63) 

where the vector X" is defined in (6.53). Since the estimated standard deviations in column 5 
are only approximations because the least squares weights were estimated by me<ms of 
a standard deviation function, bootstrapping with random X sampling was employed to 
assess the precision of the fitted values. The standard deviations of the bootstrap sampling 
distributions were c1o~e to the estimated standard deviation~ in column 5. The consistency 
of the results shows that the iterative estimation of the weights by means of the standard 
deviation function did not have any substantial effect here on the precision of the fitted 
values. 

The approximate 95 percent confidence limits for £{ Y,,}, computed using (6.59), are pre­
sented in columns 6 and7 of Table 11.12. The precision of these estimates was considered to 
be sufficient for planning purposes. However, because the suburban and rural road estimates 

.~ 
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have the poorest relative precision, it was recommended that better records be developed 
for population density in the immediate vicinity of a road section, since county population 
does not always reflect local population density. The improved information could lead to a 
better regression model, with more precise estimates for road sections in rural and suburban 
settings. 

The approach for developing the regression model described here is not, of course, the 
only approach that can lead to a useful regression model, nor is the analysis complete as 
described. For example, the residual plot in Figure 1l.19a suggests the presence of at least 
one outlier (r92 = 5.02). Possible remedial measures for this case should be considered. 
In addition, the departure from normality might be remedied by a transformation of the 
response variable. This transformation might also stabilize the variance of the error terms 
sufficiently so that weighted least squares would not be needed. In fact, subsequent analysis 
using the Box-Cox transformation approach found that a cube root transformation of the 
response is very effective in this instance. A final choice between the model fit obtained by 
weighted least squares and a model fit developed by an alternative approach can be made 
on the basis of model validation studies. 
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Problems 11.1. One student remarked to another: "Your residuals show that nonconstancy of error variance 

is clearly present. Therefore, your regression results are completely invalid:' COillInent. 

11.2. An analyst suggested: "One nice thing about robust regression is that you need not worry 
about outliers and int1uential observations." Comment. 

11.3. Lowess smoothing becomes difficult when there are many predictors and the sample size is 
small. This is sometimes referred to as the "curse of dimensionality." Discuss the naLUre of 
this pl'Oblelll. 

11.4. Regression trees become difficult to utilize when there are many predictors and the sample 
size is small. Discuss the nature of this problem. 

11.5. Describe how bootstrapping might bt used to obtain confidence intervals for regression coef­
ficients when ridge regression is employed. 

11.6. Computer-assisted learning. Data from a study of computer-ussisted learning by 12 stUdents, 
showing the total number of responses in completing a lesson (X) und the cost of compuler 
time (Y. in cents), follow. 

i: 

16 
77 

2 

14 
70 

3 

22 
85 

4 

10 
50 

5 

14 
62 

6 

17 
70 

7 

10 
55 

8 

13 
63 

9 

19 
88 

10 

12 
57 

11 

18 
81 

12 

11 
51 

a. Fit a linear regression function by ordinary least squares, obtain the residuals, and plot the 
residuals against X. What does the residual plot suggest'? 

b. Divide the cases into two groups, placing the six cases with the smallest fitled values Yt 
into gl1lup I and the other six cases into group 2. Conduct the Bl1lwn-Forsythe test for 
constancy of the error variance. using ex = .05. State the decision rule and conclusion. 

c. Plot the absolute values of the residuals against X. What does this plot suggest about the 
relation between the standard deviation of the error term and X? 

d. Estilmlte the standard deviation function by regressing the absolute values of the residuals 
against X. and then calculate the estimated weight for each case using (11.I6a). Which 
cllse receives the largest weight? Which case receives the smallest weight? 

e. Using the estimated weights. obtain the weighted least squares estimates of f30 and/lI.Are 
these estimates similar to the ones obtained with ordinary least squares in part (a)'! 

f. Compare the estimated standard deviations of the weighted least square~ estimates bwo 
and hl/'I in part (e) with those for the ordinary least squares estimates in part (a). Wbatdo 
you find? 

g. itemte the steps in parts (d) and (e) one more time. Is there a subslantial change in the 
estimated regression coefficients? If so, what should you do? 
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* 11.7. Machine speed. The number of defective items produced by a machine (Y) is known to be 
linearly related to the speed setting of the machine (X). The data below were collected from 
recent quality control records. 

i: 1 2 

XI: 200 400 
Vi: 28 75 

345 

300 400 200 
37 53 22 

6 7 8 

300 300 400 
58 40 96 

9 10 11 

200 400 200 
46 52 30 

12 

300 
69 

a. Fit a linear regression function by ordinary least squares, obtain the residuals, and plot the 
residuals against X. What does the residual plot suggest? 

b. Conduct the Breusch-Pagan test for constancy of the error variance, assiGning log" u? = 

Yo + Yl Xi; use a = .10. State the alternatives, decision rule, and conclusion. 

c. Plot the squared residuals against X. What does the plot suggest about the relation between 
the variance of the error term and X? i 

d. Estimate the variance function by regressing the squared residuals against-X, and then 
calculate the estimated weight for each case using (11.16b). 

e. Using the estimated weights, obtain the weighted least squares estimates of f30 and th. 
Are the weighted least squares estimates similar to the ones obtained with ordinary least 
squares in part (a)? 

f. Compare the estimated standard deviations of the weighted least squares estimates bwo and 
bW1 in part (e) with those for the ordinary least squares estimates in part (a). What do you 
find? 

g. Iterate the steps in parts (d) and (e) one more time. Is there a substantial change in the 
estimated regression coefficients? If so, what should you do? 

11.8. Employee salaries. A group of high-technology companies agreed to share employee salary 
information in an effort to establish salary ranges for technical positions in research and 
development. Data obtained for each employee included current salary (Y), a coded vari­
able indicating highest academic degree obtained (1 = bachelor's degree, 2 = master's degree; 
3 = doctoral degree), years of experience since last degree (X3), and the number of persons 
currently supervised (X4 ). The data follow. 

Employee 
YI1 Degree Xt3 Xt4 

1 58.8 3 4.49 0 
2 34.8 1 2.92 0 
3 163.7 3 29.54 42 

63 40.0 2 .44 0 
64 60.5 '3 2.10 0 
65 104 . .g 3 19.81 24 

a. Create two indicator variables for highest degree attained: 

Degree Xl X2 

BachelolJs 0 0 
Master's 1 0 
Doctoral 0 1 
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11.9. 

b. Regress Yon XI. X~. X." and X~, using a first-order model and ordimlry least squa 
obtain the residuals. and plot them against Y. What does the residual plot suggest? res, 

c. Divide the cases into two groups, placing the 33 cases with the smallest fitted values y. 
into group I and the other 32 cases into group 2. Conduct the Brown-Forsythe test fi I 

constancy of the elTor variance, using ex = .0 I. State the decision rule and conclusion or 

d. Plot the absolute residuals against X, and against X~. What do these plots suggest ab 
the relation between the standard deviation of the error term and X, and X~? Out 

e. Estimate the. st,:ndard dev.iation function by regressing t~e absolut~ residuals against 
X, and X~ In first-order form, and then calculate the estimated weight for each . - case 
using (11.16a). 

f. Using the estimated weights, obtain the weighted least squares lit of the regression model 
Are the weighted least squares estimates of the regression coefficients simi"" ,u the one' 
obtained with ordinary least squares in part (b)? s 

g. Compare the estimated standard deviations of the weighted le,L~t squares coefficient esti­
mates in part (f) with those for the ordinary least squares estimates in pan (b). What do 
you lind? 

h. Iterate the steps in parts (e) and (f) one more time. Is there a substantial change in the 
estimated regression coefficients? If so, what should you do? 

Refer to Cosmetics sales Problem 10.13. Given below are the estimated ridge standruUized 
regression coefficients, the variance inflation factors, and R~ for selected biasing constantsc . 

c: .00 .01 .02 .04 .06 . 08 .09 .10 
bR. 
I' ,490 ,461 ,443 .463 ,410 ,401 .398 .394 

~: .296 .322 .336 .349 .354 .356 .356 .356 
bR. 

3 . .169 .167 .167 .166 .165 .164 .164 .164 

(VIF)l: 20.07 10.36 6.37 3.20 1.98 1.38 1.20 1.05 

(VIFh: 20.72 10.67 6.55 3.27 2.07 1.40 1.21 1.06 

(VIFh; 1.22 1.17 1.14 1.08 1.02 .98 .95 .93 
R2: .7417 .7416 .7145 .7412 .7409 .7045 .7402 .7399 

a. Make a ridge trace plot for the given c values. Do the ridge regression coefficients exhibit 
substantial changes near c = 0'1 

b. Suggest a reasonable value for the biasing constant c based on the ridge trace, the VIF 
values, and R~. 

c. Transform the estimated standardized regression coefficients selected in p,u"l (b) back to 
the original variables and obtain the fitted values for the 44 cases. How similar are these 
fitted values to those obtained with the ordinary least squares fit in Problem 1O.13a? 

* I L 10. Chemical shipment. The data to follow, taken on 20 incoming shipments of chemicals 
in drums arriving at a warehouse, show number of drums in shipment (XI), total weight 
of shipment (X~, in hundred pounds), and number of minutes required to handle 
shipment (n. 

I: 2 3 18 19 20 

Xii: 7 18 5 21 6 11 

X i2 : 5.11 16.72 3.20 15.21 3.64 9.57 

Yi : 58 152 41 155 39 90 
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Given below are the estimated ridge standardized regression coefficients, the variance inflation 
factors, and R2 for selected biasing constants c. 

c: .000 .005 .01 .05 .07 .09 .10 .20 
bR. 
l' .451 .453 .455 .460 .460 .459 .458 .444 

bR. 
2 • .561 .556 .552 .526 .517 .508 .504 .473 

(VIF)l = (VIFh; 7.03 6.20 5.51 2.65 2.03 1.61 1.46 .71 
R2: .9869 .9869 .9869 .9862 .9856 .9852 .9844 .9780 

a. Fit regression model (6.1) to the data and find the fitted values. 

b. Make a ridge trace plot for the given c values. Do the ridge regression coef6",cients exhibit 
substantial changes near c = O? -

c. Why are the (VIFh values the same as the (VIFh values here? 

d. Suggest a reasonable value for the biasing constant c based on the ridge trace, the VlF t 
values, and R2. 

e. Transform the estimated standardized regression coefficients selected in part (c) back to 
the original variables and obtain the fitted values for the 20 cases. How similar are these 
fitted values to those obtained with the ordinary least squares fit in part (a)? 

* 11.11 ; "Refer to Copier maintenance Problem 1.20. Two cases had been held out of the original data 
set because special circumstances led to unusually long service times: 

Case 

46 
47 

6 
5 

132 
166 

a. Using the enlarged (47-case) data set, fit a simple linear regression model using ordinary 
least squares and plot the data together with the fitted regression function. What is the 
effect of adding cases 46 and 47 on the fitted response function? 

b. Obtain the scaled residuals in (11.47) and use the Huber weight function (11.44) to obtain 
the case weights for a first iteration of IRLS robust regression. Which cases receive the 
smallest Huber weights? Why? 

c. Using the weights calculated in part (b), obtain the weighted least squares estimates of the 
regression coefficients. How do these estimates compare to those found in part (a) using 
ordinary least squares? 

d. Continue the IRLS procedure for two more iterations. Which cases receive the smallest 
weights in the final iteration? How do the final IRLS robust regression estimates compare 
to the ordinary least squares estimates obtained in part (a)? 

e. Plot the final IRLS estimated regression function, obtained in part (d), on the graph con­
structed in part (a). Does the robust fit differ substantially from the ordinary least squares 
fit? If so, which fit is preferred here?-

11.12. Weight and height. The weights and heights of twenty male 'Students in a freshman class are 
recorded in order to see how well weight (Y, in pounds) can be predicted from height (X, in 
inches). The data are given below. Assume tha(first-order regression (I. f) is appropriate. 

i: 1 

74 
185 

2 

65 
195 

3 

72 
216 

18 

69 
177 

19 

68 
145 

20 

67 
137 
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Exercises 

Projects 

a. Fi.t a simp.le linear regressi~l!l m?del using ordi~lary I~ast square~ .. and pl~lt the data together 
wIth the hued regressIon functIOn. Also, obtilIn an Index plot of Cook s distance (10.33 
What do thc~e plots suggest'! ). 

b. Obtain the scaled residuab in (11.47) and use Ihe Huber weight function (11.44) to ohm' 
case weights for a first iteration of IRLS robust regression. Which cases receive the smaUe

tn 

Huber weights? Why'! st 

c. Using the weights calculated in part (b), obtain the weighled least squares estinlates of the 
regre~slon coellicients. How do these estimates compare to those found in part (a) using 
ordinary least squilres'? 

d. Continue Ihe IRLS procedure for two more iterations. Which cases receive the smallest 
weights in the final iteration'? How do the IinallRLS robust regression estimates compare 
to the ordinary least squares estimates oblained in part (a)? 

11.13. (Calculus needed.) Derive the weighted least squares normal equations ror lilting a simple 
linear regression function when al = k Xj, where k is a proportionality constant. 

11.14. Express the weighted least squares estimator bU' 1 in (11.26a) in terms of the centered valiables 
Yj - 9". and X j - XU', where 9". and X", are the weighted means. 

I 1.15. Refer to Computer-assisted learning Problem II. 6. Demonstrate numerically that the 
weighted least squares estimates obtained in part (e) are identical to those obtained Using 
transformation (11.23) and ordinary least squares. 

11.16. Refer to Machine speed Problem 11.7. Demonstrate numerically that the weighted least 
s(]um'es estimates obtained in part (e) are identical to those obtained when using transforma­
tion (11.23) and ordinary least squares. 

1!.17. Consider the weighted least squares criterion (11.6) with weights given by Wj = .3/ Xj. Setup 
Ihe varinnce-covariance matrix for the en'or terms when i = I ..... 4. Assume a{Ej, Ej} = 0 
fori#j. 

11.18. Derive the variance-covariance matrix u~{b".} in (11.10) for the weighted least squaresesti­
mators when the variance-covariance malrix of the observations Yj is k W- I. where W is given 
in ( 11.7) and k is a proportionality constant. 

11.19. Derive the mean squared error in (11.29). 

11.20. Refer to the body fat example of Table 7.1. Employing least absolute residuals regression, me 
LAR estimates of the regression coefficients are "II = -17.027, b l = .4173, and "2 = .5203. 

a. Find the Sum of the absolute residuals based on the LAR fit. 

b. For the least squares estimated regression coetlicients "II = -19.174, hi = .2224,and 
b2 = .6594, lind the sum of the absolute residuals. Is this sum larger than the sum obtained 
in part (al? is this 10 be expected'? 

11.21. Observations on Yare to be taken when X = 10, 20, 30, 40, and 50, respectively. The true 
regression function is E{Y) = 20 + lOX. The elTor terms are independent lli1Clnonnally 
distributed. with E{t:;} = 0 and a~{E;} = .8Xj • 

a. Generate a ntndom Y observation for each X level and calculate both the ordinary and 
weighted least squares estimates of the regression coefficient f31 ill the simple Ii neat reo 
gression function. 

b. Repeal pan (a) 200 times. generating new random numbers each time. 



Chapter 11 Building the Regression Model III: Remedial Measures 477 

c. Calculate the mean and variance of the 200 ordinary least squares estimates of f31 and do 
the same for the 200 weighted least squares estimates. 

d. Do both the ordinary least squares and weighted least squares estimators appear to be 
unbiased? Explain. Which estimator appears to be more precise here? Comment. 

11.22. Refer to Patient satisfaction Problem 6.15. 

11.23. 

a. Obtain the estimated ridge standardized regression coefficients, variance inflation factors, 
and R2 for the following biasing constants: c = .000, .005, .01, .02, .03, .04, .05. 

b. Make a ridge trace plot for the given c values. Do the ridge regression coefficients exhibit 
substantial changes near c = O? 

c. Suggest a reasonable value for the oiasing constant c based on the ridge trace, the VIF 
values, and R2. 

d. Transform the estimated standardized regression coefficients selected in part (c) back to 
the original variables and obtain the fitted values for the 46 cases. How similar are these 
fitted values to those obtained with the ordinary least squares fit in Problem 6.15c? i-

Cement composition. Data on the effect of composition of ce'ment on·heat evolved during 
hardening are given below. The variables collected were the amount of tricalcium alumi­
nate (X I), the amount of tricalcium silicate (X2 ), the amount of tetracalcium alumino ferrite 
(X3 ), the amount of dicalcium silicate (X4 ), and the heat evolved in calories per gram of 
cement (Y). 

i: 1 2 3 11 12 13 

Xi!: 7 1 11 11 10 
Xi2: 26 29 56 40 66 68 
Xi3 : 6 15 8 23 9 8 
Xi4: 60 52 20 34 12 12 

Yi : 78.5 74.3 104.3 83.8 113.3 109.4 

Adapted from H. Woods, H. H. Steinour, and H. R. Starke, "Effect of Composition of Portland Cement on Heat 
Evolved During Hardening," Industrial and Engineering Chemistry. 24, 1932, 1'lfJ7-1214. 

a. Fit regression model (6.5) for four predictor variables to the data. State the estimated 
regression function. 

b. Obtain the estimated ridge standardized regression coefficients, variance inflation factors, 
and R2 for the following biasing constants: c = .000, .002, .004, .006, .008, .02, .04, .06, 
.08, .lO. 

c. Make a ridge trace plot for the biasing constants listed in part (b). Do the ridge regression 
coefficients exhibit substantial changes near c = O? 

d. Suggest a reasonable value for the biasing constant c based on the ridge trace, VIF values, 
and R2 values. ' 

e. Transform the estimated standardized ridge regression coefficients selected in part (d) to 
the original variables and obtain the fitted values for the 13 cases. How similar are these 
fitted values to those obtained with the c::rdinary least squares fit ill part (a)? 

11.24. Refer to Commercial properties Problem 6.18. 

a. Use least absolute residuals regression to obtain estimates ofthe parameters {30, f3j, {3z, f33, 

and f34. 

b. Find the sum of the absolute residuals based on the LAR fit in part (a). 
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11.25. 

c. For the least squares estimated regression function in Problem 6.ISc, lind the Su 
the absolute residuals. Is this sum larger than the sum obtained in purt (b)? Is this:: 
expected? e 

Crop yield. An agronomist studied the effects of moisture (XI, in inches) and temper 
(X~. in C) on the yield of a new hybrid tomato (Y). The experimental data follow. ature 

I: 2 3 23 24 25 

Xi]: 6 6 6 14 14 14 
X;2: 20 21 22 22 23 24 

Y;: 49.2 48.1 48.0 42.1 43.9 40.5 

The agronomisl expects lhat second-order polynomial regression model (S.7) with ind":'::ndent 
normal error terms is appropriate here. 

a. Fit a second-order polynomial regression model omitting the interaction tenll and the 
quadratic effect term for lemperature. 

b. Construct a contour plot of the fitted surface obtained in part (a). 

e. Use the lowess method to oblain a nonparametric estimaie of the yield response surface 
as a function of moisture and temperature. Employ weight function (11.53), q =0 9/25, 
and a Euclidean distance measure with unscaled variables. Obtain fitted values r" for the 
9 x 9 rectangular grid of (Xld , X,,}) values where X"I = 6.7, .... 13.14 and Xil2 == 
20,20.5, .' .. 23.5. 24. using a localtirst-order model. 

d. Construct a contour plot of the resulting lowess sUlt·ace. Are the lowess contours consistent 
with the con lOurS in part (b) for the polynomial model? Discuss. 

11.26. Refer to Computer-assisted learning Problem I 1.6. 

a. Based on the weighted least squares fit in Problem 11.6e, construct an approximate 95 per­
cent confidence illlerval for fJl by means of (6.50), using the estimated standard deviation 

s{b"'I}' 

b. Using random X sampling, obtain 750 bootstrap samples of size 12. For eaeh bootstrap 
sample, (I) use ordinary least ~quares to regress Y on X and obtain the residuals, (2) 
estimate the standard deviation function by regressing the absolute residuals on X and 
then use the fitted standard deviation function and (11.16a) to obtain weights. and (3) use 
weighted least squares to regress Y on X and obtain the bootstrap estimated regression 
coefficient bT. (Note lhat for each bootstrap sample, only one iteration of the iteratively 
reweighted least squares procedure is to be used.) 

c. Construct a histogranl of the 750 bootstrap estimates !Jr. Does the bootstrap sampling 
distribution of b;' appear to approximate a normal distribution? 

d. Calculate the sample standard deviation of the 750 bootstrap estimates b1". How does this 
value compare to the estimated standard deviation s{b"'I} used in part (a)? 

e. Construct a 95 percent bOOlstrapconfidence interval for f31 using reflectionmelhod(1 1.59). 
How doe~ this confidence interval compare with that obtained in part (a)? Does the ap­
proximate interval in part (a) appear to be useful for this data set? 

11.27. Refer to Machine speed Problem 11.7. 

a. On the basis of the weighted least squares fit in Problem II. 7e, construct an approximate 
90 percent confidence interval for fJl by means of (6.50), using the estimated standard 

deviation s{b".I}. 

b. Using random X sampling, obtain SOO bootstrap samples of size 12. For each bootstrap 
sample, (I) use ordinary least squares to regress Yon X and obtain the residuals. (2) e~1imate 
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the standard deviation function by regressing the absolute residuals on X and then use the 
fitted standard deviation function and (l1.I6a) to obtain weights, and (3) use weighted 
least squares to regtess Yon X and obtain the bootstrap estimated regression coefficient b; . 
(Note that for each bootstrap sample, only one iteration of the iteratively reweighted least 
squares procedure is to be used.) 

c. Construct a histogram of the 800 bootstrap estimates bf. Does the bootstrap sampling 
distribution of bf appear to approximate a normal distribution? 

d. Calculate the sample standard deviation of the 800 bootstrap estimates bT. How does this 
value compare to the estimated standard deviation s{bwd used in part (a)? 

e. Construct a 90 percent bootstrap confidence interval for f31 using reflection method (11.59). 
How does this confidence interval compare with that obtained in part (a)7 Does the 
approximate interval in part (a) appear to be useful for this data set? . 

11.28. Mileage study. The effectiveness of a new experimental overdrive gear in reducing gasoline 
consumption was studied in 12 trials with a light truck equipped with this gear. In the data ). 
that follow, Xi denotes the constant speed (in miles per hour) on theJtest track in the ith trial 
and Ii denotes miles per gallon obtained. 

i: 1 2 3 

35 35 40 
22 20 28 

4 5 6 

40 45 45 
31 37 38 

7 

50 
41 

8 

50 
39 

9 10 11 12 

55 
34 

55 
37 

60 
27 

60 
30 

Second-order regression model (8.2) with independent normal error terms is expected to be 
appropriate. 

a. Fit regression model (8.2). Plot the fitted regression function and the data. Does the 
quadratic regression function appear to be a good fit here? 

b. Automotive engineers would like to estimate the speed Xmax at which the average titileage 
E {Y} is maximized. It can be shown for second-order model (8.2) that Xmax = 
X - (.5f31/ f311)' provided thatf311 is negative. Estimate the speed Xmax at which the average 
mileage is maximized, using Xmax = X - (.5bJ!bl!). What is the estimated mean mileage 
at the estimated optimum speed? 

c. Using fixed X sampling, obtain 1,000 bootstrap samples of size 12. For each bootstrap 
sample, fit regression model (8.2) and obtain the bootstrap estimate X~. 

d. Construct a histogram of the 1,000 bootstrap estimates X~. Does the bootstrap sampling 
distribution of X~x appear to approximate a normal distribution? 

e. Construct a 90 percent bootstrap confidence interval for Xmax using reflection method 
(11.56). How precisely has Xmax been estimated? 

11.29. Refer to Muscle mass Problem 1.27. 

a. Fit a two-region regression tree. What is the first split point based on age? What is SSE for 
this two-region tree? 

b. Find the second split point given the two""Tegion tree in part (a). What is SSE for the resulting 
three-region tree? 

c. Find the third split point given the three-region tree in part (b). What is SSE for the resulting 
four-region tree? 

d. Prepare a scatter plot of the data with the four-n~gion tree in part (c) superimposed. How 
well does the tree fit the data? What does the tree suggest about the change in muscle mass 
with age? 

e. Prepare a residual plot of ei versus Yi for the four-region tree in part (d). State your findings. 
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Case 
Studies 

11.30. Refer to Patient satisfaction Problem 6.15. Consider only the first two predictors (P<ttiem' 
d . ., I S age, XI. an seventy of II ness, Xl). 

a. Fit a two-region regression tree. What is the first split point, <tnd on which predictor is . 
based? What is SSE for the resulting two-region tree? It 

b. Find the second split point given the two-region tree in part (a). Is it based on X I Or X,? 
What is SSE for the resulting three-region tree? -

c. Find the third split point given the three-region tree in part (b). Is il based Oil XI or X,? 
What is SSE for the resulting four-region tree? -

d. Find the fourth split point given the four-region tree in part (c). Is it based on X I or Xl? 
What is SSE for the resulting five-region tree? 

e. Prepare a three-dimensional sUlface plot of the five-region lree obtained in part (d). What 
does this tree suggest about the relative importance of the two predictors? 

f. Prepare a residual plot of ej versus Y; for the five-region tree in part (d). State your findings. 

11.31. Refer to the Prostate cancer data set in Appendix C.5 and Case-Study 9.30. Select a f<mdom 
sample of 65 observations to use as the model-building d<tta set. 

a. Develop a regression tree for predicting PSA. Justify your choice of number of regions 
(tree size), and interpret your regression tree. 

b. Assess your model's i\bility to predict and discuss its usefulness to the oncologists. 

c. Compare the performance of your regression tree model with that of the best regression 
model obtained in Case Study 9.30. Which model is more easily interpreted and why? 

11.32. Refer to the Real estate sales data set in Appendix C.7 and Case Study 9.3 I. Select a random 
sample of 300 observations to use as the model-bUilding data set. 

a. Develop a regression tree for predicting sales price. Justify your choice of number of 
regions ( tree size), and interpret your model. 

b. Assess your model's ability to predict and discuss its usefulness as a tool for predicting 
sales prices. 

c. Compare the performance of your regression tree model with lhat of the best regression 
model obtained in Case Study 9.31. Which model is more easily interpreted and why? 



Chapter 

Autocorrelation in Time 
Series Data 

The basic regression models considered so far have assumed that the random error terms 
Ci are either uncorrelated random variables or independent normal random variables. In 
business .and economics, many regression applications involve time series data. For such 
data, the assumption of uncorrelated or independent error terms is often not appropriate; 
rather, the error terms are frequently correlated positively over time. Error terms correlated 
over time are said to be autocorrelated or serially correlated. 

A major cause of positively autocorrelated error terms in business and economic regres­
sion applications involving time series data is the omission of one or several key variables 
from the model. When time-ordered effects of such "missing" key variables are positively 
correlated, the error terms in the regression model will tend to be positively autocorrelated 
since the error terms include effects of missing variables. Consider, for example, the regres­
sion of annual sales of a product against average yearly price of the product over a period 
of 30 years. If population size has an important effect on sales, its omission from the model 
may lead to the error terms being positively autocorrelated because the effect of population 
size on sales likely is positively correlated over time. 

Another cause of po~itively autocorrelated error terms in economic data is the presence 
of systematic coverage errors in the response variable time series, which errors often tend 
to be positively correlated over time. 

12.1 Problems of Autocorrelation 

When the error terms in the regression model are positively autocorrelated, the use of 
ordinary least squares procedures has a number-of important consequences. We summarize 
these first, and then discuss them in more detail: 

1. The estimated regression coefficients are still unbiased, but they no longer have the 
minimum variance property and may be quite inefficient. 

2. MSE may seriously underestimate the variance of the error terms. 
3. s{bd calculated according to ordinary least squares procedures may seriously underes­

timate the true standard deviation of the estimated regression coefficient. 

481 
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TABLE 12.1 
Example of 
Positively 
Autocorrelated 
Error Terms. 

4. Confidence intervals and tests using the t and F distributions. discus~ed earlier, are no 
longer strictly applicable. 

To illustrate these problems intuitively, we consider the simple linear regre~sion model 
with time series data: 

Here, Y1 and XI arc observation~ for period t. Let us assume that the error terms £0
1 

are 
positively autocorrelated as follows: 

The HI> called distllrballces, arc independent normal random variables. Thus, any ":iortenn 
CI is the sum of the previous error term C1_1 and a new disturbance term U I • We shall assume 
here that the !II have mean 0 and variance I. 

In Table 12.1, column I, we show 10 random observations on the normal variable u 
I 

with mean 0 and variance I, obtained from a standard normal random numbers generatOI: 
Suppose now that C() = 3.0; we obtain then: 

CI = co +!l1 = 3.0 + .5 = 3.5 

C2 = CI + U2 = 3.5 - .7 = 2.8 

etc. 

The error terms CI arc shown in Table 12.1, column 2, and they arc plotted in Figure 12.1. 
Note the systematic pattern in these error terms. Their positive relation over time is shown 
by the fact that adjacent error terms tend to be of the same sign and magnitude. 

Suppose that XI in the regression model represents time, such that XI = I, X2 =2, 
etc. Further, suppose we know that f30 = 2 and f31 = .5 so that the true regression func­
tion is E {y} = 2 + .5X. The observed Y values based on the error terms in column 2 
of Table 12.1 arc shown in column 3. For example, Yo = 2 + .5(0) + 3.0 = 5.0, and 
YI = 2 + .5( 1) + 3.5 = 6.0. Figure 12.2a on page 483 contains the true regression line 
£{y} = 2 + .5X and the observed Y values shown in Table 12.1, column 3. Figure 12.2b 
contains the estimated regression line, fitted by ordinary least squares methods. and repeats 

(1) (2) (3) 
t Ut €t-1 + Ut = lOt Yt = 2 + .5Xt + lOt 

0 3.0 5.0 
1 .5 3.0+ 5- 3.5 6.0 
2 -.7 3.5- 7- 2.8 5.8 
3 .3 2.8+ .3= 3.1 6.6 
4 0 3.1 + 0= 3.1 7.1 
5 -2.3 3.1-2.3= .8 5.3 
6 -1.9 .8 - 1.9 = -1.1 3.9 
7 .2 -1.1+ 2- -.9 4.6 
8 -.3 - .9 - .3 = -1.2 4.8 
9 .2 -1.2+ .2 = -1.0 5.5 

10 -.1 -1.0- .1=-1.1 5.9 
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FIGURE 12.2 Regression with Positively Autocorrelated Error Terms. 

(a) True Regression ~if1e and Observation (b) Fitted Regression Line and Observations 
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(c) Fitted Regression Line and Observations with 
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the observed Y values. Notice that the fitted regression line differs sharPly from the true 
regression line because the initial £0 value was large and the succeeding positively autocor­
related error terms tended to be large for some time. This persistency pattern in the positively 
autocorrelated error terms leads to a fitted regression line far from the true one. Had the 
initial £0 value been small, say, £0 = -.2, and the disturbances different, a sharply different 
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12.2 

fitted regression line might have been obtained because of the persistency pattern, as sho 
in Figure 12.2c. This variation from sample to sample in the fitted regression lines due

wn 

the positively autocorrelated error terms may be so substantial as to lead to large varianc
to 

of the estimated regression coefficients when ordinary least squares methods are used. es 
Another key problem with applying ordinary least squares methods when the errortenn 

are positively autocondated, as mentioned before, is thatMSE may seriollsly underestimat s 
the variance of the C/. Figure 12.2 makes this clear. Note that the variability of the ; 
values around the fitted regression line in Figure 12.2b is substantially smaller than th 
variability of the Y values around the tme regression line in Figure 12.2a. This is one o~ 
the factors leading to an indication of greater precision of the regression coefficients than is 
actually the case when ordinary least squares methods are lIsed in the presence of positiv~!y 
autocorrelated errors. 

In view of the seriousness of the problems created by autocorrelated errors, it is important 
that their presence be detected. A plot of residuals against time is an etlective, thOUgh 
subjective, means of detecting autocorrelated en·ors. Formal statistical tests have also been 
developed. A widely used test is based on the first-order autoregressive error model, which 
we take up next. This model is a simple one, yet experience suggests that it is frequently 
applicable in business and economics when the error terms are serially correlated. 

First-Order Autoregressive Error lVlodel 

Simple linear Regression 
The generalized simple linear regression model for one predictor variable when the random 
error terms follow a first-order autoregressive, or AR( I), process is: 

where: 

Y/ = f30 + f3 1X/ + c/ 

c/ = PC/_I + u/ 

P is a parameter such that I P I < 1 

lit are independent N (0,0 2) 

(12.1) 

Note that generalized regression model (12.1) is identical to the simple linear regression 
model (2.1) except for the structure of the error terms. Each error term in model (l21) 
consists of a fraction of the previous error term (when P > 0) plus a new disturbance 
term Il/. The parameter P is called the C/lltocorrelatiol1 parameter. 

Multiple Regression 
The generalized multiple regression model when the random error terms follow a first-order 
autoregressive process is: 

Y/ = f30 + f31 XII + f32 X /2 + ... + f3/J-1 X/./J_ 1 + C/ 

C/ = PC/_I + U/ 

(12.2) 
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where: 

Ipi < 1 
u/ are independent N(O, ( 2

) 

Thus, we see that generalized multiple regression model 02.2) is identical to the earlier 
multiple regression model (6.7) except for the structure of the error terms. 

properties of Error Terms 
Regression models (12.1) and (12.2) are generalized regression models because the error 
terms St in these models are correlated. However, the error terms still have mean zero and 
constant variance: 

E{et} = 0 (12.3) 

a 2 

a 2 {srJ = -- (12.4) 
1- p2 

Note that the variance of the error terms here is) function of the autocorrelation parameter p. 
The covariance between adjacent error terms St and S/_I is: 

, a{St,St_I}=p(~) (12.5) 
I-p 

The coefficient of correlation between St and St-I> denoted by pest> St-I}, is defined as 
follows: 

(12.6) 

Since the variance of each error term according to (12.4) is a 2/O - p2), the coefficient of 
correlation using (12.5) is: 

(12.6a) 

Thus, the autocorrelation parameter p is the coefficient of correlation between adjacent 
error terms. 

The covariance between error terms that are s periods apart can be shown to be: 

a{st, St-s} = pS C :2p2) (12.7) 

and is called the autocovariance function. The cCiefficient of correlation between St and St-s 
therefore is: 

peSt, St-s} = pS s.=/= 0 (12.8) 

Note that (12.8) is called the autocorrelation function. Thus, when p is positive, all error 
terms are correlated, but the further apart they are, the less is the correlation between them. 
The only time the error terms for the autoregressive error models (12.1) and 02.2) are 
uncorrelated is when p = O. 
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From the results for the variances and covariances of the error terms in (12.4) and (127 
we can now state the variance-covariance matrix of the error terms for the first-or~ 
autoregressive generalized regression models (12.1) and (12.2): 

where: 

Kp 
K 

1 (r 
K=---

1- pI 

(12.9) 

(1.c!.9a) 

Note again that the variance-covariance matrix (12.9) reflects the generalized nature of 
regression model& (12.1) and 02.2) by containing nonzero covariance terms. 

Comments 

I. It i~ instructive to expand the definition of the first-order autoregressive error term e,: 

Since this definition holds for all t, we have e,_1 = pe,-2 + !I,_I. When we substitute this expression 
above, we obtain: 

Replacing now e,_2 by pe'-J + 11,-2, we obtain: 

e, = p3el_3 + p2ul _2 + PU,_I + !I, 

Continuing in this fashion, we find: 

:JC 

el = '2:P·'II,-., 
.<;=0 

(12.10) 

Thus, the error tem1 el in period t is a linear combination of the current and preceding disturbance 
terms. When 0 < p < I, (12.10) indicates that the furtherthe period t - s is in the past, the smaller 
is the weight of disturbance term 11 1_., in determining e,. 

2. The derivation of (12.3), that the elTor terms have expectation zero, follows directly from taking 
the expectation of el in (12.10) and using the fact that E {!II} = 0 for all t acconiing to models (12.1) 
and (12.2). 

3. To derive the variance of the error terms in (12.4), we utilize the assumption of models (12.1) 

and (12.2) that the U I are independent with variance a 2• It then follows from (12.10) that: 

~ N 

a 2{ed = '2: p2-'a2{u l _J = a 2 L p2.' 

.\==:O 

Now for \p\ < I, it is known that: 
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Hence, we have: 

4. To derive the covariance of et and et-I in (12.5), we need to recognize that: 

u 2{et} = E{e;} 

u{et, et-rl = E{etet-d 

These results follow from (A. 15a) and (A.21a), respectively, since E{et} = 0 by (12.3) for all t. 
By (12.10), we have: 

which can be rewritten: 
J 

E{etet-rl = E{[Ut + P(Ut-1 + PUt-2 + .. ')][Ut-I + PUt-2 + p2Ut_3 + ... J} 

= E{ut(Ut_1 + PUt-2 + p2Ut_3 + ... )} + E{p(ut_1 + PUt-2 + p2Ut_3 + ... )2} 

Since E {U(M t - s } = 0 for all s 1= 0 by the assumed independence ofthe U t and the factthat E furl = 0 
for all t, the first term drops out and we obtain: 

E{etet-rl = pE {e;_I} = pu2{et_rl 

Hence, by (12.4), which holds for all t, we have: 

u{et, et-rl = p ( 1 :2p2 ) 

5. The first-order autoregressive errOr process in models (12.1) and (12.2) is the simplest kind. A 
second-order process would be: 

(12.11) 

Still higher-order processes could be postulated. Specialized approaches have been developed for 
complex autoregressive error processes. These are discussed in treatments of time series procedures 
and forecasting, such as in Reference 12.1. • 

12.3 Durbin-Watson Test for Autocorrelation 

The Durbin-Watson test for autocorrelation assumes the first-order autoregressive error 
models (12.1) or (12.2), with the values of the predictor 'variable(s) fixed. The test consists 
of determining whether or not the autocorrelatitm parameter pin (12.1) or (12.2) is zero. 
Note that if p = 0, then Sf = Ut. Hence, the error terms Sf are independent when p = 0 
since the disturbance terms Ut are independent. 

Because correlated error terms in business and eConomic applications tend to show 
positive serial correlation, the usual test alternatives considered are: 

(12.12) 
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Example 

The Durbin-Watson test statistic D is obtained by using ordinary least squares to fit th 
regression function, calculating the ordinary residuals: e 

(12.13) 

and then calculating the statistic: 

(12.14) 

where n is the number of cases. 
Exact critical values are difficult to obtain, but Durbin and Watson have obtained lower 

and upper bounds [h and du such that a value of D outside these bounds leads to a definite 
decision. The decision rule for testing between the alternatives in 02.12) is: 

If D > du , conclude Ho 

If D < [h, conclude Hll (12.15) 
If [h s D s du , the test is inconclusive 

Small values of D lead to the conclusion that p > 0 because the adjacent error tenns 8
1 

and 8 1_ I tend to be of the same magnitude when they are positively autocorrelated. Hence 
the differences in the residuals, el - el-h would tend to be small when p > 0, leadingto~ 
small numerator in D and hence to a small test statistic D. 

Table B.7 contains the bounds [h and du for various sample sizes (n), for two levels of 
significance (.05 and.Ol), and for vaIious numbers of X variables (p - l) in the regression: 
model. 

The Blaisdell Company wished to predict its sales by using industry sales as a predictor 
variable. (Accurate predictions of industry sales are available from the industry's trade 
association.) A portion of the seasonally adjusted quarterly data on company sales and 
industry sales for the peliod 1998-2002 is shown in Table 12.2, columns I and 2. A scatter 
plot (not shown) suggested that a linearregression model is appropriate. The market research.: 
analyst was, however, concerned whether or not the error terms are positively autocorrelated. 

The results of using ordinary least squares to fit a regression line to the data in Table l22 
are shown at the bottom of Table l2.2. The residuals e l are shown in column 3 of Table 12t 
and are plotted against time in Figure 12.3. Note how the residuals consistently are above 
or below the zero line for extended periods. Positive autocorrelation in the el1-or terms is 
suggested by such a pattern when an appropriate regression function has been employed. . 

The analyst wished to confirm this graphic diagnosis by using the Durbin-Watson test 
for the alternatives: 

Ho: p = 0 

H,,:p > 0 

Columns 4, 5, and 6 of Table 12.2 contain the necessary calculations for the test statistic: 
D. The analyst then obtained: 

",20 )1 0 9 
D 

_ ul=/el - el_1 - . 97 4 
- ",20 2 = -- = .735 

UI=I e l .13330 
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BLE 12.2 Data, Regression Results, and Durbin-Watson Test Calculations-Blaisdell Company Example 
fA pany and Industry Sales Data Are Seasonally Adjusted). 
(CoJIl 
~ (1) (2) (3) (4) (5) (6) 
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FIGURE 12.3 
Residuals 
Plotted against 
Time-
Blaisdell 
Company 
Example. 
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Company Industry 
'Sales Sales 

~($ millions) ($ millions) 
Yt Xt 
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21.52 129.4 
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28.24 
28.78 

164.2 
165.6 
168.7 
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Residual 
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-.062015 

.022021 
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.029112 

.042316 
-.044160 
-.033009 

-.035963 
.084036 
.141733 

-.076990 
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-.086476 
.011151 

f' = -,-1.4548 + .17628X 

s{bo} = .21415 s{~} = .00144 

MSE=.00741 
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For level of significance of .01, we find in Table B.7 for n = 20 and p - 1 = 1: 

du = 1.15. 

Since D = .735 falls below dL = .95, decision rule (12.15) indicates that the appropriate 
conclusion is Ha, namely, that the error terms are positively autocoLfelated. 

Comments 
1. If a test for negative autocorrelation is required, the test statistic to be used is 4 - D, where D 

is defined as above. The test is then conducted in the same manner described for testing for positive 
autocorrelation. That is, if the quantity 4 - D falls below dL , we conclude p < 0, that negative auto­
correlation exists. and so on. 
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12.4 

2. A two-sided test for Ho: P = 0 versus H,,: p oF 0 can be made by employing both one-sid 
tests separately. The Type I risk with the two-sided test is 20'. where 0' is the Type I risk fo' ed 

I each 
one-sided test. 

3. When the Durbin-Watson test employing the bounds dL and du gives indeterminate results' 
principle more cases are required. Of course, with time series data it may be impossible to ob;~ 
more cases, or additional cases may lie in the future and be obtainable only with great delay. DIl~ 
and Watson (Ref. 12.2) do give an approximate test which may be used when the bounds test' 
indeterminate. but the degrees of freedom should be larger than about 40 before this approximate te

lS 

will give more than if rough indication of whether autocorrelation exists. st 
A reasonable procedure is to treat indeterminate results as suggesting the presence of autocorrelated 

errors and employ one of the remedial actions to be discussed next. When remedial action does not 
lead to substantially ditferent regression results as ordinary least squares, the assumption of uncn~~_ 
lated error terms would appear to be satisfactory. When the remedial action does lead to subslanti~i 
different regression results (such as larger estimated standard errors for the regression coefficie~ 
or the elimination of autocorrelated errors), the results obtained by means of the remedial action are 
probably the more useful ones. 

4. The Durbin-Watson test is not robust against misspecifications ofthe 1Il0dei. For example, the 
Durbin-Watson test may not disclose the presence of autocorrelated errors that follow the second-order 
autoregressive pattern in (12.11). 

5. The Durbin-Watson test is widely used; however, other tests for autocorrelation are available. 
One such test, due to Theil and Nagar, is found in Reference 12.3. • 

Rernedial Measures for Autocorrelation 

The two plincipal remedial measures when autocorrelated enor terms are present are to add 
one or more predictor variables to the regression model or to use transformed variables. 

Addition of Predictor Variables 
As noted earlier, one major cause of autocorrelated elTor terms is the omission from the 
model of one or more key predictor variables that have time-ordered effects on the response 
variable. When autoconelated error terms are found to be present, the first remedial action 
should always be to search for missing key predictor variables. In an earlier illustration, we 
mentioned population size as a missing valiable in a regression of annual sales ofa product 
on average yearly price of the product during a 30-year period. 

When the long-term persistent effects in a response variable cannot be captured by one 
or several predictor variables, a trend component can be added to the regression modeL such 
as a linear trend or an exponential trend. Use of indicator variables for seasonal effects, as 
discussed on pages 319-321, can be helpful in eliminating or reducing autocorrelation in 
the error terms when the response variable is subject to seasonal effects (e.g., quarterly sales 
data). 

Use of Transformed Variables 
Only when use of additional predictor variables is not helpful in eliminating the problem of 
autocorrelated errors should a femedial action based on transformed variables be employed. 
A number of remedial procedures that rely on transfOl'ffiations of the variables have been 
developed. We shall explain three of these methods. Our explanation will be in termS of 
simple linear regression, but the extension to multiple regression is direct. 
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The three methods to be described are each based on an interesting property of the 
first-order autoregressive error term regression model (12.1). Consider the transformed 
dependent variable: 

Y: = Y/ - pY/_ 1 

Substituting in this expression for Y/ and 1';-1 according to regression model (12.1), 
we obtain: 

Y: = (f3o + f3I X / + s/) - p(f3o + f3I X /-1 + S/-I) 

= 130(1 - p) +}I (X/ - pX/_ I) + (s/ - PS/-I) 

But, by (12.1), S/ - PS/_I = U/. Hence: 

Y: = 130(1- p) + f31(X/ - pX/_ I) + u/ (12.16) 

where the u/ are the independent disturbance terms. Thus, when we use the transformed 
variable V:, the regression model contains error terms that are independeht. Further, model 
(12.16) is still a simple linear regression model with new X variable X; = X/ - pX/_ 1, as 
may be seen by rewriting (12.16) as follows: 

where: 

Y: = Y/ - pY/_ 1 

X; = X/ - pXt-I 

f3b = 130(1 - p) 

f3; = f31 

(12.17) 

Hence, by use of the transformed variables X; and V:' we obtain a standard simple linear 
regression model with independent error terms. This means that ordinary least squares 
methods have their usual optimum properties with this modeL 

In order to be able to use the transformed model (12.17), one generally needs to estimate 
the autocorrelation parameter p since its value is usually unknown. The three methods to 
be described differ in how' this is done. Often, however, the results obtained with the three 
methods are quite similar. 

Once an estimate of p has been obtained, to be denoted by r, transformed variables are 
obtained using this estimate of p: 

Y: = 1'; - rY/_ 1 

X; = X/ - rX/_ 1 

(12.18a) 

(12.18b) 

Regression model (12.17) is then fitted to these-transformed data, yielding an estimated 
regression function: 

~ (12.19) 

If this fitted regression function has eliminated the autocorrelation in the error terms, we 
can transform back to a fitted regression model in the original variables as follows: 

(12.20) 



492 Part Two Mllitiple Lilleat Reg(essioll 

where: 

(12.20a) 

(12.20b) 
The estimated standard deviations of the regression coefficients for the original variab] 

can be obtained ffom those for the regression coefficients for the transformed variables: 
follows: 

s{bo} = s{b~} 
I - r (12.21a) 

s{b,} = s{b',l (1271'>' , .0) 

Cochrane-Orcutt Procedure 

Example 

The Cochrane-Orcutt procedure involves an iteration of three steps. 

I. Estimation of p. This is accomplished by noting that the autoregressive error process 
assumed in model (12.1) can be viewed as a regression through the origin: 

CI = PCI_' + U, 

where CI is the response valiable, CI_I the predictor variable, u 1 the elTor term, and p the slope 
of the line through the origin. Since the Ct and CI_I are unknown, we use the residuals e, and 
el_1 obtained by ordinary least squares as the response and predictor variables, and estimate 
p by fitting a straight line through the origin. From our previous discussion of regression 
through the origin, we know by (4.14) that the estimate of the slope p, denoted by r, is: 

'\''' 
01=2 e1-le1 

r = ,\,11 ? 

L-1=2 e'_1 
(12.22) 

2. Fitting oftral15:formed model (12.17). Using the estimate r in (12.22), we next obtain 
the transformed variables Y; and X; in (12.18) and use ordinary least squares with these 
transformed variables to yield the fitted regression function (12.19). 

3. Test/or need to iterate. The Durbin-Watson test is then employed to test whether the 
error terms for the transformed model are uncorrelated. If the test indicates that they are 
uncoll'elated, the procedure terminates. The fitted regression model in the original variables 
is then obtained by transforming the regression coefficients back according to (12.20). 

If the Durbin-Watson test indicates that autocorrelation is still present after the first iter­
ation, the parameter p is reestimated from the new residuals for the fitted regression model 
02.20) with the original valiables, which was derived from the fitted I'egression model 
(12.19) with the transformed valiables. A new set of transformed variables is then obtained 
with the new r. This process may be continued for another iteration or two until the Durbin­
Watson test suggests that the error terms in the transformed model are uncon·c1ated. If 
the process does not terminate after one or two iterations, a different procedure should be 
employed. 

For the Blaisdell Company example, the necessary calculations for estimating the autocor­
relation parameter p, based on the residuals obtained with ordinary least squares apPlied 
to the original variables, are illustrated in Table 12.3. Column I repeats the residuals frolU 



fABLE 12.3 
Cid~uJatio~ 
fbr EstimatlDg 
pwitb tbe 
Cllchrane-
orcutt 
procedure-
Blaisdell 
Company 
EilIJllple. 

TABLE 12.4 
Transformed 
Variables and 
Regression 
Results for 
First Iteration 
with Cochrane-
Orcutt 
Procedure-
Blaisdell 
Company 
Example. 

t 

1 
2 
3 
4 

0, ~. ~ 

17 
18 
19 
'20 

Total 

t 

1 
2 
3 
4 

17 
18 
19 
20 
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(1) 

(1) 
~~ 

(3) 
et et-l e t 

-.026052 , 
-.062015 -.026052 .0016156 

.022021 -.062015 -.0013656 

.163754 .022021 .0036060 

.029112 .106102 .0030889 

.042316 .029112 .0012319 
-.044160 ,042316 -.0018687 
-.033009 -.044160 .0014577 

.0834478 

r = L et~l et = .0834478 = .631166 
. Let-l .1322122 

(2) (3) 

(4) 
ef-l 

.0006787 

.0038459 

.0004849 

.0112576 

.0008475 

.0017906 

.0019501 

.1322122 

(4) 
Yt Xt Y{ = Yt - .631166Yt_l X~ = Xt - .631166Xt_l 

20.96 127.3 
21.40 130.0 8.1708 49.653 
21.96 132.7 8.4530 .50.648 
21.52 129.4 7.6596 45.644 

27.52 164.2 10.4911 62.772 
27.78 165.6 10.4103 61.963 
28.24 168.7 10.7062 64.179 
28.78 171.7 10.9559 65.222 

9" = -.3941 + .17376X' 

s{b~} = .1672 s{b1 J = .002957 

MSE= .00451 

493 

Table 12.2. Column 2 contains the residuals e t-I, and columns 3 and 4 contain the necessary 
calculations. Hence, we estimate: 

r = .0834478 = .631166 
.1322122 

We now obtain the transformed variables Y: ana x; in (12.18): 

Y: = Yt - .631166Yt _ J 

X; = X t - .631l66Xt --'J . 
These are found in Table 12.4. Columns 1 and 2 repeat the original variables Yt and Xl> 
and columns 3 and 4 contain the transformed variables Y: and X;. Ordinary least squares 
fitting of linear regression is now used with these transformed variables based on the n - 1 
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cases remaining after the transformations. The fitted regression line and other regressi 
results are shown at the bottom of Table 12.4. The fitted regression line in the transform: 
variables is: 

where: 

Y' = -.3941 + .17376X' 

Yi = YI - .631166YI_ l 

X; = XI - .631166XI_ l 

(12.23) 

Since the random term in the transformed regression model (12.17) is the disturbance 
term HI, MSE = .00451 is an estimate of the variance of this disturbance term; recall that 
(J2{u,) = (J2. 

From the fitted regreSSion function for the transformed variables in (12.23), reSiduals 
were obtained and the Durbin-Watson statistic calculated. The result was (calculations not 
shown) D = 1.65. From Table B.7, we find for ex = .01, /J - I = I, and /1 = 19: 

du =1.13 

Since D = 1.65 > du = 1.13, we conclude that the autocorrelation coefficient for the error 
term.', in the model with the transfonned valiables is zero. 

Having successfully handled the problem of auto correlated error terms, we now transform 
the fitted model in (12.23) back to the original variables, using (12.20): 

b;) -.3941 
bo = -- = = -1.0685 

I - r 1-.631166 

b l = b; = .17376 

leading to the fitted regression function in the original variables: 

Y = -1.0685 + .17376X (12.24) 

Finally, we obtain the estimated standard deviations of the regression coefficients for the 
original variables by using (12.21). From the results in Table 12.4, we find: 

s{b~} .1672 
s{bol = -- = = .45332 

I - r I - .631166 

8{b l } = s{h;} = .002957 

Comments 

I. The Cochrane-Orcutt approach does not always work properly. A major reason is that when 
the error terms are positively autocorrelated, the estimate r in (12.22) tends to underestimate the 
autocorrelation parameter p. When this bias is serious, it can significantly reduce the effectiveness of 
the Cochrane-Orcutt approach. 

2. There exists an approximate relation between the Durbin-Watson test statistic Din (12.14) and 
the estimated autocorrelation parameter r in (12.22): 

D "'" 2(1 - r) (12.25) 

This relation indicates that the Durbin-Watson statistic ranges approximately between 0 and 4 
since,. takes on values between -\ and I, and that D is approximately 2 when r = O. Note that 
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for the Blaisdell Company example ordinary least squares regression fit, D=.735,r=.631, and 
2(1 - r) = .738. 

3. Under certain circumstances, it may be helpful to construct pseudotransformed values for period 
1 so that the regression for the transformed variables is based on n, rather than n - 1, cases. Procedures 
for doing this are discussed in specialized texts such as Reference 12.4. 

4. The least squares properties of the residuals, such as that the sum of the residuals is zero, apply 
to the residuals for the fitted regression function with the transformed variables, not to the residuals 
for the fitted regression function transformed back to the original variables. • 

Hildreth-lu Procedure 

Example 

TABLE 12.5 
Hildreth·Ln 
Results-
Blaisdell 
Company 
Example. 

The Hildreth-Lu procedure for estimating the autocorrelation parameter p for use in the 
transformations (12.18) is analogous to the Box-Cox procedure for estimating the param­
eter A in the power transformation of Y to improve the appropriateness of the standard 
regression model. The value of p chosen with the Hildreth-Lu procedure is the one that 
minimizes the error sum of squares for the transformed regression model (12.17): 

(12.26) 

Computer prog~ms are available to find the value of p that minimizes SSE. Alternatively, 
one can do a numerical search, running repeated regressions with different values of p for 
identifying the approximate magnitude of p that minimizes SSE. In the region of p that 
leads to minimum SSE, a finer search can be conducted to obtain a more precise value of p. 

Once the value of p that minimizes SSE is found, the fitted regression function cor­
responding to that value of p is examined to see if the transformation has successfully 
eliminated the autocorrelation. If so, the fitted regression function in the original variables 
can then be obtained by means of (12.20). 

Table 12.5 contains the regression results for the Hildreth-Lu procedure when fitting the 
transformed regression model (12.17) to the Blaisdell Company data for different values 
of the autocorrelation parameter p. Note that SSE is minimized when p is near .96, so we 
shall let r = .96 be the estimate of p. The fitted regression function for the transformed 
variables corresponding to r = .96 and other regression results are given at the bottom of 
Table 12.5. The fitted regression function in the transformed variables is: 

p 

.10 
:30 
.50 
.70 
.90 
.92 

[' = .07117 + . 16045X' 

SSE p 

.1170 .94 

.0938 ,95 

.0805 .96 
.Oc758 .97 
.0728 ;98 
.0723 

For p= .96: Pi =:07117+.16045k' 

s{ooJ = ,05798 s{b;} = .006840 

MSE=.00422 

SSE 

.0718 

.07171 
;07167 
;07175 
,0:7197 

(12.27) 
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where: 

Y; = YI - .96YI- 1 

X; = XI - .96XI_1 

The Durbin-Watson test statistic for this fitted model is D = 1.73. Since for n == 19 
p - I = I, and ex = .0 I the upper critical value is du = 1.13, we conclude that no autocor~ 
relation remains in the transformed model. 

Therefore, we shall transform regression function (12.27) back to the original variables. 
Using (12.20), we obtain: 

Y = 1.7793 + .16045X (12.28) 

The estimated standard deviations of these regression coefficients are: 

s{bo} = 1.450 s{b,} = .006840 

Comments 
I. The Hildreth-Lu procedure, unlike the Cochrane-Orcutt procedure, does not require any itera­

tions once the estimate of the autoco'Telation parallleter p is obtained. 

2. Note frolll Table 12.5 that SSE as a function of p is quite stable in a wide region around the 
minimulll, as is often the case. It indicates that the numerical search for finding the best value of p 
need not be too fine unless there is particular interest in the intercept terlll /-30 , since the estimate bo is 
sensitive to the value of ,.. • 

First Differences Procedure 
Since the autocorrelation parameter p is frequently large and SSE as a function of p often 
is quite fiat for large values of p up to 1.0, as in the Blaisdell Company example, some 
economists and statisticians have suggested use of p = 1.0 in the transformed model 02.17). 
If p = I, f3b = f3o(l - p) = 0, and the transformed model (12.17) becomes: 

where: 

Y/ = YI - YI _, 

X; = XI - XI- 1 

(12.29) 

(12.29a) 

(12.29b) 

Thus, again, the regression coefficient f3; = f31 can be directly estimated by ordinary least 
squares methods, this time based on regression through the origin. Note that the transformed 
variables in (12.29a) and (12.29b) are ordinary first differences. It has been found that this 
first differences approach is effective in a variety of applications in reducing the autocorre­
lations of the error tenns, and of course it is much simpler than the Cochrane-Orcutt and 
Hildreth-Lu procedures. 

The fitted regression function in the transformed variables: 

Y' =b',X' (12.30) 

can be transformed back to the original variables as follows: 

(12.31) 
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Example -

TABLE 12.6 
First 
Dif(erences and 
Regression 
~ultswith 
First 
~lil:erences 
Procedure-
Blaisdell 
Company 
Example. 

where: 
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ho=Y-h;X 
hi =h; 

(12.31a) 

(12.31b) 

Table 12.6 illustrates the transformed variables Y: and X;, based on the first differences 
transformations in (12.29a, b) for the Blaisdell Company example. Application of ordinary 
least squares for estimating a linear regression through the origin leads to the results shown 
at the bottom of Table 12.6. The fitted regression function in the tmnsformed variables is: 

where: 

[' = .16849X' (12.32) 

Y;=Y/-Y/- I 

X; = X/-X/_ I 

To examine whether the first differences procedure has removed the autocorrelations, 
we shall use the Durbin-Watson test. There are two points to note when using the Durbin­
Watson test with the first differences procedure. Sometimes the first differences procedure 
can overcorrect,' leading to negative autocorrelations in the error terms. Hence, it may be 
appropriate to use a two-sided Durbin-Watson test when testing for autocorrelation with 
first differences data. The second point is that the first differences model (12.29) has no 
intercept term, but the Durbin-Watson test requires a fitted regression with an intercept 
term. A valid test for autocorrelation in a no-intercept model can be carried out by fitting for 
this purpose a regression function with an intercept term. Of course, the fitted no-intercept 
model is still the model of basic interest. 

In the Blaisdell Company example, the Durbin-Watson statistic for the fitted first dif­
ferences regression model with an intercept term is D = 1.75. This indicates uncorrelated 
error terms for either a one-sided test (with ex = .01) or a two-sided test (with ex = .02). 

With the first differences procedure successfully eliminating the autocorrelation, we 
return to a fitted model in the original variables by using (12.31): 

[ = -.30349 + .16849X (12.33) 

(1) (2) (3) (4) 
t Yt Xt Y: = Yt - Yt-l X~ = Xt - Xt- 1 

1 20.96 127.3 
2 21.40 130.0 .44 2.7 
3 21.96 132.7 .56 2.7 
4 21.52 129.4 . -.44 -3.3 

17 27.52 164.2 .54 3.5 • 
18 27.78 165.6 .26 1.4 
19 28.24 168.7 .46 3.1 
20 28.78 171.7 .54 3.0 

f"=.16849X' 

5{h;} = .005096 MSE= .00482 
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TABLE 12.7 
Major 
Regression 
Results for 
Three Trans-
formation 
Procedures-
Blaisdell 
Company 
Example. 

Multiple Linear Regressioll 

Estimate of 0'2 

Procedure b, s{b1 } r (MSE} 

Cochrane-Orcutt .1738 .0030 .63 .0045 
Hildreth-Lu .1605 .0068 .96 .0042 
First differences .1685 .0051 1.0 .0048 

Ordinary least squares .1763 .0014 

where: 

bo = 24.569 - .16849(147.62) = -.30349 

We know from Table 12.6 that the estimated standard deviation of b l is s{b l } = .005096 
since b l = h;. 

Comparison of Three Methods 
Table 12.7 contains some of the main regression results for the three transformation methods 
and also for the ordinary least squares regression fit to the original variables. A number of 
key points stand out: 

I. All of the estimates of f31 are quite close to each other. 
2. The estimated standard deviations of b l based on Hildreth-Lu and first differences trans­

formation methods are quite close to each other; that with the Cochrane-Orcutt proce­
dure is somewhat smaller. The estimated standard deviation of b l based on ordinary 
least squares regression with the original variables is still smaller. This is as expected, 
since we noted earlier thar the estimated standard deviations s{ bk } calculated according 
to ordinary least squares may seriously underestimate the true standard deviations a{bd 
when positive autocorrelation is present. 

3. All three transfOlmation methods provide essentially the ~ame estimate of (52, the vari­
ance of the disturbance terms !I/. 

The three transformation methods do not always work equally well, as happens to bethe 
case here for the Blaisdell Company example. The Cochrane-Orcutt procedure may fail to 
remove autocorrelation in one or two iterations, in which case the Hildreth-Lu or the first 
differences procedures may be preferable. When several of the transformation methods are 
effective in removing autocoll"Clation, then simplicity of calculations may be considered in 
choosing from among these procedures. 

Comment 
Further discussions of the Cochrane-Orcutt, Hildreth-Lu, and first differences procedures, as well as 
of other remedial procedures for autocorrelated errors, may be found in specialized texts, such as 
Reference 12.4. • 
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12.5 Forecasting with Autocorrelated Error Terms 
=----

One important use of autoregressive error regression models is to make forecasts. With these 
models, information about the error term in the most recent period n can be incorporated 
into the forecast for period n + 1. This provides a more accurate forecast because, when 
autoregressive error regression models are appropriate, the error terms in successive periods 
are correlated. Thus, if sales in period n are above their expected value and successive error 
terms are positively correlated, it follows that sales in period n + 1 will likely be above their 
expected value also. 

We shall explain the basic ideas underlying the development of forecasts using the 
presence of autocorrelated error terms by again employing the simple linear autoregressive 
error term regression model (12.1). The extension to multiple regression model (12.2) is 
direct First, we consider forecasting when either the Cochrane-Orcutt or the Hildreth-Lu 
procedure has been utilized for estimating the regression parameters. 

When we express regression model (12.1): 

Y/ = fJo + fJlXt + S/ 

by using the structure of the error terms: 
" 

we obtain: 

For period n + 1, we obtain: 

Yn+1 = fJo + fJlXn+1 + PSn + Un+1 

Thus, Yn+ I is made up of three components: 

1. The expected value fJo + fJl Xn+ l . 
2. A multiple p of the preceding error term Sn. 

3. An independent, random disturbance term with E{Un+l} = O. 

(12.34) 

The forecast for next period n + 1, to be denoted by Fn+ I, is constructed by dealing with 
each of the three components in (12.34): 

1. Given Xn+l , we estimate the expected value fJo + fJl Xn+1 as usual from the fittedregres­
sion function: 

Yn+ 1 = bo + blXn+1 

where bo and b l are the estimated regression coefficients for the original variables 
obtained from b~ and b~ for the transformed variables according to (12.20). 

2. p is estimated by r in (12.22), and Sn is estimated by the residual en: 

en = Yn - (bo + b l Xn) == Yn - Yn 

Thus, PSn is estimated by ren . 

3. The disturbance term Un+1 has expected value zero and is independent of earlier infor­
mation. Hence, we use its expected value of zero in the forecast. 

Thus, the forecast for period n + 1 is: 

(12.35) 
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Example 

An approximate I - a prediction interval for Y,,+l(ncw» the new observation on th 
sponse vm"iable, may be obtained by employing the usual prediction limits for a new obs: re­
tion in (2.36), but based on the transformed observations. Thus, Yi and Xi in formula (2.;a­
for the estimated variance sl{pred} are replaced by Y/ and X; as defined in (12.18). a) 

The approximate I - a prediction limits for Y,,+I(ncw) with simple linear regre . 
SSlOn 

therefore are: 

FIl+I ± t(l - aj2; /1 - 3)s{pred} (12.36) 
where s{pred}, defined in (2.38a), is here based on the transformed observations. Noteth 
use of /1 - 3 degrees of freedom for the t multiple, since there are only J1 - I transforrn~ 
cases and two degrees of freedom are lost for estimating the two parameters in the sim Ie 
I· . f . P ll1ear regreSSion unctIOn. 

When forecasts are based on the first differences procedure, the forecast in 02.35) is 
still applicable, but r = 1 now. The estimated standard deviation s{pred} now is calculated 
according to formula (4.20) in Table 4.1 for one predictor variable, using the transformed 
variables. Finally, the degrees of freedom for the t mUltiple in (12.36) will be n - 2, since 
only one parameter has to be estimated in the no-intercept regression model (12.29). 

For the Blaisdell Company example, the trade association has projected that deseasonalized 
industry sales in the first quarter of 2003 (i.e., quarter 21) will be X21 = $175.3 million. 
To forecast Blaisdell Company sales for quarter 21, we shall use the Cochrane-Orcutt fitted 
regression function (12.24): 

Y = -1.0685 + .17376X 

First, we need to obtain the residual e21): 

e:w = Y10 - Y20 = 28.78 - [-1.0685 + .17376(171.7)] = .0139 

The fitted value when Xli = 175.3 is: 

Y21 = -1.0685 + .17376(175.3) = 29.392 

The forecast for period 21 then is: 

F21 = Y21 + re20 = 29.392 + .631166(.0139) = 29.40 

Note how the fact that company sales in quarter 20 were slightly above their estimated mean 
has a small positive influence on the forecast for company sales for quarter 21. 

We wish to set up a 95 percent prediction interval for Y2 J(new), Using the data fOl·the 
transformed variables in Table 12.4, we calculate s {pred} by (2.38) for: 

X:,+I = X"+I - .631166X" = 175.3 - .631166(171.7) = 66.929 

We obtain s{pred} = .0757 (calculations not shown). We require t(.975; 17) = 2.110. We 
therefore obtain the prediction limits 29.40 ± 2.110(.0757) and the prediction intelwl: 

29.24.:S Y21 (new) .:S 29.56 

Given quarter 20 seasonally adjusted company sales of $28.78 million and other pa<.;t sales, 
and given quarter 21 industry sales of$175.3 million, we predict with approximately 95 per­
cent confidence that seasonally adjusted Blaisdell Company sales in quarter 21 will be 
between $29.24 and $29.56 million. 
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To obtain a forecast of actual sales including seasonal effects in quarter 21, the Blaisdell 
Company still needs to incorporate the first quarter seasonal effect into the forecast of 
seasonally adjusted sales. 

The forecasts with the other transformation procedures are very similar to the one with 
the Cochrane-Orcutt procedure. With the first differences estimated regression function 
(12.33), the forecast for quarter 21 is: 

F21 = [-.30349 + .16849(175.3)] + 1.0[28.78 + .30349 - .16849(171.70)] = 29.39 

The estimated standard deviation s{pred} calculated according to (4.20) with the trans­
formed data in Table 12.6 is s{pred} = .0718 (calculations not shown). For a 95 percent 
prediction interval, we require t(.975; 18) = 2.101. The prediction limits tIterefore are 
29.39 ± 2.101(.0718) and the approximate 95 percent prediction interval is: i 

29.24 ~ Y21(new) ~ 29.54 

This forecast is practically the same as that with the Cochrane-Orcutt estimates. 
The approximate 95 percent prediction interval with the estimated regression func­

tion (12.28) based on the Hildreth-Lu procedure is (calculations not shown): 

29.24 ::: Y21(new) ::: 29.52 

This forecast is practically the same as the other two. 

Comments 
1. Forecasts obtained with autoregressive error regression models (12.1) and (12.2) are conditional 

on the past observations Y", Yn-I. etc. They are also conditional on Xn+l , which often has to be 
projected as in the Blaisdell Company example. 

2. Forecasts for two or more periods ahead can also be developed, using the recursive relations of 
E:t to earlier error terms developed in Section 12.2. For example, given Xn+2 the forecast for period 
n + 2, based on either Cochrane-Orcutt or Hildreth-Lu estimates, is: 

(12.37) 

For the first differences estimates, the forecast in (12.37) is calculated with r = 1. 

3. The approximate prediction limits (12.36) assume that the value of r used in the transfor­
mations (12.18) is the true value of p; that is, r = p. If that is the case, the standard regression 
assumptions apply since we are then dealing with the transformed model (12.17). To see that the 
prediction limits obtained from the transformed model are applicable to the forecast Fn+' in (12.35), 
recall that u 2{pred} in (2.37) is the variance of the difference Yh(new) - YI .. In terms of the situation 
here for the transformed variables, we have the following correspondences: 

Yh(llOW) corresponds to Y~+I = Yn+l - rY" 

Yh corresponds to Y,:+l = b~ + b;~~+, = botl - r) + b, (XII+1 - rXn ) 

The difference Y:'+ I - Y:'+ I is: 

Y~+I - Y;'+I = (Yn+1 - rY,,) - bo(1- r) - bl (Xn+l - rXII ) 

= Yn+1 - (bo + b1Xn+1) - r(Y" - bo - bIXII ) 

= Y,'+I - YII+I - ren 

= Yn+ 1 - Fn+l 

Hence, Yn+l plays the role of Yh(new) and F,,+I plays the role of:t, in (2.37). The prediction limits (12.36) 
are approximate because r is only an estimate of p. • 
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12.1. Refer to Table 12.1. 

a. Plot £, against £,_1 fort = I. .... 10 on a graph. How is the positive first-order autoc~_. 
relation in the error terms shown by the plot? 

b. If you plotted ti, against £,_1 for t = I ..... 10, what pattern would you expect? 

12.2. Refer to Plastic hardness Problem 1.22. If the same test item were measured at 12 different. 
points in time, would the errorterms in the regression model likely be autocorrelated?Discuss., 

12.3. A student stated that the first-order autoregressive error models ( 12.1 ) and (12.2) are too simple' 
for busine.~s time serie!; data because the error term in period t in such data is alsoinftuenced 
by random effects that occurred more than one period in the pa~t. Comment. 

12.4. A student writing a term paper used ordinary least squares in fitting a simple linear regression; 
model to some time series data containing positively autocorrelated errors, and found that the· 
90 percent confidence interval for 1)1 was too wide to be useful. The student then decided to' 
employ regression model ( 12.1) to improve the precision of the estimate. Comment. 

12.5. For each of the following tests concerning the autocorrelation parameter p in regression 
model (12.2) with three predictor variables. state the appropriate decision rule based on the 
Durbin-Watson test statistic for a sample of size 38: (i) Ho: p = 0, H,,: p of 0, ex = .02; 
(2) Ho: P = 0, H,,: p < 0, ex = .05: (3) HII : p = 0, H,,: p > 0, ex = .01. 

* 12.6. Refer to Copier maintenance Problem 1.20. The observations are listed in time order. Assume 
that regression model (12.1) is appropriate. Test whether or not positive autocorrelation is 
present: use ex = .0 I. State the alternatives, decision rule, and conclusion. 

12.7. Refer to Grocery retailer Problem 6.9. The observations are listed in time order. Assume that 
regression model ( 12.2) is appropriate. Test whether or not positive autocorrelation is present; 
u~e ex = .05. State the alternatives, decision rule, and conclusion. 

12.8. Refer to Crop yield Problem 11.25. The observations are listed in time order. Assume that 
regression model (12.2) with first- and second-order terms for the two predictor variables and 
no interaction term is appropliate. Test whether or not positive autocorrelation is present; use 
ex = .0 I. State the alternatives, decision rule, and conclusion. 

* 12.9. Microcomputer components. A staff analyst for a manufacturer of microcomputer compo· 
nents has compiled monthly data for the past 16 months on the value of industry production of 
processing unit~ that use the.~e components (X, in million dollars) and the value of the firm's 
components used (Y. in thousand dollars). The analyst believes that a simple linear regression 
relation is appropriate but anticipates positive autocorrelation. The data follow: 

t: 

2.052 
102.9 

2 

2.026 
101.5 

3 

2.002 
100.8 

14 

2.080 
104.8 

15 

2.102 
105.0 

16 

2.150 

107.2 
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a. Fit a simple linear regression model by ordinary least squares and obtain the residuals. 
Also obtain s{bo} and s{bd. 

b. Plot the residuals against time and explain whether you find any evidence of positive 
autocorrelation. 

c. Conduct a forrual test for positive autocorrelation using a = .05. State the alternatives, de­
cision rule, and conclusion. Is the residual analysis in part (b) in accord with the test result? 

*12.10. Refer to Microcomputer components Problem 12.9. The analyst has decided to employ 
regression model (12.1) and use the Cochrane-Orcutt procedure to fit the model. 

a. Obtain a point estimate of the autocorrelation parameter. How well does the approximate 
relationship (12.25) hold here between this point estimate and the Durbin-Watson test 
statistic? 

b. Use one iteration to obtain the estimates b~ and b; of the regression coefficients f3~ and 
f3; in transformed model (12.17) and state the estimated regression function. Also obtain 
s{b~} and s{bi}. 

c. Test whether any positive autocorrelation remains after the first iteration using q = .05. 
State the alternatives, decision rule, and conclusion. 

d. Restate the estimated regression function obtained in part (b) in terms of the original vari­
ables. Also obtain s{bo} and s{b,}. Compare the estimated regression coefficients obtained 
with tbe Cochrane-Orcutt procedure and their estimated standard deviations with those 
obtained with ordinary least squares in Problem 12.9a: 

e. On the basis of the results in parts (c) and (d), does the Cochrane-Orcutt procedure appear 
to have been effective here? 

f. The value of industry production in month 17 will be $2.210 million. Predict the value of 
the firm's components used in month 17; employ a 95 percent prediction interval. Interpret 
your interval. 

g. Estimate f3, with a 95 percent confidence interval. Interpret your interval. 

*12.11. Refer to Microcomputer components Problem 12.9. Assume that regression model (12.1) 
is applicable. 

a. Use the Hildreth-Lu procedure to obtain a point estimate of the autocorrelation parameter. 
Do a search at the values p = .1, .2, ... ,1.0 and select from these the value of p that 
minimizes SSE. 

b. From your estimate in part (a), obtain an estimate of the transformed regression func­
tion (12.17). Also obtain s{b~} and s{b~}. 

c. Test whether any positive autocorrelation remains in the transformed regression model; 
use a = .05. State the alternatives, decision rule, and conclusion. 

d. Restate the estimated regression function obtained in part (b) in terms of the original 
variables. Also obtain s{bo} and s{bd. Compare the estimated regression coefficients 
obtained with the Hildreth-Lu procedure and their estjmated standard deviations with 
those obtained with ordinary least squares in P!oblem 12.9a. 

e. Based on the results in parts (c) and (d), has the Hildreth-Lu procedure been effective here? 

f. The value of industry production in month 17 will be $2.210 million. Predict the value of 
the firm's components used in month 17; employ a 95 percent prediction intervaL Interpret 
your interval. 

g. Estimate f3, with a 95 percent confidence interval. interPret your interval. 

*12.12. Refer to Microcomputer components Problem 12.9. Assume that regression model (12.1) 
is applicable and that the first differences procedure is to be employed. 
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a. Estimate the regression coefficient /-3; in the transformed regression model (12.29) 
obtain the estimated standard deviation of this estimate. State the e.~timated regre~~nd 
funeti on. IOn 

b. Test whether or not the error terms with the first differences procedure are nutoeorrel 
using a two-sided test and ex = .10. State the alternatives, decision I·ule. and COnel a~, 
W · 'd d . f I ) ilSIOn. hy IS a tWO-SI e test meanmg u here'. 

c. Restate the estimated regression function obtained in part (a) in terms of the ori' :. 
variables. Also obtain sIbil. Compare the estimated regression coefficients obtained~~ 
the first differences procedure and the estimated standard deviation sIbil with the res 11th 
obtained with ordinary least squares in Problem 12.9a. U Is 

d. On the basis of the results in parts (b) and (c). has the first differences prOcedUre b 
effective here? een 

e. The value of industry production in month 17 will be $2.210 million. Predict the value of 
the firm's components used in month 17; employ a 95 percent prediction interval. Interpret 
your interval. 

f. Estimate /-3 1 with a 95 percent confidence interval. Interpret your interval. . 
12.13. Advertising agency. The managing partner of an advertising agency is interested in the 

possibility of making accurate predictions of monthly billings. Monthly data on amount of 
billings (Y. in thousands of constant dollars) and on number of hours of staff time (X, in 
thousand hours) for the 20 most recent months follow. A simple linear regression model is 
believed to be appropriate. but positively autocorrelated error terms may be present. 

t: 

2.521 
220.4 

2 

2.171 
203.9 

3 

2.234 
207.2 

18 

3.117 
252.4 

19 

3.623 
278.6 

20 

3.618 
278.5 

a. Fit a simple linear regression model by ordinary least squares and obtain the residuals. Also 
obtain slbol and sIbil. 

b. Plot the residuals against time and explain whether you find any evidence of positive 
autocorrelation. 

c. Conduct a formal test for positive autocorrelation using ex = .01. State the altematives, 
decision rule. and conclusion. b the residual analysis in part (b) in accord with the test 
result? 

12.14. Refer to Advertising agency Problem 12.13. Assume that regression model (12.1) is appli­
cable and that the Cochrane-Orcutt procedure is to be employed. 

a. Obtain a point estimate of the autocorrelation parameter. How well does the approximate 
relationship (12.25) hold here between the point estimate and the Durbin-Watson test 
statistic') 

b. Use one iteration to obtain the estimates 17;) and b; of the regression coefficients f3b and 
f3; in transformed model (12.17) and state the estimated regression function. Also obtain 

slb;)1 and sIb; I. 
c. Test whether any positive autocorrelation remains after the first iteration using ex = .01. 

State the alternatives, decision rule. and conclusion. 

d. Restate the estimated regression function obtained in part (b) in terms of the original vari­
ables. Also obtain slbol and sIbil. Compare the estimated regression coefficients obtained 
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with the Cochrane-Orcutt procedure and their estimated standard deviations with those 
obtained with ordinary least squares in Problem 12.13a. 

e. Based on the results in parts (c) and (d), does the Cochrane-Orcutt procedure appear to 
have been effective here? 

f. Staff time in month 21 is expected to be 3.625 thousand hours. Predict the amount of 
billings in constant dollars for month 21, using a 99 percent prediction intervaL Interpret 
your interval. 

g. Estimate f3, with a 99 percent confidence interval. Interpret your interval. 

12.15. Refer to Advertising agency Problem 12.13. Assume that regression model (12.1) is 
applicable. 

a. Use the Hildreth-Lu procedure to obtain a point estimate of the autocorrelation parameter. 
Do a search at the values p = .1, .2, ... , 1.0 and select from these the value of p that 
minimizes SSE. 

b. Based on your estimate in part (a), obtain an estimate of the transformed regression func- i 
tion (12.17). Also obtain s{b~} and s{bD. 

c. Test whether any positive autocorrelation remains in the transformed regression model; 
use a = .01. State the alternatives, decis.ion rule, and conclusion. 

d. ,Restate the estimated regression function obtained in part (b) in terms of the original 
. variables. Also obtain s{bo} and s{b,}. Compare the estimated regression coefficients 

obtained with the Hildreth-Lu procedure and their estimated standard deviations with 
those obtained with ordinary least squares in Problem 12.13a. 

e. Based on the results in parts (c) and (d), has the Hildreth-Lu procedure been effective here? 

f. Staff time in month 21 is expected to be 3.625 thousand hours. Predict the amount of 
billings in constant dollars for month 21, using a 99 percent prediction interval. Interpret 
your interval. 

g. Estimate f31 with a 99 percent confidence interval. Interpret your interval. 

12.16. Refer to Advertising agency Problem 12.13. Assume that regression model (12.1) is appli­
cable and that the first differences procedure is to be employed. 

a. Estimate the regression coefficient f3; in the transformed regression model (12.29) and 
obtain the estimated standard deviation of this estimate. State the estimated regression 
function. 

b. Test whether or not the error terms with the first differences procedure are autocorrelated, 
using a two-sided test and a = .02. State the alternatives, decision rule, and conclusion. 
Why is a two-sided test meaningful here? 

c. Restate the estimated regression function obtained in part (a) in terms of the original 
variables. Also obtain sfb,}. Compare the estimated regression coefficients obtained with 
the first differences procedute and the estimated standard deviation s{b,} with the results 
obtained with ordinary least squares in Problem I ~.13a. 

d. Based on the results in parts (b) and (c) .... has the first differences procedure been effective 
here? 

e. Staff time in month 21 is expected to be 3.625 thousand hours. Predict the amount of 
billings in constant dollars for month 21, usin~ a 99 percent prediction ipterval. Interpret 
your interval. 

f. Estimate f3, with a 99 percent confidence intervaf.lnterpret your interval. 

12.17. McGill Company sales. The data below show seasonally adjusted quarterly sales for the 
McGill Company (Y, in million dollars) and for the entire industry (X, in million dollars) for 
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the mosl recent 20 quarters. 

t: 

X,: 
Y,: 

127.3 
20.96 

2 

130.0 
21.40 

3 

132.7 
21.96 

18 19 20 --165.6 168.7 172.0 " 27.78 28.24 28.78 - . 
a. Would you expect the autocorrelation parameter p to be positive. negative Or ze' h : 

, 10 ere?", 
b. Fit a sim~le linear regre~sion model by ordinary leasl squares and obtain the residu .:" 

Also obtaIn s{bol and s{bll. a\s;: 

c. Plot the residuals againsl time and expl.\in whether you find any evidence of p '. "-
autocorrelation. OSI!]vt; 

d. Conduct a formal test for positive autocorrelation using ex = .01. State the alternati . 
decision rule. and conclusion. Is the residual analysis in part (c) in accord with the :~;:. 
result? \. 

12.18. Ref~r to McGill Company sales Problem 12.17 .. Assume that regression model (12.1) isl 
applIcable and that the Cochrane-Orcutt procedUre IS to be emplnyed. ;; 

a. ObtaIn a point estimate of the autocorrelation parameter. How well does the approximate[ 
relationship (12.25) hold here between the poilll estimate and the Durbin-Watson lest' 
statistic? . 

b. Use one iteration to obtain the estimates b~ and b'l of the regression coefficients f3~ and': 
l3; in transformed model (12.17) and state the estimated regression function. Also obtain 
s{bi)1 and s{b; I. 

c. Test whether any positive autocorrelation remains after the first iteration: use ex = .01.' 
State the alternatives. decision rule, and conclusion. -

d. Restate the estimated regression function obtained in pan (b) in terms of the origina~ 
variables. Also obtain s{bol and s{bll. Compare the estimated regression coefficients: 
obtained with the Cochrane-Orcutt procedure and their estimated standard deviations wiill 
those obtained with ordinary least squares in Problem 12.17b. 

e. On the basis of the results in parts (c) and (d), does the Cochrane-Orcutt procedure appear 
to have been effective here'! 

f. Industry sales for quarter 2 I are expected to be $181.0 million. Predict the McGill Company 
sales for quarter 21. using a 90 percent prediction interval. Interpret your interval. 

g. Estimate 1)1 with a 90 percent confidence interval. Interpret your interval. 

12.19. Refer to McGill Company sales Problem 12.17. A~sume that regression model (12.1) is 
applicable. 

a. Use the Hildreth-Lu procedure to obtain a point estimate of the autocorrelation parameter. 
Do a search at the values p = .1 .. 2 ..... 1.0 and select from these the value of p thllt. 
minimizes SSE. 

b. Based on your estimate in part (a), obtain an estimate of the transformed regression func· 
tion (12.17). Also obtain s{bi)1 and s{b; I. 

c. Test whether any positive autocorrelation remains in the transformed regression model; 
use ex = .01. State the alternatives, decision rule, and conclusion. 

d. Restate the estimated regression function obtained in part (b) in terms (Jf the original 
variables. Also obtain s{bol and s{bll. Compare the estimated regression coeffici~ts 
obtained with the Hildreth-Lu procedure and their estimated standard deviations With 

those obtained with ordinary least squares in Problem 12.170. 
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e. Based on the results in parts (c) and (d), has the Hildreth-Lu procedure been effective 
here? 

f. Industry sales for quarter 21 are expected to be $18 1.0 million. Predictthe McGill Company 
sales for quarter 21, using a 90 percent prediction intervaL Interpret your intervaL 

g. Estimate f3, with a 90 percent confidence intervaL Interpret your intervaL 

12.20. Refer to McGill Company sales Problem 12.17. Assume that regression model (12.1) is 
applicable and that the first differences procedure is to be employed. 

a. Estimate the regression coefficient f3; in the transformed regression model (12.29) and 
obtain the estimated standard deviation of this estimate. State the estimated regression 
function. 

b. Test whether or not the error terms with the first differences procedure are positively 
autocorrelated using a = .01. State the alternatives, decision rule, and conclusion. , 

c. Restate the estimated regression function obtained in part (a) in terms of the original 
variables. Also obtain s{b,}. Compare the estimated regression coefficients obtained with 
the first differences procedure and the estimated standard deviation s{h,} with the results 
obtained with ordinary least squares in ·Problem 12.17b. 

d. On the basis of the results in parts (b) and (c), has the first differences procedure been 
effective here? , 

e. Industry sales for quarter 21 are expected to be $181.0 million. Predictthe McGill Company 
sales for quarter 21, using a 90 percent prediction intervaL Interpret your intervaL 

f. Estimate f3, with a 90 percent confidence intervaL Interpret your interval. 

12.21. A student applying the first differences transformations in (12.29a, b) found that several X; 
values equaled zero but that the corresponding Y: values were nonzero. Does this signify that 
the first differences transformations are not appropriate for the data? 

12.22. Derive (12.7) for s = 2. 

12.23. Refer to first-order autoregressive error model (12.1). Suppose Yt is company's percent share 
of the market, XI is company's selling price as a percent of average competitive selling price, 
f30 = 100, f3, = -.35, p = .6, (J2 = 1, and eo = 2.403. Let XI and UI be as follows for 
t=l, ... ,1O: 

t: 1 2 3 4 5 6 

100 115 120 90 85 75 
.764 .509 -.242 -1.808 -.485 .501 

7 8 9 

70 95 105 
-.539 .434 -.299 

10 

110 
.030 

a. Plot the true regression line. Generate the observations' Yt (t = 1, ... , 10), and plot these 
on the same graph. Fit a least squares regression line to the generated observations Yt and 
plot it also on the same graph. How does your fitted regression lin~ relate to the true line? 

b. Repeat the steps in part (a) but this time let p = O. In which of the two cases does the fitted 
regression line come closer to the true line? Is this the expected outcome? 

c. Generate the observations Y, for p = -.7. For each. of the cases p = .6, p = 0, and 
p = -.7, obtain the successive error term differences et - el_' (t = I, ... , 10). 

d. For which of the three cases in part (c) is L(e, - et_,)2 smallest? For which is it largest? 
What generalization does this suggest? 
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Projects 

Case 
Studies 

': 
12.24. For multiple regression model (12.2) with I' - I = 2. derive the transformed model' ; 

the random terms are uneQrrelated. In whicil 
12.25. SUPPQSC the autoregressive error process for the mQdel Y, = {)O + {-il X, + £, is that . , 

by ( 12.1 I ). gIVen 

a. What would be the transformed variables Y; and X; for whieh the random term . 
smdre,. 

regression model are uncorrelated? . 

b. How would you estimate the parameters PI and P2 for use with the Cochrane-Orcutt 
procedure? . 

c. HQW would you estimate the parameters PI and P2 with the Hildreth-Lu prQcedure? 

12.26. Derive the forecast FII+I for a simple linear regressiQn model with the second-order autore} 
gressive error process ( 12.1 I). ~ 

12.27. The true regression model is Y, = 10 + 24X, + £,. where £, = .gt:,_1 + 1/, and 1/, are inde~: 
pendent N (0, 25). ~: 

a. Generate II independent random numbers from N(O, 25). Use the lirst random number. 
£n, obtain the 10 error terms £1 •• '" £111. and then calculate the 10 observations YI y.' 

. '" ' .'" 10 
correspondIng to X I = I. X 2 = 2 ..... X III = 10. Fit a hnear regression function by ordij 
nary least squares and calculate MSE. . 

b. Repeat part (a) 100 times, using new random numbers each time. 

c. Calculate the mean of the 100 estimates of 1>1' Does it appear that hi is an unbiasedestil11lllOi 
of th despite the presence of positive autocorrelation? 

d. Calculate the mean of the 100 estimates of MSE. Does it appear that MSE is a biased' 
estimator of rr"? If so. does the magnitude of the bias appear to be small or large? 

12.28. Refer to the Website developer data set in Appendix C.6 and Case Study 9.29. The observa'" 
tions are listed in time order. Using the model developed in Case Study 9.29. test whethero~ 
not positive autocorrelation is present: use ex = .01. If autocorrelation is present. revise ~ 
model and analysis as needed. 

12.29. Refer to the Heating equipment data set in Appendix e.g. The observations are listed in. 
ti me ofder. Develop a reasonable predictof model fOf the monthly heati ng equipment orderS;' 
Potential predictofs include new homes fm·sale. cUffent monthly deviation oFtemperaturefrom 
historical avefage tempefature. the pfime lending fate. current distributof inventol)' levels, the' 
amount of distfibutor sell through. and the level of discounting being offefed. Your mJalysi~ 
should determine whethef or not autocorfelation is present using ex = .05. If autocofrelati<lIl 
is present. revise the model and analysis as needed. 
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Chapter 

13.1 

Introduction to Nonlinear 
Regression and Neural 
Networks 

The linear regression models considered up to this point are generally satisfactory approxi­
mations for mo~t regression applications. There are occasions, however, when anempilically 
indicated or a theoretically justified nonlinear regression model is more appropriate. For 
example, growth from birth to maturity in human subjects typically is nonlinear in nature, 
characterized by rapid growth shortly after birth, pronounced growth during puberty, and 
a leveling off sometime before adulthood. In another example, dose-response relationships 
tend to be nonlinear with little or no change in response for low dose levels of a drug, fol­
lowed by rapid S-shaped changes occurring in the more active dose region, a11d finally with 
dose response leveling off as it reaches a saturated level. We shall consider in this chapter 
and the next some nonlinear regression models, how to obtain estimates of the regression 
parameters in such models, and how to make inferences about these regression parameters. 

In this chapter. we introduce exponential nonlinear regression models and present the 
basic methods of nonl inear regression. We also introduce neural network models, which are 
now widely used in data mining applications. In Chapter 14, we present logistic regression 
models and consider their uses when the response variable is binary or categorical with 
more than two levels. 

Linear and Nonlinear Regression Nlodels 

linear Regression Models 

510 

In previous chapters, we considered linear regression models, i.e., models that are linear in 
the parameters. Such models can be represented by the general linear regression model (6.7): 

(13.1) 

Linear regression models, as we have seen, include not only first-order models in p - 1 
predictor variables but also more complex models. For instance, a polynomial regression 
model in one or more predictor variables is linear in the parameters, such as the following 
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model in two predictor variables with linear, quadratic, and interaction terms: 

Y; = f30 + f3I X;1 + /3zX;1 + f33 X ;2 + f34X;2 + f35X;IX;2 + Cj (B.2) 

Also, models with transformed variables that are linear in the parameters belong to the class 
of linear regression models, such as the following model: 

(13.3) 

In general, we can state a linear regression model in the form: 

(13.4) 

where X; is the vector of the observations on the predictor variables for the i th case: <, 

[ 
i;, 1 

X;'~_I 
(B.4a) 

~ is the vector. (ijf the regression coefficients in (6. 18c), and! (X;, ~) represents the expected 
value E{Y;}, which for linear regression models equals according to (6.54): 

(B.4b) 

Nonlinear Regression Models 
Nonlinear regression models are of the same basic form as that in (13.4) for linear regression 
models: 

(13.5) 

An observation Y; is still the sum of a mean response !(Xi. y) given by the nonlinear 
response function !(X, y) and the error term C;. The error terms usually are assumed to 
have expectation zero, constant variance, and to be uncorrelated, just as for linear regression 
models. Often, a normal eI!or model is utilized which assumes that the error terms are 
independent normal random variables with constant variance. 

The parameter vector in the response function ! (X, y) is now denoted by y rather than 
~ as a reminder that the response function here is nonlinear in the parameters. We present 
now two examples of nonlinear regression models that are widely used in practice. 

Exponential Regression Models. One widely used nonlinear regression model is the 
exponential regression model. When there is only a single I?redictor variable, one form of 
this regression model with normal error terms is: _ 

where: 

Yo and YI are parameters 

X; are known constants 

C; are independent N (0, (J 2) 

(13.6) 
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FIGURE 13.1 
Plots of 
Exponential 
and Logistic 
Response 
FlUlctions. 

The response function for this model is: 

(13.7) 
Note that this model is not linear in the parameters Yo and YI. 

A more general ~onlinear exponential regression model in one predictor variable with 
normal error terms IS: 

1'; = Yo + YI exp(Y2Xj) + Cj (13.8) 

where the error terms are independent normal with constant variance (52. The respo 
function for this regression model is: nse 

f(X, y) = Yo + YI exp(Y2X) (13.9) 

Exponential regression model (13.8) is commonly used in growth studies where therate 
of growth at a given time X is proportional to the amount of growth remaining as time 
increases, with Yo representing the maximum growth value. Another !1se of this regression 
model is to relate the concentration of a substance (Y) to elapsed time (X). Figure l3.la 
shows the response function (13.9) for parameter values Yo = 100, YI = -50, and Y.2 ==-2 
We shall discuss exponential regression models (13.6) and (13.8) in more detaillater in this 
chapter. 

Logistic Regression Models. Another important nonlinear regression model is the logis­
tic regression model. This model with one predictor variable and normal error terms is: 

(13.10) 

where the error terms Cj are independent normal with constant variance (52. The response 

(a) (b) 

Exponential Model (13.8): Logistic Model (1 3.10): 
E{Y} = 100 - 50 exp(-2X) E{Y} = 10/[1 + 20 exp(-2X)] 

E{Y} E{Y} 

100 
10 

90 
8 

80 
6 

70 
4 

60 
2 

50 

0 2' 3 X 0 2 3 X 
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function here is: 

f(X, y) = Yo 
1 + YI exp(Y2X) 

(B.ll) 

Note again that this response function is not linear in the parameters Yo, YI, and Y2. 
This logistic regression model has been used in population studies to relate, for instance, 

number of species (Y) to time (X). Figure 13.1 b shows the logistic response function (13.11) 
for parameter values Yo = 10, YI = 20, and Y2 = -2. Note that the parameter Yo = 10 
represents the maximum growth value here. 

Logistic regression model (13.10) is also widely used when the response variable is 
qualitative. An example of this use of the logistic regression model is predicting whethe'i 
a household will purchase a new car this year (will, will not) on the basis of the predictor 
variables age of presently owned car, household income, and size of household. In this 
use of logistic regression models, the response variable (will, will not purchase car, in our 
example) is qualitative and will be represented by a 0, I indicator variable. Consequently, 
the error terms are not normally distributed here with constant variance. Logistic regression 
models and their use when the response variable is qualitative will be discussed in detail in 
Chapter 14. ' 

General Form of Nonlinear Regression Models. As we have seen from the two examples 
of nonlinear regression models, these models are similar in general form to linear regression 
models. Each Yi observation is postulated to be the sum of a mean response f (Xi, y) based 
on the given nonlinear response function and a random error term Ci' Furthermore, the 
error terms Ci are often assumed to be independent normal random variables with constant 
variance. 

An important difference of nonlinear regression models is that the number of regression 
parameters is not necessarily directly related to the number of X variables in the model. 
In linear regression models, if there are p - 1 X variables in the model, then there are 
p regression coefficients in the model. For the exponential regression model in (13.8), there 
is one X variable but three regression coefficients. The same is found for logistic regression 
model (13.10). Hence, we now denote the number of X variables in the nonlinear regression 
model by q, but we continue to denote the number of regression parameters in the response 
function by p. In the exponential regression model (13.6), for instance, there are p = 2 
regression parameters and q = 1 X variable. 

Also, we shall define the vector Xi of the observations on the X variables without the 
initial element 1. The general form of a nonlinear regression model is therefore expressed 
as follows: 

where: 

Xi = 
qxl 

Y 
pxl 

(13.12) 

(B.l2a) 
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Comment 

Nonlinear I'esponse functions thtlt can be linearized by a transformation are sometimes called it t . 
, II I' t' . C I h ' I t" 1 rzn· sIca r mea/" rcsponse unctions. I 'or eXllmp e. t e exponentla rcsponse unction: 

fiX. yJ = hl!exp(l'l X)! 

is an illtl"insically linear response function because it can be linearized by the logarithmic 
transformation: 

log" .r (X. y) = log" hi + YI X 

This transformed response function can be represented in the linear Illodel form: 

g(X. y) = 1)0 + {-il X 

where g(X. y) = log,. fiX. y)./)o = loge hi. and 1)1 = l'l. 
Just because 11 nonlinear response function is intrinsintlly linear does nOI necessarily imply that 

linear regression is appropriate. The retlson is that the transformation to linearize the respon~e function 
will affect the error term in the model. For example, suppose that the following exponential regression 
model with normal error terms that have constant variance i~ appropriate: 

Yi = )!a exp(l'l X;l + t'; 
A logarithmic Iransformation of Y to linearize the response function will affect the normal en'orterm 
t'i So that the error term in the linearized model will no longer be normal with constant variance. Hence, 
it is important to study any nonlinear regression model that has been linearized fOi' appfopriateness; 
it may turn out that the nonlinear regression model is pl-eferable to the linearized version, • 

Estimation of Regression Parameters 

Example 

Estimation of the parameters of a nonlinear regression model is usually carried out by the 
method of least squares or the method of maximum likelihood, just as for linear regres­
sion models. Also as in linear regression, both of these method~ of estimation yield the 
same parameter estimates when the error terms in nonlinear regression model (13.12) are 
independent normal with constant variance. 

Unlike linear regression, it is usually not possible to find analytical expressions fa­
the least squares and maximum likelihood estimators for nonlinear regression models. 
Instead, numerical search procedures must be llsed with both of these estimation procedures, 
requiring intensive computations. The analysi~ of nonlinear regression models is therefa-e 
usually carried out by utilizing standard computer software programs. 

To illustrate the fitting and analysis of nonlinear regression models in a sill1ple fashion, 
we shall use an example where the model has only two parameters and the sample size 
is reasonably small. In so doing, we shall be able to explain the concepts and procedures 
without overwhelming the reader with details. 

A hospital administrator wished to develop a regression model for predicting the de­
gree of long-term recovery after discharge from the hospital for severely injured patients. 
The predictor variable to be utilized is number of days of hospitalization (X), and the 
response variable is a prognostic index for long-term recovery (Y), with large values of 
the index reflecting a good prognosis. Data for 15 patients were studied and are presented 
in Table 13.1. A scatter plot of the data is shown in Figure 13.2. Related earlier studies 
reported in the literature found the relationship between the predictor variable and there­
sponse variable to be exponential. Hence. it was decided to investigate the appropriateness 
of the two-parameter nonlinear exponential regression model (13.6): 

(13.13) 
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where the ci are independent normal wi th constant variance. If this model is appropriate, it 
is desired to estimate the regression parameters Yo and YI' 

lU.2 Least Squares Estimation in Nonlinear Regression' 

We noted in Chapter 1 that the method ofleast squares for simple}inear regression requires 
the minimization of the criterion Q in (1.8): 

n 

Q = 2: [fi - ([30 + ,BIXi)f (13.14) 
i=1 
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Example 

Tho~e values of f30 and f31 that minimize Q for the given sample observations (X. y 
I, .) ar 

the least squares estimate~ and are denoted by ho and hi' fe, 
We also noted in Chapter I that one method for finding the least squares estim .' 

b~.~se of a nume~ical search pro~edure. With this appr.oach, Q ~n (13.1.4~ is evaluat:sf~_ 
different values of f30 and f31, varying f30 and f31 systematically until the minimum valUe f 
is found. The values o.t" f30 an~l f31 that minimize Q ar~ the le.ast squares estimates bo an~b~_ 

A second method for finding the least squares estl mates IS by mean, of the least sq I: 
I . H I I I' f' I . uares; norma equations. ere, t 1e east squares norma equations are ounc analytically by difti _-

entiating Q with respect to f30 and f31 and setting the derivatives equal to zero, TI1e SOIUti~: 
of the normal equations yields the least squares estimates, 

As we saw in Chapter 6, these procedures extend directly to multiple linear regression fo 
which the least squares criterion is given in (6,22), The concepts of least squares estim~io~', 
for linear regression also extend directly to nonlinear regression models, TI1e least squares 
criterion again is: 

" 
Q = L IY; - l(X;, y)f (13.15) 

;~I 

where f(X;, y) is the mean response for the ith case according to the nonlinear response 
function I(X, y), The least squares criterion Q in (13,15) must be minimized with respect 
to the nonl inear regression parameters Yo, YI, ' , , , YI'_I to obtain the least squares estimates. 
The same two methods for finding the least squares estimates-numerical search and normal 
equations-may be used in nonlinear regression, A difference from linear regression is that 
the solution of the normal equations usually requires an iterative numerical search procedure 
because analytical solutions generally cannot be found, 

The response function in the severely injured patients example is seen from (13.13) to be: 

Hence, the least squares criterion Q here is: 

" 
Q = L IY; - Yoexp(y,X;)f 

;~I 

We can see that the method of maximum likelihood leads to the same criterion here 
when the error terms E; are independent normal with constant variance by considering the 
likelihood function: 

) I [I" oJ L(y, (r) = ), exp --, 'lY; - Yo exp(YI X; )]-
(2][(5-)"/- 2(5- L 

,~I 

Just as for linear regression, maximizing this likelihood function with respect to the l-egres­
sion parameters Yo and YI is equivalent to minimizing the sum in the exponent so thatthe 
maximum likelihood estimates are the same here as the least squares estimates, 

We now discuss how to obtain the least squares estimates, first by use of the normal 
equations and then by direct numerical search procedures, 
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(-;~~tJtion of Normal Equations 
,Sp, .. To obtain the nonnal equations for a nonlinear regression model: 

Example 

Y; = !(X;, Y) + Cj 

we need to minimize the least squares criterion Q: 

II 

Q = ~ [Y; - !(X;, y)]2 
;=1 

with respect to Yo, YI, ... , Yp-I· The partial derivative of Q with respect to Yk is: " 

aQ = t -2[Y; - !(Xi , y)] [a!(x;, y)] (13.16) 
aYk i=1 an 

When the p partial derivatives are each set equal to 0 and the parameters Yk are replaced by 
the least squares estimates gko we obtain after some simplification the p normal equations: 

k = 0,1, ... , p - 1 

(13.17) 

where g is the vector of the least squares estimates gk: 

(13.18) 

Note that the terms in brackets in (13.17) are the partial derivatives in (13.16) with the 
parameters Yk replaced by the least squares estimates gk. 

The normal equations (13.17) for nonlinear regression models are nonlinear in the pa­
rameter estimates gk and are usually difficult to solve, even in the simplest of cases. Hence, 
numerical search procedures are ordinarily required to obtain a solution of the nonnal equa­
tions iteratively. To make things still more difficult, multiple solutions may be possible. 

In the severely injured patients example, the mean response for the ith case is: 

(13.19) 

Hence, the partial derivatives of !(X;, y) are: 

(13.20a) 

(13.20b) 
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Replacing Yo and YI in (13.19), (l3.20a), and (l3.20b) by the respective least square 
estimates go and gl, the normal equations (13.17) therefore are: s 

LY;exp(gIX;) - LgoexPC~IX;)exp(gIX;) = 0 

LY;!:oX; exp(gIXi) - LgOeXP(!:IXi)gOXi exp(gIX;) = 0 

Upon simplification, the normal equations become: 

LY;exPCt:IX;) - gOLexp(2gIXi) =0 

L YiX; exp(gIXi) - go LX, exp(2g 1Xi) = 0 

These normal equations are not linear in go and gJ, and no closed-form solution exists. 
Thus, numericall11ethods will be required to find the solution for the least squares estimates 
iteratively. 

Direct Numerical Search-Gauss-Newton Method 
In many nonlinear regression problems, it is more practical to find the least squares estimates 
by direct numerical search procedures rather than by first obtaining the normal equations 
and then using numerical methods to find the solution for these equations iteratively. The 
major statistical computer packages employ one or more direct numerical search procedures 
for solving nonlinear regression problems. We now explain one of these direct numerical 
search methods. 

The GWlss-Ne'wtol1 method, also called the lineariz.ation method, uses a Taylor series 
expansion to approximate the nonlinear regression model with lineartermsand then employs 
ordinary least squares to estimate the parameters. Iteration of these steps generally leads to 
a solution to the nonlinear l"Cgression problem. 

The Gauss-Newton method begins with initial or staIting values for the l"Cgression 
d I b (0) ((II (01 hi'" parameters Yo, YI , ... , Y,,-I. We enote t 1ese y go ,g I .... , g,,_I' were t 1e superscnpt 

in pal"Cntheses denotes the iteration number. The starting values g~OI may be obtained from 
pl"Cvious or related studies, theoretical expectations, or a preliminary search for parameter; 
values that lead to a comparativcl y low criterion value Q in (13.15). We shall later discuss " 
in more detail the choice of the starting values. 

Once the stalting values for the parameters have been obtained, we approximate the 
mean responses l(Xi , y) for the 11 cases by the linear terms in the Taylor series expansion. 
around the starting values g1°). We obtain for the ith ca<;e: 

where: 

g(OI= 
{lxl 

(OJ I go 
(01 

gl 

(01 
gp-I 

(13.21) 

(13.21af 
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Note that g(O) is the vector of the parameter starting values. The terms in brackets in (13.21) 
are the same partial derivatives of th~ regression function we encountered earlier in the 
normal equations (13.17), but here they are evaluated at Yk = gkO) for k = 0, 1, ... , p - 1. 

Let us now simplify the notation as follows: 

(13.22a) 

(13.22b) 

Di2) = [a!(Xi, Y)] 
aYk y=g(ll) 

(13.22c) 

The Taylor approximation (13.21) for the mean response for the ith case then becomes in 
this notation: 

p-I 

, !(Xi , Y) ~ /;(0) + "L Di2) f3kO) 

k=O 

and an approximation to the nonlinear regression model (13.12): 

is: 

Yi = !(Xi , Y) + Ci 

p-I 

Yi ~ /;(0) + "L D~) f3iO) + Ci 

k=O 
(13.23) 

When we shift the /;(0) term to the left and denote the difference Yi - /;(0) by y/O
) , we obtain 

the following linear regression model approximation: 

p-I 

y;(0) ~ "L D~) f3kO) + Ci i = 1, . .. ,n (13.24) 
k=O 

where: 

y.(0) = 1':. _ -1'.(0) 
1 I Ji (13.24a) 

Note that the linear regression model approximation (13.24) is of the form: 

Yi = /3oX iO + f3I XiI + ... + f3P- 1X i ,P-1 + Ci 

The responses Y?) in (13.24) are residuals, namely, the deviations of the obs~rvations 
around the nonlinear regression function with the parameters replaced by the starting esti­
mates. The X variables observations Di2) are the partial derivatives 0f the mean response » 

evaluated for each of the n cases with the parameters replaced by the. starting estimates. 
Each regression coefficient f3kO) represents the difference between the true regression pa­
rameter and the initial estimate of the parameter. Thus, the regression coefficients represent 
the adjustment amounts by which the initial regression coefficients must be corrected. The 
purpose of fitting the linear regression model approximation (13.24) is therefore to estimate 
the regression coefficients f3iO) and use these estimates to adjust the initial starting estimates 
of the regression parameters. In fitting this linear regression approximation, note that there 
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is no intercept term in the modeL Use of a computer multiple regression package therefo 
requires a specification of no intercept. re 

We shall represent the I inear regression model approximation (13.24) in matrix form as 
follows: 

(13.25) 

where: 

[ 

(3(0) 1 
(13.2Sc) ~(O) = ~ 

px I (0) 

(31'-1 

(13.2Sd) € = [~I 1 
IJxl • 

CII 

Note again that the approximation model (13.25) is precisely in the form of the general 
linear regression model (6.19), with the D matrix of partial derivatives now playing the role 
of the X matrix (but without a column of I s for the intercept). We can therefore estimate 
the parameters ~(O) by ordinary least squares and obtain according to (6.25): 

(13.26) 

where bIOi is the vector of the least squares estimated regression coefficients. As we noted 
earlier, an ordinary multiple regression computer program can be used to obtain the estimated 
regression coefficients biOi, with a specification of no intercept. 

We then use these least squares estimates to obtain revised estimated regression coeffi­
cients gil) by means of (l3.22b): 

(I) _ (Oi + b(O) 
& -& l 

where gil) denotes the revised estimate of Yk at the end of the first iteration. In matrix form, 
we represent the revision process as follows: 

(13.27) 

At this point, we can examine whether the revised regression coefficients represent 
adjustments in the proper direction. We shall denote the least squares criterion measure Q 
in (13.15) evaluated for the stalting regression coefficients g(O) by SSE (0) ; it is: 

II II 

SSE(O) = L [Yj - f(X j , g(O))]2 = L (Y; _ j;<0))2 (13.28) 
j=1 ;=1 

At the end of the first iteration, the revised estimated regression coefficients arc g(l), and 
the least squares criterion measure evaluated at this stage. now denoted by SSE(I), is: 

II II 

SSE(l) = L [Yj - f(Xi . g(I))]2 = L (Yj - .r/1))2 (13.29) 
;=1 ;=1 
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If the Gauss-Newton method is working effectively in the first iteration, SSE(1) should be 
smaller than SSE(O) since the revised estimated regression coefficients g(I} should be better 
estimates. 

Note that the nonlinear regression functions !(Xi , g(O» and !(Xi , gO» are used in 
calculating SSE(O) and SSE (I) , and not the linear approximations from the Taylor series 
expansion. 

The revised regression coefficients gO) are not, of course, the least squares estimates for 
the nonlinear regression problem because the fitted model (13.25) is only an approximation 
of the nonlinear model. The Gauss-Newton method therefore repeats the procedure just 
described, with g(I) now used for the new starting values. This produces a new set of 
revised estimates, denoted by g(2), and a new least squares criterion measure SSE (2) . The 
iterative process is continued until the differences between successive coefficient estimates 
g(s+I) - g(S) and/or the difference between successive least squares criterion measures 
SSE(s+ I) - SSE(s) become negligible. We shall denote the final estimates of the regression 
coefficients simply by g and the final least squares criterion measure, which is the error sum 
of squares, by SSE. 

The Gauss-Newton method works effectively in many nonlinear regression applications. 
In some instances, how~er, the method may require numerous iterations before converging, 
and in a few cases it may not converge at all. 

In the severely injured patients example, the initial values of the parameters Yo and YI 
were obtained by noting that a logarithmic transformation of the response function lin­
earizes it: 

Hence, a linear regression model with a transformed Y variable was fitted as an initial 
approximation to the exponential model: 

where: 

Y( = loge Yi 

f30 = loge Yo 

fh = YI 

This linear regression model was fitted by ordinary least squares and yielded the estimated 
regression coefficients bo = 4.0371 and hI = -.03797 (calculations not shown). Hence, 
the initial starting values are g6°) = exp(bo) = exp(4.037r) = 56.6646 and g~O) = hi = 
- .03797. 

The least squares criterion measure at this stage requires evaluation of the nonlinear 
regression function (13.7) for each case, utilizing the starting parameter values g6°) and 
g~O). For instance, for the first case, for which X I = 2, we obtain: 
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TABLE 13.2 
yeo) and 0(0) 

Matrices-­
Severely 
Injured 
Patients 
Example. 

y(0)= 
15x1 

Y f lO) 
1 - 1 

Y f (O) 
15 - 15 

1.4792 
3.1337 
1.5609 

-1.7624 
1.6996 

-2.5422 
-1.1139 
-1.4629 

2.4172 
- .3871 
-2.2625 

3.1327 
.4259 

-1.8063 
1.1977 

.92687 105.041 

.82708 234.33l'7 

.76660 30,4.0736 

.68407 387.6236 . 

. 58768 466.2057 

.48606 523.3020 

.37261 548.9603 

.30818 541.3505 

.27500 529.8162 

.23625 508.7Q88 

.18111 461.8140 

.13884 409.0975 . 

. 13367 401.4294 

.10247 348.3801 

.08475 312.1510 

Since YI = 54, the deviation from the mean response is: 

f~O) = fl - fiCO) = 54 - 52.5208 = 1.4792 

Note again that the deviation fI(O) is the residual for case 1 at the initial fitting stage 
since fl(O) is the estimated mean response when the initial estimates g(O) of the parameters 
are employed. The stage 0 residuals for this and the other sample cases are presented in 
Table 13.2 and constitute the yCO) vector. 

The least squares criterion measure at this initial stage then is simply the sum of the 
squared stage 0 residuals: 

S~E(O) = L (fi - /;(0»)2 = L (f/0»)2 

= (1.4792i + ... + (1.1977)2 = 56.0869 
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To revise the initial estimates for the parameters, we require the 0(0) matrix and the 
y(O) vector. The latter was already obtained in the process of calculating the least squares 
criterion measure at stage O. To obtain the 0(0) matrix, we need the partial derivatives of the 
regression function (13.19) evaluated at y = g(O) . The partial derivatives are given in (13.20). 
Table 13.2 shows the 0(0) matrix entries in symbolic form and also the numerical values. 
To illustrate the calculations for case 1, we know from Table 13.1 that XI = 2. Hence, 
evaluating the partial derivatives at g(O), we find: 

D~~ = [af(X" y)] = exp(g~O)XI) = exp[-.03797(2)] = .92687 
ayo y=g(O) 

D (O) -
II - [

af(X" Y)] _ (O)X ( (O)X ) a - go I exp gl , 
YI y=g(Oj 

= 56.6646(2) exp[-.03797 (2)] = 105.0416 J 

We are now ready to obtain the least squares estimates b(O) by regressing the response 
variable y(O) in Table 13.2 on the two X variables in 0(0) in Table 13.2, using regression 
with no intercept. A s(andard mUltiple regression computer program yielded b~O) = 1.8932 
and blO) = -.001563. Hence, the vector b(O) of the estimated regression coefficients is: 

b(O) = [1.8932 ] 
-.001563 

By (13.27), we now obtain the revised least squares estimates g(l): 

(I) = (0) b(O) = [56.6646] [1.8932 ] = [58.5578 ] 
g g + -.03797 + -.001563 -.03953 

Hence, g~l) = 58.5578 and gIl) = -.03953 are the revised parameter estimates at the 
end of the first iteration. Note that the estimated regression coefficients have been revised 
moderately from the initial values, as can be seen from Table 13.3a, which presents the 
estimated regression coefficients and the least squares criterion measures for the starting 
values and the first iteration. Note also that the least squares criterion measure has been 
reduced in the first iteration. 

Iteration 2 requires that we now revise the residuals from the exponential regression func­
tion and the first partial derivatives, based on the revised parameter estimates g61) = 58.5578 
and gIl) = - .03953. For case I, for which YI = 54 and X I = 2, we obtain: 

Yfl) = YI - f/l) = 54 - (58.5578) exp[-.0395] (2)] = .:....1065 

DI~ = exp(g~I)XI) = exp[-.03953(2)] = .92398 

Dg) = g~I)XI exp(gjl)X,) = 58.5578(2)exp[-.0395~(2)] = 108.2130 

By comparing these results with the comparable stage 0 results for case 1 in Table 13.2, 
we see that the absolute magnitude of the residual for case 1 is substantially reduced as a 
result of the stage 1 revised fit and that the two partial derivatives are changed to a moderate 
extent. After the revised residuals yt) and the partial derivatives Dfci) and Df? have been 
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TABLE 13.3 
Gauss-Newton 
Method 
Iterations 
and Final 
Nonlinear 
Least Squares 
Estimates-­
Severely 
Injured 
Patients 
Example. 

NOlJlinear Regression 

(a) Estimates of Parameters and least Squares Criterion Measure 

Iteration 90 91 SSE 

k 

o 
1 

0 
1 
2 
3 

56.6646 -.03797 56.0869 
58.5578 -.03953 49.4638 
58.6065 -.03959 49.4593 
58.6065 -.03959 49.4593 

(b) Final least Squares Estimates 

58.6065 
-.03959 

1.472 
.00171 

49.4593 
MSE = = 3.80456 

13 

(c) Estimated Approximate Variance-Covariance Matrix of 
Estimated Regression Coefficients 

[ 
2.1672 

- -1.781 E-3 
-1.781 E-3] 

2.928E-6 

obtained for all cases, the revised residuals are regressed on the revised partial dellvatives; 
using a no-intercept regression fit, and the estimated regression parameters are again revised 
according to (13.27). 

This process was calTied out for three iterations. Table 13.3a contains the estimated· 
regression coefficients and the least squares criterion measure for each iteration. We see 
that while iteration I led to moderate revisions in the estimated regression coefficients and 
a substantially better fit according to the least squares criterion, iteration 2 resulted only in 
minor revisions of the estimated regression coefficients and little improvement in the fit 
Iteration 3 led to no change in either the estimates of the coefficients or the lca<.;t squares 
criterion measure. 

Hence, the search procedure was terminated after three iterations. The final regression' 
coefficient estimates therefore are go = 58.6065 andg, = -.03959, and the fitted regression 
function is: 

Y = (58.6065) exp( -.03959X) (13.30) 

The eITor sum of squares for this fitted model is SSE = 49.4593. Figure 13.2 on page 515 
shows a plot of this estimated regression function, together with a scatter plot of the data. 
The fit appears to be a good one. 

Comments 
I. The choice of initial starting values is very important with the Gauss-Newton method because 

a poor choice may result in slow convergence, convergence to a 10calminimul11. or even divergence. 
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Good starting values will generally result in faster convergence, and if multiple minima exist. will 
lead to a solution that is the global minimum rather than a local minimum. Fast convergence, even if 
the initial estimates are far from the least squares solution, generally indicates that the linear approxi­
mation model (13.25) is a good approximation to the nonlinear regression model. Slow convergence, 
on the other hand, especially from initial estimates reasonably close to the least squares solution, 
usually indicates that the linear approximation model is not a good approximation to the nonlinear 
model. 

2. A variety of methods are available for obtaining starting values for the regression parameters. 
Often, related earlier studies can be utilized to provide good starting values for the regression parame­
ters. Another possibility is to select p representative observations, set the regression function f (Xi, Y) 
equal to Ii for each of the p observations (thereby ignOling the random error), solve the p equations 
for the p parameters, and use the solutions as the starting values, provided they lead to reasonably 
good fits of the observed data Still another possibility is to do a grid search in the parameter space 
by selecting in a grid fashion various trial choices of g, evaluating the least squares criterion Q for 
each of these choices, and using as the starting values that g vector for which Q is smallest. 

3. When using the Gauss-Newton or another direct search procedure, it is often desirable to tl)' 
other sets of starting values after a solution has been obtained to make sure that the same solution will 
be found. 

4. Some computer packages for nonlinear regression require that the user specify the starting 
values for the regression·parameters. Others do a grid search to obtain starting values. 

5. Most nonlinear computer programs have a library of commonly used regression functions. 
For nonlinear response functions not in the library and specified by the user, some computer pro­
grams using the Gauss-Newton method require the user to input also the partial derivatives of the 
regression function, while others numerically approximate partial derivatives from the regression 
function. 

6. The Gauss-Newton method may produce iterations that oscillate widely or result in increases 
in the error sum of squares. Sometimes, these aberrations are only temporary, but occasionally serious 
convergence problems exist. Various modifications of the Gauss-Newton method have been suggested 
to improve its performance, such as the Hartley modification (Ref. 13.1). 

7. Some properties that exist for linear regression least squares do not hold for nonlinearregression 
least squares. For example, the residuals do not necessarily sum to zero for nonlinear least squares. 
Additionally, the error sum of squares SSE and the regression sum of squares SSR do not necessar­
ily sum to the total sum of squares SSTO. Consequently, the coefficient of multiple determination 
R2 = SSRj SSTO is not a meaningful desQ-iptive statistic for nonlinear regression. • 

Other Direct Search Procedures 
Two other direct search procedures, besides the Gauss-Newton method, that are frequently 
used are the method of steepest descent and the Marquardt algorithm. The method of 
steepest descent searches for the minimum least squares criterion measure Q by iteratively 
determining the direction in which the regression coefficieflts g should be changed. The 
method of steepest descent is particularly effective when the starting values g(O) are not 

good, being far from the final values g. 
The Marquardt algorithm seeks to utilize the best features of the Gauss-Newton method 

and the method of steepest descent, and occupies a middle grouqd between these two 
methods. 

Additional information about direct search procedures can be found in specialized 
sources, such as References 13.2 and 13.3. 
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13.3 

Example 

Model Bnnding and Diagllostjcs 

The model-building process for nonlinear regression models often differs somewhat fr 
that for linear regression models. The reason is that the functional form of many nonlinO

ill 

models is less suitable for adding or deleting predictor variables and curvature and inte ear 
tion ~ffects in the. direct fashion that is feasible for line,~r regression ~odels. Some typerSa~; 
nonlmear regression models do lend themselves to addmg and deletlllg predictor varlabl 
in a direct fashion. We shall take up two such nonlinear regression models in Chapter I~ 
where we consider the logistic and Poisson multiple regression models. ' 

Validation of the selected nonlinear regression model can be performed in the same 
fashion as for linear regression models. 

Use of diagnostic tools to examine the appropriateness of a fitted model plays an impor_ 
tant role in the process of building a nonlinear regression model. The appropriateness of a 
regression model mllst always be considered, whether the model is linear or nonlinear. Non­
linear regression models may not be appropriate for the same reasons as linear regression 
models. For example, when nonlinear growth models are used for time seriF.s data, there 
is the possibility that the elTor terms may be correlated. Also, unequal error variances are 
often present when nonlinear growth models with asymptotes are fitted, such a~ exponential 
models (13.6) and (13.8). Typically, the en"or variances for cases in the neighborhood of 
the asymptote(s) differ from the error variances for cases elsewhere. 

When replicate observations are available and the sample size is reasonably large, theap­
propriateness of a nonlinear regression function can be tested formally by means of the lack 
offit test for linear regression models in (6.68). This test will be an approximate one for non­
I inear regression models, but the actual level of significance will be close to the spec ified level 
when the sample size is reasonably large. Thus, we calculate the pure en-or slim of squares 
by (3. 16), obtain the lack of fit sum of squares by (3.24), and calculate test statistic (6.68b) 
in the usual fa<;hion when performing a formal lack of fit test for a nonlinear response 
function. 

Plots of residuals against time, against the fitted values, and against each of the predictor 
variables can be helpful in diagnosing departures from the assumed model, just as for 
linear regression models. In interpreting residual plots for nonlinear regression, one needs 
to remember that the residuals for nonlinear regression do not necessarily sum to zero. 

If unequal elTor variances are found to be present, weighted least squares can be used. 
in fitting the nonlinear regression model. Alternatively, transformations of the response 
variable can be investigated that may stabilize the variance of the error terms and also 
permit use of a linear regression model. 

In the severely injured patients example. the residuals were obtained by use of the fitted 
nonlinear regression function (13.30): 

A plot of the residuals against the fitted values is shown in Figure 13.3a, and a normal 
probability plot of the residuals is shown in Figure 13.3b. These plots do not suggest any 
serious departures from the model assumptions. The residual plot against the fitted values 
in Figure 13.3a does raise the question whether the error variance may be somewhat larger 
for cases with small fitted values near the asymptote. The Brown-Forsythe test (3.9) was 
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conducted. Its P-value is .64, indicating that the residuals are consistent with constancy of 
the error variance. ' 

On the basis of these, as well as some other diagnostics, it was concluded that exponential 
regression model (13.13) is appropriate for the data. 

13.4 Inferences about Nonlinear Regression Parameters 

Exact inference procedures about the regression parameters are available for linear regres­
sion models with normal error terms for any sample size. Unfortunately, this is not the 
case for nonlinear regression models with normal error terms, where the least squares and 
maximum likelihood estimators for any given sample size are not normally distributed, are 
not unbiased, and do not have minimum variance. 

Consequently, inferences about the regression parameters in nonlinear regression are 
usually based on large-sample theory. This theory tells us that the least squares and maximum 
likelihood estimators for nonlinear regression models with normal error terms, when the 
sample size is large, are approximately normally distributed and almost unbiased, and 
have almost minimum variance. This large-sample theory also applies when the error terms 
are not normally distributed. 

Before presenting details about large-sample inferences for nonlinear regression, we 
need to consider first how the error term variance (52 is estimated for nonlinear regression 
models. 

Estimate of Error Term Variance 
Inferences about nonlinear regression parameters require an estimate of the error term 
variance (52. This estimate is of the same form as for linear regression, the error sum or 
squares again being the sum of the squared residuals: 

L ~ 2 SSE (y. - y.) 
MSE=--= t t 

n-p n-p 

L[Yi - !(Xi , g)]2 

n-p 
(13.31) 
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Here g is the vector of the final parameter estimates, so that the residuals are the devia . 
around the fitted nonlinear regression function using the final estimated regression c tl~S 
cients g. For nonlinear regression, MSE is not an unbiased estimator of a 2 , but the br::e .-

. . las IS 
small when the sample size IS large. 

Large-Sample Theory 
When the error terms are independent and normally distributed and the sample size' 
reasonably large, the following theorem provides the basis for inferences for nonl' IS 

~ . mear 
regression models: 

When the ereor terms C; are independent N (0, (J2) and the sample size /1 

is reasonably large, the sampling distribution of g is approximately 
normal. The expected value of the mean vector is approximately: 

E{g} ~ y 

The approximate variance-covariance matrix of the regression 
coefficients is estimated by: 

(13.32) 

(B.32a) 

(13.32b) f 

Here D is the matrix of partial derivatives evaluated at the final least squares estimates g, " 
just as D(O) in (l3.25b) is the matrix of partial derivatives evaluated at gU)). Note that the 
estimated approximate variance-covariance matrix S2 {g} is of exactly the same form as the' 
one for linear regression in (6.48), with D again playing the role of the X matrix. 

Thus, when the sample size is large and the error terms are independent normal with COn­
stant variance, the least squares estimators in g for nonlinear regression are approximately 
normally distributed and almost unbiased. They also have near minimum variance, since 
the variance-covariance matrix in (l3.32b) estimates the minimum variances. We should 
add that theorem (13.32) holds even if the en'or terms are not normally distributed. 

As a result of theorem (13.32), inferences for nonlinear regression parameters afe carried 
out in the same fashion as for linear regression when the sample size is reasonably large. ~. 

Thus, an interval estimate for a regression parameter is carried out by (6.50) and a test 
by (6.51). The needed estimated variance is obtained from the matrix S2{g} in (13.32b) .. ,' 
These inference procedures when applied to nonlinear regression are only approximate, to 
be sure, but the approximation often is very good. For some nonlinear regression models,', 
the sample size can be quite small for the large-sample approximation to be good. For other: 
nonlinear regression models, however, the sample size may need to be quite large. 

When Is Large-Sample Theory Applicable? 
Ideally, we would like a rule that would tell us when the sample size in any given nonlinear; 
regression application is large enough so that the large-sample inferences based on asymp-·, 
totic theorem (13.32) are appropriate. Unfortunately, no simple rule exists that tells us when" 
it is appropriate to use the large-sample inference methods and when it is not appropriate., 
However, a number of guidelines have been developed that are helpful in assessing the", 
appropriateness of using the large-sample inference procedures in a given application. . 

l. Quick convergence of the iterative procedure in finding the estimates of the nonlinear, 
regression parameters is often an indication that the linear approximation in (13.25) to<. 
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the nonlinear regression model is a good approximation and hence that the asymptotic 
properties of the regression estimates are applicable. Slow convergence suggests caution 
and consideration of other guidelines before large-sample inferences are employed. 

2. Several measures have been developed for providing guidance about the appropriate­
ness of the use of large-sample inference procedures. Bates and Watts (Ref. 13.4) devel­
oped curvature measures of nonlinearity. These indicate the extent to which the nonlinear 
regression function fitted to the data can be reasonably approximated by the linear approx­
imation in (13.25). Box (Ref. 13.5) obtained a formula for estimating the bias of the esti­
mated regressi on coefficients. A small bias supports the appropriateness of the large-sample 
inference procedures. Hougaard (Ref. 13.6) developed an estimate of the skewness of the 
sampling distributions of the estimated regression coefficients. An indication of little skew­
ness supports the approximate normality of the sampling distributions and consequently the 
applicability of the large-sample inference procedures. 

3. Bootstrap sampling described in Chapter 1] provides a direct means of examining 
whether the sampling distributions of the nonlinear regression parameter estimates are 
approximately normal, whether the variances of the sampling distributions are near the 
variances for the linear approximation model, and whether the bias in each of the parameter 
estimates is fairly small. ~:&so, the sampling behavior of the nonlinear regression estimates is 
said to be close-to-linear and the large-sample inference procedures may appropriately be 
used. Nonlinear regression estimates whose sampling distributions are not close to normal, 
whose variances are much larger than the variances for the linear approximation model, 
and for which there is substantial bias are said to behave in afar-fram-linear fashion and 
the large-sample inference procedures are then not appropriate. 

Once many bootstrap samples have been obtained and the nonlinear regressi on parameter 
estimates calculated for each sample, the bootstrap sampling distribution for each param­
eter estimate can be examined to see if it is near normal. The variances of the bootstrap 
distributions of the estimated regression coefficients can be obtained next to see if they are 
close to the large-sample variance estimates obtained by (13.32b). Similarly, the bootstrap 
confidence intervals for the regression coefficients can be obtained and compared with the 
large-sample confidence intervals. Good agreement between these intervals again provides 
support for the appropriateness of the l%ge-sample inference procedures. In addition, the 
difference between each final regression parameter estimate and the mean of its bootstrap 
sampling distribution is an estimate of the bias of the regression estimate. Small or negligible 
biases of the nonlinear regression estimates support the appropriateness of the large-sample 
inference procedures. 

Remedial Measures. When the diagnostics suggest that large-sample inference proce­
dures are not appropriate in a particular instance, remedial measures should be explored. 
One possibility is to reparameterize the nonlinear regression model. For example, studies 
have shown that for the nonlinear model: 

Yi = YOX;/(YI + Xi) + Ci 

the use oflarge-sample inference procedures is often not appropriate. However, the follow­
ing reparameterization: 
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Example 

where 81 = I/yo and 82 = YI/Y(), yields identical fits and generally involves no problems 
in llsing large-sample inference procedures for moderate sample sizes (see Ref. 13.7 for 
details). 

Another remedial measure is to use the bootstrap estimates of precision and confidence 
intervals instead of the large-sample inferences. However, when the linear approximation 
in (13.25) is not a close approximation to the nonlinear regression model, convergence rna 
be very slow and bootstrap estimates of precisi on and confidence intervals may be difficUlt~ 
obtain. Still another remedial measure that is sometimes available is to increase the sarnple 
size. 

For the severely injured patients example, we know from Table 13.3a on page 524 that 
the final error sum of squares is SSE = 49.4593. Since p = 2 parameters are present in the 
nonlinear response function (13.19), we obtain: 

SSE 49.4593 
MSE = -- = = 3.80456 

I1-P 15-2 

Table 13.3b presents this mean square, and Table 13.3c contains the large-sample estimated 
variance-covariance matrix of the estimated regression coefficient!>. The matrix (D'D)-' is 
based on the final regression coefficient estimates g and is shown withOllt computational 
details. 

We see from Table 13.3c that S2{goJ = 2.1672 and ,\2 {gd = .000002928. The estimated 
standard deviations of the regression coefficients are given in Table 13.3b. 

To check On the appropriateness ofthe large-sample variances of the estimated regression 
coefficients and On the applicability oflarge-sampleinferences in general, we have generated 
1,000 bootstrap samples of size 15. The fixed X sampling procedure was used since the 
exponential model appears to fit the data well and the error term variance appears to be 
fairly constant. Histograms of the resulting bootstrap sampling distributions of g3 and gr 
are shown in Figllre 13.4, together with some characteristics of these distributions. We see 
that the g3 distribution is close to normal. The g; distribution suggests that the sampling 
distribution may be slightly skewed to the left, but the departllre from normality does not 
appear to be great. The means of the distribution, denoted by g~ and g;, are very close to 

the final least squares estimates, indicating that the bias in the estimates is negligible: 

g3 = 58.67 

go = 58.61 

gT = -.03936 

gl = -.03959 

Furthermore, the standard deviations of the bootstrap sampling distributions are very close 
to the large-sample standard deviations in Table 13.3b: 

s' {g~; J = 1.423 

s{goJ = 1.472 

s*{grJ = .00142 

s {g rl = .00 I 71 

These indications all point to the appropriateness of large-sample inferences here, even 
though the sample size (/1 = 15) is not very large. 
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. FiGURE 13.4 Bootstrap Sampling Distributions-Severely Injured Patients Example. 

. (a) Histogram of Bootstrap Estimates 90 (b) Histogram of Bootstrap Estimates 9; 

14 

12 

10 .. 8 c cv 
<} 

lii 6 

"" 4 

2 

0 
54 55 56 57 58 59 60 

90 

go = 58.67 

S*{90} = 1.423 

90(.025) = 56.044 

90(.975) = 61.436 

14 

12 

10 

+" 8 c 
OJ 
~ 

6 OJ 
<>-

4 

2 

0 
61 62 63 '<t 

'<t 
0 
c5 
I 

M N 
'<t '<t 
0 0 
c5 c5 
I I 

~ 0 0\ 00 
'<t '<t M M 
0 0 0 0 
c5 c5 c5 c5 
I I I I 

9; 

g; = -.03936 

s*{gn = .00142 

9;(.025) = - .04207 

9;(.975) = -.03681 

"-
M 
0 
c5 
I 

\0 V) 
M M 
o 0 
c5 .ci 
I I 

Interval Estimation of a Single Yk 

Example 

Based on large-sample theorem (13.32), the following approximate result holds when the 
sample size is large and the error terms are normally distributed: 

k = 0, 1, ... , p - 1 (13.33) 

where t (n - p) is a t variable with n - p degrees of freedom. Hence, approximate 1 - ex 
confidence limits for any single Yk are formed by means of (6.50): 

gk ± t(1 - exj2;n - P)S{gk} (13.34) 

where t(1 - exj2; n - p) is the (1 - exj2) 100 percentile of the t distribution with n - p 
degrees of freedom. 

For the severely injured patients example, it is desired to estimate yi with a 95 percent 
confidence interval. We require t(.975; 13) = 2.160, and find"from Table 13.3b that gl = 
-.03959 and s{gd = .00171. Hence, the confidence limits are -.03959 ± 2.160(.00171), 
and the approximate 95 percent confidence interval for YI is: 

-.0433 :::: YI :::: -.0359 

Thus, we can conclude with approximate 95 percent confidence that YI is between -.0433 
and -.0359. To confirm the appropriateness of this large-sample confidence interval, we 
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shall obtain the 95 percent bootstrap confidence interval for YI· Using (11.58) and theresuJ. 
in Figure 13.4b, we obtain: ts 

d l = gl - gr(·025) = -.03959 + .04207 = .00248 

(h = gr(975) - gl = -.03681 + .03959 = .00278 

The reflection method confidence limits by (11.59) then are: 

gl - {h = -.03959 - .00278 = -.04237 

gl + d l = -.03959 + .00248 = -.03711 

Hence, the 95 percent bootstrap confidence interval is - .0424 .:s YI .:s - .0371. This Con­
fidence interval is very close to the large-sample confidence intervaL again Supporting the 
appropriateness of large-sample inference procedures here. 

Simultaneous Interval Estimation of Several Yk 

Example 

Approximate joint confidence intervals for several regression parameters in nonlinear re­
gression can be developed by the Bonferroni procedure. If m parameters are to be estimated 
with approximate family confidence coefficient I - ex, the joint Bonferroni confidenoe 
limits are: 

(13.35) 

where: 

B = t (l - ex/2m; 11 - p) (13.35a) 

In the severely injured patients example, it is desired to obtain simultaneous interval es­
timates for Yo and y, with an approximate 90 percent family confidence coefficient. With 
the Bonferroni procedure we therefore require separate confidence intervals for the two 
parameters, each with a 95 percent statement confidence coefficient. We have already ob­
tained a confidence interval for y, with a 95 percent statement confidence coefficient. The 
approximate 95 percent statement confidence limits for Yo, using the results in Table 13.3b, 
are 58.6065 ± 2.160(1.472) and the confidence interval for Yo is: 

55.4 3 .:s Yo .:s 61.79 

Hence, the joint confidence intervals with approximate family confidence coefficient of 
90 percent are: 

55.43 .:s Yo .:s 61.79 

-.0433 .:s YI .:s -.0359 

Test Concerning a Single Y k 

A large-sample test concerning a single Yk is set up in the usual fashion. To test: 

Ho: Yk = Yw 

H(I: Yk i Yw 
(13.36a~ 
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where YkO is the specified value of Yk> we may use the t* test statistic based on (6.49) when 
n is reasonably large: 

(13.36b) 

The decision rule for controlling the risk of making a Type I error at approximately ex then is: 

If It*1 s t(1 - exJ2; n - p), conclude Ho 

If It*1 > t(1 - exJ2;n - p), conclude Ha 

In the severely injured patients example, we wish to test: 

The test statistic (13.36b) here is: 

Ho: Yo = 54 

Ha: Yo =1= 54 

58.6065 - 54 
t* = 313 1.472 =. 

(13.36c) 

For ex = .01, we require t(.995; 13) = 3.012. Since It*1 = 3.13 > 3.012, we conclude Ha , 

that Yo =1= 54. The approximate two-sided P-value of the test is .008. 

Test Concerning Several Y k 

When a large-sample test concerning several Yk simultaneously is desired, we use the same 
approach as for the general linear test, first fitting the full model and obtaining SSE(F), 
then fitting the reduced model and obtaining SSE(R), and finally calculating the same test 
statistic (2.70) as for linear regression: 

* SSE(R) - SSE(F) 
F = -:- MSE(F) 

dfR -dfF 
(13.37) 

For large n, this test statistic is distributed approximately as F(dfR - dfF' dfF) when Ho 
holds. 

13.5 Learning Curve Example' 

We now present a second example, to provide an additional illustration of the nonlin­
ear regression concepts developed in this chapter. An electronics products manufacturer 
undertook the production of a new product in two locations (location A: coded XI = 1, 
location B: coded X I = 0). Location B has more modern facilities and hence was expected 
to be more efficient than location A, even after the initial learning period. An industrial en­
gineer calculated the expected unit production cost for a modern facility after learning has 
occurred. Weekly unit production costs for each location ~ere then expressed as a fraction 
of this expected cost. The reciprocal of this fraction is a measure of relative efficiency, and 
this relative efficiency measure was utilized as the response variable (Y) in the study. 

It is well known that efficiency increases over time when; new product is produced, 
and that the improvements eventually slow down and the process' stabilizes. Hence, it was 
decided to employ an exponential model with an upper asymptote for expressing the relation 
between relative efficiency (Y) and time (X2), and to incorporate a constant effect for the 
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difference in the two production locations. The model decided on was: 

Yi = Yo + y1XiI + Y3 exp(Y2X;z) + Ci (13.38) 

When)/2. and Y3 are negative, Yo is the up.per asymptote for location Bas X2 gets large, and 
Yo + YI IS the upper asymptote for locatIOn A. The parameters Y2 and Y3 reflect the speed 
of learning, which was expected to be the same in the two locations. 

While weekly data on relative production efficiency for each location were available w , e 
shall only use observations for selected weeks during the first 90 weeks of prodUction to 
simplify the presentation. A portion of the data on location, week, and relative efficiency i 
presented in Table 13.4; a plot of the data is shown in Figure 13.5. Note that learning wa~ 
relatively rapid in both locations, and that the relative efficiency in location B toward the 

Observation location Week Relative Efficiency 
Xil X'2 Yi 

1 1 .483 
2 1 2 .539 
3 1 3 .618 " 

13 1 70 .960 
14 1 80 .967 
15 1 90 .975 
16 0 1 .517 
17 0 2 .598 
18 0 3 .635 

28 0 70 1.028 
29 0 80 1.017 
30 0 90 1.023 

1.2 

y= 1.0156 - .5524 exp(-.1348X) 

1.0 

G 
c 
OJ 
'u 
!¥1 0.8 
OJ y= 0.9683 - .5524 exp(-.1348X) > 
"" '" (jj 
0:: 

0.6 

0.4 L..--L __ --L __ --'-___ L-_---' 

10 30 50 70 90 
lime-(week) 
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end of the 90-week period even exceeded 1.0; i.e., the actual unit costs at this stage were 
lower than the industrial engineer's expected unit cost. 

Regression model (13.38) is nonlinear in the parameters Y2 and Y3. Hence, a direct 
numerical search estimation procedure was to be employed, for which starting values for 
the parameters are needed. These were developed partly from past experience, partly from 
analysis of the data. Previous studies indicated that Y3 should be in the neighborhood of -.5, 
so gjO) = -.5 was used as the starting value. Since the difference in the relative efficiencies 
between locations A and B for a given week tended to average -.0459 during the 90-week 
period, a starting value g ~O) = - .0459 was specified. The largest observed relative efficiency 
for location B was 1.028, so that a starting value g6°) = 1.025 was felt to be reasonable. 
Only a starting value for Y2 remains to be found. This was chosen by selecting a typical 
relative efficiency observation in the middle of the time period, Y24 = 1.012, and equating 
it to the response function with X24, I = 0, X24,2 = 30, and the starting values for the other 
regression coefficients (thus ignoring the error term): 

1.012 = 1.025 - (.5) exp(30Y2) 

Solving this equation for Y2, the starting value giO) = -.122 was obtained. Tests for several 
other representative observations yielded similar starting values, and giO) = -.122 was 
therefore considered to be a reasonable initial value. 

With thefourstartingvaluesg6°) = 1.025, g\O) = -.0459,giO) = -.122, andgjO) = -.5, a 
computer package direct numerical search program was utilized to obtain the least squares 
estimates. The least squares regression coefficients stabilized after five iterations. The final 
estimates, together with the large-sample estimated standard deviations of their sampling 
distributions, are presented in Table 13.5, columns 1 and 2. The fitted regression function is: 

Y = 1.0156 - .04727X\ - (.5524)exp(-.1348X2 ) (13.39) 

The error sum of squares is SSE = .00329, with 30 - 4 = 26 degrees of freedom. Figure 13.5 
presents the fitted regression functions for the two locations, together with a plot of the data. 
The fit seems to be quite good, and residual plots (not shown) did not indicate any noticeable 
departures from the assumed model. 

In order to explore the applicability of large-sample inference procedures here, bootstrap 
fixed X sampling was employed. One thousand bootstrap samples of size 30 were generated 

TABLE 13.5 Nonlinear Least Squares Estimates and Standard Deviations and Bootstrap 
Results-Learning Curve Example. 
~-.,..-..,...,,"" 

;',-' 

II 

(1) (2) 
Nonlinear 

LeastSquare.s 

gk 
L0156 
-.04727 
"':":.5524 
""-.1'348 

.003672 

.004109 

.008157 

.004359 

9k; 
].015005 
"'::,04724/ 

-:55283' 
...".13495' 

(4) 

.$~lg;) 

:OO:t374. 
~oo17M 
:007275 
.0Q4:l02 
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FIGURE 13.6 MINITAB HistogmUls of BootstI·ap Sampling DistIibutions-Learning Curve Example. 
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The estim<lted bootstrap means and standard deviations for each of the sampling distribl,tions 
are presented in Table 13.5. columns 3 and 4. Note first that each least squares estimate 
g~ in coilimn I of Table 13.5 is very close to the mean g; of its respective bootstrap 
sampling distribution in column 3. indicating that the estimates have very little bias. Note 
also that each large-sample standard deviation s{gd in column 2 of Table 13.5 is fairly 
close to the respective bootstrap standard deviation s"{gn in column 4, again supporting the 
applicability of large-sample inference procedures here. Finally. we present in Figure 13.6 
MINITAB plots of the histograms of the four bootstrap sampling distributions. They appear 
to be consistent with approximately normal sampling distributions. These results all indicate 
that the sampling behavior of the nonlinear regression estimates is close to linear and 
therefore support the use of large-sample inferences here. 

There was special interest in the parameter YI, which reflects the effect of location. An 
approximate 95 percent confidence interval is to be constructed. We require t(.975;26) 
= 2.056. The estimated standard deviation from Table 13.5 is sL!(11 = .004109. Hence, the 
approximate 95 percent confidence limits for YI are -.04727 ± 2.056(.004109), and the 
confidence interval for YI is: 

-.0557 ~ YI ~ -.0388 

An approximate 95 percent confidence interval for YI by the bootstrap reflection method 
was also obtained for comparative purposes using ( 11.59). It is: 

-.0547 ~ YI ~ -.0400 

This is very close to that obtained by large-sample inference procedures. Since YI is seen to 
be negative. these confidence intervals confirm that location A with its less modern facilities 
tends to be less efficient. 

Comments 
I. When learning <;urve models are fitted to data constituting repeated observations on the same 

unit. such as efficiency data for the same production unit at ditferent pOlilts in time. the error teons may 
be correlated. Hence. in these situations it is important to ascertain whether or not a model assuming 
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uncorrelated error terms is reasonable. In the learning curve example, a plot of the residuals against 
time order did not suggest any serious correlations among the error terms. 

2. With learning curve models, it is not uncommon to find that the error variances are unequal. 
Again, therefore, it is important to check whether the assumption of constancy of error variance is 
reasonable. In the learning curve example, plots of the residuals against the fitted values and time did 
not suggest any serious heteroscedasticity problem. • 

13.6 Introduction to Neural Network Modeling -
In recent years there has been an explosion in the amount of available data, made possible 
in part by the widespread availability of low-cost computer memory and automated data 
collection systems. The regression modeling techniques discussed to this point in this book 
typically were developed for use with data sets involving fewer than 1,000 observations and 
fewer than 50 predictors. Yet it is not uncommon now to be faced with data sets involving 
perhaps millions of observations and hundreds or thousands of predictors. Examples include 
point-of-sale data in marketing, credit card scoring data, on-line monitoring of production 
processes, optical character recognition, internet e-mail filtering data, microchip array data, 
and computerized medical record data. This exponential growth in available data has moti­
vated researchers in the' fields of statistics, artificial intelligence, and data mining to develop 
simple, flexible, powerful procedures for data modeling that can be applied to very large 
data sets. In this section we discuss one such technique, neural network modeling. 

Neural Network Model 
The basic idea behind the neural network approach is to model the response as a nonlinear 
function of various linear combinations of the predictors. Recall that our standard multi­
ple regression model (6.7) involves just one linear combination of the predictors, namely 
E{Yi } = {Jo + {JIXil + ... + {Jp-IXi,P-I' Thus, as we will demonstrate, the neural network 
model is simply a nonlinear statistical model that contains many more parameters than the 
corresponding linear statistical model. One result of this is that the models will typically 
be overparameterized. resulting in parameters that are uninterpretable, which is a major 
shortcoming of neural network modeling. An advantage of the neural network approach 
is that the reSUlting model will oftetr perform better in predicting future responses than a 
standard regression model. Such models require large data sets, and are evaluated solely on 
their ability to predict responses in hold-out (validation) data sets. 

In this section we describe the simplest, but most widely used. neural network model, 
the single-hidden-Iayer, feedforward neural network. This network is sometimes referred 
to as a single-layer perceptron. In a neural network model the ith response Yi is modeled 
as a nonlinear function gy of m derived predictor values, HiO• Hi!, ....• Hi,m-I: 

Y; = gy(f30 H iO + {JIHil + ... + {Ji,m-IHi,m-l) +-£i = gy(H;(3) + Ci (13.40) 

where: 

m~' = [1.1 Hi 
mxl 

[ 

HiO 1 Hil 

Hi'~_1 
(13.40a) 
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We take Hi!) equal to I and for j = I ..... p - I. the jth derived predictor value forthe ith 
observation. Hij, is a nonlinear function gj ofa linear combination of the original predictors. 

Hii = gj(X;aj) j = I, .... /1/ - I (13.41) 

where: 

(13.41 a) 

and where Xi!) = I. Note that X; is the ith row of the X matrix. Equations (13.40) and 
( 13.41 ) together form the neuml network model: 

Yi = gr<H;~) + Ci = .siy [{:Jo + ~ (:Jj.l~ i(X;aj )] + Ci 
1=1 

(13.42) 

The III functions gy. g I ..... gill-I are called activatioll .timetiolls in the neural networks 
literature. To completely specify the neural network model, it is necessary to identify them 
activation functions. A COmmOn choice for each of these functions is the logistic function: 

(13.43) 

This function is flexible and can be adapted to a variety of circumstances. 
As a simple example, consider the case of a single predictor, X I. Then from t 13.41), the 

jth derived predictor for the ith observation is: 

g j(X;aj) = II + exp( -O'Jo - O'jl Xii )r l (13.44) 

(Note that (13.44) is a reparameterization of (13.11), with Yo = I, YI = e-u11I
• and Y2 = 

-0' jl.) This function is shown in Figure 13.7 for various choices of O'Jo and ex jI. In Fig­
ure 13.7a, the logistic function is plotted for fixed 0' jO = 0, and O'.i I = .1, I, and 10. When 
0' jl = .1, the logistic function is approximately linear over a wide range; when ex jl = 10, 
the flillction is highly nonlinear in the center of the plot. Generally, relatively larger param­
eters (in absolute value) are required for highly nonlinear responses, and relatively smaller 
parameters result for approximately linear responses. Changing the sign of ail reversesthe 
orientation of the logistic function, as shown in Figure 13.7b. Finally, for a given value of 
O'j I, the position of the logistic function along the X I-axis is controlled by O'Jo. In Figure 
13.7c, the logistic function is plotted for fixed 0' iI = I and 0' jO = - 5, O. and 5. Note that 
all of the plots in Figure 13.7 reflect a characteristic S- or sigmoidal-shape. and the fact that 
the logistic function has a maximum of I and a minimum of O. 

Substitution of gin (13.43) for each of gy, gl .... , gw-I in (13.42) yields the specific 
neural network model to be discussed in this section: 

Y; = [I +exp(-H;~)l-' +c; 

[I +exp [ -{:Jo - ~{:Jjll +exp(-X;ai)I-I]r
l 

+Ci 
.I~I 

(13.45) 
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~IGURE 13.7 Various Logistic Activation Functions for Single Predictor. 
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where: 

(3, O! I, ... , O!m-I are unknown parameter vectors 

Xi is a vector of known constants 

Ci are residuals 

10 

o 
Xl 

(b) 

10 

Neural network model (13.45) is a special case of (lJ.12) and is therefore a nonlinear 
regression model. In principle, all of the methods discussed in this chapter for estimation, 
testing, and prediction with nonlinear models are applicable. Indeed, any nonlinear regres­
sion package can be used to estimate the unknown coefficients. Recall, however, that1:hese 
models are generally overparameterized, and use of standard esti,mation methods will result 
in fitted models that have poor predictive ability. This is analogous to leaving too many 
unimportant predictors in a linear regression model. Special procedures for fitting model 
(13.45) that lead to better prediction will be considered later in this section. 
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Note that because the logistic activation function is bounded between 0 and 1 .. 
necessary to scale Yi so that the scaled value, Yj"" also falls within these limits. This da: blS 
accomplished by using: e 

V-I": y:'"t" == I II1I1l 

I Yillax - Ymin 

where Y;nin and Ymax are the minimum and maximum responses. It is also common practi 
to center and scale each of the predictors to have mean 0 and standard deviation I. Th ce 
transfonnations are generally handled automatically by neural network software. esc 

Network Representation 

FIGURE 13.8 
Network Rep­
resentations of 
Linear 
Regression 
and Neural 
Network 
Models. 

Network diagrams are often used to depict a neural network model. Note that the standard 
linear regression function: 

can be represented as a network as shown in Figllre 13.8a. The link from each predictor X. 
to the response is labeled with the corresponding regression parameter, j{. ' 

The feedforwarcl, single-hidden-Iayer neural network model (13.45) is shown in Fio­
ure 13.8b. The predictor nodes are labeled Xu, X I .... , X p _ 1 and are located on the left 
side of the diagram. In the center of the diagram are 111 hidde/1 /lodes. These nodes are 
linked to the p predictor nodes by relation (13.41): thus the I inks are labeled by using the 
0' parameters. Finally, the hidden nodes are linked to the response Y by the fJ pm·ameters. 

Comments 
1. Neural networks were first used as models for the human brai n. The nodes represented neurons 

and the links between neurons represented synuplies. A synapse would "fire" if the signal surpassed 

(a) Linear Regression Model (b) Neural Network Model 

f30 
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a threshold. This suggested the use of step functions for the ac1:ivation function, which were later 
replaced by smooth functions such as the logistic fUnction. 

2. The logistic activation function is sometimes replaced by a radial basis function, which is an 
n-dimensional normal probability density function. Details are provided in Reference 13.8. • 

Neoral Network as Generalization of Linear Regression 
". . It is easy to see that the standard multiple regression model is a special case of neural 

network model (13.45).1£ we choose for each of the activation functions gy, gl, ... , gm-I 
the identity activation: 

g(Z) = Z 

we have: 

(13.46a) 

and: 

(13.46b) 

Substitution of (13~46b) into (13.46a) and rearranging yields: 

E{Yi} = [f30 + I:f3jO'jO] + [~f3jO'jl] Xii + ... + [~f3Pj'P-I] Xi,p-I 

J=I J=I J=I 

= f3~ + f3t Xil + ... + f3;_I Xi,p-1 (13.47) 

where: 

m-I 

f3~ = f30 + Lf3PjO 
j=1 

m-I 

f3; = Lf3jO'jk 
j=l 

for k = 1, ... , p - 1 

(13.47a) 

The neural network with identity activation functions thus reduces to the standard linear 
regression model. 

There is a problem, however, with the interpretation of the neural network regression 
coefficients. If the regression function is given by E{Yi } = f3~ + f3f Xii + ... + f3;Xi,p-1 as 
indicated in (13.47), then any set of neural network parameters satisfying the p equati ons in 
(13.47a) gives the correct model. Since there are many more neural network parameters than 
there are equations (or equivalently, f3* parameters) ther.e are infinitely many sets of neural 
network parameters that lead to the correct model. Thus, any particular set of neural network 
parameters will have no intrinsic meaning in this case. • 

This overparameterization problem is somewhat reduced ~ith the use of the logistic 
activation function in place of the identity function. Generally, powever, if the number of 
hidden nodes is more than just a few, overparameterization will be present, and will lead to 
a fitted model with low predictive ability unless this issue is explicitly considered when the 
parameters are estimated. We now take up such estimation procedures. 
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Parameter Estimation: Penalized least Squares 
In Chapter9 weconsidered model selection and validation. There, we observed that while/?2 
never decreases with the addition of a new predictor, our ability to predict holdout response 
in the validation stage can dcteriorate if too many predictors are incorporated. VariollSlhOde~ 
selection criteria. such as R~.J" SECt" andAICt" have been adopted that contain penalties£ 
the addition of predictors. We commented in Section 11.2 that ridge regression estim: 
can be obtained by the method of penalized least squares, which directly incorporates ~ 
penalty for the sum of squares of the regression coefficients. In order to control the level of 
overtitting, penalized least squares is frequently used for parameter estimation with neural 
networks. 

The penalized least squares criterion is given by: 

II 

Q = 2.= I Yi - f(X i • ~. aj. .... a",-If + Ih(~. al .... , a",_I) 
;=1 

where the overfit penalty is: 

(13.48) 

(B.4~a) 

Thus, the penalty is a positive constant, A, times the sum of squares of the nonlinear regres­
sion coefficients. Note that the penalty is imposed not on the number of parameters 111 +mp, 
but on the totalmugnitude of the parameters. The penalty weight A assigned to the regres­
sion coefficients governs the trade-off between overfitting and underfitting. If A is large, 
the parameters estimates will be relatively smull in absolute magnitude; if A is small, the 
estimates will be relatively large. A "best" value for A is generally between .001 and.1 am 
is chosen by cross-validation. For example, we may fit the model for a range of A-values 
between .001 and .1, and choose the value that minimizes the total prediction error of the 
hold-out sample. The resulting parameter estimates are called shrinkage estimates because 
u~e of A > 0 leads to reductions in their absolute magnitudes. 

In Section 13.3 we described various search procedures, such as the Gauss-Newton 
method for finding nonlinear least squares estimates. Sllch methods can also be used with 
neural networks and penalized least squares criterion (13.48). We observed in Comment I on 
page 524, that the choice of starting values is important. Poor choice of starting values may 
lead to convergence to a local minimum (rather than the global minimum) when multiple 
minima exist. The problem of mUltiple minima is especially prevalent when fitting neural 
network.~, due to the typically large numbers of parameters and the functional form of model 
(13.48). Forthis reUSon, it is common practice to fit the model many times (typically between 
10 and 50 times) using different sets of randomly chosen starting values for each fit. The set 
of parameter estimates that leads to the lowest value of criterion function (13.48}-i.e., the 
be~t of the best-is chosen for further study. In the neural networks literature, finding a set 
of parameter values that minimize criterion (13.48) is referred to as tmilling the network. 
The number of searches conducted before arriving at the final estimates is referfed to as the 
number of tours. 
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Comment 

Neural networks are often trained by a procedure called back-propagation. Back propagation is in 
fact the method of steepest descent, which can be very slow. Recommended methods include the 
conjugate gradient and variable metric methods. Reference 13.8 provides further details concerning 
back-propagation and other search procedures. • 

,Ex-al11ple: Ischemic Heart Disease 
, We illustrate the use of neural network model (13.44) and the penalized least squares fitting 

procedure using the Ischemic heart disease data set in Appendix C.9. These data were 
collected by a health insurance plan and provide information concerning 788 subscribers 
who made claims resulting from coronary heart disease. The response (Y) is the natiiral 
logarithm of the total cost of services provided and the predictors to be studied here are: 

AGURE 13.9 
JMPControl 
Panel for 
Neural 
Network 
Fit-Ischemic 
Heart Disease 
Example. 

Predictor Description 

Number of interventions, or procedures, carried out 
Number of tracked drugs used 
Number of comorbidities-other conditions present 

that complicate the treatment 
Number of complications-other conditions that 

arose during treatment due to heart disease 

The first 400 observations are used to fit model (13.45)andthelastn* = 388 observations 
were held out for validation. (Note that the observations were originally sorted in a random 
order, so that the hold-out data set is a random sample.) We used JMP to fit and evaluate 
the neural network model. 

Shown in Figure 13.9 is the JMP control panel, which allows the user to specify the var­
ious characteristics of the model and the fitting procedure. Here, we have chosen 5 hidden 
nodes, and we are using A. = .05 as the penalty weight. Also, we have chosen the default val­
ues for the number of tours (20), the maximum number of iterations for the search procedure 

1: Control Panel, 
---'-'~""'--'--~""--'-'-~-" 

Hidden Nodes 

Overfit Penalty 

Number of Tours 

Max Iterations 

Converge Criterion 

~ Log the tours 

o Log the iterations 

o Log the estimates 

,Specifyj 

5: 

50[ 
0.00001, 

o Save iterations in table 
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FIGURE 13.10 
JMPNeural 
Network 
Diagram­
Ischemic Heart 
Disease 
Example. 

FIGURE 13.11 
JMP Results 
for Neural 
Network 
Fit-Ischemic 
Heart Disease 
Example. 

Duration 

Intervention 

Comorbid 

Complications r--------.:::::~ 

Results 

Objective 17 Converged At Best 

SSE 120.90315177 2 Converged Worse Than Best 

Penalty 4.4087731663 o Stuck on Flat 

Total 125.31192493 o Failed to Improve 

1 Reached Max Iter 

y SSE SSE Scaled SSE Excluded RMSE RSquare RSquare Exclud 

10gCost 441.3037691 120.90315177 407.68215505 0.55465449 0.6962 0.7024 

(50) and the convergence criterion (.0000 I). By checking the "log the tours" box, we will 
be keeping a record of the results of each of the 20 tours. A JMP network representation of 
model (13.45) is shown in Figure 13.10. Note that this representation excludes the constant 
node~ X 0 and Ho. In our notation, there are 11/ = 6 hidden nodes and fJ = 5 predictor nodes, 
and it is necessary to estimate III + 1'(111 - I) = 6 + 5(6 - I) = 31 parameters. 

The results of the best fit. after 20 attempts or tours, is shown in Figure 13.11. The 
penalized least squares criterion vallie is 125.31. SSE for the scaled response is 120.90. 
JMP indicates that the corresponding SSE for the unsealed (original) responses is 441.30. 
The total prediction error for the validation (excluded) data, is given here by: 

788 

SSE VAL = L (Y; - fd = 407.68 
;=--101 

The mean squared prediction error (9.20) is obtained as MSPR = SSE VAL! /I' :::: 407.68/ 
388 = 1.05. JMP also gives R2 for the training data (.6962). and for the validation data 

~ ~ 
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JMr 
~el:er 
Esiun8tes for 

NeUfhl 
N~rk . 
m~Ischennc 
Heart Disease 
~~ple. 

H:;~:::;r EstiFat~E~;i~J 
! 'Hl:lntercepi'" ~'O.321634631-1i 

I H2:1ntercept 1.2553122151 
,H3:lntercept 2.5829942469

j
, 

I 
H4:lntercept -1.505357347 
H5:lntercept -1.8321189761 

" Hl :Duration -0.4104054931 
Hl :Interventions 2. 769411800~ 

i Hl :Comorbids 1.382308064~ I Hl:CornpIications 0.41485838521 
I H2:Duration 0.1040924583,' 

" 

H2:lntervenlions 0.983043751, 
H2:Comorbids 2.3589628016: 

: H2:Complicetions -0.2013332821 

I,. H3:Duration 1.502529975~ 
H3:lnterventions 1.07615966911' 

I, H3:Comorbids -0.414620124 

H3:ComplicaUons 0,05439404061 

! I 
I 

H4:Duration 1.2332218124 
H4:1nterventions -4,887856867! 

! H4:Comorbids -1.5766109991 

I 
H4:Complications -1.068032684, 
H5:Duration -O.159788267! 

I
', H5:lnterventions 1,25624454191 

H5:Comorbids 0.19515856241 
H5:Complications 0.3717883109: 
logCost:intercept -0.443318204j 
logCost:Hl -2.165864717' 
logCostH2 1.48770321491 
logCostH3 1.5396831425: 
logCostH4 -2.285420806j 

, ,1()!1(;()~:!:i:; """, .. _ ...!:6822~8417! 
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(.7024). This latter diagnostic was obtained using: 

R2 _ 1 _ SSEVAL 
VAL - SSTVAL 

where SST VAL is the total sum of squares for the validation data. Because these R2 values 
are approximately equal, we conclude that the use of weight penalty A = .05 led to a good 
balance between underfitting and overfitting. 

Figure 13.12 shows the 31 parameter estimates produced by JMP and the corresponding 
parameters. We display these values only for completeness-we make no attempt at inter­
pretation. As noted earlier, our interest is centered on the prediction of future responses. 

For comparison, two least squares regressions of Y on the four predictors X" X2 • X3, 

and X4 were also carried out. The first was based on a first-order model consisting of the 
four predictors and an intercept term; the second was based on a full second-order model 
consisting of an intercept plus the four linear terms, the four'quadratic terms" and the six 
cross-products among the four predictors. The results for these two multiple regression 
models and the neural network model are summarized in the Table 13.6. 

From the results, we see that the neural network model's ability to predict holdout 
responses is superior to the first-order multiple regression and slightly better that the second­
order multiple regression model. MSPR for the neural network is 1.05, whereas this statistic 
for the first and second-order multiple regression models is 1.28 and 1.09, respectively. 
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TABLE 13.6 -Comparisons Multiple linear Regression 

of Results for Neural Network First-Order --Second-Order 
Neural 

Number of Parameters 31 5 15 Network Model 
with Multiple 

MSE 1.20 1.74 1.34 

linear 
MSPR 1.05 1.28 1.09 

Regression 
Model-
Ischemic Heart 
Disease 
Example. 

FIGURE 13.13 10.5 
Conditional 
Effects 9.5 
Plot-Ischemic +" 

Heart Disease 
Vl 
0 8.5 u 

Example. en 
2. 
"0 7.5 
~ 
'0 6.5 ~ 
0.. 

5.5 

4.5 
0 10 20 30 40 50 

Interventions 

Model Interpretation and Prediction 
While individual parameters and derived predictors are USUally not interpretable, some 
understanding of the effects of individual predictors can be realized through the ll~e of 
conditional effects plots. For example, Figure 13.13 shows for the ischemic heart data 
example, plots of predicted response as a function the number of interventions (X2) for 
duration (XI) equal to 0 and 160. The remaining predictors, comorbidities (X3=3.55) 
and complications (X4 = 0.05), are fixed at their averages for values in the training set 
The plot indicates that the natural logarithm of cost increases rapidly as the number of 
interventions increases from 0 to 25, and then reaches a plateau and is stable as the number 
of interventions increases from 25 to 50. The duration variable seems to have very little 
effect, except possibly when interventions are between 5 and 10. 

We have noted that neural network models can be very effective tools for prediction when 
large data sets are available. As always, it is important that the uncertainty in any prediction 
be quantified. Methods'for producing approximate confidence intervals for estimation and 
prediction have been developed and some packages such as JMP now provide these intervals. 
Details are provided in Reference 13.9. 
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SOO1e Final Comments on Neural Network Modeling 
In recent years, neural networks have found widespread application in many fields. Indeed, 
they have become one of the standard tools in the field of data mining, and their use continues 
to grow. This is due largely to the widespread availability of powerful computers that permit 
the fitting of complex models having dozens, hundreds, and even thousands, of parameters. 
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A vocabulary has developed that is unique to the field of neural networks. The table below 
(adapted from Ref. 13.10) lists a number of terms that are commonly used by statisticians 
and their neural network equivalents: 

Statistical Term 

coefficient 
predictor 
response 
observation 
parameter estimation 
steepest descent 
intercept 
derived" predictor 
penalty function 

Neural Network Term 

weight 
input 
output 
exemplar 
training or learning 
back-pro pagation 
bias term 
hidden node 
weight decay 

There are a number of advantages to the neural network modeling approach. These 
include: 

1. Model (13.45) is extremely flexible, and can be used to represent a wide range of response 
surface shapes. For example, with sufficient data, curvatures, interactions, plateaus, and 
step functions can be effectively modeled. 

2. Standard regression assumptions, such as the requirements that the true residuals are 
mutually independent, normally distributed, and have constant variance, are not required 
for neural network modeling. 

3. Outliers in the response and predictors can still have a detrimental effect on the fit of the 
model, but the use of the bounded logistic activation function tends to limit the influence 
of individual cases in comparison with standard regression approaches. 

Of course, there are disadvantages associated with the use of neural networks. Model 
parameters are generally uninterpretable, and the method depends on the availability of 
large data sets. Diagnostics, such as lack of fit tests, identification of influential observations 
and outliers. and significance testing for the effects of the various predictors, are currently 
not generally available. . 
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'" 13.1. For each of the following response functions, indicate whether it i5 a linear 1"C5ponse function, ~: 

an intrinsically linear response function, or a nonlinear response funcrio,p. In the case of an in- .. ; 
trinsically linear'l"Csponse function. state how it can be linearized by a suitable transfolmation: ~ 

a. I(X.)I) = exp(yo + yIX) 

b. /(X.)I) = Yo + YI(Y2)X, - y~X2 
YI 

e. I(X.)I) = Yo + -x 
Yo 

13.2. For each of the following fesponsc functions. indicate whether it is a linear response function, : 
an intrinsicully linear response function, Of a nonlinear response function. In the case of an in­
trinsically linear response function, stare how it can be linearized by a suitable transfo/TImtion: 

a. I(X.)I) = exp(yo + YI log,. X) 

b. I(X.)I) = Yo(X1V' (XcV' 

Co I(X.)I) = Yo ~ YI(Yc)X 

"13.3. a. Plot the logistic response function: 

300 
f (X. )I) = -:----::-::---.,-----::-:c:-

1+ (30)exp(-1.5X) 
X~O 

b. What is the asymptote of this response function? For what value of X does the response 
function reach 90 pefcent of its asymptote? 

13.4. u. Plot the exponential response function: 

I(X. )I) = 49 - (30) exp( -1.1 X) X~O 

b. What is the asymptote 01" this response runction? For what value of X does the response' 
function reuch 95 percent or its asymptote'? 

"13.5. Home computel'S. A computer manufactufer hired a murket research til1l1 to investigate the; 
felationship bel ween the likelihood a family will purchase a home computeI' and the priceof 
the home computer, The data that follow afe based on feplicate SUfveys done in two similar: 
cities. One thousand heuds of households in each city were randomly selected and asked if 
they would be likely to purchase a home computer at a given price, Eight plices (X. in dollars) 
were studied. and 100 heads of households in each city were randomly ussigned to a given' 

price. The proportion I ikely to purchase at a given price is denoted by Y. 
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City A 

i: 2 3 4 5 6 7 8 

Xi: 200 400 800 1200 1600 2000 3000 4000 
y .• ,. .65 .46 .34 .26 .17 .15 .06 .04 

CityB 

i: 9 10 11 12 13 14 15 16 

Xi: 200 400 800 1200 1600 2000 3000 4000 
Yi: .63 .50 .30 .24 .19 .12 .08 .05 

No location effect is expected and the data are to be treated as independent replicates at each oi'" 
the 8 prices. The following exponential model with independent nonnal error terms is deemed; 
to be appropriate: 

Yi = Yo + Y2 exp( -YIXi ) + Si 

a. To obtain initial estimates of Yo, YI, and Y2, note that j(X, y) approaches a low'er asymptote 
Yo as X increases without bound. Hence, let g6°) = 0 and observe that when we ignore the 
error tenn, a logarithmic transformation then yields Y! = 130 + 131 Xi, where Y: = loge Yi, 
13o = loge"Y2, and 131 = - YI' Therefore, fit a linear regression func1:ion based on the trans­
formed data and use as initial estimates g6°) = 0, glO) = -bl, and giO) = exp(bo). 

b. Using the starting values obtained in part (a), find the least squares estimates of the param­
eters Yo, YI, and Y2. 

*13.6. Refer to Home computers Problem 13.5. 

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be 
adequate? 

b. Obtain the residuals and plot them against the fitted values and against X on separate 
graphs. Also obtain a nonnal probability plot. Does the model appear to be adequate? 

* 13.7. Referto Home computers Problem 13.5. Assume thatIarge-sample inferences are appropriate 
here. Conduct a fonnal approximate test for lack of fit of the nonlinear regression function; 
use a = .01. State the alternatives, decision rule, and conclusion. 

*13.8. Refer to Home computers Problem 13.5. Assume that the fitted model is appropriate and 
that large-sample inferences_can be employed. Obtain approximate joint confidence intervals 
for the parameters Yo, YI, and Y2, using the Bonferroni procedure and a 90 percent family 
confidence coefficient. 

* 13.9. Refer to Home computers Problem 13.5. A question has been raised whether the two cities 
are similar enough so that the data can be considered to be replicates. Adding a location 
effect parameter analogous to (13.38) to the model proposed in Problem 13.5 yields the four­
parameter nonlinear regression model: 

where: 

Yi = Yo + Y3 Xi2 + Y2 exp( -yIXil ) + Sj 

X = { 0 if c~ty A 
2 I if CIty B 

a. Using the same starting values as those obtained in Problem 13.5a and g~O) = 0, find the 
least squares estimates of the parameters Yo, YI, Y2, and Y3· 

b. Ass ume that large-sample inferences can be employed reasonably here. Obtain an approx­
imate 95 percent confidence interval for Y3. What does this interval indicate about city 
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differences? Is this result consistent with your conclusion in Problem 13.7? Does it h 
to be? Discuss. ave 

13.10. Enzyme kinetics. In an enzyme kinetics study the velocity of a reaction (Y) is expected b 
. f' I to e rehIted to the concentratlOn (X) as 0 lows: 

Y; = YoX; +E; 

YI +X; 

Eighteen concentrations have been studied and the results follow: 

i: 

2.1 

2 

1.5 
2.5 

3 

2 
4.9 

16 

30 
19.7 

17 

35 
21.3 

18 

40 
21.6 

a. To obtain star·ting values for y\) and Y" observe that when the elTorterm is ignored We have 
Yi = f30 + f31 X;, where Y: = II Y

" 
f30 = Ilyo, f31 = yr/}11, and X; = II Xi. Therefore fit 

a linear regression function to the transformed data to obtain initial estimates g~O) == lib 
d (OJ b Ib 0 an gl = I 0. 

b. Using the starting values obtained in part (a), find the least squares estimates of the param­
eters Yo and YI. 

13.11. Refer to Enzyme kinetics Problem 13. 10. 

a. Plot the estimated nonlinear regression function and the data. Does the fir appear to be 
adequate? 

b. Obtllin the residuals and plot them against the fitted values and against X on separate 
graphs. Also obtain a normal probability plot. What do your plots show? 

c. Can you conduct an approximate formal lack of fit test here? Explain. 

d. Given that only 18 trials can be made, what are some advantages and disadvantages of eon­
sidering fewer concentration levels but with some replications, as compared to considering 
18 different concentration levels as was done here? 

13.12. Refer to Enzyme kinetics Problem 13.10. Assume that the fitted model is appropriate and 
that large-sample inferences can be employed here. (1) Obtain an approximate 95 percent 
confidence interval for Yo. (2) Test whether or not YI = 20; use ex = .OS. State the alternatives, 
decision rule. and conclusion. 

* 13.13. Drug responsiveness. A pharmacologist modeled the responsiveness to a drug using the 
following nonlinear regression model: 

Yo 
Yi = yo - ----- + E; 

1+ (~r 
X denotes the dose level. in coded form, and Y the responsiveness expressed as a percent of 
the maximum possible responsiveness. In the model, Yo is the expecred response at saturation, 
Y2 is the concentration that produces a half-maximal response, and YI is rehlted to the slope. 
The data for 19 cases at 13 dose levels follow: 

i: 2 

X;: 2 
Yi : .5 2.3 

3 

3 
3.4 

17 

7 
94.8 

18 

8 
96.2 

19 

9 
96.4 
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Obtain least squares estimates of the parameters Yo, YI, and Y2, using starting values g~O) = 
100, gf) = 5, and giG) = 4.8. 

* 13 .14. Refer to Drug responsiveness Problem 13 .13. 

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be 
adequate? 

b. Obtain the residuals and plot them against the fitted values and against X on separate graphs. 
Also obtain a normal probability plot. What do your plots show about the adequacy of the 
regression model? 

*13.15. Refer to Drug responsiveness Problem 13.13. Assume that large-sample inferences are ap­
propriate here. Conduct a formal approximate test for lack of fit of the nonlinear regression 
func.:tion; use ex = .01. State the alternatives, decision rule, and conclusion. 

*13.16. Refer to Drug responsiveness Problem 13.13. Assume that the fitted model is appropriate 
and that large-sample inferences can be employed here. Obtain approximate joint confidence 
intervals for the parameters Yo, y" and Y2 using the Bonferroni procedure with a 91 percent 
family confidence coefficient. Interpret your results. J 

13.17. Process yield. The yield (Y) of a chemical process depends on the temperature (XI) and 
pressure (X2). The follOWing nonlinear regression model is expected to be applicable: 

Yi = )kJ(Xil)YI (Xi2)l'2 + Si 

Prior to beginning full-scale production, 18 tests were undertaken to study the process yield 
for various temperature and pressure combinations. The results follow. 

;: 2 

Xii: 10 
Xi2: 1 1 
Yj : 12 32 

3 

100 
1 

103 

16 

100 
43 

17 

10 
100 
128 

18 

100 
100 
398 

a. 1b obtain starting values for Yo, YI, and Y2, note that when we ignore the random error term, 
a logarithmic transformation yields Y/ = /30 + /31X;1 + /3IX;2, where Y: = 10gIO Yi, /30 = 
10gIO Yo, /31 = YI, X;I = log,o Xii, /32 = Y2, and X;2 = log,o Xi2 · Fit a first-order multiple 
regression model to the transformed data, and use as starting values g6°) = antilog,o bo, 
g:O) = b" andgiO) = hz. 

b. Using the starting values obtained in part (a), find the least squares estimates of the param­

eters Yo, Y" and Y2· 

13.18. Refer to Process yield Problem 13.17. 

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be 
adequate? 

b. Obtain the residuals and plot them against iT, XI' and X2 on separate graphs. Also obtain 
a normal probability plot. What do your plots show about the adequacy of the model? 

13.19. Refer to Process yield Problem 13.17. Assume that large-sample inferences are appropriate 
here. Conduct a formal approximate test for lack of fit of the nonlinear regression function; 
use ex = .05. State the alternatives, decision rule, and conclusion. ~ 

13.20. Refer to Process yield Problem 13.17. Assume that the fitted model is appropriate and that 
large-sample inferences are applicable here. 

a. Test the hypotheses Ho: YI = Y2 against Ha: YI =1= Y2 using ex = .05. State the alternatives, 
decision rule, and conclusion. 
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Exercises 

Projects 

b. Obtain approxinl1lte joint confidence intervals for the parameter!'; YI and y . 

B f· . I I 95 f·1 fi I f·fi 2, USIng thee on errolll procee ure ane a . percent <lim y con e ence coe cient. .,: 

c. What do you conclude about the parameters YI and Y2 based on the results j·n ) 
. parts (a)'. 

and (b)? ~ 

13.21. (Calculus needed.) Refer to Home computers Problem 13.5. 

u. Obtain the least squares normal equations and show that they are nonlinear in the esti : 
. f·· . I mated regression coe ficlents go, gl, ane g2. . 

b. State the likelihood function for the nonlinear re2:ression model, assumincr that th o ~ .. c eerr(l" 
terms are independent N(O, 0-). 

13.22. (Calculu~ needed.) Refer to Enzyme kinetics Problem 13.10. 

a. Obtain .the least ~~uares normal equations and show that they are nonlinear in the estimated ~ 
regression coeffiCients go and gl· ; 

b. State the likelihood function for the nonlinear regression model, assuming that the eft(l"·" 
terms are independent N (0, ( 2 ). ' 

13.23. (Calculus needed.) Refer to Process yield Problem 13.17. 

a. Obtain the least squares normal equations and show that they are nonlinear in the estimated 
regression coefficients go, gl, and gz. 

b. State the likelihood function for the nonlinear regression model, assuming that the eft(l"; 

terms are independent N (0, ( 2 ). . 

13.24. Refer to Drug responsiveness Problem 13.13. 

a. Assuming that E {c;} = 0, show that: 

where: 

E{Y} = Yo (_A_) 
I+A 

andtio = -Ylloge Y2, til = YI, and X' = loge X. 

b. Assuming Yo is known, show that: 

E{Y'] , 
1- E{Y'] = exp(,Bo + til X ) 

where Y' = Y fyo. 

c. What transformation do these results suggest for obtaining a simple linear regression 
function in the transformed variables? 

d. How can starting values for finding the least squares estimates of the nonlinear regression 
parameters be obtained from the estimates of the linear regression coefficients? 

13.25. Refer to Enzyme kinetics Problem 13.10. Starting values forfindingthe least squares estimates 
of the nonl inear regression model parameters are to be obtained by a grid search. The following 

bounds for the two parameters have been specified: 

5 ~ Yo ~ 65 

5 ~ YI ~ 65 
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Obtain 49 grid points by using all possible combinations of the boundary values and five other 
equally spaced points for each parameter range. Evaluate the least squares criterion (13.15) 
for each grid point and identify the point providing the best fit. Does this point give reasonable 
starting values here? 

13.26. Refer to Process yield Problem 13.17. Starting values for finding the least squares estimates of 
the nonlinear regression mocJel parameters are to be obtained by a grid search. The following 
bounds for the parameters have been postulated: 

1 ::::: Yo ::::: 21 

.2::::: y, :::::.S 

.1::::: Y2 :::::.7 

Obtain 27 grid points by using all possible combinations of the boundary values and the 
midpoint for each of the parameter ranges. Evaluate the least squares criterion (13.15) for 
each grid point and identify the point providing the best fit. Does this point give reasonable 
starting values here? i-

13.27. Refer to Home computers Problem 13.5. 

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap 
samples of size 16 using the fixed X sampling procedure. For each bootstrap sample, obtain 
the least squares estimates go, g~ , and gi. 

·b. Plot histograms of the bootstrap sampling distributions of go' g~, and gi. Do these distri­
butions appear to be approximately normal? 

c. Compute the means and standard deviations of the bootstrap sampling distributions for go, 
g~, and gi. Are the bootstrap means and standard deviations close to the final least squares 
estimates? 

d. Obtain a confidence interval for y, using the reflection method in (11.59) and confidence 
coefficient .9667. How does this interval compare with the one obtained in Problem 13.S-­
by the large-sample inference method? 

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness 
of large-sample inferences here? Discuss. 

13.2S. Refer to Enzyme kinetics Problem 13.10. 

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap 
samples of size IS using the fixed X sampling procedure. For each bootstrap sample, obtain 
the least squares estimates go and g~ . 

b. Plot histograms of the bootstrap sampling distributions of go and g~. Do these distributions 
appear to be approximately normal? 

c. Compute the means and standard deviations of the bootstrap sampling distributions for go 
and g~. Are the bootstrap means and standard deviations close to the final least squares 
estimates? 

d. Obtain a confidence interval for Yo using the re~ection method in (11.59) and confidence 
coefficient .95. How does this intervalsompare with the one obtained in Problem 13.12 by 
the large-sample inference method? 

e. What are the implications of your findings in parts (b), (c), arid (d) about the appropriateness 
of large-sample inferences here? DisCllss. 

13.29. Refer to Drug responsiveness Problem 13.13. 

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap 
samples of size 19 using the fixed X sampling procedure. For each bootstrap sample, obtain 
the least squares estimates go, g~, and g2' 
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Case 
Studies 

b. Plot histograms of the bootstrap sampling distributions of g~, gr, and g2' Do these distri_ 
butions appear to be approximately normal? 

c. Compute the meam; and standard deviations of the bootstrap sampling distributions for' 
gr, and g;'. Are the bootstrap means and standard deviations close to the final least squa;~ 
estimates? 

d. Obtain a confidence interval for Yl using the reflection method in (11.59) and confidence 
coefficient .97. How does this interval compare with the one obtained in Problem 13.16 by 
the large-sample inference method? 

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness 
of large-sample inferences here? Discuss. 

13.30. Refer to Process yield Problem 13.17. 

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap 
samples of size 18 using the fixed X sampling procedure. For each bootstrap sample, obtain 
the least squares estimates g~, g;', and g~. 

b. Plot histograms of the bootstrap sampling distributions of g;;, g;, and g2' Do these distri. 
butions appear to be approximately normal? , 

c. Compute the means and standard deviations of the bootstrap sampling distributions for go, 
g~, and tz' Are the bootstrap means and standard deviation~ close to the final least squares 
estimates? 

d. Obtain a confidence interval for YI using the reflection method in (11,59) and confidence 
coefficient .975. How does this interval compare with the one obtained in Problem 13.2Gb 
by the large-sample inference method? 

e. What are the implications of your findings in parts (b), (c), and (d) aboutthe appropriateness 
of large-sample inferences here? Discuss. 

13.3 L Refer to the Prostate cancer data ser in Appendix C.5 and Case Study 9.30. Select a random 
sample of 65 observations to use as the model-building data set. 

a. Develop a neural network model for predicting PSA. Justify your choice of number of 
hidden nodes and penalty function weight and interpret your model. 

b. Assess your model's ability to predict and discuss its usefulness to the oncologists. 

c. Compm-e the performance of your neural nerwork model with that of the best regression 
model obtained in Case Study 9.30. Which model is more easily interpreted and why? 

13.32. Refer to rhe Real estate sales data set in Appendix C.7 and Case Study 9.31. Select a random 
sample of 300 observations to use as the model-building data set. 

a. Develop a neural network model for predicting sales price. Justify your choice of number 
of hidden nodes and penalty function weight and interpret your model. 

b. Assess your model's ability to predict and discuss its usefulness as a tool for predicting 
sales prices. 

c. Compare the peri'ormance of your neural network model with thar of the best regression 
model obtained in Case Study 9.31. Which model is more easily interpreted and why? 



Chapter 

Logistic Regression, 
Poisson Regression, 
and Generalized 
Linear Models 

In Chapter 13 we considered nonlinear regression models where the error terms are normally 
distributed. In this chapter, we take up nonlinear regression models for two important cases 
where the response outcomes are discrete and the error terms are not normally disi:ributed. 
First, we consider the logistic nonlinear regression model for use when the response variable 
is qualitative with two possible outcomes, such as financial status of firm (sound status, 
headed toward insolvency) or blood pressure status (high blood pressure, not high blood 
pressure). We then extend this model so that it can be applied when the response variable is 
a qualitative variable having more than two possible outcomes; for instance, bloOQ pressure 
status might be classified as high, normal, or low. 

Next we take up the Poisson regression model for use when the response variable is 
a count ~here large counts are rare events, such as the number of tornadoes in an upper 
Midwest locality during a year. Finally, we explain that nearly all of the nonlinear regression 
models discussed in Chapter 13 and in this chapter, as well as the normal error linear models 
discussed earlier, belong to a family of regression models called generalized linear models. 

The nonlinear regression models presented in this chapter are appropriate for analyzing 
data arising from either observational studies or from experimental studies. 

14.1 Regression Models with.Binary Response Variable 

In a variety of regression applications, the response"variable ofinterest has only two possible 
qualitative outcomes, and therefore c~n be represented by a binary indicator variable taking 
on values 0 and 1. 

1. In an analysis of whether or not business firms have an industrial relations depart­
ment, according to size of firm, the response variable was defined to have the two possible 
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outcomes: firm has industrial relations department, firm does not have industrial relatio 
department. These outcomes may be coded I and 0, respectively (or vice versa). ns 

2. In a study of labor force participation of married women, as a function of age, numb 
of children, and husband's income, the response variable Y was defined to have the ~r 
possible outcomes: man'ied woman in labor force, married woman not in labor force. Aga~ 
these outcomes may be coded I and 0, respectively. 

3. In a study of liability insurance possession, according to age of head of household 
amount of I iquid assets, and type of occupation of head of household, the response variable Y 
was defined to have the two possible outcomes: household has liability insurance, household 
does not have liability insurance. These outcomes again may be coded I and 0, respectively. 

4. In a longitudinal study of coronary heart disease as a function of age, gcnder, smoking 
history, cholesterol level, percent of ideal body weight, and blood pressure, the response 
variable Y was defined to have the two possible outcomes: person developed heart disease 
during the study, person did not develop heart disease during the study. These outcomes 
again may be coded I and 0, respectively. 

These examples show the wide range of applications in which the response variable is 
binary and hence may be represented by an indicator variable. A binary response variable 
taking on the values 0 and 1, is said to involve binary re.lponses or dichotomolts respollses: 
We consider first the meaning of the response function when the outcome variable is binary, 
and then we take up some special problems that arise with this type of response val·iable. 

Meaning of Response Function when Outcome Variable Is Binary 
Consider the simple linear regression model: 

Yi = fJo + fJ,X i + £i Yi =0, I (14.1) 

where the outcome Yi is binary, taking On the value of either 0 or I. The expected response 
E {Yi } has a special meaning in this case. Since E {£i} = 0 we have: 

(14.2) 

Consider Yi to be a Bernoulli random variable for which we can state the probability 
distribution as follows: 

Yi Probability 

1 P(Yi=l)=lfi 
o P(Y; = 0) = 1 - lfi 

Thus, lfi is the probability that Yi = l, and 1 - lfi is the probability that Y,. = O. By the 
definition of expected value of a random variable in (A.12), we obtain: 

E{Yd = l(lfi) + 0(1 -lfi) = lfi = P(Yi = 1) (14.3) 

Equating (14.2) and (14.3), we thus find: 

E{Y;J = fJo + fJ1X i = lfi (14.4) 
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Probability That Firm Has 
!ndustria! Re!ations Department 

fiGURE 14.1 
InUstration of 
Response E{Y} 
FUnction when 
Response 
y~abiels 
BJnary-
Industrial 
Rehttions 
Department 
Example. 

o Size of Firm x 

The mean response E{Yi } = fJO+fJ1Xi as given by the response function is therefore simply 
. "the probability that Y; = 1 when the level of the predictor variable is Xi. This interpretation 

of the mean response applies whether the response function is a simple linear one, as here, 
or a complex multiple regression one. The mean response, when the outcome variable is 
a 0, I indicator variable, always represents the probability that Y = 1 for the given levels 
of the predictor variables. Figure 14.1 illustrates a simple linear response function for an 
indicator outcome variable. Here, the indicator variable Y refers to whether or not a firm has 
an industrial relations department, and the predictor variable X is size offirlJl. The r.esponse 
function in Figure 14.1 shows the probability that firms of given size have an industrial 
relations department. 

Special Problems when Response Variable Is Binary 
Special problems arise, unfortunately, when the response variable is an indicator variable. 
We consider three of these now, using a simple linear regression model as an illustration. 

1. Nonnormal Error Terms. For a binary 0, 1 response variable, each error term £i = 

Yi - (fJo + fJI Xi) can take on only two values: 

When Yi = 1: £i = 1 - fJo - fJ1Xi 

When Yi = 0: £i = -/30 - fJ1Xi 

(14.5a) 

(14.5b) 

Clearly, normal error regression model (2.1), which assumes that the £i are normally dis-
tributed, is not appropriate. . 

-
2. Nonconstant Error Variance. Another problem with the error terms £i is that they do 

not have equal variances when the response variable is an indicator variable. To see this, 
we shall obtain ()"2{Yi} for the simple line~ regression model (14..1), utilizing (A.15): 

()"2{Yd = E{(Y; - E{Yi ))2} =,(1 - 1Ti)21Ti + (0 - 1Ti)2(1 - 1Ti) 

or: 

(14.6) 
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The variance of £i is the same as that of Y; because £i = Yi - Jr; and Jri is a constant: 

(14.7) 

or: 

(14.7a) 

Note from (14.7a) that a 2 {£i} depends on Xi. Hence, the error variances will differ at 
different levels of X, and ordinary least squares will no longer be optimal. 

3. Constraints on Response Fwzction. Since the response function represents probabil­
ities when the outcome variable is a 0, 1 indicator variable, the mean responses should be 
constrained as follows: 

(14.8) 

Many response functions do not automatically possess this constraint. A linear response 
function, for instance, may fall outside the constraiI!l: limits within the range of the predictor 
variable in the scope of the model. . 

FIGURE 14.2 Examples of Probit and Logistic Mean Response Functions. 

(a) Probit, with /3; = 0 (b) Probit, with /3; = -1 

1.0 ,.------- 1.0 ----------, 
I , , , 

* , \ 

/3 = 5, \ 
1 , \ 

>, , >, \ 
:!:E , :'EE \ 
:0 :0 \ 

'" 0.5 '" 0.5 \ 
.c , .c \ e e \ 
0.. 

, 
0.. \ /3; = 5 , , 

\ , 
\ , \ 

I , 
0.0 -------, 0.0 

.. 
-3 -2 -1 0 2 3 0 5 10 

(c) Logistic, with /30 = 0 (d) Logistic, with /31 = -1 
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The difficulties created by the need for the restriction in (14.8) on the response function 
are the most serious. One could use weighted least squares to handle the problem of unequal 
error variances. In addition, with large sample sizes the method of least squares provides 
estimators that are asymptotically normal under quite general conditions, even if the distri­
bution of the error terms is far from normal. However, the constraint on the mean responses 
to fall between 0 and 1 frequently will rule out a linear response function. In the industrial 
relations department example, for instance, use of a linear response function subject to the 
constraints on the mean response might require a probability of 0 for the mean response for 
all small firms and a probability of 1 for the mean response for all large firms, as illustrated 
in Figure 14.1. Such a model would often be considered unreasonable. Instead, a model 
where the probabilities 0 and 1 are reached asymptotically, as iIIu§trated by each of the 
S-shaped curves in Figure 14.2, would usually be more appropriate., 

14.2 Sigmoidal Response Functions for Binary R~sponses 

In this section, we introduce three response functions for modeling binary responses. These 
functions are bounded between 0 and 1, have a characteristic sigmoidal- or S-shape, and 

" approach 0 and 1 asymptotically. These functions arise naturally when the binary response 
variable results from a zero-one recoding (or dichotomization) of an underlying continuous 
response variable, and they are often appropriate for discrete binary responses as well. 

Probit Mean Response Function 
Consider a health researcher studying the effect of a mother's use of alcohol (X -an index 
of degree of alcohol use during pregnancy) on the duration of her pregnancy -eYC). Here 
we use the superscript c to emphasize that the response variable, pregnancy duration, is a 
continuous response. This can be represented by a simple linear regression model: 

(14.9) 

and we will assume that ef is normally distributed with mean zero and variance (5;. 
If the continuous response variable, pregnancy duration, were available, we might pro­

ceed with the usual simple linear regression analysis. However, in this instance, researchers 
coded each pregnancy duration as preterm or full term using the following rule: 

{
I if Y/ S 38 weeks (pre term) 

Yi = 0 if Y/ > 38 weeks (full term) 

It follows from (14.3) and (14.9) that: 

P(Yi = 1) =-rri = p(Yi
c s 38) (14.10a) 

(14.10b) 

(14.10c) 

(14.10d) 

(14.10e) 
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where fJ; = (38 - fJ;;)/a.., 1-3~ = -fJi"la" and Z = <"lac follows a standal'd normal 
distribution. If we let P(Z .::: Z) = <P(;:), we have, from (14. 10a-e): 

P (Y, = I) = <P (f-3~ + fJ~ X; ) (14.11) 

Equations (14.3) and (14. I I) together yield the nonlinear regression function known as 
the prohit mean respollse jill1ctioll: 

E{Y;} = H; = <P(fJ~ + 1-3~ Xi) (14.12) 

The inverse function, <P I. of the standard normal cumulative distribution functiOn ¢ 

is sometimes called the probit transformation. We solve for the linear predictor, f38 + f3f X; 
in (14.12) by applying the probit transformation to both sides of the expression, obtainino. 

o· 

(14.13) 

The reSUlting expression, H; = fJ8 + fJ~ Xi, is called the probit responsejill1ctiol1, or more 
generally, the linear predictor. 

Plots of the probit mean response function (14. I 2) for various values of 1-38 and f3; are 
shown in Figures 14.2a and 14.2b. Some characteristics of this response function are: 

I. The probit mean response fUnction is bounded between 0 and I, and it approaches these 
limits asymptotically. 

2. As fJ;' increases (for fJt > 0), the mean function becomes more S-shaped, changing 
more rapidly in the center. Figure 14.2a shows two probit mean response functions, 
where both intercept coefficients are 0, and the slope coefficients are I and 5. Notice that 
the curve has a more pronounced S-shape with f3~ = 5. 

3. Changing the sign of fJ~ from positive to negative changes the mean response function 
from a monotone increasing function to a monotone decreasing function. The probit 
mean response functions plotted in Figure 14.2a have positive slope coefficients while 
those in Figure 14.2b have negative slope coefficients. 

4. Increasing or decreasing the intercept fJ8 shifts the mean response function horizontally. 
(The direction of the shift depends on the signs of both fJ8 and fJ~.) Figure 14.2b shows 
two probit mean response functions, where both slope coefficients are - I, and the 
intercept coefficients are 0 and 5. Notice that the CUrve has shifted to the right as Po 
changes from 0 to 5. 

5. Finally, we note the following symmetry property of the probit response function. If the 
response variable is recoded using Y; = I - Yi , that is. by changi ng the I s to Os and 
the Os to I s-the signs of all of the coefficients are reversed. This follows easily from 
the symmetry of the standard normal distribution: since <P (Z) = I - <P (-Z), it follows 

that P(Y; = I) = P(Yi = 0) = 1- <P(fJo + fJ~Xi) = <P(-fJo - fJrXi)' 

Logistic Mean Response Function 
We have seen that the assumption of normally distributed errors for the underlying continl­
ous response variable in ( 14.9) led to the use of the standard normal cumulative disnibution 
fUnction, <P, to model Hi' An alternative error distribution that is very similar to the normal 
distribution is the logistic distribution. Figure 14.3 presents plots of the standard normal 
density function and the logistic density function, each with mean zero and variance one. 
The plots are nearly indistinguishable, although the logistic distribution has slightly heavier 
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tails. The density of a logistic random variable e L having mean zero and standar~ deviation 
a = rr I ,.j3 has a simple form: J 

-r ( ) _ exp(ed 
JL eL -----------:-

[1 + exp(edF 

Its cumulative distribution function is: 

exp(ed 
FLCed=----

1+ exp(ed 

(14.14a) 

(14.14b) 

Suppose now that ef in (14.9) has a logistic distribution with mean zero and standard 
deviation ac • Then, from (14.lOd) we have: 

P(Yi =I)=P(: stJ~+tJ~Xi) 
where ef lac follows a logistic distribution with mean zero and standard deviation one. 
Multiplying both sides of the inequality inside the probability statement on the right by 
rr 1,.j3 does not change the probability; therefore: 

(
rref rr* rr*) P(Yi = I) = rri = P ,.j3 a

c 
S ,.j3tJo + ,.j3tJ1 Xi (14.15a) 

= peeL s 130 + 131 Xi) (14.15b) 

= h(tJo + 131 Xi) (14.15c) 

exp(tJo + 131 Xi) 

1.+ exp{f3o + tJ1Xi ) 
(14.15d) 

where 130 = (rr I ,.j3)tJo and tJt= (rr 1,.j3)tJt denote the logistic regression parameters. To 
summarize, the logistic mean response function is: 

exp(t4J + 131 Xi) 
E{Yi } = rri = h(J3o + 131 Xi) = ) 

• 1 + exp(tJo + 131 Xi 
(14.16) 

Straightforward algebra shows that an equivalent form of (14.16) is given by: 

E{Yi } = rri = [1 + exp(-tJo - tJ1Xi)r l (14.17) 
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Applying the inverse of the cumulative distribution function h to the two middle tenus in 
(14.16) yields: 

(14.18) 

The transformation FZ 1 (ni) is called the logit transformation of the probability ni, and is 
given by: 

(14.18a) 

where the ratio nd (1 - ni) in (14.18a) is called the odds. The linear predictor in (14.18) is 
referred to as the logit response function. 

Figures 14.2c and 14.2d each show two logistic mean response functions, where the 
parameters correspond to those in Figures 14.2a and 14.2b for the probit mean respono;e 
function. His clear from the plots thatthese logistic mean response functions are qualitatively 
similar to the corresponding probit mean response functions. The five properties of the probit 
mean response function, listed earlier, are also true for the logistic mean response funC1:ion. 
The observed differences in logistic and probit mean response functions are largely due 
to the differences in the scaling of the parameters mentioned previously. Note that the 
symmetry property for the probit mean response function also holds for the logistic mean 
response function. 

Complementary Log-Log Response Function 

FIGURE 14.4 
Plots of 
Gumbel 
(dashed line), 
Normal (black 
line), and 
Logistic (gray 
line) Density 
Functions, 
Each Having 
MeanOand . 
Variance!. 

A third mean response function is sometimes used when the error distribution of se is 
not symmetric. The density function !G(e) of the extreme value or Gumbel probability 
distribution having mean zero and variance one is shown in Figure 14.4, along with the 
comparable standard normal and logistic densities discussed earlier. Notice that this den<;ity 
is skewed to the right and clearly distinct from the standard normal and logistic densities. 
H can be shown that use of the Gumbel error distribution for eC in (14.9) leads to the mean 
response function: 

ni = 1 - exp( -exp (fJg + fJ~ Xi) ) (14.19) 
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Solving for the linear predictor fJg + fJf Xi, we obtain the complementary log-log response 
model: 

rr; = log[ -log(1 - rr(Xi»] = fJg + fJf Xi (14.19a) 

The symmetry property discussed on page 560 for the logit and probit models does not hold 
for (14.19). 

For the remainder of this chapter, we foaus on the use of the logistic mean response 
function. This is currently the most widely used model for two reasons: (1) we shall 
see that the regression parameters have relatively simple and useful interpretations, and 
(2) statistical software is widely available for analysis oflogistic regression models. In the 
next two sections we consider in detail the fitting of simple and multi~le logistic regression 
models to binary data. 

Comment 
i> 

Our development of the logistic and probit mean response functiPns assu~ed that the binary response 
Yi was obtained from an explicit dichotomization of an observed continuous response Y{, but this is 
not required. These response functions often work well for binary responses that do not arise from 
such a dichotomization. In addition, binary responses frequently can be interpreted as having arisen 

" from a dichotomization of an unobserved, or latent, continuous response. • 

14.3 Simple Logistic Regression 

We shall use the method of maximum likelihood to estimate the parameters of the logistic 
response function. This method is well suited to deal with the problems associated with the 
responses Yi being binary. As explained in Section 1.8, we first need to'develop the joint 
probability function of the sample observations. Instead of using the normal distribution 
for the Y observations as was done earlier in (1.26), we now need to utilize the Bernoulli 
distribution for a binary random variable. 

Simple Logistic Regression Model 
First, we require a formal statement of the simple logistic regression model. Recall that 
when the response variable is binary, taking on the values 1 and 0 with probabilities rr and 
1 - rr, respectively, Y is a Bernoulli random variable with parameter E {Y} = rr. We could 
state the simple logistic regression model in the usual form: 

Yi = E{Yd + £i 

Since the distribution of the error term £i depends on the Bernoulli distribution of the 
response Yi , it is preferable to state the si.tpple logistic regression model in the following 
fashion: 

Yi are independent Bernoulli random variables with expected 
values E{Yd = rri, where: • 

E{Y.} _ . _ °exp(fJo + fJIX;) 
, - rr,-

1 +exp(fJo + fJ1Xi ) 

(14.20) 

The X observations are assumed to be known constants. Alternatively, if the X observations 
are random, E{Yd is viewed as a conditional mean, given the value of Xi. 
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Likelihood Function 
Since each Y; ob~ervation is an ordinary Bernoulli random variable, where: 

P(Yj = I) = If; 
P(Yj = 0) = 1 - If; 

we can represent its probability distribution as follows: 

f;(Yi ) = lfr;(l-lf;)'-Y; Yi = 0, I; i = 1, ... , n (14.21) 

Note that fiO) = If; and f;(O) = 1 - lfi. Hence, f;(Yi ) simply represents the probability 
that Yi = 1 orO. 

Since the Yi observations are independent, their joint probability function is: 

n n 

g(Y" .... Yn ) = I1f;(Yi) = I1lfro- lf;)I-Y
i (14.22) 

;=1 i=' 
-~ 

Again, it will be easier to find the maximum likelihood estimates by working with the 
logarithm of the joint probability function: 

/I 

;=1 

II 

= L(Y; loge If; + (l - Vi) log~(l - If;)] 
;=1 

= t [Y;lOgeC :ilfJ] + ~IOge(l -If;) (14.23) 

Since E {Yi J = If; for a binary variable, it follows from (14.16) that: 

1 - lfi = (1 + exp(f3o + f3I X;)rl 

Furthermore, from (14.l8a), we obtain: 

loge (~) = f30 + f31 X; 
1 -lfi 

Hence, (14.23) can be expressed as follows: 

II II 

(14.24) 

(14.25) 

loge L(f3o, (31) = LYi ({3o + f3I Xi) - LIOge(1 + exp(f3l) + f3IXi)] (14.26) 
;=1 ;=1 

where L(f3o, f3I) replaces g(Y1, ••• , YII) to show explicitly that we now view this function 
as the likelihood function of the parameters to be estimated, given the sample observations. 

Maximum Likelihood Estimation 
The maximum likelihood estimates of f30 and f31 in the simple logistic regression model 
are those values of f30 and f31 that maximize the log-likelihood function in (14.26). No 
closed-form solution exists for the values of f30 and f3, in 04.26) that maximize the log­
likelihood function. Computer-i ntensive numerical search procedures are therefore required 
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to find the maximum likelihood estimates bo and b l • There are several widely used numerical 
search procedures; one of these employs iteratively reweigh ted least squares, which we shall 
explain in Section 14.4. Reference 14.1 provides a discussion of several numerical search 
procedures for finding maximum likelihood estimates. We shall rely on standard statistical 
software programs specifically designed for logistic regression to obtain the maximum 
likelihood estimates bo and b l • 

Once the maximum likelihood estimates bo and b l are found, we substitute these values 
into the response function in (14.20) to obtain the fitted response function. We shall use iti 
to denote the fitted value for the ith case: 

A exp(bo + b l X;) 
1rj= 

1 + exp(bo + blX;) 
(14.27) 

The fitted logistic response function is as follows: 

exp(bo + bI X) it =~~------~~ 
1 + exp(bo + blX1 

~4.28) 

If we utilize the logit transformation in (14.18), we can express the fitted response 
function in (14.28) as follows: 

(14.29) 

where: 

AI (it) 
1r = loge 1 _ it (14.29a) 

We call (14.29) the fitted logit response function. 
Once the fitted logistic response function has been obtained, the usual next steps are to 

examine the appropriateness of the fitted response function and, if the fit is good, to make a 
variety of inferences and predictions. We shall postpone a discussion of how to examine the 
goodness of fit of a logistic response function and how to make inferences and predictions 
until we have considered the multiple logistic regression model with a number of predictor 
variables. 

A systems analyst studied the effect of computer programming experience on ability to 
complete within a specified time a complex programming task, including debugging. 
Twenty-five persons were selected for the study. They had varying amounts of programming 
experience (measured in months of experience), as shown in Table 14. la, column 1. All 
persons were given the same programming task, and the results of their success in the task 
are shown in column 2. The results are coded in binary fashion: Y = 1 if the task was com­
pleted successfully in the allotted time, anp Y = 0 if the task was not completed successfully. 
Figure 14.5 contains a scatter plQ.t of the data. This plot is not too informative because of the 
nature of the response variable, other than to indicate that ability to complete the task suc­
cessfully appears to increase with amount of experIence. A lowess nonparametric response 
curve was fitted to the data and is also spown in Figure 14.5. A.sigmoidal S-shaped response 
function is clearly suggested by the nonparametric lowess fit. It was therefore decided to fit 
the logistic regression model (14.20). • 

A standard logistic regression package was run on the data. The results are contained 
in Table 14.1b. Since bo = -3.0597 and bi = .1615, the estimated logistic regression 
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TABLE 14.1 
Data and 
Maximum 
Likelihood 
Estimates--
Programming 
Task Example. 
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FIGURE 14.5 
Scatter Plot, 
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Function 
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function (14.28) is: 

exp(-3.0597 +.1 
ft=--=--'-------

1 + exp( - 3.0597 + 

The fitted values are given in Table 14.1a, column 
response for i = 1, where X [ = 14, is: 

A exp(-3.0597 + .1615 
Jr[= 

1 + exp(-3.0597 + .16 
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This fitted value is the estimated probability that a person with 14 months experience will 
successfully complete the programming task. In addition to the lowess fit, Figure 14.5 also 
contains a plot of the fitted logistic response function, ft(x). 

Interpretation of b1 

, tnple 

The interpretation of the estimated regression coefficient b l in the fitted logistic response 
function (14.30) is not the straightforward interpretation of the slope in a linear regression 
model. The reason is that the effect of a unit increase in X varies for the logistic regression 
model according to the location of the starting point on the X scale. An interpretation of b l 

is found in the property of the fitted logistic function that the estimated odds ft / (1 - ft) are 
multiplied by exp(b l ) for any unit increase in X. '", 

To see this, we consider the value of the fitted logit response func:tion (14.29) at X = X j: 

ft'(Xj ) = bo + blXj 

The notation ft' (X j) indicates specifically the X levelJassociated with the fitted value. We 
also consider the value of the fitted logit response function at X = X j + 1: 

The difference between the two fitted values is simply: 

ft'(Xj + 1) - ft'(Xj ) = bl 

Now according to (14.29a), ft' (X j) is the logaritp.m of the estimated odds when X = X j; 
we shall denote it by 10ge(oddsI ). Similarly, ft'(Xj + 1) is the logarithm of the estimated 
odds when X = Xj + 1; we shall denote it by loge (odds2). Hence, the difference between 
the two fitted logit response values can be expressed as follows: 

loge(odds2) -loge(oddsl ) = loge (Odds
2

) = bi 
odds l 

Taking antilogs of each side, we see that the estimated ratio of the odds, called the odds 
ratio aJ:ld denoted by OR, equals exp(b l ): 

- odds2 
OR = -- = exp(b l ) 

odds I 
(14.31) 

For the programming task example, we see from Figure 14.5 that the probability of success 
increases sharply with experience. Specifically, Table 14.1b shows that the odds ratio is 
OR = exp(b l ) = exp(.1615) = 1.175, so that the odds of completing the task increase by 
17.5 percent with each additi~al month of experience. 

Since a unit increase of one month is quite small, the estimated odds ratio of 1.175 may not 
adequately show the change in odds for a longer difference in time. In general, the estimated 
odds ratio when there is a difference qf c units of X is exp(cb1). For example, should we wish 
to compare individuals with relatively little experience to those with extensive experience, 
say 10 months versus 25 months so that c = 15, then the odds ratio would be estimated 
to be exp[15(.1615)] = 11.3. This indicates that the odds of completing the task increase 
over II-fold for experienced persons compared to relatively inexperienced persons. 
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FIGURE 14.6 
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Comment 

The odds mtio interpfetation of the estimated regressitm coefficient b, makes the logistic regfession 
model especiaHy atlmcrive for modeling <Jnd interpreting epidemiologic studies. • 

Use of Pro bit and Complementary Log-Log Response Functions 
As we discussed earlier in Section 14.2, alternative sigmoidal shaped response functions, 
such as the probit or complementary log-log functions, can be utilized m; well. For example, 
it is interesting to fit the programming task data in Table 14. I to these alternative response 
functions. Figure 14.6 shows the scatter plot of the data and the fitted logistic, probit, 
and complementary log-log mean response functions. The logistic and probit fits are very 
similar, whereas the complementary log-log fit differs slightly. having a less pronounced 
S-shape. 

Repeat Observations-Binomial Outcomes 
In some cases, particularly for designed experiments, a number of repeat observations are 
obtained at several levels of the predictor variable X. For instance. a pricing experiment 
involved showing a new product to 1,000 consumers, providing information about it, and 
then asking each consumer whether he or she would buy the product at a given plice. 
Five prices were studied, and 200 persons were randomly selected for each price level. 
The response variable here is binary (would purchase. would not purchase); the predictor 
variable is price and has five levels. 

When repeat observations are present, the log-likelihood function in (14.26) can be 
simplified. We shaH adopt the notation used for replicate observations in Ollr discussion of 
the F test for lackoffit in Section 3.7. We denote the X levels at which repeat observations are 
obtained by X I.. " Xc and we assume that there are IIj binary response.~ at level X j . Then 
the observed val ue of the i th binary response at X j is denoted by Yi ;, where i = I, ... , n j. 
and j = !. .... c. The number of Is at level Xl is denoted by Y.{ 

"1 

Y.; = 2.= YiJ 

i~1 

(14.32a) 
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and the proportion of Is at level Xj is denoted by Pj: 

Y.j 
Pj=­

nj 

The random variable Y. j has a binomial distribution given by: 

where: 

(
nj) 1 nj! 
y. (Y ·)!(n· - y.)! .J .J J .J 

(14.32b) 

(14.33) 

)r 
and the factorial notational represents a(a -1)(a - ~ ... 1. The binomial random variable 
Y.} has mean nj1Tj and variance nj1Tj(1 - 1Tj). The log-likelihood function then can be 
stated as follows: 

logeL(tJo, 131) = 1; {IOge(;~) + Y.j(tJo + tJ1Xj ) -nj logJl + exp(tJo + tJ1Xj )]} 

(14.34) 

In a study of the effectiveness of coupons offering a price reduction on a given product, 
1,000 homes were selected at random. A packet containing advertising material and a 
coupon for the product were mailed to each home. The coupons offered different price 
reductions (5, 10, 15,20, and 30 dollars), and 200 homes were assigned at random to each 
of the price reduction categories. The predictor variable X in this study is the amount of 
price reduction, and the response variable Y is a binary variable indicating whether or not 
the coupon was redeemed within a six-month period. 

Table 14.2 contains the data for this study. Xj denotes the price reduction offered by 
a coupon, n j the number of households that received a coupon with price reduction X j, 
Y.j the. number of these households that redeemed the coupon, and Pj the proportion of 
households receiving a coupon with price reduction Xj that redeemed the coupon. The 
logistic regression model (14.20) was fitted by a logistic regression package and the fitted 

(1) (2) (3) .(4) (5) 
Nurrillerqf Proportion of Model-

Price Number ot' COlJf>ons Coupons Based 
"-eve I Reduction Households Redeemed Redeemed Estimate 

J XI nl ~F Il; ifJ 
1 5 200 30 ~~;150~ .1?36; 
2 10 

c:,"-' 

.2543 200 55 ~.275 
3 15 200 ...,. 70 .35'0 .3562 
4 20 200 100 ~~~~ .4731 
5 30 200 137 .7028 
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response function was found to be: 

fr= 
exp(-2.04435 + .096834X) 

I + exp(-2.04435 + .096834X) 
(14.35) 

Fitted values are given in column 5 of Table 14.2. Figure 14.7 shows the fitted response 
function, a~ well as the proportions of coupons redeemed at each of the Xl levels. The 
logistic response function appears to provide a very good fit. The odds ratio here is: 

OR = exp(b}) = exp(.096834) = 1.l02 

Hence, the odds of a coupon being redeemed are estimated to increase by 10.2 percent with 
each one dollar increase in the coupon value, that is, with each one dollar reduction in price. 

14.4 Multiple Logistic Regression 

Multiple Logistic Regression Model 
The simple logistic regression model (14.20) is easily extended to more than one predictor 
vaIiable. In fact, several predictor variables are usually required with logistic regression to 
obtain adequate description and useful predictions. 

In extending the simple logistic regression model, we simply replace f30 + f31 X in (14.16) 
by (30 + (31 X I + ... + (31'-1 X /J-I. To simplify the formulas, we shall use matrix notation 
and the following three vectors: 

[:,1 
XI Xii 

~ = X= X2 Xi = Xi2 (14.36) 
flxl /JX I pxl 

X/J_I Xi./J-I 
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We then have: 

X'(3 = fJo + fJ1X 1 + ., . + fJp-1Xp- 1 

X;(3 = fJo + fJ1Xil + ... + fJp-1Xi,p-1 

(14.37a) 

(14.37b) 

With this notation, the simple logistic response function (14.20) extends to the multiple 
logistic response function as follows: 

Y exp(X'(3) 
E{ } = 1 + exp(X'(3) 

and the equivalent simple logistic response form (14.17) extends to: 

E{Y} = [1 + exp(-X'(3)r l 

Similarly, the logit transformation (14.18a):' 

n' = loge (~) 
1-n 

now leads to the logit response function, or linear predictor: 

n' = X'(3 

'l~ 

The multiple logistic regression model can therefore be stated as follows: 

Yi are independent Bernoulli random variables with expected 
values E{Yi } = ni, where: 

exp(X;(3) 
E{Yd = ni = 1 + exp(X;(3) 

(14.38) 

(14.38a) 

(14.39) 

(14.40) 

(14.41) 

Again, the X observations are considered to be known constants. Alternatively, if the X vari­
ables are random, E {Yi } is viewed as a conditional mean, given the values of X il , ... , Xi,p_I' 

Like the simple logistic response function (14.16), the multiple logistic-response func­
tion (14.41) is monotonic and sigmoidal in shape with respect to X'(3 and is almost linear 
when n is between .2 and .8. The X variables may be different predictor variables, or 
some may represent curvature and/or interaction effects. Also, the predictor variables may 
be quantitative, or they may be qualitative and represented by indicator variables. This 
flexibility makes the multiple logistic regression model very attractive. 

Comment 
When the logistic regression model contains only qualitative variables, it is often referred to as 
a log-linear model. See Reference 14.2 for an in-depth discussion of the analysis of log-linear 
models. • 

tt!hg of Model 
Again, we shall utilize the method of maximum likelihood to estimate the parameters of the 

>',' multiple logistic response functioI1 (14.41). The log-likelihood function for simple logistic 
regression in (14.26) extends directlr for multiple logistic regression: 

n n 

loge L«(3) = LYi (X;(3) - L loge[1 + exp(X;(3)] (14.42) 
i=1 i=1 
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FIGURE 14.8 
Three­
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Numerical search procedures are used to find the values of /-30, /-3 1, .... /-31'_1 that maximize 
log,. L(~). These maximum likelihood estimates will be denoted by bo, hi .... ,b/,_I. Let b 
denote the vector of the maximum likelihood estimates: 

r 
bo 1 bl 

b = . 
/JX I . 

bl'_1 

( 14.43) 

The fitted logistic response function and fitted values can then be expressed as follows: 

exp(X'b) 
iT: = = II +ex -X'b)I-1 

I + exp(X'b) pt 

exp(X;b) = II + ex (-X~b rl 
I + exp(X;b) P,) 

where: 

X'b = bo +b,X, + ... +bl'_IX/;_1 

X;b = bo + blX j , + ... +bl'_,X;./J_1 

(14.44~) 

(14.44b) 

(14.44c) 

(14.44d) 

Geometric interpretation. Recall that when fitting a standard multiple regression model 
with two predictors, the estimated regression surhlce is a plane in three-dimensional space, 
as shown in Figure 6.7 on page 240 for the Dwaine Studios example. A multiple logistic 
regression fit based on two continuous predictors can also be represented by a surface in 
three-dimensional space. but the surface follows the characteristic S-shape that we saw 
for simple logistic models. For example, Figure 14.8 displays a three-dimensional plotofa 
logistic response function that depicts the relationship between the development of coronary 
disease (Y, the binary outcome) and two continuous predictors. cholesterol level (X I) and 
age (Xl). This surface increases in an approximately linear fashion for larger values of 
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cholesterol level and age, but levels off and is nearly horizontal for small values of these 
predictors. 

We shall rely on standard statistical packages for logistic regression to conduct the 
numerical search procedures for obtaining the maximum likelihood estimates. We therefore 
proceed directly to an example to illustrate the fitting and interpretation of a multiple logistic 
regression model. 

In a health study to investigate an epidemic outbreak of a disease that is spread by mosquitoes, 
individuals were randomly sampled within two sectors in a city to determine if the person 
had recently contracted the disease under study. This was ascertained by the interviewer, 
who asked pertinent questions to assess whether certain speCific symptoms associat&i with 
the disease were present during the specified period. The response variable Y was coded 1 
if this disease was determined to have been present, and 0 if not. ' 

Three predictor variables were included in the study, representing known or potential 
risk factors. They are age, socioeconomic status of household, and sector within city. Age 
(Xl) is a quantitative variable. Socioeconomic status is a categorical variable with three 
levels. It is represented by two indicator variables (X2 and X3), as follows: 

Class 

Upper 
Middle 
Lower 

o 
1 
o 

o 
o 
1 

City sector is also a categorical variable. Since there were only two sectors in the study, 
one indicator variable (X4 ) was used, defined so that X4 = 0 for sector 1 and X4 = 1 for 
sector 2. 

The reason why the upper socioeconomic class was chosen as the reference class 
(i.e., the class for which the indicator variables X2 and X3 are coded 0) is that it was expected 
that this class would have the lowest disease rate among the socioeconomic classes. By mak­
ing this class the reference class, the odds ratios associated with regression coefficients f3z 
and fh would then be expected to be greater than 1, facilitating their interpretation. For the 
same reason, sector I, where the epidemic was less severe, was chosen as the reference 
class for the sector indicator variable X4 • 

The data for 196 individuals in the sample are given in the disease outbreak data set in 
Appendix C.I0. The first 98 cases were selected for fitting the model. The remaining 98 
cases were saved to serve as a validation data set. Table 14.3 in columns 1-5 contains the 
data for a portion of the 98 cases used for fitting the model. Note the use of the indicator 
variables as just explained for the two categorical variables. The primary purpose of the 
study was to assess the strength of the association between each of the predictor variables 
and the probability of a person having contracted the disease. 

A first-order multiple logistic regression model with,the three predictor variables was 
considered a priori to be reasonable: 

E{Y} = [1 + exp(-X'(3)]-1 (14.45) 
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TABLE 14.3 
Portion of 
Model-
Building Data 
Set-Disease 
Outbreak 
Example. 

TABLE 14.4 
Maximum 
Likelihood 
Estimates 
of Logistic 
Regression 
Function 
(14.45)­
Disease 
Outbreak 
Example. 

Nonlinear Regression 

(1) (2) (3) (4) (5) (6) 
Socioeconomic City Disease Fitted 

Case Age Status Sector Status Value 
XIl X/2 Xi3 X/4 Y; iii 

33 0 0 0 0 .209 
(Coded) 2 35 0 0 0 0 .219 

3 6 0 0 0 0 .106 
4 60 0 0 0 0 .371 
5 18 0 1 0 1 .111 
6 26 0 1 0 0 .136 

98 35 0 0 0 .171 

(a) Estimated Coefficients, Standard Deviations, and Odds Ratios 

Regression 
Coefficient 

Estimated Estimated 
Regression Standard 
Coefficient Deviation 

-3.8877 
.02975 
.4088 

-.30525 
1.5747 

.9955 

.01350 

.5990 

.6041 

.5016 

Estimated 
Odds Ratio 

1.030 
1.505 

.737 
4.829 

(b) Estimated Approximate Variance-Covariance Matrix 

bo b1 bl b3 

r 

4129 -.0057 -.1836 -.2010 
-:0057 .00018 .00115 .00073 

sl{b} = -.1836 .00115 .3588 .1482 
-.2010 .00073 .1482 .3650 
-.1632 .00034 .0129 .0623 

where: 

b4 

-.1632 j 
.00034 
.0129 
.0623 
.2516 

(14.45a) 

This model was fitted by the method of maximum likelihood to the data for the 98 cases. 
The results are summarized in Table 14.4a. The estimated logistic response function is: 

if = [1 + exp(3.8877 - .02975X I - .4088X2 + .30525X3 - I. 5747X4rI (14.46) 

The interpretation ~f the estimated regression coefficients in the fitted first-order multiple 
logistic response function, parallels that for the simple logistic response function: exp(bd 
is the estimated odds ratio for predictor variable Xk • The only difference in interpretation 
for multiple logistic regression is that the estimated odds ratio for predictor variable XI 
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assumes that all other predictor variables are held constant. The levels at which they are 
held constant does not matter in a first-order model. We see from Table 14.4a, for instance, 
that the odds of a person having contracted the disease increase by about 3.0 percent with 
each additional year of age (X I), for given socioeconomic status and city sector location. 
Also, the odds of a person in sector 2 (X4) having contracted the disease are almost five 
times as great as for a person in sector 1, for given age and socioeconomic status. These are 
point estimates, to be sure, and we shall need to consider how precise these estimates are. 

Table 14.3, column 6, contains the fitted values iti . These are calculated as usual. For 
instance, the estimated mean response for case i = 1, where X II = 33, X 12 = 0, X 13 = 0, 
X I4 = 0, is: 

itl = {I + exp[2.3129 - .02975(33) - .4088(0) + .30525(0) - 1.5747(0)]}-1 = .209 

polynomial Logistic Regression 

7~mple 

RIt)~RE 14.9 
"ifSt.,lmd 
~~rder 
~~ 
"'.~OnFits 
_ .. Lines), 

tIJLo,Wess 
~~ 
lI~l 
~~IPO 

e!e-

Occasionally, the first-order logistic model may not provide an adequate fit to the data and 
a more complicated model may be needed. One such model is the kth-order polynomial 
logistic regression mode.!,., with logit response function: 

rr'(x) = f30 + f311X + f3z2X2 + ... + f3kkxk (14.47) 

where x denotes the centered predictor, X - X. This model for the logit is still linear in the 
f3 parameters. For simplicity, we will use a second-order polynomial: 

rr'(x) = f30 + f311X + f322X2 

to demonstrate the procedure. 

A study of 482 initial public offering companies (IPOs) was conducted to determine the 
characteristics of companies that attract venture capital. Here, the response of interest 
is whether or not the company was financed by venture capital funds. Several potential 
predictors are: the face value of the company; the number of shares offered; and whether 
or not the company was a leveraged buyout. The IPO data set is listed in Appendix C.II. 
In this example we consider just one predictor, the face value of the company. 

Figure 14.9a contains a plot of venture capital involvement (Y) versus the the natu­
rallogarithm of the face value of the company (X) with a lowess smooth and the fitted 

(a) First-Order Fit (b) Second-Order Fit 

1.0 o 01' "II!DIJC"III' ___ BIIl'" 0 1.0 o 'CJII"DII!IJC"III' ___ BIll'" 0 

g g 
:c 
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TABLE 14.5 
Logistic 
Regression 
Output for 
Second-Order 
Model-IPO 
Example. 

NVlllilwar Reg/"(~.\·.ri(}11 

Estimated Estimated 
Predictor Coefficient Standard Error z* P-value 

Constant bo = 0.3005 0.1240 2.42 0.015 
x bll = 0.5516 0.1385 3.98 0.000 
x2 b22 = -0.8615 0.1404 -6.14 0.000 

first-order logistic regression fit superimposed. (Here we chose to analyze the naturallooa_ 
rithm ofhlce value because face value ranges over several orders of magnitude. with a highly 
skewed distribution.) The lowess smooth clearly ~uggests a mound-shaped relationship: for 
small and large companies. the likelihood of venture capital involvement is near zero, but for 
midsized companies it is over .5. The fin;t-order logistic regression fit is unable to Capture 
the characteristic mound shape of the mean response function and is clearly inadequate. 
Table 14.5 shows the fitted second-order response function: 

fr' = .3005 + .5516x - .8615.r2 

where x = X - X. Also shown in Table 14.5 are three quantities to be discussed in Sec­
tion 14.5. namely. the estimated standard error of each coefficient. a statistic. ;:-*, for testing 
the hypothesis that the coefficient is zero, and the resulting P-value. We simply note for no; 
that the P-value for b22 is .000, confirming the need for a second-order term. Figure 14.% 
plots the data, the lowess smooth, and the second-order polynomial logistic regression fit 
Note that the second-order polynomial fit tracks the lowess smooth closely. 

The above example demonstrated the use of polynomial regression for a single predictor. 
For multiple logistic regression. higher order pOlynomial terms and cross-products may be 
added to improve the fit of a model, as discussed in Section 8.1 in the Contexl of multiple 
linear regression models. 

Comments 

I. The maximum likelihood estimates of the parameters ~ for the logistic regression model can 
be obtained by iteratively reweighted least squares. The procedure is stnlightforwilrd. although it 
involves intensive use of a computer. 

(t. Obtain starting values for the regression parameters. to be denoted by b(O). Often. reasonable 
starting villues can be obtained by ordinary least squares regression of Y on the predictor variables.: 
X I •..•• X,I_I. using 11 first-order line",· model. 

h. Using these starting values. obtain: 

ft;(O) = X; [b«())] 

exp[ft': (0) 1 
ft;( 0) = --'----'---'­

I + explft;(()] 

c. Calculate the new response variable: 

y. - k(() 
Y'(O) = ft'(O) + ' , 
, , ft;(O)[1 - ft;(O)] 

and rhe weights: 

(14.48a), 

(14.48b),' 

(14.49a),. 
l , 

(14.49/J ' 
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d. Regress Y'(O) in (14.49a) on the predictor variables X" ... , X p - 1 using a first-order linear 
model with weights in (14.49b) to obtain revised estimated regression coefficients, denoted by b(I). 

e. Repeat steps b through d, making revisions in (14.48) and (14.49) by using the latest revised 
estimated regression coefficients until there is little if any change in the estimated coefficients. Often 
three or four iterations are sufficient to obtain convergence. 

2. When the multiple logistic regression model is not a first-order model and contains quadratic 
or higher-power terms for the predictor variables and/or cross-product terms for interaction effects, 
the estimated regression coefficients bk no longer have a simple interpretation. 

3. When the assumptions of a monotonic sigmoidal relation between n: and X'(3, required for 
the multiple logistic regression model, are not appropriate, an alternative is to convert all predictor 
variables to categorical variables and employ a log-linear model. In the disease outbreak example, 
for instance, age could be converted into a categorical variable with three classes 0-18, 19-50, and 
51-75. Reference 14.2 describes the use oflog-linear models for binary response variables when the 
predictor variables are categoricaL 

4. Convergence difficulties in the numerical search procedures for finding the maximumlikelihood 
estimates of the multiple logistic regression function may be encountered when the predictor variables 
are highly correlated or when there is a large number of predictor variables. Another instance that 
causes convergence problems occurs when a collection of the predictors either completely or nearly 
perfectly separates the .outcome groups. Indication of this problem often can be detected by noting large 
estimated parameters and large estimated standard errors, similar to what OCCllrs with multicollinearity 
problems. When convergence problems occur, it may be necessary to reduce the number of predictor 
variables in order to obtain convergence. • 

Jd:.5 Inferences about Regression Parameters 

The same types of inferences are of interest in logistic regression as for linear regression 
models-inferences about the regression coefficients, estimation of mean responses, and 
predictions of new observations. 

The inference procedures that we shall present rely on large sample sizes. For large sam­
ples, under generally applicable conditions, maximum likelihood estimators for logistic 
regression are approximately norllJfllly distributed, with little or no bias, and with approxi­
mate variances and covariances that are functions of the second-order partial derivatives of 
the logarithm of the likelihood function. 

Specifically, let G denote the matrix of second-order partial derivatives of the log­
likelihood function in (14.42), the derivatives being taken with regard to the parameters 

',,- {Jo, {J[, ... , {Jp-l: 
; 

G = [gij] i = 0,1, ... , p - 1; j = 0,1, ... , p - 1 (14.50) 
pxp 

where: 

etc. 
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This matrix is called the Hessiall matrix. When the second-order partial derivatives in the 
Hessian matrix are evaluated at ~ = b, that is, at the maximum likelihood estimates, the 
estimated approximate variance-covariance matrix of the estimated regression coefficients 
for logistic regression can be obtained as follows: 

(14.51) 

The estimated approximate variances and covariances in (14.51) are routinely provided by 
most logistic regression computer packages. 

Inferences about the regression coefficients for the simple logistic regression model 
(14.20) or the multiple logistic regression model (14.41) are based on the following approx­
imate result when the sample size is large: 

k = 0, I .... , p - I (14.52) 

where::: is a standard normal random variable and s{bd is the estimated approximate 
standard deviation of lh obtained from (14.51). 

Test Concerning a Single f3 k: Wald Test 

Example 

A large-sample test of a single regression parameter can be constructed based on (14.52). 
For the alternatives: 

HlJ: fJk = 0 

H«: fJk i= 0 

an appropriate test statistic is: 

and the decision rule is: 

If 1<.* I .:S :::(1 - a/2), conclude Hll 

If li"l > z(l - a/2). conclude H" 

(14.53a) 

(14.53b) 

(14.53c) 

One-sided alternatives will involve a one-sided decision rule. The testing procedure in 
(14.53) is commonly referred to as the Wald test. On occasion, the square of z* is used 
instead, and the test is then based on a chi-square distribution with I degree of freedom. 
This is also referred to as the Wald test. 

In the programming task example, Iii was expected to be positive. The alternatives of interest 
therefore are: 

Ho: fJI .:S 0 

n,: f31 > 0 

Test statistic (14.53b), llsing the results in Table 14.1 b, is: 

, .1615 
z' = .0650 = 2.485 
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For ex = .05, we require z(.95) = 1.645. The decision rule therefore is: 

If z* s 1.645, conclude Ho 

If z* > 1.645, conclude Ha 

Since z* = 2.485 > 1.645, we conclude Ha , that fJI is positive, as expected. The one-sided 
P-value ofthis test is .0065. 

Interval Estimation of a Single fik 

Example 

From (14.52), we obtain directly the approximate 1 - ex confidence limits for fJk: 

(14.54) 

where z(1 - exj2) is the (1- exj2)100 percentile of the standard normal distribution. 
The corresponding confidence limits for the odds ratio exp(fJk) are: 

exp[bk ± z(1 - exj2)s{bd] (14.55) 

For the programming task example, it is desired to estimate fJI with an approximate 
95 percent confidence interval. We require z(.975) = 1.960, as well as the estimates 
b l = .1615 and s{bd = .0650 which are given in Table 14.1b. Hence, the confidence limits 
are .1615 ± 1.960(.0650), and the approximate 95 percent confidence interval for fJI is: 

.0341 S fJl S .2889 

Thus, we can conclude with approximately 95 percent confidence that fJI is between 
.0341 and .2889. The corresponding 95 percent confidence limits for the odds ratio are 
exp(.0341) = 1.03 and exp(.2889) = 1.33. 

To examine whether the large-sample inference procedures are applicable here when 
n = 25, bootstrap sampling can be employed, as described in Chapter 13. Alternatively, 
estimation procedures have been developed for logistic regression that do not depend on any 
large-sample approximations. LogXact (Reference 14.3) was run on the data and produced 
95 percent confidence limits for fJI of .041 and .296. The large-sample limits of .034 and 
.289 are reasonably close to the LogXact limits, confirming the applicability oflarge-sample 
theory here. 

If we wish to consider the odds ratio for persons whose experience differs by, say, five 
months, the point estimate ofthis odds ratio would be exp(5b l ) = exp[5(.1615)] = 2.242, 
and the 95 percent confidence limits would be obtained from the confidence limits for b l 

as follows: exp[5(.0341)] = 1.186 and exp[5(.2889)] = 4.240. Thus, with 95 percent confi­
dence we estimate that the odds of success increase by between 19 percent and 324 percent 
with an additional five months of experience. 

Comments 
1. If the large-sample conditions for inferences are not met, the bootstrap procedure can be em~ 

ployed to obtain confidence limits for the regression coefficients. The bootstrap here requires gen­
erating Bernoulli random variables as discllssed in Section 14.8 for the construction of simulated 
envelopes. 

2. We are using the z approximation here for large-sample inferences rather than the t approxima­
tion used in Chapter 13 for nonlinear regression. This choice is conventional for logistic regression. 
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For largc sample sizcs, there is little diffcrcnce betwecn the f distribution ,llld the slUndard normal 
distribution, 

3, Approximate joint conlidcnce intcrv,tls for scvcral logistic regression parameters can be de­
veloped by rhe Bonlcrroni procedure. If g pitramcters are to bc cSlimilted with family confidence 
coefticientof,tpproximately I - Ci, the joilll Bonferroni conlidcnce limits ,Ire: 

(14.56) 

where: 

B = ;:-.( I - Ci/2g) (l4.56a) 

4. For power ilnd sample size considerations in logistic regression modeling, see Reference 14,4 

• 
Test whether Several Ih = 0: Likelihood Ratio Test 

Frequently there is interest in determining whether a subset of the X variables in a multiple 
logistic regression model can be dropped, that is, in testing whether the associated regression 
coefficients lh equal zero. The test procedure we shall employ is a general one for use with 
maximum I ikelihood estimation, and is analogous to the general I inear test procedul"e for 
linear models. The test is called the likelihood rcttio test, and, like the general linear test, is 
based on a comparison of full and reduced models. The test is valid for large ~ample sizes. 

We begin with the full logistic model with response function: 

Full model (14.57) 

where: 

X'~I' = lio + Iii XI +, .. + fJ1,-1 X1,_1 

We then find the maximum likelihood estimates for the full model, now denoted by bp, 

and evaluate the likelihood function L (~) when ~ F = b F. We shaH denote this value of the 
likelihood function for the full model by L(F). 

The hypothesis we wish to test is: 

Ho: liq = liq+1 = .,. = lil,-I = 0 

H,,: not all of the 13k in Ho equal zero 
(14.58) 

where, for convenience, we arrange the model so thal the last p - q coefficients (U'e those 
tested. The reduced logistic model therefore has the response function: 

Reduced model (14.59) 

where: 

X'~R = /"30 + 131 XI + ... + liq- I X,/_I 

Now we obtain the maximum likelihood estimates b R forthe reduced model and evaluate 
the likelihood function for the reduced model containing q parameters when ~R==bR; 
We shall denote this value of the likelihood function for the reduced model by L(R). Itean 
be shown that L( R) cannot exceed L( F) since one cannot obtain a larger maximum for the 
likelihood function using a subset of the parameters. 
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The actual test statistic for the likelihood ratio test, denoted by G2 , is: 

[
L(R)] 

G2 = -21oge L(F) = -2[loge L(R) -loge L(F)] (14.60) 

Note that if the ratio L(R)/ L(F) is small, indicating Ha is the appropriate conclusion, then 
G2 is large. Thus, large values of G2 lead to conclusion Ha. 

Large-sample theory states that when n is large, G2 is distributed approximately as 
X2 (p - q) when Ho in (14.58) holds. The degrees offreedom correspond to dfR - djp = 
(n - q) - (n - p) = p - q. The appropriate decision rule therefore is: 

, 
If G2 S X2(1 - a; p - q), conclude Ho 

(14.61) 
If G2 > X2(1 - a; p - q), conclude Ha 

In the disease outbreak example, the model building began with the three predictor variables 
that were considered a priori to be key explanatory variables-age, socioeconomic status, 
and city sector. A logistic regression model was fitted containing these three predictor 
variables and the log-likelihood for this model was obtained. Then tests were conducted to 
see whether a v~able could be dropped from the model. First, age (XI) was dropped from 
the logistic model and the log-likelihood for this reduced model was obtained. The results 
were: 

Hence the required test statistic is: 

G2 = -2[logeL(R) -logeL(F)] = -2[-53.102 - (-50.527)] = 5.150 

For a = .05, we require X2(.95; 1) = 3.84. Hence to test Ho: fJI =0, Ha: fJI =1= 0, the ap­
propriate decision rule is: 

If G2 S 3.84, conclude Ho 

_ If G2 > 3.84, conclude Ha 

Since G2 = 5.15 2: 3.84, we conclude Ha, that XI should not be dropped from the model. 
The P -value of this test is .023. 

Similar tests for socioeconomic status (X2 , X 3) and city sector (X4 ) led to P-values of 
.55 and .001. The P-value for socioeconomic status suggests that it can be dropped from the 
model containing the other two predictor variables. However, since this variable was con­
sidered a priori to be important, additional analyses were conducted. When socioeconomic 
status is the only predictor in the logistic regression nrodel, the P-value for the test whether 
this predictor variable is helpful is .16, suggesting marginal importance for this variable. 
In addition, the estimated regression coefficients for age and city sector and their estimated 
standard deviations are not appreciably affected by whether-or not socioeconomic status is 
in the regression model. Hence, it was decided to keep socioeconomic status in the logistic 
regression model in view of its a priori importance. 

The next question of concern was whether any two-factor interaction terms are required 
in the model. The full model now includes all possible two-factor interactions, in addition 
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14.6 

to the main etfects, so that X'~ F for this model is as follows: 

X'~F = 110 + 111 XI + fh X2 + fhX y + 114 X4 + 135 X I X2 + 111l X, X3 

+ /17 X I X4 + 11xX2 x'1 + f39X~X4 
We wish to test: 

Ho: 135 = 116 = 117 = 138 = 139 = 0 

H,,: not all 13k in Ho equal zero 

so that X'~l? for the reduced model is: 

Full model 

Reduced model 

A computer run of a multiple logistic regression package yielded: 

L(F) = -46.998 

L(R) = -SO.S27 

C 2 = -2[Iog,,(R) -log,,(F)) = 7.0S8 

If Ho holds, C 2 follows approximately the chi-square distribution with S degrees of freedom. 
For c; = .OS, we require X2(.9S; S) = 11.07. Since C 2 = 7.0S8 < 11.07. we conclude Ho, 
that the two-factor interactions are not needed in the logistic regression modeL The P-value 
of this test is .22. We note again that a logistic regression model without interaction terms 
is desirable, because otherwise exp(f3d no longer can be interpreted as the odds ratio. 

Thus, the fitted logistic regression model (14.46) was accepted as the model to be checked 
diagnostically and, finaJly, to be validated. 

Comment 

The Wald test for a single regression parameter in (14.53) is more versatile than the likelihood ratio 
test in (14.60). The latter can only be used to test HlI : flk = 0, whereas the former can be used also for 
one-sided tests and for testing whether f3k equals some specified value other than zero. When testing 
Hu: flk = O. the two tests are not identical and may occasionally lead to different conclusions. For 
example. the Wald test P-value for dropping age when socioeconomic status and sector are in the 
model for the disease data set example is '{)275; the P-value for the likelihood ratio test is .023. • 

AutOlnatic lVIodel Selection ~lethod~ 

Several automatic model selection methods are available for building logistic regression 
models. These include all-possible-regressions and stepwise procedures. We begin with a 
discussion of criteria for model selection. 

Model Selection Criteria 
In the context of multiple linear regression models. we discussed the use of the follo~~, 
model selection criteria in Chapter 9: R7" R~'I" C I" AICI,. SBCp, and PRESS!'. For loglstI!: 
regression modeling, the AIC p and SBCp criteria are easily adapted and are generall 
available in commercial software. For these reasons we will focus on the lise of these I, 
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criteria. The modifications are as follows: 

AICp = -2 loge L(b) + 2p 

SBCp = -2 loge L(b) + P loge(n) 

(14.62) 

(14.63) 

where 10geL(b) is the log-likelihood expression in (14.42). Promising models will yield 
relatively small values for these criteria. A third criterion that is frequently provided by 
software packages is -2 times the log-likelihood, or -2 loge L(b). For this criterion, we 
also seek models giving small values. A drawback of this third criterion is that - 2 loge L (b) 
will never increase as terms are added to the model, because there is no penalty for adding 
predictors. This is analogous to the use of SSEp or R~ in multiple linear regression. It is 
easily seen from (14.62),and (14.63) that AICp and SBCp also involve -2 loge L(b), but 
penalties are added based on the number of terms p. This penalty is 2p for AICp and 
p loge(n) for SBCp. }, 

Best Subsets Procedures 

i~~mple 

, . 

"Best" subsets procedures were discussed in Section 9.4 in the context of multiple linear 
regression. Recall that these procedures identify a group of subset models that give the 
best vhlues of a specified criterion. As long as the number of parameters is not too large 
(typically less than 30 or 40) these procedures can be useful. As we noted in Section 9.4, 
time-saving algorithms have been developed that can identify the most promising models, 
without having to evaluate all 2P-' candidates. These procedures are similarly applicable in 
the context oflogistic regression. We now illustrate the use of the the best subsets procedure 
based on the AIC p and SBC p criteria. 

For the disease outbreak example, there are four predictors, age (X,), socioeconomic sta­
tus (X2 and X 3 ) and city sector (X4). Normally, it is advantageous to tie the two indica­
tors for the qualitative predictor socioeconomic status together; that is, a model should 
either have both predictors, or neither. Since very few statistical software packages fol­
low this convention, we will allow them to be independently included. This leads to the 
24 = 16 possible regression models listed in columns 2-5 of Table 14.6a. TheAICp, SBCp, 
and -2 loge L(b) criterion values for each of the 16 models are listed in columns 6-8 of 
Table 14.6a and are plotted against p in Figures 14.lOa-c, respectively. 

As shown in Figures 14. lOa and 14. lOb, bothAICp and SBCp are minimized for p = 3. 
Inspection of Table 14.6b reveals that the best two-predictor model for both criteria is based 
on Xl (age) and X4 (city sector). Other models that appear promising on the basis of the 
AICp criterion are the three-predictor subsets based on X" X2 , and X4 and X" X 3 , and X4, 
and the full model based on all four predictors. SBC p, also identifies the two three-predictor 
subset models just noted, as well as the one-predictor model based on X4 • The tendency of 
SBCp to favor smaller models is evident in this example. 

The plot of -2 loge L(b) in Figure 14.10c also points to a two- or three-predictor subset. 
The additional reduction in -2 loge L(b) from mq,ving from the best two;-predictor model 
to the best three-predictor model are small, and the returns continue to diminish as we move 
from three predictors to the full, four-predictor model. ' 

'~i~e Model Selection 
As we noted in Chapter 9 in the context of model selection for mUltiple linear regression, 
when the number of predictors is large (i.e., 40 or more) the use of all-possible-regression 
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TABLE 14.6 Best Subsets Results-Disease Outbreak Example. --(a) Results for All Possible Models (Xij = 1 if Xi in model i; Xii = 0 otherwise) 

(1) (2) (3) (4) (5) (6) (7) (8) 
Socioeconomic City 

Model Parameters Age 
status Sector 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Rank 

1 
2 
3 
4 

Example 

p Xi] Xi2 Xn Xi4 AICp SBC p - 2109e L(b) 
1 0 0 0 0 124.318 126.903 122.318 
2 1 0 0 0 118.913 124.083 114.913 
2 0 1 0 0 124.882 130.052 120.882 
2 0 0 1 0 122.229 127.399 118.229 
2 0 0 0 1 111.534 116.704 107,534 
3 1 1 0 0 119.109 126.864 113.109 
3 1 0 1 0 117.968 125.723 111.968 
3 1 0 0 1 108.259 116.014 102.259 
3 0 1 1 0 124.085 131,840 118.085 
3 0 1 0 112.881 120.636 106.881 
3 0 0 1 1 112.371 ,,120.126 106.371 
4 1 1 0 119.502 129.842 111.502 
4 1 1 0 109.310 119.650 101.310 
4 1 0 1 109.521 119.861 101.521 
4 0 1 114.204 124.543 106.204 
5 111.054 123.979 101.054 

(b) Best Four Models for Each Criterion 

AIC p Criterion SBC p Criterion 

Predictors AIC p Predictors SBC p 

Xl, X4 108.259 Xl, X4 116.014 
Xl, X2, X4 109.310 X4 116.704 
Xl, X3, X4 109.521 XI, X2, X4 119.650 
Xl, X2, X3, X4 111.054 Xl, X3, X4 119.861 

-:.,;: 

procedures for model selection may not be feasible. In such cases, stepwise selection proce::~ 
dures are generally employed. The stepwise procedures discussed in Section 9.4 formultipl~ 
linear regression are easily adapted for use in logistic regression. The only change requITea 
concerns the decision rule for adding or deleting a predictor. For multiple linear regression 
this decision is based on tk, the t-value associated with bk, and its P-value. For logisti' 
regression, we obtain an analogous procedure by basing the decision on the Wald statisti, 
z.* in (14.53b) for the kth estimated regression parameter. and its P -value. With this changs 
implementation of the various stepwise variants, such as the forward stepwise, forwar 
selection, and backward elimination algorithms is straightforward. We illustrate the used 
forward stepwise selection for the disease outbreak data. 

Figure 14.11 provides partial output from the SPSS forward stepwise selection proced c.' 
for the disease outbreak example. This routine wilJ add a predictor only if the P-vaI" 
associated with its Wald test statistic is less than 0,05. In step one. city sector (X4) 
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Plots of A/Cp • SBCp • and -2 loge L(b)-Disease Outbreak Example. 
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• 

3 

P 

Block 1: Method = Forward Stepwise (Wald) 

Variables in the Equation 

B S.E . Wald df . 
Step 1 a SECTOR 1.743 .473 13.593 1 

Constant -3.332 .765 18.990 1 
Step 2b AGE .029 .013 4.946 1 

SECTOR 1.673 .487 11.791 1 
Constant -4.009 .873 21.060 1 

a. Variab!e(s) entered on step 1: SECTOR. 

b. Variable(s) entered on step 2: AGE. 

• 

4 

Sig. ExP{B) 

.000 5.716 

.000 .036 

.026 1.030 

.001 5.331 

.000 .018 

5 

entered; its P-value .000. In Step 2, age (XI) is entered, with a P-value of 0.026. At this 
point the procedure terminates, because no further predictors can be added with resulting 
P-values less than 0.05. Thus, the forward stepwise selection.procedure has identified the 
same model favored by AICp and SBCp. Notice that SPSS also prints the square of the Wald 
test statistics z* from (14.53b) in the column labeled "Wald." As noted earlier, when (Z*)2 
is used, P -values are obtained from a chi-square distribution with 1 degree of freedom. 
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14.7 Tests for Goodness of Fit --
The appropriateness of the fitted logistic regression model needs to be examined before it is 
accepted for use, as is the case for all regression models. In particular, we need to examine 
whether the estimated response function for the data is monotonic and sigmoidal in shape 
key properties of the logistic response function. Goodness of fit tests provide an Overall 
measure of the fit of the model, and are usually not sensitive when the fit is poor for jUst a 
few cases. Logistic regression diagnostics, which focus on individual cases, will be taken 
up in the next section. 

Before discussing several goodness offit tests, it is necessary to again c1isti nguish between 
replicated and un replicated binary data. In Sections 3.7 and 6.8, we discussed the F testfoi 
lack-of-fit for the simple and multiple linear regression models. For simple linear regression, 
the lack-of-fit test requires repeat observations at one or more levels of the single predictor 
X, and, for multiple regression, there must be multiple or repeat observations that have the 
same values for all of the predictors. This requirement also holds true fOli.two of the goodness 
of fit tests that we will present for logistic regression, namely, the Pearson chi-square and 
the deviance goodness of fit tests. Then we present the Hosmer-Lemeshow test that is useful 
for unreplicated data sets or for data sets containing just a few replicated observations. 

Pearson Chi-Square Goodness of Fit Test 
The Pearson chi-square goodness of fit test assumes only that the YiJ observations ate 

independent and that replicated data of reasonable sample size are available. The test can 
detect major departures from a logistic response function, but is not sensitive to small 
departures from a logistic response function. The alternatives of interest are: 

Ho: E{Y} = [1 + exp(-X'~)rl 
Ha: E{Y} i= [I + exp( -X'~)rl 

(14.64) 

As was the case with tests for lack-of-fit in simple and multiple linear regression, we~ 
shall denote the number of distinct combinations of the predictor variables by c, the itJ¥ 
binary response at predictor combination Xj by Yij , and the number of cases in the jthcI~ 
(j = I, ... , c) will be denoted by 11 I. Recall from (14.32a) that: 

II) 

""' y .. = y. L IJ .J 

i=1 

(14.6~ 

The number of cases in the jth class with outcome I will be denoted 0 jl and the num 
of cases in the jth class with outcome 0 will be denoted by 0 jO. Because the respo , 
variable Yij is a Bernoulli variable whose outcomes are I and 0, the number of cases 0. 
and 0i2 are given as follows: 

for j = I, ... ,c. 

Il j 

Ojl = LYiJ = Y. j 

;=1 

II) 

o jO = L (I - Yij ) = n J - Y. j = n j - 0 jl 
;=1 

(14·4 
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If the logistic response function is appropriate, the expected value of Yij is given by: 

E{Yij } = trj = [1 + exp(-Xj~)rl (14.67) 

and is estimated by the fitted value ilf 

ftj = [1 + exp(-Xjb)r l (14.68) 

Consequently, if the logistic response function is appropriate, the expected numbers of cases 
with Yij = 1 and Yij = 0 for the jth class are estimated to be: 

Ejl = njftj 

Ejo = nj{l - ftj) = nj - Ejl 

(14.6~,-a) 

(14.691:» 

where Ejl denotes the estimated expected number of Is in the jth class, and Ejo denotes 
the estimated expected number of Os in the jth class. 

The test statistic is the usual chi-square goodness of fit test statistic: 

X2 = t t (Ojk - Ejk)2 

j=1 k=O Ejk 

(14.70) 

Ifthe logistic response function is appropriate, X2 follows approximately a X2 distribution 
with c - p degrees of freedom when n j is large and p < c. As with other chi-square 
goodness of fit tests, it is advisable that most expected frequencies E jk be moderately large, 
say 5 or greater, and none smaller than 1. 

Large values of the test statistic X2 indicate that the logistic response function is not 
appropriate. The decision rule for testing the alternatives in (14.64), when controlling the 
level of significance at ex, therefore is: 

If X2 :::: X2(1-ex;c - p), conclude Ho 

If XZ > X2(1 - ex; c - p), conclude Ha 
(14.71) 

For the coupon effectiveness example, we have five classes. Table 14.7 provides for each 
class j: n j' the number of binary outcomes; ftj, the model-based estimate of 7rj; Pj, the 
observed proportion of Is; OjO and OJ!. the number of cases with Yij = 0 and Yij = 1 
for each class; and finally, the estimated expected frequencies E jO and E j I, if the logistic 
regression model (14.35) is appropriate (calculations not shown). 

Number of Coupons Number of Coupons 
Not Redeemed~ Redeemed 

:(;:rass Obsenied Expected Observ~d Expected 
-j nj frj Pj OjO E jO Oj1 E"'jl 

:J 200 .1736 .150 170 165.3 30 34.7 
2- ~OO .2543 .275 145 149.1 55 50.9 
3: 2,00 .3562 .350 13Q 128.8 70 71.2 
4 200 .4731 .500 100 105.4 100 94.6 

-5 
~~:' , 

.7028 200 .685 63 59.4 137 140.6 
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Test statistic (14.76) is calculated ,1S follows: 

2 (170 - 165.3)2 (30 - 34.7)2 (137 - 140.6)2 
X = + + ... +-----

165.3 34.7 140.6 
= 2.15 

For c; = 0.05 and c - p = 5 - 2 = 3, we require X2 (.95: 3) = 7.81. Since X2 = 2.15 :S 7.81 
we conclude Ho, that the logistic response function is appropriate. The P-value of the tes~ 
is .54. 

Deviance Goodness of Fit Test 
The deviance goodness ofjit test for logistic regression models is completely analogous 
to the F test for lack of fit for simple and multiple linear regression models. Like the 
F test for lack of fit and the Pearson chi-square goodness of fit test, we assume theI"C 

are c unique combinations of the predictors denoted X I, ... , Xc, the number of repeat 
binary observations at X j is 11 j, and the ith binary response at predictor combination Xj is 
denoted Yij • 

The lack of fit test for standard regression was based on the general linear test of the 
reduced model E{YiJ = Xj~ against the full model E{YijJ = IJi. In similar fashion, the 
deviance goodness of fit test is based on a likelihood ratio test of the reduced model: 

Reduced model (14.72) 

against the full model: 

j = I, .. . ,C Full model (14.73) 

where Tri are parameters, j = I, ...• c. In the lack of fit test for standard regression, the 
full model allowed for a unique mean for each unique combination of the predictors, Xj . 

Similarly, the full model for the deviance goodness of fit test allows for a unique probability 
Tfj for each predictor combination. This full model in the logistic regression case is usually 
referred to as the saturated model. 

To carry out the likelihood ratio test in (14.60), we must obtain the values of the maxi­
mizedlikelihoods for the full and reduced models, namely L(F) and L(R). L( R) is obtained 
by fitting the reduced model, and the maximum likelihood estimates of the C parameters in 
the full model are given by the sample proportions in (14.32b): 

Yj 
Pj=­

nj 
j = 1,2 ..... c (14.74) 

Letting ii: J denote the reduced model estimate of Tf j at X j. j = I, .... c, it can be shown 
that likelihood ratio test statistic (14.60) is given by: 

G2 = -2[loge L(R) -loge L(F)] 

= -2 t [Vi loge (:~) + (nj - Y) log" C = :~) ] 
= DEV(Xo, X" ... , X p_ l ) 

(14.7~ 
;:' 
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The likelihood ratio test statistic in (14.75) is called the deviance, and we use 
DEV(Xo, XI>.'" X p- 1) to denote the deviance for a logistic regression model based on 
predictors Xo, XI> .... Xp _ I ' The deviance measures the deviation, in terms of -2 loge L, 
between the saturated model and the fitted reduced logistic regression model based on 
Xo, X], ... , Xp_1o I 

If the logistic response function is the correct response fUnction and the sample sizes n j 
are large, then the deviance will follow approximately a chi-square distribution with c - p 
degrees of freedom. Large values of the deviance indicate that the fitted logistic model is 
not correct. Hence, to test the alternatives: 

Ho: E{Y} = [l + exp(-X/~)]-I 
Ha: E{Y} i= [1 + exp(-X'~)]-I 

the appropriate decision rule is: 

If DEV(Xo, XI>"" X p _ l ) :::: x2(l - a;c - p), conclude Eo 

If DEV(Xo, XI>"" X p _ l ) > x2(l- a; c - p), conclude Ha 

(1.4.76) 

(14.77) 

For the coupon effectiveness example, we use the results in Table 14.2 to calculate the 
deviance in (14.75) directly: 

DEV(Xo, XI) = -2[3010ge (.1736) + (200- 30) loge (.8264) 
.150 .850 

+ ... + 137 loge (.7028) + (200 _ 137) loge (.2972)] 
.685 .315 

= 2.16 

For a = .05 and c - p = 3, we require X2(.95; 3) = 7.81. Since DEV(Xo, XI) = 2.16 :::: 
7.81, we conclude Ho, that the logistic model is a satisfactory fit. The P-value of this test 
is approximately .54, the same as that obtained earlier for the Pearson chi-square goodness 
of fit test. 

Comment 
If Pj = 0 for some j in the first term in (14.75), then y'j = 0 and: 

y'j 10& (;~) = 0 

Similarly, if Pj = 1 for some j in the second term in 04.75), then Y. j = nj and: 

(n· - Y .) log __ 1 = 0 (I-it.) . 
1 ·1 e 1 _ pj 

• 
i;j!r-lemeshow Goodness of Fit Test 

Hosmer and Lemeshow (Reference 14.4) proposed, for either unreplicated data sets or 
data sets with few replicates, the grouping of cases based on the values of the estimated 
probabilities. Suppose there are no replicates, i.e., n j = 1 for all j. The procedure consists 
of grouping the data into classes with similar fitted values it;, with approximately the same 



590 Part Three NOlllillear Regressiol/ 

TABLE 14.8 Hosmer-Lemeshow Goodness of I<'it Test for Logistic Regression Function-Disease 
Outbreak Example. 

Class 
j 

1 
2 
3 
4 
5 

Example 

Number of Persons Number of Persons 
without Disease with Disease 

Observed Expected Observed Expected 
n; Interval nj OjD E jD Ojl E jl 

-2.60-under -2.08 20 19 18.196 1 1.804 
-2.08-under -1 .43 20 17 17.093 3 2.907 
-1.43-under -.70 20 14 14.707 6 5.293 
-.70-under .16 19 9 10.887 10 8.113 

.16-under 1.70 19 8 6.297 11 12.703 -Total 98 67 67.180 31 30.820 

number of cases in each class. The grouping may be accomplished equiv~tlently by usino 
b 

the fitted logit values it; = X;h since the logit values it; are monotonically related to the 
fitted mean responses it,. We shall do the grouping according to the fitted logit values it;. 
Use of from 5 to 10 classes is common, depending on the total number of cases. Once 
the groups are formed, then the Hosmer-Lemeshow goodness of fit statistic is calculated 
by using the Pearson chi-square test statistic (14.70) from the c x 2 table of observed 
and expected frequencies as described earlier. Hosmer and Lemeshow showed, using an 
extensive simulation study, that the test statistic (14.70) is well approximated by the chi­
square distribution with c - 2 degrees of freedom. 

For the disease outbreak example, we shall use five classes. Table 14.8 shows the class 
intervals for the logit fitted values it; and the number of cases 11 j in each class. It also gives 
o jO and OJ I, the number of cases with Y, = 0 and Yi = I for each class. Finally, Table 14.8 
contains the estimated expected frequencies E jO and E jl based on logistic regression model 
(14.46) (calculations not shown). 

Test statistic (14.70) is calculated as follows: 

o (19 - 18.196)2 (I - 1.804)2 (8 - 6.297)2 (11 -12.703)2 
x-= + + ... + +-----

18.196 1.804 6.297 12.703 

= 1.98 

Since all of the ni are approximately 20 and only two expected frequencies are less than 5 
and both are greater than I, the chi-square test is appropriate here. For a = .05 and c-2 == 3, 
we require X 2(.95; 3) = 7.81. Since X2 = 1.98 ~ 7.81, we conclude Ho, that the logistic 
response function is appropriate. The P-value of the test is .58. 

Comment 

We have noted that the Pearson chi-square and deviance goodness of fit tests are only appropriate when 
there are repeat observations and when the number of replicates at each X category is sufficie~ly 
large. Care must be taken in interpreting logistic regression output since some packages will proVide, 
these statistics and the associated P -values whether or not sufficient numbers of replicate observaljollS • are present. ' 
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14.8 Logistic Regression Diagnostics 

In this section we take up the analysis of residuals and the identification of influential cases 
for logistic regression. We shall first introduce various residuals that have been defined for 
logistic regression and some associated plots. We then turn to the identification of influential 
observations. Throughout, we shall assume that the responses are binary; i.e., we focus on 
the ungrouped case. 

Logistic Regression Residuals 
Residual analysis for lOgistic regression is more difficult than for linear regression models 
because the responses f; take on only the values 0 and 1. Consequently, the ith ordinary 
residual, ei will assume one of two values: 

{
I-ft. iffi = 1 

e; = -fti l if fi = 0 (14.78) 

The ordinary residuals will not be normally distributed and, indeed, their distribution under 
the assumption that the fitted model is correct is unknown. Plots of ordinary residuals against 
fitted values or pre9ictor variables will generally be uninformative. 

Pearson Residuals. The ordinary residuals can be made more comparable by dividing 
them by the estimated standard error of f i , namely, ,Jft;(1 - ft;). The resulting Pearson 
residuals are given by: 

(14.79) 

The Pearson residuals are directly related to Pearson chi-square goodness of fit statistic 
(14.70). To see this we first expand (14.70) as follows: 

X2 = ~ ~ (Ojk - Ejk)2 = ~ (OjO - Ejo)2 + ~ (Ojl - E jl )2 
L.t L.t E ·k L.t E ·0 L.t E ·1 j=1 k=O ] j=1 ] j=1 ] 

(14.79a) 

For binary outcome data, we set j = i, c = n, Ojl = f i , OjO = 1 - f;, Ejl = ft;, 
Ejo = I - fti , and (14.79a) becofnes: 

X2 = ~ [(1 - f;) - (1 - ft;)]2 ~ (fi - fti)2 
L.t 1 A +L.t A 

i=1 - Jr; i=1 Jri 

= ~ (fi - ft;)2 ~ (fi - ftY 
L.t 1 A +L.t A - Jr. Jr. 
;=1 I i=l I 

2:
n (f; - ft;)2 

- (14.79b) 
- ft·(1 - ft·) 

i=l I I 

Hence, we see that the sum of the squares of the Pearson residuals (14.79) is numerically 
equal to the Pearson chi-square test statistic (14~ 79a). Therefore the square of each Pearson 
residual measures the contribution of each binary response to the Pearson chi-square test 
statistic. Note that test statistic (14.79b) does not follow an approximate chi-square distri­
bution for binary data without replicates. 
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Studentized Pearson Residuals. The Pearson residuals do not have unit variance since 
no allowance has been made for the inherent variation in the fitted value iti . A better 
procedure is to divide the ordinary residuals by their estimated standard deviation. This 
value is approximated by Jiti (I - iti)( 1 - hi;), where h ii is the ith diagonal element of 
the 11 x 11 estimated hat matrix for logistic regression: 

(14.80) 

Here, W is the 11 x n ~iagonal matrix with elements it; (I - it;), X is the usual 11 x p design 
matrix (6.18b), aI;d W~ is a diagonal matrix with diagonal element!; equal to the square 
roots of those in W. The resulting studentized Pearsol1 residuals are defined as: 

-==r=p=, = "sp,= ~ 
V 1 - Il;i 

(14.61 ) 

Recall that for multiple linear regression, the hat matrix satisfie~ the matrix expression 
Y = HY. The hat matrix for logistic regression is developed in analogous fashion; it satisfies 
approximately the expression it' = HY, where it' is the (11 x I) vector of linear predictors. 

Deviance Residuals. The model deviance (14.75) was obtained by caITying out the likeli­
hood ratio test where the reduced model is the logistic regression model and the full model 
is the saturated model for grouped outcome data. For binary outcome data, we take the 
number of X categodes to be c = 11, I1j = 1, j = i, Y. j = Y;, Pj = Y. j /l1j = Yi , and 
(l4.75) becomes: 

G2 = -2 ~ [Y.loa (iti) + (1 _ Y) log (1 - it;)] 
~ I be y. I ~e 1 _ Y 
;=1 I I 

II 

= -2 L[Y; log,,(it;) + (I - Y;) loge(l - it;) - Yi 10g,,(Y;) - (l - Y;) logc(l - f i )] 

;=1 

II 

= -2 LlY; log,,(it;) + (I - Yi ) log,,(l - it;)] 
;=1 

(14.82) 

since Y,logeCY;) = (I - Y;) loge (I - Yi ) = 0 for Yi = 0 or Y; = I. Thus for binary data 
the model deviance in (\4.75) is: 

II 

DEV(Xo,···, X,H ) = -2 L[Y; loge (it i ) + (I - Y;) loge(l- it;) I (14.82a) 
;=1 

The deviance residual for case i, denoted by dev;, is defined as the signed square root of 
the contribution of the ith case to the model deviance DEV in (14.82a): . 

dev· = ~iull(Y' - ft.)J-2[Y·loa (it·) + (1- Y)loa (1- it)] I • l'"J I I I be I I be I 
(14.83) 

where the sign is positive when Y; 2: it; and negative when Y; < iti. Thus the sum oftli 
squared deviance residuals equals the model deviance in (l4.82a): 

/I 

L(dev;)2 = DEV(Xo, X j, ... , Xp-J) 
;=0 1 
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(1) (2) (3) (4) (5) (6) (7) 
y; 1r/ ej rp{ rSPI dev/ hl/ 

1 0 0.209 -0.209 -0.514 -0.524 -0.685 .039 
2 0 0.219 -0.219 • -0.529 -0.541 -0.703 .040 
3 0 0.106 -0.106 -0.344 -0.350 -0.473 .033 

96 0 0.114 -0.114 -0.358 -0.363 -0.491 .025 
97 0 0.092 -0.092 -0.318 -0.322 -0.439 .024 
98 0 0.17.1 -0.171 -0.455 -0.463 -0.613 .036 

Therefore the square of each deviance residual measures the contribution of each binary 
response to the deviance goodness of fit test statistic (14.82a). Note that test statistic (14.82a) 
does not follow an approximate chi-square distribution for binary data without replicates. 

Table 14.9 lists in columns 1-7, for a portion of the disease outbreak example, the re­
sponse Yi, the predicted mean response iti , the ordinary residual ei, the Pearson residual 
rpp the studentized Pearson residual rspp the deviance residual devi, and the hat matrix 
diagonal elements hii . We illustrate the calculations needed to obtain these residuals for the 
first case. The ordinary residual for the first case is from (14.78): 

el = Y1 - itl = 0 - .209 = -.209 

The first Pearson residual (14.79) is: 

el -.209 
rp = = = -.514 

, ,Jitl (1 - itl) ,J.209(1 - .209) 

Substitution of rp, and the leverage value hll from column 7 of Table 14.9 into (14.81) 
yields the studentized Pearson residual: 

-.514 = -.524 
,Jl - .039 

Finally, the first deviance residual is obtained from (14.83): 

devi = sign(YI - ITI)V-2[Y1loge(itl) + (1- Y1)loge(1- itl )] 

= sign(-.209) V-2[O loge (.209) + (1 - 0) 10ge(1- .209)] 

= -V-210ge(.791) = -.685 

The various residuals are plotted against the predicted mean response in Figure 14.12, 
although we emphasize that such plots are not particularly informative. Consider, for exam­
ple, the ordinary residuals in Figure 14.12a. Here we see t~o trends of decreasing residuals 
with slope equal to -1. These two linear trends result from'the fact, noted above, that the 
residuals take on just one of two values at a point Xi, 1 - iti or 0 - iti. Plotting these values 
against iti will always result in two linear trends with slope -1. The remaining plots lead 
to similar patterns. 
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FIGURE 14.12 Selected Residuals Plotted against Predicted Mean Response-Disease Outbreak Example. 
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Diagnostic Residual Plots 
In this section we consider two useful residual plots that provide some information about 
the adequacy of the logistic regression fit. Recall that in ordinary regression, residual plots 
are useful for diagnosing model inadequacy, nonconstant variance, and the presence of 
response outliers. In logistic regression, we generally focus only on the detection of model 

'inadequacy. As we discussed in Section 14.1, nonconstant variance is always present in the 
logistic regression setting, and the form that it takes is known. Moreover, response outlien; 
in binary logistic regression are difficult to diagnose and may only be evident if all responses 
in a particular region of the X space have the same response value except one or two. Thus 
we focus here on model adequacy. 

Residuals versus Predicted Probabilities with Lowess Smooth. If the logistic regres­
sion model is correct, then E {Y;} = 7r; and it follows asymptotically that: 

E{Y; - nd = E{ed = 0 

This ~uggests that if the model is correct, a lowess smooth of the plot of the residu­
als against the estimated probability n; (or against the linear predictor n[) should resu!t 
approximately in a horizontal line with zero intercept. Any significant departure from this 
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FIG URE 14.13 Residual Plots with Lowess Smooth-Disease Outbreak Example. 
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suggests that the model may be inadequate. In practice, the lowess smooth of the ordinary 
residuals, the Pearson residuals, or the studentized Pearson residuals can be employed. 
(Further details regaiding the plotting of logistic regression residuals can be found in 
Reference 14.5.) 

Shown in Figures 14.13a-<1 are residual plots for the disease outbreak example, each with 
the suggested lowess smooth superimposed. (We used the MINITAB lowess option with 
degree of smoothing equal to .7 and number of steps equal to 0 to produce these plots.) In 
Figures 14.13a and 14.13 b, the studentized Pearson residuals are plotted respectively against 
the estimated probability and the linear predictor. Figures 14.13c and 14.13d provide similar 
plots for the deviance residuals. In all cases, the lowess smooth lWproximates a line having 
zero slope and intercept, and we conclude that no significant model inadequacy is apparent. 

Half-Normal Probability Plot with Simulated Envelope. A half-norma(probabilityplot 
of the deviance residuals with a simulated envelope is useful both for examining the adequacy 
of the linear part of the logistic regression model and for identifying deviance residuals that 
are outlying. A half-normal probability plot helps to highlight outlying deviance residuals 
eVen though the residuals are not normally distributed. In a normal probability plot, the kth 
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Example 

ordered "esidual is plotted against the percentile :::1 (k - .375) /(n + .25) 1 or against J7ViSE 
times this percentile, as shown in (3.6). In a half-normal probability plot, the kth ordered 
absolute residual is plotted against: 

:::(k +n - 1/8) 
211 + 1/2 

(14.84) 

Outliers will appear at the top right of a half-normal probability plot as points separated 
from the others. However, a half-normal plot of the absolute residuals will not necessarily 
give a straight line even when the fitted model is in fact correct. 

To identify outlying deviance residuals, we combine a half-normal probability plot with a 
simulated envelope (Reference 14.6). This envelope constitutes a band such that the plotted 
residuals are all likely to fall within the band if the fitted model is correct. 

A simulated envelope for a half-normal probability plot of the absolute deviance residuals 
is constructed in the following way: 

I. For each of the 11 cases, generate a Bemoulli outcome (0, I), where the Bernoulli 
parameter for case i is ii:;, the estimated probability of response Y; = l' according to the 
originall y fitted model. 

2. Fit the logistic regression model for the 11 new responses where the predictor variables 
keep their original values, and obtain the deviance residuals. Order the absolute devi,mce 
residuals in ascending order. 

3. Repeat the first two steps 18 times. 

4. Assemble the smallest absolute deviance residuals from the 19 groups and determine 
the minimum value, the mean, and the maximum value of these 19 residuals. 

5. Repeat step 4 by assembling the group of second smallest absolute residuals, the group 
of third smallest absolute residuals, etc. 

6. Plot the minimum, mean, and maximum values for each of the n ordered re<;iduaI 
groups against the corresponding expected value in (14.84) on the half-normal probability 
plot for the original data and connect the points by straight lines. 

By using 19 simulations, there is one chance in 20, or 5 percent, that the largest absolute 
deviance residual from the original data set lies outside the simulated envelope when the 
fitted model is correct. Large deviations of points from the means of the simulated values 
or the occurrence of points Ilear to or outside the simulated envelope. are indications that 
the fitted model is not appropriate. 

Table 14.IOa repeats a portion of the data for the disease outbreak example, as well a~ the 
fitted values for the logistic regression model. It also contains a portion of the simulated 
responses for the 19 simulation samples. For instance, the simulated responses for case I 
were obtained by generating Bemoulli random outcomes with probability ii:, = .209. 

Table 14. lOb shows some of the ordered absolute deviance residuals for the 19 simulation 
samples. Finally, Table 14.10c presents the minimum, mean, and maximum for the 19 sim~ 
ulation samples for some of the rank order positions, the ordered abSOlute deviance for 
the original sample for these rank order positions, and corresponding::: percentiles. The. 
results in Table 14.JOc are plotted in Figure 14.14. We see clearly from this figure th~ 
the largest deviance residuals (which here correspond to cases 5 and 14) are farthest to the 
right and are somewhat separated from the other cases. However, d1ey fall well within ~ 
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TABLE 14.10 (a) Simulated Be~rioullrOu~cOrries 
Results for 
Simulated Simulatjon ~~.mp,l~ 
Envelope for 
Half-Nonnal 
Probability 
plot-Disease 

Outbreak 
Example. 

~l!RE 14.14 
, . iilf!Normal '. -'~ty 
'a 
"~ak 

:",-" 

PJe; 

y/ */ (1) (19) 

1 0 .209 0 6 
2 0 :219 0 o· 

.,. 
97 0 .092 0 0 
98 0 .171 1 .,.,. 0 

(b) Ordered Absolute Deviance Residuals 
for Simulation Sanip'les 

Order 
S,imulation ,Sample Position 

k (1) (19) 

1 .468 .368 
2 .468 .368 

.... '" 

" 97 1.849 2:085 , 
98 1.9J9 2.228 

(c) Minimum, Mean, and Maximum of Ordered Absolute Deviance 
Residuals for Simulation Samp'les 

Order 
Position 

k 

1 
2 

97 
98 

3.5 

3.0 

ro 2.5 
::J 

~ 2.0 
Q) 

0:: 
:> 1.5 

~ 1.0 

0.5 

Simulation Samp,les 

Minimum Mean Maximum 

.046 .289 .491-

.060 .296 .491 

1.804 2.273 3.194 
1.869 2.387 3.391 

0.0 LL ___ -1-___ -1-___ -L 

o 2 
Expected Value 

3 

Original 
Data z( k + 97.875) 

196.5 

.386 .008 
.386 .021 

2.082 2.397 
2.098 2.729 

;;i:-
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simulated envelope so d1at remedial measures do nol appear to be required. Figure 14.10 
also shows thai most of the absolute deviance residuals fall near the simulation means 
suggesting Ihat the logistic regression model is appropriate here. ' 

Detection of Influential Observations 
In this section we introduce three measures that can be used to identify influential ob­
servations. We consider the influence of individual binary cases on three aspects of the 
analysis: 

I. The Pearson chi-square statistic (l4.79b). 
2. The deviance statistic (14.82a). 
3. The fitted linear predictor, it;. 
As was the case in standard regression situations, we will employ case-deletion diagnostics 
to assess the effect of individual cases on the results of the analysis. 

Influence on Pearson Chi-Square and the Deviance Statistics. Let X" and DEV denote 
the Pearson and deviance statistics (14. 79b) and (I 4.82a) based on th'e full data set, <md let 
X~il and DEVuI denote the values of these test statistics when case i is deleted. The ith 
delta chi-square statistic is defined as the change in the Pearson statistic when the ithcase 
is deleted: 

6.X" = X" - X". 
I (II 

Similarly, the ith delta deviance statistic is defined as the change in the deviance statistic 
when the ith case is deleted: 

6.dcl', = DEV - DEV(iI 

Determination of the n delta chi-square statistics or the 11 delta deviance statistics requires; 
11 maximizations of the likelihood, which can be time consuming. For faster computing, the: 
following one-step approximations have been developed: 

6.X~ = rfp, 

6.dcvi = hiirfp, + dev~ 
(14.85) 

(14.86Y 

[n summary, 6.X~ and 6.dcvi give the change in the Pearson chi-square and devian¢ 
statistics, respectively, when tl1e ith case is deleted. They therefore provide measures ofthei 
influence of the ith case on these summary statistics. 

Interpretation of the delta chi-square and delta deviance statistics is not always a simple 
matter. [n standard regression situations, we employ various rules of thumb for judgingtb: 
magnitude of a regression diagnostic. An example of this is the Bonferroni outlier test (S¢;: 
tion 10.2) that is used in conjunction with the studentized deleted residual (10.26). Anoth. 
is the use of various percentiles of the F distribution for interpretation of Cook's distan., 
(Section 10.4). Guidelines such as these are generally not available for logistic regressio: 
as the distribution of the delta statistics is unknown except under certain restrictive assUll). 
tions. The judgment as to whether or not a case is outlying or overly influential is typic=--. 
made on the basis of a subjective visual assessment of an appropriate graphic. Usually, 
delta chi-square and delta deviance statistics are plotted against case number i, against 
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TABLE 14.11 Pearson Residuals, Studentized Pearson Residuals, Hat Diagonals, Deviance Residuals, Delta 
Chi-Square and Delta Deviance Statistics, and Cook's Distance-Disease Outbreak Example. 

Example 

(1,) 
rp;, 

(2) 
TsP/ 

(3) 
h/i 

~St 
AX'2 ,', 

.:g~~ 
....:0~524 
"';0.541 
-:6:350 

.039 
;040, 
.03~ 

(4) 
deY/' 

-"0.685 
",:;0~763' 
-"0:473 

O;2j~ 
0;292 
0~122' 

"(6) 
IS/!ev£; 
0.479 
0:506 
0.228 

(7) 
QI 

Oi)02 
0.002 
Q;O()1 

,..,.0.'358 
:-0:31'8 
~0,45~ 

.~ .... 
-0.363 
..,..0.322' 
,':':'0.463 

.025, 

.024: 

.036 

0.:132 
o~:ld4 
0.214: 

'0:001 
'O:Q01 
,O.OOg 

or against it;. Extreme values appear as spikes when plotted against case~number, or as 
outliers in the upper comers of the plot when plotted against iti or it;. 

Table 14.11 lists in columns 1-6 for a portion of the disease outbreak data the Pearson 
residuals rp" tIte studentized Pearson residuals rsp" the hat matrix diagonal elements hii' 
the deviance residuals, devi, the delta chi-square statistics 6.Xi, and the delta deviance 
residuals 6.devi. We illustrate the calculations needed to obtain 6. Xi ' and 6.devi, for the first 
case. As noted in 04.85) the first delta chi-square statistic is given by the square ofthe first 
studentized Pearson residual: 

Using (14.86) with hll = .039 and devl = -.685 from columns 3 and 4 of Table 14.11, 
the first delta deviance statistic is: 

Figures 14.15a and 14.15b provide index plots of the delta chi-square and delta deviance 
statistics for the disease outbreak example. The two spikes corresponding to cases 5 and 14 
indicate clearly that these cases have the largest values of the delta deviance and delta chi­
square statistics. Shown just below each of these in Figures 14.15c and 14.15d are plots of 
the delta chi-square and delta deviance statistics against the model-estimated probabilities. 
Note that cases 5 and 14 again stand out-:-this time in the upper left comer of the plot. The 
results suggest that cases 5 and 14 may substantively affect the conclusions. The cases were 
therefore flagged for potential remedial action at a later stage bf the analysis. 

Influence on the Fitted Linear Predictor: Cook's Distance. In Ch~pter 10, we intro­
duced Cook's distance statistic, Di , for the identification of influential observations. We 
noted that for the standard regression case Di measures the standardized change in the 
fitted response vector Y when the ith case is deleted. Similarly, Cook's distance for logistic 
regression measures the standardized change in the linear pr~dictor iti when the ith case 
is deleted. Like the delta statistics described above, obtaining these values exactly requires 
n maximizations of the likelihood. Instead, the following one-step approximation is used 
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FIG URE 14.15 Delta Chi-Square and Delta Deviance Plots-Disease Outbreak Example. 
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(Reference 14.5): 

OU-~--~~ __ ~~ __ ~~ __ ~~ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Estimated Probability 

.2 h 
D. - I Pi ii 

I - p(1 - h
ii

)2 
(14.87) 

Index plots of leverage values hii are useful for identifying out1i&rs in the X space, and 
index plots of D; can be used to identify cases that have a large effect on the fitted linear 
predictor. As was the case with the delta chi-square and delta deviance statistics, rules of 
thumb for judging the magnitudes of these diagnostics are not available, and we must rely 
on a visual assessment of an appropriate graphic. Note that influence on both the deviance 
(or Pearson chi-square) statistic and the linear predictor can be assessed simultaneously 
using a proportional influence or bubble plot of the delta deviance (or delta chi-square) 
statistics, in which the area of the plot symbol is proportional to D;. 

Example Cook's distances are listed in column 7 of Table 14.11 for a portion of the disease outbreak 
example. To illustrate the calculation of Cook's distance we again focus on the first case. 
We require hll = .039, rp; = -.514 from columns 1 and 3 of Table 14.11. Then, we have 
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FIGURE 14.16 Index Plots of Leverage Values, Cook's Distances, and Proportional-Influence Plot of Delta 
'ance Statistic-Disease Outbreak Example. 
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from (14.87) with p = 5: 

D( = r~ihii = (-.514)2(.039) = .0022 
p(1 - h;Y 5(1 - .039)2 

Figures 14.16a-c display an index plot of hu, an index plot of D;, and a proportional­
influence plot of the delta deviance statistics. The leverage plot identifies case 48 as being 
somewhat outlying in the X space-and therefore potentially influential-and the plot of 
Cook's distances indicates that case 48 is indeed the most influential in terms of effect on 
the linear predictor. Note that cases 5 and 14-previously identified as most influential in 
terms of their effect on the Pearson chi-square and deviance statistics-have relatively less 
influence on the linear predictor. This is shown also by the proportional-influence plot in 
Figure 14.16c. These two cases, which have the largest delta deviance values, are located 
in the upper left region of the plot. The plot symbols for these cases are not overly large, 
indicating that these cases are not particularly influential in terms ofthe fitted linear predictor 
values. Case 48 was temporarily deleted and the logistic regression fit was obtained (not 
shown). The results were not appreciably different from those obtained from the full data 
set, and the case was retained. ~ . 



14.9 Inf('n~llces about Mean Hes )OIH:ie 

Frequently, estimation of the probability n for one or :-;everal different sets of values of the 
predictor variables is required. I n the disease outbreak example, for instance, there may b 
interest in the probability of IO-year-old persons of lower socioeconomic St<ltUS living i

e 

. . h \. n city sector I havll1g contracted t e ( Isease. 

Point Estimator 
As usual, we denote the vector of the levels of the X variables for which n is to be estimated 
by Xii: 

X".I'_I 

and the mean response of interest by n/,: 

nil = [I +exp(-X;,~)rl 

The point estimator of nil will be denoted by if" and is as follows: 

if/, = [I +exp(-X;,b)r' 

where b is the vector of estimated regression coefficients in (14.43). 

Interval Estimation 

(14.88) 

(14.89) 

(14.90) 

We obtain a confidence interval for nil in two stages. First, we calculate confidence limits 
for the logit mean response n/,. Then we use the relation (14.38a) to obtain confidence limits 
for the mean response nil. To see this clearly, we consider 04.38a) for X = Xii: 

E{Y/,J = [I + exp(-X;,~)]-' 

and restate the expression by using the fact that E{YilJ = n/, and X;,~ = n;': 

nil = II + exp( -n;')r' (14.91) 

It is this relation in (14.91) that we utilize to convert confidence lill1its for n/, into confidence 
limits for nil. 

The point estimator of the logit mean response n;' = X;,~ is if;' = X;,b. The estimated· 
approximate variance of if;' = X;, b according to (5.46) is: 

s2{if;'J = s2{X;,bJ = X;,s2{bJXiI (14.92) 

where s2{b} is the estimated approximate variance-covariance matrix of the regression 
coefficients in (14.51) when 11 is large. 

Approximate I - c; large-sample confidence limits for the logit mean response n~ are 
then obtained in the usual fashion: 

L = if;' - z( I - c; /2)s{rr;' J 

U = if;' + z( I - c; /2)s{rr;' J 

Here. Land U are, respectively, the lower and upper confidence limits for n;'. 

(14.93£1) 

(14.93b) 
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Finally, we use the monotonic relation between trh and 7r~ in (14.91) to convert the 
confidence limits Land U for 7r~ into approximate 1 - a confidence limits L * and U* for 
the mean response 7rh: 

L* = [1 + exp(-L)r l 

U* = [1 + exp( -U)r l 

(14.94a) 

(14.94b) 

Simultaneous Confidence Intervals for Several Mean':Responses 
,. . When it is desired to estimate several mean responses trh corresponding to different Xh 

vectors with family confidence coefficient 1 - a, Bonferroni simultaneous confidence in­
tervals may be used. The procedure for g confidence intervals is the same as that for a single 
confidence interval except that z(l - (12) in (14.93) is replaced by z(1 - aI2g). 

~aniple In the disease outbreak example of Table 14.3, it is desired to find an approximate 95 percent 
confidence interval for the probability trh that persons 10 years old who are oflower socio­
economic status and live in sector 1 have contracted the disease. The vector Xh in (14.88) 
here is: 

Using the results in Table 14.4a, we obtain the point estimate of the logit mean response: 

ft~ = X~b = -2.3129(1) + .02975(10) + .4088(0) - .30525(1) + 1.5747(0) 

= -232065 

The estimated variance of ft~ is obtained by using (14.92) (calculations not shown): 

S2{ft~} = .2945 

so that s{ftn = .54268. For 1 - a = .95, we require z(.975) = 1.960. Hence, the confi­
dence limits for the logit mean response 7r~ are a'icording to (14.93): 

L = -2.32065 - 1.960(.54268) = -3.38430 

U = -2.32065 + 1.960(.54268) = -1.25700 

Finally, we use (14.94) to obtain the confidence limits for the mean response 7rh: 

L * = [1 + exp(3.38430)r1 = .033 

U* = [1 + exp(1.25700)r l = .22 

Thus, the approximate 95 percent confidence interval for the mean response trh is: 

.033 S trh S .22 

We therefore find, with approximate 95 percent confidence, that the probability is between 
.033 and .22 that 10-year-old persons oflower socioeconomic status who live in sector 1 have 
contracted the disease. This confidence interval is useful for indicating that persons with 
the specified characteristics are not subject to a very high probability of having contracted 
the disease, but the confidence interval is quite wide and thus not precise. 
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14.10 

Comment 

The confidence limits fOr][1I in (14.94) are not symmetric around the point estimate. In the diSea 
b I I" I'" se out rea" cxamp e, for mslance. t le pomt estImate IS: 

it/I = II + exp(2.32065) [-I = .Ol\9 

while the confidence limits are '<)33 and .22. The reason lor the asymmetry is that it/I is not a lin 
functionofiti,. e: 

PredictlOll of a Ne\y Obt:i(~rva1ioll 

Multiple logistic regression is frequently employed for making predictions for new observa­
tions. In one application, for example. health personnel wished to predict whether a certain 
surgical procedure will ameliorate a new patient's condition. given the patient's age, gen­
der. and various symptoms. In another application. marketing officials of a computer firm 
wished to predict whether a retail chain will purchase a new computer. On the basis of the 
age of the company's current computer, the company's current workload, and other factors. 

Choice of Prediction Rule 
Forecasting a binary outcome for given levels XII of the X variables is simple in the sense 
that the outcome I will be predicted if the estimated value it" is large. and the outcome 0 
will be predicted if it ll is small. The difficulty in making predictions of a binary outcome is 
in determining the cutoff point, below which the outcome 0 is predicted and above which 
the outcome I is predicted. A variety of approaches are possible to determine where this 
cutoff point is to be located. We consider three approaches. 

I. Use.5 as the cwoff With this approach. the prediction rule is: 

If rrll exceed" .5. predict I; otherwise predict O. 

This approach is reasonable when (a) it is equally likely in the population of interest that 
outcomes 0 and I will occur; and (b) the costs of incorrectly predicting 0 and I are approx­
imately the same. 

2. Filld the best cutofffor the £Iota set 0/1 which the multiple logistic regression model 
is based. This approach involves evaluating different cutoffs. For each cutoff, the I1Ile is 
employed on the II cases in the model-building data set and the proportion of cases incorrectly 
predicted is ascertained. The cutoff for which the proportion of incorrect predictions is lowest 
is the one to be employed. 

This approach is reasonable when (a) the data set is a random sample from the relevant 
population, and thus reflects the proper proportions of Os and I s in the population, and 
(b) the costs of incorrectly predicting 0 and I are approximately the same. The proportion 
of incon'ect predictions observed for the optimal cutoff is likely to be an overstatement 
of the ability of the cutoff to correctly predict new observations, especially if the model­
building data sel is not large. The reason is that the cutoff is chosen with reference to the 
saine data set fron1 which the lo£istic n10del was fitted and thus is best for these data only. ~. 
Consequently. as we explained in Chapter 9, it is important that a validation data set be 
employed to indicate whether the observed predictive ability for a fitted regression model 
is a valid indicator for predicting new observations. 
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• 
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3. Use prior probabilities and costs of incorrect predictions in determining the cutoff. 
When prior information is available about the likelihood of Is and Os in the population 
and the data set is not a random sample from the population, the prior information can 
be used in finding an optimal cutoff. In addition, when the cost of incorrectly predicting 
outcome 1 differs substantially from the cost of incorrectly predicting outcome 0, these costs 
of incorrect consequences can be incorporated into the determination of the cutoff so that 
the expected cost of incorrect predictions will be minimized. Specialized references, such 
as Reference 14.7, discuss the use of prior information and costs of incorrect predictions 
for determining the optimal cutoff. 

We shall use the disease outbreak example of Table 14.3 to illustrate how to obtain the cutoff 
point for predicting a new observation, even though the main purpose of that study was to 
determine whether age, socioeconomic status, and city sector are important risk factors. 
We assume that the cost of incorrectly predicting that a person has contracted the disease 
is about the same as the cost of incorrectly predicting that a person has not contracted the 
disease. The estimated logistic response function is given in (14.46). 

Since a random sample of individuals was selected in the two city sectors, the 98 cases in 
the study constitute a cross section of the relevant population. Consequently, information is 
provided in the sample about the proportion of persons who have contracted the disease in 
the population. Of the 98 persons in the study, 31 had contracted the disease (see the disease 
outbreak data set in Appendix C.1O); hence the estimated proportion of persons who had 
contracted the disease is 31/98 = .316. This proportion can be used as the starting point in 
the search for the best cutoff in the prediction rule. 

Thus, the first rule investigated was: 

Predict 1 if ith ~ .316; predict 0 if ith < .316 (14.95) 

Note from Table 14.3, column 6, that it( = .209 for case 1; hence prediction rule (14.95) 
calls for a prediction that the person has not contracted the disease. This would be a correct 
prediction. Similarly, prediction rule (14.95) would correctly predict cases 2 and 3 not to 
have contracted the disease. However, the prediction with rule (14.95) for case 4 (person has 
contracted the disease because it4 = .371 ~ .316) would be incorrect. Similarly, the predic­
tion for caSe 5 (person has not contracted the disease becau~e its = .111 < .316) would be 
incorrect. Table 14.12a provides a summary of the number of correct and incorrect classi­
fications based on prediction rule (14.95). Of the 67 persons without the disease, 20 would 
be incorrectly predicted to have contracted the disease, or an error rate of 29.9 percent. 

TABLE 14.12 Classification Based on Logistic Response Function (14.46) and Prediction Rules 
(14.95) and (14.96)-Disease Outbreak Example. 

?(~ (a) Rule (14.95) 

: filassific.ation 

, ~:£~ 
)/=0 )/=1 

47 20 
8 23 

total 55 43 

Total' 

67 
31 
98 

(b) Rul~04.96) 

17 
22 

3'9. 

Total 

67 
31 

98 
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FIGURE 14.17 
JMPROC 
Curve-­
Disease 
Outbreak 
Example. 

Of the 31 persons with the disease, eight would be incorrectly predicted with rule (14.95) 
not to have contracted the disease, or 25.8 percent. Altogether, 20 + 8 = 28 of the 98 predic_ 
tions would be incorrect, so that the prediction error rate for rule (14.95) is 28/98 = .286o

r 
28.6 percent. 

Similar analyses were made for other cutoff points and it appears that among the cutoffs 
considered, use of the following rule may be best: 

Predict 1 if fth 2: .325; predict 0 if fth < .325 (14.96) 

Table 14.12b provides a summary of the correct and incorrect classifications baSed on 
prediction rule (14.96). The prediction error rate for this rule is (9 + 17)/98 = .265 or 
26.5 percent. Note also that for this rule, the error rates for persons with and without the 
disease (9/31 and 17/67) are quite close to each other. Thus, the risks of incorrect predictions 
for the two groups are fairly balanced, which is often desirable. Note also that the error 
rates for persons with and without the disease are much less balanced as the cutoff is shifted 
further away from the optimal one in either direction. 

An effective way to display this information graphically is through the receiver oper­
ating characteristic (ROC) curve, which plots P(Y = 11 Y = 1) (also called sensitivity) as 
a function of 1 - P(Y = 01 Y = 0) (also called I-specificity) for the possible cutpoints nil. 
Figure 14.17 exhibits the ROC curve for model (14.46) for all possible cutpoints between 
o and 1. (See A.7a for the definition of conditional probability.) 

To see how a single point on the ROC curve in Figure 14.17 is determined, we consider 
rule (14.95), for which the cutoff is .316. From Table 14.12a, the sensitivity is: 

1.00 

0.90 

~ 0.80 
.::; 
:E 0.70 
VI 
c 
~ 0.60 
oJ 0.50 > . .p 

·Vi 0040 0 
0-

w 0.30 
::J 

~ 0.20 

0.10 

A 23 
P(Y=IIY = 1) = - = .74 

31 

Receiver Operating Characteristic Curve 

{
l-SpecificitY = .30 

Sensitivity = .74 

0.00 L---'----'-----'_.L.-----'------'-_L........-'---'----' 
.00 .10 .20 .30 040 .50 .60 .70 .80 .90 1.00 

l-Specificity, False Positive 

Using Y = '1' to be the positive level 
Area Under Curve = 0.77684 
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Also, I-specificity here is: 

A 47 
1 - P(Y = OIY = 0) = 1- - = .30 

67 

This point is highlighted on the ROC curve in Figure 14.17. 
The area under the ROC curve is a useful summary measure of the model's predictive 

power and is identical to the concordance index. Consider any pair of observations (i, j) 
such that Yi = 1 and Yj = o. Since Yi > Yj , this pair is said to be concordant if fti > ft j • 

The concordance index estimates the probability that the predictions and the outcomes are 
concordant (Reference 14.2). A value of 0.5 means that the predictions were no better than 
random guessing. For the disease outbreak model (14.96), the ROC area is 0.777. 

A validation study will now be required to determine whether the observed prediction 
error rate for the optimal cutoff properly indicates-;the risks of incorrect predictions for new 
observations, or whether it seriously understates them. In any case, it appears already that 
fitted logistic regression model (14.96) may not be too useful as a predictive model because 
of the relatively high risks of making incorrect predictions. 

Comment 
A limitation of the prediction rule approach is that it dichotomizes a continuous predictor fi: where 
the choice of cutpoint fi:" is arbitrary and is highly dependent upon the relative frequencies of Is and 
Os observed in the sample. • 

ation of Prediction Error Rate 
The reliability of the prediction error rate observed in the model-building data set is exam­
ined by applying the chosen prediction rule to a validation data set. If the new prediction 
error rate is about the same as that for the mode;l-building data set, then the latter gives a 
reliable indication of the predictive ability_of the fitted logistic regression model and the 
chosen prediction rule. If the new data lead to a considerably higher prediction error rate, 
then the fitted logistic regression model and the chosen prediction rule do not predict new 
observations as well as originally indicated. 

In the disease outbreak example, the fitted lOgistic regression function (14.46) based on the 
model-building data set: 

ft = [1 + exp(-3.8877 - .02975X1 - .4088X2 + .30525X3 - 1.5747X4)r l 

was used to calculate estimated probabilities fth for cases 99-196 in the disease outbreak data 
set in Appendix C.1O. These cases constitute the validation data set. The chosen prediction 
rule (14.96): 

Predict 1 if fth :::: .325; predict 0 if fth < .325 
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14.11 

was then applied to these estil11ated probabilities. The percent prediction error rates were 
as follows: 

Disease Status 

With 
Disease 

46.2 

Without 
Disease 

38.9 
Total 
40.8 

Note that the total prediction error rate of 40.8 percent is considerably higher than the 
26.5 percent elTor rate based on the model-building data set. The latter therefore is not a 
reliable indicator of the predictive capability of the fitted logistic regression model and the 
chosen prediction rule. 

We sl10uld mention again that making predictions was not the primary objective in the 
disease outbreak study. Rather, the main purpose was to identify key explanatory variables. 
Still, the prediction error rate for the validation data set shows that there must be other key 
explanatory variables affecting whether a person has contracted the disease that have not 
yet been identified for inclusion in the logistic regression model. 

Comment 

An alternative to mUltiple logistic regression for predicting a binary response variable when the 
predictor variables are continuou~ is disCfiminanf analysis. This approach assumes that the predictor 
variables follow ajoint multivariate normal distribution. Discriminant analysis can also he used when 
this condition is not mel, but the approach is not optimal then and logistic regression frequently 
is preferable. The reader is referred to Reference 14.8 for an in-depth discu~sion of discriminant 
analysis. • 

POlY101110US Logistic Rt:gressiOll for ~OJllillal H{'spollse 

Logistic regression is most frequently used to model the relationship between a dichotomous 
response variable and a set of predictor variables. On occasion, however. the response 
variable may have more than two levels. Logistic regression can still be employed by 
means of a po/yt011lous-or mu/ticategory-logistic regression model. Polytomous logistic 
regression models are used in many fields. In busines~, for instance, a market researcher 
may wish to relate a consumer's choice of product (product A, product B. product C) to 
the consumer's age, gender, geographic location. and several other potential explanatory 
variables. This is an example of Ilomilw/ pOlytomous regression. because the response 
categories are purely qualitative and not ordered in any way. Ordilw/ response categories can 
also be modeled using polytomous regression. For example, the relation between severity 
of disease measured on an ordinal scale (mild, moderate, severe) and age of patient, gender 
of patient, and some other explanatory variables may be of interest. We consider ordinal 
polytomous logistic regression in detail in Section 14.12. . 

In this section we discuss the use of polytomous logistic regression for nominal muln- " 
category responses. Throughout. we will use tl1e pregnancy duration example. introduced ~. 
in Section 14.2 in the context of binary logistic regression. to illustrate concepts. This time, r. 
however, the response will have more than two categories. ' 
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Pregnancy Duration Data with Polytomous Response 

• 
fABLE 14.13 - -x.;::.~ 

(1) 

A study was undertaken to determine the strength of association between several risk factors 
and the duration of pregnancies. The risk factors considered were mother's age, nutritional 
status, history oftobacco use, and history of alcohol use. The response of interest, pregnancy 
duration, is a three-category variable that was coded as follows: 

Yj Pregnancy Duration Category 

1 Preterm (less than 36 weeks) 
2 Intermediate term (36 to 37 weeks) 
3 Full term (38 weeks or greater) 

Relevant data for 102 women who had recently given birth at a large metropolitan hospital 
were obtained. A portion ofthese data is displayed in Table 14.13. The polytomous response, 
pregancy duration (y), is shown in column 1. Nutritional status (X 1)' shown in column 5, is 
an index of nutritional status (higher score denotes better nutritional status). The predictor 
variable age was categorized into three groups: less than 20 years of age (coded 1), from 21 
to 30 years of age (coded 2), and greater than 30 years of age (coded 3). It is represented by 
two indicator variables (X2 and X 3 ), shown in columns 6 and 7 of Table 14.13, as follows: 

Class 

Less than or equal to 20 years of age 
21 to 30 years of age 
Greater than 30 years of age 

1 
o 
o 

o 
o 
1 

(The researchers chose the middle category-21 to 30 years of age-as the referent category 
for this qualitative predictor because mothers in this age group tend to have the lowest risk 
of preterm deliveries. This leads to positive regression coefficients for these predictors, and 
a slightly simpler interpretation.) Alcohol and smo~ng history were also qualitative pre­
dictors; the categories were "Yes" (coded 1) and "No" (coded 0). Alcohol use history (X4 ), 

and smoking history (Xs) are listed in columns 8 and 9 of Table 14.13 . 

Data-Pregnancy Duration Example with Polytomous Response. 

(2) (3) (4) (5) (6) (7) (8) (9) 
Nutritional Alcohol Use Smoking 

~~~ puration 
Response Category 

Status 
Age-Categpry 

History History 
YI YI1 Yi2 Yi3 Xil X i2 Xi3 XI4 XIS 

1 1 0 0 150 0 O. 0; 1 
g 1 1 0 0 124 1 0 0 0 
ii 1 1 0 0 128 0 0 0 1 

IilQ 3 0 .0 117 0 O. 1 
3 0 0 1155 0 0 1 

I~ 3 0 0 134 6 0 1 



Because pregnancy duration is a qualitative variable with three categories, we will c 
b· . b f' h f' 1 reate three Inary response vana les, One or eac response category as 01 ows: 

Yil = {:) 

Yi~ = {~ 

Yi3 = {~ 

if case i response is category I 

otherwise 

if case i response is category 2 
otherwise 

if case i response is category 3 
otherwise 

These three coded variables are also included in Table 14.13 in columns 2, 3, and 4. Note 
that because Yi! + Yi~ + YiJ = I, the value of anyone of these three binary variables can 
be detern1ined from the other two. For example, Yi3 = [ - Yil - Yi2 . 

We first treat pregnancy duration as a nominal response, ignoring the time-based orclering 
of the categories: later we will show how a more parsimonious model results when we treat 
pregnancy duration as an ordinal response. 

J - 1 Baseline-Category log its for Nominal Response 
In general, we will assume there are J response categories. Then for the ith observation, 
there will be J binary response variables, Yi! . ... , YiJ , where: 

if case i response is category j 
otherwise 

Since only one category can be selected for response i, we have: 

] 

'y.= 1 o IJ 

j=1 

We will require some additional notation for the multicategory case. First. let Tfij denote 
the probability that category j is selected for the ith response. Then: _. 

Tfij = P(Yij = 1) 

[n the binary case, J = 2. Suppof;e that we code Yi = 1 if the ith response is category 1, 
and we code Yi = 0 if the ith response is category 2. Then: 

Tf; = Tfi I and I - Tf; = Tf;~ 

For binary logistic regression. we model the logit of Tfi using the linear predictor. Since 
there are only two categories in binary logistic regression, the logit in fact compares the 
probability of a category-l response to the probability of a category-2 response: 

I [Tfi] [Tfil] I I Tf; = log,. -1-- = loge - = Tfil2 = X;~12 
- IT; ITi'}. 

Note thal we have used Tf:12 and ~12 to emphasize that the linear predictor is modeling the 
logarithm of the ratio of the probabilities for categories 1 and 2. 

Now for the J polytomous categories, there are J (1 - 1)/2 pairs of categories, and 
therefore J (1 - I )/2 linear predictors. For example. for the pregnancy duration data, 
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J = 3 and we have 3(3 - 1)/2 = 3 comparisons: 

Fortunately, it is not necessary to develop all J(J - 1)/2 lOgistic regression models_ One 
category will be chosen as the baseline or referent category, and then all other categories will 
be compared to it. The choice of baseline or referent category is arbitrary. Frequently the 
last category is chosen and, indeed, this is usually the default choice for statistical software 
programs. One exception to this may be found in epidemiological studies, where the category 
having the lowest risk is often used as the referent category_ 

Using category J to denote the baseline category, we need consider only the J - 1 
comparisons to this referent category. The logit for the jth such comparison is: 

j = 1, 2, ... , J - 1 (14.97a) 

Since it is understood that comparisons are always made to category J, we let 1T[j = 1T[jJ 

and ~j = ~jJ in (14.97a), giving: 

j = 1,2, .. _, J - 1 (14.97b) 

The reason that we need to consider only these J - 1 logits is that the logits for any 
other comparisons can be obtained from them. To see this, suppose J = 4, and we wish to 
compare categories 1 and 2. Then: 

loge [ 
1Ti I ] [1TiI 1Ti4 ] = loge - x-
1Ti2 1Ti4 1Tn 

= loge [1TiI] _ loge [1Ti2] 
1Ti4 1Ti4 

= X;~l - X;~2 

In general, to compare categories k and I, we have: 

(14.98) 

Given the J - Ilogit expressions in (14.98) it is possible (algebra not shown) to obtain 
the J - 1 direct expressions for the category probabilities in terms of the J - 1 linear 
predictors, X'~ j_ The resulting expressions are: 

exp(X~~) 
1Tij = J 1 j = 1,2, .. _, J - I (14.99) 

1 + Lk':-l exp(X~~k) 
We next consider methods for obtaining estimates of the J - 1 parameter vectors ~I' 

~2'···' ~J-I· 
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Maximum Likelihood Estimation 
There are two approaches commonly used for obtaining estimates of the parameter vecto 
~ I' .... ~ ] -I: both employ maximum likelihood estimation. With the first approach, separa~' 
binary logistic regressions are carried out for each of the J - I comparisons to the baselin~ 
category. For example, to estimate ~I' we drop from the data set all cases except those fi 
v-:hich eith~r .Y;I = lor. YiJ ~ I. Since ?nly two cat~gories. are then pr~sent, we can app; 
bInary logistic regressIOn directly. This approach IS particularly useful when statistical 
software is not available for multicategory logistic regression (Reference 14.9). 

A more effective approach from a statistical viewpoint is to obtain estimates of the 
J - 1 logits simultaneously. To do so, we require the likelihood for the full clata set. To fix 
ideas, suppose that there are J = 4 categories and that the third category is selecteel forthe 
ith response. That is, for case i we have: 

Yil =0 

The probability of this response is: 

P(Yi = 3) = Tfi3 

= [TfiIIO x [Tfd
O x [Tf;3] I x [Tfi4JlJ 

4 

= II[Tfij]Yij 

j=1 

For 11 independent observations and J categories, it is easily seen that the likelihood is: 

(14.100) 

It can be shown that the log likelihood is given by: 

(14.101) 

The maximum likelihood estimates of ~I"'" ~J-I are those values. b l ..... b i - I , that 
maximize (14.101). As usual, we will rely on standard statistical software programs to 

obtain these estimates. 
As was the case for binary logistic regression, the J - 1 fitted response functions may be 

obtained by substituting the maximum likelihood estimates of the J - 1 parameter vectors 
into the expression in ([4.99): 

(14.102) 

We turn now to an example to illustrate the analysis and interpretation of a nominal-level 
polytomous logistic regression model. 



~ 
'Ex' ample 
'~ 

FIGURE 14.18 
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For the pregnancy duration data in Table 14.13,asetof J -1 = 2first-orderlinearpredictors 
was initially proposed: 

for j = 1,2 

MINITAB's nominal logistic regression output is displayed in Figure 14.18. It first indicates 
that the response had three levels, 1, 2, and 3, and that the referent response event is 
Yi = 3. Following this summary is the logistic regression table, which contains the estimated 
regression coefficients, estimated approximate standard errors, the Wald test statistics and 
P -values, the estimated odds ratios for the two estimated linear predictors, and the 95 percent 
confidence intervals for the odds ratios. The maximum likelihood estimates of ~l and ~2 are: 

3.958 5.475 
-0.0464 -0.0654 

b 1 = 2.9135 
b2 = 2.9570 

1.8875 2.0597 
1.0670: 2.0429 
2.2305" 2.4524 

Before using the fitted model to make inf~rences, various regression diagnostics similar to 
those already discussed for binary logistic regression should be examined. In polytomous 
logistic regression, the multiple outcome categories make this a more difficult problem 

POlytomous Nominal MTB Output 
MINITAB Response Information 

Nominal 
Logistic 
Regression 
Outpnt­
Pregnancy 
puration 
Example. 

• 

Variable Value Count 
preterm 3 

2 

41 (Reference Event) 
35 

1 
Total 

26 
102 

Logistic Regression Table 

Predictor Coef 
Legit 1: (2/3) 
Constant 3.958 
nutritio -0.04645 
agecatl 2.9135 
agecat3 1.8875 
alcohol 1.0670 
smoking 2.2305 

Logit 2: (1/3) 
Constant 5.475 
nutritio -0.06542 
age cat 1 2.9570 
agecat3 2.0597 
alcohol 2.0429 
smoking 2.4524 

Log-likelihood = -84.338 

SE Coef Z 

1.941 2.04 
0.01489 -3.12 

0.8575 3.40 
0.8088 2.33 
0.6495 1.64 
0.6682 3.34 

2.272 2.41 
0.01824 -3.59 

0.9645 3.07 
0.8947 2.30 
0.7097 2.88 
0.7315 3.35 

P 

0.041 
0.002 
0.001 
0.020 
0.100 
0.001 

0.016 
0.000 
0.002 
0.021 
0.004 
0.001 

Test that all slopes are zero: G = 52.011, DF = 10, 

Odds 95% CI 
Ratio Lower Upper 

0.95 0.93 0.98 
18.42 3.43 98.91 
6.60 1.35 32.23 
2.91 0.81 10.38 
9.30 2.51 34.47 

0.94 0.90 0.97 
19.24 2.91 127.41 
7.84 1.36 45.30 
7.71 1.92 31.00 

11.62 2.77 48.72 

P-Value = 0.000 
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14.12 

than was the case for binary logistic regression. We thus recommend assessing the 
\ .. .. . I· . . h J . \. . fit anc momtonng logistic regresSIOn ( !agnostics uSlOg t e - I mc IVldual binary logis. 

regressions, as described in the first paragraph on page 612. Hence, we would assess the ~~ 
of the two logistic regression models separately, and then make a statement about the fit f ~ 
the polytomous logistic model descriptively. Diagnostics. including the Hosmer-Lemesho

o 

test for goodness of fit. simulated envelopes for deviance residuals, and plots of infiuenc
W 

statistics were examined for the pregnancy duration data, and no serious departures we e 
found (results not shown). We turn now to model interpretation and inference. re 

As indicated in Figure 14.18, all Wald test P -values are less than .05-with the exception 
of alcohol in the first linear predictor-indicating that all of the predictors should be retained 
In all cases, the direction of the association between the predictor& and the esti mated logit~ 
as indicated by the signs of the estimated regression coefficients, were as expected. 

For teenagers, the estimated odds of delivering preterm compared to full teon are 
18.42 times the estimated odds for women 20-30 years of age; the 95% confidence in­
terval for this odds ratio has a lower limit of 3.43 and an upper limit of 98.91. Thus while 
the age effect is estimated to be very large, there is considerable uncertainty in the estimate. 
Similarly, the estimated odds for teenagers of delivering intermediate term compared to 

full term are 19.24; the lower 95% confidence limit is 2.91 and the upper limit is 127.41. 
History of smoking, history of alcohol use. and being in the 30-and-over age category also 
increase the estimated odds of delivering preterm or intermediate term compared to full 
term, though less dramatically. The negative estimated coefficients for nutritional status in­
dicate that a lower nutritional status is associated with increased odds of deliveringprcterm ~ 

or intermediate term compared to full term. 

Comment 

To derive expression (14.101) for the log likelihood, we first obtain the logarithm of (14.100) and 
'\"'J-I ,\",1-1 

let IT;] = 1 - L...,j~1 IT;j and Yi./ = 1 - L...,j~1 Y;j. It follows that: 

Substitution of the expressions in (14.97b) for 10g,.lIT;j/IT;.d and in (14.99) for ITij in the second tenn 
leads to the desired log likelihood in (14.10 I). • 

POlytOJllOIIS Logistic Regressioll for Ordjnal Response 

Up to this point, we have considered polytomous logistic regression models for unordered 
categories. Categories, however, are frequently ordered. Consider the following response 
variables: 

1. A food product is rated by consumers on a 1-10 hedonic scale. 
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2. In an economic study, persons are classified as either not employed, employed part time, 
or employed full time. 

3. The quality of sheet metal produced is rated on a 1-5 scale, depending on the clarity and 
reflectivity of the surface. 

4. Employees are asked to rate working conditions using a 7-point scale (unacceptable, 
poor, fair, acceptable, good, excellent, outstanding). 

5. The severity of cancer is rated by stages on a 1-4 basis. 

Such responses can be analyzed by using the techniques for nominal logistic regression 
described in Section 14.11, but a more effective strategy, yielding a more parsimonious and 
more easily interpreted model, results if the ordering of the categories is taken into account 
explicitly. The model that is usually employed is called the proportional oMs model. 

To motivate this model, we revisit the pregnancy duration example. We will assume that 
pregnancy duration is a continuous response denoted by f{. For ease of exposition, we will 
also assume that there is just one (quantitiative) predictor, nutrition index, Xii' Assume that 
ft can be represented by the simple linear regression model: 

fr = '~~ + f3~XiI + kCL 
;-J, 

where CL follows the standard logistic distribution (14.14) with mean zero and standard 
deviation 1T /.j3, and k is a constant that satisfies: 

a{fn = ka{cd = k ~ 

Researchers were interested in specific categories of pregnancy delivery time and therefore 
discretized pregnancy duration ft using the following upperbounds or cutpoints for each 
category: 

y/ Category yc 
/ Cutpoint T 

1 Preterm o :s Y{ < 36 weeks Tl = 36 weeks 
2 Intermediate term - 36 weeks :s Y{ < 38 weeks T2 = 38 weeks 
3 Full term 38 weeks :s YF < 00 T3 = 00 

The proportional odds model for ordinal logistic regression models the cumulative proba­
bilities P (fi :s j) rather than the specific category probabilities P (fi = j) as was the case 
for nominal logistic regression. We now develop the required expressions for the cumulative 
probabilities. 

For j = 1 we have: 

P(fi.:s 1) = P(f{ .:s TI) 

= P(f3~ + f3~Xj + kCL .::; TI) 

= P(kCL :s TI - f3~ - f3~Xi) 

( 
TI - f3~ f3f ) = P CL'::; k - k"Xi 

= P(cL .::; a'i + f3IXi) 

(14.103a) 

(14.103b) 

(14.103c) 

(14.103d) 

(14.103e) 
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where 0:1 = (TI - fJ(~)/ k and fJl = - fJ~ / k. Since CL follows a standard logistic distrihltio 
the cumulative probability in (l4.103e) is obtained by using the cumulative distribut' n, . Ion 
functIOn (l4.14b): 

exp(O:I + fJl Xi) 
P(Yi.:s I) = nil = -------

1 + exp(al + fJl Xj) 

For j = 2, following the development in ([ 4. 103), we have: 

P( Yi .:s 2) = p(Y;" .:s T2 ) 

= P(fJ; + fJ~ X j + kCL .:s T2 ) 

= P(kCL .:s T2 - fJ~ - fJ~X;) 

= P CL < - -X· ( 
T2 - fJ~ fJf ) 

- k k I 

= P(CL .:s a2 + /-3 1 Xi) 

exp(a2 + fJl Xi) 

1+ exp(a2 + fJl Xi) 

(14.103f) 

(14.104a) 

(14.104b) 

(14.104c) 

(14.104d) 

(14.104e) 

(14.104f) 

Notice that the only difference between (14.1030 and (J 4.1040 involves the intercept 
terms al and a2. The slopes /-3 1 are the same in both expressions. For the multiple regression 
case involving J ordered categories, we let: 

Xi = r ;;~ 1 ~ = r ~~ 1 
X,.p_ 1 fJp-1 

Equations (14.1030 and (14.104f) become for category j: 

. exp(aj + X;~) 
PrY; < J) = -----'---'--

- 1 + exp(aj + X[~) for j = 1,2, ... , J - 1 (14.105) 

Model (14.105) is often refen-ed to as the proportional odds model. Taking the logit trans­
formation of both sides yields the J - I cumulative logits: 

00 -a.+ (.l I [ 
P (Yi .:s j) ] X' 

be I - P(Y, .:s j) - ] ;P 
for j = I, ... , J - I (14.106) 

The diffel-ence between the ordinallogits in (14.106) and the nominallogits in (14.97b) 
should now be clear. [n the nominal case, each of the J - I parameter vectors ~j is unique. 
For ordinal responses, the slope coefficient vectors ~ m-e identical for each of the J - I 
cumUlative logits, but the intercepts differ. 

As in the binary logistic regl-ession case, each slope parameter can again be interpreted 
as the change in the logarithm of an odds ratio--this time the cumulative odds ratio-for a 
unit change in its associated predictor. In general, (14.106) satisfies, for j = L ... , J -I: 

100 - = X· -X· [ 
P(Yi .:s k) . P(Yj.:s k)] f 

be P(Y
i 

> k) . P(Y
i 

> k) (, J) ~ (14.107) 
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We now briefly discuss estimation methods before returning to the pregnancy duration 
example. 

Maximum Likelihood Estimation. As was the case for nominal logistic regression, 
separate binary logistic regressions can be used to obtain estimates of the J - 1 linear 
predictors in (14.106). For j = 1, ... , J - 1, we construct the binary outcome variable: 

(j) {I ifYiSj y. = 
, 0 ifYi>j 

and carry out a logistic regression analysis based on y/j). Note that this approach leads to 
J - 1 separate estimates of the slope parameter vector ~. 

A better approach, if the required software is available, is to estimate a'(, •.. , a'J-1 and 
~ simultaneously using maximum likelihood estimation. From (14.100), the likelihood is 
given by: 

P(Y".. Y;) ~ g (gIn'll"') 
= fI (0 [P(Yi S j) - P(Yj S j - l)]Y;j) 

,=1 J=I 

(14.108) 

Substitution of P(Yi S J) = 1, P(Yi SO) = 0, and the expression for P(Yi S j), 
j = 1, ... , J -1, in (14.105) yields the required expression for the likelihood in terms of 
a'1, ... ,a'J-I, and ~. The maximum likelihood estimates are those values of a'1, ... ,a'J-1 

and ~, namely, a(, ... , aJ-1 and b that maximize (14.108). As always, we shall rely on 
standard statistical software to carry out the maximization. We now return to the pregnancy 
duration example. 

We continue the analysis of the pregnancy duration data, this time under the assumption 
that the response is ordinal, rather than nominal. Recall that Yj = 1 indicates preterm de­
livery, Yj = 2 indicates intermediate-term delivery, and Yj = 3 indicates full-tenn delivery. 
MINITAB ordinal logistic regression output is shown in Figure 14.19. As required with 
J = 3, the program provides estimates for two intercepts, al = 2.930 and a2 = 5.025, and 
p - 1 = 5 slope coefficients, b l = -.04887, b2 = 1.9760, b3 = 1.3635, b4 = 1.5915, and 
b5 = 1.6699. The Wald P-values indicate that all of the regression coefficients are statisti­
cally significant at the .05 level. 

As noted above, the coefficients can be interpreted as the change in the cumulative odds 
ratio for a unit change in the predictor. For example, the results indicate that the logarithm of 
the odds of a pre- or intermediate-term delivery (Yi S 2) for smokers (X5 = 1) is estimated 
to be b4 = 1.5915 times the logarithm of the odds for nonsmokers (X5 = 0). The estimated 
cumulative odds ratio is given by exp(1.519) = 4.91 and a 95% confidence interval for 
the true cumulative odds ratio has a lower limit of 2.02 and an upper limit of 11.92. The 
remaining slope parameters can be interpreted in a similar fashion. 

Notice again that the interpretation of the ordinal logistic regression model is much 
simpler than that for the nominal logistic regression model, because only a single slope 
vector ~ is estimated. 
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FIGURE 14.19 
MINITAB 
Ordinal 
Logistic 
Regression 
Output-
Pregnancy 
Duration 
Example. 

Link Function: Logit 

Response Information 

Variable Value Count 
preterm 1 26 

2 35 
3 41 
Total 102 

Logistic Regression Table 

Predictor Coet 
Const(1) 2.930 
Const(2) 5.025 
nutritio -0.04887 
agecat1 1.9760 
agecat3 1.3635 
smoking 1.5915 
alcohol 1.6699 

Log-likelihood = -86.756 

SE Coet 
1.465 
1.521 

0.01168 
0.5875 
0.5547 
0.4525 
0.4727 

z P 
2.00 0.045 
3.30 0.001 

-4.18 0.000 
3.36 0.001 
2.46 0.014 
3.52 0.000 
3.53 0.000 

Odds 
Ratio 

0.95 
7.21 
3.91 
4.91 
5.31 

Test that all slopes are zero: G = 47.174, DF = 5, P-Value = 0.000 

Comment 

95% CI 
Lower Upper 

0.93 0.97 
2.28 22.82 
1.32 11.60 
2.02 11.92 
2.10 13.42 

Our development of the proportional odds model assumed that the ordinal response Yi was obtained 
from an explicit discretization of an observed continuous response Yr, but this is not required. This 
model often works well for ordinal responses that do not arise from such a discretization. • 

14.13 Poisson Regression 

We consider now another nonlinear regression model where the response outcomes are 
discrete. Poisson regression is useful when the outcome is a count, with large-count out­
comes being rare events. For instance, the number of times a household shops at a particular 
supermarket in a week is a count, with a large number of shopping trips to the store during 
the week being a rare event. A researcher may wish to study the relation between a family's 
number of shopping trips to the store during a particular week and the family's income, 
number of children, distance from the store, and some other explanatory variables. As an­
other example, the relation between the number of hospitalizations of a member of a health 
maintenance organization during the past year and the member's age, income, ancl previous 
health status may be of interest. 

Poisson Distribution 
The Poisson distribution can be utilized for outcomes that are counts (Yi = 0, 1,2, ... ), 
with a large count or frequency being a rare event. The Poisson probability clisu·ibution is 

, ,. 

I; 
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as follows: 

fey) = {LYexp(-{L) 

Y! 
Y = 0,1, 2, ... (14.109) 

where f (Y) denotes the probability that the outcome is Y and Y! = Y (Y - 1) ... 3 . 2 . 1. 
The mean and variance of the Poisson probability distribution are: 

(14.110a) 

(14.110b) 

Note that the variance is the same as the mean. Hence, if the number of store trips follows 
the Poisson distribution and the mean number of store trips for a family with three children 
is larger than the mean number of trips for a family with no children, the variances of the 
distributions of outcomes for the two families will also differ. 

Comment 
At times, the count responses Y will pertain to different units of time or space. For instance, in a 
survey intended to obtain the total number of store trips during a particular month, some of the counts 
pertained only to the last week of the month. In such cases, let fL denote the mean response for Y 
for a unit of time or space (e.g., one month), and let I denote the number of units of time or space to 
which Y corresponds. For instance, I = 7/30 if Y is the number of store trips during one week where 
the unit time is one month; I = I if Y is the number of store trips during the month. The Poisson 
probability distribution is then expressed as follows: 

fey) = (lfL)Y exp( -lfL) 
Yl 

Y =0,1,2, ... (14.111) 

Our disclIssion throughout this section assumes that all responses Yj pertain to the same unit of time 
m~ • 

PQisson Regression Model 
The Poisson regression model, like any nonlinear regression model, can be stated as follows: 

i = 1,2, ... , n 

The mean response for the ith case, to be denoted now by {Li for simplicity, is assumed 
as always to be a function of the set of predictor variables, X I, ... , X p_l. We Use the 
notation {L(Xi , ~) to denote the function that relates the mean response {Li to Xi, the values 
of the predictor variables for case i, and ~, the values of the regression coefficients. Some 
commonly used functions for Poisson regression are: 

{Li = {L(Xi' ~) = X;~ 

{Li = {L(Xi, ~) = exp(X;~) 

{Li = {L(Xi'~) = loge(X;~) 

In all three cases, the mean responses {Li must be nonnegative. 

(14.112a) 

(14.112b) 

(14.112c) 

Since the distribution of the error terms Ci for Poisson regression is a function of the 
distribution of the response Yi , which is Poisson, it is easiest to state the Poisson regression 
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model in the following form: 

Y, are independent Poisson random variables with expected 
values /J-i, where: 

/J-i = /J-(Xi'~) 

The most commonly used response function is /J-i = exp(X'~). 

Maximum Likelihood Estimation 
For Poisson regression model (14.113), the likelihood function is as follows: 

LW) = IT j,·(Yi ) = IT [/J-(Xi , ~)IY' ~;[-/J-(Xi' ~)] 
;=1 ;=1 '" 

{II'=I (J.L(Xi' ~)IYi} exp[- 2:.;'=1 /J-(Xi , ~)] 

I17=1 Yi ! 

(14.113) 

(14.114) 

Once the functional form of /J-(Xi, ~) is chosen, the maximization of (14.114) produces 
the maximum likelihood estimates of the regression coefficients ~. As before, it is easier to 

work with the 10galithm of the likelihood function: 

Il " 
II 

(14.115) 
i=1 i=1 i=1 

Numerical search procedures are used to find the maximum likelihood estimates bo, b l , ... , 

b/J - 1 • Iteratively reweigh ted least squares can again be used to obtain these estimates. We 
shall rely on standard statistical software packages specifically designed to handle Poisson 
regression to obtain the maximum likelihood estimates. 

After the maximum likelihood estimates have been found. we can obtain the fitted 
response function and the fitted values: 

il = /J-(X, b) 

ili = /J-(Xi , b) 

(14.116a) 

(14.116b) 

For the three functions in (14.112), the fitted response functions and fitted values 41fe: 

/J- =X'~: il = X'b ili = X;b (14.116c) 

/J- = exp(X'~): il = exp(X'b) ili = exp(X;b) (14.1l6d) 

/J- = 10g,,(X'~): il = 10g,,(X'b) ili = 10g,,(X;b) (14.116e) 

Model Development 
Model development for a Poisson regression model is cUlried out in a similar fa .. <;hion 

to that for logistic regression, conducting tests for individual coefficients or groups of 
coefficients based on the likelihood ratio test statistic G2 in (14.60). For Poisson regression 
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model (14.113), the model deviance is as follows: 

DEV(Xo, X(, ... , X p _ l ) = -2[t Yi loge (~;) + t(Yi - Mi)] (14.117) 

where Mi is the fitted value for the ith case according to (14.116b). The deviance residual 
for the ith case is: 

deVi = ± [-2Yi loge (~; ) - 2(Yi _ Mi)] 1/2 (14.118) 

The sign of the deviance residual is selected according to whether Yi - Mi is positive or neg­
ative. Index plots of the deviance residuals and half-normal probability plots with simulated 
envelopes are useful for identifying outliers and checking the model fit. 

Comment 
If Yi = 0, the term [Yi loge(tLt/Yi )] in (l4.117) and (l4.11S) equals O. • 
Inferences for a Poisson regression model are carried out in the same way as for logistic 
regression. For instance, there is often interest in estimating the mean response for predictor 
variables X h • This estimate is obtained by substituting Xh into (14.116). 

In Poisson regression analysis, there is sometimes also interest in estimating probabilities 
of certain outcomes for given levels of the predictor variables, for instance, P (Y = 0 I X h ). 

Such an estimated probability can be obtained readily by substituting Mh into (14.109). 
Interval estimation of individual regression coefficients can be carried out by use of the 

large-sample estimated standard deviations furnished by regression programs with Poisson 
regression capabilities. 

The Miller Lumber Company is a large retailer of lumber and paint, as well as of plumbing, 
electrical, and other household supplies. During a representative two-week period, in-store 
surveys were conducted and addresses of customers were obtained. The addresses were 
then used to identify the metropolitan area census tracts in which the customers reside. At 
the end of the survey period, the total number of customers who visited the store from each 
census tract within a 10-mile radius was determined and relevant demographic information 
for each tract (average income, number of housing units, etc.) was obtained. Several other 
variables expected to be related to customer counts were constructed from maps, including 
distance from census tract to nearest competitor and distance to store. 

Initial screening of the potential predictor variables was conducted which led to the 
retention of five predictor variables: 

X I: Number of housing units 

X 2 : Average income, in dollars 

X3: Average housing unit age, in years 

X4 : Distance to nearest competitor, in miles 

X5: Distance to store, in miles 

Yj : Number of customers who visited store from census tract .. 
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TABLE 14.14 
Data-Miller 
Lumber 
Company 
Example. 

TABLE 14.15 
Fitted Poisson 
Response 
Function and 
Related 
Results­
Miller Lumber 
Company 
Example. 

Nonlinear Regression 

---Census Housing Average Average Competitor Store Numberot~ 
Tract Units Income Age Distance Distance Customers : 

Xl X2 X3 X4 Xs 

1 606 41,393 3 3.04 6.32 
2 641 23,635 18 1.95 8.89 
3 505 55,475 27 6.54 2.05 

108 817 54,429 47 1.90 9.90 
109 268 34,022 54 1.20 9.51 
110 519 52,850, 43 2.92 8.62 

(a) Fitted Poisson Response Function 

jl = exp[2.942 + .000606X I - .0000117 Xz - .00373X3 + .168X4 - .129Xs] 

DEV(Xo, Xl, Xz, X3, X4, Xs) = 114.985 

(b) Estimated Coefficients, Standard Deviations, and CZ Test Statistics 

Estimated Estimated 
Regression Regression Standard 
Coefficient Coefficient Deviation CZ P-value 

fJo 2.9424 .207 
fJl .0006058 .00014 18.21 .000 
f3z -.00001169 .0000021 31.80 .000 
fJ3 -.003726 .0018 4.38 .036 
fJ4 .1684 .026 41.66 .000 
fJs -.1288 .016 67.50 .000 

Data for a pOrtion of the n = 110 census tracts are shown in Table 14.14. 
Poisson regression model (14.113) with response function: 

{L(X. ~) = exp(X/~) 

y ~ 

9 
6 

28 

.6 
4 
6 

was fitted to the data, using LISP-STAT (Reference 14.10). Some principal results are­
presented in Table 14.15. Note that the deviance for this model is 114.985. 

Likelihood ratio test statistics (14.60) were calculated for each of the individual regres­
sion coefficients. These G2 test statistics are shown in Table 14.15b, together with their 
associated P -values, each based on the chi-square distribution with one degree of freedom. 
We note from the P-values that each predictor variable makes a marginal contribution to 

the fit of the regression model and consequently should be retained in the modeL 
A portion of the deviance residuals devj is shown in Table 14.16, together with the 

responses Yi and the fitted values Mi. Analysis of the deviance residuals did not c1isclose 

any major problems. Figure 14.20 contains an index plot of the deviance residuals. We 
note a few large negative deviance residuals; these are for census tracts where Y =0; Le., 
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~'~lionses, 
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nidPeviance 
R~auals­
~erLumber 

,Company 
~ple. 

FIGURE 14.20 
Index Plot of 
DevianCe 
~duals­
Miller Lumber 
:(lo)npany 
~ple. 
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Census Tract 
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Index 

80 100 

there were no customers from these areas. These may be difficult cases to fit with a Poisson 
regression model. 

14.14 Generalized Linear Models 

We conclude this chapter and the regression portion of this book by noting that all of the 
regression models considered, linear and nonlinear, belong to a family of models called 
generalized linear models. This family was first introduced by Nelder and Wedderburn 
(Reference 14.11) and encompasses normal error linear regression models and the nonlinear 
exponential, logistic, and Poisson regression models, as well as many other models, such 
as log-linear models for categorical data. 

The class of generalized linear models can be described as follows: 

1. Y1, ••• , Yn aren independent responses that follow a probability distribution belonging 
to the exponentialfamily of probability distributions, with expected value E{Yd = Mi. 

2. A linear predictor based on the predictor variables Xi I, ..• , Xi,p-I is utilized, denoted 
byX;~: 

X;~ = f30 + f3I Xil + ... + f3 p - 1Xi ,p-1 

3. The linkfunction g relates the linear predictor to the mean response: 

X;~ = g(Mi) 
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Cited 
References 

Generalized linear models may have nonconstant variances a i
2 for the responses y. bu 

the variance a/ must be a function of the predictor variables through the mean respon~~ .t 

To illustrate the c~ncept of the .Iink ~unctio.n, consider first logi.stic regression mo~i 
(14.41). There, the loglltransformatlon F(. I (ITi) III (l4.18a) serves to llI1k the linear predictor 
X;~ to the mean response JJ-i = ITi: 

g(ILi) = g(ITi) = loge ( I :i IT,) = x;,~ 
As a second example, consider Poisson regression model (14.113). There we consid­

ered several response functions in (14, I 12). For the response function JJ-i = exp(X;B) in 
(14. 112b), the linking relation is: 

g(JJ-i) = 10ge(JJ-i) = X;~ 

We see from the Poisson regression models that there may be many different possible link 
functions that can be employed. They need only be monotonic and differentiable. 

Finally, we consider the normal error regression model in (6.7). There the link function 
is simply: 

g(JJ-i) = ILl 

since the linking relation is: 

x;,~ = ILi 

The link function g(JJ-i) for the normal en-or case is called the identity or unity link function. 
Any regression model that belongs to the family of generalized linear models can be an­

alyzed in a unified fashion. The maximum likelihood estimates of the regression parameters 
can be obtained by iteratively reweigh ted least squares rby ordinary least squares fornonnal 
error linear regression models (6.7)]. Tests for model development to determine whether 
some predictor variables may be dropped from the model can be conducted using likelihood 
ratio tests. Reference 14.12 provides further details about generalized linear models and 
their analysis. 
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14.1. A student stated: "I fail to see why the response function needs to be constrained between 0 
and 1 when the response variable is binary and has a Bernoulli distribution. The fit to 0, 1 data 
will take care of this problem for any response function." Comment. 

14.2. Since the logit transformation (14.18) linearizes the logistic response function, why can't this 
transformation be used on the individual responses Yi and a linear response function then 
fitted? Explain. 

14.3. Ifthe true response function is J-shaped when the response variable is binary, would the use 
of the logistic response function be appropriate? Explain. 

14.4. a. Plot the logistic mean response function (14.16) when f30 = -25 and f31 = .2. 

*14.5. 

14.6. 

b. 

c. 

a. 

b. 

c. 

a. 

For what value of X;is the mean response equal to .5? 

Find the odds when-X == 150, when X = 151, and the ratio of the odds when X = 151 to 
the odds when X = 150. Is this odds ratio equal to exp(f3,) as it should be? 

Plot the logistic mean response function (14.16) when f30 =20 and f31 = -.2. 

For what value of X is the mean response equal to .5? 

Find the odds when X = 125, when X = 126, and the ratio of the odds when X = 126 to 
the odds when X = 125. Is the odds ratio equal to exp(f3I) as it should be? 

Plot the probit mean response function (14.12) for f3J = -25 and f3r = .2. How does this 
function compare to the logistic mean response function in part (a) of Problem 14.4? 

b. For what value of X is the mean response equal to .5? 

* 14.7. Annual dues. The board of directors of a professional association conducted a random sample 
survey of 30 members to assess the effects of several possible amounts of dues increase. The 
sample results follow. X denotes the dollar increase in annual dues posited in the survey 
interview, and Y = 1 if the interviewee indicated that the membership will not be renewed at 
that amount of dues increase and 0 if the membership will be renewed. 

i: 

30 
o 

2 

30 

3 

30 
o 

28 

49 
o 

Logistic regression model (14.20) is assumed to be appropriate. 

29 

50 

30 

50 
1 

a. Find the maximum likelihood estimates of f30 and f31. State the fitted response function. 

b. Obtain a scatter plot of the data with both the fitted logistic response function from part 
(a) and a lowess smooth superimposed. Does the fitted logistic response function appear 
to fit well? 

c. Obtain exp(b,) and interpret this number. 

d. What is the estimated probability that association members will not renew their membership 
if the dues are increased by $40? 

e. Estimate the amount of dues increase for which 75 percent of the members are expected 
not to renew their association membership. 
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14.8. Refer to Annual dues Pmblem 14.7. 

<l. Fit a probit mcan response function (14.12) to the data. Qualitatively compare the fit he 
with the logistic tit obtained in part (a) ofPmblem 14.7. What do you conclude? re 

b. Fit a complimentary log-log l1lean response function (14.19) to the data. Qualitativel 
compare the fit here with the logistic fit obtained in part (a) of Problem 14.7. What do yo~ 
conclude? 

14.9. Performance ability. A psychologist conducted a srudy ro examine the nature of the relation 
if any, between an employee's emotional stability (X) and the employee's ability to pelfom: 
in a task gmup (YJ. Emotional stability was measured by a written test for which the higher 
the score, the grearer is the emotional stability. Ability to perform in a task group (Y == I if 
able, Y = 0 if unable) was evaluated by the supervisor. The results for 27 employees were: 

i: 

Xi: 474 
Yi: 0 

2 

432 
o 

3 

453 
o 

2S 

562 

Logistic regression model (14.20) is assumed to be appropriate. 

26 

506 
o 

27 

600 

a. Find the maximum likeliholXl estimates of f30 and f31' State the fitred response fUnction. 

b. Obtain a scaner plot of the data with both the fitted logistic response function from part (a) 
and a lowess smooth superimposed. Does the fitted logistic response function appeartofit 
well'? 

c. Obtain exp(hl) and interpret this number. 

d. What is the estimated probability that employees with an emotional stability test score of 
550 will be able to pelform in a task group'? 

e. Estimate the emotional stability test score for which 70 percent of the employees with this 
test score are expected to be able to pelform in a task group. 

14.10. Refer to Performance ability Problem 14.9. 

a. Fit a probit mean respon~e function (14.12) to the data. Qualitatively compare the fit here 
with the logistic fit obtained in part (a) of Problem 14.9. What do you conclude? 

b. Fit a complementary log-log mean response function (14.19) ro the dattl. Qualitatively 
compare the fit here with the logistic fit obtained in part (a) of Problem 14.9. What do you 
conclude'? 

*14.11. Bottle return. A carefully controlled experiment was conducted to study the effect of the 
size of the deposit level on the likelihood that a returnable one-liter soft-drink bottle will be 
returned. A bottle return was scored I. and no return was scored O. The data to follow show 
the number of bottles that were returned (Yj ) out of 500 sold (11 i) at each of six deposit levels 
(X j • in cents): 

• 
j: 2 3 4 5 6 

Deposit level X j: 2 5 10 20 25 30 
Number sold nj: 500 500 500 500 500 500 

Number returned Yj: 72 103 170 296 406 449 

An analyst believes that logistic regression mIXlel (14.20) is appropriate for studying the 
relation between size of deposit and the probability a bottle will be returned. 

a. Plot the estimated proportions P j = Y. j / 11 j against X j. Does the plot support the analyst's 
belief that the logi~tic response function is appropriate'? 

b. Find the maximul1llikelihood estimates of f30 and f3I. State the fitted response function. 
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c. Obtain a scatter plot of the data with the estimated proportions from part (a), and super­
impose the fitted logistic response function from part (b). Does the fitted logistic response 
function appear to fit well? 

d. Obtain exp(b l ) and interpret this number. 

e. What is the estimated probability that a bottle will be returned when the deposit is 15 cents? 

f. Estimate the amount of deposit for which 75 percent of the bottles are expected to be 
returned. 

14.12. Toxicity experiment. In an experiment testing the effect of a toxic substance, 1,500 experi­
mental insects were divided at random into six groups of 250 each. The insects in each group 
were exposed to a fixed dose of the toxic substance. A day later, each insect was observed. 
Death from exposure was scored I, and survival was scored O. The results are shown below; 
Xj denotes the dose level (on a logarithmic scale) administered to the insects in group j and 
fj denotes the number of insects that died out of the 250 (n j) in the group. 

j: 2 3 4 5 6 

Xi: 1 2 3 4 5 6 
n( 250 250 250 250 250 250 
y.( ""28 53 93 126 172 197 

" 
Logistic regression model (14.20) is assumed to be appropriate. 

a. Plot the estimated proportions Pj = Y.j/n j against X j • Does the plot support the analyst's 
belief that the logistic response function is appropriate? 

b. Find the maximum likelihood estimates of f30 and fh. State the fitted response function. 

c. Obtain a scatter plot of the data with the estimated proportions from part (a), and super­
impose the fitted logistiC response function from part (b). Does the fitted logistic response 
function appear to fit well? 

d. Obtain exp(h) and interpret this number. 

e. What is the estimated probability that an insect dies when the dose level is X = 3.5? 

f. What is the estimated median lethal dose-that is, the dose for which 50 percent of the 
experimental inse.cts are expected to die? 

14.13. Car purchase. A marketing research firm was engaged by an automobile manufacturer to 
conduct a pilot study to examine the feasibility of using logistic regression for ascertaining 
the likelihood that a family will purchase a new car during the next year. A random sample of 
33 suburban families was selected. Data on annual family income (XI' in thousand dollars) 
and the current age of the oldest family automobile (X2' in years) were obtained. A follow­
up interview conducted 12 months later was used to determine whether the family actually 
purchased a new car (Y = 1) or did not purchase a new car (Y = 0) during the year. 

i: 2 

Xi]: 32 45 
Xi2 : 3 2 

Vi: 0 0 

3 

60 
2 

31 

21 
3 
o 

32 

32 
5 

33 

17 
1 
o 

Multiple logistic regression model (14.41) with two predictor variables in first-order terms is 
assumed to be appropriate. 

a. Find the maximum likelihood estimates of f3o, f31, and f32. State the fitted response function. 

b. Obtain exp(b1) and exp(hz) and interpret these numbers. 

c. What is the estimated probability that a family with annual income of $50 thousand and 
an oldest car of 3 years will purchase a new car next year? 
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*14.14. Flu shots. A local health clinic sem fliers to its clients to encourage everyone, but es . ,.~ 
older persons '~t hig~ risk o~ cOl1lplications. to get a flL.1 shot in time for pl"Otection ag~:~1Y ~. 
expected flu epidemic. In a pilot follow-up study, 159 clients were randomly selected and a k an.,~ 
whether they actually received a flu shot. A client who received a flu shot was coded y ~ cd ' 
and a client who did not receive a flu shor was coded Y = O. In addition. data were coU; 1, 
on their age (Xl) and their health awareness. The latter data were combined into a h : 
awareness index (X~), for which higher values indicate greater awareness. Also indUd:' 
the data was client gender, where males were coded X] = I and females were coded X3 '='~ 

i: 2 3 157 158 159 

Xil: 59 61 82 76 68 73 
X;2: 52 55 51 22 32 56 
Xi3: 0 1 0 1 0 

y/: 0 0 1 

Multiple logistic regression model (14.4 t) with three predictor variables in first-order terms 
is assumed to be appropriate. 

a. Find the maximum likelihood estimates of f3o, f3" f3~, and f3,. State the fitted response 
function. 

b. Obtain exp(b,j, exp(b~), and exp(bJ ). Interpret these numbers. 

c. What is the estimated probability that male clients aged 55 with a health awareness index 
of 60 will receive a flu shot? 

*14.15. Refer to Annual dues Problem 14.7. Assume that the fitted model is appropriate and that 
large-sample inferences are applicable. 

a. Obtain an approximate 90 percent confidence inrerval for exp(f3I). Interpret your interval. 

b. Conduct a Wald test to derermine whether dollar increase in dues (Xl is related to the 
probability of membership renewal; use 0' = .10. State the alternatives. decision rule, and 
conclusion. What is the approximate P-value of the test? 

c. Conduct a likelihood ratio test to determine whether dollar increase in dues (X) is related 
to the probability of membership renewal; use 0' = .10. State the full and reduced models, 
decision rule, and conclusion. What is the approximate P-value of the test? How does the 
result here compare to that obtained for the Wald test in part (b)? 

14.16. Refer to Performance ability Problem 14.9. Assume that the fitted model is appropriate and 
that large-sample inferences are applicable. 

a. Obtain an approximate 95 percent confidence interval for exp(,B,). Interpret yOlu' interval. 

b. Conduct a Wald tesr to determine whether employee's emotional stability (X) is related 
to the probability that the elnployee will be able to perfonll in a task group: use ex = .05. ~~ 
State the alternatives. decision rule, and conclusion. What is the approximate P-value of 
the test? 

c. Conduct a likelihood ratio test to determine whether employee's emotional stability (X) 

is related to the probability that the employee will be able to pelform in a task group; 
use 0' = .05. State the full and reduced models, decision rule, and conclusion. What is the 
approximate P-value of the test? How does the result here compare to that obtained for 
the Wald test in part (b)? 

*14.17. Refer to Bottle return Problem 14.11. Assume that the fitted model is appropriate and that 
large-sample inferences are applicable. 

a. Obtain an approximate 95 percent confidence interval for f31. Convert this confidence 
inrerval into one for the odds ratio. Interpret this latter interval. 
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b. Conduct a Wald test to determine whether deposit level (X) is related to the probability 
that a bottle is returned; use a = .05. State the alternatives, decision rule, and conclusion. 
What is the approximate P-value of the test? 

c. Conduct a likelihood ratio test to determine whether deposit level (X) is related to the 
probability that a bottle is returned; use a = .05. State the full and reduced models, 
decision rule, and conclusion. What is the approximate P-value of the test? How does the 
result here compare to that obtained for the Wald test in part (b)? 

14.18. Refer to Toxicity experiment Problem 14.12. Assume that the fitted model is appropriate and 
that large-sample inferences are applicable. 

a. Obtain an approximate 99 percent confidence interval for fh. Convert this confidence 
interval into one for the odds ratio. Interpret this latter interval. 

b. Conduct a Wald test to determine whether dose level (X) is related to the probability that 
an insect dies; use a = .01. State the alternatives, decision rule, and conclusion. What is 
the approximate P-valt~9. of the test? 

c. Conduct a likelihood raFotest to determine whether dose level (X) is related to the prob­
ability that an insect dies; use a = .01. State the full and reduced models, decision rule, 
and conclusion. What is the approximate P-value of the test? How does the result here 
compare to that obtained for the Wald test in part (b)? 

14.19. Refer to Car purchase Problem 14.13. Assume that the fitted model is appropriate and that 
large-sample inferences are applicable. 

a. Obtain joint confidence intervals for the family income odds ratio exp(20th) for families 
whose incomes differ by 20 thousand dollars and for the age of the oldest family automobile 
odds ratio exp(2th) for families whose oldest automobiles differ in age by 2 years, with 
family confidence coefficient of approximately .90. Interpret your intervals. 

b. Use the Wald test to determine whether X2 , age of oldest family automobile, can be 
dropped from the regression model; use a = .05. State the alternatives, decision rule, and 
conclusion. What is th~ ,approximate P -value of the test? 

c. Use the likelihood ratio test to determine whether X2, age of oldest family automobile, can 
be dropped from the regression model; use a = .05. State the full and reduced models, 
decision rule, and conclusion. What is the approximate P-value of the test? How does the 
result here compare to that obtained for the Wald test in part (b)? 

d. Use the likelihood ratio test to determine whether the following three second-order terms, 
the square of annual family income, the square of age of oldest automobile, and the two­
factor interaction effect between annual family income and age of oldest automobile, 
should be added simultaneously to the regression model containing family income and age 
of oldest automobile as first-order terms; use a = .05. State the full and reduced models, 
decision rule, and conclusion. What is the approximate P-value of the test? 

*14.20. Refer to Flu shots Problem 14.14. 

a. Obtain jOint confidence intervals for the age odds ratio exp(30f:!1) for male clients whose 
ages differ by 30 years and for the health awareness index odds ratio exp(25f:!2) for male 
clients whose health awareness index differs by 25, with family confidence coefficient of 
approximately .90. Interpret your intervals. 

b. Use the Wald test to determine whether X3 , client gender, can be dropped from the regres­
sion model; use a = .05. State the alternatives, decision rule, and conclusion. What is the 
approximate P-value of the test? 

c. Use the likelihood ratio test to determine whether X3 , client gender, can be dropped from 
the regression model; use a = .05. State the full and reduced models, decision rule, and 
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conclusion. What is the approximate P-value of" the tesl? How does the resulthere com 
to that obtained I{)r the Wald test in p1ll1 (b)? pare 

d. Usc Ihc likelihood nllio tesl to delermine whether thc following three second-order t 
the ~quare of age. the square ofheahh awareness index. and thc two-lilctor interaction:S

' 

betwecn age and health awarencss index. should bc ildded :;imullaneou:;ly to the re eet 

sion model conl<~ining. age and hcalth awareness iI~~ex as first-order terms; use a:7; 
State tl:e alternalIvc:;. I ~II and reduced models. deCIsIon rule, and conclusion. What is the 
approxImate P-value 01 the tcst? 

14.21. Refer to Car purchase Problem 14.13 where the pool of predictors consisls of all first-orde 
terms and all second-order terms in annuallinnily incomc Hnd age of oldest tinnily automobile~ 
a. Use forward seleclion to decide which predictor variables enter into the regression model. 

Control the 0' risk at .10 at each stage. Which variables are eI1lered into the regression model? 

b. Use backward elimination to decide which predictor variables can be dropped from the 
regression model. Control the ex risk at .10 at each st,lge. Which variables are retained? 
How does this compare to your results in patl (a)? ' 

c Find the best model according to the AlC/, criterion. How does this compare to your results 
in pans (a) and (b)? 

d. Find the best model according tothe SBC/, criterion. How does this compare to your results 
in parts ill). (b) and (c)? 

* 14.22. Refer to Flu shots Problem 14.14 where the pool of predictors con.~ists of all first-order terms 
and all second-order terms in age and health awareness index. 

a. Use forward selection to decide which predictor variables enter inlo the regression model. 
Control the 0' risk at .10 at each stage. Which variables are entered into the regression model? 

b. Use backward elimination to decide which predictor variables can be dropped from the 
regres.<;ion model. Control the ex risk at .10 at each stage. Which variables are retained? 
How does this compare to your results in part (a)? 

c. Find the best model according to theAIC" criterion. How does this compare to y{)urresults 
in parts (a) and (b)? 

d. Find the best model according to rhe SBC" criterion. How does thi;; compare to yourresults 
in parts (a). (b) and (C)? 

~ 14.23. Refer to Bottle return Problem 14.11. Use the grouP!; given there to conduct a chi-square 
goodness of fit test of the appropriateness of logistic regression model (14.20). Control the 
risk of a Type 1 error at .01. State the altcrnHtives. decision rule. and conclusion. 

14.24. Refer to Toxicity experiment Problem 14.12. Use the groups given there to conduct a deviance 
goodnes~ of lit rest of the appropriateness of logistic regression model (14.20). Control the 
ri>;k of a Type I error ur .0 I. State the ahernHtive,~. decision rule. and conclusion. • 

*14.25. Re!"er to Annual dues Problem 14.7. 

a. To a~sess the appropriateness of the logistic regre!'lsion function. form three groups of 
10 Citses eHch according to their litted logit values if'. Plot Ihe estimated proportions Pi 
against the midpoints of the if' interval;;. Is the plot consistent with a respon~e function of 
monotonic sigmoidal shape? ExplHin. 

b. Obt<lin the studentized Pearson residu<lls (14.81) and plot them against the e.,timated model 
probHbilitics with it lowe>;s smooth superimposed. What does the plot suggest about the 
adequacy of the fit of the logistic regre.~sion model'? 

14.26. Refer to Perfol'mance ability Problem 14.9. 

a. To aSsess the appropriatenesii of the logistic regression function. form three groups of 
nine cases each according to their litted logit vHlues if'. Plot the estimated proportions Pi 
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against the midpoints of the it' intervals. Is the plot consistent with a response function of 
monotonic sigmoidal shape? Explain. 

b. Obtain the deviance residuals (14.83) and plot them against the estimated model probabil­
ities with a lowess smooth superimposed. What does the plot suggest about the adequacy 
of the fit of the logistic regression model? 

14.27. Refer to Car purchase Problems 14.13 and 14.21. 

a. To assess the appropriateness of the logistic regression model obtained in part (d) of 
Problem 14.21, form three groups of 11 cases each according to their fitted logit values 
it'. Plot the estimated proportions p j against the midpoints of the it' intervals. Is the plot 
consistent with a response function of monotonic sigmoidal shape? Explain. 

b. Obtain the studentized Pearson residuals (14.81) and plot them against the estimated model 
probabilities with a lowess smooth superimposed. What does the plot suggest about the 
adequacy of the fit of the logistic regression model? 

*14.28. Refer to Flu shots Prob~~rns 14.14 and 14.22. 

a. To assess the appropriateness of the logistic regression model obtained in part (d) of 
Problem 14.22, fonn 8 groups of approximately 20 cases each according to their fitted 
logit values it'. Plot the estimated proportions p j against the midpoints of the it' in­
tervals. Is the plot consistent with a response function of monotonic sigmoidal shape? 
Explain. 

b. Using the groups formed in part (a), conduct a Hosmer-Lemeshow goodness of fit test for 
the appropriateness of the logistic regression function; use a = .05. State the alternatives, 
decision rule, and conclusions. What is the P-value of the test? 

c. Obtain the deviance residuals (14.83) and plot them against the estimated model probabil­
ities with a lowess smooth superimposed. What does the plot suggest about the adequacy 
of the fit of the logistic regression model? 

* 14.29. Refer to Annual dues Problem 14.7. 

a. For the logistic regression model fit in Problem 14.7a, prepare an index plot of the diag­
onal elements of the estimated hat matrix (14.80). Use the plot to identify any outlying 
X observations. 

b. To assess the influence of individual observations, obtain the delta chi-square statistic 
(14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) for each obser­
vation. Plot each of these in separate index plots and identify any influential observations. 
Summarize your findings. 

14.30. Refer to Performance ability Problem 14.9. 

a. For the logistic regression fit in Problem 14.9a, prepare an index plot of the diagonal 
elements of the estimated hat matrix (14.80). Use the plot to identify any outlying X 
observations. 

b. To assess the influence of individual observations, obtain the delta chi-square statistic 
(14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) for each obser­
vation. Plot each of these in separate index plots and identify any influential observations. 
Summarize your findings. 

14.31. Refer to Car Purchase Problems 14.13 and 14.21. 

a. For the logistic regression model obtained in part (d) of Problem 14.21, prepare an index 
plot of the diagonal elements of the estimated hat matrix (14.80). Use the plot to identify 
any outlying X observations. 

b. To assess the influence of individual observations, obtain the delta chi-square statis­
tic (14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) for each 
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observation. Plot each of these in separate index plols and identify any influential ' 
servalions. Summarize your findings. o~.} , 

*14.32. Refer to Flu shots Problem 14.14. 

a. For the logistic regression fit in Problem 14.14a. prepHre an Index plot of the dia 
elements of the estinwted hat matrix (14.S0). Usc the plot to idenlify any OUtlYi~Do~ 
observations. g 

b. To Hssess the influence of individual observations. obtalll the delta chi-square stati . 
(14.S5), the delta deviance statistic (14.86). and Cook's distance (14.87) for each b Shc 

. PI h f' I' . \ I d 'd 'f' . fl' 0 ser-vat Ion. ot eac 0 t lese III separate lIlt ex pots an I entl y any III uentml observ8ti < 

S . . \. Dos. -, ummanze your fint IIlgs. :-. 

* 14.33. Refer to Annual dues Problem 14.7. 

H. Based on the titted regression function in Problem 14.7a. obtain an approximate 90 percent 
confidence interval for the mean response ITI> for a dues increase of XI> = $40. 

b. A prediclion rule is to be developed. based on the fitted regression function in Pro~ 
lem 14.7a. BHsed on the sample CHses. find the toral error rate, the error rate for renewers 
and Ihe ermr rate for nonrenewers for the following cutoffs: .40 . .45 . .50 .. 55 .. 60. ' 

c. Based on your results in part (b). which cutoff minimize.~ the total error rate? Are the 
error rates for renewers and nonrenewers fairly balanced Ht this cutoff? Obtain the area 
under the ROC curve to assess the mode!"s predictive power here. What do you 
conclude? 

d. How can you establish whether the observed total error rate for the best cutotfin part (b) is 
H reliable indicator of the predictive ability of the fitled regression function and the chosen 
curotf? 

14.34. Refer to Performance ability Problem 14.9. 

a. USlllg the titted regres.~ion function in Problem 14.9a. obtain joint confidence intervals for 
the mean response ITI, for persons with emotionHI stability test scores XI> = 550 and 625, 
respectively. with an approxiImlte 90 percent family confidence coefficient. Interpret your 
intervals. 

b. A prediction rule. bHsed on the titted regression function in Pmblem 14.9a. is to be de­
veloped. For the sample cases. find the total error rate. the error rate for employees llhle 
to perform in a task group, and the error rHte for employees not able to perfoIlll for the 
following cutoffs: .325 . .425 .. 525, .625. 

c. On the basis of your results in part (b). which cutoff minimizes the total error rate? Are 
the error rates for employees able to perfonn in H task group and for employees not able to 
perform fairly balunced at this cutoff? Obtain the Hrea under the ROC curve to assess the 
model's predictive power here. What do YOll conclude? 

d. How CHn you establish whether the observed total error rate for the best cutotfin part (c) is 
a reliable indicator of the predictive ability of the fitted regression function and the chosen 
cutoff? 

14.35. Refer to Bottle retum Problem 14.11. 

a. For the titted regression function in Problem 14.1 I H. obtain an approximate 95 percenr 

confidence interval for the probability of II pllrch'L~e for deposit XI' = 15 cents. Inrerpret 
your interval. 

b. A prediction rule is to be developed. based on rhe fitted regression function in Prob­
lem 14.11 a. For the sample cases, tind the total error rate. the error rate for purchasers, and 
the error rate for non purchasers for the following clItoff,: .150, .300 . .450 .. 600, .750. 
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c. According to your results in part (b), which cutoff minimizes the total error rate? Are 
the error rates for purchasers and nonpurchasers fairly balanced at this cutoff? Obtain 
the area under the ROC curve to assess the model's predictive power here. What do you 
conclude? 

d. How can you establish whether the observed total error rate for the best cutoff in part (c) is 
a reliable indicator of the predictive ability of the fitted regression function and the chosen 
cutoff? 

*14.36. Refer to Flu shots Problem 14.14. 

a. On the basis of the fitted regression func1ion in Problem 14.14a, obtain a confidence 
interval for the mean response n" for a female whose age is 65 and whose health awareness 
index is 50, with an approximate 90 percent family confidence coefficient. Interpret your 
intervals. 

b. A prediction rule is to be based on the fitted regression function in Problem 14.14a. For 
the sample cases, find the tQtfll error rate, the error rate for clients receiving the flu shot, 
and the error rate for clienfs·not receiving the flu shot for the following cutoffs: .05, .10, 
.15, .20. 

c. Based on your results in part (b), which cutoff minimizes the total error rate? Are the enur 
rates for clients receiving the flu shot and for clients not receiving the flu shot fairly balanced 
at this cutoff? Obtain the area under the ROC curve to assess the model's predictive power 
here. What do you conclude? 

d. How can you establish whether the observed total error rate for the best cutoff in part (c) is 
a reliable indicator of the predictive ability of the fitted regression function and the chosen 
cutoff? 

14.37. Polytomous logistic regression extends the binary response outcome to a multicategory re­
sponse outcome for either nominal level or ordinal level data. Discuss the advantages and 
disadvantages of treating multicategory ordinal level outcomes as a series of binary logistic 
regression models, as a nomil1?llevel polytomous regression model, or as a proportional odds 
model. 

* 14.38. Refer to Airfreight breakage Problem 1.21. 

a. Fit the Poisson regression model (14.113) with the response function p,(X, (3) = 
exp(fJo + fJ, X). State the estimated regression coefficients, their estimated standard devi­
ations, and the estimated response function. 

b. Obtain the deviance residuals and present them in an index plot. Do there appear to be any 
outlying cases? 

c. Estimate the mean number of ampules broken when X = 0, 1, 2, 3. Compare these estimates 
with those obtained by means of the fitted linear regression function in Problem 1.21a. 

d. Plot the Poisson and linear regression functions, together with the data. Which regression 
function appears to be a better fit here? Discuss. 

e. Management wishes to es timate the probability that 10 or fewer ampules are broken when 
there is no transfer of the shipment. Use the fitted Poisson regression function to obtain 
this estimate. 

f. Obtain an approximate 95 percent confidence interval for fJI' Interpret your interval 
estimate. 

14.39. Geriatric study. A researcher in geriatrics designed a prospective study to investigate the 
effects of two interventions on the frequency of falls. One hundred subjects were randomly 
assigned to one of the two interventions: education only (X I = 0) and education plus aerobic 
exercise training (X I = 1). SUbjects were at least 65 years of age and in reasonably good health. 
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Exercises 

Three variables considered to be important as control variables were gender (X,, ()-~ aJ 
~ -' -tem e' 

I = male). a balance index (X;). and a srrength index (X-l). The highenhe balilnce index h' 
more stable i~ the subject: and the higher the strenglh index. the ~tronger i~ the subject Ii t e 
subject kepI a diary recording the number of falls (Y) during Ihe six months of the stUd~. ~: 
data follow: 

Number of 
Subject Falls Intervention Gender Balance Index Strength Index 

Y; Xn X;2 X/3 Xi4 

0 45 -70 
2 0 62 66 
3 2 43 64 

98 4 0 0 69 48 
99 4 0 1 50 52 

100 2 0 0 37 56 

a. Fit the Poisson regression model (14.113) with the response funetion /~(X,B)== 

exp(,8o +,8, X, + ,82X2 + ,8-,XJ + f3-lX-l1. State the estimated regression coetlicients, their 
estimated standard deviations. and the estimated response function. 

b. Obtain the deviance residuals and present them in an index plot. Do there appear to be any 
outlying cases'! 

c. A.~suming thar the fitted model is appropriate, use the likelihood ratio te~;t to dete,mine 
whether gender (X]) can be dropped from the model: control 0' at .05. State the full and 
reduced models. decision rule. and conclusion. What is the P-value of the tes!. 

d. For the titred model containing only X" Xl. and X-l in first-order terms. obtain an lljl­

proximate 95 percent confidence interval for ,8,. Interpret your confidence interval. Does 
aerobic exercise reduce the frequency of falls when controlling for balance and strength? 

14.40. Show the equivalence of ( 14. 16) and ( 14. 17). 

14.41. Derive (14.34) from (14.26). 

14.42. Derive (l4.18a). using (14.16) and (14.18). 

14.43. (Calculus needed.) Maximum likelihood e!itimation theory state.~ that the e!itimated large­
sample var'iance-covariance matrix for maximum likelihood estimators is given by the inverse 
of the information matrix. the elements of which are the negatives of the expected values of the 
second-order pUftial derivatives of the logarithm of the likelihood function evaluated at B = b: 

[ - E { a
2 

~~~;~~,(B) } ~=J -I 
Show that this matrix simplifies to (14.51) for logistic regression. Consider the case where 
/)-1=1. 

14.44. (Calculus needed.) E.~timate the approximate variance-covariance matrix of the estimated re­

gression coefficients for the programming task example in Table 14.la. using (14.51), and 
verify the estimated standard deviations in Table 14. lb. 

14.45. Show that the logistic response function (13.10) reduces to the response function in (14.20) 
when the Yi are independent Bernoulli random variables with E (Yil = ]f,'. 

14.46. Consider the mUltiple logistic regression mode! with X'B = f30 + f3, X, + ,82X2 + f3JX,Xz. 
Derive an expression for the odds ratio for X I. Does exp(f3,) have the same meaning here as 
for a regression model containing no interaction term? 
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14.47. A Bernoulli response Yj has expected value: 

[ (X.-YO)] E{Yd =77:; = 1 -exp -exp ~ 

Show that the link function here is the complementary log-log transformation of 77:;, namely, 
loge [ -loge(l - 77:;)]. 

14.48. Refer to the Disease outbreak data set in Appendix C.IO. Savings account status is the 
response variable and age, socioeconomic status, and city sector are the predictor variables. 
Cases 1-98 are to be utilized for developing the logistic regression model. 

a. Fit logistic regression m0del (14.41) containing the predictor variables in first-order terms 
and interaction terms fo~. all pairs of predictor variables. State the fitted response function. 

b. Use the likelihood ratio test to determine whether all interaction terms can be dropped 
from the regression model; use a = .01. State the alternatives, full and reduced models, 
decision rule, and conclusion. What is the approximate P-value of the test? 

c. For logistic regression model in part (a), use backward elimination to decide which predictor 
variables can be dropped from the regression model. Control the a risk at .05 at each stage. 
Which variables are retained in the regression model? 

14.49. Refer to the Disease outbreak data set in Appendix C.lO and Project 14.48. Logistic regression 
model (14.41) with predictor variables age and socioeconomic status in first-order terms is to 
be further evaluated. 

a. Conduct the Hosmer-Lemeshow goodness of fit test for the appropriateness of the logistic 
regression function by forming five groups of approximately 20 cases each; use a = .05. 
State the alternatives, dedsion rule, and conclusion. What is the approximate P-value of 
the test? 

b. Obtain the deviance residuals and plot them against the estimated probabilities with a 
lowess smooth superimposed. What does the plot suggest about the adequacy of the fit of 
the logistic regression model? 

c. Prepare an index plot of the diagonal elements of the estimated hat matrix (14.80). Use the 
plot to identify any outlying X observations. 

d. To assess the influence of individual observations, obtain the delta chi-square statistic 
(14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) for each obser­
vation. Plot each of these in separate index plots and identify any influential observations. 
Summarize your findings. 

e. Construct a half-normal probability plot of the absolute deviance residuals and superimpose 
a simulated envelope. Are any cases outlying? Does the logistic model appear to be a good 
fit? DisCllss. 

f. To predict savings account status, you must identify the optimal cutoff. On the basis of the 
sample cases, find the total error rate, the error rate for persons with a savings account, 
and the error rate for persons with no savings account for the following clItoffs: .45, .50, 
.55, .60. Which of the cutoffs minimizes the total error rate? Are the two error rates for 
persons with and without savings accounts fairly balanced at this cutoff? Obtain the area 
under the ROC curve to assess the model's predictive power here. What do you conclude? 

14.50. Refer to the Disease outbreak data set in Appendix C.lO and Project 14.49. The regression 
model identified in Project 14.49 is to be validated using cases 99-196. 
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a. Usc the rule obtained in Project 14.491' to make a prediction for each of the holdout !'da' ~ 
. va 1 1I0If 

cases. What are the total and thc two component prediction en'or rates for the valida' ~ 

dat(~ sct? How do these error rutes compare with thosc for the model-bui!ding data set~:' 
ProJect !4.49f! m 

b. Combine the model-building and va!idmion dala sets and lit the model identifie . 
Project !4.49 to the combined data. Are the estimmed coefficients and their esti d m 
standard deviations similar to those obtained for the model-bui!ding dala set? ShOU!;::edc 

~~~l ~ 

c. Based on the litred regression model in part (b). obtain joint 90 percent confidence interval 
for the odds ratio" for age and socioeconomic status. !llIerpret your intervals. S 

14.5 I. Ret:cr to the SENIC data set. ~n Appendix c.!. ~e.di~a! schoo! arti!ia~ion is the response 
vanab!e, to be coded Y = ! If medIca! schoo! affihatlOn and Y = 0 il no medica! school 
affiliation. The pool of potentia! predictor variables includes age. routine chest X-ray ratio. 
average daily census, and number of nurses. AI! ! !3 cases are to be used in developing t~ 
logistic regression model. 

a. Fit logistic regression model (!4.4!) containing all predictor variables in the pool in first­
order terms and interaction terms for a!! pairs of predictor variables. State the fitted response 
function. 

b. Test whether al! interaction terms can be dropped from the regression mocle!: use a = .05: 
State the ful! and reduced models. decision rule, and conclusion. What is the approximale 
P-va!ue of the test'! 

c. For logistic regression model (14.4!) containing the predictor variables in first-order terms 
only. use forward stepwise regression to decide which predictor variables can be retained 
in the regression model. Control the 0' risk at .!O at each stage. Which variables should be 
retained in the regression mode!? 

d. For logistic regression model (! 4.41) containing the predictor variables in first-orderterms 
only. identify the best subset models using the AICI, criterion and the SSC" criterion. Does 
the use of these two criteria lead to the same mode!? Are either of the moclels identified 
the same as that found in part (c)'? 

14.52. Refer to the SENIC data set in Appendix C.! and Project !4.5!. Logistic regression 
model (!4.4!) with predictor variables age and average daily census in first-order terms is to 
be further evaluated. 

a. Conduct Hosmer-Lemshow goodness of fit test for the appropriateness of the logistic reo 
gre);sion function by forming five groups of approximately 23 cases each: use 0' = .OS.State 
the alternatives. decision rule. and conclusion. What is the approximate P-va!ueofthe tes~ 

b. Obtain the deviance residuab and plot them against the estimated probabilities with a 
!owess smooth superimposed. What does the plot suggest about the adequacy of the fit of 
the logistic regression model? 

c. Construct a half-norma! probability plot of the abso!ule deviance residuals and superim­
pose a simulated envelope. Are any cases outlying'? Does the logistic model appear to be 
a good fit? Discuss. 

d. Prepare an index plot of the diagonal elements of the estimated hat matrix (14.80). Use the 
plot to identify any outlying X observations. 

e. To assess the influence of individual observations. obtain the delta chi-square statistic 
(!4.8S). the delta deviance statistic (!4.S6). and Cook's distance (!4.87) for each obser­
vation. Plot each of these in separate index plot>; and idcntify any inlluentia! observations. 
Summarize your lindings. 
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f. To predict medical school affiliation, you must identify the optimal cutoff. For the sample 
cases, find the total error rate, the error rate for hospitals with medical school affiliation, 
and the error rate for hospitals without medical school affiliation for the following cutoffs: 
.30, .40, .50, .60. Which of the cutoffs minimizes the total error rate? Are the two error 
rates for hospitals with and without medical school affiliation fairly balanced at this cutoff? 
Obtain the area under the ROC curve to assess the model's predictive power here. What 
do you conclude? 

g. Estimate by means of an approximate 90 percent confidence interval the odds of a hospital 
having medical school affiliation for hospitals with average age of patients of 55 years and 
average daily census of 500 patients. 

14.53. Refer to Annual dues PI"9blem 14.7. Obtain a simulated envelope and superimpose it on the 
half-normal probability plot of the absolute deviance residuals. Are there any indications that 
the fitted model is not appropriate? Are there any outlying cases? Discuss. 

14.54. Refer to Annual dues Problem 14.7. In order to assess the appropriateness of large-sample 
inferences here, employ the following parametric bootstrap procedure: For each of the 30 cases, 
generate a Bernoulli outcome (0, 1), using the estimated probability it; for the original Xi 
level according to the fitted model. Fit the logistic regression model to the bootstrap sample 
and obtain the bootstrap estimates ho and hr. Repeat this procedure 500 times. Compute 
the mean and standard deviation of the 500 bootstrap estimates ho, and do the same for hr. 
Plot separate histograms of the bootstrap distributions of ho and hr. Are these distributions 
approximately normal? Compare the point estimates ho and hI and their estimated standard 
deviations obtained in the original fit to the means and standard deviations of the bootstrap 
distributions. What do you conclude about the appropriateness of large-sample inferences 
here? Discuss. 

14.55. Refer to Car purchase Problem 14.13. Obtain a simulated envelope and superimpose it on 
the half-normal probability plot of the absolute deviance residuals. Are there any indications 
that the fitted model is not appropriate? Are there any outlying cases? Discuss. 

14.56. Refer to Car purchase Problem 14.13. In order to assess the appropriateness of large-sample 
inferences here, employ the following parametric bootstrapping procedure: For each of the 
33 cases, generate a Bernoulli outcome (0, I), using the estimated probability it; for the original 
levels of the predictor variables according to the fitted model. Fit the logistic regression model 
to the bootstrap sample. Repeat this procedure 500 times. Compute the mean and standard 
deviation of the 500 bootstrap estimates hr, and do the same for hi. Plot separate histograms 
of the bootstrap distributions of hi and h~. Are these distributions approximately normal? 
Compare the point estimates hI and hz and their estimated standard deviations obtained in the 
Original fit to the means and standard deviations of the bootstrap distributions. What do you 
conclude about the appropriateness of large-sample inferences here? Discuss. 

14.57. Refer to the SENIC data set in Appendix C.l. Region is the nominal level response variable 
coded 1 = NE, 2 = NC, 3 = S, and 4 = W. The pool of potential predictor variables includes age, 
routine chest X-ray ratio, number of beds, medical school affiliation, average daily census, 
number of nurses, and available faGilities and services. All 113 hospitals are to be used in 
developing the polytomous logistic regression model. 

a. Fit polytomous regression model (14.99) using response variable region with 1 = NE as 
the referent category. Which predictors appear to be most important? Interpret the results. 

b. Conduct a likelihood ratio test to determine if the three parameters corresponding to age 
can be dropped from the nominal logistic regression model. Control a at .05. State the full 
and reduced models, decision rule, and conclusion. What is the approximate P-value of 
the test? 
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c. Conduct a likelihood ratio tClit to dctcrmine ir al! parameters corrclipondincr to 
'! bl I' '!" !' b! .1 t' ! '! ! " b age and aVaI a e aCI ItlCS anl serVices can e l roppcu rom t le nomma ogl.~lIc reuress'lon ",. model 

Control 0' at .05. State the fuB and reduced modcb. decision rule. and conclusion. Wh .. 
tbc approximate P-value of the lelit? atts 

d. For the fuB mode! in pari (a). carry out sepllratc binary logistic rcgrcs.~ionli for each of th 
thrce compari!ions with the refcreIll category. as dcscribed at the top of page 612. How e 
the !i!ope coeflicients compare to those obtnined in part (a). do 

e. For ench of the !icparate binary !ogi.~tic regre!i~ions carried out in part (d), obtain th 
deviance re!iidual!i and plot them against the e.~timated probabilities with a lowes, smoot: 
supcrimposed. What do the plots suggest about the adeqU<lcy or the Ilt of the binary lOgistic 
regre!ision models? 

f. For each of the separate binary !{)gi!itic regressi{)ns carried out in part (d). obtain the delta 
~hi-square statisti~ ( ! 4.85). the delta dev~ance statist.ic ( 14.S6), and ~ook'~ distance (14.87) 
lor each observation. Plot each of these m separate mdex plots and Identify any influential 
observation!i. Summarize your findings. 

14.58. Refer to the COl data set in Appendix C.2. Region is the nomina! level response variable 
coded! = NE. 2 = NC. 3 = S. and 4 = W. The pool of potentia! pI'edictor variables includes 
population density (tota! population/land area). percent or population aged! l\--34, percent of 
population aged 65 or older, serious crimes per capita (tota! serious crimexltota! population), 
percent high .~choo! graduates. percent bachelor's degrees. pefcent below poverty level, percent 
unemployment. and per capita income. The even-numbefed case ... are to be used in developing 
the po!ytomol\s logistic regression model. 

a. Fir po!ytomous regression model (! 4.99) using response variable region with 1= NE 
as the referent category. Which predictor!i appear to be most important7 Interpret the 
resu!t!i. 

b. Conduct a series of likelihood ratio lests to determine which predictors. if any, can be 
dropped from the nomina! logistic regression model. Control 0' at .O! ror each test. State 
the alternatives. decision rules. and conclusions. 

c. For the fun model in part (a). carry out separate binary logistic regressions for each of the 
three comparisons with the I'eferent category, as described at the top of page 6!2. How do 
the slope coefficients compare to those obtained in part (a). 

d. For each of the separate binary logistic regres!iions can'ied out in part (C). obtain the 
deviance residuals and plot them against the estimated probabilities with a !owess smooth 
~uperimposed. What do the plots suggcst about the adequacy of the lit of the binary logistic 
regression models'? 

e. For each of the separate binary !ogislic regressions carried out in part (d). obtain the delta 
chi-square statistic (14.85). thedclta deviance statistic (!4.86), and Cook'~ distance (14.87) 
1'01' each observalion. Plot each of these in separate index plots and identify any inlluentia1 
observations. Summarize your findings. 

14.59. Refer to the Prostate cancer data set in Appendix C.5. G!eason score (variab!e 9) is the 
ordinal level reliponse variable. and the pool or potentia! predictor variab!e!i includes PSA 
!evel, cancer volume, weight. age. benign prostatic hyperplasia .. ~emina! vcsicle invasion, and 
capsular penetration (variab!e.~ 2 through 8). 

a. Fit the proportional odds mode! (!4. !(5). Which predictor!i appear to be mO!it important? 
Intelvret the rcsu!ts. 

b. Conduct a series of Wa!d test.~ 10 determine which predictors. if any, can be dropped from 
the nomina! logistic regression model. Control 0' at .05 for each test. State the alternatives, 
decision rule. and conclusion. What i.~ the approximate P-va!ue or thc test? 
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Starting with the full model of part (a), use backward elimination to decide which predictor 
variables can be dropped from the ordinal regression model. Control the a risk at .05 at 
each stage. Which variables should be retained? 

For the model in part (c), carry out separate binary logistic regressions for each of the two 
binary variables Y/') and yF), as described at the top of page 617. How do the estimated 
coefficients compare to those obtained in part (c)? 

e. For each of the separate binary logistic regressions carried out in part (d), obtain the 
deviance residuals and plot them against the estimated probabilities with a lowess smooth 
superimposed. What do the plots suggest about the adequacy of the fit of the binary logistic 
regression models? 

f. For each of the separate binary logistic regressions carried out in part (d), obtain the delta 
chi-square statistic, (14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) 
for each observat(on. Plot each of these in separate index plots and identify any influential 
observations. Summarize your findings. 

14.60. Refer to the Real estate sales data set in Appendix C.7. Quality of construction (variable 10) 
is the ordinal level response variable, and the pool of potential predictor variables includes 
sales price, finished square feet, number of bedrooms, number of bathrooms, air conditioning, 
garage size, pool, year built, lot size, and adjacent to highway (variables 2 through 9 and 12 
through 13). 

a. Fit the proportional odds model (14.105). Which predictors appear to be most important? 
Interpret the results. 

b. Conduct a series of Wald tests to determine which predictors, if any, can be dropped from 
the nominal logistic regression model. Control a at .01 for each test. State the alternatives, 
decision rules, and cpnclusions. Which predictors should be retained? 

c. Starting with the full model of part (a), use backward elimination to decide which predictor 
variables can be dropped from the ordinal regression model. Control the a risk at .05 at 
each stage. Which variables should be retained? 

d. For the model obtained in part (c), carry out separate binary logistic regressions for each 
of the two binary variables Y/') and yP), as described at the top of page 617. How do the 
estimated coefficients compare to those obtained in part (a)? 

e. For each of the separate binary logistic regressions carried out in part (d), obtain the 
deviance residuals and plot them against the estimated probabilities with a lowess smooth 
superimposed. What do the plots suggest about the adequac), of the fit of the binary logistic 
regression models? 

f. For each of the separate binary logistic regressions carried out in part (d), obtain the delta 
chi-square statistic (14.85), the delta deviance statistic (14.86), and Cook's distance (14.87) 
for each observation. Plot each of these in separate index plots and identify any influential 
observations. Summarize your findings. 

14.61. Refer to the Ischemic heart disease data set in Appendix C.9. The response is the number 
of emergency room visits (variable 7) and the pool of potential predictor variables includes 
total cost, age, gender, number of interventions, number of drugs, number of complications, 
number of comorbidities, and duration (variables 2 through 6 and 8 through 10). 

a. Obtain the fitted the Poisson regression model (14'.113) with the response function 
(L(X, (3) = exp(X'f3). State the estimated regression coefficients, their estimated standard 
deviations, and the estimated response function. 

b. Obtain the deviance residuals (14.118) and plot them against the estimated model probabil­
ities with a lowess smooth superimposed. What does the plot suggest about the adequacy 
of the fit of the Poisson regression model? 
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Case 
Studies 

14.62. 

!4.63. 

14.64. 

c. Conduct a series of Wald tests to determine which predictor:;. if any. can be drop ed .... 
the nominal logi:;tic regression mode!. Comrol 0' at .0 I for each tc:;t. State the alt: :rq_~ 
decision rules. ami conclusions. mlltiv~ 

d. Assuming that the fitted mode! in part (a) is appropriate. use the likelihood ratio .~ 
d I I I · I" I b' I' . test t etenlllnc w 1et leI' l urallon, coomp Icatlons, anl comor Il Itles can be dropped fro ". 
mode!: comrol 0' at .05. State the full and reduced mode!s, decision rule. and concl ~th. 

1l.~10n. 
e. Use backward elimination to decide which predictor variables can be dropped from t{ 

regression mode!' Control the 0' risk at .10 at each stage. Which variables are retained? -i' 

Referro the IPOdata set in Appendix C.I !. Carry out acomplete anulysi!; of this data set, whe . 
the response of inrerest is venture capital funding. and the pool of predictors includes fa ~ 
value of the company, number of shures offered, and whether or not the company underwen: 
a leveraged buyout. The analysis should consider transformations of predictors, inc!ll.<;ion (j .. 
second-order predictors, analy~is of residuals and influential observations, model selection; 
goodness of fit evaluation. and the development of an ROC curve. Mode! validation should 
also be employed. Document the steps taken in your analysis. and assess the strengths and' 
weaknesses of your final mode!. ' 

Refer to the Real estate sales data set in Appendix C.7. Create a new binary re~1JOnse vari: 
able Y, ca!!ed high quality construction, by letting Y = I if quality (variable 10) equals I, and 
Y = 0 otherwise (i.e., if quality equals 2 or 3). Carry out a complete logistic regression analy; 
sis. where the response of intere,t is high quality construction (n. and the pool of predictorS 
includes sales price, finished square feet, number of bedrooms, number of bathrooms, air 
conditioning, garage size. pool. year built, style. lot size, and adjacent to highway (variables~ 
through 9 and I I through 13). The ilnalysis should consider transformations of predictorS;;. 
inclusion of second-order predictors. analysis of residuals and influential observations, model 
selection. goodness of lit evaluation. and the development of an ROC curve. Develop a predie-' 
tion rule for determining whether the quality of construction is predicted to be of high quruity' 
or not. Mode! validation should also be employed. Document the steps taken in your analysis,.' 
and assess the strengths and weaknesses of your tinal model. 

Refer to the Prostate cancer data set in Appendix C.5. Create a new binary response vari.:; 
able Y. ca!!ed high-grade cancer, by letting Y = I if Gleason score (variable 9) equah; 8, and' 
Y = 0 otherwi.~e (i.e .. if Gleason score equals 6 or 7). Carry out a complete logistic regressiOli 
analysis, where the response of inrerest is high-grade cancer (Y). and the pool of predicc, 
tors includes PSA level. cancer volume, weighr, age, benign prostutic hyperplasia, seminru; 
vesicle invasion, and capsular penetration (variables 2 Ihrough S). The analysis should con-·', 
sider transformations of predictor:;, inclusion of second-order predictors. analysis of residurus~' 
and influential observations. mode! selection, goodness of fit evaluation. and the development'. 
of an ROC curve. Develop a prediction rule f~r determining whether the grade of disease is: 
predicted to be high grade or not. Model validation should also be employed. Document the' 
steps taken in your analysis. and assess the strengths and weaknes.~es of your finallllodei. 
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Introduction to the Design 
of Experilllental and 
Observational Studies 

In Parts I-III. we focused on the use of linear and nonlinear statistical models for the 
analysis of experimental and observational data. There, an observed response vector Yand' 
associated design n1atrix X were used to model the relationship between response and the 
predictors and to develop appropriate statistical inference.~. We will now emphasize the . 
statistical desigll of scientific studies. 

Our basic goal will be to design studies in such a way that they lead to a simple, effective' 
statistical analysis. Since nearly all scientific studies are analyzed using linear statistical 
models, the ability to design studies properly depends critically on an understanding of 
the materials covered in Parts I-III. For example. in Section 4.7. we discussed the range, 
spacing, and number of X levels when the objective of tl1e study was to estimate a simple 
linear relation between a response Y and a single predictor X. We observed there that the 
fange and spacing of the X s have a direct effect on the precision with which we estimate 
key parameters. sucl1 as the slope. We showed thaI the variance of the estimated slope is 
minimized when the X s are split evenly at minimum and maximum levels for the scope of 
the experiment. Minimization of this variance leads to a more precise pm'ameter estimate 
and improved statistical power. 

In this chapter and those tl1at follow, we consider the design of scientific studies and· 
tl1e specialized linear models-called a/lolysis of variallce (ANOVA) models-employed 
in their analysis. We emphasize that the proper design of a scientific study is far more 
important than the specific techniques used in the analysis. As we shall see. a well-designed 
study is usually simple to analyze. On the other hand, a poorly designed study or a botched 
experiment often cannot be salvaged, even with the most sophisticated analysis. 

We begin in tl1e CLIITent chapter with an overview of the design of scientific studies. 
Generally, a scientific study can be categorized as either an experimental study or an obseL~ 
vational study. The distinction is important because experimental studie3 provide a much 
firmer basis for the establisl1ment of cause-and-etfect relationships between one or more 
explanatory factors and a response variable than do observational studies. With the latter, 
one can establisl1 association between the explanatory factors and the response variable, 
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but not causation. We continue with an overview of the basic concepts and planning ap­
proaches used in the design of experimental and observational studies. Finally, we present 
a case study to illustrate both the design and analysis of an experimental study based on a 
matched pairs design. 

~;,~M=l;~E=x::=JPLe_r_im_e_ll_t_a_I_S_tu_d_ie_s--,-, _O_h_s_e_r_v_a_ti_o_ll_a_I_S_t_u_d_ie_s-l..,_an_d_C_a_u_s_a_t1_· O_ll 
~ 

~p~rimental Studies 
.. For many persons, the first e~posure to the concept of an experiment was in a high school 

or elementary school scienc.~ class. For example, a high school science teacher might 
demonstrate the influence of-atmospheric pressure on boiling temperature by showing that 
water will boil at room temperature in a near vacuum. We note that this example was 
not an experiment, but was simply a demonstration. Designed experiments are conducted 
to demonstrate a cause-and-effect relation between one or more explanatory factors (or 
predictors) and a response variable. The demonstration of a cause-and-effect relationship is 
accomplished, in simple terms, by altering the levels of the explanatory factors (i.e., the X s) 
and observing the effect of the changes on the response variable Y. Furthermore, designed 
experiments are frequently comparative in nature. 

For example, a famous experiment on the effects of vitamin C on the prevention of colds 
in 868 children was conductc;d in 1976. Of the 868 children studied, half were randomly 
selected for the experimental group. Children in this group received a 1,0OG-mg tablet of 
vitamin C daily for the test period. The remaining children, who made up the control group, 
received a placebo-an identical tablet containing no vitamin C-also on a daily basis. The 
results showed that the average number of colds per child was .38 for children receiving 
vitamin C, while the average for children receiving the placebo was .37. The difference 
between the two groups (.01 colds per child) was not statistically significant. 

The explanatory factor in the vitamin C example is a qualitative predictor X having two 
levels: X = 1 if child received vitamin C; X = 0 if child did not receive vitamin C. The 
different levels of the explanatory factors in an experimental study are frequently referred 
to as treatments. Just as there are two levels of the explanatory factor in the vitamin C 
experiment, there are two treatments: vitamin C and placebo. The objects or entities to 
which treatments are applied are generally referred to as experimental units. Here the 
experimental units are the children who received either of the two treatments. 

Assignment of the treatments (factor levels) to the experimental units was performed us­
ing a process called randomization. We shall discuss randomization in detail in Section 15.2, 
but we note for now that the purpose of randomization here was to balance the character­
istics of the children in each of the treatment groups, so that differences in the response 
variable can be attributed to treatment differences, and not to differences between the two 
groups of children. For example, one could imagine a poorly designed version of this study, 
in which the 868 children attended two elementary schools. For convenience, the investi­
gator might use children from one school as the experimental group, and children from the 
second school as the control group. In such a plan, it would be impossible to distinguish the 
effects of being in a particular school-which could be severe if a particularly contagious 
cold virus broke out in one of the schools-from the presence or absence of vitamin C. In 
contrast, with randomization, we are guaranteed that about half of the children from each 
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Example 1 

school would receive the viramin C regimen. Therefore any ditferences in rhe incide ,. 
colds in rhe two groups will likely nor be anriburable to or confounded wirh the sCh~7°~ 

Thus a characteristic feature of an experimental study is that the invesrigator exe 
0 

.s. 
conrrol over rhe assignmem of treatmenrs (0 rhe experimental units rhrough the pr~ses 
of randomizarion. If important ditferences in the responses resulr berween rhe rreatm cess 
groups, ,:e can at.rribute rhem (0 rhe treatments. We give rhe following definition o~ 
comparauve expenmental study. . 

In a comparative cxpcrill/cl/ta{ study, randomization is employed ro assign 
a ser of treatmems to the experimental unirs, and rhe observed ourcomes 
among the treatment groups are compared to assess rreatment effecrs. 
The rreatments are defined by rhe levels of one or more explanatory fac- (15.1) 
(Ors. referred ro as cxpcrimcnta{.fclctoJ's. Cause-and-etfecr relationships 
between the experimental factors and the outcome or response variable 
can be established in an experimenral study. 

We now present another example of an experimental study. 

Experimental Study of Quick Bread Volume. A simple comparative experiment was 
conducted to study the effect of baking temperature on the volume of a quick bread prepared 
from a package mix. Four oven remperatures-Iow. medium, high, and very high-were 
resred by randomly assigning each of rhe four levels of remperature (0 five package mixes. 
This is an experinlenral study because rhe levels of rhe explanatory fac(Or (baking temper­
ature) are randomly assigned to the experimental units. The experimental units here are 
the 20 packages of mix. The experimental design used is called a completely randomized 
dcsign, with each of rhe 20 packages of mix having an equal chance (0 be assigned (0 each 
of rhe four cooking remperarures. Note rhat rhe design used in rhe vitamin C example was 
also a completely randomized design. 

Comment 

The. vitamin C experimental study is an example of a clinical trial. A clinical trial is defined as a 
prospective intervention study. where one is interested in comparing the effects or different treatment 
interventions starting at one point in time on the outcome at a later point in time. • 

Observational Studies 
An observational srudy differs from an experimental study in rhat randomization of the 
rreatmenrs ro experimemal unirs does nor occur. For example. a study of rhe effecrs of 
education and type of work experience of sales people on their sales volumes was made by 
selecring a random sample of sales people currently employed by a company and obraining 
information on highest degree obtained, rype of experience. and sales volume for each of 
rhe selecred employees. This is an observational srudy because it is nor possible to randomly 
assign the levels of the predictor variables of interest (education and type of experience) to 
the employees. 

We focLIs here on "compararive" observational studies, where rwo or more groups (poP­
ularions, sUbpopulations. processes, erc.) are compared. The sales example jusr mentioned 
is a comparative observational srudy, because sales volumes for differenr groups of sales 
people were ro be compared for different levels of education, experience. and sO fonh. This 
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is in contrast to simple descriptive studies that do not involve statistical comparisons of 
groups. We give the following definition of a comparative observational study: 

In a comparative observational study, random samples are obtained from 
two or more populations (or subpopulations) and the observed outcomes 
are compared across populations (or subpopulations). The populations or 
subpopulations are defined by the levels of one or more explanatory fac-
tors, referred to as observational factors. A cause-and-effect relationship (15.2) 
between the explanatory factors and the outcome or response variable is 
difficult to ,~stablish in an observational study. Usually, evidence external 
to the obseryational study would be required to rule out possible alternative 
explanations for cause and effect. 

At times, investigators ~nomandom convenience or quota samples. These samples are 
sometimes referred to as pseudo-random samples or representative samples and treated as 
if they were truly random. It must be cautioned here that random selection or assignment 
greatly enhances the generalizability of the study results and avoids potential biases that 
otherwise may occur when nonrandom selection is used. 

The following is an example of an observational study. 

Observational Study of Teaching Effectiveness. Recently, the administration of a col­
lege of business offered its faculty the oppOrtunity to participate in a summer workshop on 
case teaching methods. Faculty were not required to attend the workshop, but were asked 
to sign up on a first-come, first-served basis. Of the 110 faculty in the business school, 63 
faculty elected to attend the seminar. 

At the end of the following academic year, the administration compared the recent 
teaching performances of faculty who attended the seminar to those who did not attend. 
Students evaluated faculty on a 7 -point scale, where 1 indicates poor performance and 7 is 
outstanding. Average teaching ratings for all faculty members during the year following the 
seniinar were obtained. The aligned dot plots in Figure 15.1 compare the performances of 
faculty who attended the seminar with faculty who chose not to attend. These plots suggest 
that faculty who attended the seminar were generally rated more highly by students than 
faculty who did not attend, and this is confirmed by the sample averages. The average rating 
for faculty who attended was 5.76; the average for those who did not attend was 5.26. On 
the basis of two-sample t -test (A.67), administrators concluded that the observed difference 
(.50) was statistically significant. The P-value ofthe test was 0+. 

Attendance . · · . · · · · . . · · . Not Attend 

. . 
· · · · · · · · · · · · · · · · Attended I I I I 

3.5 4.5 5.5 6.5 .. 
Rating 
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It is tempting to conclude, on the basis of this analysis, that the seminar Was effec' . 
improving the quality of teaching. However, this is clearly an observational study betlVeur 

, caUSe 
a n~ndom assi.gnn:ent of the tr~atments (attend workshop, do. not attend workshop) to e ~: 
penmen tal Ul11ts (mstructors) dId not occur. Thus cause-and-effect between the expla lC 

factor (workshop attendance) and the response (teaching effectiveness) cannot be :tory 
inferred. It is possible that the workshop improved teaching quality, but a number of ~ctly" 
native explanations for the observed ditference are also plausible. For example, it may h

ter
-. 

been that better, or more highly motivated, teachers .volunteered for the workshop. In ~~, 
case, the workshop attendees would be rated more hIghly on average even if the wOrkSh; 
had no beneficial effect. op. 

This investigation would have been an experimental study if the administration h<>-l ch 
au 0-. 

sen a subset of the faculty at random for participation in the workshop. If the results led' 
(0 a difference in teaching quality, such as that shown in Figure 15.1, the administration 
would be justified in concluding that the seminar had a beneficial effect on teaching ef­
fectiveness. The reason that a cause-and-effect conclusion would be justified here is that 
the randomization would tend to balance out the differences in other factors, such as pre­
workshop teaching ability or motivation, leaving the observed differences attributable to 
the experimental treatment. 

Comment 

Ordinal level data are frequently assumed (0 approximate equally spaced interval data and a~ such 
are appropriately analyzed using statistical techniques designed for continuous, equal interval level 
measurements. We have done so with the teaching effectiveness scores but caution the reader that at 
times this assulllPtion may not be supported, in which case specialized techniques for the analysis of 
ordinal level data. such as (hose discussed in Chapter 14. should be employed. • 

Mixed Experimental and Observational Studies 

Example 3 

A third type of study, which involves aspects of both experimental and observational studies 
is also possible. We illustrate this third case with an example. 

Mixed Experimental and Observational Study of Mechanics' Training. An appliance 
manufacmrer operates three regional training centers in the United States for training me­
chanics to service the company's products. At each regional center, two different training 
programs were studied, with the trainees from the region assigned at random to one of the 
two training programs. One may view this as a two-factor study, the factors being training 
program (experimental factor) and training center (observational factor). If the same t:Jjlin­
ing program is superior to the other in all three centers, the evidence is quite clear as to 
the comparative effects of the training programs since at each center the trainees from the 
region were assigned at random to the two programs. 

Note that the training center was not randomly assigned to subjects; each trainee was 
assigned to the center for the region in which the trainee i~ located. Therefore a cause-and­
effect relationship between training centers and quality of training cannot be demonst11lted 
rigorously. One center may excel for any number of reasons, such as because its staff is 
doing a better training job, because it has better facilities, or because trainees assigned to 
it come from a geographic region in which better education is provided. Evidence external 
to this study would be required as to whether or not the education of trainees at the three 
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centers is the same, whether or not the facilities are equal, and the like, before a clear 
understanding of the reasons for differences between training centers could be obtained. 

As we will see, this is an example of a blocked experimental study, where the blocks 
refer to the training centers (observational factor) and the training program is the treatment 
(experimental factor). 

;: Experimental Studies: Basic Concepts 

The design of an experiment refers to the structure of the experiment, with particular 
.~ reference to: 

, : .... 
•. The set of explanatG:ry factors included in the study. 

• The set of treatments included in the study. 

• The set of experimental units included in the study. 

• The rules and procedures by which the treatments are randomly assigned to the experi­
mental units (or vice versa). 

• The outcome measurements that are made on the experimental units. 

In this section we discuss each of these topics in tum. 

A factor is an explanatory variable to be studied in an investigation. For instance, in an 
investigation of the effect of price on sales of a lUXury item, the factor being studied is price. 
Similarly, in a study comparing the appeal of four different television programs, the factor 
under investigation is television program. In the quick bread volume example, the factor 
under investigation is baking temperature. In a regression context, factors are typically 
referred to as predictors or independent variables. 

A factor may be categorized as to whether it is an experimental factor or an observational 
factor. An experimentalfactor is one where the level of the factor is assigned at random to 
the experimental unit. An illustration is the factor baking temperature in the bread volume 
example. In any investigation based on observational data, the factors under study are 
observational factors. An observational factor pertains to the characteristic of the units 
under study and is not under the control of the investigator. Observational factors can 
be found in experimental studies, and therefore it is important to recognize them as such, 
since cause-and-effect inferences cannot be made for these factors. As we noted earlier in 
the mechanics' training example, the training program was an experimental factor, while 
the training center was an observational factor. 

Just as in regression, where both qualitative and quantitative predictors can be employed, 
experimental factors can be either quantitative or qUalitative. A qualitative factor is one 
where the levels differ by some qualitative attribute. Examples are type of advertisement, 
brand of rust inhibitor, or television program. In Chapter 8 we described the use of r - 1 
indicator variables to model a qualitative predictor having r levels. A quantitative factor 
is one where each level is described by a numerical quantity on an equal-interval scale. 
Examples are temperature in degrees Celsius, age in years, or price in dollars. 

Afactor level is a particular form of that factor. In the bread volume example, four baking 
temperatures were used, namely, 320°F (low), 340°F (medium), 360°F (high), and 380°F • 
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(very high). Each of these temperatures is a level of the factor under study, and we say , 
the temperature factor has four I~vels in. this st~ldy. t:s another example, in a study of that 
effect of color of the paper used 111 a mall questionnaIre on response rate, color ofpaper~ 
the factor under study, and each different color used is a level of that factor. IS 

Crossed and Nested Factors 

FIGURE 15.2 
Crossed 
Factors and 
Nested 
Factors­
Chemical Yield 
and Production 
Yield 
Experiments. 

Investigations differ as to the number of factors studied. Some are singie-jactor studi ' 
where only one factor is of concern. For instance, the study of the effect of four diffe es,_ 

. . k I I . d 1· . rent baklllg temperatures on qUlc breac vo ume mentlone ear ler IS an example of a single: 
factor study. In multi/actor studies, two or more factors are investigated simultaneously. An 
example of a multifactor investigation is a study of the effects of three levels oftemperarure 
and two levels of concentration of solvent on the yield of a chemical process. Here, two 
factors-temperature and concentration-are studied simultaneously to obtain infonnation 
about their effects on the yield. The three levels of temperature and two levels of solvent 
concentration lead to 3 x 2 = 6 factor-level combinations: 

Factor Solvent 
Combination Temperature Concentration 

1 Low Low 
2 Low High 
3 Medium Low 
4 Medium High 
5 High Low 
6 High High 

These factor combinations can be represented by the two-way table in Figure IS.2a. We say 
that the two factors are crossed when all combinations of the levels of the two factors are 
included in the study. The sales volume study is another example of a study in which the 
factors, education and type of experience, are crossed. 

(a) Crossed Factors-Chemical Yield Experiment 

Temperature 
Solvent Cone. 

Low Medium High 

Low X X X 
• 

High X X X 

(b) Nested Factors-Production Yield Experiment 

Operator 
Plant 

1 2 3 4 5 6 7 8 9 

1 X X X 

2 X X X 

3 X X X 
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In some studies the levels of one or more of the factors are unique to a particular level of 
another factor. For instance, in a study of the effects of operators on production yield in three 
manufacturing plants, three operators were selected in each of the three plants, and their 
production yields were recorded for five batches of product. A diagram of this experiment 
is given in Figure I5.2b. Note that the first three operators are employed only in plant 1, the 
next three are employed only in plant 2, and the last three are employed uniquely in plant 3. 
Here, operators are said to be nested within manufacturing plants. 

The set of treatments to be included is determined by the set of factors and the levels of each 
factor. In single-factor studies, a treatment corresponds to a factor level. Thus, in a study of 
fi ve advertisements, each advertisement is a treatment. In multifactor studies, a treatment 
corresponds to a combination of factor levels. For instance, in a study of the effects on sales 
volume of price ($.25, $.29) and package color (red, blue), each price-color combination, 
such as $.25 price-red package color, is a treatment. When a treatment is indicated by a 
combination of two or more factor levels, the combination of levels is sometimes referred 
to as a treatment combination. This particular study contains four treatments or treatment 
combinations since there are four price-color combinations. 

The definition of a treatment can at times be a difficult problem. Consider an experiment 
to study whether C or JAVA is a better programming language to teach in an introductory 
computing course. Some teachers will prefer C, others JAVA. Should the treatments then 
be defined as the programming language taught by instructors who prefer that language? If 
so, differences in findings may be due to differences between the two groups of instructors. 
ShOUld the definition of a treatment not include the instructor, and instructors be random­
ized, with some being forced to teach a language they do not prefer? Or should instructor 
preference be a second factor, with each instructor teaching both languages? Problems of 
this kind need careful resolution so that the results of the study will be useful. 

,Choice of Treatments 
Generally, the investigator must decide upon the number of factors to be included, the 
number of levels of each factor, the range of levels within each factor (for quantitative 
factors), and the need for a control treatment. We shall discuss each of these aspects in turn. 

Number of Factors. In the initial stages of an investigation or when little theory is 
available, there is frequently a desire to include many more factors than can possibly be 
studied in a single experiment. For example, the quick bread volume experiment discussed 
above was adapted from a much larger optimization study of quick bread production. When 
the study was initiated, process engineers and food scientists conducted a brainstorming 
session to identify factors that could potentially affect quick bread volume. Cause-and­
effect diagrams (also known as Ishakawa or fish-bone diagrams), such as that shown in 
Figure 15.3, are often used to guide such sessions and to summarize results. This particular 
session i~entified over 15 potential causal factors-far too many to include in the experiment. 
From this number, four factors---oven temperature, proof time, yeast type, and flour protein 
level-were included, each at two levels. This led to 24 = 16 treatment combinations. 

Number of Levels of Each Factor. For qualitative factors, the number of levels may be 
dictated by the nature of the factor. For example, in the incentive system example discussed 
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earlier, rhree alternative incenrive sysrems were under consideration. One involved increases 
to hourly wages, anorher involved rhe use of bonuses and financial awards, and another 
involved recognirion and rhe awarding of additional vacation rime. Thus rhe company felt 
that all three levels of the incentive system factor should be included in the experiment. 
In other instances, it might be necessary to drop one or more of the levels of a qualitative 
factor in order to reduce the cost of the experiment. For example, in an experiment to 

invesrigare the effect of color of paper (blue, green, orange, and yellow) on the response 
rates for questionnaires, it mighr be concluded that a leasr-promising color should simply 
be eliminated in order to reduce rhe cosr or complexiry of rhe experiment. 

For quantitative factors. rhe number of levels chosen should reflect the rype of trend 
expected by rhe experimenrer. If rhe experimenrer believes thar the change in the response 
will be roughly linear in the range chosen for the facror, rwo levels-the minimum and 
the maximum of rhe specified range-may be sufficienr. Three levels are useful if the 
experimenter believes that rhe response will follow a quadratic rrend in rhe chosen range, or 
if a linear trend is expecred, but a test for lack of fit is desired. Use offour or more levels is 
justified if a highly detailed examination of the shape of the response curve is desir~d, or if 
the response curve is i.ncreasing or decreasing to an asymptotic value. Often, three equallY 
spaced levels are sufficient. 

Range of Levels for Quantitative Factors. Choosing the range of a quantitative factor 
ro be explored is one of the mosr important design decisions. If rhe range is roo small, the 
effect of a change from the smallesr level to rhe largesr level of the factor may be roo small 
to derect. If the range is too large, importanr changes in rhe mean response may be missed. 
For example, suppose rhat rhe true regression function in rhe quick bread volume example is 
given by rhe curve in Figure IS.4. The response increases in roughly linear fashion for baking 
temperatures berween 300 F and 400°F, and levels off for baking remperatures ourside this 
range. If rhe range is too small and we are in an area where rhe change in rhe mean response 
is small or moderate, for example 2S0"F-300"F. we will conclude that remperature has 
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little effect on volume. If the range is too large, for example 250°F--450°F, and only these 
two levels are used 'as treatments, important features of the curve-such as the maximum 
(near 400°F) may be missed. We see that an effective choice of range for a quantitative 
factor frequently requires a good prior knowledge of the nature of the relationship between 
the mean response arid the factor(s) under study. 

Control Treatment. A control treatment is needed in some experiments, but not in all. A 
control treatment consists of applying the identical procedures to experimental units that are 
used with the other treatments, except that none of the treatments are applied. In a study of 
food additives, for instance, a treatment may consist of a portion of a vegetable containing 
a particular additive that is served to a consumer in a particular experimental setting in the 
laboratory. A control treatment here would consist of a portion of the same vegetable served 
to a consumer in the identical experimental setting except that no food additive has been used. 

A control treatment is requited when the general effectiveness of the treatments under 
study is not known, or when the general effectiveness of the treatments is known but is not 
consistent under all conditions. In the food additives example, suppose it is known that food 
additive A is highly effective in enhancing the tastiness of vegetables and it is desired to see 
if additives Band C are equally effective or possibly even more effective. In that case, a 
standard of comparison is available and no control treatment is required. On the other hand, 
suppose there is no knowledge about the general effectiveness of the three additives, and 
the following results are obtained (ratings can range between 0 and 60): 

Additive 

A 
B 
C 

Mean Rating 

39 
37 
41 

Assume that the sample sizes are large so that the mean ratings are very precise. In the 
absence of a standard of comparison, one would not know here whether each of the three 
additives is effective or whether none of the additives is effective. 

It is crucial that the control treatment be conducted in the identical experimental setting 
as the other treatments. In the food additives example. for instance, a survey of consumers 
at home, in which persons are asked to rate the general tastiness of the vegetable (without 
any additive) on the same scale as in the experiment, would not qualify as a control treat­
ment. Such a survey might yield a mean rating of 22, suggesting that the three additives 
substantially increase the tastiness of the vegetable. This conclusion, however, could ~ 
grossly misleading. If the control treatment actually were incorporated into the experiment 
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so that consumers are given pOltions of the vegerable wirh no addirive in the labo ,_'_ 
setting, the mean rating for the control treatment might be 40. This result would im ~tog 
none of rhe rhree addirives is effecrive in enhancing the tasriness of the vegetable. ~y ~ 
son for the higher mean rating in the laboratory setting could be a "halo" effecr conn

e rea,: 
with the experimental procedures. Possibly, foods served in rhe experimental settingetaCle(l, 
be h h h b · b .. . ste 

tt~r.t an ~t ome,or.rer aps consumers try to 0 hge y glvmg higher ratings when th -; 
paruc~pate In an expenmental study. Thus, only a con~rol treatmenr incorporared into:l 
expenment can serve as the proper standard of companson. -

Experimental Units 
As we noted earlier, the experimental units are the objecrs or enrities to which the treat~ 
ments are applied in an experimental study. There are times when confusion may arise as 
to rhe precise nature of rhe experimental unit. The following definition makes clear that 
experimental units are determined by the method of randomization employed. 

An experimenralunir is rhe smallesr unir of experimental material ro which 
a rreatment can be assigned; rhe experimentalunir is thus determined by (15.3) 
the method of randomization. 

For example, consider again rhe experimental study of two incentive pay sysrems. We 
asked above if the basic study unit should be an individual employee, a shift, or a plant. 
As noted, ir may be impossible to assign different incentive pay systems to individual 
employees or to individual shifts, but a random assignment of different incentive systems 
to different planrs would be feasible. Here, the smallest unit of experimental material to 
which a treatment (incentive sysrem) can be assigned is the plant, and so it follows that the 
plant is rhe experimental unit. 

Representativeness of the experimental units is another important consideration in the 
design of experimental studies. Consider a study of management behavior with different 
communications networks. A university investigator may be tempted to use students as 
subjeors because of rheir ready availabiliry. If, however, information is desired about the 
behavior of business people, the students may nor be representative experimentaiunits. 
Ir hardly needs to be srated that an invesrigator should make every effort to obrain repre­
sentative experimental units. Conversely, one should be cautious in extending results of 
an invesrigation to groups for which rhe study units are nor representative. Thus, if the 
communications network study cired above did use students, one should not automatically 
assume rhat the findings are relevant ro business people. 

A different aspecr of defining the basic unit of study occurs in investigarions of sales 
and similar phenomena. Suppose that we wish to measure the effectiveness of five different 
relevision commercials in rerms of sales during a pel; od of rime subsequent to rheir showing. 

. . d? 
Should rhe lengrh of rime be one week, rwo weeks, one month, or some orher ome peno . 
Clearly, rhe purposes of the study will need to govern the length of rime rhat makes up the 
basic study unir here. 

Sample Size and Replication 
Sample size is usually determined by staristical considerations, by resource or budget con­
siderations, or both. Generally, rhe larger rhe sample size, the greater will be our ability to 
derecr any ditferences in responses due (0 the treatmenrs. Thus a key srep in any experimental 
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design is to assess the power of the statistical tests to be used in the analysis, or the precision 
of the estimates to be produced by the analysis, as a function of sample size. Ultimately, a 
trade-off must be made between the increase in power and precision resulting from higher 
sample sizes, and the added cost or time required to field the experiment. Statistical pro­
cedures used for determining power and precision depend on the particular experimental 
design used. We shall discuss these methods throughout the remainder of the text as new 
experimental designs are introduced. 

We note that in many designed experiments, the sample size is an integer multiple of 
the number of treatments •. For example, in the bread volume experiment, there were eight 
experimental units (packages of bread mix) and four treatments. Thus each treatment was re­
peated twice. We say th-at there were two complete replicates of the experiment. Frequently, 
the total sample size is simply determined by the number of complete replicates chosen in 
the experimental design:'Replication makes it possible to estimate the experimental error 
variance, which is required for testing the presence of treatment effects or for establishing 
confidence interval estimates of these effects. When a treatment is repeated, any difference 
in the response from prior responses for the same treatment (under similar experimental 
conditions) is due to experimental error, and it therefore provides one additional piece of 
information (i.e., one degree of freedom) about the pure error variance. If this experimental 
error variance is small, the response is sometimes said to be highly reproducible. If the error 
variance is high, the response has low reproducibility. 

ttandomization 
Randomization in experiments is a relatively recent idea, first introduced by the famous 
British statistician Sir R. A. Fisher during the early part of the twentieth century. In the 
past, treatments had been assigned to' experimental units either on a systematic or on a 
SUbjective basis. We noted in the teaching effectiveness example how biases can arise when 
self-selection is employed to assign experimental units to the treatments. The same dangers 
exist with systematic and subjective selection. For instance, consider an experiment using 
10 employees and two treatments, where the first five employees on the payroll listing are 
assigned treatment 1 and the next five treatment 2. Suppose that the payroll listing is by 
seniority, and that experience is related to productivity, the phenomenon under study. A 
comparison of treatments 1 and 2 then will reflect not only differences between the two 
treatments but also differences in the amount of experience between the two groups of 
employees. This potential bias may be so transparent that no good experimenter would use 
the type of systematic assignment just described. Nevertheless, there may be many other 
sources of bias in systematic selection that are not so apparent. 

Subjective assignments of treatments to experimental units can also lead to selection bias, 
as when an experimenter subconsciously tends to assign one treatment to highly extrovert 
subjects and the other treatment to less extrovert SUbjects. 

With randomization, the treatments are assigned to experimental units at random. Ran­
domization tends to average out between the treatments whatever systematic effects may 
be present, apparent or hidden, so that comparisons between treatments measure only the 
pure treatment effects. Thus, randomization tends to eliminate the influence of extraneous 
factors not under the direct control of the experimenter and thereby precludes the pres­
ence of selection bias. Cochran and Cox (Ref. 15.1, p. 8) have likened randomization to a~ 
insurance policy in that it is a precaution against biases that mayor may not occur. 
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Randomization is appropriate not only for the assignment of treatments to experimen 
unirs bur also for an~ orher phases of rhe experim.ent where sys~ematic effects not undert~~ 
control of the experImenter may be present. For Insrance, consIder an experiment in Which 
five rreatmenrs (alternarive merhods of measuring subjecrive probability) are studied d .. an 
20 subJecrs are used. Only one subject can be run per day; rhus, four weeks are required t 
complere the experiment. In this type of siruation, ir usually is highly desirable to detennj 0 

the order of the rreatments randomly since a variery of sysremaric time effecrs COUld: 
present. The experimenter may wirh time improve rhe explanation of the methods of mea~ 
suring sUbjective probability, there may be a streak of extremely hot weather during a week 
and the like. With these possible time effecrs, a systematic assignment of one treatment pe; 
week could lead to seriously biased resulrs. Randomization, on the orher hand, will tend to 
average our whatever sysrematic effecrs are present, whether anticipated or not. 

How to Randomize. Randomization requires that a series of experimental units (or 
U'eatments) be placed in a random order. To illustrate this in simple fashion, we consider 
again rhe quick bread volume example with rwo replicares. Here foul" rreatments (II-low, 
T2-medium, T1-high, T1-very high) are considered and 2 x 4 = 8 package mixes, 
labeled I rhrough 8, are to be used as experimental units. The siruation is: 

Treatments 
Sample Sizes 

h 
2 

and the eighr rreatments (0 be assigned ro package mixes are listed as (the order is arbitrary): 

To randomly assi gn the treatments to the experimental units, we obtain a random ordering 
of these treatments. To do so we generate eight random numbers from any conrinuous 
probabi liry distribution (or obtain eight random numbers from a table of random digits) and 
associate each number obrained in sequence wirh the above list of treatments. The eight 
random numbers below were obrained from a srandard nonnal random number generator: 

Tl 
-0.37 

T2 
1.40 

T2 
-1.65 

T3 
-0.25 • 

We now rearrange rhe pairs above in ascending sequence for rhe random numbers and 
associate rhem with the package mixes, which we have arbitrarily labeled "I" through "8." 
Thus we obtain rhe following randomized assignmenr of treatments to experimental units: 

Treatment: 
Random number: 

Package mix: 

T2 
-1.65 

Tl 
-0.37 

3 

T3 
-0.25 

4 

T! 
0.01 

5 

T3 
0.16 

6 

T4 T2 
0.77 1.40 

7 8 
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As a result of the randomization, treatment TI (low temperature) is to be assigned to package 
mixes 3 and 5; treatment T2 (medium temperature) is to be assigned to package mixes 1 
and 8; and so on. The experimental trials should be conducted in a random order. 

Some statistical packages provide facilities for randomly permuting the treatments (or 
experimental units) directly, which can simplify the process considerably. 

Comments 
1. Randomization also can provide the basis for making inferences without requiring assumptions 

about the distribution of the error terms. We shall discuss this use of randomization in Section 16.9. 

2. The implicatiQI1{' of randomization may be viewed in a somewhat different fashion than that 
presented so far. The'.random errors of experimental units that are adjacent in time or space are often 
correlated, not independent, as a result of various systematic effects over time or space. Randomization 
does not eliminate this correlation pattern but, by making it equally likely that any two treatments are 
adjacent, tends to eliIl)inate the correlations between treatments with increasing replications. Thus, 
randomization makes it reasonable to analyze the data as though the model random error terms are 
independent, an assumption that has been made in almost all models discussed so far. 

3. Occasionally, randomization may provide a pattern that makes the experimenter uneasy. For 
instance, randomization of the time sequence in which four experimental units were assigned to 
treatment 1 and four assigned to treatment 2 may result in a randomized sequence where the four 
experimental units for treatment 1 are exposed first and then the four experimental units for treatment 
2 are exposed. This is not a likely occurrence, but one that can take place. Some solutions have been 
suggested for this problem, but none provides a final answer. In practice, the experimenter typically 
will discard a randomization sequence that has apparent dangers of systematic effects for the particular 
experiment and select another randomization. • 

CQostrained Randomization: Blocking 
Blocking is a technique that can be used to increase precision in any experiment. To provide 
some context and to motivate the concept, we shall again consider the vitamin C experiment 
discussed earlier. 

Recall that half of the children in the vitamin C example were randomly assigned to 
the control group, and half were assigned to the experimental group. At the end of the test 
period, the number of colds Y contracted by each child was recorded. A linear statistical 
model for the ith child's response is: 

(15.4) 

where: 

{
I if ith child receives vitamin C 

Xi = 0 if ith child receives placebo 

With Xi defined in this fashion, f30 is the population mean response for children in the control 
group (i.e., those receiving the placebo), and f30 + f31 is the population mean response for 
children in the experimental group (i.e., those receiving vitamin C). The treatment effect 
parameter, f31, represents the increase or decrease in the average number of colds per child 
due to the vitamin C regimen. Finally, the experimental error £i is the deviation ofthe number 
of colds for the ith child from the true mean of the child's treatment group-sometimes 
called the specific effect associated with the ith experimental unit. The variance ~(the 
experimental error is a 2 = a 2{£;}. 
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We shall assume that the goal of the study is precise esrimation of (or inferenc b 
ff' to T k . t" " eaOllt rhe rreatment e ecr, ),. hen a ey quanmy 0 IIlreresr IS rhe vanance of rhe least s . 

estimator, b" of this effect. From (2.3b), we have: qUar 

(lS.Sa), 

It is easy ro show, when the number of children in rhe rwo rreatment groups are rhe­
same, 

rhat the variance of b, is: ., 

J 4a 1 

a-{brl = -
n (l5.5b} 

Thus for a given sample size (here n = 868), increased precision can only come about 
rhrough reducrions in the experimental error variance, a 2

• 

One way ro reduce a 2
{Ei} is to identify and conrrol factors rhat contribute ro variationm 

the Ei' In rhe viramin C example, some facrors (orher than vitamin C) that mighr affect the 
numbers of colds contracted by rhe irh child mighr include: the genderofrhe child, the age of 
rhe child. rhe general health status of rhe child, the nutritional habits of the child, and soon. 
These factors, which affecr rhe response but are nor of primary interesr ro the investigator, 
are refen'ed to as nuisance or confounding factors. For simpliciry, we will aSSUme rhar there 
is just one nuisance factor in the experiment orher rhan rhe rreatment effecr, namely, gender. 
This source of variarion could be removed from experimenral error by using only males or 
only females. 

For example, if only females are used as subjects, rhe model for our response is now: 

Yi = f:3o +f:3,Xi , +E{ (15.6) 

where E{ is the experimental enor when subjecrs are exclusively female. If females tend 
to have fewer (or more) colds than males, then rhe female experimental unirs are more 
homogeneous and rhe experimental error variance will be reduced. 

Of course rhere are disadvantages to limiting the experiment to one gender. Firsr the 
sample size n is reduced, which increases rhe variance of our estimared rreatment effect in 
(15.4b), and second, we would nor be able ro generalize rhe results of rhe experiment to 
rhe gender rhat was omitted. These disadvantages are overcome by a rechnique known as 
blocking. 

In a blocked experiment, rhe hererogenous experimental units are divided into homoge­
neous subgroups called blocks, and separate experimenrs are conducred in each block. For 
example, blocking on gender in the vitamin C example would be accomplished by con­
ducting separate experiments on males and females. Because gender does nor vary within 
blocks, rhe effecr of viramin C is more efficiently estimared within each block. The overall 
etfecr of the experimental facror is obrained by combining rhe esrimated effects from each 
of rhe blocks. 

Note rhat because blocking requires that separate experiments be conducted in each 
block, it follows rhat separate randomizations of rreatments to experimental units (or vice 
versa) must be carried out within each block. The wirhin-block randomization is sometimes 
referred ro as a restricted randomization because assignments of treatments can only be 
made (0 experimenralunits within rhe given block. 
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aJ$;5 Randomized Complete Block Design-Vitamin C Example. 
'"""-----------------------------------, 

:;!:~ 

Restricted Randomizations 

Male 2 3 4 433 434 

sTreatment: Vitamin C Vitamin C Placebo Vitamin C Vitamin C Placebo 

Female: 2 3 4 433 434 

Treatment: Placebo Vitamin C Placebo Vitamin C Placebo Vitamin C 

An example of a blPcked layout for the vitamin C example is given in Figure 15.5. Notice 
that each block consists of 434 subjects (assuming half of the 868 subjects are male and 
half are female), and that the control and experimental treatments are each assigned to half 
of the subjects in each block. This is accomplished with two restricted randomizations. 

The advantages of a blocked experiment over a completely randomized design should 
be evident in this example. Randomization alone cannot guarantee that the same number of 
males and females will receive each treatment. Thus if one gender tends to have fewer colds, 
differences in the treatment groups may be observed even when the experimental treatment 
has no effect. Another benefit of blocking is that it can increase the range of validity for 
the conclusions from the experiment. Blocking of experimental units according to their 
characteristics (e.g., by age) can be employed to provide sufficient variability between 
groups of experimental units in 'different blocks for a wide range of generalizability and yet 
achieve high precision because of small experimental errors within blocks. 

As a general principle, an experimenter should always try to remove any known or 
potential sources of variability, either by holding the nuisance factors constant throughout 
the experiment or by blocking. Randomization within blocks provides additional protection 
against any unknown sources of variability that may be present. 

Comments 

1. The amount of variance reduction achieved by blocking can be seen from a regression context. 
Suppose in the vitamin C example that the model for the response of the jth subject having gender i 
(i = 1 if female; i = 0 if male) is: 

where: 

{
I if ijth child receives vitamin C 

Xijl = 0 if ijth child receives placebo 

{
I if ith child is female 

X ij2 = 0 if ith child is male 

(15.7) 

Here fh can again be interpreted as the change in mean response due to receiving vitamin C (relative 
to receiving the placebo) and fh is the change in mean response for females (relative to males). We 
will consider this new model which takes into account the potential effects of gender to be the "full" 
model. If gender is ignored in the design of the study, the appropriate "reduced" model is (15.4). 
Let SSE(F) denote the sum of squares for the full model-corresponding to the blocked design, 
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and let 5SE( R) denote the sum of squares fO!' the reduced model--corresponding to the complet 
randomized design. Then we have: ely 

(15.8) 

If the number of observations in each block is the same. it can be shown that X I and X 2 are uncorrelat 
(i.e .. OIthogonal), hence SSR(X2 IX,) = SSR(X1 ). Thus: Cd 

SSE(F) = SSTO - I (SSR(X, ) + SSR(X1 )] (15.9) 

From reduced model (15.4). 

SSE(R) = SSTO - 5SR(Xd (15.10) 

and it follows from (15.9) and (15.10) that SSE(F) = SSE(R) - SSE(X2 ). Therefore SSR(X) 
represents the reduction in the error sum of squares achieved with blOCking. 2 

2. When blocking on a nuisance factor is nor possible at the design stage. variance reductions can 
sometimes be achieved at the analysis stage by including the nuisance factor as an additional predictor 
in the linear model for the response. Returning to the vitamin C example, suppose that blOCking by 
prior gender was not possible. Nevertheless. model (15.7), which considers gender effects, C'Ould be 
employed at the analysis stage if the gender of each subject is recorded. By adding gender (X2) as an 
additional predictor to model (15.4). we may realize variance reductions similar to those described in 
Comment I for blOCking. This approach. called the analysis C?f covariance. is discllssed in Chapter 22. 

• 
Measurements 

15.3 

The measurement process is another important element of experimental designs. Ideally, 
the measurement process shOUld produce measurements that are unbiased and precise. 
Measuremelll bias can cause serious difficulties in the analysis of a study. An important 
source of measurement bias is due to unrecognized differences in the evaluation process. 
For example, a group of plants randomly assigned to a new fungicide treatment might 
unintentionally be evaluated by the investigators to be responding better to the treatment 
than actually is the case because of a desire to show the new tJ'eatment to be effective. 
When the experimental unit is a person, knowledge of the treatment by the person may 
also influence the measurement obtained. For instance, a person who knows that the food 
additive is salt may respond differently in the evaluation of the tastiness of a vegetable 
than if the additive were unknown. This source of measurement bias can be minimized by 
concealing the treatment assignment to both the experimental subject and the evaluator. A 
study using this kind of concealment is called a double-blind study. When knowlecl'ge of 
the assignment is withheld only from the experi mental subject or the evaluator, the study is 
called a single-blind study. 

An Overview of Standard Experinlf'lltal Designs 

In this section, we give an overview ofrhe best-known and most frequently used experimental 
designs. In addition, we provide linear statistical models associated with the most basic of 
these designs. Each of the designs introduced here will be treated in greater detail in the 
chapters that tollow. 
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'pletely Randomized Design 
• The simplest fonn of designed experiment is the completely randomized design. With this 

design, treatments are randomly assigned to the experimental units. This design is most 
useful when the experimental units are relatively homogeneous. Completely randomized 
designs are quite flexible; they can be used with any number of treatments and permit 
different sample sizes for different treatments. 

'FI(;URE 15.6 
~Summary 
Plot-Quick 
'.tlread Volume 
Example. 

The quick bread experiment is an example of a completely randomized design. This 
design was based on four treatments (low, medium, high, and very high temperatures) and 
eight experimental units (package mixes) leading to two replicates of each treatment. The 
results of the experiment have been summarized using a scatter plot in Figure 15.6. This 
scatter plot suggests that temperature does affect bread volume and that the largest volume 
is obtained by baking the bread at the high oven temperature. 

A linear statistical model for the response is: 

Y = [ OVerall] + [Treatment] + [Experimental] 
Constant Effect Error 

(15.11) 

We shall model the treatment effect as a qualitative factor having four levels. Thus, as 
described in Section 8.3, we can employ three indicator variables: 

~I = {~ if treatment 1 
otherwise 

X2 7= {~ if treatment 2 
otherwise 

X3 = {~ if treatment 3 
otherwise 

and we obtain for the j th replicate of treatment i: 

Yij = f30 + f3I X tjl + f32Xij2 + f33Xij3 + E:ij (15.12) 

Notice that all of the predictors are indicator variables. For this reason, as we shall see in 
Chapter 16, the model in (15.12) is sometimes referred to as an analysis ofvanance model. 

1,500 

Q) 1,000 

E • ::J • 

~ 
500 

• 
• • 

• 

O~---------k--------~------~---
Low Medium High Very High 

Oven Temperature 
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Assuming that the errors are independent N (0, a 2
), testing for the presence of treat . 

effect~ is accomplished using the overall F* test statistic (6.39b) for the presence Ille
f
ut 

. I' 0 a regressIon re allon: 

Ho: f31 = f32 = f33 = 0 

H,,: nO( all f3k (k = L 2, 3) equal zero (15.13), 

If Ho is rejected, the investigator may want to determine which levels of temperature lead' 
(0 ditferent volumes, which lead (0 similar volumes, and, perhaps, which temperaturemax_· 
imizes bread volume. These and other issues concerning the analysis of completely ran­
domized designs are taken up in Chapters 16-18. 

Factorial Experiments 
Completely randomized designs can be used in single-factor studies or crossed, multifuctor 
studies. Recall that in a crossed multifac(Or study the treatments correspond to the set of all 
possible combinations of the factor levels. Such designs are also referred to as completely 
randomized factorial designs. 

The chemical yield experiment-whose treatment combinations are displayed in the 
two-way table in Figure IS.2a-is an example of a 2 x 3 factorial design. In another 
example, a sheet-aluminum manufacturer was interested in characterizing the effects of 
three coolant factors on the quality of the finish of the aluminum produced. During the 
manufacturing process, a molten aluminum strip is cooled using a mixture of water ancl oil 
at three different points during production. Factors and associated levels of interest were: 
coolant temperature (low, high), coolant oil percentage (low, high), and coolant volume (low, 
high). The 23 = 8 treatment combinations are displayed in the cube plot in Figure IS.7a. This 
design is sometimes referred to as a 2 x 2 x 2 or a completely randomized 23 factoIial design. 

Analysis of completely randomized factorial designs again involves the use of model 
(15.11) for completely randomized designs. However, when the treatments have factorial 
structure, it is often of interest to determine whether or nO( there are interaction effects among 
the, individual factors. A linear statistical model that incorporates the factorial treatment 

FIGURE 15.7 Full Factorial and Fractional Factorial Designs-Aluminum Rolling Mill Example. 
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structure has the following general form: 

y = [ OVerall] [ First-Order ] [ Interaction ] [EXPerimental] 
Constant + Treatment Effects + Treatment Effects + Error 

(15.14) 

In the sheet aluminum example, let X I, X 2. and X 3 be the indicator variables that denote 
the presence (Xi = 1) or absence (Xi = 0) of each treatment. These are the predictors that 
correspond to "first-order" treatment effects in (15.14). The interactive treatment effects 
will be modeled using cross products, just as we did in regression. Here there are four cross 
product terms to be considered, X 1X 2, X 1X3, X 2 X3 , and X 1X 2 X 3 • Models for factorial 
experiments are taken up in detail in Chapters 19 and 24. 

: ~omized Complete Block Designs 
As discussed in Section 15.2, in a blocked design. heterogenous experimental units are 
divided into homogeneous blocks, and then separate randomizations of treatments to ex­
perimental units are carried out within each block. These designs can increase the precision 
of the inferences concerning treatment effects. An example of a blocked experiment was 
displayed in Figure 15.5 for the vitamin C example. As a second example, we shall again 
consider the quick bread volume experiment. Suppose now, however, that the company owns 
two manufacturing plants-plant A and plant B-and of the eight package mixes available, 
four were produced in plant A. and four were produced in plant B. Investigators expressed 
concern that the bread volumes might be affected by different processes and raw materials 
used at the two plants. However, it was felt that the four package mixes produced by each 
plant would be relatively homogeneous. For this reason, the investigators decided to run 
the experiment in two blocks of size four. The layout for this randomized complete-block 
design is shown in Figure 15.8. 

Randomized complete block designs are often summarized graphically by producing a 
simple scatter plot of the results (as in Figure 15.6 for a completely randomized design), 
where the four responses within each block are connected by lines. Data for the blocked 
quick bread volume example are displayed in this fashion in Figure 15.9. Notice that there 
does appear to be a possible block effect: package mixes from plant B lead to consistently 
higher volumes than those from plant A. 

A linear statistical model for the response must reflect both the treatment (oven temper­
ature) effect and the block (manufacturing plant) effect. The response model is: 

y = [ overall] + [Treatment] [BlOCk] [Experimental] 
Constant Effect + Effect + Error 

(15.15) 

FIG URE 15.8 Randomized Complete Block Design-Quick Bread Volume Optimization 
Example. 

Plant Experimental Unit (Package Mix) 

(Block) 
1 2 3 4 

A High Low Very High Medium !I • 

B Medium High Very High Low 
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FIGURE 15.9 
Summary 
Plot-Blocked 
Quick Bread 
Volume 
Optimization 
Example. 
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In rhe quick bread volume experiment, rhe four treatment levels are caprured using three 
indicator variables, X I, X~, and X.l as described above for a completely randomized design, 
and the two block levels can be modeled using a single indicator vaJiable X~: 

and we obtain: 

if package mix is from block I 
if package mix is from block 2 

(15.16) 

where 111.11~, and 113 are rhe treatment effecrs, and {3.t is the block effect. Assuming thatthe 
errors are independent N (0. a 2

), resring for presence of rreatment effecrs is accomplished 
using po resr sratisric (2.70) for rhe aitematives: 

Ho: 111 = 11~ = {33 = 0 

Ha: nO( all {3i = 0 
(15.17) 

The block effecr, {3~, can be rested in similar fashion. The design and analysis of ran­
domized complere block designs are discussed in greater derail in Chaprer 21. 

Nested Designs 
Experimenrs involving purely nesred factors are called nested designs. We discussed in 
Secrion 15.1 rhe use of nesred factors in a study of rhe effects of operators on production 
yield in rhree manufacruring plams. Recall that rhree operators were selecred rn each of 
rhe rhree plants, and rheir producrion yields were recorded for five batches of product. The 
diagram of rhis experi ment. shown in Fi gure 15.2b. indicates rhe nesring of operarors within 
producrion plams: rhe first three operators are employed only in plant I, rhe next three are 
employed only in plant 2, and rhe lasr rhree are employed uniquely in plant 3. 

Mulrifacror experiments can involve borh crossed and nesred facrors. In rhe producrion 
yield example, suppose that management was considering the use of conrrol charts n:r 
monitoring of rhe production line. Then a new factor, statisrical process control (SPC), is 

to be incorporated having rwo levels (SPC, No SPC). This facror can easily be crossed 
with manufacruring plant and operator, as shown in Figure 15.10. This is an example of 
a crossed-nested design. 
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Operator 
SPC Plant 

1 2 3 4 5 6 7 8 9 

1 X X X 

SPC 2 X X X 

3 X X X 

1 X X X 
No 2 X X X 
SPC 

3 X X X 

The design and analysis of experiments involving nested factors are discussed in 
Chapter 26. 

~~ated Measures Designs 
In one type of repeated measures design, the same subject (person, store, plant, etc.) receives 
all of the treatment combinations under study. For example, a repeated measures design was 
used to evaluate the effectiveness of a set of anti-inflammatory drugs, where the same patient 
was treated with eac~ of the, alternative drugs. Repeated measures designs are frequently 
used in product rating experiments, where the same consumer evaluates a set of products. 
We now consider one such example in detail. 

Consider a taste-testing experiment to be conducted by a food manufacturer in which 
consumer acceptance of three breakfast cereal formulations is to be assessed. The three 
cereal formulations are identical except for the three levels (low, medium, and high) of 
sweetener to be used in the formulation. Each formulation is to be rated on a lO-point 
hedonic (likability) scale, and 12 consumers are available to rate the products. 

With 12 consumers, a completely randomized experiment could be used, allowing for 
four complete replicates, as shown in Figure 15.lIa. However, consumers differ consid­
erably in their sensory perception of food products (e.g., children prefer higher levels of 
sweetness, adults prefer lower levels of sweetness) and so our experimental units would 
not be particularly homogeneous. One could consider blocking on age, but an even more 
effective approach is to have each consumer rate all three products. With this setup, each con­
sumer becomes a block, and the experimental units are the separate evaluations conducted 
by each consumer. The layout for this repeated measures design in given in Figure 15.IIb. 
This study involves repeated measures, because multiple responses are obtained from the 
same subject. 

Suppose now that management is also interested in determining if the perceived level of 
wholesomeness has any effect on the ratings of the product by the consumers. Two levels of 
the perceived wholesomeness factor are to be employed, and half of the subjects are to be 
assigned to each level. Consumers in the control group are told only that the product they 
are about to test is a new breakfast cereal product. Consumers in the experimental group 
are told that the product is a new health cereal. manufactured from organic whole grains. 
As before, each consumer then tastes and evaluates three versions of the cereal based on 
low, medium, and high levels of sweetener. The layout for this experiment is shown in 
Figure 15.lIc. ~ . 
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FIGURE 15.11 Alternative Designs-Food Product Taste-Testing Example. 

(a) Completely 
Randomized Design 

(0) Repeated 
Measures Design 

( c) Split-Plot 
Repeated Measures Design 

Consumer 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

-
Formulation Consumer Formulations 

Perceived 
Wholesomeness Consumer Formulations 

F2 1 F2 F1 F3 1 F2 F1 F3 

F1 2 F1 F2 F3 2 F1 F2 F3 

F1 3 F1 F2 F3 
Wholesome 

3 F1 F2 F3 

F2 4 F2 F1 F3 4 F2 F1 F3 

F3 5 F3 F2 F1 5 F3 F2 F1 

F2 6 F3 F1 F2 6 F3 F1 F2 

F3 7 F3 F2 F1 7 F3 F2 F1 

F3 8 F3 F2 F1 8 F3 F2 F1 

F1 9 F1 F3 F2 Not 9 F1 F3 F2 

F3 10 F3 F1 F2 Wholesome 10 F3 F1 F2 

F2 11 F2 F3 F1 11 F2 F3 F1 

F1 12 F1 F3 F2 12 F1 F3 F2 

This is an example of a second rype of repeated measures design, in which randomizations 
at two distinct levels are being conducted. The three levels of sweetener are randomly applied 
to the rhree individual tastings by a given consumer; thus, for comparisons involving levels 
of sweetness in the producr formulation, the individual tastings are rhe experimental units. 
Similarly, perceived wholesomeness is applied direcrly to consumers. Thus, for comparisons 
involving rhe levels of perceived wholesomeness, consumers are the experimental units. 
When rhe subject serves as an experimentalunir foranorher rrearment, the repeated measures 
design is somerimes referred to as a split-plot design. 

The design and analysis of repeated measures and splir-plot designs are raken up in 
<;:hapter 27. 

Incomplete Block Designs 
Until now, we have only discussed rhe use of blocking where each block contains one or 
more replicates of the treatment combinations. Can blocking be lIsed when hlock sizes are 
smaller than the number of treatments? The answer to this question is "yes," although such 
designs are slighrly more difficult to analyze. 

Consider again rhe breakfast cereal fonnulation example, only now we shall assume rhat 
five alternarive producr formulations, instead of jusr three, are (0 be evaluared by consumers. 
It is well known rhat a consumer's ability to discriminate among similar producrs in taste­
resring diminishes rapidly wirh the number of samples rested. Generally, no more rhan three 
rasreevaluarions are permitted. Wirh this resrricrion, we see rhat ir will nO£ be possible for any 
given consumer to evaluate all five producr formulations in a single session. Since only three 
of rhe five alrernatives can be rared, each consumer represents a single, incomplete block. 

An effective experimental arrangement can srill be achieved, however, rhrough the use of 
a balanced incomplete block design, or BIBD. In a balanced incomplete block design, every 
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~l?[l~umer Product Formulation 

(Block) 
1 2 3 4 5 

1 X X X 

2 X X X 

3 X X X 

4 X X X 

5 X X X 

6 X X X 

7 " X X X 

8 X X X 

9 X X X 

10 X X X 

treatment appears with every other treatment in the same block the same number of times. 
In this way, comparisons between pairs of treatments can be carried out on a within-block 
basis, thus eliminating block-to-block heterogeneity. 

A BIBD with five'treatments and block size three is shown in Figure 15.12. Note that 
every treatment occurs together with every other treatment exactly three times. For example, 
formulations 1 and 2 appear together in blocks 1,2, and 3. Formulations 1 and 3 appear 
together in blocks 1,4, and 5-and so on. Note also that this BIBD requires 10 blocks or 
subjects. In the breakfast cereal formulation example, 12 subjects were available; however, 
no BIBD exists for five treatments in 12 blocks of size three. Thus, in order to use this 
particular BIBD for the breakfast cereal formulation example, only 10 subjects would need 
to be available. 

Another form of incomplete block design, with block size equal to one, is called a latin 
square design. We take up the construction and analysis ofBIBDs and latin square designs 
in Chapter 28. 

:fwo-Level Factorial and Fractional Factorial Experiments 
Factorial designs are effective tools for characterizing the joint effects of multiple factors. 
However, the number of treatments, which is a product of the numbers of factor levels for 
each factor, grows rapidly with the number of factors. For example, a crossed three-factor 
experiment, where each factor has three levels, will involve 33 = 27 treatment combinations. 
One way of economizing will be to limit each factor to two levels, which reduces the num~r 
of treatment combinations to 23 = 8 treatment combinations. The sheet aluminum prqduc­
tion example discussed earlier and displayed in Figure 15.7a is an example of a 23 f~torial 
design. Two-level designs are extremely useful in exploratory or screening studi,es where 
the objective is to identify the most important factors from a larger set of potential factors. 
When the factors are quantitative, screening experiments are usually followed up with a more 
exacting experiment, such as a response surface experiment, discussed on the next page. 

If there are a large number of factors to be screened, it may be impractical to run 
a single complete replicate. For example, a complete replicate of a six-factor, two-level 
experiment requires 26 = 64 treatment combinations. In such cases, a subset of the treatment 
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combinations can be chosen so that little or no information is lost concerning impo 
main effects and low-order interactions. This chosen subset of treatmellt combinatio rt~t 

f I f'· If" .//. nslS re errec to as a. (ClcflO//[( .IC1ctoJ"/CI [eslgJl. 

Consider again the aluminum production example. An alternative fractional fact . 
design is shown in Figure 15.7b. The half-fraction displayed is based on four (cure~~ 
chosen) treatment combinations from the full factorial in Figure 15.7a that will pe ~ 
estimation of the three factor effects, but with no information about the interactive eff:

t 

of the factors. S 

Two-level factorial and fractional factorial designs are discussed in Chapter 29. 

Response Surface Experiments 

15.4 

When all factors are quantitative, two-level experiments often provide good information 
on linear trends in each factor. If there is concern that the response will be substantially 
convex (bowl-shaped) or concave (mound-shaped), or if the objective of the experiment 
is to determine precisely the factor levels that lead to an optimum response, use of just 
two levels will not be adequate. Response slII.1clce designs were developed for use in these 
situations. These designs are applicable when all experimental factors are quantitative, and 
the true response function can be well approximated by a second-order polynomial. Once 
the second-order response model has been estimated, a detailed mapping of the regression 
sUlface can be obtained using three-dimensional response sUlface plots, contour plots, and 
conditional effects plots, such as those shown in Figures 8.8 and 8.9 on pages 310-311. 

Methods for design and analysis of response smface experiments are taken up in 
Chapter 30. 

Design of Obsel'va1ional Stlldies 

Observational studies are distinct from experimental studies in that random assignments 
of factor levels to the experimental units do not occur. Therefore, designed observational 
studies do not directly demonstrate cause-and-effect relationships between the explanatory 
factors and the response. They can establish association between explanatory factors and a 
response, and provide the basis for further study of potential cause-and-effect relationships. 
To infer causality, potential confounding variables would need to be identified, and subgroup 
analysis performed to try to rule out possible alternative causal factors. Some observational 
studies are conducted for descriptive purposes only, such as when various characteristics 
of a group are summarized. These studies, which are sometimes referred to as analytical 
surveys or case studies, will not be considered further. • 

Observational studies have been classified in many ways, but we will consider three 
commonly used categories, namely, cross-sectional studies, prospective studies, and retro­
spective studies. Prospective and retrospective observational studies are often designed to 
study potential causal relationships, and are closer in spirit to experimental studies. We turn 
now to a discussion of cross-sectional observational studies. 

Cross-Sectional Studies 
A cross-sectional observational study involves measurements taken from one or more pop­
ulations or sUbpopulations at a single point in time or a single time interval. Exposure to 
a potential causal factor and the response are determined simultaneously. Cross-sectional 
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studies are sometimes said to provide a "snapshot" of the factors and outcome variable. For 
example, a cross-sectional study of household incomes by geographic location in a major 
metropolitan area was conducted by a marketing research department of a lUxury SUV 
manufacturer. The subpopulations consisted of the postal zip-code areas within the city. 
The response variable was household income, and the explanatory factor was geographi­
cal area. Random samples of households were selected within each geographic zip-code 
area. The objective of the study was to carry out comparisons of household income among 
subpopulations. 

The Minnesota Department of Transportation road use study, discussed in Chapter 11, 
page 464, is another example of a cross-sectional observational study. Here, data on the 
average annu~ daily traffic for a variety of road sections were obtained for a single time 
interval along with various characteristics of the road sections. Multiple regression tech­
niques were then used to identify important predictors of the outcome variable, namely, the 
average annual daily traffic for the various road sections. 

Cross-sectional studies may be prestratified or poststratified to form subpopulations. In 
a prestratified cross-sectional study, potential explanatory factors are used to stratify the 
population into subpopulations, and random samples are obtained within each of the sub­
populations. Alternatively, cross-sectional study data can be poststratified by the explanatory 
factors. Comparisons of outcome measurements among the poststratified subpopulations 
are then obtained. 

I?rp:spective Studies 
In a prospective observational study, one or more groups are formed in a nonrandom manner 
according to the levels of a hypothesized causal factor, and then these groups are observed 
over time with respect to an outcome variable of interest. Prospective studies answer the 
question: "What is going to happen?" The teaching effectiveness example, discussed in 
Section 15.1, is an example of a prospective observational study. Faculty either attended 
or did not attend a teaching workshop on a voluntary basis. Here the groups were self­
selected. At the end of the following academic year, teaching effectiveness scores were 
obtained for all faculty, and it was found that the average effectiveness of faculty who 
attended the seminar was greater than that for the group of faculty who elected not to attend 
the seminar. The fact that the "treatment" preceded the response in time is suggestive of a 
potential cause-and-effect relationship, but, as noted earlier, an experiment is required for 
"proof." Prospective studies are also known as cohort studies and can often be analyzed 
using regression models or analysis of variance techniques. 

Prospective observational studies may be conducted utilizing historical records. For 
example, from the medical histories obtained from a health maintenance organization, 
researchers Were able to identify women who received estrogen supplements over long 
periods of time, and women who did not. A prospective study was then carried out to 
explore potential links between estrogen therapy and heart disease. 

Jtetrospective Studies 
In a retrospective observational study, groups are defined on the basis of an observed 
outcome, and the differences among the groups at an earlier point in time are identified as 
potential causal effects. Retrospective studies answer the question: "What has happened?" 
A famous retrospective study carried out in the 1950s compared the lifestyles of individuals .. 
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Matching 

with lung cancer to those of individuals who did not have lung cancer. These studies I 
hypotheses about the causal e1fects of cigarette smoking, Notice that in comparison ed.to 
a prospective srudy, the roles of the response and explanatory variables are reverSed.~th 
prospective study, the response is the etfect (e.g., increased teaching etfectiveness) and hea 

I ., . I k t exp anutory factor I~ the hypotheslzec cause (e.g., wor shop attendance). In a retrospect" . 
srudy, the response variable is the hypothesized cause (e.g., smoking), and thepredictor

lve 

explanatory factor is the potential etfect (e.g., presence or absence of lung cancer). or 
Retrospective studies are sometimes used in manufacturing process monitorinu Bor' . 

b' eli-' 
ample, a manuhlcturer may suddenly receive reports of a cluster of failures of a particul 
product part while in use in the field. From records, it may be possible to obtain Character: 
tics of the manufacruring process at the times that the fai led parts were produced, and to com­
pare these characteristics to those corresponding to other parts that have not failed. This rna 
suggest manufacturing operating conditions that led to the production of the defectivepart~ 

The surgical unit example discussed in Chapter 9 on page 350 is a retrospective obser­
vational study. Patients who had a particular type of liver operation and died were selected 
for study. Preoperative factors were then used to try to predict survival times follOwing the 
operation using mUltiple regression techniques. 

Retrospective studies have an advantage over comparable prospective studies in terms 
of efficiency when an outcome of interest occurs infrequently. Epidemiologists frequently 
use retrospective designs to study rare-event disea~es. For example, a prospective study of 
the effects of a diet on the incidence of stomach cancer may well require a lengthy period 
of time and many more subjects than would be required by a retrospective stUdy. The 
retrospective study would identify persons who have stomach cancer (referred to as cases) 
and persons who do not have stomach cancer (refeITed to as controls) and look back in 
time to assess differences in eating habits. Retrospective studies that require subjects or 
investigators to construct case histories from memory are susceptible to recall bias, and 
should be used with caution. The process-monitoring study just discussed is an example of 
an archival retrospective study, where the necessary historical data exists. Archival studies 
do not suffer the same susceptibility to recall bias. 

Retropective studies are also known as clIse-control and ex post facto studies. 

In our discussion of designed experiments, we noted that if the experimental units were 
heterogeneous, the experimental error can be reduced and the precision of the comparisons 
among treatments can be improved through the use of blocking techniques. Inilll observa­
tional srudy, treatments are not assigned at random to experimental units, so blocking is not 
technically possible. However, matching, a procedure that is analogous to blocking, can be 
employed to achieve similar reductions in variance. 

Returning to the observational study of teaching etfectiveness, recall that the treatments 
(attend workshop, do not attend workshop) were not randomly assigned to the faculty 
members. Rather, about half of the faculty volunteered to attend the workshop. As teachers, 
faculty in business schools are relatively heterogeneous. They vary in terms of such factors 
as age, gender, field or department, quantitative orientation, prior teaching effectiveness, 
and so on. ln a matched study, each faculty member who attended the workshOp is marched. 
on the basis of nuisance factors such as those just noted, to another faculty member who 
did not attend the workshop. Faculty who are not matched are not included in the study. In 
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effect, each match leads to a "block" size of two. Any observed differences in the teaching 
effectiveness between the matched faculty members is due either to the treatment factor­
here workshop attendance-or to other unidentified or uncontrolled nuisance factors. 

There are a number of approaches used for identifying matches. If the nuisance factor 
is categorical, taking on just a few distinct values (e.g., male, female), a match occurs if 
two cases fall into the same category or class. This is called within-class matching. If more 
than one categorical nuisance factor is present, for example, grade and gender, a match 
occurs if two case~ fall into the same category for both of the confounding factors. When 
the confounding factor is discrete or continuous, for example, pretest score on a 0-100 
basis, it is common to change the factor into a categorical factor-for example by creating 
three pretest categories-and then again declaring a match if two cases fall into the same 
category. 

A more precise method of matching discrete or continuous confounding factors is called 
caliper matching or interval matching. In caliper matching, two values of a confounding 
factor are considered to have matched if their absolute difference is less than some pre­
specified value. For example, two faculty may be considered a match on the age dimension 
if the absolute difference in their ages is not greater than five years. A disadvantage of 
caliper matching is that if the specified maximum difference is too small, it may be difficult 
to find a sufficiel}t number of matches to perform the study. 

Other methods of matching continuous confounding factors include mean matching or 
balancing, and nearest ava,ilable matching. Reference 15.2 gives a complete discussion of 
matching methods. 

Comment 
An alternative to matching at the design stage is the use of covariance analysis. A brief introduction 
to this approach was given in a comment in Section 15.2. The same adjustment techniques can be 
used in the analysis of observational studies for known confounding factors that are not held constant. 
Again, these techniques are disCllssed in Chapter 22. • 

d5.5 Case Study: Paired-Comparison Experiment 

In this section we consider the design and analysis of the paired-comparison or matched­
pairs design. This is the most basic form of a randomized complete block design, involving 
just two treatments arranged in blocks of size two. Because the example uses subjects as 
blocks, the experimental layout also represents the simplest instance of a repeated measures 
design. The example will also serve to illustrate the analysis techniques used in a matched 
observational study. 

The objective of a product-improvement project at a major pharmaceutical company was 
to reduce the sensitivity of skin to the injection of an allergen. A new experimental allergen 
was developed and dermatologists were interested in comparing the new formulation to the 
existing product. Reactions to allergen injections vary greatly from person to person, and it 
was decided that all comparisons of the new treatment and standard control treatment should 
be conducted on a within-subject basis. Thus a randomized complete block experiment was 
utilized, where blocks correspond to subjects, and each subject was injected with b~tl) the 
experimental and control allergens, once in each arm. Here, the experimental units are 
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TABLE 15.1 
Data and 
Descriptive 
Statistics-
Skin Sensitivity 
Experiment. 

FIGURE 15.13 
Summary 
Plot-Allergen 
Sensitivity 
Example. 

the subjects' anns, and each block consists of two experimental units. RandOmization. 
accomplished by randomly assigning the treatments to the right or left anns for each sub. IS 

'I\venty subjects were randomly chosen from a pool of available subjects for testing.~~t 
experimental layout, randomization, and results of the 40 tests are shown in Table IS. 1. The 
response, skin sensitivity, is obtained by measuring the diameter of the red area surroundi e 
the injection in centimeters. The results are plotted, with plot symbols from the same blo~~ 
connected, in Figure 15.13. The preponderance of negative slopes in the plot suggests that 
the experimental formulation leads to reduced skin sensitivity. 

From (15.15) a linear statistical model for the experiment is: 
20 

Yij = f30 + f3I X iI + L f3J Xij + E:ij 

j=2 

i = 1,2 

where: 

... 
Q) ...-
Q) 

E 
'" B 

{
I if experimental treatment 

Xii = 0 if control treatment 

{
I if response is from subject j - 1, for j = 2, ... , 20 

Xij = 0 otherwise 

Subject 

1 
2 
3 

18 
19 
20 

Sample Mean: 
Sa'!lple Std Dev: 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 
Standard 
Allergen 

Control 
Treatment 

0.59 
0.69 
0.82 

0.85 
0.85 
0.74 

.7315 

.0758 

Treatment 

Experimental 
Treatment 

0.43 
0.53 
0.58 

0.60 
0.65 
0.58 

.5400 

.0807 

Experimental 
Allergen 

Within-Subject 
Difference 

-0.16 
-0.16 
-0.24 

-0.25 
-0.20 
-0.16 

-.1915 
.0501 

(15.18) 

• 



'fIGURE 15.14 
MoorAB 
'Regression 
RfsuIts-
~ergenSkin 
Wtivity 
Example. 
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The dennatologists were primarily interested in determining whether the experimental 
allergen formulation led to reduced skin sensitivity, but they allowed for the possibility that 
it might increase skin sensitivity. They thus tested the alternatives: 

Ho: fJl = 0 

Ha: fJl =1= 0 
(15.19) 

MINITAB regression results for this model are shown in Figure 15.14. We see that 
the estimated treatment effect is hi = -.1915. and the 19 estimated block effects are 
~ = -.1500, h3 =. -.0500, and so on. The test statistic corresponding to the estimated 
treatment effect is t*.·= -17.10. To carry out the test indicated in (15.19) at the ex = .05 
level, we require t(.975; 19) = 2.093. Since It*1 = 17.10 > 2.093, we conclude Ha , that 
fJl =1= o. Since hi was negative, the dermatologists concluded that the new formulation 
significantly reduces skin irritation. 

Note that the investigators were not primarily interested in determining whether or not 
subject (block) effects were present. Blocking was used here to increase the precision of 
the comparisons between the experimental and control treatments and it was fully expected 
that significant subject-to-subject differences would be present. Nevertheless. a test for the 

Predictor Coef SE Coef T P 
Constant 

0.75575 0.02566 29.45 0.000 
Xl -0.19150 . 0.01120 -17.10 0.000 
X2 -0.15000 0.03541 -4.24 0.000 
X3 -0.05000 0.03541 -1.41 0.174 
X4 0:04000 0.03541 1.13 0.273 
X5 0.06500 0.03541 1.84 0.082 
X6 -0.14000 0.03541 -3.95 0.001 
X7 -0.08500 0.03541 -2.40 0.027 
X8 0.03000 0.03541 0.85 0.407 
X9 0.04000 0.03541 1.13 0.273 
Xl0 -0.08000 0.03541 -2.26 0.036 
Xll 0.08000 0.03541 2.26 0.036 
X12 0.01000 0.03541 0.28 0.781 
X13 -0.02500 0.03541 -0.71 0.489 
X14 -0.12000 0.03541 -3.39 0.003 
X15 -0.05000 0.03541 -1.41 0.174 
X16 -0.08500 0.03541 -2.40 0.027 
X17 -0.07500 0.03541 -2.12 0.048 
X18 -0.04500 0.03541 -1.27 0.219 
X19 0.06500 0.03541 1.84 0.082 
X20 0.09000 0.03541 2.54 0.020 

S = 0.03541 R-Sq = 96.0% R-Sq(adj) = 91.9% 

Analysis of Variance 

Source DF SS MS F P 
Regression 20 0.578750 0.028937 23.07 0.000 
Residual Error 19 0.023828 0.001254 
Total 39 0.602577 
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15.6 

CHt'd 
Ref'("renees 

P."oblems 

effect of blocking can be carried out using (2.70). The alternatives here are: 

Ho: th = ... = tho = 0 

HlI : not ullth (k = 2,3 ..... 20) equal zero (15.20) 

For thes~ data, it can be shown that blocking was effective in significamly reducing the 
en'or vanance. 

-
er-In this chapter. we have outlined the basic differences between observational and exp 

imental studies, and we have described how experimental studies lead to a much firmer 
basis for making inferences concerning cause and effect. We have also previewed the main 
types of designed observational and experimental studies. In doing so. we have shown that 
the statistical models studied in Chapters 1-14 provide the bases for statistical analysis of 
well-designed studies. 

In the chapters to follow, we will consider the design and analysis of experimental and 
observational studies in greater detail. Design issues not yet discussed, such a-; sample 
size planning and power considerations, will be taken up for each design type. There will 
also be an increased emphasis on the analysis of categorical factors. The linear model for 
that case is called the analysis of variance (ANOVA) model. While standard regression 
approaches can always be lIsed, we will see that when the study design is balanced, the 
use of ANOVA greatly simplifies the analysis. If the study is not balanced, we will simply 
return to the regression approach. Finally, when all factors are treated as categorical, the 
analysis frequently focuses on comparisons among treatments or factor-level combinations. 
A discussion of such lJIultiple comparison procedures will accompany nearly every class 
of study desi gn. 

15.1. Cochran. W. Goo ,md G. M. Cox. Experimental Designs. 2nd ed. New York: John Wiley & Sons, 
1992. 

15.2. Cochran. W. G. Planlling ((lid Analysis of Obsel"l'ational Studies. New York: John Wiley & 
SOilS. 1983. 

15.1. In an experiment to study the effect of the location of a product display in drugstores of a 
chain. the manager of one of the drugstores rearranged the displays of other products so as to 

increa~e the rraffic flow at the experimental display. Does this action potentially leat! to either 
>;eIection bias or measurement bias? Discuss. 

15.2. In a study of the effect of size of team on the volume of communication>; within the team. can 
a double-blind procedure be utilized? A single-blind procedure"! Discus>;. 

15.3. Fourtreatments (T,. T2. r,. T-l) are to be studied in an experiment with u completely randomized 
design using three replicales. Obtain the randomized assignments of treatments toexpe,imental 
units. 

15.4. Three treatments (T,. T2. T,) are to be studied in <In experiment with a complerely randomized 
design using five replicates. Obtain the randomized assignments of treatments to experimental 
unilS. 
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15.5. Give an example of an experiment where a control group would not be necessary. 

15.6. Five treatments (Tf, h T3 , T4, Ts) are to be studied in a randomized complete block design 
with four blocks. Obtain the randomized assignments of treatments to experimental units. 

15.7. In a study to evaluate the quality of three alternative recipes for salsa, six containers of salsa­
two from each of the three recipes-were randomly assigned to six taste panels. Each taste 
panel consisted of a team of four trained taste-testers. Each panel reached a consensus score 
for the assigned recipe. What is the experimental unit in this study? Why? 

15.8. Three high schools participated in a study to evaluate the effectiveness of a new computer­
based mathematics currk'ulum. In each school, four 24-student sections of freshman algebra 
were available f9r the study. The two types of instruction (standard c'Urriculum, computer­
based curricUlum) were randomly assigned to the four sections in each of the three schools. 
At the end of the term, a standard mathematics achievement test was given to each of the 24 
students in each section. 

a. Is this study experimental, observational, or mixed experimental and observational? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

*15.9. An economist compiled data on productivity improvements last year for a sample of firms 
producing electronic computing equipment. The firms were classified according to the level of 
their average expenditures for research and development in the past three years (low, moderate, 
high). 

a. Is this study experimental, observational, or mixed experimental and observational? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.10. In a study to investigate the effect of color of paper (blue, green, orange) on response rates 
for questionnaires distributed by the "windshield method" in supermarket parking lots, four 
supermarket parking lots were chosen in a metropolitan area and 10 questionnaires of each 
color were assigned at random to cars in the parking lots. 

a. Is this study experimental, observational, or mixed? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.11. A rehabilitation center researcher was interested in examining the relationship between phYSi­
cal fitness prior to surgery of persons undergoing corrective knee surgery and the time required 
in physical therapy until successful rehabilitation. Data on the number of days required for 
successful completion of physical therapy and the prior physical fitness status (below average, 
average, above average) were collected. 

a. Is this study experimental, observational or mixed? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.12. In a study of the effect of applicant's eye contact (yes, no) and personnel officer's gender 
(male, female) on the personnel officer's assessment of likely job success of an applicant, 
personnel officers were shown a front view photograph of an applicant's face and were asked 
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10 give lhe person in the pholograph a success rating score. Half of the officers in each gend 
group were chosen ~l random to receive a version of. the ~hotograph .in ,,:hich the aPPlica: 
made eye colllacl wIth lhe counselors. The olher hall rccelved a versIon III which thel" 

" was 
no eye contact. Data were collecled on success ratings. 

a. Is lhis study experimental. observational. or mixed? Why? 

b. Identify all factors. factor levels. and factor-level combinations. 

c. What lype of study design is being implemented here'? 

d. What is the basic unit of sludy? 

15.13. An automotive engineer was illlercsted in the effect of four alternative rubber compounds on 
the life of automobile tires. To CatTY out the study. five tires were manufactured from each of 
lhe four compounds and five automobiles were obt<tined for testing. With each automobile 
the four lire types were assigned at random to the four wheels. Each automobile was drive~ 
for 40.000 miles and the amount of wear on each of the four tires was recorded. 

a. What type of study is lhis. experimental. observational. or mixed'? Why'? 

b. What is the basic unil of study? 

c. What factors and factor levels are being studied here? 

d. What type of study design is being implemented here? 

e. Suppose that six compounds were under study instead of foUl~ What type of study design 
is suggesled? 

* 15.14. A research laboratory was developing a new compound for the relief of severe cases of hay 
fever. The amounts of two active ingredients (low. medium. high) in the compound were varied 
at three levels each using 18 volunteers. Randomization was used in assigning volunteers to 
each of the treatment combination~. Data were collected on hour~ of relief. 

a. Is this study experimental. observational. or mixed? Why? 

h. Identify all factors. factor levels. and factor-level combinations. 

c. Describe how randomization would be pelformed in this study. 

d. What type of study design is being implemented here'? 

e. What is the basic unit of study? 

15.15. Kidney failure patients are commonly treated on dialysis machines that filter toxic substances 
from lhe blood. The approximate dose for etfective treatment depends on. among other things, 
duration oftrearment and weight gains between treatments as a result of fluid buildup. To study 
the etfects on the number of days hospitalized (attribuwble to the disease) during a year, a 
random sample of patients who had undergone dialysis treatment at a large dialysis facili ty was 
obtained. Treatment duwtion was categorized into two groups (short duration, long dUI"lftion). 
Avewge weight gain between tremments during the year was categorized in rhree groupS 
(slight. mcxlerate. substantial). 

a. 1s this study purely experimenral or observational or mixture of both? Why? 

b. 1dentify all factors. factor levels. and hlctor-Ievel combinations. 

c. What type of study design is being implemenred here? 

d. What is the hasic unit of sludy? 

15.16. In a study of recall memory. three different questionnaires (A. B. C) were adminisrered to nine 
subjects at three differenl times three monrhs apart aboul the number of rrips to a shopping 
center during the preceding three months. Each time a ditferent questionnaire was Llsed and 
the order of the assignments of queslionnaires for each subject was randomized. 
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a. Is this study purely experimental or observational or mixture of both? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.17. A chemical company wished to study the consistency of the strength of one of its liquid 
chemical products. The product is made in batches in large vats and then is barreled. The barrels 
are subsequently stored for a period of time in a warehouse. To examine the consistenc), of the 
strength of the chemical, an analyst randomly selected five different batches of the product 
from the warehouse and then selected four barrels per batch at random. Three determinations 
per barrel were made. ., 

a. Is this study purely experimental or observational or mixture of both? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.18. A study was undertaken in an effort to reduce the occ-urrence of dents in a windshield molding 
manufacturing process. The dents are caused by pieces of metal or plastic that are carried into 
the dies during stamping and forming operations. Four factors were identified for use in an 
eight-run experiment: poly-film thickness-used to protect the metal strip during manufac­
turing to reduce surface blemishes (low, high), oil mixture ratio for surface lubrication (low, 
high), operator glove type (cotton, nylon), underside oil coating (no coating, coating). During 
each run of the experiment, 1,000 moldings were fabricated in a batch; the response (Y) is the 
number of defect-free moldings produced. 

a. Is this study purely experimental or observational or mixture of both? Why? 

b. Identify all factors, factor levels, and factor-level combinations. 

c. What type of study design is being implemented here? 

d. What is the basic unit of study? 

15.19. Assemblers in an electronics firm attach components to a newly developed "board" to be used 
in automatic-control eqUipment in manufacturing plants. A study was conducted to determine 
the effect of sequence of assembling the components (sequence I, sequence 2, sequence 3) 
on the mean time to assemble a board. Potential nuisance factors are gender of the assembler 
(male, female) and amount of the assembler's prior experience (under 18 months, 18 months or 
more). Assume that the following assemblers are available for the study: four males with under 
18 months experience, three females with under 18 months experience, five male assemblers 
with 18 months or more experience, and four females ~ith 18 months or more experience. 

a. Suggest an experimental design that accounts for the two nuisance factors. What type of 
study design did you recommend? 

b. Show how the randomization is to be carried out for your study design in part (a). 

c. What is the experimental unit in your study design? 

* 15.20. An experiment involving the case hardening of lightweight shafts machined from bars of an 
alloy was run to study the effects of the amount of chemical agent added to the alloy in a 
molten state (low, high), the temperature of the hardening process (low, high), and the time 
duration of the hardening process (low, high). Outcome data measured the hardness of the 
rods tested. It will be possible to machine 16 bars in the study. 

a. Suggest an experimental plan for the study. What type of study design did you recommend? 

b. Show how the randomization is to be carried out for your study design in part (a). .' 

c. What is the experimental unit in your study design? 
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Exercise 

15.21. An experiment is to be conduc1:ed to compare the effec1:iveness of four household detergen 
The response is to be the degree of stain removal from a section of clothing on a I O-Poi~ 
scale (I = no stain removed, 10 = stain completely removed). 

a. Identify the experimental unit. 

b. Identify the experimental factor(s), levels, and any factor-level combinations if present 

c. Name two potential blocking factors. 

d. Propose an experiment to accomplish the objectives of the study. How would you carry 
out the randomization? 

15.22. An experiment is to be carried out to determine the optimal combination of microwave OVen 
settings for microwave popcorn. Cooking time has three possible settings (3,4, and 5 minutes) 
and cooking power has two settings (low power, high power). The response (to be minimized) 
is the number of burned plus the number of unpopped kernels. 

a. Identify the experimental unit. 

b. Identify the experimental factor(s), levels, and any factor-level combinations if present 

c. Name two potential blocking factors. 

d. Propose an experiment to accomplish the objectives of the study. How would you carry 
out the randomization? 

* 15.23. Refer to the skin sensitivity example data in Table 15.1. 

a. Test the hypothesis that the mean within-subject difference is zero using the t test for paired 
observations in (A.69) using a = .05. State the alternatives, decision rule, and conclusion. 
What is the P-value of your test? Do your results agree with those obtained on page 671? 
Should they agree? 

b. Conduct the test for block effects using a = .05. State the alternatives, decision rule, and 
conclusion. What is the P-value of your test? Is your conclusion of primary interest in this 
study? Why or why not? 

15.24. Show that (15.5b) follows from (15.5a) for model (15.4). 

• 



Chapter 

Single-Factor Studies 

In the last chapter, we presented a general introduction to the design of experimental and 
observational studies. In this and the next two chapters, we shall focus on the design and 
analysis of single-factor studies. This includes the development of single-factor analysis of 
variance (ANaVA) model, the analysis and interpretation of factor level means, assessment 
of model adequacy, and the use of remedial measures when necessary. 

In this chapter, we bnefiy review the design of single-factor studies and the associated 
linear models, then discuss the relation between regression and analysis of variance. In the 
next few sections we introduce in detail the single-factor ANaVA model and the associated 
F test for equality of factor level means. We then consider alternative formulations of the 
ANaVA model, followed by a regression approach to the single-factor ANaVA modeL In 
the last few sections, we consider a nonparametric randomization test as an alternative to 
the ANaVA test, and, finally, we present two methods for the planning of sample sizes in 
single-factor studies. 

16.1 Single-Factor Experimental and Observational Studies 

Example 1 

Single-factor experimental and observational studies are the most basic form of comparative 
studies used in practice. In a single-factor experimental study, the treatments correspond to 
the levels of the factor, and randomization is used to assign the treatments to the experimental 
units. In the following we present three examples of single-factor studies. The first two 
examples are experimental studies, and the third is a cross-sectional observational study. 
We then briefly review the approach described in Chapter 15 for modeling a single-factor 
study. 

A hospital research staff wished to determine the best dosage level for a standard type of drug 
therapy to treat a medical condition. In order to compare the effectiveness of three dosage 
levels, 30 patients with the medical problem were recruited to participate in a pilot study. 
Each patient was randomly assigned to one of the three drug dosage levels. Randomization 
was performed in such a way that an equal number of patients ended up being evaluated 
for each drug dosage level, i.e., with exactly 10 patients studied in each drug dosage level 
group. This is an example of completely randomized design, based on a single, three-level 
quantitative factor. This particular design is said to be balanced, because each treatment is 
replicated the same number of times. 

677 
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Example 2 

Example 3 

Desigll alld Allalysis oISillgle·Facto/" Studies 

In an experiment to inve~tigate absorptive properties of four different formulatiGns f 
paper towel, fi ve sheets of paper towel were randGml y selected from each of the fGur; a 
(formulation I, formulation 2, formulation 3, and formulatiGn 4) of paper toweL Twe~~ 
6-ounce beakers of water were prepared, and the twenty paper towel sheets were random} 
assigned to the beakers. Paper towels were then fully submerged in the beaker water fi y 
10 seconds, withdrawn, and the amount of water absorbed by each paper towel sheet w~ 
determined. This is an example of a completely randomized design, based on a singleS 
four-level qualitative factor. ' 

Four machines in a plant were studied with respect to the diameters .of ball bearings they 
produced. The purpGse of the study was to detennine whether substantial differences in 
the diameters of ball bearings existed between the machines. If so, the machines would 
need to be calibrated. This is an example of an observational study, as nG randomization of 
treatments to experimental units occurred. 

As we noted in Chapter 15, although the first two examples are experimental studies and 
the third is an GbservatiGnal study, the methods used for statistical analysis are generally the 
same. If the single factor has r levels, one approach to constructing a linear statistical model 
employs r - I indicator variables as predictGrs. Then the respGnse for the jth replicate of 
the ith treatment or factor level is modeled: 

where: 

{b if treatment I 
otherwise 

{b if treatment 2 
otherwise 

{b if treatment r - I 
otherwise 

Recall that because all of the predictors are indicator variables, this model is sometimes 
refelTed to as an analysis of variallce modeL 

For the first example, we have an alternative. Because the factor-dosage level-is 
quantitative with three levels, we could also model its effect using a second-Grder (or lower­
order) polynomial regression model, as described in Section 8. L Specifically, twO choices 
for the first example are: 

where: 

Xijl = {b 
X ij2 = {~ 

if treatment I 
otherwise 

if treatment 2 
otherwise 

ANOVAModel 
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or, employing second-order polynomial model (8.1): 

YO = 130 + f3l X ij + f311x5 + t:;j Regression Model 

where: 

Xij = centered dosage level amount for the ijth case 

In the next section, we discuss the choice between the two types of models. 

'1;6.2 Relation between Regression and Analysis of Variance 

Illustrations 

Regression analysis, as we have seen, is concerned with the statistical relation between 
one or more predictor variables and a response variable. Both the predictor and response 
variables in ordinary regression models are quantitative. The regression function describes 
the nature ofthe statistical relation between the mean response and the levels of the predictor 
variable(s). 

We encountered the use of analysis of variance in our consideration of regression. It 
was used there for a variety of tests concerning the regression coefficients, the fit of the 
regression model, and the like. The analysis of variance is actually much more general than 
its use with regression models indicated. Analysis of variance models are a basic type of 
statistical model. They are concerned, like regression models, with the statistical relation 
between one or more predictor variables and a response variable. Like regression models, 
analysis of variance models are appropriate for both observational data and data based on 
formal experiments. Further, as in the usual regression models, the response variable for 
analysis of variance models is a quantitative variable. Analysis of variance models differ 
from ordinary regression models in two key respects: 

1. The explanatory or predictor variables in analysis of variance models may be qualitative 
(gender, geographic location, plant shift, etc.). 

2. If the predictor variables are quantitative, no assumption is made in analysis of variance 
models about the nature of the statistical relation between them and the response variable. 
Thus, the need to specify the nature of the regression function encountered in ordinary 
regression analysis does not arise in analysis of variance models. 

Figure 16.1 illustrates the essential differences between regression and analysis of variance 
models for the case where the predictor variable is quantitative. Shown in Figure 16.1a is 
the regression model for a pricing study involving three different price levels, X = $50, 
$60, $70. Note that the XY plane has been rotated from its usual position so that the Y axis 
faces the viewer. For each level of the predictor variable, there is a probability distribution 
of sales volumes. The means of these probability distributions fallon the regression curve, 
which describes the statistical relation between price and mean sales volume. 

The analysis of variance model for the same study is illustrated in Figure 16.1 b. The three 
price levels are treated as separate populations, each leading to a probability distribution 
of sales volumes. The quantitative differences in the three price levels and their statistical 
relation to expected sales volume are not considered by the analysis of variance niodel. 
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FIGURE 16.1 Relation between Regression and Analysis of Variance Models. 

o 

FIGURE 16.2 
Analysis of 
Variance 
Model 
Representation 
-Incentive 
Pay Example. 

(a) Regression Model 

Regression Curve 

Y 
Sales Volume 

Type 2 Type 1 

51 58 70 78 

Y2; IL2 ILl Yli 
'---y-----' '----y----' 

£:2i = -7 £:1; = 8 

Employee Productivity 

(b) Analysis of Variance Model 

$50 $60 $70 

&A 
ILl IL2 113 Y 

Sales Volume 

Type 4 Type 3 

84 90 Y 

IL4 IL3 

Figure 16.2 illustrates the analysis of variance model for a study of the effect,; offuur 
different types of incentive pay systems on employee productivity. Here, each type of 
incentive pay system corresponds to a different population, and there is associated with 
each a probability distribution of employee producrivities (Y). Since type of incentive pay • 
system is a qualitative variable, Figure 16.2 does not contain a corresponding regression 
model representation. 

Choice between Two Types of Models 
As we have seen in Chapter 8, regression analysis can handle qualitative predictor variables 
by means of indicator variables. When indicator variables are so used with regression 
models, the regression results will be identical to those obtained with analysis of variance 
models. The reason why analysis of variance exists as a distinct statistical methodology is 
that the structure of the predictor indicator variables permits computational simplifications 
that are explicitlY recognized in the statistical procedures for the analysis of variance. 
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Hence, there is no fundamental choice between regression and analysis of variance models 
when the predictor variables are qualitative. 

On the other hand, there is a choice in modeling when the predictor variables are quan­
titative. One possibility is to recognize the quantitative nature of the predictor variables 
explicitly; this can only be done by a regression model. The other possibility is to set up 
classes for each quantitative variable and then employ either indicator variables in a regres­
sion model or an analysis of variance model. As we mentioned in Chapter 8, the strategy of 
setting up classes for quantitative variables is sometimes followed in large-scale studies as 
a means of obt~ining a nonparametric regression fit when there is substantial doubt about 
the nature of the! statistical relation. Here again, analysis of variance models and regression 
models with indicator variables will lead to identical results. 

Single-Factor ANOVA Model 

The basic elements of the ANOVA model for a single-factor study are quite simple. Corre­
sponding to each factor level, there is a probability distribution of responses. For example, 
in a study of the effects of four types of incentive pay on employee productivity, there is 
a probability distribution of employee productivities for each type of incentive pay. The 
ANOVA model assumes that: 

1. Each probability distribution is normal. 
2. Each probability distribution has the same variance. 
3. The responses for each factor level are random selections from the corresponding prob­

ability distribution and are independent of the responses for any other factor level. 

Figure 16.2 illustrates these conditions. Note the normality of the probability distributions 
and the constant variability. The probability distributions differ only with respect to their 
means. Differences in the means therefore reflect the essential factor level effects, and it is 
for this reason that the analysis of variance focuses on the mean responses for the different 
factor levels. 

The analysis of the sample data from the factor level probability distributions usually 
proceeds in two steps: 

1. Determine whether or not the factor level means are the same. 
2. If the factor level means differ, examine how they differ and what the implications of 

the differences are. 

In this chapter, we consider step 1, the testing procedure for determining whether or not the 
factor level means are the same. In the next chapter, we take up the analysis of the factor 
level means when the means differ. 

Cell Means Model 
Before stating the ANOVA model for single-factor studies, we need to develop some nota­
tion. We shall denote by r the number of levels of the factor under study (e.g., r = 4 types 
of incentive pay), and we shall denote anyone of these levels by the index i (i = 1, ., ., r). 
The number of cases for the ith factor level is denoted by ni, and the total number of cases , . 
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in the study is denoted by Jl T, where: 

IlT = L/Ji 
i=1 

(16.1) 

Tilis notation ditfers from that used earlier for regression models, where the subscri . 
. 'f] I . I pt I Identl es t le case or tna . 

For analysis of variance models we shall always use the last subscript to represent th 
case or trial for a given factor level or treatment. Here, the index j will be used (0 identi~ 
the given case or trial for a particular factor level. We shall let Yij denote the value of the 
response variable in (he jth trial for the ith factor level. For instance, Yij is the productivity 
of the jth employee in the ith incentive plan, or the sales volume of the jth store featuring 
the ith type of shelf display. Since the number of cases or trials for the ith factor level is 
denoted by Ili, we have j = I, ... , ni. 

The ANOVA model can now be stated as follows: 

where: 

Yij is the value of the response variable in the jth trial for the ith factor level Or 
treatment 

fJ-i are parameters 

Cij are independent N (0, a 1
) 

i = l, ... , r; j = I, .... Ili 

(16.2) 

This model is called the cell means model for reasons to be explained shortly. This model 
may be used for data from observational studies or for data from experimental studies based 
on a completely randomized design. 

Important Features of Model 
I. The observed value of Y in the jtll trial for the ith factor level or treatment is the sum 

of two components: (a) a constant term fJ-i and (b) a random enor term Cij. 

2. Since E{Cij} = 0, it follows that: 

(16.3) 

Thus, all responses or observations Yij for the ith factorlevel have the same eXPlictationtJ,i, 
and this parameter is the mean response for the ith factor level or treatment. 

3. Since fJ-i is a constant, it follows from (A.16a) (hat: 

(16.4) 

Thus, all observations have the same variance, regardless of factor level. 

4. Since each Cij is normaily distributed, so is each Yij • This follows from (A.36) because 
Yi ; is a linear fLlI1ction of cij. 

5. The error terms are assumed to be independent. Hence, the error term for the outcome 
on anyone trial has no effect on the error term for the outcome of any other trial for the 
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same factor level or for a different factor level. Since the 8lj are independent, so are the 
responses Yij. 

6. In view of these features, ANaVA model (16.2) can be restated as follows: 

(16.5) 

Suppose that ANaVA model (16.2) is applicable to the earlier incentive pay study illustration 
and that the parameters".are as follows: 

f.J.1 =70 f.J.2 = 58 a =4 

Figure 16.2 contains a representation of this model. Note that employee productivities for 
incentive pay type 1 according to this model are normally distributed with mean f.J.1 = 70 
and standard deviation a = 4. 

Suppose that in the j th trial of incentive pay type 1, the observed productivity is YIj = 78. 
In that case, the error term value is 81j = 8, for we have: 

• 81j = YIj - f.J.1 = 78 -70 = 8 

Figure 16.2 shows this observation Y lj . Note that the deviation of YIj from the mean f.J.1 

represents the error term 81j. This figure also shows the observation Y2j = 51, for which 
the error term value is 82j = -7. 

fhe ANOVA Model Is a Linear Model 
ANaVA model (16.2) is a linear model because it can be expressed in matrix terms in the 
form (6.19), i.e., as Y = X~ + E. We illustrate this for a study involving r = 3 treatments, 
and for which nl = n2 = n3 = 2. Y, X,~, and E are then defined as follows here: 

Yll 1 0 0 811 

YI2 1 0 0 

~= [~:l 
812 

Y= 
Y21 X= 

0 1 0 821 (16.6) 
Y22 0 1 0 

E= 
822 

Y31 0 0 1 831 

Y32 0 0 1 832 

Note the simple structure of the X matrix and that the ~ vector consists of the means f.J.1' 
To see that these matrices yield ANaVA model (16.2), recall from (6.20) that the vector 

of expected values E {Yij} is given by E{Y} = X~. We thus obtain: 

E{YII } 1 0 0 f.J.1 

E{YI2 } 1 0 0 

[~:l 
f.J.1 

E{Y} = 
E{Y2d 

=X~= 
0 1 0 f.J.2 (16.7) = E{Y22 } 0 1 0 f.J.2 

E{Y3d 0 0 1 f.J.3 
E{Yd 0 0 1 f.J.3 
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This indicates properly that E{Yif) = fJi' Hence, ANOYA model (l6.2)-Yij = fJi +8._ 
. . f' . . b Y XD. 'J m matrIx orm IS given y = ... + E: 

Y II fJl ell 

Y I2 fJl el2 

Y= 
Y21 

= X~+E = 
fJ2 + e21 

Yn fJ2 e22 (16.8) 

Y31 fJ3 e31 

Y32 fJ3 e)2 

Since the en'or tenus in the model have the same structure as those in general linear 
regression model (6.19)-namely, independence and constant variance-the variance­
covariance matrix of the error terms in the ANOYA model is the same as in (6.19): 

(16.9) 

In addition, like for general linear regression model (6.19), the variance-covariance matrix 
of the Y responses is the same as that of the error rerms: 

(16.10) 

When ANOYA model (16.2) is expressed as a linear model, as in (16.8), ir can be seen 
why it is called the cell means model, because the ~ vector contains the means of rhe 
"cells"-here facrorIevels. In Section 16.7 we disCLlss an equivalent ANOYA model called 
the factor effecrs model, where the ~ vector contains components of the factor level means. 

Interpretation of Factor Level Means 
Observational Data. In an observational study, the factor level means fJi correspondtothe 
means for the different factor level populations. For instance, in a study of the prodLlcrivity 
of ,employees in each of three shifts opera red in a plant, the populations consist of the 
employee productivities for each of rhe three shifts. Tile population mean fJl is the mean 
productiviry for employees in shift I, and fJ2 and fJ3 are interpreted similarly. The variance 
a 2 refers to the variabiliry of employee productivities within a shift. 

Experimental Data. In an experimental stLldy, the factor level mean fJi stctnds for the 
mean response that would be obrained if the ith treatment were applied to all unit'> in 
the population of experimental units about which inferences are to be drawn. Similarly, 
the variance a 2 refers ro rhe variability of responses if any given experimenral rreatment 
were applied to the entire population of experimental Llnits. For instance, in a complerely 
randomized design to study the effects of three different training programs on employee 
productivity, in which 90 employees participate, a third of these employees is assigned at 
random to each of the three programs. The mean fJl here denotes the mean productivity if 
training program I were given to each employee in the population of experimental units; the 
means fJ2 and fJ3 are interpreted correspondingly. The variance a 2 denotes tile variability 
in productivities if anyone training program were given to each employee in the population 
of experimental units. 
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f)fstinction between ANOVA Models I and II 
.. We shall consider two single-factor analysis of variance models. For brevity, we shall refer 

to these as ANaVA models I and II. ANaVA model I, which was stated in (16.2), applies to 
such cases as a comparison of five different advertisements or a comparison offour different 
rust inhibitors, where the conclusions pertain to just those factor levels included in the study. 
ANaVA model II, to be discussed in Chapter 25, applies to a different type of situation, 
namely, where the conclusions extend toa population of factor levels of which the levels in 
the study are a sample. Consider, for instance, a company that owns several hundred retail 
stores throughout the country. Seven of these stores are selected at random, and a sample 
of employees from each store is then chosen and asked in a confidential interview for an 
evaluation of the management of the store. The seven stores in the study constitute the seven 
levels of the factor under study, namely, retail store. In this case, however, management is 
not just interested in the seven stores included in the study but wishes to generalize the study 
results to all of the retail stores it owns. Another example when ANaVA model II is applica­
ble is when three machitles out of75 in a plant are selected at random and their daily output 
is studied for a period of 10 days. The three machines constitute the three factor levels in this 
study, but interest is not just in the three machines in the study but in all machines in the plant. 

Thus, the essential difference between situations where ANaVA models I and II are 
applicable is that model I is relevant when the factor levels are chosen because of intrinsic 
interest in them (e.g., five different advertisements) and they are not considered to be a 
sample from a larger population. ANaVA model II is appropriate when the factor levels 
constitute a sample from a larger population (e.g., three machines out of 75) and interest is 
in this larger population. Thus, ANaVA model I is also referred as thejixed effects model, 
and ANaVA model II is called the random effects model. In this and the next two chapters, 
we focus on ANaVA model I. For brevity, we omit the word "fixed" or "model I" and 
simply refer to the model as the ANaVA model. 

Comment 

The ANOVA model (16.2) for single-fac'tor studies, like any other statistical model, is not likely to 
be met exactly by any real-world situation. However, it will be met approximately in many cases. As 
we shall note later, the statistical procedures based on ANOVA model (16.2) are quite robust, so that 
even if the actual conditions differ substantially from those of the model, the statistical analysis may 
still be an appropriate approximation. • 

J6.4 Fitting of ANOVA Model 

Example 

The parameters of ANaVA model (16.2) are ordinarily unknown and must be estimated 
from sample data. As with normal error regression models, the method of least squares and 
the method of maximum likelihood lead to the same estimators of the model parameters f.1,i 

in normal error ANaVA model (16.2). Before turning to these estimators, we shall describe 
an example to be used in this chapter and the next, and we shall develop needed additional 
notation. 

The Kenton Food Company wished to test four different package designs for a new break­
fast cereal. Twenty stores, with approximately equal sales volumes, were selected as the 
experimental units. Each store was randomly assigned one of the package designs, with each 
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TABLE 16.1 
Number of 
Cases Sold by 
Stores for Each 
of Four 
Package 
Designs-
Kenton Food 
Company 
Example. 

FIGURE 16.3 
JMPScatter 
Plot of Number 
of Cases Sold 
by Package 
Design-
Kenton Food 
Company 
Example. 

Notation 

Dc.,igllallli Allaly.I-;s ,,(Sillgle-Faclor SlIIdies 

Package 
Design 1 

Yn 
1 11 
2 12 
3 23 
4 27 

All designs 

35 

30 

25 
-0 
0 
V) 

'" 20 
Sl 
'" 

~ u 
15 

10 
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5 

2 

Yi2 

17 
10 
20 
33 

0 

0 

§ 

Store (j) 

3 

Y/3 

16 
15 
18 
22 

4 

Y/4 

14 
19 
17 
26 

o 

o 

8 

2 3 
Package Design 

~ 

Numberl()ti 
5 Total Mean Stores ~ 

Y/ 5 Y,. Yi • ni 
15 73 14.6 5 
11 67 13.4 5 

78 19.5 4 
28 136 27.2 5 

Y.. = 354 Y .. =18.63 19 
~ 

o 

§ 
o 

4 

package design assigned to five stores. A fire occuned in one store during the study period, 
so this store had to be dropped from the study. Hence, one of the designs was tested in only 
.four stores. The stores were chosen to be comparable in location and sales volume. Other 
relevant conditions that could affect sales, SLlch as price, amOLlI1t and location of shelf space, 
and special promotional effolts, were kept the same for all of the stores in the experiment. 
Sales. in number of cases, were observed for the study period, and the results are recorded 
in Table 16. L This study is a completely randomized design with package design as the 
single, four-level factor. • 

Figure 16.3 contains a JMP scatter plot of the number of cases sold versus package 
design number. We readily see that designs 3 and 4 led to the largest sales, and (har designs 
1 and 2 led to smaller sales. We also see that the variability in store sales appears to be aboot 
the same for the four designs, consistent with ANOYA model (16.2). To make more formal 
inferences, we first need to develop some additional notation. 

As explained earlier, Yi ; represents the observation or response for the jth sample unit for 
the ith factor level. Fo~ the Kenton Food Company example, Yji denotes the number of 
cases sold by the jth store assigned to the ith package design. Fo;- instance, Y11 represents 
tile sales of the first store assigned package design 1. For our example, Y11 = 11 cases. 
Similarly, sales of the second store assigned package design 3 are Y32 = 20 cases. 
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The total of the observations for the ith factor level is denoted by Yi .: 

nj 

Yi . = LYij 
j=1 

(16.11) 

Note that the dot ih Yi • indicates an aggregation over the j index; in our example, the 
aggregation is over all stores assigned to the ith package design. For instance, the total 
sales for all stores a&signed package design 1 are, according to Table 16.1, Y I • = 73 cases. 
Similarly, total sales for all stores assigned package d~sig~ 4 are Y4• = 136 cases. 

The sample mean for the ith factor level is denoted by Yi .: 

(16.12) 

In our example, the mean number of cases sold by stores assigned package design 1 is 
YI • = 73/5 = 14.6.,Note that the dot in the sUbscript YI • indicates that the averaging is 
done over j (stores)_ 

The total of all observations in the study is denoted by Y..: 

r nj 

Y.. = LLYij (16.13) 
i=1 j=1 

where the two dots indicate aggregation over both the j and i indexes (in our example, over 
all stores for anyone package design and then over all package designs). In our example, 
the total sales for all stores for all designs are Y.. = 354. 

Finally, the overall mean for all responses is denoted by Y .. : 

- Li Lj YIj Y.. 
Y .. = =- (16.14) 

The two dots here indicate that the averaging is done over both i and j. For our example, 
we have from Table 16.1 that Y .. = 354/19 = 18.63. Note that the overall mean (16.14) 
can be written as a weighted average of the factor level means in (16.12): 

,. 
- '"' nl -Y"=~-YI' 

i=1 nT 

(16.14a) 

least Squares and Maximum Likelihood Estimators 
According to the least squares criterion, the sum of the squared deviations ofthe observations 
around their expected values must be minimized with respect to the parameters. For ANOVA 
model (16.2), we know from (16.3) thattheexpected value of observation Yij is E{YIj} = fJ.i­

Hence, the quantity to be minimized is: 

Q = L L(Yij - fJ.i)2 

j 

Now (16.15) can be written as follows: 

j j 

(16.15) 

, . 
. (16.15a) 

j 
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Example 

Note that each of the parameters appears in only one of the component sums in (16.15 
Hence, Q can be minimized by minimizing each of the component sums separatel I a~. 
well known that the sample mean minimizes a sum of squared deviations. Hence, th~1 tl~ 

. f· d d b A • east squares estimator 0 !Ji. enote y !Ji, IS: 

ili = Yi. (16.16) 

Thus, the fitted value for observation Yij, denoted by 1',/ for regression models, is Simply 
the corresponding factor level sample mean here: 

(16.17) 

The same estimators are obtained by the method of maxim um likelihood. The likelihood 
function here corresponds to that in (1.26) for the nOllllal error simple linear regression 
model, except that the regression model expected value f3() + /31 Xi is replaced here by fJ-/: 

L(!JI, ... , !Jr, a
2
) = (2Jr~2)11/2 exp [- 2~2 ~ 2((Yi/ - !JI)2] (16.18) 

Maximizing tllis likelihood function with respect to the parameters !Ji is equivalent to 
minimizing the sum 2: 2:(Yij - !Ji)2 in the exponent, which is the least squares criterion 
in (16.15). 

For the Kenton Food Company example, the least squares and maximum likelihood esti­
mates of the model parameters are as follows according to Table 16.1: 

Parameter 

fJ-l 

fJ-z 

fJ-3 

fJ-4 

Estimate 

fll = Y1. = 14.6 
fl2 = Yz. = 13.4 
fl3 = Y3. = 19.5 
fl4 = ~. = 27.2 

Thus, the mean sales per store with package design I are estimated to be 14.6 cases for 
the population of stores under study, and the fitted value for each of the observations for 
package design I is 1'1; = f\. = 14.6. Similarly, the mean sales for package design 2 are 
estimated to be 13.4 ca~es per store, and the fitted values for each response fordlis package 
design is 1'2/ = Y2. = 13.4. 

Comments 

I. The least squares and maximum likelihood estimators in (16.16) have all of the desirable 
properties mentioned in Chapter I for the regression cstimators. For example, they arc minimum 
variance unbiased estimators. 

2. To derive the least squares estimator of fJ-;, we need to minimize. with respect to fJ-i' the ith 
component sum of squares in (16. I Sa): 

(16.19) 
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Differentiating with respect to !-Lt, we obtain: 

dQI L - = -2(Yi) - !-Ltl 
d!-L/ 

.I 

When we set this derivative'~qual to zero and replace the parameter !-LI by the least squares estimator 
p-/, we obtain the result in (16.16): 

Ili 

-2 LO'o - P-tl = 0 
}=I 

• 
Residuals are highly useful for examining the aptness of ANaVA models. The residual elj 

is again defined, as for regression models, as the difference between the observed and fitted 
values: 

(16.20) 

Thus, a residual here represents the deviation of an observation from its estimated factor 
level mean. 

An important property of the residuals for ANaVA model (16.2) is that they sum to zero 
for each factor level i: 

i = 1, ... ,r (16.21) 

As for regression analysis, residuals for ANaVA models are useful for examining the 
appropriateness of the ANaVA model. We shall discuss this use of residuals in Chapter 18. 

Table 16.2 contains the residuals for the Kenton Food Company example. For instance, 
from Table 16.1, we find: 

ell = Y II - YI' = 11 - 14.6 = -3.6 

e21 = Y21 - Y2• = 12 - 13.4 = -1.4 

Note from Table 16.2 that the residuals sum to zero for each factor level, as expected. 

Package Design Store (j) 

1 2 3 4 5 Total 

1 -3.6 2.4 1.4 -.6 .4 0 
2 -1.4 -3.4 1.6 S.6 -2.4 0 
3 3S .5 -l.S -2.S 0 
4 -.2 5.8 -LS.2 -1.2 .8 0 

Al'l designs 0 
, . 
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16.5 Analysis of Variance 
oj --Just as the analysis of variance for a regression model partitions the total sum of squares in 

the regression sum of squares and the error sum of sqLlares, so a cOlTesponding Partitioni to 
exists for ANOYA model (16.2). ng 

Partitioning of 55TO 
Tile total variability of the Yii observations, not using any information about factor levels 
is measured in terms of the total deviation of each observation, i.e., the deviation of Y' 

- ij 
around the overall mean Y.: 

Yij - Y.. (16.22) 

When we utilize information about the factor levels, the deviations reflecting the uncertainty 
remaining in the data are those of each observation Yij around its respective esti mated factor 
level mean Yi .: 

(16.23) 

The difference between the deviations (16.22) and (16.23) reflects the difference berween 
the estimated factor level mean and the overall mean: 

- - - -
(1';/ - Y.) - (Yii - Yi ·) = Yi· - Y. (16.24) 

Note from (16.24) that we can decompose the total deviation Yij - Y.. into two compo­
nents: 

Yij - Y. Yi • - Y .. + Yij - Yi. (16.25) 
'--v--"' '---v--"' '--v--"' 

Towl Deviation of Dc\"ialion 
dc\"jmion e~lill1aled tlll)lIlld 

f<lctor level estimated 
meun tllt)und factor 
overall mean level mean 

Thus, the total deviation Yij - Y .. can be viewed as the sum of two components: 

I. The deviation of the estimated factor level mean arOLllld the overall mean. 
2. The deviation of 1';i around its estimated factor level mean, which is simply t~e residual 

eij according to (16.20). 

Figure 16.4 illustrates this decomposition for the Kenton Food Company example for two 

of the observations, Y11 and Y45 . 

When we square both sides in (16.25) and then sum, the cross products on the right drop 
out and we obtain: 

"""" -'"" - - J""",, - J L...L...(Yii - Y.)" = L...ni(Yi ' - Y..t + L...L...(Yij - Yi·t 
j i 

(16.26) 

The term on rhe left measures the total variability of the Yi ; observations and is denoted, as 
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Q IUi'l6.4 Illustration of Partitioning of Total Deviations Yij - Y..-Kenton Food Company Example (not 
~'ted to scale; only observations Yl1 and Y45 are shown). 
!C ~ 

~~~ 

j~j Total Deviations l'Jj - Y.. :' (b) Deviations Ylj - Y;. (c) Deviations Y;. - Y .. 

Y Y 

/Y4• 
-------------- Y4.---o---

.-----Y .. -......--..,.. 
------------------------------ Y .. -+--.....;;;I:---~~ 

= _-_-_-: _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- ---T Yl 
: - - - - - - - - - - - - - - - - Yl

• - - - - --0,...-- Y 1-

Yll ' . Yll 
OL-------------------- OL--------------------

for regression, by SSTO for total sum of squares.: 

SSTO = L L(Yij - y .. )2 
j 

(16.27) 

The first term on the right in (16.26) will be denoted by SSTR, standing for treatment 
sum of squares: 

(16.28) 

The second term on the right in (16.26) will be denoted by SSE, standing for error sum of 
squares: 

(16.29) 
j j 

Thus, (16.26) can be written equivalently: 

SSTO = SSTR + SSE (16.30) 

The correspondence to the regression decomposition in (2.50) is readily apparent. 
The total sum of squares for the analysis of variance model is therefore made up of these 

two components: 

1. SSE: A measure of the random variation of the observations around the respective 
estimated factor level means. The less variation among the observations for each factor 
level, the smaller is SSE. If SSE = 0, the observations for any given factor level are all the 
same, and this holds for all factor levels. The more the observations for each factor level 
differ among themselves, the larger will be SSE. 

2. SSTR: A measure of the extent of differences between the estimated factor level means, 
based on the deviations of the estimated factor level means Yi • around the overall mean Y ... 
If all estimated factor level means Yi • are the same, then SSTR = O. The more the estimated 
factor level means differ, the larger will be SSTR. , . 
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Example 

De.\·iglllllld AlIlIlysis ,!(Sinr,le-FlIctor Studies 

The analysis of variance breakdown of the total sum of squares for the Kenton Food C0m­
pany example in Table 16.1 is obtained as follows, using (16.27), (16.28), and (16.29): . 

SSTO = (II - 18.63)2 + (17 - 18.63l + (16 - 18.63)2 + ... + (28 - 18.63)2 

= 746.42 

SSTR = 5(14.6 - 18.63)2 + 5(13.4 - 18.63)2 + 4(19.5 - 18.63)2 + 5(27.2 - 18.63)2 

= 588.22 

SSE = (II - 14.6)2 + (17 - 14.6)2 + (16 - 14.6)2 + ... + (28 - 27.2)2 

= 158.20 

Thus. the decomposition of SSTO is: 

746.42 = 588.22 + 158.20 

SSTO = SSTR + SSE 

Note that much of the total variation in the observations is associated with variation between 
the estimated factor level means. 

Comments 

I. To prove (16.26), we begin by consideIing (16.25): 
- - - -

Yij - Y .. = Of' - Y..) + (YiJ - }j.) 

Squaring both sides we obtain: 

When we sum over all sample observations in the study (i.e., over both i and j), we obtain: 

j J 
(16.31) 

The first teml on the right in (16.31) equals: 

(16.32) 

since (B. - y .. )2 is constant when summed over j; hence, lJi such temlS are picked up for the 
summation over j. • 

The third tenn on the right in (16.31) equals zero: 

(16.33) 

This follows because Y;. - Y. is constant for the summation over j; hence, it can be brought in front 

of the summation sign over j. Further, L j(Yij - B.) = 0 for all i, since the sum of the deviations 
around the arithmetic mean is always zero: 

Thus. (16.31) reduces to (16.26). 
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2. The squared estimated factor level mean deviations (Yt. - y'.)2 in SSTR in (16.28) are weighted 
by the number of cases nl for th~ fact~r level. The reason is that for each observation YiJ at factor 

level i, the deviation component Yi. - Y.. is the same. • 

tdown of Degrees ~f Freedom 
, Corresponding to the decomposition of the total sum of squares, we can also obtain a 

breakdown of the associated degrees of freedom. 
SSTO has nT -1 degrees of freedom associated with it. There are altogether nT deviations 

Yij - Y .. , but one degree of freedom is lost because the deviations are not independent in 
that they must sum to zero; i.e., L L(Ytj - Y .. ) = o. 

SSTR has r - 1 degrees of freedom associated with it. There are r estimated factor level 
mean deviations Yi • - Y .. , but one degree of freedom is lost because the deviations are not 
independent in that the weighted sum must equal zero; i.e., L ni (Yi • - Y .. ) = O. 

SSE has nT - r degrees of freedom associated with it. This can be readily seen by 
considering the ~omponent of SSE for the ith factor level: 

n, 

"" - 2 . L..,.(Yij - Yt.) (16.34) 
j=1 

The expression in (16.34) is the equivalent of a total sum of squares considering only the 
ith factor level. Hence, there are ni - 1 degrees of freedom associated with this sum of 
squares. Since SSE is a sum of component sums of squares such as the one in (16.34), the 
degrees of freedom associated with SSE are the sum of the component degrees of freedom: 

(nl - 1) + (n2 - 1) + ... + (nr - 1) = nT - r (16.35) 

For the Kenton Food Company example, for which nT = 19 and r = 4, the degrees of 
freedom associated with the three sums of squares are as follows: 

SS df 

ssm 19 - 1 = 18 
SSTR 4 -1 = 3 
SSE 19 - 4 = 15 

Note that degrees of freedom, like sums of squares, are additive: 

18 = 3 + 15 

Mean Squares 
The mean squares, as usual, are obtained by dividing each sum of squares by its associated 
degrees of freedom. We therefore have: 

SSTR 
MSTR= -­

r-l 

MSE= SSE 
nT - r 

(16.36a) 

(16.36b) 
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Example 

Here, MSTR stands for treatment mean square and MSE, as before, stands for error 
mean square. 

For the Kenton Food Company example, we obtain from earlier results: 

588.22 
MSTR = -- = 196.07 

3 

158.20 
MSE = -- = 10.55 

15 

Note rhar the two mean squares do not add to SSTO/(I7T - 1)=746.42/18==41.47. 
Thus, the mean squares here, as in regression, are not additive. 

Analysis of Variance Table 
The breakdowns of the total sum of squares and degrees of freedom, togerher with the 
resulting mean squares, are presenred in an ANOYA table such as Table 16.3. The ANOVA 
table for the Kenton Food Company example is presented in Figure 16.5 which contains the 
JMP output for single-factor analysis of variance. Note that the ourput contains rhe overall 
mean response (i/ = 18.63l}8), the number of observarions, the ANOYA table, and the 
estimated factorlevel means Yi .• In this table, the line for the treatments source of variation is 
labeled "Package Design." The results in the JMP ourput are shown to more decimal places 
than we have shown, but are consistent with our calculations. Note also that theJMP ANOVA 
table shows the degrees of freedom column before the slim of squares column. The columns 
labeled "Srd Error," "Lower 95%," and "Upper 95%" will be discussed in Chapter 17. 

Expected Mean Squares 
TIle expected values of MSE and MSTR can be shown to be as follows: 

where: 

E{MSE} = a 2 

E{MSTR} = a 2 + L lli(J1-, - J1-.)2 
r-l 

(16.37a) 

(16.37b) 

(16.37c) 

is refen'ed to as the weighted mean. These expected val ues are shown in the E {MS} column 
of Table 16.3. 

TABLE 16.3 ANOVA Table for Single-Factor Study. 

Source of 
Variation S5 

Between 55TR = L n;(f;. - f..)2 
treatments 

Error (within SSE = L L(Yi; - f;.)Z 
treatments) 

Total 55TO = L L(Yij - f..)Z 

df 

r -1 

nT - r 

nT -1 

MS 

M5TR= 55TR 
r -1 

M5E = SSE 
nT - r 

E{M5} 

2 L ni(/Li - f.l.)2 
a +==---­

r-1 
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Oneway Anova 

Summary of Fit 

Rsquare 

Adj Rsquare 

Root Mean Square EITOr 

Mean of Response 

Observations (qr Sum Wgts) 

Analysis of Variance 

0.788055 

0.745666 

3.247563 

18.63158 

19 

Source DF 

3 
15 
18 

Sum of Squares Mean Square 

Package Design 
Error 
C. Total 

Means for Oneway Anova 

level Number Mean 

1 5 14.6000 
2 5 13.4000 
3 4 19.5000 
4 5 27.2000 

588.22105 196.074 
158.20000 
746.42105 

Std Error 

1.4524 
1.4524 
1.6238 
1.4524 

10.547 

lower 95% 

11.504 
10.304 
16.039 
24.104 

Std Error uses a pooled estimate of error variance 

F Ratio 

18.5911 

Upper 95% 

17.696 
16.496 
22.961 
30.296 

(a) ILl = IL2 = IL3 = IL4 = ILe (b) ILi Not Equal 

Two important features of the expected mean squares deserve attention: 

Prob> F 

<.0001 

1. MSE is an unbiased estimator of 0'2, the variance of the error terms 8ij, whether or 
not the factor level means fJ,i are equal. This is intuitively reasonable since the variability of 
the observations within each factor level is not affected by the magnitudes of the estimated 
factor level means for normal populations. 

2. When all factor level means fJ,i are equal and hence equal to the weighted mean fJ,., then 
E {MSTR} = 0'2 since the second term on the right in (16.37b) becomes zero. Hence, MSTR 
and MSE both estimate the error variance 0'2 when all factor level means fJ,i are equal. When, 
however, the factor level means are not equal, MSTR tends on the average to be larger than 
MSE, since the second term in (16.37b) will then be positive. This is intuitivelY reasonable, 
as illustrated in Figure 16.6 for four treatments. The situation portrayed there assumes 
that all sample sizes are equal, i.e., ni == n. When all fJ,i are equal, then all Yi. follow the 
same sampling distribution, with common mean fJ,c and variance 0'2/ n; this is pertrayed in 
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Figure 16.6a. When the fJi are not equal, on the other hand, the Yi • follow di fferent sampr 
distributions, each with the same variability a71l but ~entered on ditferent means !J,i. ~ 
such possibility is sh?wn in Figure 16.6b. Hence, the }j. will tend to di ffer more from each 
other when the fJi differ than when the fJi are equal, and consequently MSTR will tend 
to be larger when the factor level means are not the same than when they are equal. Thi 
property of MSTR is utilized in constructing the statistical test discussed in the next secti~ 
to determine whether or not the factor level means fJi are the same. If MSTR and MSE 
are of the same order of magnitude, this is taken to suggest that the factor level means IJ; 

are equal. If MSTR is substantially larger than MSE, this is taken to suggest that the fj'i are 
not equal. 

Comments 

I. To find the expected value of MSE. we firsl note that MSE can be expressed as follows: 

I LL - 0 MSE = -- (Y(i - }j. J-
ilT - r 

i .i 

I L [ L(Ylj 
- ~')~l = -- (Ili - I)-~.I--..,---

/IT - r /II - I 
I 

(16.38) 

Now let us denote the ordinary sample variance of the observations for the ith factor level by sf: 

(16.39) 

Hence. (16.38) can be expressed as follows: 

I """' ' MSE= --~(/li - I)s; 
liT - r . 

(16.40) 

Since it is well known that the sample variance (16.39) is an unbiased estimator of the population 
variance. which in our case is a 2 for all factor levels, we obtain: 

E{MSE} = -I- L (II, -1)E{sn 
/IT - r 

i 

I L ' = -- (IIi - I)a-
IlT - r 

i 

== 02. 

2. We shall derive the expected value of MSTR for the special case when all sample sizes 11; are 
the same. namely. when /II == II. TIle general result in (16.37b) becomes for this special case: 

E{MSTR} = a 2 + II L(J.11 - J.1.)2 
r-I 

when Il; == /I (16.41) 

Further, when all factor level sample sizes are n. MSTR as defined in (16.28) and (16.36a) becomes: 

MSTR =:= /I L(~' - y .. )2 

r-I 
when 11; == /I 

(16.42) 
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To derive (16.41), consider the model formulation for YiJ in (16.2): 

I 

Averaging the' Yij for the ith factor level, we obtain: 

Ii· = f-Li +Bi' 

where B/. is the average of the Bi1 for the ith factor level: 

_ L1 Bi1 
£/.=-­

n 

Averaging the Iij over all factor levels, we obtain: 

Y .. =f-L.+ B .. 

where f-L., which is defined in (16.37c), becomes for n/ == n: 

nbfJ/ Lf-L/ 
f-L.=--=-- whenni == n 

nr r 

and E .. is the average of allBij: 

- LLBij 
B •• = =-=--=-

nr 
Since the sample sizes are equal, we also have: 

- LIi. 
Y .. =-- - LBi' 

B •• =--
r r 

Using (16.43) and (16.45), we obtain: 

Ii· - Y.. = (f-Li + Bd - (f-L. + B .. ) = (f-Li - f-L.) + (Bi' - B .. ) 

When we square Ii. - Y.. and SUm over the factor levels, we obtain: 

"'- -2", 2 "'- - 2 '" --L.)Ii. - Y .. ) = L.)f-Li - f-L.) + L.,.(Bi' - B .. ) + 2 L.,.(/J-/ - f-L.)(Bi. - B .. ) 

(16.43) 

(16.44) 

(16.4S) 

(16.46) 

(16.47) 

(16.48) 

(16.49) 

(16. SO) 

We now wish to find E{L(Y;' - y'.)2}, and therefore need to find the expected value of each term 
on the right in (16.50): 

a. Since L(fJi - f-L.)2 is a constant, its expectation is: 

(16.S1) 

h. Before finding the expectation of the second term on the right, consider first the expression: 

"'(- -)2 ~ B/.-B .. 

r-1 

This is an ordinary sample variance, since B .. is the sample mean of the r terms Bi' per (16.48). 
We further know that the sample variance is an unbiased estimator of the variance of the 
variable, in this case the variable being Bi" But Bi' is just the mean of n independent error terms 
Bij by (16.44). Hence: 

, . 

;1 

, I 

, I 

;1 
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16.6 

Therefore: 

{"'- - '} , 0(E:j. - 6' .. )- u-
E =-

r - 1 /I 

so Ihat: 

(16.52): 

c. Since both Ef. and E .. are means or Ef} terms. all of which have expectation 0, it follows that: 

E{Ed = 0 Els .. } = 0 

Hence: 

E {2 LUlj - fl·)( Ej. - E .. )} = 2 L(fli - fl.)E{ St. - E .. } = 0 

We have thus shown. by (16.51), (16.52), and (16.53), that: 

{~ - - '} ~ ? (/" - I)a
l 

E L .. Y-;· - Y .. )- = ~Ulj - fl·)- + /I 

But then ( 16.41 ) follows at once: 

{ 

1/ L(Y;' - y'.)2} II [L ? (r - l)a1
] 

E {MSTR} = E = -- (flj - fl.)- + ---'--
r-I r-I /I 

when /Ii == /I 

F Test for Equality of Factor LeyellVlean~ 

(16.53): 

• 

It is customary to begin the analysis of a single-factor study by detennining whether arnot 
the factor levell11eans Ili are eq ua!. If, for instance, the fOLlr package designs in the Kenton 
Food Company example lead to the same mean sales volumes, there is no need for further 

,analysis, such as to determine which design is best or how two particular design'> compare 
in stimulating sales. 

Thus, the alternative conclusions we wish to consider are: 

Ho: III = 112 = ... = Ilr 

HlI : not all Ilf are equal 
(16.54) 

Test Statistic 
The test statistic to be used for choosing between the alternatives in (16.54) is: 

F* _ MSTR 
- MSE 

Note that MSTR here plays the role corresponding to MSR for a regression model. 

(16.55) 

Large values of F* support HlI , since MSTR will tend to exceed MSE when HlI holds, as 
we saw from (16.37). Values of F* near I support H(), since both MSTR and MSE have the 
same expected value wilen Ho holds. Hence, the appropriate test is an upper-tail one. 
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I 'uti on of F * 
When all treatment means fJ.i are equal, each response Yij has the same expected value. In 
view ofthe additivity.of sums of squares and degrees of freedom, Cochran's theorem (2.61) 
then implies: 

SSE SSTR . 
When Ho holds, -2- and --2- are independent X2 vanables 

a a 

It follows in the same fashion as for regression: 

When Ho holds, F* is distributed as F(r - 1, nT - r) 

When Ha holds, that is, when the fJ.i are not all equal, F* does not follow the F distri­
bution. Rather, it follows a complex distribution called the noncentral F distribution. We 
shall make use of the noncentral F distribution when we discuss the power of the F test in 
Section 16.10. 

Comment 
SSTR and SSE are independent even if all J-Li are not equal. SSTR is solely based on the estimated factor 
level means Y; .. On the other hand, SSE reflects the variability within the factor level samples, and 
this within-sample variability is not affected by the magnitudes of the estimated factor level means 
when the error terms are normally distributed. • 

~ii15truction of Decision Rule 
".~-,. '. 

EXample 

Usually, the risk of making a Type I error is controlled in constructing the decision rule. 
This provides protection against making further, more detailed, analyses of the factor effects 
when in fact there are no differences in the factor level means. The Type II error can also 
be controlled, as we shall see later in Section 16.10, through sample size determination. 

Since we know that F* is distributed as F(r - 1, nT - r) when Ho holds and that large 
values of F* lead to conclusion Ha , the appropriate decision rule to control the level of 
significance at a is: 

If F* .:S F(1 - a; r - 1, nT - r), conclude Ho 

If F* > F(1 - a;r - 1, nT - r), conclude Ha 
(16.56) 

where F(1-a; r -1, nT - r) is the (1- a) 100 percentile of the appropriate F distribution. 

For the Kenton Food Company example, we wish to test whether or not mean sales are the 
same for the four package designs: 

Ho: fJ.l = fJ.2 = fJ.3 = fJ.4 

Ha: not all fJ.i are equal 

Management wishes to control the risk of making a Type I error at a = .05. We therefore 
require F(.95; 3,15), where the degrees of freedom are those shown in Figure 16.5. From 
Table B.4 in Appendix B, we find F(.95; 3, 15) = 3.29. Hence, the decision rule is: 

If F* .:S 3.29, conclude Ho 

If F* > 3.29, conclude Ha .. 
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Using the data in the ANOVA table in Figure 16.5, we obtain the test statistic: 

r = MSTR = 196.07 = 18.6 
MSE 10.55 

Since F* = 18.6 > 3.29, we conclude Ha, that the factor level means f.1-i are not equal 

that the four different package designs do not lead to the same mean sales volume. Thuar 

we conclude that there is a relation between package design and sales volume. S, 

The P -value for the test statistic is the probability P {F (3, 15) > F* = 18.6}, which is 
.00003. This P-value again indicates that the data from the experiment are not consistent 

with all designs having the same effect on sales volume. 

The conclusion of a relation between package design and sales volUme did not surprise 

the sales manager of the Kenton Food Company. The study was conducted in the first place 

because the sales manager expected tile four package designs to have different effects CtJ. 

sales volume and was interested in finding out the nature of these differences. In the next 

chapter, we discuss the second stage of tile analysis, namely, how to study the nature of the 

factor level means when differences exist. 

Comments 

I. I1'there ure only two factor levels so that r = 2. it can easily be shown that the test employing 
F* in (16.55) is the equivalent of the two-population, Iwo-sided f test in Table A.2a. The F test here 
has (I. III - 2) degrees ofti'eedom. and the f test has III + 112 - 2 or Il r - 2 degrees of freedom; thus 
both tests lead to equivalenr critical region~. For comparing two population means. the f test generally 
is to be preferred since it can be used to conduct both two-sided and one-sided tests (Table A.2); the 
F test can be used only for two-sided tests. 

2. Since the F test for testing the alternatives (16.54) is a test of a linear statistical model, it can 
be obtained by the general linear test appfoach explained in Section 2.8; 

a. The full model is ANOYA model (16.2): 

Full model (16.57) 

Fitting (he full model by eitherthe method ofleast squares or the method of maximum likelihood 

leads 10 the fitted values f',-; = Yi ., pel' (16.17). and to the resulting error sum of squares: 

SSE( F) has ((ff' = I1T - r degrees of ffeedom associuted with it because r parameter values 
Cill' .... Ile) have lobe estimated. 

b. The reduced model under HII is: 

Reduced model (16.58) 

where 11,. is the common mean for all ti.ICtor levels. Fitting the reduced model leads to the 

estimutor P,. = Y.. so that all fitted values are fti == Y. .. and the resulting error sum of squares 
is: 



Chapter 16 Single-Factor Studies 701 

The degrees offreedom associated with SSE(R) are dIN = nT - 1 because one parameter (f-Lc) 
had to be estimateq. 

c. Since, according to (16.27) and (16.29), respectively: 

SSE(R) = ssro 

SSE(F) = SSE 

and since by (16.30) ssro - SSE = SSTR, the general linear test statistic (2.70) becomes here: 

F* = SSE(R) - SSE(F) -7 SSE(F) 

dIN - dfp. dfp. 

ssro - SSE SSE 

lK7 Alternative Formulation of Model 

inor Effects Model 

SsrR SSE 

r-1 nT-r 
MSTR 

MSE • 

At times, an alternative but completely equivalent formulation of the single-factor ANaVA 
model in (16.2) is used. This alternative formulation is called the factor effects model. With 
this alternative formulation, the treatment means f.1,i are expressed in an equivalent fashion 
by means of the identity: 

f.1,i == f.1,. + (f.1,i - f.1,.) (16.59) 

where f.1,. is a constant that can be defined to fit the purpose of the study. We shall denote 
the difference f.1,i - f.1,. by ri: 

ri = f.1,i -f.1,. (16.60) 

so that (16.59) can be expressed in equivalent fashion as: 

f.1,i == f.1,. + ri (16.61) 

The difference ri = f.1,i - f.1,. is called the ithfactor level effect or the ith treatment effect. 
The ANaVA model in (16.2) can now be stated equivalently as follows: 

where: 

f.1,. is a constant component common to all observations 

ri is the effect of the ith factor level (a constant for each factor level) 

t:ij are independent N(O, 0'2) 

i = 1, ... , r; j = 1, ... , ni 

(16.62) 

ANaVA model (16.62) is called a factor effects model because it is expressed in terms of 
the factor effects ri, in distinction to the cell means model (16.2), which is expressed in 
terms of the cell (treatment) means f.1,i. ~ • 
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Factor effects model (16.62) is a linear model, like the equivalent cell means model (16.2) 
We shall demonstrate this in the next section. . 

Definition of J.L. 

Example 

The splitting Llp of the factor level mean fJi into two components, an overall constant fJ,. and 
a factor level or treatment effect ii, depends on the definition of fJ·, which can be defined 
in many ways. We now explain two basic ways to define fJ .. 

Unweighted Mean. Often, a definition of fJ. as the unweighted average of all factor level 
means fJi is found to be useful: 

This definition implies that: 

because by (16.60) we have: 

and by (16.63) we have: 

1/ -
("". -

;=1 

",I" 
0i=1 fJi 

r 

LfJi = rfJ· 

(16.63) 

(16.64) 

Thus, the definition of the overall constant fJ. in (16.63) implies a restriction on the ri, in 
this case that their sum must be zero. 

For the earlier incentive pay example in Figure 16.2, we have fJl = 70, fJ2 = 58, J.L3 = 90, 
and fJ4 = 84. When fJ. is defined according to (16.63), we obtain: 

Hence: 

70 + 58 + 90 + 84 
fJ. = = 75.5 

4 

il = 70 - 75.5 = -5.5 

i2 =58-75.5=-17.5 

i3 = 90 - 75.5 = 14.5 

i4 = 84 - 75.5 = 8.5 

• 

The first treatment effect il = -5.5, for instance, indicates that the mean employee p-o­
ductivity for incentive pay type I is 5.5 units less than the average productivity for all four 
types of incentive pay. Figure 16.7 provides an illustration of these treatment effects. 
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'ilifects­
'ln~ntive Pay 
~ple. 

Example 1 

Example 2 
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IL2 ~ 58 'IL3=90 
y 

7; = -5.5 

74 = 8.5 • 

72 = -17.5 

IL. = 75.5 

Weighted Mean The constant f.1,. can also be defined as some weighted average of the 
factor level means f.1,i: 

,. 

f.1,·=L Wif.1,i 

i=1 

r 

where LWi = 1 
i=1 

(16.65) 

Note that the Wi are weights defined so that their sum is 1. The restriction on the Ti implied 
by definition (16.65) is: 

,. 
LWiTi =0 

i=1 

This follows in the same fashion as (16.64). 

(16.66) 

The choice of weights Wi should depend on the meaningfulness of the resulting over­
all mean f.1, .. We present now two examples where different weightings are appropriate: 
(1) weighting according to a known measure of importance and (2) weighting according to 
sample size. 

A car rental firm wanted to estimate the average fuel consumption (in miles per gallon) 
for its large fleet of cars, which consists of 50 percent compacts, 30 percent sedans, and 
20 percent station wagons. Here, a meaningful measure of f.1,. might be in terms of overall 
mean fuel consumption: 

(16.67) 

where f.1,1, f.1,2, and f.1,3 are the mean fuel consumptions for the three types of cars in the fleet. 
An estimate of f.1,. here is: 

(16.68) 

When exact weights are unknown, the subgroup sample sizes may be useful as weights of 
relative importance. For instance, the proportions of households in a city with no children, 
one child, and more than one child are not known. A random sample of nT pouseholds was 
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selected, which contained III households with no child, 112 households with one child and 
households with more than one child. For testing whether mean entertainment expe~ditu n3 

are the same for the three types of households, use of the proportions ill/liT no/n res 

1l3/ 1l1' as weights might be meaningful. TIle resulting definition of the overall e~t~rtai~~: 
expenditures constant fA.. would then be: 

III 112 III 
/.1. = -/.11 + -/.12 + ~f.13 

liT ilr Ill' 
(16.69) 

This quantity would be estimated by Y .. : 

(16.70) 

When all sample sizes are equal, /.1. as defined in (16.69) reduces to the unweighted 
mean (16.63). 

Test for Equality of Factor level Means 

16.8 

Since the factor effects model (16.62) is eq ui valent to the cell means model ( 16.2), the test 
for equality of factor level means uses the same test statistic F* in (16.55). The only dif­
ference is in the statement ofth e alternati ves. Fo I' the cell means mo del ( I 6.2 ), the alternatives 
are as specified in (16.54): 

Ho: f.11 = f.12 = ... = /.1 r 

H,,: not all f.1i are eq ual 

For the t~lctor effects model (16.62), these same alternatives in terms of the factor effeclS 
are: 

Ho: TI = T2 = ... = TI , = 0 

Ha: not all Ti equal zero 
(16.71) 

The equivalence of the two forms can be readily established. The equality of the factor 
level means f.11 = /.12 = ... = f.1r implies that all Ti are equal. The equalities of the Ti 

follow from (16.61) since the constant term /.1. is common to all factor level effect,; Ti. The 
equality of the t~lctor level means in turn implies that all Ti = 0, whether the restriction on 
the Ti is of the form in ( 16.64) or (16.66). In either case, the restriction ean be satisfied in 
only one way given the equality of the Ti. namely, that Ti == O. ThLlS, it is equivalentto state • 
that all factor level means f.1i are equal or that all factor level effects Ti equal zero. 

Regression Approach to Single-Factor Analysis of \Tariance 

We noted earlier that cell means model (16.2) is a linear model, and that we can obtain test 
statistic F* for testing the equality of the t~lctor level means f.1i by means of the general 
linear test (2.70). We shall now explain the regression approach to single-factor analysis of 
variance for three alternative models: (I) the factor effects model with unweighted mean, 
(2) the factor effects model with weighted mean, and (3) the cell means model. It is important 
to emphasize that the choice of model affects the definition of the model parameters, and 
not the outcome of the test for equality of factor level means. 
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~k~o-r Effects Model with Unweighted Mean 
To state ANOVA model (16.62): 

as a regression model, we need to represent the parameters f.1,., rl> ... , rr in the model. 
However, constraint (16.64) for the case of equal weightings: 

,. 
Lri=O 

i=1 

implies that one of the r parameters ri is not needed since it can be expressed in terms of 
the other r .,-- 1 parameters. We shall drop the parameter r,., which according to constraint 
(16.64) can be expressed in terms of the other r - 1 parameters ri as follows: 

rr = -rl - r2 - ... - rr-I (16.72) 

Thus, we shall use only the parameters f.1,., rl> ... , r'·_1 for the linear model. 
To illustrate how a linear model is developed with this approach, consider a single-factor 

study with r = 3 factor levels when nl = n2 = n3 = 2. The Y, X, ~, and E matrices for 
this case are as follows: 

Yll 1 1 0 811 

YI2 1 1 0 

~ = [;:] 

812 

Y= 
Y21 X= 

1 0 1 821 (16.73) 
Y22 1 0 1 

E= 
822 

Y31 1 -1 -1 83\ 

Y32 1 -1 -1 832 

Note that the vector of expected values, E{Y} = X~, yields the following: 

E{YIl } 1 1 0 f.1,. +rl 

E{Yd 1 1 0 

[;} 
f.1,. +rl 

E{Y} = 
E{Y2d 

=X~= 
1 0 1 f.1,. + r2 (16.74) 

E{Yzz} 1 0 1 f.1,. + r2 

E{Y3d 1 -1 -1 f.1,. - rl - r2 

E{Y32 } 1 -1 -1 f.1,. - rl - r2 

Since r3 = -rl-r2 according to (16.72), we see that E{Y3d = E{Y32 } = f.1,. +r3. Thus, the 
above X matrix and ~ vector representation provides in all cases the appropriate expected 
values: 

E{Yij} = f.1,. + ri 

The illustration in (16.73) indicates how we need to define in general the multiple 
regression model so that it is the equivalent of the single-factor ANOVA model (16.62). 
Note that we require indicator variables that take on values 0, 1, or -1. This. coding was 
discussed in Section 8.1. While this coding is not as simple as a 0,1 coding,·it is desirable 
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Example 

here because it leads to regression coefficients in the ~ vector that are the parameters' .' 
factoretfects ANOVA model. i.e., fJ.., TI .•. , Tr-I. illtl1e,: 

We shall let Xij I denote the value of indicator variable X I for the jth case from the' 0 

factor level, Xij2 the value of indicator variable X 2 for this same case, and so on, us:th:,,," 
altogether r - I indicator variables in the model. The multiple regression model then' ng. , 

IS as 
follows: . 

where: 

if case from factor level I 
if case from factor level r 
otherwise 

if case from factor level r - I 
if case from factor level r 
otherwise 

Full model (16.75) 

Note how the ANOVA model parameters play the role of regression function parameters 
in (16.75); the intercept term is fJ.., and the regression coefficients are TI, T1, ... , Tr _ l . 

The least squares estimator of fJ.. is the average of the cell sample means: 

,\,r -
~ 0i=1 Yj • 
fJ..= 

r 
(16.7Sa) 

Note that this quantity is generally not the same as the overall mean Y .. unless the cell 
sample sizes are equal. Also, the least squares estimator of the ith factor effect is: 

Ti = Yi . - /2. (16.7Sb) 

To test the equality of the treatment means fJ.i by means of the regression approach, we 
state the alternatives in the equivalent formulation (16.71), noting that TI , must equal zero 
when TI = T2 = '" = Tr _ 1 = 0 according to (16.72): 

Ho: TI = T2 = ... = Tr-I = 0 

H,,: not all T, equal zero 
(16.76) 

Note that Ho states that all regression coefficients in regression model (16.75) are zero, and 
the reduced model is therefore: 

Reduced model (16.77) 

Thus, we employ the llsual test statistic (6.39b) for testing whether or not there is a regression 
relation: 

F" = MSR 
MSE 

(16.78) 

To test the equality of mean sales for the four cereal package designs in the Kenton Fc:od 

Company example by means of the regression approach, we shall employ the regreSSiOn 
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R~on 
Approach to 
tiie Analysis of 
Variance­
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Example. 

model: 

where: 

Xu>~H 

X'j'~H 
X,l'~ H 

if case from factor level 1 
if case from factor level 4 
otherwise 

if case from factor level 2 
if case from factor level 4 
otherwise 

if case from factor level 3 
if case from factor level 4 
otherwise 
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(16.79) 

A portion of the data in Table 16.1 is repeated in Table 16.4a, together with the coding of 
the indicator variables Xl, X2 , and X3' For observation Yu , for instance, note that Xl = 1, 
X2 = 0, and X3 = 0; hence, we obtain from (16.79): 

1 
l 
} 
1 
1 
i 

'4 
4 

Source of 
Va~i~ti~n 
Regression 
Error 

, Total 

i 
1 
:2 
3, 
4 
5 
1 

'4 
5 

'(if 
1.1 
17 
'16 
14 
Ys 
1.2 

26' 
28 

55; 
SSR=S88a2 
55E=1'58.2o. 

SSTO= 746:42 

X,f.l 
j 
1 
j 
1 
1 
0. 

'. 

',""',1" 
"-"1, 

,qf 
3 

15" 
1;8 

-c' ,". , .. _._~ 

,Xi"i. ," t 
j) 
'0. 
;() 

'0 
,0. 
1 

)('/'3 
0. 
:'0, 
0.' 
p 
Q 
0. 

, . 
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Similarly, for observation Y-l5 we have XI = -I, X ~ = -I. and X 1 = -I; hence: 

since T-I = -TI - T~ - TJ. 

Note that we employ the rollowing codings in the indicator variables for cases from each 
of the four factor levels: 

Coding 

Factor level Xl X2 X3 

0 0 
2 0 1 0 
3 0 0 1 
4 -1 -1 -1 

A computer run of the multiple regression of Y on X h X~, and X 3 yielded the fitted 
regression function and analysis of variance table presented in Tables 16.4b and 16.4c. Test 
statistic (16.78) therefore is: 

F* = MSR = 196.07 = 18.6 
MSE 10.55 

This is the same test statistic obtained earlier based on the analysis of variance calculations. 
Indeed, the analysis of variance table in Table 16.4c obtained with the regression approach 
is the same as the one in Figure 16.5 obtained with the analysis of variance approach 
except that the treatment sum of squares and mean square are called the regression sum of 
squares and mean square in Table 16.4c. From this poi nt on, the test procedure based on 
the regression approach parallels the analysis of variance test procedure explained earlier. 

Note that in the fitted regression function in Table 16.4b, the intercept telm [1. = 18.675 
is the unweighted average of the estimated factor level means r i .• not the overall mean 
E .. ' because f-l. was defined as the unweighted average of the factor level means !-Li. The 

regression coefficient b l = 1'1 = ri' - [1. = 14.6 - 18.675 = -4.075 is simply the 
ditference between the estimated mean in the first cell and the unweighted overall mean. b2 

and bJ represent similar differences between the estimated t~lctor level mean and the overall 
unweighted mean. 

Comment 
The regression approach is not utilized generally for ordinary analysis of variance problems. The 
reason is that the X matrix for analysis of variance problems usually is of a very simple ,<,tructure, as 
we have seen earlier. This simplc siructure permits computational simplifications that are explicitly 
recognized in the statistical procedures for analysis of variance. We take up the regression approach to 

analysis of variance here. and in later chapters. fortwo principal reasons. First, we see that analysis of 
variance models are encompassed by the general linear statistical model (6.19). Second. the regressi~n 
appro,lch is very useful for analyzing some multifactor studies when the structure of the X matnX IS 

not simple. • 
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.'ittor Effects Model with Weighted Mean 
~,~ When the factor ,effects model (16,62) is used with a weighted mean, a modification of 

the coding scheme'in (16.75) is required. The new coding scheme leads to changes in the 
definitions of the regression coefficients. We describe the new coding scheme and summarize 
the changes in the context ofthe proportional sample size weights, Wi = n;/nT' 

;~xample 

When the constant fJ,. is the weighted average of the factor level means using proportional 
sample size weights, we have, from (16.65): 

From (16.66), the restriction on the Ti is: 

Solving for Tn we find: 

~ n· 
~~Ti=O 
i=1 nT 

nl n2 nr-I 
Tr = --TI - -T2 - ... - --Tr-I 

nr nr nr 

This leads to the weighted model: 

where: 

{

I 
nr-I 

Xij,r-I = - 0 nr 

if case from factor level 1 

if case from factor level r 

otherwise 

if case from factor level r - 1 

if case from factor level r 

otherwise 

(16.80a) 

(16.80b) 

Full model (16.81) 

Note that if all cell sample sizes are equal, the mean fJ,. is the unweighted mean, and the 
coding scheme above is the same as the unweighted coding scheme used in (16.75), since 
-n;/nr = -1 fori = 1, ... ,r-1. 

When the sample sizes are not all equal, as noted in (16.70), the least squares estimate 
of the weighted.mean fJ,. is the overall mean Y .. , and the least squares estimate of the ith 
factor effect Ti is Y i. - Y .. , 

In the Kenton Food Company example, weighted mean model (16.81) is: 

(16.82) .. 
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where: 

if case from factor level 1 

if case from factor level 4 

otherwise 

if case from factor level 2 

if case from factor level 4 

otherwise 

if case from factor level 3 

if case from factor level 4 

otherwise 

The fitted regression function is: 

Y = 18.63 - 4.03X, - 5.23X2 + .87X3 

and the following relations hold: 

fl· = bo = Y .. = 18.63 

TI = b l = i\. - Y .. = 14.6 - 18.63 = -4.03 

T2 = b2 = Y2. - Y .. = 13.4"": 18.63 = -5.23 

T3 = b3 = Y3. - Y .. = 19.5 - 18.63 = .87 

A nl A n2 A n3 A 856 T4 = --T, - -T2 - -T3 = . . 
n4 n4 n4 

A general linear test of the alternatives: 

Ho: TI = T2 = T3 = 0 

Ha: not all Ti = 0 

is conducted using the full model in (16.82) and forming the reduced model by setting 
TI = T2 = T3 = 0 in full model (16.82). The test statistic (16.78) for the presence of a 
regression relation again yields: 

F* = MSR = 196.07 = 18.6 
MSE 10.55 

As expected, the results are identical to those obtained earlier for the ANOVA F test 

Cell Means Model 
When the analysis of variance test is to be conducted by means of the regression approach 
based on the cell means model (16.2): 



, 
• 
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the ~ vector ,can be defined to contain all r treatment means fJ.i: 

~ = [~Il 
fJ.1' 

(16.83) 

and r indicator variables XI, X2, ... , XI' are utilized, each defined as a 0, 1 variable as 
illustrated in Chapter 8: 

X,. = {~ 

The regression model therefore is: 

if case from factor level 1 
otherwise 

if case from factor level r 
otherwise 

Full model 

with the fJ.i playing the role of regression coefficients. 

(16.84) 

(16.85) 

The X matrix with this approach contains only 0 and 1 entries. For example, for r = 3 
factor levels with nl = n2 = n3 = 2 cases, the X matrix (observations in order YII, Y12 , 

Y21 , etc.) and ~ vector would be as follows: 

0 0 
0 0 

X= 0 1 0 
0 1 0 
0 0 1 
0 0 

Note that regression model (16.85) has no intercept term. When a computer regression 
package is to be employed for this case, it is important that a fit with no intercept term be 
specified. 

The ANOVA table obtained with regression model (16.85) is different from the One with 
the single-factor ANOVA model in (16.2) because the regression model (16.85) has no 
intercept term. Thus, the F test obtained with the regression model cannot be used to test 
the equality of factor level means. The test of whether the factor level means are equal, i.e., 
fJ.1 = fJ.2 = ... = fJ.,., asks only whether or not the regression coefficients in (16.83) are 
equal, not whether or not they equal zero. Hence, we need to fit the full model and then the 
reduced model to conduct this test. The reduced model when Ho: fJ.1 = ... = fJ.r holds is: 

Reduced model (16.86) 

where fJ.c is the common value of all fJ.i under Ho. The X matrix here consists simply 
of a column of Is. The X matrix and ~ vector for the reduced model in oul ~xample 



712 Part Four Desigll alld A{{alysi!>' o{Sillgle-Fau"r SlIIdies 

Example 

16.9 

would be: 

x= 

After the full and reduced models are fitted and the error sums of squares are obtained 
for each fit, the usual general linear test statistic (2.70) is then calculated. 

For the Kenton Food Company example, the regression fit for the cell means model in 
(16.85) is: 

Y = 14.6XI + 13.4X2 + 19.5X3 + 27.2XJ. 

!! can be readily seen that the coefficient of Xi is equal to the estimated factor level mean 
1';. for i = I. ... , 4. 

A general linear test of the alternatives: 

Ho: fJ.1 = fJ.2 = fJ.3 = fJ.4 

H,,: not all fJ.i are equal 

is conducted using the full and reduced models in (16.85) and (16.86). Here we again find 
that SSE(R) = 746.42 and that SSE(F) = 158.2. From (2.70) we have: 

r = 746.42 - 158.2 -;.- 158.2 = 18.6 
4-1 19-4 

This demonstrates that the test for equality of means using the regression approach is, as 
expected, the same as that obtained earlier for the ANOVA F test. 

RandornizatiolJ Tests 

Randomization can provide the basis for making inferences without requiring assumptions 
about the distribution of the error terms c. Consider factor effects model (16.62) for a 
single-factor study: 

1';j = /-L + Ti + ciJ 

Rather than assume that the ci; are independent normal random variables with mean zero 
and constant variance (J2, we·shall now consider each Cij to be a fixed effect a,>sociated 
with the experimental unit. In this framework, we view the ilT experimental units to be a 
finite population, and associated with each unit is the unit-specific effect C;j. When ran­
domization assigns this experimental unit to treatment i, the observed response will be 
Yij = fJ.. + T; + cu. The response Yii is still a random variable, but under the randomiza­
tion view the randomness arises because the treatment effect T; is the result of a random 
assignment of the experimental unit to treatment i. 

If there are no treatment effects, that is, if all T; = 0, then the response Yij = fJ.. + Bij 

depends only on the experimental unit. Since with randomization the experi~lental unit is 
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equally likely to be assigned to any treatment, the observed response Yij. if there are no 
treatment effects, could with equal likelihood have been observed for any of the treatments. 
Thus, when there are no treatment effects, randomization will lead to an assignment of the 
finite population of nT observations Yij to the treatments such that all treatment combina­
tions of observations are equally likely. This, in turn, leads to an exact sampling distribution 
of the test statistic under Ho: Ti == 0, sometimes termed the randomization distribution of 
the test statistic. Percentiles of the randomization distribution can then be used to test for 
the presence of factor effects. This use of the randomization distribution provides the basis 
of a nonparametric test for treatment effects. 

To illustrate the concept of a randomization distribution, consider a single-factor experi­
ment consisting of two treatments and two replications. In this experiment, the alternatives 
of interest are: -

Ho: T, = T2 = 0 

Ha: not both T, and T2 equal zero 

Test statistic F* in (16.55) will be used to conduct the test. The sample results are: 

For these data, F* = 3.20. 

Treatment 1 
Ylj 

3 
7 

Treatment 2 
Y2j 

8 
10 

Since the treatments are assigned to experimental units at random, it would have been 
just as likely, if there are no treatment effects, to have observed 3 and 8 for treatment 1 and 
7 and 10 for treatment 2. In that event, the test statistic would have been F* = 1.06. In 
fact, any division of the four observations into two groups of size two is equally likely with 
randomization if there are no treatment effects. Because this experiment is small, we can 
easily list all4!/(2!2!) = 6 possible outcomes of the experiment, assuming no treatment 
effects are present: 

Randomization Treatment 1 Treatment 2 F* Probability 

1 3,7 8,10 3.20 1/6 
2 3,8 7,10 1.06 1/6 
3 3,10 8,7 .08 1/6 
4 8,7 3,10 .08 1/6 
5 7,10 3,8 1.06 1/6 
6 8,10 3,7 3.20 1/6 

The last two columns give the randomization distribution of test statistic F* under Ho. 
Randomization assures us that, when Ho is true, each possible value of the test statistic has 
probability 1/6. From the randomization distribution, we see that the P -value fot rhe test 
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Example 

is the probability: 

. 2 
P{F" :::: 3.20} = 6" = .33 

This P-value is somewhat different than the uSllal (normal theory) P-value: 

P{F(t, 2):::: 3.20} = .22 

In this instance, because the sample sizes are very smaiL the F distribution does not pro­
vide a particularly good approximation to the exact sampling distribution of F* under D 

110· 
However. both empirical and theoretical studies have shown that the F distribution is a 
good approximation to the exact randomization distribution when the sample sizes are not 
small. Thus, randomization alone can justify the F test as a good approximate test, without 
requiring any assumption of independent. normal error terms. We shall next demonstrate 
the use of the randomization test in a more realistic setting. 

Comments 
I. Because of the discretenes, of the randomization distribution, it is conservative to define the 

P-value as the probability of equaling or exceeding the observed value of the tesl statistic when Ho 
holds. For continuous sampling distributions, it does not matter whether the P-value is defined as the 
probability of exceeding the observed value of the test statistic or as the probability of equaling or 
exceeding it. For instance, P{ F (I, 2) > 3.20} = P{ F( L 2) ~ 3.20}. When more than one treatment 
combination yields the value of the test statistic F*, some authors suggest that the P -value be calculated 
as P{F > F*} + P{F = F*}/2. This leads to a less conservative P-value. 

2. The randomization test is sometimes referred to as a permutation test, although permutation 
tests are also applied to nonrandomized studies. Because of the conservativeness of permutation (or 

randomization) tests for small samples, their virtues continue to be debated in the literature. See 
Reference 16.1. • 

A manufacturer of children's plastic toys considered the introduction of statistical process 
control (SPC) and engineering process control (EPC) in order to reduce the volmne of scrap 
and rework at each of its nine manufacturing plants. To assess the effects of these quality 
practices, a single-factor experiment was conducted for a six-month period. The treatments 
were: 

• 

Treatment 
Quality Practice 

None (control group) 
2 SPC 
3 Both SPC and EPC 

The three treatments were each randomly assigned to three of the nine available plantS. The 
response of interest was the reduction in the defect rate at the end of the six-month trial 
period. The results are given in the first row (randomization I) in Table 16.5. Management 
wishes to test whether or not the mean reduction in the defect rate is the same for the three 
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TABLE 16.5 Randomization Samples and Test Statistics-Quality Control Example. 

~mi;~tion 
, 

T 
i 
3 

,,;]!l>80 
~~;..". 

fiGURE 16.8 
~zation 
'U,istribution of 
H','and Cor­
f1sponding F 
J:>i~tribution-
~ty 
COntrol 
~ple. 

, Treatment 
). 

1 

1.1, .5, -2.1 
1.1, .5, -2.1 
1.1, .5, -2.1 

3.2, 2.8, 6.3 

treatments: 

Treatment Treatment 
r 2 3 _·c 

4.2, 3.7, .8 3.2, 2.8, 6.3 
4.2, 3.7, 3.2 .8, 2.8, 6.3 
4.2; 3.7, 2;8 3.2, .8, 6.3 

4.2; 3.7, .8 1.1, .5, -2.1 

Ho: Tl = T2 = T3 = 0 

Ha: not all Ti equal zero 

Probability 
F* 

4.39 1/1,680 
3.74 1/1,680 
3.67 1/1,680 

4.39 1/1,680 

The risk of a Type I error is to be controlled at a = .10. We shall now conduct this test by 
obtaining the exact randomization distribution. 

In this experimental study, there are 9!/(3!3!3!) = 1,680 possible combinations of as­
signing the nine experimental units to the three treatments. A computer program was utilized 
to enumerate these 1,680 combinations and to calculate the F* statistic for each. A partial 
listing of results is presented in Table 16.5. 

Of the 1,680 possible values of the test statistic F*, 120 were equal to or greater than 
the observed value 4.39. Thus, from the randomization distribution we find: 

120 
P-value = P{F* > 4.39} = -- = .071 

- 1,680 

Since .071 < a = .10, we conclude thaI the mean reduction in the defect rate is not the 
same for the three treatments. 

Even though the sample sizes are not very large here, the exact randomization distribution 
is well approximated by the F distribution. Figure 16.8 shows both the randomization 

1.0 

0.8 

~ 0.6 
'Vi 
c 
Q) 

o 
0.4 

0.2 

o 2 4 6 8 10 
F* , ' 
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16.10 

distribution in the form of a histogram and the density fUnction for the correspondin 
distribution, F(2, 6). Note how well the F distribution approximates the randOmiza~ F 
distribution. The P-value according to the F distribution is P{F(2, 6) 2: 4.39} === .0; 
This is very close to the randomization P-value of .071. . 

Planning 01' Sanl )Ie Sizes \yith Power A) Jroach 

For analysis of variance studies, as for other statistical studies, it is important to plan the 
sample sizes so that needed protection against both Type I and Type II errors can be obtained 
or so that the estimates of interest have sufficient precision to be useful. This planning ~ 
necessary for both observational and experimental studies to ensure that the samp.e sizes 
are large enough to detect important ditferences with high probability. At the same time, 
the sample sizes should not be so large that the cost of the study becomes excessive and that 
unimportant differences become statistically significant with high probability. Planning of 
sample sizes is therefore an integral part of the design of a study. 

We shall generally assume in our discussion of planning sample sizes that all treatments 
are to have equal sample sizes, reflecting that they are about equally important. Indeed, 
when major interest lies in pairwise comparisons of all treatment means, it can be shown 
that equal sample sizes maximize the precision of the comparisons. Another reason for 
equal sample sizes is that certain departures from the assumed ANOVA model are less 
troublesome if all factor levels have the same sample size, as noted earlier. 

There will be times, however, when unequal sample sizes are appropriate. For instance, 
when four experimental treatments are each to be compared to a control, it may be reasonable 
to make the sample size for the control larger. We shall comment later on the planning of 
sample sizes for such a case. 

Planning of sample sizes can be approached in terms of (I) controlling the risks of 
making Type I and Type II errors, (2) controlling the widths of desired confidence intervals, 
or (3) a combination of these two. The procedures for planning sample sizes that we shall 
discuss here are applicable to both observational studies and to experimental studies based 
on a completely randomized single-factor design. In later chapters, we shall consider the 
planning of sample sizes for other study designs. In this section, we consider planning of 
sample sizes with the power approach, which permits controlling the risks of making Type I 
and Type II errors. In Section 16.11 we discuss planning of sample sizes when the best 
treatment is to be identified. Later, in Section 17.8, we take up planning 0' sample sizes 
to control the precision of estimates of important effects. We shall consider planning of 
sample sizes for multifactor studies in Section 24.7. 

Before we can discuss planning of sample sizes with the power approach, we need to 
consider the power of the F test. 

Power of F Test 
By the power of the F test for a single-factor study, we refer to the probability that the 
decision rule will lead to conclusion H", that the treatment means differ, when in fact 
H" holds. Specifically, the power is given by the following expression for the cell means 
model (16.2): 

Power = P{F* > F(I - ex;r - I, /1T - r)1 ¢} (16.87) 
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where 41 is A the noncentrality parameter, that is, a measure of how unequal the treatment 
means fJ.i are: 

and: 
LnifJ.i 

fJ.. =-­
nT 

When all factor level samples are of equal size n, the parameter 41 becomes: 

where: 

41 = ~ .1'2 L(fJ.i - fJ..)2 aVr whenni == n 

(16.87a) 

(16.87b) 

(16.88) 

LfJ.i 
fJ.. = -- (16.88a) 

r 
Power probabilities are determined by utilizing the noncentral F distribution since this 

is the sampling distribution of F* when Ha holds. The resulting calculations are quite 
complex. We present a series of tables in Appendix Table B.ll that can be used readily to 
look up power probabilities directly. The proper table to use depends on the number of factor 
levels and the level of significance employed in the decision rule. Specifically, Table B.ll 
is used as follows: 

1. Each page refers to a different VI, the number of degrees of freedom for the numerator 
of F*. For ANOVA model (16.2), VI = r - 1, or the number of factor levels minus one. 
Table B.ll contains power tables for VI = 2, 3,4,5, and 6, as shown at the top of each page. 

2. Two levels of significance, denoted by a, are presented in Table B.ll, namely, a = .05 
and a = .01. The upper table on each page refers toa = .05andthelowertabletoa = .01. 

3. Within each table, the rows refer to different values of V2, the degrees of freedom 
for the denominator of F*. The columns refer to different values of 41, the noncentrality 
parameter defined in (16.87a). For ANOVA model (16.2), V2 = nT - r. 

1. Consider the case where VI = 2, V2 = 10, ¢ = 3, and a = .05. We then find from 
Table B.ll (p. 1337) that the power is 1 - f3 = .98. 

2. Suppose that for the Kenton Food Company example, the analyst wishes to determine 
the power of the decision rule in the example on page 699 when there are substantial 
differences between the factor level means. Specifically, the analyst wishes to consider the 
case when fJ.I = 12.5, fJ.2 = 13, fJ.3 = 18, and fJ.4 = 21. The weighted mean in (16.87b) 
therefore is: 

fJ.. = 5(12.5) + 5(13) + 4(18) + 5(21) = 16.03 
19 

Thus, the specified value of 41 is: 

41 = ~ [5(-3.53)2 + 5(-3.03): +4(1.97)2 + 5(4.97)2] 1/2 

= ~(7.86) 
a 
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Note that we still need to know (5, the standard deviation of the error terms f:;. in th 
model. Suppose that from past experience it is known that (5 = 3.5 cases approxi~atel e 
Then we have: y. 

I 
¢ = -(7.86) = 2.25 

3.5 

Further. we have for this example: 

VI = r - I = 3 ex = .05 

Table B.II on page 1338 indicates that the power is I - f3 = .91. In other words, there are 
91 chances in 100 that the decision rule, based on the sample sizes employed, will lead to 
the detection of differences in the mean sales volumes for the four package designs when 
the differences are the ones specified earlier. 

Comments 

I. Any given value of if; encompasses many different combinations of factor level means Mi. Thus, 
in the Kenton Food Company example, the means JJ.I = 12.5, JJ.2 = 13, JJ.3 = 18, JJ.4 = 21 and the 
means JJ.I = 21, JJ.2 = 12.5, JJ.3 = 18. JJ..j = I3 lead to the same value of if; = 2.25 and hence to the 
same power. 

2. The larger if;-that is, the larger the differences between the factor level means-the greater 
the power and hence the smaller the probability of making a Type II error for a given risk CI of making 
a Type J error. Also, the smaller the specified ex risk. the smaller is the power for any given ¢. and 
hence the larger the ri sk of a Type II error. 

3. Since many single-factor studies are undel1aken because of the expectation that the factor level 
means differ and it is desired to investigate these differences, rhe CI risk used in constructing the 
decision rule for determining whether or not the factor level means are equal is often set relatively 
high (e.g .•. 05 or .10 instead of .01) so as to increase rhe power of the test. 

4. The power table for VI = I is not reproduced in Table B.II since this case corresponds to the 
comparison of two population means. As noted previously, the F test is the equivalent of the two-sided 
t test for this case, and rhe power tables for the two-sided t test presented in Table B.5 can then be 
used, with noncentrality parameter: 

0= 

and degrees of freedOlllll 1 + "2 - 2. 

IJJ.I - JJ.21 

I I 
a -+-

III 112 

Use of Table B.12 for Single-Factor Studies 

(16.89) 

• 
• 

The power approach in planning sample sizes can be implemented by use of the power 

tables for F tests presented in Table B.II. A trial-and-error process is required, however, 

with these tables. Instead, we shall use other tables that furnish the appropriate sample 

sizes directly. Table B.12 presents sample size determinations that are applicable when all 

treatments are to have equal sample sizes and all effects are fixed. 
The planning of sample sizes for single-factor studies with fixed factor levels using 

Table B.12 is done in terms of the noncentntlity parameter (16.88) for equal sample sizes. 

However, instead of requiring a direct specification of the levels of fJi for which it is impor­

tant to control the risk of making a Type II error, Table B.12 only requires a specification 
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of the minimum range of factor level means for which it is important to detect differences 
between the fJ.i with high probability. This minimum range is denoted by b..: 

b.. = max(fJ.i) - min(fJ.i) (16.90) 

The following three specifications need to be made in using Table B.I2: 

1. The level a at which the risk of making a Type I error is to be controlled. 

2. The magnitude of the minimum range b.. of the fJ.i which is important to detect with 
high probability. The magnitude of a, the standard deviation of the probability distributions 
of Y, must also be specified since entry into Table B.I2 is in terms ofthe ratio: 

(16.91) 
a 

3. The level f3 at which the risk of making a Type II error is to be controlled for the 
specification given in 2. Entry into Table B.I2 is in terms of the power 1 - f3. 

When using Table B.I2, four a levels are available at which the risk of making a Type J 
error can be controlled (a = .2, .1, .05, .01). The Type II error risk can be controlled at one 
of four f3levels (f3 = .3, .2, .1, .05) through the specification of the power 1- f3. Table B.I2 
provides necessary sample sizes for studies consisting of r = 2, ... , 10 factor levels or 
treatments. 

A company owning a large fleet of trucks wishes to determine whether or not four different 
brands of snow tires have the same mean tread life (in thousands of miles). It is important 
to conclude that the four brands of snow tires have different mean tread lives when the 
difference between the means of the best and worst brands is 3 (thousand miles) or more. 
Thus, the minimum range specification is b.. = 3. It is known from past experience that the 
standard deviation of the tread lives of these tires is a = 2 (thousand miles), approximately. 
Management would like to control the risks of making incorrect decisions at the following 
levels: 

a = .05 

f3 = .10 or Power = 1 - f3 = .90 

Entering Table B.I2 for b../a = 3/2 = 1.5, a = .05, 1 - f3 = .90, and r = 4, we find 
n = 14. Hence, 14 snow tires of each brand need to be tested in order to control the risks 
of making incorrect decisions at the desired levels. 

Specification of /l./cr Directly. Table B.I2 can also be used when the minimum range 
is specified directly in units of the standard deviation a. Let the speCification of b.. in this 
case be ka so that we have by (16.91): 

b.. = ka = k 
a a 

Hence, Table B.12 is entered directly for the specified value k with this approach. 

Suppose it is specified in the snow tires example that it is important to detect differences 
between the mean tread lives if the range of the mean tread lives is k = 2 standard deviations 
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or more. Suppose also that the other specifications are: 

a =.10 

{3 = .05 or Power = 1- {3 = .95 

From Table B.12, we find for k = 2 and r = 4 that n = 9 tires will need to be tested ~ 
each brand in order that the specified risk protection will be achieved. or 

Comment 

While specifying t:, /a directly does not require an advance planning value of the standard deviation a 
this is not of as much advantage as it might seem because a meaningful specification of /';. in units of 
a will frequently require knowledge of the approximate magnitude of the standard deviation. • 

Some Further Observations on Use of Table B.12 
1. The exact specification of b./a has great effect on the sample sizes n when £:"/a is 

small, but it has much less effect when b./a is large. For instance, when r = 3, a == .05, 
and {3 = .10, we have from Table B.12: 

A/a n 

1.0 27 
1.5 13 
2.0 8 
2.5 6 

Thus, unless b. / a is quite small, one need not be too concerned about some imprecision in 
specifying b./a. 

2. Reducing either the specified a or {3 risks or both increases the required sample sizes. 
for instance, when r = 4, a = .10, and b. /0' = 1.25, we have: 

.20 

.10 

.05 

1-,6 

.80 

. 90 

.95 

n 

13 
16 
20 

• 

3. A moderate error in the advance planning value of a can cause a substantial miscal­
culation of required sample sizes. For instance, when r = 5, a = .05, {3 = .10, and f:::,. =' 3, 
we have: 

1 
2 
3 

A/a 

3.0 
1.5 
1.0 

n 

5 
15 
32 
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In view of the usual approximate nature of the advance planning value of a, it is generally 
desirable to investigate the needed sample sizes for a range of likely values of a before 
deciding on the sample sizes to be employed. 

4. Table B.12 is based on the noncentrality parameter 41 in (16.88) even though no 
specification is made of the individual factor level means fJ.i for which it is important to 
conclude that the factor level means differ. To see how Table B.12 utilizes the noncentrality 
parameter 41, consider again the snow tires example where r = 4 brands are to be tested 
and a minimum range of /::;. = 3 (thousand miles) of the four mean tread lives fJ.i is to be 
detected with high p.robability. The following are some possible sets of values of the fJ.i, 
each of which has range /::;. = 3: 

Case fJ.l fJ.2 fJ.3 fJ.4 'L(fJ.i - fJ..)2 

1 24 27 25 26 5.00 
2 25 25 26 23 4.75 
3 25 25 25 28 6.75 
4 25 25 26.5 23.5 4.50 

The term 'L(fJ.i - fJ..)2 ofthe noncentrality parameter 41 in (16.88) differs for each ofthese 
four possibilities and hence the power differs, even though the range is the same in all cases. 
Note that the term 'L(fJ.i - fJ..)2 is the smallest for case 4, where two factor level means 
are at fJ.. and the other two are equally spaced around fJ. .. It can be shown that for a given 
range /::;., the term 'L(fJ.i - fJ..)2 is minimized when all but two factor level means are at fJ.. 

and the two remaining factor level means are equally spaced around fJ. .. Thus, we have: 

r (/::;.)2 ( /::;.)2 /::;.2 
min 8(fJ.i - fJ..)2 = "2 + -"2 + 0 + ... + 0 = 2 (16.92) 

Since the power ofthe test varies directly with 'L(fJ.i - fJ..)2, use of (16.92) in calculating 
Table B.12 ensures that the power is at least 1 - f3 for any combination of fJ.i values with 
range /::;.. 

16.11 Planning of Sample Sizes to Find "Best" Treatment 

~mple 

There are occasions when the chief purpose of the study is to ascertain the treatment with 
the highest or lowest mean. In the snow tires example, for instance, it may be desired to 
determine which of the four brands has the longest mean tread life. 

Table B.l3, developed by Bechhofer, enables us to determine the necessary sample sizes 
so that with probability 1- a the highest (lowest) estimated treatment mean is from the 
treatment with the highest (lowest) population mean. We need to specify the probability 
1- a, the standard deviation a, and the smallest difference A between the highest (lowest) 
and second highest (second lowest) treatment means that it is important to recognize. 
Table B.l3 assumes that equal sample sizes are to be used for all r treatments. 

Suppose that in the snow tires example, the chief objective is to identify the branc1with the 
longest mean tread life. There are r = 4 brands. We anticipate, as before, that a = 2 (thousand 
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Cited 
Reference 

Problems 

miles). Further, we are informed that a difference A = I (thousand miles) between the high 

and second highest brand means is important to recognize, and that the probability is to ~t 
I - ex = .90 or greater that we identify correctly the brand with the highest mean tread lif~ 
when A::: 1. 

The entry in Table B.13 is A.J/i /(5. For r = 4 and probability 1 - ex = .90, we find fro 
Table B.13 that A.Jii /(5 = 2.4516. Hence, since the A specification is A = I, we obtain: m 

(I).J/i = 2.4516 
2 

.Jfi = 4.9032 or 11 = 25 

Thus, when the mean tread life for the best brand exceeds that of the second best by at least 

I (thousand miles) and when (5 = 2 (thousand miles), sample sizes of 25 tires for each 

brand provide an assurance of at least .90 that the brand with the highest estimated mean 

Yi. is the brand with the highest population mean. 

Comment 

If the planning value for the standard deviation is not accurate, the probability of identifying the 
population with the highest (lowest) mean correctly is, of course, affected. This is no different from 
the other approaches. where a misjudgment of the standard deviation affects the risks of making a 
Type II en'or. • 

16.1. Berger_ Y. W. "Pros and Cons of Permutation Tests in Clinical Trials," Statistics ill Medicine 19 
(2000). pp. 1319-1328. 

16.1. Refer to Figure 16.1 a. Could you detennine the mean sales level when the price level is $68 if 
you knew the true regression function? Could you make this determination from Figure 16.1b 
if you only knew the values of the parameters JJ-I, JJ-2, and JJ-3 of ANOYA model (l6.2)? What 
distinction between regression models and ANOYA models is demonstrated by your answers? 

16.2. A market researcher, having collected data on breakfast cereal expenditures by families with 
1.2. 3.4. and 5 children living at home, plans to use an ordinary regression model to estimate 
the mean expenditures at each of these five family size levels. Howevel~ the researcher is 
undecided between fitting a linear or a quadratic regression model, and the data do not give 
clear evidence in favor of one model or the otheL A colleague suggests: "For your purposes 
you might simply use an ANOYA model:' Is this a useful suggestion? Explain. 

16.3. In a study of intentions to get flu-vaccine shots in an area threatened by an epidemic, 90 persons 
were classified into three groups of 30 according to the degree of Iisk of getting flu. Each 
group was together when the persons were asked about the likelihood of getting the shots, on 
a probability scale ranging from 0 to 1.0. Unavoidably, most persons overheard the answers 
of nearby respondents. An analyst wishes to test whether the mean intent scores are the same 
for the three risk groups. Consider each assumption for ANOYA model (16.2) and explain 
whether this assumption is likely to hold in the present situation. 

16.4. A company. studying the relation between job satisfaction and length of service of employees, 
classified employees into three length-of-service groups (less than 5 years, 5-10 years, more 
than 10 years). Suppose JJ-I = 65, JJ-2 = 80, JJ-3 = 95, and a = 3, and that ANOYA model 
(16.2) is applicable. 
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a. Draw a representation of this model in the format of Figure 16.2. 

b. Find E{MSTR} and E{MSE} if 25 employees from each group are selected at random for 
intensive interviewing about job satisfaction. Is E {MSTR} substantially larger than E {MSE} 
here? What is the implication ofthis? 

16.5. In a study oflength of hospital stay (in number of days) of persons in four income groups, the 
parameters are as follows: f-LI = 5.1, f-L2 = 6.3, f-L3 = 7.9, f-L4 = 9.5, u = 2.8. Assume that 
ANOVA model,(16.2) is appropriate. 

a. Draw a representation ofthis model in the format of Figure 16.2. 

b. Suppose 100 persons from each income group are randomly selected for the study. Find 
E{MSTR} and E{MSE}. Is E{MSTR} substantially larger than E{MSE} here? What is the 
implication of this? 

c. If f-L2 = 5.6 and f-L3 = 9.0, everything else remaining the same, what would E{MSTR} be? 
Why is E {MSTR} substantially larger here than in part (b) even though the range of the 
factor level means is the same? 

16.6. A student asks: "Why is the F test for equality of factor level means not a two-tail test since 
any differences among the factor level means can OCC1lr in either direction?" Explain, utilizing 
the expressions for the expected mean squares in (16.37). 

*16.7. Productivity improvement. An economist compiled data on productivity improvements last 
year for a sample of firms producing electronic computing equipment. The firms were clas­
sified according to the level of their average expenditures for research and development in 
the past three years (low, moderate, high). The results of the study follow (productivity im­
provement is measured on a scale from a to 100). Assume that ANOVA model (16.2) is 
appropriate. 

j 

1 2 3 4 5 6 7 8 9 10 11 12 

low 7.6 8.2 6.8 5.8 6.9 6.6 6.3 7.7 6.0 
2 Moderate 6.7 8.1 9.4 8.6 7.8 7.7 8.9 7.9 8.3 8.7 7.1 8.4 
3 High 8.5 9.7 10.1 7.8 9.6 9.5 

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does the 
variability ofthe observations within each factor level appear to be approximately the same 
for all factor levels? 

b. Obtain the fitted values. 

c. Obtain the residuals. Do they sum to zero in accord with (16.21)? 

d. Obtain the analysis of variance table. 

e. Test whether or not the mean productivity improvement differs according to the level of 
research and development expenditures. Control the ex risk at .05. State the alternatives, 
decision rule, and conclusion. 

f. What is the P-value ofthe test in part (e)? How does it support the conclusion reached in 
part (e)? 

g. What appears to be the nature of the relationship between research and development 
expenditures and productivity improvement? , . 

16.8. Questionnaire (.'Olor. In an experiment to investigate the effect of color of paper (blue, 
green, orange) on response rates for questionnaires distributed by the "windshield method" 
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in supermarket pm'king lots, 15 representative supermarket parking lots were chosen . 
metropolitan area and each color was assigned at random [0 five of the lots. The response 1Il a 
(in percent) follow. Assume that ANOYA model (16.2) is appropriate. rates 

1 
2 
3 

Blue 
Green 
Orange 

28 
34 
31 

2 

26 
29 
25 

3 

31 
25 
27 

4 

27 
31 
29 

5 

35 
29 
28 

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? DOes 
the variability of the observations within each factor level appear to be approximately the 
same for all factor levels? 

b. Obtain the fitted values. 

c. Obtain the residuals. 

d. Obtain the analysis of variance table. 

e. Conduct a test to determine whether or nOI the mean response rates for the three colors 
difter. Use level of significance a = .10. State the alternatives, decision rule, and conclusion. 
What is the P-value of the test? 

f. When informed of the findings, an executive said: "See? I was right all along. We might as 
well print the questionnaires on plain white paper, which is cheaper." Does this conclusion 
follow from the findings of the study? Discuss. 

16.9. Rehabilitation therapy. A rehabilitation center researcher was interested in examining the 
relationship between physical fitness prior to surgery of persons undergoing corrective knee 
surgery and time required in physical therapy until successful rehabilitation. Patient records 
in the rehabilitation center were examined, and 24 male subjects ranging in age from 18 
to 30 years who had undergone similar corrective knee surgery during the past year were 
selected for the study. The number of days required tor successful complelion of physical 
therapy and the prior physical fitness status <below average, average, above average) for each 
patient follow. 

i 
2 3 4 5 6 7 8 9 10 

Below Average 29 42 38 40 43 40 30 42 • 
2 Average 30 35 39 28 31 31 29 35 29 33 
3 Above Average 26 32 21 20 23 22 

Assume that ANOYA model (16.2) is appropriate. 

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does the 
variability of the observations within each factor level appear to be approximately the same 
for all tactor levels? 

b. Obtain the fitted values. 

e. Obtain the residuals. Do they sum to zero in accord with ( 16.21)? 

d. Obtain the analysis of vmiance table. 
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e. Test whether or not the mean number of days required for successful rehabilitation is the 
same for the three fitness groups. Control the ex risk at .01. State the alternatives, decision 
rme, and conclusion. 

f. Obtain the P-value for the test in part (e). Explain how the same conclusion reached in 
part (e) can be obtained by knowing the P-value. 

g. What appears to be the nature ofthe relationship between physical fitness status and duration 
of required physical therapy? 

*16.10. Cash offers. A consumer organization studied the effect of age of automobile owner on size 
of cash offer for a used car by utilizing 12 persons in each of three age groups (young, middle, 
elderly) who acted as the owner of a used car. A medium price, six-year-old car was selected 
for the experiment, and the "owners" solicited cash offers for this car from 36 dealers selected 
at random from the dealers in the region. Randomization was used in assigning the dealers to 
the "owners." The offers (in hundred dollars) follow. Assume that ANOVA model (16.2) is 
applicable. 

j 

1 2 3 4 5 6 7 8 9 10 11 12 

Young 23 25 21 22 21 22 20 23 19 22 19 21 
2 Middle 28 27 27 29 26 29 27 30 28 27 26 29 
3 Elderly 23 20 25 21 22 23 21 20 19 20 22 21 

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does 
the variability of the observations within each factor level appear to be approximately the 
same for all factor levels? 

b. Obtain the fitted values. 

c. Obtain the residuals. 

d. Obtain the analysis of variance table. 

e. Conduct the F test for equality off actor level means; use ex = .01. State the alternatives. 
decision rule, and conclusion. What is the P-value of the test? 

f. What appears to be the nature of the relationship between age of owner and mean cash 
offer? 

* 16.11. Filling machines. A company uses six filling machines of the same make and model to place 
detergent into cartons that show a label weight of 32 ounces. The production manager has 
complained that the six machines do not place the same amount of fill into the cartons. A 
consultant requested that 20 filled cartons be selected randomly from each of the six machines 
and the content of each carton carefu1ly weighed. The observations (stated for convenience as 
deviations from 32.00 ounces) follow. Assume that ANOVA model (16.2) is applicable. 

j 

1 2 3 18 19 20 

-.14 .20 .07 .07 -.01 -.19 
2 .46 .11 .12 .02 .11 .12 
3 .21 .78 .32 .50 .20 .61 
4 .49 .58 .52 .42 .45 .20 
5 -.19 .27 .06 .14 .35 -.18 
6 .05 -.05 .28 .35 -.09 ~.()5 
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a. Prepare aligned box plot~ of the dma. Do the factor level means appear to diller? D 
. II '1' ,. lb' . I . h t' I I I . ' oes the vam )1 Ity 0 t 1e 0 servallons WIllln cae actor eve llppear to )e approXll11utely thes 

for all 1~lctor levcls? arne 
b. Obtain the lilted values. 

e. Oblain the residuuls. Do they sum to zero in accord with (16.21)") 

d. Obtain the unalysi~ of variunce table. 

e. Test whether or not the mean lill ditlers among the six machine~: control the ex Iisk at .05 
State the alternatives. decision rule. and conclusion. Does your conclusion support th~ 
production manager"s complaint? 

f. What is the P-vulue of the test in pan (e)? Is this value consistent with your conclusion in 
part (e)'? Explain, 

g. Based on the box plot~ obwined in PllIt (a), does the variation between the mean fills for 
the six machines appear to be large relative to the variability in fills between cartons for 
any given machine'? Explain. 

16. I 2. Premium distribution. A son-drink manut~lcturer uses five agents (I, 2, 3.4,5) to handle 
premium distribwions fOl- its variou~ products. The marketing director desired to study the 
timeliness with which the premiums are distributed. Twenty transactions for each agent were 
selected at I'lmdom. and the time lapse (in days) tlH' handling each transaction was detennined. 
The results follow. Assume that ANOYA model (16.2) is appropriate. 

i 
2 3 18 19 20 

24 24 29 27 26 25 
- 2 18 20 20 26 22 21 

3 10 11 8 9 11 12 
4 15 13 18 17 14 16 
5 33 22 28 26 30 29 

a. Prepare Dligned box plots of the data. Do the taetor level means appear to differ? Does 
the variability or the observations within each factor level appear to be approximately the 
some for all factor levels? 

b. Obtain the fitted values. 

c. Obtuin the residuals. Do they sum to zero in accord with ( 16.21)? 

d. Obtain the analysis of variance table. 

e. Te~t whether or not the mean time lapse dillers for the five agents: use ex = .10. St/Ite the 
alternatives. decision rule. llnd conclusion. • 

1'. What is the P-value of the test in part (e)'? Explain how the same conclusion as in paI1 (e) 
can be reached by knowing the P-value. 

g, Based on the box plots obtained in part (a), does there appear to be much variation in the 
mean time lapse for the five agents? Is this variation necessarily the result of ditferences 
in the efficiency of operations of the fi ve agent~'? Discuss, 

16. I 3, Refer to Questionnaire color Problem 16.s' ExphIin how you would make the random assign­
ments of supermarket parking lots to eolor~ in this singlc-tilctor study. Make all appropriate 
randomizations. 

16.14. Rereno Cash offers Problem 16,10, Explain how you would make the random assignments 
of dealers to "owners" in this single-factor ~tudy. Make all approprillte randomizations. 
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16.15. Refer to.,Problem 16.4. What are the values of <I> <2, and 1:"3 ifthe ANOVA model is expressed 
in the factor effects formulation (16.62), and J-L. is defined by (16.63)? 

16.16. Refer to Problem 16.5. What are the values of 1:"i if the ANOVA model is expressed in the 
factor effects formulation (16.62), and J-L. is defined by (16.63)? 

16.17. Refer to Premium distribution Problem 16.12. Suppose that 25 percent of all premium 
distributions are handled by agent 1,20 percent by agent 2,20 percent by agent 3, 20 percent 
by agent 4, and 15 percent by agent 5. 

a. Obtain a point estimate of J-L. when the ANOVA model is expressed in the factor effects 
formulation (16.62) and J-L. is defined by (16.65), with the weights being the proportions 
of premium distribution handled by each agent. 

b. State the alternatives for the test of equality of factor level means in terms of factor effects 
model (16.62) for the present case. Would this statement be affected if J-L. were defined 
according to (16.63)? Explain. 

*16.18. Refer to Productivity improvement Problem 16.7. Regression model (16.75) is to be 
employed for testing the equality of the factor level means. 

a. Set up the Y, X, and ~ matrices. 

b. Obtain X~. Develop equivalent expressions of the elements of this vector in terms of the 
cell means J-Li' 

c. Obtain the fitted regression function. What is estimated by the intercept term? 

d. Obtain the regression analysis of variance table. 

e. Conduct the test for equality of factor level means; use ex = .05. State the alternatives, 
decision rule, and conclusion. 

16.19. Refer to Questionnaire color Problem 16.8. Regression model (16.75) is to be employed for 
testing the equality of the factor level means. 

a. Set up the Y, X, and ~ matrices. 

b. Obtain X~. Develop equivalent expressions of the elements of this vector in terms of the 
cell means /),i' 

c. Obtain the fitted regression function. What is estimated by the intercept term? 

d. Obtain the regression analysis of variance table. 

e. Conduct the test for equality of factor level means; use ex = .10. State the alternatives, 
decision rule, and conclusion. 

16.20. Refer to Rehabilitation therapy Problem 16.9. Regression model (16.81) is to be employed 
for testing the equality of the factor level means. 

a. Set up the Y, X, and ~ matrices. 

b. Obtain X~. Develop equivalent expressions of the elements of this vector in terms of the 
cell means J-Li. 

c. Obtain the fitted regression function. What is estimated by the intercept term? 

d. Obtain the regression analysis of variance table. 

e. Conduct the test for equality of factor level means; use ex = .01. State the alternatives, 
decision rule, and conclusion. 

*16.21. Refer to Cash offers Problem 16.10. 

a. Fit regression model (16.75) to the data. What is estimated by the intercept term? 

b. Obtain the regression analysis of variance table and test whether or not the factor level 
means are equal; use ex = .01. State the alternatives, decision rule, and conclusion. 

, . 
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16.22. Refer to Rehabilitation therapy Problem 16.9. 

a. Fit the full regression model (16.85) to the data. Why would a fitted regression model 
containing an intercept term not be proper heI'e'? 

b. Fit the reduced model (16.86) to the data. 

c. Use test statistic (2.70) for testing the equality of the factor level means; employ level of 
significance ex = .0 I. 

16.23. Refer to Example I on page 717. Find the power of the test if ex = .0 I, everything else 
remaining unchanged. How does this power compare with that in Example I? 

16.24. Refer to Example 2 on page 717. The analyst is also interested in the power of the test when 
JJ-I = JJ-2 = 13 and JJ-3 = JJ- .. = 18. Assume that a = ::l.5. 

a. Obtain the poweI' of the test if ex = .05. 

b. What would be the power of the tesl if ex = .0 I? 

* 16.25. Refer to Productivity improvement Problem 16.7. Obtain the power of the test in Prob­
lem 16.7e if III = 7.0, JJ-2 = 8.0, and 11] = 9.0. Assume that a = .9. 

16.26. RefeI'to Rehabilitation therapy Problem 16.9. Obtain the power of the test in Problem 16.ge 
if JJ-I = 37. JJ-2 = 35. and JJ-] = 28. Assume that a = 4.5. 

* 16.27. Refer to Cash offers PI'oblem 16.10. Obtain the power of the test in Problem 16.IOe if the 
mean cash offers are JJ-I = 22, JJ-2 = 28, and JJ-3 = 22. Assume that a = 1.6. 

16.28. Why do you think that the approach to planning sample sizes to find the best treatment by 
means of Table B.I ~ does not consider the risk of an incorrect identification when the best 
two treatment means are the same or practically the same? 

* 16.29. Consider a single-factor study wheI'e r = 5. ex = .0 I, f3 = .05, and a = 10, and equal treatment 
sample sizes are desired by means of the approach in Table B.12. 

a. What are the required sample sizes if f', = 10, 15, 20. 30? What generalization is suggested 
by yOUI' results? 

b. What are the required sample sizes for the same values of /'; as in part (a) if ex = .05, all 
other specifications remaining the same? How do these sample sizes compare with those 
in part (a)? 

16.30. Consider a single-factoI' study where r = 6. ex = .05. f3 = .10, and f', = 50, and equal treatment 
sample sizes are desiI'ed by means of the approach in Table B.12. 

a. What are the required sample sizes if a = 50,25. 20? What generalization is suggested 
by your results? 

b. What are the requiI'ed sample sizes for the same values of a as in p1U't (a) if r = 4, all 
other specifications remaining the same? How do these sample sizes compare with those 
in part (a)? 

16.31. Consider a single-factoI' study where r = 5, 1- ex = .95, and a = 20, and equal sample sizes 
are desiI'ed by means of the approach in Table B.I3. 

a. What are rhe required sample sizes if A = 20. 10,5'1 What generalization is suggested by 
yOUI' results? 

b. What are the required sample sizes for the same values of A as in pan (a) if a = 30, all 
other specifications remaining the same? How do these sample sizes compare with those 
in part (a)7 

16.32. Refer to Questionnaire color Problem 16.8. Suppose that the sample sizes have not yet been 
detennined but it has been decided to sample the same number of supeI'marker parking I~ 
foI' each questionnaire color. A reasonable planning value for the errol' standard deviation tS 

a = 3.0. 
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a. What would be the required sample sizes if: (1) differences in the response rates are to be 
detected with probability .90 Or more when the range of the treatment means is 4.5, and 
(2) the ex risk is to be controlled at .05? 

b. If the sample sizes determined in part (a) were employed, what would be the minimum 
power of the test for treatment mean differences (using ex = .05) when the range of the 
treatment means is 6.0? 

c. Suppose the_chief objective is to identify the color with the highest mean response rate. 
The probability should be at least .99 that the best color is recognized correctly when the 
difference' between the response rates for the best and second best colors is 1.5 percent 
points or more. What are the required sample sizes? 

16.33. Refer to Rehabilitation therapy Problem 16.9. Suppose that the sample sizes have not yet 
been determined but it has been decided to use the same number of patients for each physical 
fitness group. Assume that a reasonable planning value for the error standard deviation is 
(J" = 4.5 days. 

f 

a. What would be the required sample sizes if: (1) differences in the mean times for the three 
physical fitness categories are to be detected with probability .80 or more when the range 
of the treatment means is 5.63 days, and (2) the ex risk is to be controlled at .01? 

b. If the sample sizes determined in part (a) were employed, what would be the power ofthe 
test for treatment mean differences when J-L I = 37, J-L2 = 32, and J-L3 = 28? 

c. Suppose the chief objective is to identify the physical fitness group with the smallest mean 
required time for therapy. The probability should be at least .90 that the correct group is 
identified when the mean required time for the second best group differs by 2.0 days or 
mOre. What are the required sample sizes? 

*16.34. Refer to Filling machines Problem 16.11. Suppose that the sample sizes have not yet been 
determined but it has been decided to sample the same number of cartons for each fill­
ing machine. Assume that a reasonable planning value for the error standard deviation is 
(J" = .15 ounce. 

a. What would be the required sample sizes if: (1) differences in the mean amount of fill for 
the six filling machines are to be detected with probability .70 or more when the range of 
the treatment means is .15 ounce, and (2) the ex risk is to be controlled at .05? 

b. For the sample sizes determined in part (a), what would be the power ofthe test if J-LI = .09, 
J-L2 = .18, J-L3 = .30, J-[4 = .20, /),5 = .10, and J-L6 = .20? 

c. Suppose the chief objective is to identify the filling machine with the smallest mean fill. 
The probability should be at least .95 that the filling machine with the smallest mean fill is 
recognized correctly when the filling machine with the next smallest mean fill differs by 
.10 ounce or more. What are the required sample sizes? 

16.35. Refer to Premium distribution Problem 16.12. Suppose that the sample sizes have not yet 
been determined but it has been decided to sample the same number of premium distributions 
for each agent. Assume that a reasonable planning value for the error standard deviation is 
(J" = 3.0 days. 

a. What would be the required sample sizes if: (1) differences in the mean time lapse for the 
five agents are to be detected with probability .95 or more when the range of the treatment 
means is 3.75 days, and (2) the ex risk is to be controlled at .10? 

b. Suppose the chief objective is to identify the best agent, i.e., the one with the smallest mean 
time lapse. The probability should be at least .90 that the best agent is recognized correctly 
when the mean time lapse for the second best agent differs by 1.0 day or rtlore. What are 
the required sample sizes? 
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Exercises 

Projects 

--16.36. (Calculus needed.) State the likelihood function for ANOYA model (16.2) when r == 3 and 
11; == 2 and obtain the maximum likelihood eSlimarors. 

16.37. Show that when test ~tatislic t" in Table A.2a is squared. it is equivalent 10 the F* test statistic 
(16.55) for r = 2. 

16.38. Derive the reslriction in (16.66) when Ihe constant fl. is defined according to ( 16.65). 

16.39. a. Obtain the leasl squares cstimators of the regression coet1icients in full regression model 
(16.155). What is SSE(F) here? 

b. Obtain Ihe Icast squares eSlimator of 1", in reduced rcgresslon model (16.156). What is 
SSE(R) here? 

16.40. A completely randomized experiment i~ to be conducted involving r = 3 treatment~, with 
II = 2 experimental trials for each treatment. Because the normality of the error tenus is 
strongly in doubt. the test for treatment effects based on the F'" test statistic in (16.55) is to 
be caI"ried out by means of the wndomization distribution. 

a. Determine thc number of ways that the six experimental units can be divided into three 
groups of size two. How many unique F* stati~tics are possible? 

b. Using the I"esults in part (a). what is the smallest P-value that is possible with the random­
ization test'? What does this suggest about the adequacy of the planned sample size? 

16.41. (Caleulus needed.) Given fll = 0.113 = I. and 0:::: fl2:::: I, show that '2.)/1, -11.)2 is min­
imized when 1";>. = .5. wheI"e 1". = (fll + li2 + fl.~)/3. 

16.42. Refer to the SENIC data ~et in Appendix c.1. Test whetheI" or not the mean infection risk 
(variable 4) is the same in the four geographic regions (variable 9): use ex = .05. Assume that 
ANOYA model (16.2) is applicable. State the alternatives. decision rule, and conclusion. 

16.43. Refer to the SENIC data set in Appendix C.I. The effect of average age of patient (variable 3) 
on mean infection risk (variable 4) is to be studied. FOI" purposes of this ANOYA study, average 
age is to be c1a~sified into four categories: Under 50.0,50.0-54.9.55.0-59.9.60.0 and over. 
Assume that ANOYA model (16.2) is applicable. Test whether or not the mean infection dsk 
differs for the four age groups. Control the ex risk al .10. State the alternatives. decision rule, 
and conclusion. 

16.44. Refer to the CDI data set in Appendix C.2. The effect of geographic region (variable 17) on 
the crime rate (variable 10 -:- variable 5) is to be studied. Assume that ANOYA model (16.2) 
is applicable. Test whether OI" not the mean crime rates for the four geograpl-ijc regions differ. 
use ex = .05. State the alternatives, decision I"ule. and conclusion. 

16.45. Refer to the Market share data set in Appendix C.3. Test whether or not the average monthly 
market share (variable 2) is the same for the four factor-level combinations associated with the 
two levels of each factor for discount price (variable 5) and package promotion (variable 6); 
use ex = .05. Assume that model (16.2) is applicable. State the alternatives, decision rule, and 
conclusion. 

16.46. Consider a test involving H II : III = 11.2 = fl.~' Five observations are to be taken for each factor 
level. and level of signilicance ex = .05 is to be employed in the test. 

a. Generate five rundom normal observations when I"l = 100 and a = 12 to repl"esent the 
observations for treatment I. Repeat this for the other two treatments when 11.2 = (13 == 100 
and a = 12. Finall y. calculate F* lest statistic (16.55). 

b. Repeat pat1 (a) 100 times. 
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c. Calculate the mean of the 100 F* statistics. 

d. Whatproportionofthe F* statistics lead to conclusion Ho ?Is this consistent with theoretical 
expectations? 

e. Repeat parts (a) and (b) when f-LI = 80, f-L2 = 60, f-L3 = 160, and (J" = 12. Calmlate the 
mean of the 100 F* statistics. How does this mean compare with the mean obtained 
in part (c) when f-LI = f-L2 = f-L3 = 100? Is this result consistent with the expectation 
in (16.37b)? 

f. What proportion of the 100 test statistics obtained in part (e) lead to conclusion Ha? Does 
it appear that the test has satisfactory power when f-LI = 80, J-[2 = 60, and f-L3 = 160? 

16.47. A completely randomized experiment involving r = 2 treatments was carried out, based on 
n = 3 experimental trials for each treatment The test for equality of the treatment means is 
to be carried out by means ofthe randomization distribution of the F* test statistic (16.55). 

a. Determine the number of ways that the six experimental units can be divided into two 
groups of size three each. How many unique F* statistics are possible? 

b. For the sample results: 

1 

23 
17 

2 

34 
29 

3 

78 
23 

obtain the randomization distribution of the test statistic F* and the P-value of the ran­
domization test. 

c. Obtain the P-value ofthe normal-theory F* statistic for the sample results in part (b). How 
does this P-value compare with the one from the randomization test in part (b)? What does 
this suggest about the appropriateness of the F distribution here if the error terms are far 
from normally distributed? 

16.48. A completely randomized psychological reinforcement experiment was conducted in which 
a standard treatment and an experimental treatment were each applied to four subjects. The 
sample results are: 

Y'i (standard treatment): 
Y2i (experimental treatment): 

1 

16 
12 

2 

14 
15 

3 

18 
13 

4 

16 
12 

The test for equality of treatment means is to be carried out by means of the randomization 
distribution ofthe F* test statistic (16.55), with ex = .10. 

a. Obtain the randomization distribution of the test statistic F* and carry out the indicated 
test. State the alternatives, decision rule, and conclusion. What is the P-value of the ran­
domization test? 

b. For the randomization distribution in part (a), determine the proportion of F* values that 
exceed F(.90; 1, 6), the proportion of F* values that exceed F(.95; 1,6), and the proportion 
that exceed F(.99; 1,6). 

c. How do the proportions obtained in part (b) compare with the probabilities for the normal 
error model? Discuss. ' . 
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Case 
Studies 

----16.49. Refer to the Prostate cancer data set in Appendix C.5. Carry out a one-way analysis of 
variance of this data set, where the response of interest is PSA level (variable 2) and the 
single factor is Gleason score (variable 9). The analysis should consider transformations of 
the response variable. Domment steps taken in your analysis, and justify your conclusions. 

16.50. Refer to the Real estate sales data set in Appendix C.7. Carry out a one-way analysis of 
variance of this data set, where the response of interest is sales price (variable 2) and the single 
factor is number of bedrooms (variable 4). Recode the number of bedrooms into four cate. 
gories: 0-2, 3, 4, and greater than or equal to 5. The analysis should consider transformations 
of the rqsponse variable. Document steps taken in your analysis, and justify your conclusions. 

16.51. Refer to )he Ischemic heart disease data set in Appendix C.9. Carry out a one-way analysis of 
variance of this data set, where the response of interest is total cost (variable 2) and the single 
factor is total number of interventions (variable 5). Recode the number of interventions into 
six categories: 0, 1, 2, 3-4, 5-7, and greater than or equal to 8. The analysis should consider 
transformations of the response variable. Domment steps taken in your analysis, and justify 
your conclusions. 

• 



Chapter { 
Analysis of Factor 
Level Means 

17.1 Introduction 

In Chapter 16, we discussed the F test for determining whether or not the factor level means 
fJ.i differ. This is a preliminary test to establish whether detailed analysis of the factor level 
means is warranted. When this test leads to the conclusion that the factor level means fJ.i 

are equal, and ANOVA model (16.2) is appropriate, no relation between the factor and the 
response variable is present and usually no further analysis of factor means is therefore 
indicated. On the other hand, when the F test leads to the conclusion that the factor level 
means fJ.i differ, a relation between the factor and the response variable is present. In this 
latter case, a thorough analysis of the nature of the factor level means is usually undertaken. 
TIlls is done in two principal ways: 

1. Analysis of the factor level means of interest using estimation techniques. 
2. Statistical tests concerning the factor level means of interest. 

Often, the analysis of factor level means combines the two approaches. For instance, a 
two-sided confidence interval may be constructed initially for an effect of interest. A test 
concerning this effect is then carried out either by determining whether or not the confidence 
interval contains the hypothesized value or by constructing the appropriate test statistic. 

When many related comparisons are to be made, testing often precedes estimation. This 
occurs, for instance, when each factor level effect is compared with every other one and 
the number of factor levels is not small. Here, statistical tests are often performed first to 
determine the active or statistically significant set of comparisons. Estimation techniques 
are then used to construct confidence intervals for the active comparisons. 

Special simultaneous estimation and testing procedures, called multiple comparison 
procedures, are required when a series of interval estimates or tests are performed. These 
mUltiple comparison procedures preserve the overall confidence coefficient 1 - a, or the 
overall significance level a, for the family of inferences. 

We first discuss three simple graphical methods for displaying the fact~t: level means. 
Much of the remainder of the chapter is devoted to a consideration of important multiple 
comparison procedures. In Section 16.10 we introduced methods for determining sample 

733 
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TABLE 17.1 
Summary of 
Results-
Kenton Food 
Company 
Example. 

Example 

Package Design (i) 

2 3 4 Total 

ni 5 5 4 5 19 
;;:: 

! 

Vi' 73 67 78 136 354 

Vi' 14.6 13.4 19.5 27.2 18.63 

Source of Variation SS df MS 

Between designs 588.22 3 196.07 
Error 158.20 15 10.55 

Total 746.42 18 

Package Design Characteristics 

1 3 colors, with cartoons 
2 3 colors, without cartoons 
3 5 colors, with cartoons 
4 5 colors, without cartoons 

sizes in single-factor studies based on the power approach. This chapter concludes with a 
discussion of the estimation approach to sample size planning. 

Throughoutthis chapter, we continue to assume the usual single-factor ANOVA model 
The cell means version ofthis model was given in (16.2): 

(17.1) 

where: 

fJi are parameters 

t:ij are independent N (0, 0'2) 

Our discussion of the analysis of factor means will be illustrated by two examples. TJJe 
first is the Kenton Food Company example. Data for this example are provided in Table 16.1 
on page 686, and the ANOVA table is displayed in Figure 16.5 on page 695. For convenience, 
we repeat the main results in Table 17.1. The second example, the rust inhibitor example, 
is described next. 

In a study of the effectiveness of different rust inhibitors, four brands (A, E, C, D) were 
tested. Altogether, 40 experimental units were randomly assigned to the four brands, with 
10 units assigned to each brand. A portion of the results after exposing the experimental 
units to severe weather conditions is given in coded form in Table 17.2a. The higher the 
coded value, the more effective is the rust inhibitor. This study is a completely randomized 
design, where the levels of the single factOr correspond to the four rust inhibitor brands. 

The analysis of variance is shown in Table 17.2b. For level of significance a:::: .05 
for testing whether or not the four rust inhibitors differ in effectiveness, we require 
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F(.95; 3, 36) = 2.87. Using the mean squares from Table 17.2b, we obtain the test statistic: 

F* = MSTR = 5,317.82 = 866 1 
MSE 6.140 . 

Since F* = 866.1 > 2.87, we conclude that the four rust inhibitors differ in effectiveness. 
The P-value of the test is 0+. We therefore wish to analyze the nature of the factor level 
effects, particularly whether one rust inhibitor is substantially more effective than the others. 

17.2 Plots of Estimated Factor Level Means 

line Plot 

~mple 

Before undertaking formal analysis of the nature of the factor level effects, it is usually 
helpful to examine these factor effects informally from a plot of the estimated factor level 
means Yj •• We shall take up three types of plots: (1) a line plot, (2) a bar graph, and (3) 
a main effects plot. All three plots are appropriate whether the sample sizes nj are equal 
or not. 

A line plot of the estimated factor level means simply shows the positions of the Y i. on a 
line scale. It is a very simple, but effective, device for indicating when one or several factor 
level means may differ substantially from the others. 

In Figure 17.1 we present a line plot of the estimated factor level means Y j. for the Kentotf 
Food Company example. It is clear from Figure 17.1 that design 4 led by far to the highest 
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FIGURE 17.1 Line Plot of Estimated Factor LevellVleans-Kenton Food Company 
Example. 
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mean sales in the study, and that package designs I and 2 led to the smallest mean sales 
which did not differ much from each other. The purpose of the formal infel'ence procedures 
to be taken up shortly is to determine whether the pattern noted here reflects underlying 
differences in the factor level means fJi or is simply the result of random variation. 

Bar Graph and Main Effects Plot 

Example 

FIGURE 17.2 
MINITABBar 
Graph and 
Main Effects 
Plot of 
Estimated 
Factor Level 
Means-
Kenton Food 
Company 
Example. 

Bar graphs and main effects plots are frequently used to display the estimated factor level 
means in two dimensions. Both can be used to compare the magnitudes of different factor 
level means. In a bar graph, vertical bars are used to display the estimated factor level 
means. In a main effects plot, a scatter plot of the estimated factor level means is provided, 
and the plot symbols are connected by straight lines, to visibly highlight potential trends 
in the cell means. Note that these trend lines are not particularly meaningful for qualitative 
factors. For this reason, main effects plots are most appropriate for quantitative factors. In 
some packages, the main effects plot also displays the overall mean using a horizontal line, 
permitting visual comparisons of the factor-level means with the overall mean. 

A bar graph and a main effects plot of the estimated factor level means for the Kenton Food 
Company example are displayed in Figure 17.2. Because package design is a qualitative 
factor. the- bar graph in Figure 17.2a is the recommended graphic here. An advantage of 
the main effects plot in Figure 17.2b is that it permits a visual comparison of the estimated 
factor level means and the overall mean. Here it shows that designs 3 and 4 had higher mean 
sales than the overall mean. while designs I and 2 both had smaller means sales than the 
overall mean. 
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Comments 

1. In Section 16.7 we defined the difference of the factor level mean and the overall mean as the 
faci:or level effect. In our discussion of multifactor studies in Chapter 19 and beyond, we shall refer 
to factor level effeci:s as main effects. For this reason, the plot in Figure 17.2b is frequently referred 
to as a main effects plot. 

2. None of the three plots provides infonnation on the standard errors. Without such infonnation, 
we cannot easily tell whether diffeiences between factor level means are statistically significant. Later 
in this chapter, we shaH enhance all three plots by including the infonnation on the standard errors. 

3. The nonnal probability plot introduced in Chapter 3 can also be used to compare the estimated 
factor level means. A nonnal probability plot is appropriate when the sample sizes ni are equal and 
the number of factors r is sufficiently large. We recommend that a nonnal probability plot of factor 
level means be considered if r 2: 10. • 

17.3 Estimation and Testing of Factor Level Means 

Inferences for factor level means are generally concerned with one or more of the following: 

1. A single factor level mean fJ.i 
2. A difference between two factor level means 
3. A contrast among factor level means 
4. A linear combination of factor level means 

We discuss each of these types of inferences in turn. 

Inferences for Single Factor level Mean 
Estimation. An unbiased point estimator ofthe factor level mean fJ.; is given in (16.16): 

This estimator has mean and variance: 

E{Y/.} = fJ.i 

2 - 0'2 
a {Y/.} =­

ni 

(17.2) 

(17.3a) 

(17.3b) 

The latterresult follows because (16.43) indicates that Yi• = fJ.i +8{o, the sum ofa constant 
plus a mean of ni independent t:ij error terms, each of which has variance 0'2. Further, Y i. is 
normally distributed because the error terms t:ij are independent normal random variables. 

The estimated variance of Yi. is denoted by s2{Yi'} and is obtained as usual by replacing 
0'2 in (17.3b) by the unbiased point estimator MSE: 

2 - MSE 
s {Y/.} = - (17.4) 

ni 

The estimated standard deviation slY j.} is the positive square root of (17.4). 
It can be shown that: 

Y/. - fJ./ is distributed as t(nT - r) for ANOVA model (17.1) 
s{Y;.} 

(17.5) 
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Example 

where the degrees of freedom are those as~ciated with MSE. The result (17.5) follow 
from the definition of I in (A.44) since: (I) Y j • is normally distributed and (2) MSE/a2 .s 
distributed independently of Vi' as X ~(IlT -,.) / (II]" -r) according to the following theore~~ 

For ANOYA model (17.1). SSE/(52 is dif;trihuted as X2 with 11]" - r 

degrees of freedom, and is independent of YI ••••.• Yr .. (17.6) 

It follows directly from (17.5) that the I - a confidence limits for fJ.j are: 

Vi. ± I (I - a/2: liT - r).I"/ Y,.} (17.7) 

Testing. The confidence interval based on the limits in (17.7) can be used to test a hy­
pothesis of the ti.>nn: 

Ho: J-li = C 

Hll : fJ.i i= c 
(17.8) 

where c is an appropriate constant. We conclude Ho, at level of significance a, when cis 
contained in the confidence interval, and we conclude Hll when the confidence interval does 
not contain c. Equivalently, one can compute the test statistic: 

f" = Yi ._- c 
s{Y i .} 

(17.9) 

Test statistic f* follows a f distribution with liT - r degrees of freedom when Ho is rrue, 
according to (17.5). Consequently, we conclude Ho whenever If' I ::::: f(l - a/2; I1T - r); 
otherwise. we conclude H". 

In the Kenton Food Company example, the sales manager wished to estimate mean sales for 
package design I with a 95 percent confidence interval. Using the results from Table 17.1, 
we have: 

Y I • = 14.6 III = 5 MSE= 10.55 

We require f(.975: 15) = 2.131. Finally. we need slY I.}. We have: 

, - MSE 10.55 
s-{Y I .} = ~- = -- = 2.110 

111 5 

so that s{ Y I.} = 1.453. Hence, we obtain the confidence limits 14.6 ± 2.131 (1.453) and 
the 95 percent confidence interval is: 

11.5::::: fJ.1 ::::: 17.7 

Thus. we estimate with confidence coefficient .95 that the mean sales per store for package 
design 1 are between 1 I .5 and 17.7 cases. 

Graphical Displays. One way to enhance a bar graph orthe main etfects plot offactorIevel 
means is to display the confidence limits in (17.7) for each factor level mean. Figure 17.3 
provides two such plots. Figure 17.3a contains a har-inferl'lIl graph. in which the 95 percent 
confidence limits are superimposed on a bar graph of the treatment means. Figure 17.3b 
containf; an illfefl'(fl plOf, in which the 95 percent confidence limits for each factor level 
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(b) Interval Plot 
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mean are displayed. Many investigators prefer to simply display limits that correspond to 

plus-or-minus one standard error-that is, Yt • ± s{Y t .}. 

;jnferences for Difference between Two Factor level Means 
Estimation. Frequently two treatments or factor levels are to be compared by estimating 
the difference D between the two factor level means, say, fJ.i and fJ.i': 

D = fJ.i - fJ.i' (17.10) 

Such a difference between two factor level means is called a pairwise comparison. A point 
estimator of Din (17.10), denoted by D, is: 

(17.11) 

This point estimator is unbiased: 

E{D} = fJ.t - fJ.i' (17.12) 

Since Yi• and Y/,. are independent, the variance of D follows from (A.31b): 

O'
2{D} = O'

2{Yd + O'
2{Y i,.} = 0'2 (~+ ~) 

n( nt' 
(17.13) 

The estimated variance of D, denoted by s2{D}, is given by: 

(17.14) 

Finally, D is normally distributed by (A.40) because D is a linear combination of indepen­
dent normal variables. 

It follows from these characteristics, theorem (17.6), and the definition of tin (A.44) 
that: 

D-D 
--A - is distributed as t(nT - r) for ANOVA model (17.1) 
sID} 

(11-15) 
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Example 

Hence. the 1 - a confidence limits for Dare: 

D ± t( I - a/2; liT - r)s{D} (17.16) 

Testing. There is often interest in testing whether two factor level means are the Sa 

The alternatives here are of the form: me. 

Ho: fJi = fJi' 

Ha: fJi i= /J.,i' 

The altemative~ in (17.17) can be stated equivalently as follows: 

Ho: fJi - fJi' = 0 

Ha: /J.,i - fJi' i= 0 

(17.17) 

(17.17a) 

Conclusion Ho is reached at the a level of significance if zero is contained within the 
confidence limits (17.16); otherwise, conclusion Ha is reached. An equivalent procedure is 
based on the test statistic: 

t* = ~ 
sID} 

(17.18) 

Conclusion Ho is reached if It'l ::::: 1(1 - a/2; liT - r); otherwise. Ha is concluded. 

For the Kenton Food Company example, package designs I and 2 Llsed 3-color printing 
and designs 3 and 4 used 5-color printing, as shown in Table 17.1. We wish to estimate the 
difference in mean sales for 5-color designs 3 and 4 Llsing a 95 percent confidence interval. 
That is, we wish to estimate D = fJ3 - fJ.J. From Table 17.1, we have: 

Hence: 

Y3.=19.5 

v.r• = 27.2 

MSE= 10.55 

D = Y3' - Y-!. = 19.5 - 27.2 = -7.7 

The estimated variance of Dis: 

1 A ( I I) (I 1) s-{D} = MSE - + - = 10 . .')5 - + - = 4.748 
n~ //,.) 4 5 

so that the estimated standard deviation of D is .1'1 D} = 2.179. We require t (.975; IS) = 
2.131. The confidence limits therefore are -7.7 ± 2.131 (2.179), and the desired 95 percent 
confidence interval is: 

-12.3::::: fJ~ - fJ-I::::: -3.1 

Thus, we estimate with confidence coefficient .95 that the mean sales for package design 3 
fall short of those for package design 4 by somewhere between 3.1 and 12.3 cases per STOre. 

Note from Table 17.1 that the only difference between package designs 3 and 4 is the 
presence of cartoons; both designs used 5-color printing. The sales manager may therefore 
wish to test whetherthe addition of cartoons affects sales for 5-colordesigns. Thealtematives 
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Ho: fJ.3 - fJ.4 = 0 

Ha: fJ.3 - fJ.4 =1= 0 

Since the hypothesized difference zero in Ho is not contained within the 95 percent confi­
dence limits -12.3 and -3.1, we conclude H", that the presence of cartoons has an effect. 
We could also obtain test statistic (17.18): 

* b -7.7 
t = -A- = -- = -3.53 

sID} 2.179 

Since It*1 = 3.53 > t(.975; 15) = 2.131, we conclude Ha. The two-sided P-value for this 
test is .003 . 

.. nferences for Contrast of Factor level Means 

.~ .. ,. 

A contrast is a comparison involving two or more factor level means and includes the 
previous case of a pairwise difference between two factor level means in (17.10). A contrast 
will be denoted by L, and is defined as a linear combination of the factor level means fJ.i 

where the coefficients C; sum to zero: 

r 

L = LC;fJ.i 

;=1 

where LCi = 0 
;=1 

(17.19) 

Illustrations of Contrasts. In the Kenton Food Company example, package designs 1 and 
2 used 3-color printing and designs 3 and 4 used 5-color printing, as shown in Table 17.1. 
Also, package designs 1 and 3 utilized cartoons while no cartoons were utilized in designs 
2 and 4. The following contra<;ts here may be of interest: 

1. Comparison of the mean sales for the two 3-color designs: 

L = fJ.1 - fJ.2 

Here, CI = 1, C2 = -1, C3 = 0, C4 = 0, and LCi = O. 

2. Comparison of the mean sales for the 3-color and 5-color designs: 

L = fJ.1 + fJ.2 _ fJ.3 + fJ.4 

2 2 

Here, CI = 1/2, C2 = 1/2, C3 = -1/2, C4 = -1/2, and LCi = O. 

3. Comparison' of the mean sales for designs with and without cartoons: 

L = fJ.J + fJ.3 _ fJ.2 + fJ.4 

2 2 

Here, CJ = 1/2, C2 = -1/2, C3 = 1/2, C4 = -1/2, and LCi = O. 

4. Comparison of the mean sales for design 1 with average sales for all four designs: 

L = fJ.1 _ fJ.l + fJ.2 + fJ.3 + fJ.4 

4 

Here, Cl = 3/4, C2 = -1/4, C3 = -1/4, C4 = -1/4, and LCi = O. 
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Note that the first conTrast is simply a pairwise comparison. In the second and third 
contraSTs, averages of several factor level means are compared. The fourth contrast is the 
factor effecT 'I defined by (16.60) and (16.63). 

The averages used here are unweighted averages of the means f.-ii; these are ordinaril 
the averages of interest. In special cases one might be interested in weighTed averages Oft~ 
f.-ii to describe the mean response for a group of several factor levels. For example, if both 
3-color and 5-coI0l· designs were to be employed, with 3-color printing used three times as 
ofTen as 5-color printing, the comparison of the effect of cartoons versus no canoons might 
be based on the contrast: 

L = 3f.-i1 + f.-i3 _ 3f.-i2 + f.-i4 
4 4 

Here, C 1 = 3/4, C2 = -3/4, C3 = 1/4, C4 = -1/4, and I>:i = O. 

Estimation. An unbiased eSTimator of a COnTrast Lis: 

L = LCiY,. (17.20) 
I=J 

Since the Yt• are independent, the variance of l according to (A.31) is: 

(17.21) 

An unbiased estimator of this variance is: 

(17.22) 

l is normally distributed by (A.40) because it is a linear combination of independent 
normal random variables. II can be shown by theorem (17.6), the characTeristics of L just 
mentioned, and the definition of t thar: 

L-L 
--~ - is diSTribUTed as tenT - r) for ANOVA model (17.1) 
sILl 

Consequently, The I - ex confidence limiTs for L are: 

L ±t(1-ex/2;nT -r)s{L} 

(17.23) 

(17.24) 

Testing. The confidence interval based on The limiTs in (17.24) can be used to teST a 
hypothesis of The form: 

Ho: L = 0 

HlI : L i= 0 
(17.25) 

Ho is concluded at the ex level of significance if zero is contained in The inTerval; otherwise 
HlI is concluded. An equivalent procedure is based on the test STaTistic: 

L 
t* = -~-

sILl 
(17.26) 

If It'l :::: t( I - ex/2; nT - r), Ho is concluded; otherwise, Ha is concluded. 
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In the Kenton Food Company example, the mean sales for the 3-color designs are to be 
compared to the irrean sales for the 5-color designs with a 95 percent confidence interval. 
We wish to estimate: 

L = J)." + J).,2 _ J).,3 + J).,4 

2 2 

The point estimate is (see data in Table 17.1): 

~ Y,:+Y2• Y3.+Y4• 14.6+13.4 19.5+27.2 
L = - = - = -9.35 

2 2 2 2 

Since c, = 1/2, C2 = 1/2, C3 = -1/2, and C4 = -1/2, we obtain: 

"r:i = (l/2f + (l/2f + (-1/2f + (-1/2f = .2125 
~ nj 5 5 4 5 

and: 
2 

s2{L} = MSE L C
i = 10.55(.2125) = 2.242 

nj 

so that sILl = 1.50. 
For a 95 percent confidence interval, we require t(.975; 15) = 2.131. The confidence 

limits for L therefore are -9.35 ± 2.131(1.50), and the desired 95 percent confidence 
interval is: 

-12.5:::: L:::: -6.2 

Therefore, we conclude with confidence coefficient .95 that mean sales for the 3-color 
designs fall below those for the 5-color designs by somewhere between 6.2 and 12.5 cases 
per store. 

To test the hypothesis of no difference in mean sales for the 3-color and 5-color designs: 

Ho: L = 0 

Hll : L =1= 0 

at the a = .05 level of significance, we simply note that the hypothesized value zero is 
not contained in the 95 percent confidence interval. Hence, we conclude Ha , that the mean 
sales differ. To obtain a P -value of the test, test statistic (17.26) must be obtained. We find: 

* -9.35 
t = -- = -6.23 

1.50 

and the corresponding two-sided P -value is O+. 

Comment 
Many single-factor analysis of variance programs permit the user to specify a contrast of interest and 
then will furnish the t* test statistic or the eqUivalent F* test statistic. • 

Inferences for linear Combination of Factor level Means 
Occasionally, we are interested in a linear combination of the factor level means that is not 
a contrast. For example, suppose that the Kenton Food Company will use all four package 
designs, one in each of its four major marketing regions, and that these marketing regions 
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17.4 

account for 35, 28, 12, and 25 percent of sales, respecTively. In that case, there mighT be 
interest in the overall mean sales per store for all regions: 

Note that this linear combination is of the fonn L = L Ci J).,i but that the coefficients Cj sum 
to 1.0, not to zero as they must for a contrast. 

We define a linear combination of the j{lctor level means f.-il as: 

r 

L=LCif.-ii (17.27) 
1=1 

with no restrictions on the coefficients Ci. Confidence limits and test statistics for a linear 
combination L are obtained in exactly the same way as those for a contrast by means 
of (17.24) and (17.26), respectively. Point estimator (17.20) and estimated variance (17.22) 
are still applicable when L C/ i= O. 

Single Degree of Freedom Tests. The aIternati ves for tests concerning a factor level mean 
in (17.8), a difference between two factor level means in (17.17a), and a contrast of factor 
level means in (17.25) are all special cases of a tesT concerning a linear combination of 
factor level means: 

Ho: LCif.-ii =c 

Ha: L CiJ).,/ i= C 

where the Ci and C are appropriaTe constants. TesT statistics (17.9), (17.18), and (17.26) can 
each be converted to an equivalent F* Test STatistic by means of the relation in (A.50a): 

F* = (t*)2 

Test statistic F* follows the F( I, nT -r) distribution when Ho holds. NOTe thaT the numerator 
degrees of freedom are always one. Hence, these tests are often referred TO as single-degree­
of -freedom tests. The t* version of the test statistic is more versatile because it can also be 
used for one-sided tests while the F* version cannot. 

Need for SilTIultaneolls Inference Procedures 

The procedures for estimating and testing factor level means discussed up to this point have 
two important limitations: 

I. The confidence coefficient I -ex for the estimation procedures described is a statement 
confidence coefficient and applies only to a particular estimate, not to a series of estimates. 
Similarly, the specified Type I error rate, ex, applies only to a particular test and not to a 
seri es of tests. 

2. The confidence coefficient 1 - ex and the specified significance level ex are appropriate 
only if the estimate or test was not suggested by the data. 

The first limitation is familiar from regression analysis. It is particularly serious for 
analysis of variance models because frequently many different comparisons are of interest 
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here, and one needs to piece the different findings together. Consider the very simple 
case when~ three different advertisements are being compared for their effectiveness in 
stimulating sales. The following estimates of their comparative effectiveness have been 
obtained, each with a 95 percent statement confidence coefficient: 

59 .::; fJ.,2 - fJ., J .::; 62 

-2.::; fJ.,3 - fJ.,J'::; 3 

58 .::; fJ.,2 - fJ.,3 .::; 64 

It would be natural here to piece the different comparisons together and conclude that 
advertisement 2 leads to highest mean sales, while advertisements I and 3 are substantially 
less effective and do not differ much among themselves. One would therefore like a family 
confidence coefficient for this family of statements, to provide known assurance that the set 
of conclusions is correct. 

The same concern for assurance of correct conclusions exists when the inferences involve 
tests. An analysis of factor means by testing procedures usually involves several single­
degree-of-freedom tests to answer related questions. For instance, the sales manager of the 
Kenton Food Company might wish to know both whether the number of colors has an effect 
on mean sales and whether the use of cartoons has an effect. Whenever several tests are 
conducted, both the level of significance and the power, insofar as the family of tests is 
concerned, are affected. Consider, for example, three different t tests, each conducted with 
a = .05. The probability that each of the tests will lead to conclusion Ho when indeed Ho is 
correct in each case, assuming independence of the tests, is (.95)3 = .857. Thus, the level 
of significance that at least one of the three tests leads to conclusion Hll when Ho holds in 
each case would be 1 - .857 = .143, not .05. We see then that the level of significance 
and power for afamily of tests is not the same as that for an individual test. Actually, the t* 
statistics are dependent when they all are based on the same sample data and use the same 
MSE value. It is often therefDre more difficult to determine the actual level of significance 
and power for a family of tests. 

The second limitation of the procedures for estimating or testing factor level means 
discussed so far, namely, that the estimate or test must not be suggested by the data, is an 
important one in exploratory investigations where many new questions are often suggested 
once the data are being analyzed. The process of studying effects suggested by the data is 
sometimes called data snooping. One form of data snooping is to investigate comparisons 
where the effect appears to be large from the sample data, for example, testing whether 
there is a difference between the two treatment means corresponding to the smallest and 
largest estimated factor level means Y/ .. Choosing the test in this manner implies a larger 
significance level than the nominal level used in constructing the decision rule. For example, 
it can be shown for a study with six factor levels that if the analyst will always compare 
the smallest and largest estimated factor level means by using the confidence limits (17.16) 
with a 95 percent confidence coefficient, the interval estimate will not contain zero and 
therefore suggest a real effect 40 percent of the time when indeed there is no difference 
between any of the factor level means (Ref. 17.1). Hence, the a level for the test is .40, not 
.05. With a larger number of factor levels, the likelihood of an erroneous indicatiorr of a real 
effect, i.e., the actual a level, would be even greater. The reason for the higher actual level 
of significance here is that a family of tests is being conducted implicitly since the analyst 
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does not know in advance which estimated factor level means will be the extreme ones. The 
situation here is analogous to that in Chapter 10 where the test to determine whether the 
largest absolute residual is an outlier considers the family of tests for each of the n residuals. 

One solution to this problem of making comparisons that are suggested by initial analysis 
of the data is to use a multiple comparison procedure where the family ofinferences includes 
all the possible inferences that can be anticipated to be of potential interest after the data 
are examined. For instance, in an investigation where five factor level means are being 
studied, it is decided in advance that pJincipal interest is in three pairwise comparisons. 
However, it is also agreed that other pairwise comparisons that will appear interesting 
should be studied as well. In this case, the fmnily of all pairwise comparisons can be used 
as the basis for obtaining an appropriate family confidence coefficient or significance level 
for the comparisons suggested by the data. 

In the next three sections, we shall discuss three mUltiple comparison pfOcedures for 
analysis of variance models that permit the family confidence coefficient and the family a 

risk to be controlled. Two of these procedures, the Tukey and Scheffe procedures, allow 
data snooping to be undertaken naturally without affecting the confidence coefficient or 
significance level. The other procedure, the Bonfefroni procedure, is applicable only when 
the effects to be investigated are identified in advance of the study. 

Tukey J\lIuJti pIe COlnparison Procedure 

The Tukey multiple comparison procedure that we will consider here applies when: 

The family of interest is the set of all pairwise comparisons of factor level means; in 
other words, the family consists of estimates of all pairs D = Pi - {.-ii' or of all test~ of 
the form: 

Ho: {.-if - {.-if' = 0 

Ha: {.-ii - {.-if' i= 0 

When all sample sizes are equal, the family confidence coefficient for the Tukey method is 
exactly I - ex and the family significance level is exactly ex. When the sample sizes are not 
equal, the family confidence coefficient is greater than I - ex and the family significance 
level is less than ex. In other words, the Tukey procedure is conservative when 'the sample 
sizes are not equal. 

Studentized Range Distribution 
The Tukey procedure utilizes the studentized range distribution. Suppose that we have r 
independent observations YI , ••• , YI" from a normal distribution with mean {.-i and variance 
(52. Let w be the range for this set of observations; thus: 

w = max(Yd - min(Y,) (17.28) 

Suppose further that we have an estimate S2 of the variance (52 which is based on v degrees 
of freedom and is independent of the Y,. Then, the ratio w Is is called the studentized range. 
It is denoted by: 

w 
q(r, v) = -

s 
(17.29) 
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where th'emguments in parentheses remind us that the distribution of q depends on rand v. 
The distribution of q has been tabulated, and selected percentiles are presented in Table B.9. 

This table is simple to use. Suppose that r = 5 and v = 10. The 95th percentile is then 
q(.95; 5, 10) = 4.65, which means: 

p{ ~ = q(5, 10) ::; 4.65} = .95 

Thus, with Jive normal Y observations, the probability is .95 that their range is not more 
than 4.65 times as great as an independent sample standard deviation based on 10 degrees 
of freedom. 

Simultaneous Estimation 
The Thkey multiple comparison confidence limits for all pairwise comparisons D = J).,i - J).,i' 

with family confidence coefficient of at least 1 - a are as follows: 

b ± Ts{D} (17.30) 

where: 

D= Yj • - Yi,. (17.30a) 

s2{D} = S2{Yi.} + S2{Yil.} = MSE (~ + ~) 
nl nl' 

(17.30b) 

1 
T = .J2q (1 - a;r, nT - r) (17.30c) 

Note that the point estimator D in (17.30a) and the estimated variance in (l7.30b) are 
the same as those in (17.11) and (17.14) for a single pairwise comparison. Thus, the only 
difference between the Thkey confidence limits (17.30) for simultaneous comparisons and 
those in (17.16) for a single comparison is the multiple of the estimated standard deviation. 

The family confidence coefficient 1 - a pertaining to the multiple pairwise comparisons 
refers to the proportion of correct families, each consisting of all pairwise comparisons, when 
repeated sets of samples are selected and all pairwise confidence intervals are calculated 
each time. A family of pairwise comparisons is considered to be correct if every pairwise 
comparison in the family is correct. Thus, a family confidence coefficient of 1 - a indicates 
that all pairwise comparisons in the family will be correct in (1 - a)100 percent of the 
repetitions. 

Simultaneous Testing 
When we wish to conduct a family of tests of the form: 

Ho: J).,i - J).,i' = 0 

Ha: J).,i - J).,jl =1= 0 
(17.31) 

for all pairwise comparisons, the family of confidence intervals based on (17.301 may be 
utilized for this purpose. We simply determine for each interval whether or not zero is 
contained in the interval. If zero is contained, conclusion Ho is reached; otherwise, Hll is 
concluded. By following this procedure, the family level of significance will not exceed a. 
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Equivalently, the pairwise tests can be conducted directly by calculating for each pairwise 
comparison the test statistic: 

* -./2b 
q = sIb} (17.32) 

where D and s2{D} are given in (17.30). Conclusion Ho in (17.31) is reached if Iq*1 :s 
q(1 - a; r; nT - r); otherwise, Ha is concluded. 

A paired comparison plot provides still another means of conducting all pairwi'>e tests 
with the Tukey procedure when all sample sizes are equal, i.e., when n; == n. This plot 
provides a graphic means of making all pairwise comparisons. Around each estimated 
treatment mean Y;. is plotted an interval whose limits are: 

- 1 ~ 
Y;. ± 2Ts{D} (17.33) 

When the intervals overlap on this plot, the formal test leads to the conclusion that the two 
tre~tment means do not differ. When the intervals do not overlap, the formal test leads to 
the conclusion that the two treatment means differ. In addition, the paired comparison plot 
shows the direction of the difference. 

Figure 17.4 provides an illustration of a paired comparison plot for the rust inhibitor 
example. There is no overlap between the intervals for rust inhibitors B and C, indicating 
that the mean performances differ for these two rust inhibitors. Figure 17.4 in addition 
shows that rust inhibitor B is superior to C since its interval is considerably to the right of 
that for C, thus providing directional information about the difference in mean performance 
for the two rust inhibitors. We discuss this plot in greater detail on page 750. 

Example l-Equal Sample Sizes 
In the rust inhibitor example in Table 17.2, it was desired to estimate all pairwise comparisons 
by means of the Tukey procedure, using a family confidence coefficient of95 percent. Since 
r = 4 and n T - r = 36, we find the required percentile of the studentized range distribution 
from Table B.9 to be q(.95; 4,36) = 3.814. Hence, by (17.30c), we obtain: 

1 
T = -./2(3.814) = 2.70 
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TABLE 1 Z.3 Simultaneous Confidence Intervals and Test., for Pairwise 
Differences Using the Tukey Procedure-Rust Inhibitor Example. 

,'~ 
, 

Test ,,' ... ,-; 
... 1 

ConfidenceJnterval Ho Ha 

43.3 ~ J.L2 -:f:Ll ~ 49.3 J.L2 =J.Ll J.L2 =I: J.Ll 
21.8 ~ J.L3 - J.Ll ~ 27.8 J.L3 =J.Ll J.L3 =I: J.Ll 
-.3 ~ J.Ll ,--,-:p,4 ~ 5.7 J.Ll =J-[4 J-[l =I: J-[4 

18.5 ~ J.L2 ~V-3 ~ 24.5 J.L2 = J.L3 J.L2 =I: J.L3 
46.0 ~ J.L2 - li4 ~ 52.0 J.L2 =J.L4 J.L2 =I: J.L4 
24.5 ~ J.L3, - [.(4 ~ 30.5 J.L3 = J.L4 J.L3 =I: J.L4 

cf 
58.99 
31.61 

3.40 
27.37 
62.39 
35.01 

Further, we need s{D}. Using (17.30b), we find for any pairwise comparison since equal 
sample sizes were employed: 

s2{D} = MSE (~+~) = 6.140 (~+~) = 1.23 
nj ni' 10 10 

so that s {D} = 1.11. Hence, we obtain for each pairwise comparison: 

Ts{D} = 2.70(1.11) = 3.0 

To illustrate the calculation of the pairwise confidence limits, consider the estimation of 
the difference between the treatment means for rust inhibitors A and B, J).,2 - J).,,: 

D = Y2• - Y,. = 89.44 - 43.14 = 46.3 

The confidence limits from (17.30) therefore are 46.3 ± 3.0 and the confidence interval is: 

43.3 :::: J).,2 - J).,l :::: 49.3 

The complete family of pairwise confidence intervals is listed in the left column of 
Table 17.3. The pairwise comparisons indicate that all but one of the differences (D and A) 
are statistically significant (confidence interval does not cover zero). 

We incorporate this information in a line plot of the estimated factor level means by 
underlining nonsignificam comparisons. 

D A , .. , 
40 60 

C 

• 
Performance Score 

80 

B 

• 

The line between D and A indicates that there is no clear evidence whether D or A is the 
better rust inhibitor. The absence of a line signifies that a difference in performance has 
been found and the location of the points indicates the direction of the difference. Thus, 
the mUltiple comparison procedure permits us to infer with a 95 percent family confidence 
coefficient for the chain of conclusions that B is the best inhibitor (better by sOjIlewhere 
between 18.5 and 24.5 units than the second best), C is second best, and A and'D follow 
substantially behind with little or no difference between them. 
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The same conclusions are obtained if we carry out all pairwise rests using the simulta 
neous testing procedure based on test statistic (17.32). For example, to test: 

we require the test statistic: 

Ho: {.-iz - {.-il = 0 

Hll : {.-iz - (.-i 1 i= 0 

, .J2(89.44 - 43.14) 
q. = = 58.99 

1.11 

Because /q*/ = 58.99 > q(.95; 4, 36) = 3.814, we conclude H,,, that the two treatment 
means differ. The test statistics q* for the family of all pairwise tests are listed in the right 
column of Table 17.3. The absolute values of all test statistics exceed 3.814 except farone, 
so that all differences are found to be statistically significant except for that involving !J,I 
and {.-i4 (A and D). For this case, /q*/ = 3.40 does not exceed the critical value 3.814. 

Figure 17.4 presents a paired comparison plot for the rust inhibitor example. Here are 
plotted the estimated treatment means Yt. with the comparison intervals based on (17.33). 
For example, for rust inhibitor A, we have from earlier: 

YI. = 43.14 T = 2.70 

so that the comparison limit'> in (17.33) are: 

I 
43.14 ± -(2.70)(1.11) 

2 
or 

s{D} = 1.11 

41.64 and 44.64 

We readily see that only the intervals for A and D overlap, that rust inhibitor B is clearly best, 
that rust inhibitor C is second best, and that rust inhibitors A and D are the least effective. 

Example 2-Unequal Sample Sizes 
In th€ Kenton Food Company example in Table 17.1, the sales manager was interested in the 
comparative performance of the four package designs. The analyst developed all pairwise 
comparisons by means of the Tukey procedure with a family confidence coefficient of at 
least 90 percent. Since the sample sizes are not equal here, the estimated standard deviation 
s{D} must be recalculated for each pairwise comparison. To compare designs 1 and 2, for 
instance, we obtain: 

D = rl. - Yz. = 14.6 - 13.4 = 1.2 

1 ~ (I 1) (1 1) s-[D} = MSE - + - = 10.55 - + - = 4.22 
171 /lz 5 5 

s{D} = 2.05 

For a 90 percent family confidence coefficient, we require q (.90; 4, 15) = 3.54 so that we 
obtain: 

1 
T = .J2(3.54) = 2.50 
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Hence, the confidence limits are 1.2 ± 2.50(2.05) and the confidence interval for J).,I - J).,2 is: 

-3.9::; J).,I - J).,2 ::; 6.3 

In the same way, we obtain the other five confidence intervals: 

-.6 = (19.5 - 14.6) - 2.50(2.18) ::; J).,3 - J).,I ::; (19.5 - 14.6) + 2.50(2.18) = 10.4 

7.5 = (27.2 - 14.6) - 2.50(2.05) ::; J).,4 - J).,I ::; (27.2 - 14.6) + 2.50(2.05) = 17.7 

.7 = (19.5 - 13.4) - 2.50(2.18) ::; J).,3 - J).,2 ::; (19.5 - 13.4) + 2.50(2.18) = 11.6 

8.7 = (27.2 - 13.4) - 2.50(2.05) ::; J).,4 - J).,2 ::; (27.2 - 13.4) + 2.50(2.05) = 18.9 

2.3 = (27.2 - 19.5) - 2.50(2.18) ::; J).,4 - J).,3 ::; (27.2 - 19.5) + 2.50(2.18) = 13.2 

We summarize the comparative performance by a line plot, indicating each nonsignificant 
difference by a rule. 

Design Design Design Design 
2 1 3 4 

, \ I !, ! , 
10 20 30 

Cases Sold 

We can conclude with at least 90 percent family confidence that design 4 is clearly the 
most effective design. However, the small-scale study does not permit a complete ordering 
among the other three designs. Design 3 is more effective than design 2 but may not be 
more effective than design 1, which in tum may not be more effective than design 2. 

Often, the results of the family of pairwise tests are summarized by setting up groups of 
factor levels whose means do not differ according to the single degree of freedom tests. For 
the Kenton Food Company example, there are three such groups: 

Group 1 

Design 4 

Comments 

Group 2 

Design 3 

Design 1 

Y3• = 19.5 
Yj .=14.6 

Group 3 

Design 1 

Design 2 

Yj.=14.6 

Y2·=13.4 

1. When the Tukey procedure is used with unequal sample sizes, it is sometimes called the Tukey­
Kramer procedure. 

2. When not all pairwise comparisons are of interest, the confidence coefficient for the family of 
comparisons under consideration will be greater than the specification 1 - cx used in setting up the 
Tukey intervals. Similarly, the family significance level for simultaneous testing will be less than cx. 

3. The Tukey procedure can be used for data snooping as long as the effects to be studied on the 
basis of preliminary data analysis are pairwise comparisons. 

4. The Tukey procedure can be modified to handle general contrasts of factor level means.,We do 
not disC1lss this modification since the Scheffe method (to be discussed next) is to be preferred for 
this situation. 
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5. To derive the Tukey simultaneous confidence intervals for the case when all sample $i 
. h 'd h d . . zes are equal, I.e., when IIi == II so t at 111' = 1'/1, consl er t e eVlatlon$: 

(17.34) 
and assume thai ANOVA model (17.1) applies. The deviations in (17.34) are tllen independent v ._ 
abies (because the error terms are independent), they are normally distributed (because the errorte an 
~ independent normal variables), they have the same expectation zero (because I"i is sUbtractedf: 

Y i ·), and they have the sal~e variance alln. Further. MSEIIl is <In estimator of a 1 In that is inde­

pendent of the deviations (Y,. - f..I.i) per theorem (17.6). Thu$, it follows from the definition of the 
studentized range q in (17.29) that: 

max(Yi . - f..I.i) - min(Yi • - f..I.i) 
---'---'--------'- ~ q (t. liT - r) 

JMSE 
Il 

(17.35) 

where Ill' - r is the ~umber of degrees of freedom aS$ociated with MSE, max(Y i . - f..I.i) is the largest 

deviation, and min(Yi · - f..I.i) is the smallest deviation. 
In view of (17.35), we can write the following probability statement: 

(17.36) 

Note now that the following inequality hold~ for all pairs of factor levels i and i': 

I(Yi • - f..I.i) - (Yi'. - f..I.i')1 ::: max(Y i · - f..I.i) -min(Yi • - f..I.i) (17.37) 

The absolute value at the left i$ needed since the facror levels i and i' are not ordered so that we may 
be subtracting the larger deviation ti'om the smaller. To put this another way, we are merely concerned 
here with the difference between the two factor level deviations regardless of direction. 

Since inequality (17.37) holds for all pairs of factor levels i and i', it follows from (17.36) that the 
probability: 

(Y i · - f..I.i) - (Y i·• - f..I.i') { - - } 
P

J 
M,~E ::: q(l - 0:; r, 117' - r) = I - 0: 

(17.38) 

holds for all r(r - I )/2 pairwise comparisons among the I' factor levels. By rearranging the inequality 
in (17.38), using the definition$ of S2{ DI in (17.30b) and of T in (17.30c), and noting that for the 
equal sample size case s2{DI becomes: 

, ' (I I) 2MSE s-{DI = MSE - + - =--
11 11 11 

when Il, == 11 

we obtain the Tukey mUltiple comparison confidence limits in (17.30). 

6. When the Tukey multiple compaI'ison pI'Ocedure is used for testing pairwise differences as 
in ( 17.3 I), the tests are sometimes called fumestfy sigll!/icant d(ffe I'el1ce tests. 

7. The pairwise comparison plot can be used as an approximate plot when the sample sizes are 
not equal, provided that the sample sizes do not differ greatly. For this case. the comparison limits 
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should be obtained as follows: 
- I -
Yi· ± 2:q (l - a; r, nT - r)s{Yi·} (17.39) 

The limits in (17.39) are identical to those in (17.33) when the sample sizes are equal. • 
Scheffe Multiple Comparison Procedure 

The Scheffe multiple comparison procedure was encountered previously for regression 
models. It -is also applicable for analysis of variance models. It applies for analysis of 
variance 'models when: 

The family of interest is the set of all possible contrasts among the factor level means: 

L=LCiJ).,i where LCi = 0 (17.40) 

In other words, the family consists of estimates of all possible contrasts L or of tests 
concerning all possible contra~ts of the form: 

Ho: L = 0 

R,: L =1= 0 

Thus, infinitely many statements belong to this family. The family confidence level for the 
Scheffe procedure is exactly 1 - a, and the family significance level is exactly a, whether 
the factor level sample sizes are equal or unequal. 

Simultaneous Estimation 
We noted earlier that an unbiased estimator of Lis: 

(17.41) 

for which the estimated variance is: 

(17.42) 

The Scheffe confidence intervals for the family of contrasts L are of the form: 

L ± Ss{L} (17.43) 

where: 

S2 = (r - I)F(I- a;r -1,nT - r) (17.43a) 

and Land s{L} are given by (17.41) and (17.42), respectively. If we were to calculate the 
confidence intervals in (17 .43) for all conceivable contrasts, then in (I - a) 100 percent of 
repetitions of the experiment, the entire set of confidence intervals in the family would be 
correct. 

Note that the simultaneous confidence limits in (17.43) differ from those for a single 
confidence limit in (17.24) only with respect to the multiple of the estimated standard 
deviation. • . 
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Simultaneous Testing 

Example 

Tests involving contrasts of the form: 

Ho: L = 0 

Ha: L =1= 0 
(17.44) 

can be carried out by examination of the corresponding Scheffe confidence intervals baSed 
on (17.43). Ho is concluded at the a family level of significance if the confidence interval 
includes zero; otherwise Ha is concluded. An equivalent direct testing procedure for the 
alternatives in (17.44) uses the test statistic: 

* i} 
F = ~ 

(r - l)s2{L} (17.45) 

Conclusion Ho in (17.44) is reached at the a family significance level if F*-s. 
F(1 - a;r - 1, nT - r); otherwise, Ha is concluded. 

In the Kenton Food Company example, interest centered on estimating the follOwing four 
contrasts with family confidence coefficient .90: 

Comparison of 3-color and 5-color designs: 

LI = fJ.,1 +fJ.,2 
2 

Comparison of designs with and without cartoons: 

Comparison of the two 3-color designs: 

Comparison of the two 5-color designs: 

Consider first the estimation of L I . Earlier, we found: 

LI = -9.35 

s{Ld = 1.50 

Since r - 1= 3 and nT - r = 15 (Table 17.1), we have: 

S2 = (r - I)F(1 - a; r - 1, nT - r) = 3F(.90; 3,15) = 3(2.49) = 7.47 

so that S = 2.73. Hence, the 90 percent confidence limits for LI by the Scheffe multiple 
comparison procedure are -9.35 ± 2.73(1.50) and the desired confidence interval is: 

-13.4 .::; LI .::; -5.3 



Chapter 1 7 Analysis cif Factor Level Means 755 

In similar fashion, we obtain the other desired confidence intervals, and the entire set is: 

-13.4 .::; LI .::; -5.3 

-7.3.::;L2.::;.8 

-4.4 .::; L3 .::; 6.8 

-13.7'::; L4 .::; -1.7 

Note that the confidence interval for LI does not include zero. Hence, if we wished 
to test Ho: L I = 0 versus Ha: L I =1= 0, we would conclude Ha, that the mean sales for 
3-color and 5-color designs differ. The confidence interval provides additional information, 
however; namely, that mean sales for 5-color designs exceed mean sales for 3-color designs, 
by somewhere between 5.3 and 13.4 cases per store. 

Any chain of conclusions derived from the set of confidence intervals has associated with 
it family confidence coefficient .90. The principal conclusions drawn by the sales manager 
were as follows: 5-color designs lead to higher mean sales than 3-color designs, the increase 
being somewhere between 5 and 13 cases per store. No overall effect of cartoons in the 
package design is indicated, although the use of a cartoon in 5-color designs leads to lower 
mean sales than when no cartoon is used. 

Comments 

1. If in the Kenton Food Company example we had wished to estimate a single contrast with 
statement confidence coefficient .90, the required t value would have been (.95; 15) = 1.753. This 
( value is smaller than the Scheffe multiple S = 2.73, so that the single confidence interval would be 
somewhat narrower. The increased wi dth of the interval with the Scheffe procedure is the price paid 
for a known confidence coefficient for a family of statements and a chain of conclusions drawn from 
them, and for the possibility of making comparisons not specified in advance of the data analysis. 

2. Since applications of the Scheffe procedure never involve all conceivable contrasts, the confi­
dence coefficient for the finite family of statements aC1ually considered will be greater than I - ex so 
that 1 - ex serves as a guaranteed lower bound. Similarly, the significance level for the finite family of 
tests considered will be less than ex. For this reason, it has been suggested that lower confidence levels 
and higher significance levels be used with the Scheffe procedure than would ordinarily be employed. 
Confidence coefficients of 90 percent and 95 percent and significance levels of ex = .10 and ex = .05 
with the Scheffe procedure are frequently mentioned. 

3. The Scheffe procedure can be used for a wide variety of data snooping since the family of 
statements contains all possible contrasts. • 

Comparison of Scheffe and Tukey Procedures 
1. If only pairwise comparisons are to be made, the Tukey procedure gives narrower 

confidence limits and is therefore the preferred method. 

2. The Scheffe procedure has the property that if the F test of factor level equality 
indicates that the factor level means J).,i are not equal, the corresponding Scheffe multiple 
comparison procedure will find at least one contra~t (out of all possible contrasts) that differs 
significantly from zero (the confidence interval does not cover zero). It may be, though, that 
this contrast is not one of those that has been estimated. . . 



156 Part Four Design atUl Analysis of Single-Factor Studies 

17.7 Bonferroni Multiple Comparison Procedure --The Bonferroni multiple comparison procedure was encountered earlier for regression mod­
els. It is also applicable for analysis of variance models when: 

The family of interest is a particular set of pairwise comparisons, contrasts, or linear 
combinations that is specified by the user in advance of the data analysis. 

The Bonferroni procedure is applicable whether The factor level sample sizes are equal or 
unequal and whether inferences center on pairwise comparisons, contrasts, linear combi­
nations, or a mixture of these. 

Simultaneous Estimation 
We shall denote the number of statements in the family by g and treat them all as linear 
combinations since pairwise comparisons and contrasts are special cases of linear combina­
tions. The Bonferroni inequality (4.4) then implies that the confidence coefficient is at least 
I - ex that the following confidence limits for the g linear combinations L are all correct: 

L ± Bs{L} (17.46) 

where: 

B = t(l - ex/2g;nT - r) (17.46a) 

Simultaneous Testing 

Example 

When we wish to conduct a series of tests of the form: 

Ho: L = 0 

R,: L =1= 0 

we can use either the confidence intervals based on (17.46) or the test statistics: 

* L t = -A-

s{L} 

If It*1 .::; t(1 - ex/2g; nT - r), we conclude Ho; otherwise, Ha is concluded. 

(17.47) 

The sales manager of the KenTon Food Company is interested in estimating the following 
two contrasts with family confidence coefficient .975: • 

Comparison of 3-color and 5-color designs: 

L 
_ J).,I +J).,2 

1-
2 

Comparison of designs with and without cartoons: 

Earlier we found: 

L _ J).,I + J).,3 J).,2 + J).,4 

2 - 2 2 

LI = -9.35 

L2 = -3.25 

s{Ld = 1.50 

s{L2 } = 1.50 
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For a 97.5 percent family confidence coefficient with the Bonferroni method, we require: 

B = t[1 - .025/2(2); 15] = t(.99375; 15) = 2.84 

We can now complete the confidence intervals for the two contrasts. For L J, we have 
confidence limits -9.35 ± 2.84(1.50), which lead to the confidence interval: 

-13.6:::; LJ :::; -5.1 

Similarly, ,we obtain the other confidence interval: 

These confidence intervals have a guaranteed family confidence coefficient of97.5 percent, 
which means that in at least 97.5 percent of repetitions of the experiment, both intervals 
will be correct. 

Again, we would conclude from this family of estimates that mean sales for 5-color 
designs are higher than those for 3-color designs (by somewhere between 5 and 14 cases 
per store), and that no overall effect of cartoons in the package design is indicated. 

The Scheffe multiple for a 97.5 percent family confidence coefficient in this case would 
have been: 

S2 = 3F(.975; 3,15) = 3(4.15) = 12.45 

or S = 3.53, as compared to the Bonferroni multiple B = 2.84. Thus, the Scheffe procedure 
here would have led to wider confidence intervals than the Bonferroni procedure. 

Comment 

It is not necessary that all comparisons be estimated with statement confidence coefficients 1 - a / g for 
the Bonferroni family confidence coefficient to be 1 - a. Different statement confidence coefficients 
may be used, depending upon the importance of each statement, provided thatal +a2 + ... +ag =a . 

• 
Comparison of Bonferroni Procedure with Scheffe and Tukey Procedures 

1. If all pairwise comparisons are of interest, the Thkey procedure is superior to the 
Bonferroni procedure, leading to narrower confidence intervals. If not all pairwise compar­
isons are to be considered, the Bonferroni procedure may be the better one at times. 

2. The Bonferroni procedure will be better than the Scheffe procedure when the number 
of contrasts of interest is about the same as the number of factor levels, or less. Indeed, the 
number of contrasts of interest must exceed the number of factor levels by a considerable 
amount before the Scheffe procedure becomes better. 

3. All three procedures are of the form "estimator ± multiplier x SE." The only difference 
among the three procedures is the multiplier. In any given problem, one may compute the 
Bonferroni multiple as well as the Scheffe multiple and, when appropriate, the Tukey 
multiple, and select the one that is smallest. This choice is proper since it does not depend 
on the observed data. 

~ . 
4. The Bonferroni multiple comparison procedure does not lend itself to data snooping 

unless one can specify in advance the family of inferences in which one may be interested 
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and provided thi.~ family is not large. On the other hand. the Tukcy and Scheffe procedur 
involve familic.~ of inferences that lend themselvcs naturally to data snooping. es 

5. Other specialized multiple comparison proccdurc.~ have been developed. Forexample 
Dunnett's procedurc (Ref. 17.2) performs pairwise comparisons of each trcatment agains; 
a control treatment only whereas H.~u·s procedure (Ref. 17.3) selects thc '"best" treatment 
and identifies tho.~e treatmcnts that are worse than the "hest." 

Analysis of Means 

Example 

One use of the Bonferroni simultaneous testing procedure is in the analysis of means 
(ANOM), introduced by Ot( (Ref. 17.4). ANOM is an alternative to the standard F test for 
the equality of treatmcnt means. It is conducted hy testing Ho: 'I = 0 versus H,,: 'I oj 0, 
Ho: '2 = 0 versus H,,: '2 i= O. and so on for all treatment effects 'i. The statistics employed 
are the r estimated tceatment effects defined in (16.75b): 

Ti = Yi • - i1. i = I. .... r 

where fl. is the least :-.quares mean given in (16.75a): 

, LL. 
Ji. =-­

r 

(17.48) 

(17.48a) 

The estimated variance of Ti is obtained by (17.22) since f; is a contrast of the estimated 
treatment means Y i .: 

2{'1_MSE(r-I)2 MSE"" I 
S 'i - -- --- +-,-~-

Iii" r- tl::f-i nIl 

(17.49) 

Simultaneous testing by the Bonferroni procedure can be carried out by setting up for each 
tceatmeIlt effcct the confidence interval using ( 17.46) and noting whether or not the interval 
contains zero. The results are sometimes summarized in an allalysis (~rlllealls plot. It is easy 
to show that a contrast Ti = Yi - il. is inside (outside) one of the Bonferroni contrast intervals 
whenever the cell mean Vi. is inside (outside) the limits il. ± t( I - al2r; II] - r)s{ril· 
In an analysis of means plot. the cell means are plotted along with the indicated limits 
and the least squares mean fl. in (l7.48a). If any of the cell means fall above (below) 
these limits. the conclusion i.~ drawn that thc cell mean is larger (smaller) than the overall 
mean. 

ANOM is similar to ANOYA for dctecting the differences between cell means~However, 
an important difference between ANOYA and ANOM is that the fonner tests whether the 
cell means are different from each other. whereas the Imter tests whether the cell means are 
different from the overall mean. Yariou.~ enhancements for the analYSIS of means have been 
provided. including those in References 17.5 and 17.6. 

In Figure 17.5 we pre:-.ent a MINITAB ANOM plot for the Kenton Food Company example 
using a = .05. We conclude that thc mean of sales for design 4 is greater than the overall 
unweighted mean (16.63). while the mean of sales for both design I and design 2 are less 
than the overall unweighted mean. Note that MINITAB bases its ANOM procedure on the 
weighted mean fl. = y.., rather than the least squares mean in (17.48a). 
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22.1 562 

i 18.6 316 

15.1 070 

3 4 
levels of Design 

1,7.8 Planning of Sample Sizes with Estimation Approach 

In Section 16.10 we considered the planning of sample sizes using the power approach. We 
now take up another approach, the estimation approach to planning sample sizes, which 
may be used either in conjunction with the control of Type I and Type II errors or by 
itself. The essence of the approach is to specify the major comparisons of interest and to 
determine the expected widths of the confidence intervals for various sample sizes, given 
an advance planning value for the standard deviation a. The approach is iterative, starting 
with an initial judgment of needed sample sizes. This initial judgment may be based on 
the needed sample sizes to control the risks of Type I and Type II errors when these have 
been obtained previously. If the anticipated widths of the confidence intervals based on 
the initial sample sizes are satisfactory, the iteration process is terminated. If one or more 
widths are too great, larger sample sizes need to be tried next. If the widths are narrower 
than they need be, smaller sample sizes should be tried next. This process is continued until 
those sample sizes are found that yield satisfactory anticipated widths for the important 
confidence intervals. We proceed to illustrate the estimation approach to planning sample 
sizes with two examples. 

EXample l-Equal Sample Sizes 
We are to plan sample sizes for the snow tires example discussed in Section 16.10 by means 
of the estimation approach; the sample sizes for each tire brand are to be equal, that is, 
ni == n. Management wishes three types of estimates: 

1. A comparison of the mean tread lives for each pair of brands: 

.. 
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2. A comparison of the mean tread lives for the two high-priced brands (I and 4) and 
the two low-priced brands (2 and 3): 

3. A comparison of the mean tread lives for the national brands (L 2, and 4) and the 
local brand (3): 

fJ.1+{J..~+fJ.4 
3 - {l~ 

Management further has indicated that it wishes a fal11ily confidence coefficient of .95 for 
the entire set of comparisons. 

We firs[ need a planning value for the standard deviation of the tread lives of tires. 
Suppose that from past experience we judge the standard deviation to be approximately 
(5 = 2 (thousand miles). Next, we require an initial judgment of needed sample sizes and 
shall consider 11 = 10 as a starting point. 

We know from (17.21) that the variance of an estimated contrast i when II; == 11 is: 

when 11 i == II 

Hence, given (5 = 2 and 11 = 10, the anticipated values of the standard deviations of the 
required estimators are: 

Contrast 

Pairwise 
comparisons 

High- and 
low-priced brands 

National and 
local brands 

Anticipated Variance 

(:~2 [ (i Y + G Y + ( - i Y + ( - i Y] = .40 

(2)2[(1)2 (1)2 (1)2 ] 10 3 + 3 + 3 + (_1)2 = .53 

Anticipated 
Standard 
Deviation 

.89 

•. 63 

.73 

We shall employ the Scheffe mUltiple comparison procedure and therefore require the 
Scheffe multiple S in (17.43a) for r = 4. 11.,- = 10(4) = 40, and I - ex = .95: 

S2 = (r - I)F(I - ex: r - I, 11.,- - r) = 3F(.95; 3. 36) = 3(2.87) = 8.61 
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or S = 2.93. Hence, the anticipated widths of the confidence intervals are: 

Contrast 

Pairwise comparisons 
High- and low-priced brands 
National and local brands 

Anticipated Width of 
Confidence Interval = ±Sa{L} 

±2.93(.89) = ± 2.61 (thousand miles) 
±2.93(.63) = ± 1.85 (thousand miles) 
±2.93{.73) = ± 2.14 (thousand miles) 

ManageIIlent was satisfied with these anticipated widths. However. it was decided to 
increase the sample sizes from 10 to 15 in case the actual standard deviation of the tread 
lives of tires is somewhat greater than the anticipated value a = 2 (thousand miles). 

Example 2-Unequal Sample Sizes 
In the snow <tires example, suppose that tire brand 4 is the snow tire presently used and is to 
serve as the basis of comparison for the other brands. The comparisons of interest therefore 
are J).,l - J).,4, J).,2 - J).,4, and J).,3 - J).,4. The sample size for brand 4 is to be twice as large as for 
the other brands in order to improve the precision of the three pairwise comparisons. The 
desired precision, with a family confidence coefficient of .90, is to be ± 1 (thousand miles). 
The Bonferroni procedure will be used to provide assurance as to the family confidence level. 

We know from (17.13) that the variance of an estimated difference Li = p;. - Y4' (the 
difference is now denoted more generally by L) is for i = 1,2,3: 

2A 2(1 1) a {L;} =a - +-
ni n4 

We shall denote the sample sizes for brands 1, 2, and 3 by n and for brand 4 by 2n. Hence, 
the variance of Li becomes: 

2 A 2 (1 1) 3a
2 

a {L;} = a - + - =-
n 2n 2n 

Using again the planning value a = 2 and an initial sample size n = 10, we find 
a 2{Li} = .60 and all;} = .77. For a =.10 and g = 3 comparisons, the Bonferroni multi­
ple is B = t(.9833; 46) = 2.19. Note that nT = 3(10) + 20 = 50 for the first iteration; hence 
n T - r = 50 - 4 = 46. The anticipated width of the confidence intervals therefore is 
2.19(.77) = ±1.69. This is larger than the specified width ±l.0, so a larger sample size 
needs to be tried next. 

We shall try n = 30 next. We find that a {Li } = .45 now, and the Bonferroni multiple will 
be B = t(.9833; 146) = 2.15. Hence, the anticipated width of the confidence intervals for 
n = 30is 2.15(.45) = ±.97. This is slightly smaller than the specified width ±1.0. However, 
since the planning value for a may not be entirely accurate, management may decide to use 
30 tires for each of the new brands and 60 tires for brand 4, the presently used snow tires. 

Comment 

Since one cannot be certain that the planning value for the standard deviation is correct, it is advisable 
to study a range of values for the standard deviation before making a final decision on sample size •• . . 
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17.9 Analysis of Factor Effects when Factor Is Quantitative 

Example 

TABLE 17.4 
Data­
Piecework 
Trainees 
Example. 

-When the factor under investigation is quantitative, the analysis of factor effects can be 
carried beyond the point of multiple comparisons to include a study of the nature of the 
response function. Consider an expelimental study undertaken to investigate the effect on 
sales of the price of a product. Five different price levels are investigated (78 cent'>, 79 cents 
85 cents, 88 cents, and 89 ce~ts), and the e:peri~ental unit is a. store. After a prelimina~ 
test of whether mean sales differ for the five price levels studied, the analyst might use 
multiple comparisons to examine whether "odd pricing" at 79 cents actually leads to higher 
sales than "even pricing" at 78 cents, as well as other questions of interest. In addition, the 
analyst may wish to study whether mean sales are a specified function of price, in the range 
of plices studied in the experiment. Further, once the relation has been established, the 
analyst may wish to use it for estimating sales volumes at various price levels not studied. 

The methods of regression analysis discussed earlier are, of course, appropriate for the 
analysis of the response function. Since the single-factor studies discussed in this chapter 
almost always invol ve replications at the different factor levels, the lack of fit of a specified 
response function can be tested. For this purpose, the analysis of variance error sum of 
squares in (16.29) serves as the pure error sum of squares in (3.16), the two being identicaL 
We illustrate this relation in the following example. 

In a study to reduce raw material costs in a glassworks finn, an operations analyst collected 
the expeJimental data in Table 17.4 on the number of acceptable units produced from equal 
amounts of raw material by 28 entry-level piecework employees who had received special 
training as part of the experiment. Four training levels were used (6,8, 10, and 12 hours), 
with seven of the employees being assigned at random to each level. The higher the number 
of acceptable pieces, the more efficient is the employee in utilizing the raw material. This 
study is a single-factor completely randomized design with four factor levels. 

Preliminary Analysis. The analyst first tested whether or not the mean number of accept­
able pieces is the same for the four training levels. ANOVA model (17.1) was employed: 

Yij = f.-ii + Cij 

The alternative conclusions and appropriate test statistic are; 

Treatment 
(hours of training) 

1 

1 6 hours 40 
2 8 hours 53 
3 10 hours 53 
4 12 hours 63 

Ho: f.-il = f.-i2 = f.-i3 = f.-i4 

Ha: not all f.-ii are equal 

F* = MSTR 
MSE 

Employee (j) 

2 3 4 

39 39 36 
48 49 50 
58 56 59 
62 59 61 

S 

42 
51 
53 
62 

6 

43 
50 
59 
62 

7 

41 
48 
58 
61 

(17.50) 
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The SPSSx output for single-factor ANOVA is shown in Figure 17.6. Residual analysis 
(to be discussed in Chapter 18) showed ANOVA model (17.50) to be apt. Therefore, the 
analyst proceeded with the test, using a = .05. The decision rule is: 

If F* .::::: F(.95; 3, 24) = 3.01, conclude Ho 

If F* > 3.01, conclude Ha 

ni ri• 

~ ~ STANDARD 
GROUP COUNT MEAN DEVIATION 

GRP01 7 40.0000 2.3094 
GRP02 7 49.8571 1.7728 

Treatment -- GRP03 7 56.5714 2.6367 
GRP04 7 61.4286 1.2724 

TOTAL 28 51.9643 8.4129 

MEAN SQUARES SOURCE 

BETWEEN GROUPS 

WITHIN GROUPS 

TOTAL 

OF 

3 

24 

27 

ANALYSIS OF VARIANCE 

SUM OF SQUARES 

SSTR -- 1808.6778 

SSE -- 102.2856 

SSTO -- 1910.9634 

602.8926 -+- MSTR 

4.2619 --- MSE 

SUBSET 1 

GROUP 
MEAN 

F RATIO 

141.461 

t 
F* 

F PROB. 

0.0000 

t 
P-value 

MULTIPLE RANGE TEST 

TUKEY-HSD PROCEDURE 
RANGES FOR THE 0.050 LEVEl-

3.90 --- q(.95; 4, 24) 

HOMOGENEOUS SUBSETS 

SUBSET 3 

GRP01 GROUP 
40.0000 MEAN 

GRP03 
56.5714 --------------------- ---------------------

SUBSET 2 SUBSET 4 

GROUP GRP02 GROUP GRP04 
MEAN 49.8571 MEAN 61.4286 

.. 
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FIGURE 17.7 
Scatter Plot 
andFitted 
Quadratic 
Response 
Function-
Piecework 
Trainees 
Example. 

From Figure 17.6, we have: 

MSTR 602.8926 
F* = -- = = 141.5 

MSE 4.2619 

Since F* = 141.5 > 3.01, the analyst concluded Ha, that training level effects differed and 
that further analysis of them is warranted. The P-value for the test statistic is 0+, as shown 
in Figure 17.6. 

Investigation of Treatment Effects. The analyst's interest next centered on multiple 
comparisons of all pairs of treatment means. A Tukey multiple comparison option in the 
SPSSx computer package was used. It gave the output shown in the lower portion of 
Figure 17.6. This output presents the results of single-degree-of-freedom tests conducted 
by means of the Tukey multiple comparison procedure for all pairwise comparisons. (The 
confidence intervals for the pairwise comparisons are not shown in the output.) All factor 
levels for which the test concludes that the pairwise means are equal are placed in the same 
group. This form of summary of single-degree-of-freedom tests was illustrated earlier for 
the Kenton Food Company example. When a group contains only one factor level, a'> is the 
case for all groups in the output of Figure 17.6, the implication is that all single-degree-of­
freedom tests involving this factor level and each of the other factor levels lead to conclusion 
Ha, that the two factor level means being compared are not equal. 

Two points should be noted in particular from the results in Figure 17.6: (1) All pair­
wise factor level differences are statistically significant. (2) There is some indication that 
differences between the means for adjoining factor levels diminish as the number of hours 
of training increases; that is, diminishing returns appear to set in as the length of training is 
increased. 

Estimation of Response Function. These findings were in accord with the analyst's ex­
pectations that the treatment means fJ.,i would most likely follow a quadratic response func­
tion with respect to training leveL The scatter plot in Figure 17.7 supports this expectation. 
The analyst now wished to investigate this point further by fitting a quadratic regression 
modeL The model to be fitted and tested is: 

(17.51) 

65 

Vl 
:t: 
c 

::::> 55 
OJ 

:0 
'" +-' c.. 
OJ 
u 45 u « 
0 
L. 
OJ 

.Q 35 E 
:J y = - 3.73571 + 9.17500X - 0.31250X2 

Z 

6 8 10 12 
Hours of Training 
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where Yij and t:ij are defined as earlier, the (3s are regression parameters, and Xi denotes 
the number of hours of training in the ith training level (Xi) centered around X = 9, i.e., 
X; = Xi -9. 

A portion ofthe data for the regression analysis is given in Table 17.5. Regressing Y on 
X and X2 yielded the estimated regression function: 

Y = 53.52679 + 3.55000x - .31250x2 (17.52) 

The analysis of variance for regression model (17.51) is shown in Table 17.6a. For com­
pleteness, we repeat in Table 17.6b the analysis of variance for ANOVA model (17.50). 

i j Yjj Xj xl 
1 1 40 ~-9 =-3 9 
1 2 39 '0 6-9= -3 9 

2 1 53 8\-9=-.1 1 
2 2 48 8'-9 =-1 1 

~ ,. ~ 

4 6 62 12-9= 3 9 
4 7 61 12-9= 3 9 

(a) Regression Model(17:S1) 

Source of 
Variation 55 df 

Regression 1,808.100 2 
Error 102.864 25 

Total 1,910.964 17 

,(b) Analy~is of Variance Model, (17.59) 

Source of 
Variation 

Treatments 
Error 

Total 

Source of 
Variation 

Regression 
Error 

lack of fit 
Pure error 

Total 

,-

55 df 

1,808.678 3 
10i286 24 

1,910.964 27 

(c) ANOVA~oriack of Fit Test 

55 df 

1,808:100 '2 
102:864 25 

.578 1 
102.286 24 

1,910.964 27 

M5 

904.05 
4.11 

M5 

602.89 
4.26 

M5 

904.QS 
4.1) 

.58: 
4;26 
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Cited 
References 

, ~inc~ t~l: data cO,ntain replicates, the analyst could ,test regre~sion model (17.51) for lack 
ot tit, utilIZIng the tact that the ANOYA error sum of squarcs 111 (16.29) is identical to the 
regression pure crror ~um or squares in (3.16). Both mcasure variation around the mean 
the Y observations at any given level or x (i.e .. around the estimated treatment mean y.~f 
Hence, the lack of lit sulll of squarcs can be readily obtained from previous results: , .. 

SSLF = SSE - SSPE = 102.864 - 102.286 = .578 
("I',hkI7.6"1 (T"hld7.6hl (17.53) 

Since thcre are c = r = 4 levels of X here and p = :I parameters in the regression 
model. SSLF has associated with it (" - P = 4 - 3 = I degree of ti'eedom. Hence, we obtain 
MSLF = .578/1 = .578. Table 17.6c contains the analysis of variance for the regression 
model, with the em»" sum of squares and degrees of freedom broken down into lack of fit 
and pure error cOIllPonents. 

The alternative conclusions (6.68a) fix the test of lack of fit here are: 

and test statistic (6.68b) is: 

HI): E{y} = f30 + I-)Ix + 1-)IIX
2 

H,,: E{ Y} i= 1-)0 + 1-)1.1 + f3l1 x2 

F
' MSLF 

= MSPE 

For a = .05. decision rule (6.68c) becomes: 

If F' .:::: F(.95; I. 24) = 4.26, conclude Ho 

If F'" > 4.26. conclude H" 

We calculate the test statistic from Table 17.6c: 

.58 
F*= -=.136 

4.26 

Since F* = .136.:::: 4.26. the analyst concluded that the quadratic response function isagood 
fit. Consequently. the fitted regression function in (17.52) was used in further evaluation 
of the relation between mean number of acceptable pieces produced and level of training, 
after expressing the titted response function in the original predictor variable X (lllJllllber of 
hours of training): 

y = -3.73571 + 9.17500X - .31250X2 

Figure 17.7 displays this fitted response function. 

17.1. Cochran, W. G .. and G. M. Cox. Ell'erill/el/tal Desiglls. 2nd cd. New York: John Wiley & Sons, 
1957, p. 74. 

17.2. Dunnett. C. W. "'A MUliiplc Comparison Procedure for Comparing Several Treallnent~ with a 
ControL·' JOIII"I/ai of" the AII/ericall Statistical AssociatiOlI 50 ( 1(55), pp. 1096 ..... 1121. 

17.3. Hsu. J. C. Mllltifile COlllflariS()l/s: Thear\" alld Metboc/.I·. London: Chapman & Hall. 1996. 
17.4. 011. E. R. '"Analysis or Means-A Graphical Procedure," IlIdllstrial Qllality Cu/llml24 (1967), 

pp. 101 ..... 109. 
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17.5. Nelson;· L. S. "Exact Critical Values for Use with the Analysis of Means," JournaL of Quality 
Technology 15 (1983), pp. 40-44. 

17.6. Nelson, P. R. "Additional Uses for the Analysis of Means and Extended Tables of Critical 
Values," Technometric~ 35 (1993), pp_ 61-71. 

17 _1_ Refer to Premium distribution Problem 16.12. A student, asked to give a class demonstration 
of the use of a confidence interval for comparing two treatment means, proposed to construct a 
99 percent confidence interval for the pairwise comparison D = J.L5 - J.L3. The student selected 

- -
this particular comparison because the estimated treatment means Y 5- and Y 3- are the largest 
and smallest, respectively, and stated: "This confidence interval is particularly useful. If it 
does not straddle zero, it indicates, with significance level ex = .01, that the factor level means 
are not equal." 

a. Explain why the student's assertion is not correct. 

b. How should the confidence interval be constructed so that the assertion can be made with 
significance level ex = .Ol? 

17.2. A trainee examined a set of experimental data to find comparisons that "look promising" 
and calculated a family of Bonferroni confidence intervals for these comparisons with a 
90 percent family confidence coefficient. Upon being informed that the Bonferroni procedure 
is not applicable in this case because the comparisons had been suggested by the data, the 
trainee stated: "This makes no difference. I would use the same formulas for the point estimates 
and the estimated standard errors even if the comparisons were not suggested by the data" 
Respond. 

17.3. Consider the following linear combinations of interest in a single-factor study involving four 
factor levels: 

(i) J.LI + 3J.L2 - 4J.L3 

(ii) .3J.L1 + .5J.L2 + .1J.L3 + .1J.L4 

(iii) J.LI +J.L2+J.L3 
3 

- J.L4 

a. Which of the linear combinations are contrasts? State the coefficients for each of the 
contrasts. 

b. Give an unbiased estimator for each of the linear combinations. Also give the estimated 
variance of each estimator assuming that ni == n. 

17.4. A single-factor ANOVA study consists of r = 6 treatments with sample sizes ni == 10. 

a Assuming that pairwise comparisons of the treatment means are to be made with a 90 percent 
family confidence coefficient, find the T, S, and B multiples for the following numbers of 
pairwise comparisons in the family: g = 2, 5, 15. What generalization is suggested by your 
results? 

b. Assuming that contrasts of the treatment means are to be estimated with a 90 percent family 
confidence coefficient, find the S and B multiples for the following numbers of contrasts in 
the family: g = 2. 5, 15. What generalization is suggested by your results? 

17.5. Consider a single-factor study with r = 5 treatments and sample sizes ni == 5. 

a. Find the T, S, and B multiples if g = 2, 5, and 10 pairwise comparisons are to be fnlide 
with a 95 percent family confidence coefficient. What generalization is suggested by your 
results? 
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17.6. 

17.7. 

b. Wh~t wo~dd be the T,. S, und B multiples lill" sample sizes 11; == 20'1 Does the gener .; 
obrall1ed 111 part (a) sull hold? ali> 

In making multiple comparisons, why is il appropriate to use the mUltiple COmpari ' . 
dure Ihat leads 10 the tightesl contidence intervals fix the sample datu obtained? D~on p. 

. ISCUss: 
For a single-factor study with,. = '2 trealment~ and sample sizes II; == 10, find the T ~; 
B multiples for g = I pairwise comparison wilh a 99 percent l"amily confidence coer;';.: 
What generalization is suggested by your results? CJ. 

Refer to Productivity improvement Problem 16.7. 

a. Prepare a line plot ofthe estimated factor level means Y i .. What does this plotsuggestr .: 
ing the effecI of the level of research and development expenditures on mean prodU::" 
improvement') Yf. 

b. Estimate Ihe mean productivity improvement for firms with high re~earch and develop J. 
expenditures levels: use a 1)5 percent confidence interval. ~. 

c. Obtain a 95 percent conlidence interval for D = 11~ - 111. Interpret your interval estimaf 

d. Obtain confidence intervals ti)r all pairwise comparisons of the treatment means; use iii 
Tukey procedure and a 90 percent family confidence coefficient. State your findings arl' 
prepare a graphic summary by underlining nonsignificant comparisons in your line plotin 
pari (a). .., 

e. Is the Tukey procedure employed in part (d) the most efficient one that could be used heri:: 
Explain. -

17.9. Refer to Questionnaire color Problem 16.8. 

a. Prepare a bar-interval graph of the estimated factor level means Y; .. where the intervat~ 
correspond to the confidence limits in (17.7) with a = .05. What doe:-- this plot sugge{ 
about the effect of color on the response rate') Is your conclusion in accord with the te,f 
result in Problem 16.8e? 

b. Estimate the mean response rate for blue questionnaires; use a 90 percent confidence interWJ( 

c. Test whether or not D = /13 -Il~ = 0: use a = .10. State the alternatives. decision rule, rui2: 
conclusion. In Iighl of the result for the ANOVA test in Problem 16.8e. is your conclllSi<>I11. 
surprising'? Explain. . 

17.10. Refer to Rehabilitation therapy Problem 16.9. 

a. Prepare a line plm of the estimated factor level means Yi .• What does this plot suggestabo&~" 
the en-ect of prior physical litness on the mean time required in therapy? 

b. E~til11ate with a 99 percent conlidence interval the mean number of days required in therap~ 
for persons of average physical fill1ess. . 

c. Obtain confidence intervals 1'01' DI = II~ - /13 and D~ = III - 11~: use the Bonferroni' 
procedure with a 95 percel1l lilmily conlidence coetlicient. Interpret your result,. 

d. Would the Tukey procedure have been more ctlkiel1l to use in part (c)? Explain. 

e. If the researcher also wished to estimate D, = 1(1 - J.1y- still with a 95 percent family 
conlldcnce coefficient. would the B multiple in part (C) need to be modifiedry Would this 
also be Ihe case if the Tukey procedure had been employed'? 

r. Test for all pairs of faclor level means whether or nOi they differ: use the Tukey procedure 
with a = .05. Set lip groups of factor levels whose means do not diner. 

*17.11. Reier to Ca~h offers Problem 16.10. 

a. Prepare a main eltecis plot of the estimared fuctor level means Yi .. What does this plot 
suggest regarding the etlect of the owner's age on the mean c,t~h oner'? 

b. Estimate the mean cash olfer for young owners: usc a 99 percent confidence interval. 
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c. Construct a 99 percent confidence interval for D = M3 - MI' Interpret your interval estimate. 

d. Test whether or not M2 - MI = M3 - M2; control the a risk at .01. State the alternatives, 
decision rule, and conclusion. 

e. Obtain confidence intervals for all pairwise comparisons between the treatment means; use 
the Tukey procedure and a 90 percent family confidence coefficient. Interpret your results 
and provide a graphic summary by preparing a paired comparison plot. Are your conclusions 
in accord with those in part (a)? 

f. Would the Bonferroni procedure have been more efficient to use in part (e) than the Tukey 
procedure? Explain. 

*17.12. Refer to FiUingmacbines Problem 16.11. 

a. Prepare a main effects plot of the estimated factor level means Yi .. What does this plot 
suggest regarding the variation in the mean fills for the six machines? 

b. Construct a 95 percent confidence interval for the mean fill for machine 1. 

c. Obtain a 95 percent confidence interval for D = M2 - MI' Interpret your interval estimate. 

d. Prepare a'paired comparison plot and interpret it. 

e. The consultant is particularly interested in comparing the mean fills for machines 1, 4, 
and 5. Use the Bonferroni testing procedure for all pairwise comparisons among these 
three treatment means with family level of significance a = .10. Interpret your results and 
provide a graphic summary by preparing a line plot of the estimated factor level means with 
nonsignificant differences underlined. Do your conclusions agree with those in part (a)? 

f. Would the Tukey testing procedure have been more efficient to use in part (e) than the 
Bonferroni testing procedure? Explain. 

17.13. Refer to Premium distribution Problem 16.12. 

a. Prepare an interval plot of the estimated factor level means Yi-> where the intervals corre­
spond to the confidence limits in (17.7) with a = .10. What does this plot suggest about the 
variation in the mean time lapses for the five agents? 

b. Test for all pairs offactor level means whether ornotthey differ; use the Tukey procedure with 
a = .10. Set up groups of factor levels whose means do not differ. Use a paired comparison 
plot to summarize the results. 

c. Construct a 90 percent confidence interval for the mean time lapse for agent 1. 

d. Obtain a 90 percent confidence interval for D = M2 - MI' Interpret your interval estimate. 

e. The marketing director wishes to compare the mean time lapses for agents 1, 3, and 5. Obtain 
confidence intervals for all pairwise comparisons among these three treatment means; use 
the Bonferroni procedure with a 90 percent family confidence coefficient. Interpret your 
results and present a graphic summary by preparing a line plot of the estimated factor level 
means with nonsignificant differences underlined. Do your conclusions agree with those in 
part (a)? 

f. Would the Tukey procedure have been more efficient to use in part (e) than the Bonferroni 
procedure? Explain. 

* 17 .14. Refer to Productivity improvement Problem 16.7. 

a Estimate the difference in mean productivity improvement between firms with low or moder­
ate research and development expenditures and firms with high expenditures; use a 95 percent 
confidence interval. Employ an unweighted mean for the low and moderate expenditures 
groups. Interpret your interval estimate. ~ . 

b. The sample sizes for the three factor levels are proportional to the population sizes. The 
economist wishes to estimate the mean productivity gain last year for all firms in the 
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population. Estimate this overall mean productivity improvement with a 95 percent fi con _ 
dencc interval. 

c. Using the Scheffc procedure. obwin conlidence intervals for the following comparisons w'th 
90 percent family conlidcnce codlicient: 1 

D; =//2-/11 

/11 + /12 
LI = ~-')~- /1 .. 

Interpret YOllr results and describe your lindings. 

17.15. Rerer to Rehabilitation therapy Problem 16.9. 

tI. Estimate the contrast L = (/11 - /12) - <112 - /1.;) with a 99 pcrcem confidence interval. 
Interpret your inrerval estimate. 

b. Estimate the rollowing comparisons using the Bonrerroni procedure with a 95 percent family 
conlidence coellicient: 

DI = /11-/12 

D2 = fll - /13 

iJ., = /12 - /13 

LI = DI - f)3 

Intelvret your results and describe your lindings. 

c. Would the Schetfe procedure have been more etlicient to use in part (b) than the BonfelTOni 
procedure"! Explain. 

* 17.16. Rerer to Cash offers Problem 16.10. 

a. Estimate the contrast L = (fl., - /12) - (f12 - //1) with a 99 percent confidence interval. 
Intetvret your inrerval estimate. 

b. Estimate the rollowing comparisons with a 90 percent ramily conlidence coefficient; employ 
the most etlicient multiple comparison procedure: 

Inrerpret your results. 

D3 = /13 - fll 

LI = ih - DI 

* 17.17. Refer to Filling machines Problem 16.1 I. Machines 1 and 2 were purchased new five years 
ago. machines 3 and 4 were purchased in a reconditioned state live years <lgo. and machines 
5 and 6 were purch,t~ed new last year. 

a. Estimate the contrast: 

/11 + /12 /13 + /I~ 
L=------

2 2 

with a 95 percent conlidence interval. Intelvrer your inrerval estimate. 

b. Estimate the following comparisons with a 90 percent tinnily conlidence coetlicient use the 
most efticienr multiple comparison procedure: 

/11 + fl2 /1., + fl~ 
LI=~~~-

2 2 
/11 + /12 /15 + /16 

L,=~~~-~~~ 
- 2 2 

L- = /11 + /12 + fl5 + /16 _ /13 + /1~ 
, 4 2 

L 
_ /11 + /12 + /1., + /1~ 

~-
4 
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Interpret your results. What can the consultant learn from these results about the differences 
betWeen the six filling machines? 

17.18. Refer to Premium distribution Problem 16.12. Agents 1 and 2 distribute merchandise only, 
agents 3 and 4 distribute cash-value coupons only, and agent 5 distributes both merchandise 
and coupons. 

a. Estimate the contrast: 

L = /1-1 + /1-2 _ /1-3 + /1-4 
2 2 

with a 90 percent confidence interval. Interpret your interval estimate. 

b. Estimate the following comparisons with 90 percent family confidence coefficient; use the 
Scheffe procedure: 

Interpret your results. 

c. Of all premium distributions, 25 percent are handled by agent 1,20 percent by agent 2,20 
percent by agent 3, 20 percent by agent 4, and 15 percent by agent 5. Estimate the overall 
mean time lapse for premium distributions with a 90 percent confidence interval. 

*17.19. Refer to Filling machines Problem 16.11. 

a. Use the analysis of means procedure to test for equality of treatment effects, with family 
significance level.05. Which treatments have the strongest effects? 

b. Using the results in part (a), obtain the analysis of means plot. What additional information 
does this plot provide in comparison with the main effects plot in Problem 17.12a? 

17.20. Refer to Premium distribution Problem 16.12. 

a Use the analysis of means procedure to test for equality of treatment effects, with family 
significance level.IO. Which treatments have the strongest effects? 

b. Using the results in part (a), obtain the analysis of means plot. What additional information 
does this plot provide in comparison with the interval plot in Problem 17 .13a? 

17.21. Refer to Solution concentration Problem 3. 15. Suppose the chemist initially wishes to employ 
ANOVA model (16.2) to determine whether or not the concentration of the solution is affected 
by the amount of time that has elapsed since preparation. 

a. State the analysis of variance model. 

b. Prepare a main effects plot of the estimated factor level means Yi .• What does this plot 
suggest about the relation between the solution concentration and time? 

c. Obtain the analysis of variance table. 

d. Test whether or not the factor level means are equal; use a = .025. State the alternatives, 
decision rule, and conclusion. 

e. Make pairwise comparisons of factor level means between all adjacent lengths of time; 
use the Bonferroni procedure with a 95 percent family confidence coefficient. Are your 
conclusions in accord with those in part (b)? Do your results suggest that the r~gression 
relation is not linear ? 
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17.22. A market resetlrcher stared in a seminar: "The power approach to determining sample si 
for analysis or variance problems is nOI meaningrul: only Ihc estimation approach ShoUldZ: 
used. We never conduct a s!lldy where all trealmem means afe expected to be equal. so we 
always interested in a variety or estim<ltes." Discuss. are 

17.23. Refer to Questionnaire color Problem 16.8. Suppose estimatcs of all pairwisc compalisons 
are of primary importance. WhHl would be Ihe required sample sizes if the precision of ail 
pairwise cOll1purisons is to be ±3.0. using the Tukey procedure with a 95 percent famil 
confidence coel1icient? y 

17.24. Rerer to Rehabilitation thcl'apy Problem 16.9. Suppose pri mary interest is in estimating the 
two pairwise comparisons: 

L~ = 1~3 - I.I.~ 

What would be the required sample sizes ir the precision of each comparison is to be ±3.0days, 
using the mo~t efticiem multi pic comparison procedure with a 95 percent family confidence 
coetlicient'? 

*17.25. Refer to Filling machines Problem 16.11. Suppo~e primary interest is in estimating the 
rollowing compari~ons: 

I~I + I.I.~ 1~3 + I.I.~ 
L, = --2-- - ~-2-

L~ = I~' + 1~1 + 1.1.., + I~~ _ _ /~_5_+_I.I._h 
4 

What would be the required sample sizes if lhe precision or e,\ch of thesc comparisons is not 
to exceed ±.08 ounce. using the best multiple comparison procedure with a 95 percent family 
confidence coetlicient? 

17.26. Refer to Premium distribution Problem 16.12. Suppose primary interest is in estimating the 
following comparisons: 

fli + I.I.~ 
L, = --2-- - 1.1.., 

I~ I + II~ 1~3 + I.I.~ 
L~=--- - ---

:2 :2 

What would bc the rcquired sample sIzes if the precision of each of the estimated comparisons 
is not to exceed ± 1.0 day. using the mo~t efficient multiple comparison procedure with a 
90 percent ramily confidence coetlicient? 

17.27. Refer to Rehabilitation therapy Problem 16.9. Suppose that pri mary interest is itt comparing 
the below-average and above-averagc physical fitness groups. respectively. with the average 
physical fitncss group. Thus. two comparisons are of interest: 

Assume that a rcusonable planmng value 1'01' the error standard deviation is a = 4.5 days. 

a. It has been decided to use equal sample sizes (11) I'm the below-average and above-average 
groups. If twice this sample size (211) were to be used for thc average physicallitness group, 
what would be the required sample sizes if the precision of each pairwise compadson is to be 
±2.5 days. using the Bontenuni procedure and a 90 percent family confidence coefficient? 

b. Repeat the calculations in part (a) if the sample size for the average physical fitnesS glDuP 
is to be: (I) 11 and (2) 311. all othef specificalions remaining the same. 

c. Compare your results in parts (iI) and (b). Which design leads 10 the smallest total sample 
size here? 
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17.28. Refer to-Rehabilitation therapy Problem 16.9. A biometrician has developed a scale for 
physicaJ fitness status, as follows: 

Physical Fitness 
Status 

Below average 
Average 
Above average 

Scale 
Value 

83 
100 
121 

a. Using this physical fitness status scale, fit first-order regression model (1.1) for regressing 
number of days required for therapy (Y) on physical fitness status (X). 

b. Obtain the residuals and plot them against X. Does a linear regression model appear to fit 
the data? \ 

c. Perform an F test to determine whether or not there is lack of fit of a linear regression 
function; use a = .05. State the alternatives, decision rule, and conclusion. 

d. Could you test for lack of fit of a quadratic regression function here? Explain. 

*17.29. Refer to Filling machines Problem 16.11. A maintenance engineer has suggested that the 
differences in mean fills for the six machines are largely related to the length of time since a 
machine last received major servicing. Service records indicate these lengths of time to be as 
follows (in months): 

Filling Number of Filling Number of 
Machine Months Machine Months 

.4 4 5.3 
2 3.7 5 1.4 
3 6.1 6 2.1 

a. Fit second-order polynomial regression model (8.2) for regressing amount of fill (Y) on 
number of months since major servicing (X). 

b. Obtain the residuals and plot them against X. Does a quadratic regression function appear 
to fit the data? 

c. Perform an F test to determine whether or not there is lack of fit of a quadratic regression 
function; use a = .01. State the alternatives, decision rule, and conclusion. 

d. Test whether or not the quadratic term in the response function can be dropped from the 
model; use a = .01. State the alternatives, decision rule, and conclusion. 

17.30. Show that when r = 2 and ni == n, q defined in (17.35) is equiValent to .J2lt*l, where t* is 
defined in (A.65) in Appendix A. 

17.31. Starting with (17.38), complete the derivation of (17.30). 

17.32. Show that when r = 2, S" defined in (17.43a) is equivalent to [t(1 - a/2; nT - r)f. 

17.33. Show that the estimated variance OHi in (17.48) is given by (17.49). 

17.34. (Calmlus needed.) Refer to Rehabilitation therapy Problem 16.9. The sample sizes for the 
below-average, average, and above-average physical fitness groups are to be n, kn, and n, 
respectively. Assuming that ANOVA model (16.2) is appropriate, find the optimal "roue of 

k to minimize the variances of LI = 1';. - ~. and L2 = ~. - ~. for a given total sample 
size nT. 
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Projects 

Case 
Studies 

-17.35. Refer to the SENlC dataset in Appendix e.1 and Project 16.42. Obtain confidence intervalsf, 
.. . If" ITk or all pairwise compansons between t 1e our regions; use t 1e u ey procedure ,md a 90percen 

family confidence coefticient.Interpret your results and state your findings. Prepare a line pI t 
or the estimated factor level means and underline all nonsignificant comparisons. ot 

17.36. Refer to the CDl data set in Appendix e.2 and Project 16.44. Obtain confidence intelvals for 
all pairwise comparisons between the four regions; use the Tukey procedure and a 90 percent 
family confidence coefficient. Interpret your results and state your findings. Prepare a line plot 
of the estimated factor level means and underline all nonsignificant comparisons. 

17.37. Refer to the Market share data set in Appendix e.3 and Project 16.45. Obtain confidence 
intervals for all pairwise comparisons among the four factor levels; use the Tukey plDcedure 
and a 95 percent family confidence coefficient. Interpret your results and state your find­
ings. Prepare a line plot of the estimated factor level means. underscoling all nonsignificant 
comparisons. 

17.38. Refer to Project 16.46e. 

a. For each replication, construct confidence intervals for all pairwise comparisons among 
the three treatment means: use the Tukey procedure with a 95 percent family confidence 
coefficient. Then determine whether all confidence intervals for the replication are correct, 
given that J-li = 80, J-l2 = 60, and J-l3 = 160. 

b. For what proportion of the 100 replications are all confidence intervals correct? Is this 
propoftion close to theoretical expectations? Discuss. 

17.39. Refer to the Prostate cancer data set in Appendix e.5 and Case Study 16.49. Obtain confidence 
intervals for all pairwise comparisons among the three Gleason score levels: use the Tukey 
procedure and a 95 percent family confidence coefficient. Interpret your results and state your 
findings. Prepare a line plot of the estimated factor level means. underscoring all nonsignificant 
comparisons. 

17.40. Refer to the Real estate sales data set in Appendix e.7 and Case Study 16.50. Obtain confi­
dence intervals for all pairwise compmisons among the four number-of-bedroom categories; 
use the Tukey procedure and a 90 percent family confidence coefficient. Interpret your re,lIlts 
and state your findings. Prepare a line plot of the estimated factor level means. underscoring 
all nonsigni ficant comparisons. 

17.41. Refer to the Ischemic heart disease data set in Appendix e.9 and Case Study 16.~1. Ob­
tain confidence intervals for all pairwise comparisons among the six number-of-intelvention 
categories: use the Tukey procedure and a 90 percent family confidence coefficient. Interpret 
your results and state your findings. Prepafe a line plot of the estimated factor level means, 
underscming all nonsignificant comparisons. 



Chapter 

ANOVA Diagnostics 
and ReIlledial Measures 

When discussing regression analysis, we emphasized the importance of examining the 
appropriateness of the regression model under consideration, and noted the effectiveness of 
residual plots and other diagnostics for spotting major departures from the tentative model. 
Examination of the appropriateness of analysis of variance models is no less important. 

In this chapter, we take up the use of residual plots for diagnosing the appropriateness of 
analysis of variance models, as well as formal tests for the constancy of the error variance. 
We also discuss the use of transformations of the response variable as a remedial measure 
to improve the appropriatel)ess of the analysis of variance model for estimation and test 
inferences. 

For pedagogic reasons, as in regression analysis, we have discussed inference procedures 
before diagnostics and remedial measures. The actual sequence of developing and using 
any statistical model is, of course, the reverse: 

1. Examine whether the proposed model is appropriate for the set of data at hand. 
2. If the proposed model is not appropriate, consider remedial measures, such as transfor­

mation of the data or modification of the model. 
3. After review of the appropriateness of the model and completion of any necessary 

remedial measures and an evaluation of their effectiveness, inferences based on the 
model can be undertaken. 

It is not necessary, nor is it usually possible, that an ANOVA model fit the data perfectly. As 
will be noted later, ANOVA models are reasonably robust against certain types of departures 
from the model, such as the error terms not being exactly normally distributed. The major 
purpose ofthe examination of the appropriateness ofthe model is therefore to detect serious 
departures from the conditions assumed by the model. 

18.1 Residual Analysis 

Residual analysis for ANOVA models corresponds closely to that for regression models. 
We therefore discuss only briefly some key issues in the use of residual analysis for ANOVA 
models. 

77S 
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Residuals 
The residuals eij for the ANOVA cell means model (16.2) were defined in (16.20): 

e;j = f ij - Yij = f ij - ri . (18.1) 

As in regression, semistudentized residuals, studentized residuals, and studentized deleted 
residuals are often helpful for diagnosing ANOVA model departures. The definitions of 
these residuals for regression in Chapters 3 and 10 are still applicable for ANOVA models 
However, in view of the simple nature of the X matrix for ANOVA models, the regressio~ 
formulas often simplify here. The semistudentized residuals e~ in (3.5) for regression remain 
unchanged: 

* eij 
e··=---

IJ .jMSE 

The studentized residuals rij in (10.20) become here: 

eij 
rij =--

s {eij } 

where: 

MSE(ni - 1) 

Finally, the studentized deleted residuals tij in (10.26) become here: 

Comment 

(18.2) 

(18.3) 

(18.3a) 

(18.4) 

For AN?VA model (16.2), it can be shown that the leverage of Yij , defined in (l0.18), is given by: 

1 
h··;- = -

'./ . ./ ni 
(18.5) 

Hence, the variance of the residual eij for ANOVA model (16.2) can be obtained by substituting (18.5) 
into (10.14): • 

2{ (52(11;-1) 
(5 eiil=----

. ni 
(18.6) 

Replacing (52 by the unbiased estimator MSE and taking the square root lead to the estimated stllndard 
deviation s{eii) in (l8.3a). 

When the' treatment sampl e sizes ni are the same, the leverages of all the observations Yij are 
the same. As a result, the estimated standard deviations of the residuals, s{eij}, are all the swne so 
that the semistudentized residuals eij and the studentized residuals rij provide essentially the same 
information, differing only by a constant factor near [ unless the treatment sample size is very small . • 

Residual Plots 
Residual plots useful for analysis of variance models include: (1) plots against the fitted 
values, (2) time or other sequence plots, (3) dot plots, and (4) normal probability plots. 
All of these plots have been encountered previously. We therefore proceed directly to an 
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example to illus~t~ the use of residual plots for evaluating the appropriateness of analysis 
of variance models.: 

Table IS. 1 contains a portion ofthe residuals for the rust inhibitor example of Chapter 17. 
For ease of presentation, the treatments are shown in the columns of the table. The residuals 
were obtained from the data in Table 17.2a. For instance, the residual for the first experi­
mental unit treated with brand A rust inhibitor is: 

ell- = Yll - Yll = Yll - YI • = 43.9 - 43.14 = .76 

Figure IS.l presents three MINITAB diagnostic residual plots. Figure IS.la contains a 
residual plot against the fitted values. This plot differs in appearance from similar plots for 

'--. 
Brand 

A B C 0 
j ; = 1 ;=2 ;=3 ;=4 

1 .76 .36 .45 -4.27 
2 -4.14 -2.34 1.35 4.73 
3 3.56 3.26 .55 .23 

'8 -4.24 -1.34 -2.75 -1.77 
9 .46 1.36 -4.15 .43 

10 -3.14 -.34 1.25 -.77 

fiGURE 18.1 MINITAB Diagnostic Residual Plots-Rust Inhibitor Example. 
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regression analysis because the fitted values ~Yij he~e are the same for all observations fora 
given factor level. Recall from (16.17) that Yij = Yi •• 

Figure 18.1 b contains aligned dot plots of the residuals for each factor level. The 
plots are similar to the residual plot against the fitted values in Figure 18.la, excepthe~e 
the residual scale is the horizontal one. An advantage of the plot in Figure 18.1 a is that ~ 
facilitates an assesslllentofthe relation between the magnitudes of the error variances and~ 
factor level means. A disadvantage is that some of the esti mated factor level means may be far 
apart, making a comparison of the factor levels more difficult. This difficulty is remedied in 
Figure 18.1 b since dot plots can be placed close together to facilitate comparisons between 
factor levels. 

Figure 18.1 c contains a normal probohility plot of the residuals. This plot is exactly the 
same as for regression models. 

No sequence plot of the residuals is presented here because the data for the rust inhibitor 
example were not ordered according to time or in some other logical sequence. 

All of the plots in Figure 18.1, as we shall !;ee, suggest that ANOVA model (16.2) is 
appropriate for the rust inhibitor data. 

Diagnosis of Departures from ANOVA Model 
We consider now how residual plots can be helpful in diagnosing the following departures 
from ANOVA model (16.2): 

I. Nonconstancy of error variance 
2. Nonindependence of error terms 
3. Outliers 
4. Omission of important explanatory variables 
5. Nonnormality of error terms 

Nonconstancy of Error Variance. ANOVA model (16.2) requires thatthe errortermS8ij 
have constant variance for all factor levels. When the sample sizes are not large and do not 
differ greatly, the appropriateness of this assumption can be studied by using the residuals, 
semistudentized residuals. or studentized residuals. Plots of residuals agoinstfitted values or 
dot plots of residuals are helpful. When the sample sizes differ greatly, studentized residuals 
should be used in these plots. Constancy of the error variance is shown in these plot'> by me 
plots having about the same extent of scatter of the residuals around zero for each factor 
level. This is the case for the rust inhibitor example in Figures 18.1 a and 18.1 b. 

Figure 18.2 is a prototype residual plot against the fitted values when the errOr variances 
are not constant. This plot portrays the case where the error terms for factor level 3 have a 
larger variance than those for the other two factor levels. 

When the sample sizes for the different factor levels are large, histograms or boxplots 
of the residuals for each treatment-arranged vertically and using the same scale, like the 
dot plots in Figure 18.1 b-are an effective means for examining the constancy of the error 
variance, as well as for assessing whether the error terms are normally distributed. 

A number of statistical tests have been developed for formally examining the equality 
of the r factor level variances; two of these tests will be discussed in Section 18.2. 

Nonindependence of Error Terms. Whenever data are obtained in a time sequence, 
a residual sequence plot should be prepared to examine if the error terms are serially 
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correlated. Figure 18.3 contains the residuals for an experiment on group interactions. Three 
different treatments were applied, and the group interactions were recorded on videotapes. 
Seven replications were made for each treatment. Afterward, the experimenter measured 
the number of interactions by viewing the tapes in randomized order. Figure 18.3 strongly 
suggests that the experimenter discerned a larger number of interactions as more experience 
in viewing the tapes was gained. As a result, the residuals in Figure 18.3 appear to be serially 
correlated. In this instance, an inclusion in the model of a linear term for the time effect 
might be sufficient to assure independence of the error terms in the revised model. 

Time-related effects may also lead to increases or decreases in the error variance over 
time. For instance, an experimenter may make more precise measurements over time. Fig­
ure 18.4 portrays residual sequence plots where the error variance decreases over time. 

When the data are ordered in some other logical sequence, such as in a geographic 
sequence, a plot of the residuals against this ordering is helpful for ascertaining whether the 
error terms are serially correlated according to this ordering. 

Outliers. The detection of outliers is facilitated by various plots of the studentized d~leted 
residuals. Residual plots against fitted values, residual dot plots, box plots, and stem-and-
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FIGURE 18.4 
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FIGURE 18.5 
Residual Plot 
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Omission of 
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leaf plots are particularly helpful. These plots easily reveal olltlying observations, that is, 
observations that differ from the fitted value by far more than do other observations. As 
noted in Chapter 3, it is wise practice to discard oUtlying observations only if they can be 
identified as being due to such specific causes as instrumentation malfunctioning, observer 
measurement blunder, or recording error. 

The test for outliers in regression discussed in Chapter lOis applicable to anatysis of 
variance as well. The appropriate Bonferroni critical value here is t(l-a/2nT; nT -r-l). 
If the largest absolute studentized deleted residual exceeds this critical value, that case 
should be considered an outlier. Note that the implicit family of tests here consists of the 
tests on all nT residuals for the study since we do not know in advance which case will have 
the largest absolute studentized deleted residual. 

Occasionally, a test for an outlier is suggested in advance of the analysis, as when a 
substitute operator is used for one of the production runs in a manufactudng experime~t 
Concern about the validity of this response observation might lead to an outl ier test. In thiS 

case, the Bonferroni critical value would be t(l - a12; nT - r - I). 

Omission of Important Explanatory Variables. Residual analysis may also be used to 

study whether or not the single-factor ANOVA model is an adequate model. In a learning 
experiment involving three motivational treatments, the residuals shown in Figure 18.5 
were obtained. The residual plot against the fitted values in Figure 18.5 shows no unusual 



Chapter 18 ANOVA DiaglWstics and Remedial Measures 781 

overall pattern. The experimenter wondered, however, whether the treatment effects differ 
according to the gender of the subject. In Figure 18.5 the residuals for male subjects are 
shown by open circles, and those for females by dots. The results in Figure 18.5 suggest 
strongly that for each of the motivational treatments studied, the treatment effects do differ 
according to gender. Here, an analysis of covariance model, recognizing both motivational 
treatment and gender of ~ubject as explanatory variables as mentioned in Chapter 15, might 
be more usefuL Analysis of covariance models will be discussed in Chapter 22. 

Note that residual analysis here does not invalidate the original single-factor modeL 
Rather, the residual analysis points out that the original model overlooks differences in 
treatment effects that may be important to recognize. Since there are usually many ex­
planatory variables that h~lVe some effect on the response, the analyst needs to identify for 
residual analysis those explanatory variables that most likely have an important effect on 
the response. 

Nonnormality of Error Terms. The normality of the error terms can be studied from 
histograms, dot plots, box plots, and normal probability plots of the residuals. In addition, 
comparisons can be made of observed frequencies with expected frequencies if normality 
holds, and formal chi -square goodness of fit or related tests can be utilized. The discussion in 
Chapter 3 about these methods for assessing the normality of the error terms for regression 
is entirely applicable to ANOVA models. 

When the factor level sample sizes are large, the study of normality can be made sepa­
rately for each treatment. When the factor level sample sizes are small, one can combine the 
residuals eij for all treatments into one group, provided that the evidence suggests that there 
are no major differences in the error variances for the treatments studied. This combining 
was done in the rust inhibitor example in Figure 18.1c. This figure does not indicate any 
serious departures from normality. The pattern of the points is reasonably linear except 
possibly in the tails. The coefficient of correlation between the ordered residuals and their 
expected values under normality is .987, which also supports the reasonableness of the 
normality assumption. 

When unequal variances of the error terms for the different factor levels are indicated 
and normality must be examined for the combined data, studentized residuals (18.3) should 
be used, with MSE replaced by the sample variance Sf in (16.39) for observations from 
the ith treatment. If ordinary residuals were used, nonnormality might be indicated solely 
because of the failure of the error terms to have equal variances. 

Comment 

As for regression models, the ANOVA residuals eij are not independent random variables. For ANOVA 
model (16.2), they are subject to the restrictions in (16.21). Consequently, statistical tests that require 
independent observations are not exactly appropriate for ANOVA residuals. If, however, the number 
of residuals for each factor level is not small, the effect of the correlations will only be modest. It has 
been noted that graphic plots of residuals are less subject to the effects of correlation than are statistical 
tests because graphic plots contain the individual residuals and not simply functions of them. • 

18.2 Tests for Constancy of Error Variance 

Several formal tests are available for studying the constancy of the error variance, as required 
by the ANOVA modeL We shall consider two of these, the Hartley test (Ref. 18.1) and the 
Brown-Forsythe test (Ref. 18.2). Both tests assume that independent random samples are 
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Hartley Test 

obtained from each population. The Hartley test is simple to carry out, but is applicable 
only if the sample sizes are equal and if the en'or terms are normally distributed. The test 
is designed to be sensitive to substantial differences between the largest and the smallest 
factor level variances. The Brown-Forsythe test, discussed in Chapter 3, is slightly more 
difficult to compute but is more generally applicable. The test has been shown to be robust 
to departures from normality, and sample sizes need not be equal. 

Both the Hartley test and the Brown-Forsythe test are often conducted at Iowa levels 
when used for testing the constancy of the error variance in the analysis of variance. The 
reason is that, [l.', we shall note in Section 18.6, the F test for equal ity of factor level means 
is robust against nonconstancy of the error variance when the factor level sample sizes are 
approximately equal, as long as the differences in the variances are not extremely large. 
Hence, the purpose of using the Hartley or Brown-Forsythe tests in ANOVA is often to 
determine whether extremely large ditferences in the error variances exist. For this purpose, 
a low ex level may be employed since only large differences in the error variances need to 

be detected. 

We shall describe the Hartley test in general terms. The test considers /' normal populations; 
the variance of the ith population is denoted by 0/. Independent samples of equal size are 
selected from the r populations; the sample variance for the ith population is denoted by 
sl and the common number of degrees of freedom associated with each !:ample variance is 
denoted by df TIle alternatives to be tested are: 

Ho: o? = 01 = ... = o} 
Ha: not all 0/ are equal 

(18.7) 

The Hartley test statistic, denoted by H*. is based solely on the largest sample variance, 
denoted by max(s;). and the smallest sample variance. denoted by min(~}): 

H' = max (s?) 
min (sf) 

(18.8) 

Values of H~ near I support Ho, and large values of H* support Ha. The distribution of H* 
when Ho holds has been tabulated, and selected percentiles are presented in Tablf B.IO. 
The distribution of H* depends on the number of populations r and the common number 
of degrees of freedom df 

The appropriate decision rule for controlling the risk of making a Type I error at ex is: 

If H* S H (I - ex; r, df"), conclude Ho 

If H* > H (I - ex; r, dfl. conclude Ha 
(18.9) 

where H (I - ex; r, (l) is the ( I - ex l 100 percentile of the distribution of H* when Ho holds, 
for r populations and df degrees of freedom for each sample variance. 

When the Hartley test is used for the single-factor ANOVA model (16.2) willi equal 
sample sizes, 11; == II, we have (f = II - I. The r normal populations are the normal 
probability distributions of the Y observations for the r factor levels. The sample variance 
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s;- is the variance ofthe'ni observations Yij for the ith factor level or equivalently the variance 
of the ni residuals eij, defined in (16.39); for ni == n, sl becomes: 

whenni == n (18.10) 

The ABT Electronics Corporation performed an experiment to evaluate five types of flux for 
use in soldering printed circuit boards. A major concern of the firm's reliability engineers 
was the strength of the soldered joints. To test the five types of flux, 40 printed circuit 
boards were selected at random. Each of the five flux types was randomly assigned to 8 
of the 40 circuit boards and an electronic switch was soldered to each board using the 
designated flux type. Following a four-week storage period, the 40 circuit boards were 
tested by an hydraulically operated testing machine which exerted increasing pulling force 
on each switch. The force (in pounds) required to break a joint, termed the pull strength, 
is the response of interest. This design is a completely randomized design, with eight 
replicates of the five treatments corresponding to the five levels of the categorical factor, 
flux type. 

A portion of the observed pull strengths in the experiment is shown in Table 18.2, along 
with the estimated treatment means ri. and sample variances si- A dot plot of these data 
is presented in Figure 18.6. Notice that the variability in pull strengths for the third solder 
type appears to be larger than for the others. 

Since approximate normali):y is required by the Hartley test, normal probability plots of 
the residuals were first constructed for each treatment (not shown). The approximate nor­
mality of the residuals for each treatment was supported by the plots and by the correlation 
test (the correlations in the five plots are .982, .981, .977, .958, and .939; the critical value 
for a = .05 from Table B.6 is .906). 

The alternatives for the Hartley test here are: 

Joint 
j i = 1 

1 14.87 
2 16.81 

7 17.40 
8 14.62 

Yi · 15.420 

Vi 15.170 

s? 
[ 

1.531 

Ho: a} = a} = ... = of 
Hu: not all 0/ are equal 

Flux Type (i) 

i = 2," i = 3 ;=4 

18.43 16.95 8.59 
18.76. 12.28 10.90 

17.16 19.35 9.41 
16.40 15.52 10.04 

18.528 15.004 9.741 

18.595 15.255 10.010 

1.570 6.183 .667 

;= 5 

11.55 
13.36 

12.05 
11.95 

12.340 

12.105 ~ . 
.592 
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FIGURE 18.6 
Dot Plots of 
Pull 
Strengths-
ABT 
Electronics 
Example. 

Type 5 .1. 

Type 4 aJ.. 

Type 3 ...... • 

Type 2 ..... 
Type 1 ..s.-

O 10 20 30 
Pull Strength 

For level of significance a = .OS, r = S, and df = 8 - 1 = 7, we require H (.95; 5,7) = 
9.70. Hence the appropriate decision rule is: 

If H* .:S 9.70, conclude Ho 

If H* > 9.70, conclude Ha 

From Table 18.2 we see that max(sl) = 6.183 and min(sl) = .-S92. Hence the test statistic is: 

H* = 6.183 = 10.44 
.S92 

Since H* = 10.44 > 9.70, we conclude Ha, that the five treatment variances are not equal. 

Comm.ents 

1. The Hartley test strictly requires equal sample sizes. If the sample sizes are unequal but do not 
differ greatly, the Hartley test may still be used as an approximate test. For this purpose, the average 
number of degrees of freedom would be used for entering Table B.l O. 

2. The Hartley test is quite sensitive to departures from the assumption of normtl popuultions and 
should not be used when substantial departures from normality exist. • • 

Brown-Forsythe Test 
The Brown-Forsythe test for constancy of the error variance in regression was discussed in 
Chapter 3. The test was originally developed for use in ANOVA applications and is more 
general than its use for regression described in Chapter 3. The Brown-Forsythe test, just 
like the Hartley test, can be used to study the equality of r population variances. Unlike 
the Hartley test, the Brown-Forsythe test is robust against departures from normality, which 
often occur together with unequal variances. Also, the Brown-Forsythe test does not require 
equal sample sizes. 

To test the alternatives in (18.7) using the Brown-Forsythe test, we first compute~the 
absolute deviations of the f ij observations about their respective factor level medians fi: 

dij = !Yij - I'd (18. 11 ) 
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The Brown-Forsythe test then determines whether or not the expected values of the absolute 
deviations for the r treatments are equal. If the r error variances a} are equal, so will the 
expected values of the absolute deviations be equal. Unequal error variances imply differing 
expected values of the absolute deviations. The Brown-Forsythe test statistic is simply the 
ordinary F* statistic in (16.55) for testing differences in the treatment means, but now based 
on the absolute deviations dij in (18.11): 

where: 

* MSTR 
FSF = MSE 

MSTR = L=-n_i(_d,_ .. _-_d_ .. _)2 
r-l 

L - 2 
'" (d·· - d·.) 

MSE=D 'J ' 

nT - r 

d .. = LLdij 

nT 

(18.12) 

(18.12a) 

(18.12b) 

(18.12c) 

(18.12d) 

If the error terms have constant variance and the factor level sample sizes are not 
extremely small, FBF follows approximately an F distribution with r - 1 and nT - r 

degrees of freedom. Large FBF values indicate that the error terms do not have constant 
variance. 

Table 18.2 for the ABT Electronics Corporation example provides the sample medians Yi 

for the five treatments. The absolute deviations dij in (18.11) are shown in Table 18.3. We 
illustrate their calculation for d,,: 

d" = IY" - Yri = 114.87 - 15.1701 = .300 

The FBF test statistic (18.12) based on the absolute deviations is obtained in the usual manner; 
it is F;;F = 2.94. For a = .05, we require F(.95; 4, 35) = 2.64. Since F;;F = 2.94 > 2.64, 
we conclude Ha, that the error terms do not have constant variance. The P-value for this 
test is .034. 

Joint Flux Type (;) 

j ; = 1 ; = 2 ;=3 ;=4 ;=5 

1 .300 .165 1.695 1.420 .555 
2 1.640 .165 2.975 .890 1.255 , . 
7 2.230 1.435 4.095 .600 .055 
8 .550 2.195 .265 .030 .155 
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18.3 OvervicYv of Relllcdiall\lcasHre~ 
-------------------------------------------------------------------------------------

18.4 

In the remainder of this chapter, we con.sider three remedial measures for two common de­
partures from ANOYA model (16.2)--noncon,~tancy of the error variance and nonnonnality 
of the distribution of the error terms. 

I. If the error terms are normally distributed but the variance of the error terms is not 
constant, a standard remedial measure is to use weighted least squares. We have already 
considered weighted least squares for nonconstancy of the error variance in regression mod­
els. These weighted least squares procedures for regression carryover directly to analysis 
of variance models. 

2. Often, non constancy of the error variance is accompan ied by nonnomml ity of the error 
term distribution. A standard remedial measure here is to transform the response variable 
Y. We shall present two approaches to finding an appropriate transformation to make the 
error distribution more nearly normal and to help stabilize the variance of the errortenns_ 
some simple guides and the Box-Cox procedure. The latter was considered in Chapter 3 for 
regression models and is directly applicable to analysis of variance models. 

3. When there are major departures from ANOYA model (I 6.2) and transformations are 
not successful in stabilizing the error variance and bringing the error distribution close to 

normal, a nonparametric test for the equality of the factor level means may be used instead 
of the standard F test. We shall consider a nonparametric test that is based on the ranks of 
the Y observations. 

We begin our discussion of remedial measures with weighted least squares. 

Weighted Leas1 SqHare~ 

When the errors Cij are normally distributed but their variances are not the same for the 
different factor levels, cell means model (16.2) becomes: 

(18.13) 

where cij are independent N(O. 0/). 

Weighted least squares is a standard remedial measure here, just as for the comparable 
situation in regression. In fact, we shall use the regression approach to the analysis of 
variance for implementing weighted least squares. All of the earlier discussion on weighted 
least squares for regression is applicable to the analysis of variance. 

Since the factor level variances 0/ are usually unknown. they must be estimated. This is 
ordinarily done by means of the sample variances sl in (16.39), in which case the weight 
Wij for the jth case of the ith factor level is: 

(18.14) 

The test for the equality of the factor level means in (16.54) is now conducted by the 
general I inear test approach described in Chapter2. The full model is fitted, using the weights 
in (18.14), and the error sum of squares is obtained, now denoted by SSEIl'(F). Next, the 
reduced model under Ho is fitted and the en'or sum of squares SSEIl,(R) is obtained. Test 



§xample 

Chapter 18 ANOVA Diagnostics and Remedial Measures 787 

statistic (2.70) is employed, as usual. We shall see that dfF = nT - rand dfR = nT - 1. 
Hence, the general linear test statistic here is: 

(18.15) 

Since the weights are based on the estimated variances sf, the distribution of F~ under Ho is 
only approximately an F distribution with r - 1 and nT - r degrees of freedom. When the 
factor level sample sizes are reasonably large, the approximation generally is satisfactory. 
As explained in Chapter 11, bootstrapping can be employed to examine the effect of using 
estimated weights. -,-

Recall in the ABT Electronics example that the normality assumption appears to be rea­
sonably well supported by the data, but the error variance is not constant. Weighted least 
squares will now be used to test the alternatives: 

Ho: M I = M2 = ... = M5 

Ha: not all Mi are equal 

The weights will be based on the sample variances in Table 18.2: 

1 
Wlj = -- = .653 

1.531 
I 

W4' = - = 1.499 
] .667 

1 
W2j = -- = .637 

1.570 
1 

W5j = .592 = 1.689 

1 
W3j = 6.183 = .162 

We shall use regression model (16.85) to represent cell means model (18.13): 

where: 

{
I if case from factor level 1 

XI = 0 otherwise 

{
I if case from factor level 5 

X5 = 0 h . ot erwlse 

Full model 

(18.16) 

(18.17) 

Note that the factor level means Mi play the role of regression coefficients and that the 
regression model has no intercept. 

Table 18.4 repeats from Table 18.2 a portion of the experimental data in column 1 and 
contains the coding of the indicator variables in columns 2-6 and the weights in column 
7. Note, for instance, that the coding for cases from the first treatment is X I = 1, X2 = 0, 
X3 = 0, X4 = 0, and X5 = 0, and similarly for cases from the other treatments. 

Figure 18.7a contains the MINITAB output when Y in column 1 of Table 18.4 is regressed 
on X I, X2, X3, X4 , and X5 in columns 2-6, using the weights in column 7 and specifying 
no intercept. We see that SSEw(F) = 35.0. ~ . 

The reduced model under Ho is given by (16.86): 

Reduced model (18.18) 
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TABLE 18.4 Data for Weighted Least Squares Regression-ABT Electronks Examp 
-> -, -- " 

(1) (2) (3) (4) (5) (6) (7) (8) 
Full Model Weights Reduced M 

j Yij X ij1 Kij2 -~ X ij3 'Xij4 X ij5 Wij Xij 

1 1 14.87 1 0 0 0 0 .(iS3 1 
1 2 16.81 1 0 0 6 0 .(iS3 

... ~ .. ... . .. . . ~ . 
1 7 17.40 1 0 0 0 0 .653 1 
1 8 14.62 1 0 0 0, 0 .l?53 1 
2 1 18.43 0 1 0 0 0 .637 1 
2 i 18.76 0 1 0 0 0 .637 

.' .. 
5 7 12.05 0 6 0 0 1.689 
5 8 11.95 0 6 0 0 1.689 

FIGURE 18.7 (a) Full Model 

MINITAB The regression equation is 
Weighted y = 15.4 Xl + 18.5 X2 + 15.0 X3 + 9.74 X4 + 12.3 X5 
Regression Predictor Coef Stdev t-ratio p 
Output for Full Noconstant 
and Reduced Xl 15.4200 0.4375 35.24 O~OOO 
Models-ABT X2 18.5275 0.4430 41.82 0.000 
Electronics X3 15.0037 0.8785 17.08 0.000 

Example. X4 9.7413 0.2888 33.73 0.000 
XS 12.3400 0.2721 45.36 0.000 

Analysis of Variance 

SOURCE, DF SS MS F P 
Regression 5 6478.7 1295.7 1295.56 0.000 
Error 35 35.0 1.0 
Total 40 6513.7 

(b) Reduced Model 

The regression equation is 
Y = 12.9 X 

Predictor Coef Stdev t-ratio p 
Noconstant 
X 12.8764 0.4981 25.85 0.000 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 1 6154.5 6154.5 668.28 0.000 
Error 39 359.2 9.2 
Total 40 6513.7 
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where Me is the comn:i~n mean response under Ho. The corresponding regression model is: 

(18.19) 

where Xij == 1. Note that regression model (18.19) has no intercept. 
The new X variable is' shown in Table 18.4, column 8. Regressing Y in column 1 on X in 

column 8, using the weights in column 7 and specifying no intercept, leads to the MINITAB 
output in Figure 18.7b. We see that SSEw(R) = 359.2. We have nT - I = 40 - 1 = 39 and 
nT - r = 40 - 5 = 35. Hence, test statistic (18.15) is: 

359.2 - 35.0 35.0 8 
F* = -:- -- = 1.05 
"W 39 - 35 35 

Fora = .01, we require F(.99;4,35) = 3.908. Since F* = 81.05> 3.908, the approximate 
F test leads to conclusion He" that the factor level means differ. The approximate P-value 
of the test is 0+. 

Comments 

1. The w~ghted least squares estimates of the factor level means Mi are always the estimated factor 
level means fi.' as may be seen by comparing the estimated regression coefficients in Figure 18.7a 
with the estimated factorlevel means in Table 18.2. Hence, for ANOVA model (18.13), the weighted 
and ordinary least squares estimates of the factor level means Mi are the same. 

2. When the sample variances sf are used as weights, the error sum of squares for the fit of full 
model (18.17) will always be SSEw(F) = nT - r. Note that in our example SSEw(F) = 35.0 and 
nT - r = 40 - 5 = 35. 

3. Some analysis of variance computer packages have an option for weighted least squares, with 
the user specifying the weights. • 

1:8.5 Transformations of Response Variable 

When both the model assumptions of constancy of the error variance and normality of the 
error distributions are violated, a transformation of the response variable is often useful. 
We describe now two approaches to finding a useful transformation-some simple guides 
and the Box-Cox procedure. 

;~imple Guides to Finding a Transformation 
The following are four simple guides to finding a useful transformation. The guides were 
developed from theoretical considerations to stabilize the error variances, but these trans­
formations often also are helpful in bringing the distribution of the error terms more closely 
to a normal distribution. 

Variance Proportional to JLi. When the variance of the error terms for each factor level 
(denoted by al) is proportional to the factor level mean Mi, a square root transformation is 
helpful: 

If a} proportional to Mi: y' =-JY or y' = -JY + .JY+l (18.2Q). 
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xample 

This type of siTUation is orten found when the observed variable Y is a Count, such 
number of allempts by a suqject before the correct solution is fount!. as the 

Standard Deviation Proportional to Mi- When the standard deviation of the en-Or Ie 

for each factor level is proportional to the factor level mean, a helpful transformation is~ 
logarithmic transformation: 

If ai proportional to fl,i: y' = log Y (18.21) 

Standard Deviation Proportional to Mf - When the error term standard deviation is pro­
portional to the square of the factor level mean for the different factor levels, an appropriate 
transformation is the reciprocal transformation: 

If ai proportional to M;: 
, \ 

Y=­
Y (18.22) 

Response Is a Proportion. At times, the observed variable Yij is a proportion Pij. For 
instance. the treatments may be different training procedures, the unit of observation is a 
company training class, and the observed variable Yij is the proportion of employees in the 
jth class for the ith training procedure who benefited substantially by the training. Note 
that /Ii here refers to the number of classes receiving the ith training procedure, not to the 
number of students. 

It is well known that for the binomial distribution the variance of the sample proportion 
depends on the true proportion. When the number of cases on which each sample proportion 
is based is the same, this variance is: 

> IT;(I - ITi) 
a-{pid = ----

. III 
(18.23) 

Here ITi denotes the population proportion for the ith treatment and /II is the common number 
of cases on which each sample proportion is based. Since a~{Pii} depends on the treatment 
proportion ITi. the variances of the error terms wiIlnot be stable if the rreatment proportions 
IT, diner. An appropriate transformation for this case is the arcsine transformation: 

If response is a proportion: y' = 2 arcsin JY (18.24) 

When the proportions Pi I are based on different numbers of cases (for instance, in our 
earlier illustration there m~y be different numbers of employees in each training class), 
transformation ( 18.24) should be employed together with a weighted least squares analysis 
as described in Section \8.4. The use of the arcsin transformation when the respon~e is a 
proportion can be an effective, yet simple, remedial measure. A more rigorous approach 
would involve the use of logistic regression as discussed in Chapter 14, 

Use of Simple Guides. To examine whether one of the simple transformation guides is 
applicable, the statistics .I} If;., s;(Y;., and Si If;: should be calculated for each factor level, 
where sf is the sample variance of the Y observations for the i th factor level, defined in 
(16.39), Approxinmte constancy of one of the three statistics over all factor levels would 
suggest the corresponding transformation as useful for stabilizing the error variance and 
making the error distributions more nearly normal. 

Servo-Data, Inc" operates mainframe computers at three different locations. The computerS 
are identical as to make and model, but are subject to different degrees of voltage fhlctuation 
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Locatiori<~ 
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in the power lines serving the respective installations. Table 18.5 contains the lengths of 
time between computer failures f ij for the three locations, for five failure intervals each. 
The table also contains the.ranks Rij (from 1 to 15) for f ij , which we shall use in Section 
18.7 for nonparametric analysis. Even though the sample sizes are small, the data suggest 
highly skewed distributions having nonconstant error variance. This is an observational 
study because no randomization of treatments to experimental units occurred. 

To study whether one of the simple guides is helpful here, we have calculated the 
following statistics based on the results in Table 18.5. 

S2 
I Si SI 

- Yf. Yi. YI· 

1 35.5 .84 .017 
2 49.9 1.50 .068 
3 133.4 1.05 .009 

The relation sjYi . is the most stable, hence the logarithmic transformation (18.21) may 
be helpful here. We shall continue this example after discussing the use of the Box-Cox 
procedure for finding an appropriate transformation in the analysis of variance. 

Box-Cox Procedure 
The Box-Cox transformation procedure was described in Chapter 3 forregression. As noted 
there, the Box-Cox procedure identifies a power transformation of the type fA to correct 
for both lack of normality and nonconstancy of the error variance. The procedure is entirely 
applicable to the analysis of variance. As for regression, the numerical search procedure for 
ANOVA models considers different values of the parameter 'A. For each value of 'A, the~Y 
observations are transformed according to (3.36) and ANOVA model (16.2) is fitted and the 



792 Part Four Design and Analysis cif Single-Factor Studies 

Example 

TABLE 18.6 
Calculations 
for Box-Cox 
Procedure-
Servo-Data 
Example. 

FIGURE 18.8 
Normal 
Probability 
Plots for 
Original and 
Transformed 
Data-Servo-
Data 
Example. 

error sum of squares SSE is obtained. The value of 'A that minimizes SSE is the maXi 
likelihood estimate of A. As we saw in regression, SSE as a function of 'A is often flmu~ 
~he neig~borhood of the maximum likelihood estimate ~, s? that a meaningful value ~ ~ 
In the neighborhood may be chosen for the transformation m preference to the maXimum; 
likelihood value. . 

The Box-Cox procedure was applied in the Servo-Data example of Table 18.5 by Using 2P 
equally spaced values of A between -1 and 1. For each value of 'A, the Y observations 
were transformed according to (3.36) and SSE for ANOVA model (16.2) Was calculated. 
A portion of the results is shown in Table 18.6. The smallest SSE is obtained with J... == .1.. 
However, note that SSE does not change much between -.10 and .20. Hence, the parameter. 
A = 0 may be preferred because it leads to the meaningful logarithmic transformation. This. 
is also the transformation selected according to the simple guides. Normal probability plots 
of the residuals for the original and transformed data (Y I = log" Y) are shown in Figure 18.8. 
The normality assumption appears to be much more reasonable for the transfonned data 
(r = .991). Also, the variances of the transformed data are much more stable now 
(s~ = 1.742, si = 1.974, sj = .817) as compared to the variances for the original data in 
Table 18.5. 

SSE ' SSE 
>. (in thousands) >. (in thousands) 

-1.0 203.7 .10 15.3 
-.80 95.1 .20 15.6 
-.60 48.7 .40 18.7 
-.40 28.3 .60 26.4 
-.20 19.2 .80 42.6 
-.10 17.0 1.0 76.2 

.00 15.7 

(a) Original Data (b) Transformed Data (Y' = 10ge Y) 

300 3 • 

-200 
2 e 

e 
e 

~ ~ e 
::J ::J 
"0 100 'Vi 
OJ 

IX ---
"0 e 'Vi 
OJ .. -IX 0 

---0 •••••• ---1 .. 
-----100 - -2 -

-2 -1 0 2 -2 -1 0 2 

Expected Value Expected Value 
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A single factor ANOVA was performed on Y', the logarithm of the Y observations. The 
resulting F test for equality of treatment means was: 

F* = MSTR = 5.7264 = 3.789 
MSE 1.5112 

Fora = .10, we require F(.90; 2,12) = 2.81. Since F* = 3.789> 2.81, we conclude Ha , 

that the three means are not·equal. The P-value ofthe test is .053. The transformed means 
for the three groups are 3.:413, 2.797, and 4.437, respectively. The Bonferroni pairwise 
comparison procedure was then conducted at the .10 level, with s2{D} = .6045, s{D} = 
.7775,B = t(.9833; 12) = 2.402,andBs{D} = 1.868. The resulting 90 percent Bonferroni 
pairwise confidence intervals are: 

-2.984:::; M2 - Ml ::: .752 

-.884:::; M3 - Ml ::: 2.892 

.272 :::; M3 - M2 ::: 4.008 

Therefore, we conclude that location 3 has longer average time computer failures than 
location 2. 

Comments 

1. It is wise polky, as mentioned for regression, to check the residuals after a transformation has 
been applied to make sure that the transformation has been effective in both stabilizing the variances 
and making the distribution of the error terms reasonably normal. 

2. When a transformation of the observations is required, one can work completely with the 
transformed data for testing the equality of factor level means. On the other hand, it is often desirable 
when making estimates of factor level effects to change a confidence interval based on the transformed 
variable back to an interval in the original variable for easier understanding of the significance of the 
results. 

3. The variance stabilizing transformations (18.20), (18.21), (18.22), and (18.24) are obtained by 
using a Taylor series expansion for the variance of Y. An explanation of the approach may be found 
in Reference 18.3. • 

Effects of Departures from Model 

In preceding sections, we considered how residual analysis and other diagnostic techniques 
can be helpful in assessing the appropriateness of the ANOVA model for the data at hand. 
We also discussed the use of transformations for both stabilizing the variance and obtaining 
an error distribution more nearly normal. The question now arises: what are the effects of 
any remaining departures from the model On the inferences made? A thorough review of 
the many studies investigating these effects has been made by Scheffe (Ref. 18.4). Here, 
we summarize the findings. 

'Nonnormality 
For the fixed ANOVA model I, lack of normality is not an important matter, provided the 
departure from normality is not extreme. It may be noted in this connection that kurtos,is 
of the error distribution (either more or less peaked than a normal distribution) is rrtore 
important than skewness of the distribution in terms of the effects on inferences. 
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Thc point estimarors of factor level means and contrasts are unbiased whether or not h 
populatio?s are n~nnal: Th~ F test for .the equality. 0,[ fa.c~or level means is but little affec~~ 
by lack 01 normality, either 111 terms of the level of slglllilcance or power or the tes!. Bene 
the F test is a robust test against departures from normality. For instance, while the ~pecifie~ 
level of signifieanc.e might be .O~, the acwall~~el ~'~r a non.normal error distribution might 
~e J!4 or .O~5. Typically. the aC~.leved level ot slglllfi~ance 111 the pr~sence of nonnormaIity 
IS slightly higher than the speCified one, and the achieved power of the test is slightly less 
than the calculated one. Single interval estimates of factor level means and contra'its and 
the Schefte multiple comparison procedure also are not much atfected by lack of normality 
provided that the sample sizes are not extremely small. ' 

For the random ANOYA model 11 (to be discussed in Chapter 25), lack of normality has 
more serious implications. The estimators of the variance components are still unbiased 
but the actual confidence coefficient for interval estimates may be substantially differe~ 
from the specified one. 

Unequal Error Variances 
When the error variances are unequal, the F test tix the equality of mean~ with the fixed 
ANOYA model is only slightly affected if all factor level sample sizes are equal or do not 
ditfer greatly. Specifically, unequal error variances then raise the actual level of signifi­
cance slightly higher than the specified level. Similarly, the Schefte multiple comparison 
procedure based on the F distribution is not affected to any substantial extent by unequal 
variances when the sample sizes are equal or are approximately the same. Thus, the F test 
and related ,malyses are robust against lmequal variances when the sample sizes are ap­
proximately equal. Single comparisons between hlCtor level means, on the other hand, can 
be substantially affected by unequal variances, so that the actual and specified confidence 
coefficients may differ markedly in these cases. 

The use of equal sample sizes for all t~lCtor levels not only tends to minimize the effects 
of unequal variances on inferences with the F distribution but al.~o simplifies calculational 
procedures. Thus, here at least, simplicity and robustness go hand in hand. 

For the random ANOYA model II. unequal error variances can have pronounced effects 
on inferences about the variance components, even with equal sample sizes. 

Nonindependence of Error Terms 
Lack of independence of the error terms can have serious effects on infere'lces in the 
analysis of variance, for both fixed and random ANOYA models. Since this defect is often 
difficult to correct, it is important to prevent it in the first place whenever feasible. The 
use of randomization in those stages of a study that are likely to lead to correlated error 
terms can be a most important inwrance policy. In the case of observational data, however, 
randomization may not be possible. Here, in the presence of correlated error terms, it may 
be possible to modify the model. For instance, in the earlier discussion based on Figure 18.3, 
we nored that inclusion in the model of a linear term for the learning effect of the analyst 
might remove the correlation of the error terms. 

Modification of the model because of correlated error terms may also be necessary in 
experimental studie,~. In one case, the experimenter asked each of 10 subjects to give ratings 
to four new flavors of a fruit syrup and to the standard flavor, on a scale from 0 to 100-
When the single-hictor analysis of variance model was applied, the experimenter found 
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high degrees of correlation in the residuals for each subject. The experimenter thereupon 
modified the model to a repeated measures design model (Chapter 27). As described in 
Chapter 15, this latter type of model is intended for situations where the same subject is 
given each of the different treatments and differences between subjects are expected. 

'''1 Nonparametric Rank F Test 
'-;.~~. ------~-------------------------------------------------------------

'> 

When transformations are not successful in bringing the distributions of the error terms close 
enough to normality to meet the robustness properties of the standard inference procedures, a 
nonparametric inference procedure can be useful. Nonparametric procedures do not depend 
on the distribution of the error terms; often the only requirement is that the distribution is 
continuous. The nonparametric procedure considered here assumes that the r populations 
under study are continuous distributions that differ only with respect to location. Thus it 
provides a test for differences in population means or medians, assuming that the shapes of 
the populations (i.e., variances, skewness, kurtosis, etc.) are identical. 

The test procedure is very simple. All nT observations are ranked from 1 to nT in 
ascending order. Then, the usual F* test statistic in (16.55) is calculated, but now based on 
the ranks, and the F test is carried out in the ordinary manner. 

Test Procedure 
"'~. :>~ . 

The Yij observations first need to be ranked in ascending order from 1 to nT' We shall let 
Rij denote the rank of Yij' In the case of ties among some observations, each of the tied 
observations is given the mean of the ranks involved. For instance, if two observations are 
tied for what would otherwise have been the third- and fourth-ranked positions, each would 
be given the mean value 3.5. 

To test whether the treatment means are equal, the usual F* test statistic is obtained 
based on the ranks Rij . This test statistic is now denoted by F;: 

where: 

F* _ MSTR 
R- MSE 

MSTR = L,ni(Ri. - R..)2 
r-l 

"'~(R-. - k )2 
MSE=DD'J •. 

nT - r 

- Lj Rij 
Ri • = --­

ni 

- _ LL,Rij _ (nT + 1) 
R .. - nT - 2 

(18.25) 

(18.25a) 

(18.25b) 

(18.25c) 

(18.25d) 

Note that R.., the overall mean of the ranks, is a constant for any given total number of 
casesnT. ~. 

When the treatment means are the same, test statistic F; follows approximately the 
F(r - 1, nT - r) distribution provided that the sample sizes ni are not very small. To test 
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Example 

the alternarives: 

Ho: III = {l2 = ... = Il,. 

H,,: not all {li are equal 

the appropriate decision rule to control the Type I error at 0' is: 

If F~ :::: F( I - a; r - I. Ill' - r), conclude Ho 

If F~ > FO - 0';'- - I, II., - 1"), conclude H" 

(18.26a) 

(18.26b) 

In the Sel'vo-Data example of Table 18.5, we noted earlier that the logarithmic transforma_ 
tion of Y improves considerably the appropriateness of the assumptions of normality and 
constancy of the elTor variance. If the search for a transtiJrmation of Y had not been suc­
cessful, or as an alternative to the transformation approach, we could use the nonparametric 

rank F test. To use this test, we first rank the dara in Table 18.5 from I to 15. The ranks 
m'e shown in Table 18.5. Note. incidentally, from Table 18.5 that the rank transformation 

has helped to stabilize the variances of the tl'ansformed observations (i.e., the ranks) for the 
three treatments. We now calculate SSTR and SSE as follows: 

SSTR = 5[(8.4 - 8.0)2 + (4.8 - 8.0)2 + (10.8 - 8.0)2J = 91.20 

SSE = (2 - 8.4)2 + (13 - 8.4)2 + ... + (8 - 10.8)2 = 188.80 

Note that the overall mean R.. here is (I1T + 1)/2 = (IS + 1)/2 = 8.0. The F~ test 
statistic is therefore: 

~ 91.20 188.8 
Fii = -- -;- -- = 2.90 

3-1 15-3 

For 0' = .10, we require F(.90; 2. 12) = 2.81. Since F; = 2.90 > 2.81. we conclude Ha. 
The P-value of the test is .094. 

Rendl that when we conducted the standard F tesr based on the logarithmic tmn<;for­

mation of Y. which was suggested both by the simple guides and the Box-Cox procedure, 
we found that it leads ro the same conclusion here; but its P-value-.053-is considerably 

smalIer. TI1US. both rest~ show that the mean time between computer failures differs tOrtbe 

three locations. 

Comment 
• . f The Kmska/- Waili.'- lest (Rei". 18.5). a widely used nonparametric test for testing the equality 0 

treatmclIl means_ is based on a test statistic [hat is equivalent to the rank F test statistic. The Kruskal­
Walli.~ test statistic. dcnoted by X~'!I" is also bascd on the rank.~ R;j from I to II r und is defined as 
follows: 

, SSTR x- ---
A"iI' - SSTO 

(18.27) 

~ 

where: 

(18.27a) 

Instead of using the F distribution approximation. the Kruskal- Wallis test uses achi-sqmll'C distribution 
approximation. rr the II; are reasonably large (five or more is the usual advice). Xk", i~ applDximatelY 
a X 2 random variable with,. - I degree~ of freedom when all treatment means are cqual. The decision 
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rule therefore is: 

If Xkw ;:; X2 (1 - a; r - 1), conclude Ho 

If Xkw > X2(1 - a; r - 1), conclude Ha 

The F; and Xiw test statistics are equivalent, being related as follows: 

* (nT - r)Xiw 
FR = 2 (r - 1)(nT - 1 - XKW ) 

(18.28) 

(18.29) 

• 
"ldtiple Pairwise Testing Procedure 
" If the rank F test (or the Kruskal-Wallis test) leads to the conclusion that the factor level 

means Mi are not equal, it is frequently desired to obtain information about the comparative 
magnitudes of these means based on the ranked data. A large-sample testing analogue of the 
Bonferroni pairwise comparison procedure discussed in Section 17.7, based on the ranks 
of the observations, may be employed for this purpose, provided that the sample sizes are 
not too small. Testing limits for all g = r(r - 1)/2 pairwise tests using the mean ranks Ri • 

are set up as follows for family level of significance a: 

Example 

[ ( 
1 

)] 

1/2 - - nT (nT + 1) 1 
(R i • - Ri ,.) ± B - + -

12 ni ni' 
(18.30) 

where: 

B = z(I - a/2g) 

r(r - 1) 
g= 

(18.30a) 

2 
(18.30b) 

If the testing limits include zero, we conclude that the corresponding treatment means Mi 

and Mi' do not differ. If the testing limits do not include zero, we conclude that the two 
corresponding treatment means differ. On the basis of all pairwise tests, we then set up 
groups of treatment means whose members do not differ according to the simultaneous 
testing procedure. In this way, we obtain information about the comparative magnitudes of 
the treatment means Mi. . 

For the Servo-Data example in Table 18.5, we wish to ascertain, if possible, which location 
has the longest mean time between computer failures based on the rank data. For a family 
significance level of a = .10 and g = r(r - 1)/2 = 3(2)/2 = 3 pairwise tests, we require 
B = z(.9833) = 2.13. Since all treatment sample sizes are equal, we need to calculate the 
right term in (18.30) only once: 

B [nT(nT + 1) (2. + ~)] 1/2 = 2.13 [15(16) (! + !)] 1/2 = 6.02 
12 ni ni' 12 5 5 

Hence, the testing limits for the three pairwise tests are: 

Locations 1 and 2: 

Locations 3 and 2: 

Locations 3 and 1: 

(8.4 - 4.8) ± 6.02 

(10.8 - 4.8) ± 6.02 

(10.8 - 8.4) ± 6.02 

or - 2.4 and 9.6 

or - .02 and 12.0 

or - 3.6 and 8.4 
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Since no test shows a significant difference, we obtain only one grouping: 

Group 1 

Location 1 
Location 2 
Location 3 

Note that zero is just inside the lower boundary of the testing limits for locations 2 and 3 
Recall that when the Bonferroni pairwise comparison procedure was conducted on the 

logarithm of the responses, we concluded that a significant difference existed between the 
means of locations 2 and 3. Thus here, and in general for small sample sizes, the simple 
transformations discussed in Section 18.5 are often preferred to the rank transformation 
because the resulting ANOVA tests are less conservative and tend to have greater statistical 
power than those associated with the rank transformation. 

18.8 Case Example-Heart Transplant 

TABLE 18.7 
Survival Times 
of Patients 
FoUowing 
Heart 
Transplant 
Surgery-
Heart 
Transplant 
Example. 

In heart transplant surgery, the similarity of the donor's tissue type and that of the recipient 
is of importance because large differences may increase the probability that the transplanted 
heart is rejected. Table 18.7 shows a portion of the survival times (in days) obtained from an 
observational study of 39 patients following heart transplant surgery. The data are grouped 
into three categories, according to the degree of mismatch between the donor tissue and the 
recipient tissue. Investigators would like to determine if the mean survival time changes 
with the degree of mismatch. The alternatives to be tested are: 

Ho: J).,I = J).,2 = J).,3 

H{/: not all J).,i are equal 

A SYSTAT dot plot of the data by mismatch category is provided in Figure 18.9a The 
plot suggests that average survival time may decrease with higher degree of mismatch. An 
initial fit of analysis of variance model (16.2) was made and the studentized residuals were 

Degree of Tissue Mismatch (i) 

Case Low Medium High 
j ; = 1 i =2 ;=3 
1 44 15 3 
2 551 280 136 
3 127 1,024 65 

12 47 836 48 
13 994 51 
14 26 

Source: M. L. Puri and P. K. Sen~ NOl1parOlllelJ"ic Methods ill Gelleroi Linear 
Model., (New York: Johll Wiley & SO"". 1985). 
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~RE18.9 SYSTAT Diagnostic Plots-Heart Transplant Example. 

, 1-High 

. 1> Low 

o 

(a) (b) 
Dot Plots of Survival Times Dot Plots of Studentized Residuals 

• • 3 - High III. • 

.- • • • 2 - Medium II. I • • • 

• • • • • • 1 - Low • • • • • • 

500 1000 1500 -1 
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(c) 
Normal Probability Plot 
of Studentized Residuals 

• 
• 

• • .. 
• .'-. ... ~ 

• 

• 

-2L-__ L-__ ~ __ ~ __ ~ __ ~ 

-2.5 -1.5 -0.5 0.5 1.5 2.5 
Expected Value 

o 2 3 4 

Studentized Residual 

obtained for diagnostic purposes. 1\vo residual plots are presented in Figures 18.% and 
18.9c. The dot plot of the studentized residuals in Figure 18.9b shows that the distribution 
of the residuals is positively skewed. It also suggests that the error variance may be smaller 
in the high mismatch group. The Brown-Forsythe test in (18.12) was conducted to examine 
the constancy of the error variance. The Brown-Forsythe test statistic is FBF = 1.91 and 
the P-value is .163, supporting constancy of the error variance. On the other hand, the 
positive skewness of the residuals is confirmed by the upward-curving shape of the normal 
probability plot in Figure 18.9c and the correlation test for normality (r = .895; fora = .05, 
the interpolated critical value in Table B.6 is .971). 

A transformation of the response variable was therefore investigated. The Box-C<\X 
procedure led to the maximum likelihood estimate ~ = .06, which suggested the logarithmic 
transformation (J.. = 0). The new response variable Y' = loge Y was therefore obtained 
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FIGURE 18.10 Diagnostic Plots and ANOVA Thble for Transfonned Data-Heart Transplant Example. 
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(c) 
ANOVATable 

Expected Value 

DEP VAR: LOGTIME N; 39 MULTIPLE R: 0.282 SQUARED MULTIPLE R: 0.080 

SOURCE 
CATEGORY 

ERROR 

SUM-OF-SQUARES 
7.611 

87.834 

ANALYSIS OF VARIANCE 

DF 

2 
36 

MEAN-SQUARE 
3.806 
2.440 

F-RATIO 
1.560 

P 

0.224 

and ANOVA model (16.2) was fitted to this transformed variable. Two plots of studentized 
residuals are shown in Figure 18.10. A dot plot of the studentized residuals is presented in 
Figure 18. lOa. Notice that the distribution of the residuals now appears to be symmetric, 
with constant variance. The normality of the distribution of the error tenus is supported 
by the normal probability plot in Figure 18.lOb and the correlation test for norm~ity 
(r = .982> .971). 

The residual dot plot in Figure 18.lOa shows the possible presence of an outlier in the 
low tissue mismatch category (studentized residual = - 2. 99). For this case the studentized 
deleted residual is - 3.40. The Bonferroni critical value for the outlier test is t (1- .05/2(39); 
36) = t(.999359; 36) = 3.49. Since I - 3.40/ = 3.40 S 3.49, we conclude that this case 
is not an outlier. 

It therefore appears that the logarithmic transformation was successful so that ANOVA 
model (16.2) is appropriate for the transformed survival times. The ANOVA table for the 
transformed data is shown in Figure 18.1Oc. We see that F* = 1.56 and that the p-value 
for the test is .224. For a = .10, we therefore conclude Ro, that the mean survival time 
for heart transplant patients with the characteristics of those included in the study does not 
depend on the degree of tissue mismatch. 
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18.1. Refer to Figures 18.3 and 18.4. What feature of the residual sequence plots enables you to 
diagnose that in one case the error variance changes over time whereas in the other case the 
effect is of a different nature? Could you make a diagnosis about time effects from a residual 
dot plot? 

18.2. A stud~nt proposed in class that deviations of the observations Yij around the estimated overall 
mean Y. be plotted to assist in evaluating the appropriateness of ANOVA model (16.2). Would 
these deviations be helpful in studying the independence of the error terms? The constancy of 
the variance of the error tenns? The normality of the error terms? Discuss. 

18.3. A consultant discussing ANOVA applications in a seminar stated: "Sometimes I find that 
treatment effects in an experiment do not show up through differences in the treatment means. 
Hence, it is important to compare the residual plots for the treatments." A member of the 
audience asked: "I don't think I understood your point regarding differences in treatment 
means being explored using residual plots." Discuss. 

*18.4. Refer to Productivity improvement Problem 16.7. 

a. Prepare aligned residual dot plots by factor leveL What departures from ANOVA model 
(16.2) can be studied from these plots? What are your findings? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

c. Obtain the studentized deleted residuals and conduct the Bonferroni outlier test; use a = 
.01. State the alternatives, decision rUle, and conclusion. 

d. The economist wishes to investigate whether location of the firm's home office is re­
lated to productivity improvement The home office locations are as follows (U: US.; 
E: Europe): 

j 

1 2 3 4 5 6 7 8 9 10 11 12 

1 U E E E E U U U U 
2 E E E E U U U U U E E E 
3 E U E U U E 

Prepare aligned residual dot plots by factor level in which the location of the home office is 
identified. Does it appear that ANOVA model (16.2) could be improved by adding location 
of home office as a second factor? Explain. 

, 
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18.5. Refer to QUestionnaire color Problem 16.X. 

a. Prepare ali~ned. re,;idual dot pl~ts hy color. Wha.1 d~partures from ANOVA model (16.2 
nm he studied from these plots? Whm are your findll1gs? ) 

b. Prepare a normal probability plot of Ihe residuals. Also obtain the coefficient of coaela_ 
tion between the ordered residu<lls and their expected values under normality. Does the 
nom1<llity assumption appear to be reusonable here: 

c. The observarion~ wilhin each hlclor level <Ire in geogmphic sequence. Prepare residual 
sequence plots. What can be studied from these plots? Whut are your findings? 

d. Obtuin the smdenrized deleted residuals and conducl the Bonferroni outlier test; use 
C( = .025. Stale the <llternative~. decision rule. and conclusion. 

18.6. Refer to Rehabilitation therapy Problem 16.9. 

u. Obtain Ihe residuuls and prepare aligned residual dot plot~ by faclor level. What departures 
from ANOVA model (16.2) can be studied from these plots: What ure your findings? 

b. Prepare a normal probability plot of the residuals. Also obtain the coetlicient of coaela­
tion between the ordered residuals and their expected values under n0I111ality. Does the 
normality assumptiOl) appear to be reasonable here? 

e. The observations within each factor level are in time order. Prepare residual sequence plots 
and ,malyze them. What lire your lindings: 

d. Obtuin the studenrized deleted residuals and conduct the Bonferroni outlier test; use 
C( = .0 I. State the alternatives. decision rule. and conclusion. 

*18.7. Refer 10 Cash offers Problem 16.10. 

a. Obtain the residuals and prepare aligned residual dot plot~ by factor level. What departures 
from ANOVA model (16.2) can be studied from these plots'? What are your findings? 

b. Prep<lre <I normal probability plot or the residuals. Also obtain the coefficient of correla­
tion between the ordered residuab ,md their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

c. The observations within each fuctor level are in time order. Prepare residual );equenceplots 
and interprel them. Whl[[ are your findings? 

d. Obtain the studentized deleted residuals and conduct the Bonferroni outlier test; use 
C( = .025. Stare the alternatives. decision rule. and conclusion. 

e. An executive in the consumer organization has been told thai used-ew· dealers in the region 
tend to make lower cash offers during weekends (Friday evening through Sunday) than at 
other limes. The times when otTers were obtained <Ire as follows (W: weekend; 0: other 
time): 

j 

2 3 4 5 6 7 8 9 10 11 12 

0 0 W 0 W 0 W 0 W 0 W W 
2 0 W W 0 W 0 W 0 0 W W 0 
3 0 W 0 W 0 0 0 W W W 0 W 

Prepare ,t1igned residual dor plots hy facror level in which the tIme of the olrer b identified 
Does il appeur that ANOVA model ( 16.2) could he improved by adding time of offer as a 
second raetor? Explain. 
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*18.8. Refer to Filli~g machines Problem 16.11. 

a Obtain the residuals and prepare aligned residual dot plots by machine. What departures 
from ANOVA model (16.2) can be studied from these plots? What are your findings? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values undernormality. Does the normality 
assumption appear to be reasonable here? 

c. The observations within each factor level are in time order. Prepare residual sequence plots 
and interpret them. What are your findings? 

d. Obtain the studentized deleted residuals and conduct the Bonferroni outlier test; use a = 
.01. State the alternatives, decision rule, and conclusion. 

18.9. Refer to Premium distribution Problem 16.12. 

a. Obtain the residuals and prepare aligned residual dot plots by agent. What departures from 
ANOVA model (16.2) can be studied from these plots? What are your findings? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

c. The observations·within each factor level are in time order. Prepare residual sequence plots 
and interpret them. What are your findings? 

d. Obtain the studentized deleted residuals and conduct the Bonferroni outlier test; use 
a = .025. State the alternatives, decision rule, and conclusion. 

18.10. Computerized game. Four teams competed in 20 trials of a computerized business game. 
Each trial involved a new game, the objective for each team being to maximize profits in the 
given trial. A researcher fitted ANOVA model (16.2) to determine whether or not the mean 
profits for the four teams are the same and obtained the following residuals: 

i 
'1' 2 3 18 19 20 

.10 .28 .10 .10 .28 .28 
2 -1.44 -1.44 -1.12 1.02 1.18 1.51 
3 -.93 -.70 -.81 .54 .43 .65 
4 -.15 .11 .25 .11 .25 .38 

The residuals for each team are given in time order. Construct appropriate residual plots to 
study whether the error terms are independent from trial to trial for each team. What are your 
findings? 

* 18.11. Refer to Productivity improvement Problem 16.7. Examine by means of the Brown-Forsythe 
test whether or not the treatment error variances are equal; use a = .05. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

18.12. Refer to Rehabilitation therapy Problem 16.9. Examine by means of the Brown-Forsythe 
test whether or notthe treatment error variances are equal; use a = .10. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

*18.13. Referto Cash offers Problem 16.10. Assume that the error terms are approximately normrtlly 
distributed. 
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*18./4. 

a. Examine by means of the Hw·t1ey test whcther or not the Ireatmenterror variances a 
. . . . reequal' 

use 0' = .01_ Stale the ulternallvcs. decIsion rule. and conclusion. Whal is the PI' 
the test? . -va ue of 

b. Would you reach the same conclusion a~ in part (a) with Ihc Brown-Fmsythc test? 

Refer to Filling machines Problcm 16.1 I. Assume thm the error terms are approximately 
normally distributed. 

a. Examine by mea ns of the Hartley test whether or not [he trcutment error variunces are e U I' 
use C( = .0 I. Stute the alternatives. decision rule. and conclusion. Wh1lt is the P-val!:f 
thc test? 

b. Would you re1lch the same conclusion as in pllrt (a) with the Brown-Fot'sythe test statistic? 

18./5. Helicopter service. An operations analyst in a sheriff's department studied how frequently 
their emergency helicopter was used during the pust year. by time of day (shift I: 2 A.M.­
S A.M.: shift 2: 8 A.M.-2 P.M.: shift 3: 2 P.M.-8 P.M.: shirt 4: 8 P.M.-2 A.M.). Random 
samples or size 20 ror each shift were obtained. Thc d1lta tllllow (in time order): 

j 

2 3 18 19 20 

1 4 3 5 4 6 
2 0 2 0 2 2 0 
3 2 1 0 0 2 4 
4 5 2 4 5 2 3 

Since the data are counts. the analyst was concerned about the normality and equal vatiances 
Hssumption" or ANOVA model ( 16_2)_ 

,L Obtain the Ihted values and residuals for ANOVA model (16_2)_ 

b_ Prepare suillible residual plots to study whether or not the error variances are equal forthe 
four shilis_ Whllt are your findings'! 

c_ Test by means of the Brown-Forsythe test whether or not the treatment elTor variances are 
equal: use C( = _IlL What is the P-value of the test? Are your results consistent with the 
diagnosis in p"rt (b)? 

d_ For each shift. calcul1lte Y;. and Si- EXilmine the three relation~ found in the table on 
page 70 I lll1d determine the transformation that is mosl appropriate here. What do you 
conclude? 

e. Use the Box-Cox procedure to find an appropriate power tnll1sformation of Y. first adding 
the constant I to each Y observ1ltion_ Evaluate SSE for the values of A given in Table 18.6. 
Docs A = 5.11 square-root transtornllltion. appear to be reasonable. based on theilox-Cox 
procedure? 

18.16. Reter to Helicopter service Problem 18.15_ The analysl decided to apply the square root 
transform1ltion Y' = H ,lI1d examine its efrecliveness_ 

a. Obtain the tnll1sformed response data. 111 ANOVA model (16_2). and obtain the residuals­

b_ Prepare suitable plots of the residmtls to study the equality of the error variances of the 
transformed response variable tor the lour shifts. Also obtain a normal prob,lbility plot 
and thc coetlicicnt of correlation between thc ordered residuals and their expected values 
under normality_ What are your findings? Does the transtormation appear to have been 
etfective? 

c_ Test by means of thc Brown-Forsythe test whether or not the treatment error variances 
for the tntnsformcd response variable are cqUttl: use C( = _IlL State the ulternatives, 
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decision rule,~~hd conclusion. Are your findings in part (b) consistent with your conclusion 
here? 

* 18.17. Winding speeds. In a completely randomized design to study the effect of the speed of winding 
thread (1: slow; 2: normal; 3: fast; 4: maximum) onto 75-yard spools, 16 runs of 10,000 spools 
each were made at each of the four winding speeds. The response variable is the number of 
thread breaks during,the production run. The results (in time order) are as follows: 

j 

1 2 3 14 15 16 

1 4 3 2 2 3 4 
2 7 6 4 4 7 6 
3 12 6 14 13 10 14 
4 17 15 7 19 9 23 

Since the responses are counts, the researcher was concerned about the normality and equal 
~ variances assumptions of ANOVA model (16.2). 
~ \'" 

a Obtain the fitted values and residuals for ANOVA model (16.2). 

b. Prepare suitable residual plots to study whether or not the error variances are equal for the 
four winding speeds. What are your findings? 

c. Test by means of the Brown-Forsythe test whether or not the treatment error variances are 
equal; use a = .05. What is the P-value of the test? Are your results consistent with the 
diagnosis in part (b)? 

d. For each winding speed, calculate Yi • and Si. Examine the three relations found in the table 
on page 791 and determine the transformation that is most appropriate here. What do you 
conclude? 

e. Use the Box-Cox procedure to find an appropriate power transformation of Y. Evaluate 
SSE for the values of>.. given in Table 18.6. Does>.. = 0, a logarithmic transformation, 
appear to be reasonable, based on the Box-Cox procedure? 

*18.18. Refer to Winding speeds Problem 18.17. The researcher decided to apply the logarithmic 
transformation Y' = logw Y and investigate its effectiveness. 

a. Obtain the transformed response data, fit ANOVA model (16.2), and obtain the residuals. 

b. Prepare suitable plots of the residuals to study the equality of the error variances of the 
transformed response variable for the four winding speeds. Also obtain a normal prob­
ability plot and the coefficient of correlation between the ordered residuals and their 
expected values under normality. What are your findings about the effectiveness of the 
transformation? 

c. Test by means of the Brown-Forsythe test whether or not the treatment error variances 
for the transformed response variable are equal; use a = .05. State the alternatives. 
decision rule, and conclusion. Are your findings in part (b) consistent with your conclusion 
here? 

18.19. Referto Helicopter service Problem 18.15. Assume that ANOVA model (18.13) is appropri­
ate. Use weighted least squares with the untransformed data to test for the equality of the shift 
means; control the a risk at .05. State the alternatives, full and reduced regression models, 
decision rule, and conclusion. 

* 18.20. Refer to Winding speeds Problem 18.17. Assume that ANOVA model (18.13) is appropri~te. 
Use weighted least squares with the umransformed data to test for the equality of the wirtding 
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thread speed means; use C( = .0 I. State the alternatives, full and reduced regression models 
decision rule. and conclusion. ' 

18.21. Why is the nonparametric rank F test a nonparametric test? 

18.22. Explain why the limits in (18.30) moe testing limits and not confidence limits. 

*18.23. Refer to Productivity improvement Problem 16.7. 

a. Conduct the non parametric rank F test; use C( = .05. State the alternatives, decision rule, 
and conclusion. 

b. What is the P-value of the test in part (a)? 

c. Does the conclusion in part (a) differ from the one in Problem 16.7e? 

d. Do the data suggest that a non parametric test is needed here? 

e. Conduct multiple pairwise tests based on the ranked data to group the three types of firms 
according to mean productivity improvement. Use family level of significance a == .10. 
Describe your findings. 

*18.24. Refer to Ca"h offers Problem 16.10. 

a. Conduct the nonparametric rank F test; use C( = .0 I. State the alternatives, decision rule, 
and conclusion. 

b. What is the P- value of the test in part (a)? 

c. Does the conclusion in part (a) differ from the one in Problem 16.1 Oe? 

d. Do the data suggest that a non parametric test is needed here? 

e. Conduct multiple pairwise tests based on the ranked data to group the three age categories 
according to me,Ul cash offer. Use family level of significance C( = .10. Describe your 
findings. 

18.25. Telephone communications. A management consultant was engaged by a firm to improve 
the cost-effectiveness of its communications. A~ part of the study. the consultant selected 10 
home-office executives at random from each of the (!) sales, (2) production. and (3) research 
and development divisions, and studied the communications of these executives during the 
past 10 weeks in great detail. Among other data, the consultant obtained the following in­
fOlmation on weekly dollar costs of long-distance telephone calls to branch offices by the 
executives: 

j • 
2 3 4 5 6 7 8 9 10 

666 920 495 602 1,499 960 796 343 894 813 
2 488 362 156 546 216 542 345 291 516 126 
3 391 450 609 910 705 472 645 496 763 1,309 

The consultant decided to employ a nonparametric approach to test whether or not the mean 
telephone expenses for the three divisions are equal. 

a. What feature of the data may have suggested the use of a nonparametric test? 

b. Conduct the nonparametric rank F test, controlling the risk of Type I elTor at a == .05. 
State the alternatives, decision rule. and conclusion. What is the P-value of the test? 

c. Conduct multiple pairwise tests based on the ranked data to group the three divisions 
according to mean telephone expenditures; use family level of significance a == .05. 
Describe your findings. 
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18.26. Refer to Figure 18.3. Modify ANOVA model (16.2) to include a linear trend term for the time 
effect. Is this modified model still an ANOVA model? A linear model? 

18.27. Show that nT(nT + 1)/12 in (18.30) is the sample variance ofthe consecutive integers 1 tonTo 

18.28. Show that test statistics (18.25) and (18.27) are related according to (18.29). 

~-0-------------------------------------------------------------

fI"ojects 18.29. Refer to the SENIC data set in Appendix C.l and Project 16.42. 

a. Obtain the residuals and prepare aligned residual dot plots by region. Are any serious 
departures from ANOVA model (16.2) suggested by your plots? 

b. Obtain a normal probability plot of the residuals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Is the normality 
assumption reasonable here? 

c. Examine by means of the Brown-Forsythe test whether or not the geographic region error 
variances are equal; use a = .05. State the alternatives, decision rule, and conclusion. 
What is the P-value of the test? 

18.30. Refer to the SENIC data set in Appendix C.1. A test of whether or not mean length of stay 
(variable 2) is the same in the four geographic regions (variable 9) is desired, but concern 
exists about the normality and equal variances assumptions of ANOVA model (16.2). 

a. Obtain the residuals and plot them against the fitted values to study whether or not the error 
variances are equal for the four geographic regions. What are your findings? 

b. For each geographic region, calculate Yi • and Si. Examine the three relations found in the 
table on page 791 and determine the transformation that is the most appropriate one here. 
What do you conclude? 

c. Use the Box-Cox procedure to find an appropriate power transformation of Y. Evaluate 
SSE for the values of>.. given in Table 18.6. Does >.. = -1, a reciprocal transformation, 
appear to be reasonable, based on the Box-Cox procedure? 

d. Use the reciprocal transformation Y' = 1/ Y to obtain transformed response data. 

e. Fit ANOVA model (16.2) to the transformed data and obtain the residuals. Plot these resid­
uals against the fitted values to study the equality of the error variances of the transformed 
response variable for the four regions. Also obtain a normal probability plot of the residuals 
and the coefficient of correlation between the ordered residuals and their expected values 
under normality. What are your findings? 

f. Examine by means of the Brown-Forsythe test whether or not the geographic region vari­
ances for the transformed response variable are equal; use a = .01. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

g. Assume that ANOVA model (16.2) is appropriate for the transformed response variable. 
Test whether or not the mean length of stay in the transformed units is the same in the 
four geographic regions. Control the a risk at .01. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

18.31. Refer to the CDI data set in Appendix C.2 and Project 16.44. 

a. Obtain the residuals and prepare aligned residual dot plots by region. Are any serious 
departures from ANOVA model (16.2) suggested by your plots? 

b. Obtain a normal probability plot of the residuals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Is the normality 
assumption reasonable here? 
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c. Examine by means of the Brown-Forsythe test whether or not the geographic reuion ~. 
. I III S I I . d' . b error· vanances are equa : use C( =. . tate t le a ternatlves. eClslon ntle, and cone! . " 

What is the P -value of the test? USIorr. '. 

18.32. Refer to the Market share data set in Appendix C.3 and Project 16.45. 

a. Obtain the residuals and prepare aligned residual dot plots by factor-level combinaf . IOns .. , 
Are any senous departures from ANOVA model (16.2) suggested by your plots? . 

b. Obtain a normal probability plot of the residuals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Is Ihe nonnality 
assumption reasonable here? 

c. EX<lmine by means of the Brown-Forsythe lest whether or not the factor level error variances 
are equal: use C( = .05. State the alternatives. decision rule. and conclusion. What is the 
P-value of the test? 

18.33. Refer to the SENIC d<lta set in Appendix C.I and Project 16.42. 

a. Use the nonparametric rank F test to determine whether or not the mean infection risk is the 
same in the four regions; control the level of signi ficance at C( = .05. State the alternatives 
decision rule. and conclusion. What is the P-value of the test? ' 

b. Is your conclusion in parr (a) the same as that obtained in Project 16.427 b the nonparametric 
test more reasomlble here? 

c. Use the multiple pairwise testing procedure (18.30) to group the regions; employ family 
significance level C( = .10. What are your findings? 

18.34. Refer to the CDI data set in Appendix C.2 and Project 16.44. 

a. Use the nonparalnetric rank F test to determine whether or not the mean crime rate is the 
same in the four regions; control the level of significance at C( = .05. State the altematives, 
deci!>ion rule. and conclusion. What is the P-value of Ihe test? 

b, Is your conclusion in part (a) the same as that obtained in Project 16.44? Is the nonparametric 
test more reasonable here? 

c. U!;C the multiple pairwise testing procedure (18.30) 10 group the regions; employ family 
significance level C( = .05. What are your findings? 

18.35. Refer to Ihe Market share data sel in Appendix C.3 and Project 16.45. 

a. Use the non parametric rank F test to determine whether or not the mean <lverage ~onthly 
~hare is the same for the four factor combinations: control the level of significance at 
C( = .05. State the alternatives. decision rule, and conclusion. What is tIle P-value of the 
test? 

b. Is your conclusion in part (a) the S<lme as that obtained in Project 16.45?ls the nonparametric 
test more reasonable here? 

c. Use the multiple pairwise testing procedure (18.30) to group the factor combinations; 
employ family significance level C( = .05. What are your findings? 

18.36. Obtain the exact sampling distribution of the nonparametric rank F~ test slatistic in (18.25) 
when HI! holds. for the case r = 2 and II i "" 2. lHint: What does the equality of the treaunent 
means imply about Ihe arrangement of the ranks I. 2,3. 4?1 

18.37. Three populations are being studied; each is uniform between 300 and 800. 

a. Generate 10 random observations from each of the three uniform populations and calculate 
the F~ test statistic (18.25). 

b. Repeat p<ln (a) 500 times. 
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c. Calculate the mean and standard deviation of the 500 test statistics. How do these values 
compare with the characteristics of the relevant F distribution? 

d. What proportion of the 500 test statistics obtained in part (b) is less than F(.90; 2, 27)? 
What proportion i's less than F (.99; 2, 27)? How do these proportions agree with theoretical 
expectations? 

18.38. Refer to the Prostate cancer data set in Appendix C.5 and Case Study 16.49. Check to 
see whether concern exists about the assumption of normality and equal variances for the 
ANOVA model that you decided upon in Case Study 16.49. Document the steps taken in your 
assessment of these concerns. Is a transformation indicated here? If yes, what transformation 
is recommended? Why? 

18.39. Refer to the Real estate sales data set in Appendix C.7 and Case Study 16.50. Check to 
see whether concern exists about the assumption of normality and equal variances for the 
ANOVA model that you decided upon in Case Study 16.50. Document the steps taken in your 
assessment of these concerns. Is a transformation indicated here? If yes, what transformation 
is recommended? Why? 

18.40. Refer to the Ischemic heart disease data set in Appendix C.9 and Case Study 16.51. Check 
to see whether concern exists about the assumption of normality and equal variances for the 
ANOVA model that you decided upon in Case Study 16.51. Document the steps taken in your 
assessment of these concerns. Is a transformation indicated here? If yes, what transformation 
is recommended? Why? 

.. 
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Chapter 

Two-Factor Studies with 
Equal Sample Sizes 

In Part IV, we considered the design and analysis of experimental and observational studies 
in which the effects of one factor are investigated. Now we are concerned with investigations 
of the simultaneous effects of two or more factors. In this chapter, we take up the analysis 
of variance for two-factor studies wheee the factors are crossed and all sample sizes are 
equal. In Chapters 20, 21, 22, and 23, we continue the discllssion of two-factor studies by 
taking up the analysis of factor effects with one case per cell, randomized complete block 
designs, the analysis of covariance. and two-factor studies with unequal sample sizes. In 
Chapter 24, we extend the analysis of variance to studies with three or more factors. Finally, 
in Chapter 25, we take lip random and mixed effects models. 

19.1' Two-Factor Obst'rvationaJ and Experinlt'lltal Studies 

Two-factor studies, like single-factoe studies, can be based on experimental or observational 
data. We begin with three examples of two-factor studies: the first is an experimental study, 
the second is an obseevational study, and the third has aspects of both experimental and 
obseevati onal studi es. • 

Examples of Two-Factor Experiments and Observational Studies 

Example 1 

812 

A company investigated the effects of selling price and type of promotional campaign 
on sales of one of its pcoducts. Three selling prices (55 cents, 60 cents, 65 cents) were 
studied, as were two types of promotional campaigns (radio advertising, newspaper 
advertising). Let us consider selling price to be factor A and promotional campaign to 
be factor B. Factor A here was studied at three peice levels: in general, we use the sy:n­
hoI a to denote the number of levels of factor A investigated. Factor B was here studl~ 
at two levels; we use the symbol b to denote the number of levels of factoe B investJ­
gated. Each combination of price and promotional campaign was .~tudied, as shown in the 



FIGURE 19.1 
Experimental 
!Alyout-
Example 1. 

table below: 

Treatment 

1 
2 
3 
4 
5 
6 
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Description 

55 price, radio advertising 
60 price, radio advertising 
65 price, radio advertising 
55 price, newspaper advertising 
60 price, newspaper advertising 
65 price, newspaper advertising 

Each combination of a factor level of A and a factor level of B is a treatment. Thus, there 
are 3 x 2 = 6 treatments here altogether. In general, the total number of possible treatments 
in a two-factor study is abo 

Twelve communities throughout the United States, of approximately equal size and sim­
ilar socioeconomic characteristics, were selected and the treatments were assigned to them 
at random, such that each treatment was given to two experimental units. The experiment 
can be represented by the graph in Figure 19.1. The two experimental units for each treat­
ment combination are represented by the dot with circle circumscribed. Notice that four 
experimental units are assigned to each price level, as shown by the dot plot along the price 
(X) axis, and six experimental units are assigned to each mode of advertising, as shown by 
the dot plot along the advertising (Y) axis. 

_ As before, we use n for the number of units receiving a given treatment when all treatment 
sample sizes are the same. For the n = 2 communities that were assigned treatment 1, for 
instance, the product price was fixed at 55 -cents and radio advertising was employed, and 
so on for the other communities in the study. 

This is an experimental study because control was exercised in assigning the factor A and 
factor B levels to the experimental units by means of random assignments of the treatments 
to the communities. The design used was a completely randomized design. 
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Example 2 

Example 3 

An analyst studied the effects offamily income (under $15,000. $15,000-$29,999, $30,000-
$49,999, $50,000 and more) and stage in the life cycle of the family (stages I 2 3 4) , " on 
appliance purchases. Here, 4 x 4 = 16 treatments are defined. These are in part: 

Treatment 

1 
2 

16 

Description 

Under $15,000 income, stage 1 
Under $15,000 income, stage 2 

$50,000 and more income, stage 4 

The analyst selected 20 families with the required income and life-cycle characteristics for 
each of the "treatment" classes for this study, yielding 320 families for the entire study. 

This study is an observational one because the data were obtained without assigning 
income and life-cycle stage to the families. Rather, the families were selected because they 
had the specified characteristics. 

A medical investigator studied the relationship between the response to three blood pressure 
lowering dmg types for hypertensive males and females. Here, 3 x 2 = 6 treatments are 
defined. These are: 

Treatment 

1 
2 
3 
4 
5 
6 

Description 

Drug type 1, males 
Drug type 1, females 
Drug type 2, males 
Drug type 2, females 
Drug type 3, males 
Drug type 3, females 

The investigator selected 30 adult males and 30 adult females and randomly assigned 
10 males and 10 females to each of the three drug types, yielding 60 total subjects. 

This study has one observational factor, gender, and One experimental factor, drug type. 
This design is referred to as a randomized complete block design lYhere the gender factor 
is called a block. This design will be discussed in Chapter 21. 

Comments 
I. When we considered single-t~lCtor studies, we did nor place any restrictions on the natLIre of the r 

factor levels LInder study. Formally, the ab treatments in a two-factor investigation could be considered 
as the r factor levels in a single-factor investigation and analyzed according to the methods discussed 
in Parr IV. The reason why new methods of analysis are reqLlired is that we wish to analyze the ab 
treatments in special ways that recognize two factors are involved and enable us to obtain information 
aboLlt the main effects of each of the two factors as well as about any special joint effects. 

2. When a completely randomized design is used in a multifactor stLIdy, the random assibTJ1menrs 
of treatments to the experimental Llnits are made in the same manner as for a single-factor study. No 
new problems are encountered once the treatments are defined in terms of the factor levels of the 
varioLlS factors LInder study. • 
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1!l'1eOne-Factor-at-a-Time (OFAAn Approach to Experimentation 
-~ It is not uncommon for investigators to vary only one factor at a time, holding all others 

constant, when attempting to understand the effect of a given set of factors on a particular 
outcome_ For example, to maximize sales in Example 1, we might be tempted to first fix 
price at a particular value such as 60 cents, and then determine which mode of advertising 
(radio or newspaper) is most effective_ If this test reveals that newspaper advertising leads 
to higher sales, we would then run a second test in which the advertising mode is fixed 
at "newspaper," and the three price levels are tested_ This one-factor-at-a-time (OFAAT) 
experimental approach is depicted in Figure 192_ 

fiGURE 19.2 
One-Factor­
at-a-llme 
Approach­
Example 1. 

We note a number of deficiencies of the OFAAT approach: 

1_ The OFAAT approach does not explore the entire space of treatment combinations, 
and important treatment combinations may therefore be missed_ In Figure 192, we see 
that two treatment combinations-(radio, 55 cents) and (radio, 65 cents)-were omitted, or 
one-third of the totaL The fraction of treatment combinations omitted can be much larger 
for studies involving larger numbers of factors and/or larger numbers of factor levels_ 

2_ Interactions cannot be estimated_ As we have seen in regression, an interaction between 
two predictors is present if the effect (slope) of one predictor changes with the level of the 
other predictor_ With the OFAAT approach, this is impossible to determine, because the 
slope of one factor is obtained only for a fixed set of levels of the other factors_ 

3_ A full randomization is not possible for the OFAAT approach, because the experi­
ment must be fielded in stages_ Thus if certain variables that are not under control of the 
experimenter change with the stages of the testing, the results may be adversely affected_ 

4_ The OFAAT approach is often more difficult to field logistically, because of the se­
quence of stages_ At each stage, the experimental apparatus is set up, responses are obtained, 
an analysis is carried out, and the next treatment combinations are determined_ Setting up for 
each experimental phase can be difficult- For example, it may be necessary in an industrial 
experiment to reserve time on an assembly line or in a pilot plant well in advance_ In a field 
study involving a survey, it may be necessary to preschedule subjects and interviewers_ In 
addition, processing responses can be time-consuming-for example, if complicated labo­
ratory analyses are required-and the subsequent phase of experimentation may be delayed 
significantly_ 
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Advantages of Crossed, Multi-Factor Designs 
Efficiency and Hidden Replication. Multi-factor studies are more efficient than th 
OFAAT experimental approach. Even though the OFAAT approach devotes all resources e 
studying the etfect of only one factor, it does not yield any more precise information abo~ 
that factor than a multi-factor experiment of the same size. With reference to Example: 
again,. suppose. t~at 12 communiti~s were to be utilized i~ ~ traditional study, six assigned 
to radIO advertiSing and the other SIX to newspaper advertiSing, and that the price would be 
kept constant at 60 cents. For this traditional study, the comparison between the two types 
of promotional campaigns would be based on two samples of six communities each. The 
same is true for the two-factor study in Example I, since each promotional campaign Occurs 
there in three treatments and each treatment has two communities assigned to it. Figure 19.1 
reveals what is sometimes called hidden replication in a two-factor experiment. While there 
ace only two replicates for each treatment combinaJion, each level of advertising is repeated 
six times, and each level of price is repeated four times. 

The increased efficiency due to hidden replication for main etfect tests in multi-factor 
studies is only present when either unimportant interactions exist or when interaction ef­
fects are small relative to main effects. When important interactions are present, multiple 
comparisons of the individual cell means rather than comparisons of the main effects are 
usually conducted. 

Assessment ofInteractions. OFAAT studies provide no information about interactions. 
Specifically in our previous ililistration, it does not provide any information about any 
special joint effects of price and promotional campaign. For instance. it might be that the 
price effects are not large when the promotional campaign is in newspaper~ but are large with 
radio advertising. Such interaction effects can be readily investigated from cross-classified 
mulrifactor studies. 

Validity of Findings. In addition to being more efficient and readily providing infonnation 
about interaction effects. multi-factor studies also can strengthen the validity of rhe findings. 
Suppose that in Example I, management was principally interested in investigating the 
effects of price on sales. If the promotional campaign used in the price study had been 
newspaper advertising, doubts might exist as to whether or not the price etfects differ for 
other promotional vehicles. By including type of promotional campaign as another factor 
in the study, management can get information about the persistence of the price effects with 
different promotional vehicles, without increasing the number of experimental units in the 
study. Thus, nlUltifactor studies can include some factors of secondary importance to permit 
inferences about the primary factors with a greater range of validity. 

Comments 

I. Multi-factor srudies permir a ready evaluation of interacrion effecrs for observational data and 
economize on rhe number of ca~e~ required for rhe analysis, jusr as for experimental srudies. 

2. The advantages of multi-factor experimenr~ jusr described should nor lead one to rhink thar 
inclusion of more facrors necessarily resulrs in a bener srudy. Experiments involving many factors, 
each at numerous levels, become complex, cosrly, and rime-consuming. lr is ofren a bener research 
srrategy to begin wirh fewerfacrors and/or fewer levels for each facror, and rhen exrend rhe invesrigation 
in accordance wirh rhe resulrs obtained ro date. In rhis way, resources can be devoted principally to 
rhe mosr promising avenues of invesrigation. and a bener understanding of rhe effecLs of rhe factors 
can be obrained. • 
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~f±; Meaning of ANOVA Model Elements 

~. , illuStration 
h' l!:$ ... , 

Before presenting a formal statement of the analysis of variance model for two-factor 
studies, we shall develop the model elements and discuss their meaning. This will not only 
be helpful in understanding the ANOVA model but will also provide insights into how the 
analysis of two-factor studies should proceed. Throughout this section, we assume that all 
population means are known and are of equnl importance when averages of these means 
are required. 

To illustrate the meaning of the ANOVA model elements, we consider a simple two-factor 
study in which the effects of gender and age on learning of a task are of interest. For sim­
plicity, the age factor has been defined in terms of only three factor levels (young, middle, 
old), as shown in Table 19.1a. 

Treatment Means 

TABLE 19.1 
Age Effect but 
No Gender 
Effect, with No 
Interactions­
Learning 

,Example. 

The mean response for a given treatment in a two-factor study is denoted by Mij, where 
i refers to the level of factor A (i = 1, ... , a) and j refers to the level of factor B (j = 
1, ... , b). Table 19. la contains the true treatment means Mij for the learning example. Note, 
for instance, that Mu = 9, which indicates that the mean learning time for young males is 
9 minutes. Similarly, we see that M22 = 11, so that the mean learning time for middle-aged 
females is 11 minutes. 

The interpretation of a treatment mean Mi j depends on whether the study is observational, 
experimental, or a mixture of the -two. In an observational study, the treatment mean Mij 

corresponds to the population mean for the elements having the characteristics of the ith 
level of factor A and the jth level of factor B. For instance, in the learning example, the 
treatment mean Mll is the mean learning time for the population of young males. 

In an experimental study, the treatment mean Mij stands for the mean response that 
would be obtained ifthe treatment consisting of the ith level of factor A and the jth level 
of factor B were applied to all units in the population of experimental units about which 

(a) Mean learning Times (in minutes) 

Factor ,A-Gender 

;=1 Male 
.i =.2 ,female 

Column average 

j=l 
Young, 

9 (f./,l1) 
9 (f./,21) 

9 Vi.l) 

(b) Main Gender Effects (in minutes) 

£i!l =f./,1 •. -f./,·;=12...:..12=O· 
~2 = f./,2· - f./,'; = i'2 -12 =0 

Factor' B-Age 

j=2 j=,3 Row 
Mlddl~ Old Average 

1'1 (f./,12) 16 (f./,13) 12 (f./,l.) 
11 (f./,22) 16 (f./,23) 12 (f./,2.) 

11 (f./,.2) 16 (M.3) 12 (f./, •• ) 

(c) Main Age Eff~cts (In minutes) 
r 

fJl =.f./,·l - f./, •• =' 9 -12 =-3 
fJ2' = f./,'2 .:-' f./, •• ::; 11 - 12 = -1 
fJ3 =' f./,;3'- f./, •• = 16 - 12 = 4 
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inferences are to be drawn_ For instance, in astudy where factor A is type oftrainingpr . 
(highly structured, partially structured, unstructured) and factor B is time of training (~~ 
work, after work), 611 employees are selected and n are assigned at random to each of t~n~ 
treatment'>_ The mean {lij here represents the mean response, say, mean gain in Producti _SIl{ 

if the ith training program administered during the jth time were given to all employ Vl~, 
h I · f . I· eesm t e popu atloll 0 experunenta umts. 

Factor level Means 

Main Effects 

The treatment means in Table 19.1a for the learning example indicate that the mean learning 
times for men and women are the same for each age group. On the other hand, the mean 
learning time increases with age for each gender. Thus, gender has no effect on mean 
learning time, but age does. This can also be seen quickly from the row averages and 
column averages shown in Table 19.1a, which in this case tell the complete story. The row 
averages are the gender factor level means, and the column averages are the age factor level 
means. We denote the column average for the first column by fl· I , which is the average of 
flll and J).,21. In general, the column average for the jth column is denoted by I.L.{ 

"''' L....i= I flij 
fl·j = 

a 
and the row average for the ith row L'> denoted by fl,.: 

",I) 

(19.1) 

L....j=1 flij 
fli· = b (19.2) 

The overall mean learning time for all ages and both genders is denoted by /.1 .• , and is 
defined in the following equivalent fashions: 

Li Lj flij 
1.1.. = (19.3a) 

ab 

_ LiJ).,i. 
fl·· -

a 
(19.3b) 

(19.3c) 

In Table 19.1a, the gender factor level means are fll. = flz. = 12 for the two genders, 
the age factor level means are fl· I = 9, fl.2 = II, and fl.3 = 16 for the three age groups, 
and the overall mean learning time is J)., •• = 12 minutes. • 

Main Age Effects. To summarize the main age effects, we shall consider the differences 
between each factor level mean and the overall mean. These differences are called main 
age effects. For instance, the main effect for young persons in Table 19.1 a is the difference 
between fl· I , the mean learning time for young persons, and fl .• , the overall mean. This 
difference is denoted by /31: 

/31 = fl·1 - fl·· = 9 - 12 = -3 

/31 is called the main effect for factor B at the first level. This and the other main effects for 
factor B are shown in Table 19.1c. 
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Main Gender Effects. The main gender effects are defined in corresponding fashion, and 
denoted by ai. For instance, we have: 

al = f.Ll. - f.L •• = 12 - 12 = 0 

a I is called the main effect for factor A at the first level. The main effects for factor A 
are shown in Table 19.1b. They are both zero, indicating that gender does not affect mean 
learning time. 

General Definitions. In general, we define the main effect of factor A at the ith level as 
follows: 

ai = f.Li· - f.L •• 

Similarly, the main effect of the jth level of factor B is defined: 

13 j = f.L.j - f.L •• 

It follows from (19.3b) and (l9.3c) that: 

Thus, the sum of the main effects for each factor is zero. 

(19.4) 

(19.5) 

(19.6) 

Note again that a main effect indicates how much the factor level mean deviates from 
the overall mean. The greater the main effect, the more the factor level mean differs from 
the overall mean response averaged over the factor levels for both factors. 

~dditive Factor Effects 
The factor effects in Table 19.1 have an interesting property. Each mean response f.Lij can 
be obtained by adding the respective gender and age main effects to the overall mean f.L ••• 

For instance, we have: 

f.L1I = f.L •• + al + f3l = 12+ 0+ (-3) = 9 

f.L23 = f.L •• + a2 + 133 = 12 + 0 + 4 = 16 

In general; we have for Table 19.1a: 

f.Lij = f.L •• + ai + f3j Additive factor effects (19.7) 

which can be expressed equivalently, using the definitions of ai in (19.4) and of 13 j in (19.5), 
as: 

f.Lij = f.Li· + f.L.j - f.L •• Additive factor effects (19.7a) 

It can also be shown that each treatment mean f.Lij in Table 19.1a can be expressed in 
terms of three other treatment means: 

f.Lij = f.Lij' + f.Li' j - f.Li' j' Additive factor effects i =1= i', j ~ j' (19.7b) 
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FIGURE 19.3 
Age Effect but 
No Gender 
Effect, with No 
Interactions-
Learning 
Example. 
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For instance, we have: 

f.Lu = f.Lt2 + f.L2L - f.L22 = 11 + 9 - 11 = 9 

or: 

f.Lu = f.L13 + f.L21 - f.L23 = 16 + 9 - 16 = 9 

When all treatment means can be expressed in the form of (19_7), (19.7a), or (l9.7b), 
we say that the factors do not interact. or that no factor interactions are present, or that 
the factor effects are additive. The significance of no factor interactions is that the effect 
of either factor does not depend on the level of the other factor. Consequently, the effects 
of the two factors can be described separately merely by analyzing the factor level means 
or the factor main effects. For instance, in the learning example in Table 19.1a, the two 
gender means signify that gender has no influence regardless of age, and the three age 
means portray the influence of age regardless of gender. The analysis of factor effects is 
therefore quite simple when there are no factor interactions. 

Graphic Presentation. Figure 19.3 presents the mean learning times of Table 19.1a in 
the form of a treatment means plot-also known as an interaction plot. The X axis contains 
the gender factor levels (denoted by At and A2 ), and the Y axis contains learning time. 
Separate curves are drawn for each of the age factor levels (denoted by Bl> /h., and B3)' The 
zero slope of each curve indicates that gender has no effect. The differences in the heights 
of the three curves show the age effects on learning time. 

The points on each curve are conventionally connected by straight lines even though 
the variable on the X axis (gender, in our example) is not a continuous variable. When the 
variable on the X axis is qualitative, the slopes of the curves have no meaning, except when 
the slope is zero, which implies there are no factor level effects. If one of the two factors is 
a quantitative variable, it is ordinarily advisable to place that factor on the X scale. 

Note that the treatment means plot in Figure 19.3 corresponds to a conditional effects 
plot in regression, such as the ones shown in Figure 8.7 on page 307. In each case, the effect 
of one variable is shown at different levels of the other variable. 

A Second Example with Additive Factor Effects. Table 19.2a contains another illuS­
tration of factor effects that do not interact, for the same gender-age learning example as 
before. The situation here differs from that of Table 19.1a in that not only age but also 
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(~) ~Mean [~~rning Times '(i~'mi~utes"> 
," .." _ ~ ; " f - , ,.- _ ,',' -: • - • --,. " ~; 

Factor A-Gender 

i = 1 Male 
i ,=2 Female 

Column average 

j=l 
Young 

11 (fLll) 
7 (fL2~) 

9 (fL.1) 

(b) Main Gender Effects (in minutes) 

20 

t 
a1=fL1.-fL .. =14-12= 2 
a2 = fL2' - fL·. =10 - 1-2 =-2 

Gender 

o~--~--------~--------~---
~ 
Age 

j=2 
Middle 

H(fL12) 
9~M2,;) 

11 '(fL'2) 

}==3 
'Old 

18 (M13) 
14.{/L23) 

16 (fL'3) 

Row 
AveragE! 

14ifL1;) 
10 (fL2') 

12 (fL .. ) 

(c) Main Agfi!Effects (in minutes) 

fJ1 =;= 1£'1 -'- fJ, •. = 9 - 12 = -3 
{J2 = f1;;2~ fL·· = 11 -' 12 =-1 
fJ3=fL.3-fL".=16-12=;: 4 

gender affects the learning time. This is evident from the fact that the mean learning times 
for men and women are not the same for any age group. 

In Table 19.2a, as in Table 19.1a, every mean response can be decomposed according 
to (19.7): 

Mij = M·· + (Xi + f3j 

For instance: 

MIL = M·· + (Xl + f3l = 12+ 2+ (-3) = 11 

Hence, the two factors do not interact, and the factor effects can be analyzed separately by 
examining the factor level means Mi. and M'j, respectively. 

Figure 19.4 presents the data from Table 19.2a in the form of a treatment means plot. 
This time we have placed age on the X axis and used different curves for each gender. Note 
that the difference in the heights of the two curves reflects the gender difference and the 
departure from horizontal for each of the curves reflects the age effect. Furthermore, the 
two curves are parallel, which indicates that no two-factor interactions are present. 
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Equivalent Statements of Additive Factor Effects. We have said that two factors d' 
interact if all treatment means f.Lij can be expressed according to (19.7), (l9.7a), or (l90~ot; 
There are a number of other, equivalent, methods of recognizing when two factors ~ ~"~. 
interact. These are: not 

I. The difference between the mean responses for any two levels of factor B is the 
for all levels of factor A. (For instance, in Table 19.2a, going from young to middl~ame: 
leads to an increase of two minutes for both males and females. and going from lUi: 
age to old leads to an increase of five minutes for both males and females.) Note that it·

e 

not required that the changes. say, between levels I and 2 and between levels 2 and 3 ~ 
factor B are the same. These. of course, may differ depending upOn the nature of the factor 
B etlect. 

2. The difference between the mean responses for any two levels of factor A is the same 
for all levels of factor B. (For instance, in Table 19.2a. going from male to female leads to 
a decrease of fom minutes for all three age groups.) 

3. The cnrves of the mean responses for the different levels of a factor are all parallel 
(such as the two gender curves in Figure 19.4). 

All of these conditions are equivalent, implying that the two factors do not interact. 

Interacting Factor Effects 

TABLE 19.3 
Age and 
Gender Effects, 
with 
Interactions­
Learning 
Example. 

Table 19.3a contains an illustration for the leaming example where the factor effects do 
interact. The mean learning times for the different gender-age combinations in Table 19.3a 
indicate that gender has no effect on learning time for young persons but has a substantial 
effect for old persons. This differential influence of gender, which depends on the age of 
the person, implies that the age and gender factors interact in their effect on leaming time. 

(a) Mean learning Times (in minutes) 

Factor B-Age 
Main 

j = 1 j=2 j=3 Row Gender 
Factor A-Gender Young Middle Old Average Effect 

; = 1 Male 9 (f.Lll) 12 (/112) 18 (f.L13) 13 (/ld 1 (al) 
; = 2 Female 9 (/121) 10 (f.L22) 14 (f.L23) 11 (/12') -1 (a2) 

Column average 9 (f.L'1) 11 (/1,2) 16 (f.L'3) 12 (f.L .. ) 
Main age effect -3 (fJl) -1 (fJ2) 4 (fJ3) 

(b) Interactions (in minutes) 

Row 
j = 1 j=2 j=3 Average 

; = 1 -1 0 0 
;=2 1 0 -1 0 

Column average 0 0 0 0 
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Definition ofInteraction. We can study the existence of interacting factor effects formally 
by examining whether or not all treatment means fJ.,ij can be expressed according to (19.7): 

fJ.,ij = fJ., .. + ai + {3j 

If they can, the factor effects are additive; otherwise, the factor effects are interacting. 
For the learning example in Table 19.3a, the main factor effects ai and {3j are shown in 

the margins of the table. It is clear that the factors interact. For instance, fJ.,u = 9 while: 

fJ., .. + al + {31 = 12 + 1 + (-3) = 10 

If the two factors were additive, these would be the same. 
The difference between the treatment mean fJ.,ij and the value fJ., .. + ai + {3 j that would 

be expected if the two factors were additive is called the interaction effect, or more simply 
the interaction, of the ith level of factor A with the jth level of factor B, and is denoted by 
(a{3)ij' Thus, we define (a{3)ij as follows: 

(a{3)ij = fJ.,ij - (fJ., .. + ai + {3j) (19.8) 

Replacing ai and {3j by their definitions in (19.4) and (19.5), respectively, we obtain an 
alternative definition: 

(19.8a) 

To repeat, the interaction ofthe ithlevelof A with the jthlevel of B, denoted by (a{3)ij, is 
simply the difference between the treatment mean fJ.,ij and the value that would be expected 
if the factors were additive. If in fact the two factors are additive, all interactions equal zero; 
i.e., (a{3)ij == O. 

The interactions for the learning example in Table 19.3a are shown in Table 19.3b. We 
have, for instance: 

(a{3)LJ = fJ.,l3 - (fJ., .. + al + {33) 

= 18 - (12 + 1 + 4) 

=1 

Recognition of Interactions. We may recognize whether or not interactions are present 
in one of the following equivalent fashions: 

1. By examining whether all fJ.,ij can be expressed as the sums fJ., .. + ai + {3j. 

2. By examining whether the difference between the mean responses for any two levels 
of factor B is the same for all levels of factor A. (For instance, note in Table 19.3a that 
the mean learning time increases when going from young to middle-aged persons by three 
minutes for men but only by one minute for women.) 

3. By examining whether the difference between the mean responses for any two levels 
of factor A is the same for all levels of factor B. (For instance, note in Table 19.3a that 
there is no difference between genders for young persons, but there is a difference of four 
minutes for old persons.) 

4. By examining whether the treatment means curves for the different factor levels in 
a treatment means plot are parallel. (Figure 19.5 presents a plot of the treatment means 
in Table 19.3a, with age on the X axis. Note that the treatment means curves fQr the two 
genders are not parallel.) ~ 
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FIGURE 19.5 
Age and 
Gender Effects, 
with Important 
Interactions­
Learning 
Example. 

20 Gender 

o~--~--------~--------~-----
81 ~ 

Age 

Comments 
1. Note from Table 19.3b that some interactions are zero even though the twO factors are interacting. 

All interactions mLlst eqLlai zero in order for the two factors to be additive. 

2 Table 19.3b illustrates that interactions sum to zero when added over either rows OI'columns: 

j = 1, ... ,b (19.9a) 

L(afJ)'j =0 i = 1, ... , a (19.9b) 
j 

Consequently, the sLIm of all interactions is also zero: 

(19.9c) 

We show this for (19.9a): 

(/ 

L(afJ)ij = LU1;j -11 •• - ai - fJj) 
i=1 

Now .Li f-Lij = af-L.j by (19.1) and .La; = 0 by (19.6). Finally, fJj = 11'j - /L .. by (I9.5). Hence, we 
obtain: 

• 
Important and Unimportant Interactions 

When two factors interact, the question arises whether the factor level means are still 
meaningful measures. In Table 19.3a, for instance, it may well be argued that the gender 
factor level means 13 and 11 are misleading measures. They indicate that some difference 
exists in learning time for men and women, but that this difference is not too great. These 
factor level means hide the fact that there is no difference in mean learning time between 



. 6' 19.4 
':d 

,er EffeCts, 

• jJOI1ant 

",'~ons­
, .... g 

":,ple. 

~RE 19.6 

~~d 
&liiiaer Effects, 

111 
l'"fuportant 
'th1ictions 

riirves almost 

~e; 
~awple. 

Chapter 19 Two-Factor Studies with Equal Sample Sizes 82S 

Factor A-Gender 

i .=1 Male ~' 

; = 2 Fen;ale 

Column average 

20 

j=/l 
YO,ung 

9.75 
8;2:5 
9.00 

1';=2 
'Mid~lfi! 

12;00 
io:60 
11:0,0 

Gender 

o~--~--------~--------~-----
~ 83 

Age 

i6il 
1725 
i.{i5 
1'6.,(}() 

',Row 
/\y.¢rage 

13.00 
1'1;00 

12.00 

genders for young persons: but there is a relatively large difference for old persons. The 
interactions in Table 19.3a would therefore be considered important interactions, implying 
that one should not ordinarily examine the effects of each factor separately in terms of the 
factor level means. A treatment means plot, such as in Figure 19.5, presents effectively a 
description of the nature of the interacting effects of the two factors. 

Sometimes when two factors interact, the interaction effects are so small that they are 
considered to be unimportant interactions. Table 19.4 and Figure 19.6 present such a case. 
Note from Figure 19.6 that the curves are almost parallel. For practical purposes, one may 
say that the mean learning time for women is two minutes less than that for men, and this 
statement is approximately true for all age groups. Similarly, statements based on average 
learning time for different age groups will hold approximately for both genders. 

Thus, in the case of unimportant interactions, the analysis of factor effects can proceed 
as for the case of no interactions. Each factor can be studied separately, based on the factor 
level means Mi. and M.jo respectively. This separate analysis of factor effects is, of course, 
much simpler than a joint analysis for the two factors based on the treatment means Mij, 

which is required when the interactions are important. 

Comments 
1. The determinarion of whether interactions are important or unimportant is admittedly sometimes 

difficult because it depends on the context of the application, just as the determination of whether 
an effect in a single-factor study is important. The subject area specialist (researcher) needs to play 
a prominent role in deciding whether an interaction is important or unimport~t: The advantage of 
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unimportant (or no) interactions, namely, that one is then able to analyze the factor effects S "t 

is especially great when the study contains more than twO factors. epanuel 

2. Occasionally, it is meaningful to considel" the effects of each factor in terms of the ~ ~ ,actorreve 
means even wilen important interactions are pl"esent. For example, two methOds of teach' ' 

109 colI""", 
mathematics (abstract and stand,lrd) were used in teaching students of excellent, good, and m de ~ 
quantitative ability. Important interactions between teaching method and student's quamila[iVeoabi~ 
wel"e found to be present. Students with excellent quantitative ability tended [0 peliorm equall l., 

with [he two teaching methods, whereas students of moderate or good quantitative ability ten~ ~eIl,: 
perfonn benel" when taught by the standal"d method. If equal numbers of students with mo~ to: 
good, and excellent quantitative abil ity are to .be taught by one. of the tw~ teaching methods, then:: 
method that produces the best average result tOI" all students might be of II1terest even in the presenc:: 
of important imerac[i~ns. A cO~lparisO? of tile teaching method factor level means WOuld then be' 
relevant, even though Important mteructlons are pl'esenr. II' 

Transformable and Nontransformable Interactions 
When important interactions exist, they are sometimes the result of the scale on which the 
response variable is measured. Consider, tor instance, factor effects that act multiplicatively, 
rather than additively as in (19.7): 

Multiplicative factor effects (19.10) 

If we were to assume here that the factor effects are additive, we would find that condition 
(19.7) does not hold and therefore that interactions are present. These interactions can be 
removed, however, by applying a logarithmic transformation to ( 19. 10): 

This result can be restated equivalently as follows: 

where: 

/.1;i = log f.L1j 

I/. = log /.1 .. 
a; = logai 

f3j = log {3j 

, , 'f3' f.Lii = f.L .. +ai + j 

(19.11) 

(19.11a) 

The result in (19.lla) suggests that the original measurement scale for the response 
variable Y may not be the lllost appropriate one in the sense of leading to easily understood 
results. Rather, use of Y' = log Y for the response variable may be better, making the additive 

model ( 19.7) then more appropriate. 
We say that the interactions present when the factor effects are actually multiplicative 

are tntl1.lj'ormable interactions because a simple transformation of Y will remove most of 

these interaction effects and thus make them Unimportant. 
Another in~tance oftransfonnable interactions occurs when each interaction etfect equals 

the product of functions of the main effects, for example: 

Multiplicative interactions (19.12) 
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An equivalent form of (19.12) is: 

ga{;!:~rA 

;;;,~ 
)i~J 

/Lij = ( va; + J73jY 

;L~l 
,4, 
,] 

,8 

j,=2 

8 
11 
12' 

(19.12a) 

If we now apply the square root transformation, we obtain an additive effects model: 

where: 

II~. = a~ + f3'. r,] I ] (19.13) 

Some simple transformations that may be helpful in making important interactions un­
important are the square, square root, logarithmic, and reciprocal transformations. When in­
teractions cannot be largely removed by a transformation, they are called nontransformable 
interactions. 

Table 19.5a contains an example of important interactions that are transformable. When 
a square root transformation is applied to these means, the resulting treatment means in 
Table 19.5b show no interacting effects. Ordinarily, of course, one cannot hope that a simple 
transformation of scale removes all interactions as in Table 19.5, but only that interactions 
become unimportant after the transformation. 

interpretation of Interactions 
The interpretation of interactions can be quite difficult when the interacting effects are 
complex. There are many occasions, however, when the interactions have a simple structure, 
such as in Table 19.3a, so that the joint factor effects can be described in a straightforward 
manner. Table 19.6 provides several additional illustrations. The corresponding treatment 
means plots are shown in Figure 19.7. 

In Table 19.6a and Figure 19.7a, we have a situation where either raising the payor 
increasing the authority of low-paid executives with small authority leads to increased 
productivity. However, combining both higher pay and greater authority does not lead 
to any substantial further improvement in productivity than increasing either one alone. 
Table 19.6b and Figure 19.7b represent a case where both higher pay aI¥i.greater authority 
are required before any substantial increase in productivity takes place. 
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TABLE 19.6 
Examples of 
Different Types 
of Interactions. 

(a) Productivity of Executives-

Factor A-Pay 

Low 
High 

FaCtQr' B-Autb()rity 

Smail Greaf 

50 
74 

72 
75 

, (b) Productivity of Executives 

Factor A-Pay 

Low 
High 

Factor B-Authority 

Small 

50 
53 

Great 

52 
75 

(c) Prod.uctivlty:of .Execulivc:!s 

Factor A-Pay 

Low 
High 

Factor B-Allthority 

Small 

50 
72 

Great 

72 
50 

(d) Productivity per Person in Crew 

Factor A-Crew Size 

4 persons 
6 persons 
8 persons 

10 persons 

Factor B-Personality 
of Crew Chief 

Extrovert 

28 
22 
20 
17 

Introvert 

20 
20 
19 
18 

• 
It is possible that two factors interact, yet the main effects for one (or both) factors are 

zero. This would be the result of interactions in opposite directions that balance out over 
one (or both) factors. Thus, there would be definite factor effects, but these would not be 
disclosed by the factor level means. Table 19.6c and Figure 19.7c represent this situation 
where neither factor effect is present and the two factors interact. The ca~e of interacting 
factors with no main effects for one (or both) factors fortunately is unusual. JYpicaIly, 
interaction effects are smaller than main effects. 

Table 19.6d and Figure 19.7d portray a situation where size of crew and personality of 
crew chief interact in a complex fashion. Productivity with an extrovert crew chief and a 
crew of four is substantially larger than with an introvert crew chief. The advantage becomes 
small with crews of six and eight, and with a crew of 10 an introvert crew chief leads to a 
slightly larger productivity. 
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The terminology of reinforcement and interference interactions described in Chapter 8 for regression 
models where both predictor variables are quantitative is applicable to analysis of variance models 
if the two factors are quantitative or can be ordered on a measurement scale. In Figures 19.7a and 
19.7b, pay level and authority both can be ordered on a scale. Hence, the interaction in Figure 19.7a 
can be described as an inteiference or antagonistic interaction (the slope decreases for higher levels 
offactor B), while that in Figure 19.7b can be described as a reinforcement or synergistic interaction 
(the slope increases for higher levels of factor B). 

Similarly, the terminology of ordinal and disordinal interactions described in Chapter 8 for re­
gression models where one predictor variable is quantitative and the other qUalitative is applicable to 
analysis of variance models if one factor is quantitative or can be ordered on a measurement scale 
and the other factor is qualitative. In Figure 19.7d, crew size is a quantitative factor and personality is 
a qualitative factor. Therefore, the interaction in Figure 19.7d can be described as disordinal because 
the treatment means curves intersect. • 

19.3 Model I (Fixed Factor Levels) for Two-Factor Studies 

Having explained the model elements, we are now ready to develop ANOVA model I with 
fixed factor levels for two-factor studies when all treatment sample si.es are equal and all 
treatment means are o/equal importance. This ANOVA model is applicable to observational 
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studies and to experimental studies based On a completely randomized design. In Pa VI 
we shall consider ANOYA models for some other experimental designs. n 

The basic situation is as follows: Factor A is studied at a levels. and these are of intri . 
interest in themselves; in other words, the a levels are not considered to be a sample f~IC 
~ la~·ge.r ~opulati~n of factor A levels. Similarly, factor ~ is.studied ~t b levels that are:: 
tntnnslC lllterest m them~elves. All ab factor level combmatlOns are tncluded in the stud 
The number of cases for each of the a/J treatments is the same, denoted by 11, and it k 
required that 11 > l. Thus, the total number of cases for the study is: 

111' = abn (19.14) 

The kth observation (k = I, .... 11) for the treatment, where A is at the ith level, and B 
is at the jth level, is denoted by Yijk (i = I .... , a; j = I, ... , b). Table 19.7 on page 833 
illustrates this notation for an example where A is at three levels, B is at two levels, and 
two replications have been made for each treatment. 

We shall state the fixed ANOYA model for two-factor studies in two equivalent versions­
the cell means version and the factor effects version-and later will use one Or the other as 
convenience dictates. 

Cell Means Model 
Model Fonnulation. When we regard the ab treatments without explicitly considering 
the factorial structure of the study, we express the analysis of variance model in terms of 
the cell (treatment) means l.1ij: 

Y ijk = f.Li i + Eijk (19.15) 

where: 

f.Lij are parameters 

Eijk are independent NCO. a 1
) 

i = I, ... , a; j = I .... , b; k = I ..... 11 

Important Features of Model. Some important features of the cell means model are: 

l. The parameter f.Lij is the mean response for the treatment in which factor A is at the 
ith level and factor B is at the jth level. This follows because E {Eud != 0: 

2. Since l.1i i is a constant, the variance of Yijk is: 

a 2p-;',id = a 2
{Ei,id = a

2 

(19.16) 

(19.17) 

3. Since the error terms Eijk are independent and normally distributed. so are the obser­
vations Yijk . Hence, we can state ANOYA model (19.15) also as follows: 

Yijk are independent N(f.Lii, a") (19.18) 

4. ANOYA model (19.15) is a linear model because it can be expressed in the form 
y = X~ + e. Consider a two-factor study with each factor having two levels (i.e .. 0= b = 2) 
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and two trials for each treatment (i.e., n = 2). Then Y, X, ~, and € are defined as follows: 

Ylll 1 0 0 0 Clli 

Y ll2 1 0 0 0 CU2 

YI21 0 1 0 0 

[~"l 
CI21 

Y= 
Y122 

X= 
0 I 0 0 ~ = f.L12 CI22 (19.19) 

Y211 0 0 1 0 
€= 

f.L21 C2U 

Y212 0 0 1 0 f.L22 C212 

Y221 0 0 0 C221 

Y222 0 0 0 1 C222 

Recall that the E{Y} vector, which consists ofthe elements E{Yijk }, equals X~ according 
to (6.20). This vector here is: 1 

1 0 0 0 f.L1l 

1 0 0 0 f.Lu 

0 1 0 0 

[~"l 
f.L12 

E{Y} =X~ = 
0 1 0 0 f.L12 f.L12 (19.20) 
0 0 1 0 

= 
f.L21 f.L21 

0 0 1 0 f.L22 f.L21 

0 0 0 1 f.L22 

0 0 0 1 f.L22 

Thus, E{Yijk } = f.Lij, as it must according to (19.16), and we have the proper matrix 
representation for the two-factor ANaVA model (19.15): 

Yw f.Lll Clli 

YI12 f.Lu CO2 

Yl2l f.L12 c121 

Y=' 
YI22 

=X~+€= 
f.L12 

+ 
C122 (19.21) 

Y2U f.L21 C211 

Y212 f.L21 C212 

Y221 f.L22 C221 

Y222 f.L22 C222 

In view of the error terms being independent with constant variance (52, the variance­
covariance matrix ofthe error terms is (J2 { €} = (521, as in (16.9) for the single-factor ANaVA 
model. Also as before, we have (J2{y} = (J2{€} for two-factor ANaVA model (19.15). 

5. ANaVA model (19.15) is therefore similar to the single-factor ANaVA model (16.2), 
except for the two subscripts now needed to identify the treatment. Normality, independent 
error terms, and constant variances for the error terms are properties of the ANaVA models 
for both single-factor and two-factor studies. 

Factor Effects Model 
Model Formulation. An equivalent version of cell means model (19.15) can be obtained 
by replacing each treatment mean f.Lij with an identical expression in terms of factor effects 
based on the definition of an interaction in (19.8): ~ . 
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Rearranging terms, we obtain the identity: 

where: 

LiLjf-Lij 
f-L .. = ab 

ai = f.Li· - f.L .. 
fJj = f-L.j - f.L .. 

f.Lij == f.L .. + ai + fJj + (afJ)ij 

(afJ)/j = f-Lij - f.Li· ;- f.L.j + f-L .. 

(19.22) 

This formulation indicates that each cell mean f.Lij can be viewed as the slim of four com­
ponent factor effects. Specifically, (19.22) states that the mean response for the treatment 
where factor A is at the ith level and factor B is at the jth level is the sum of: 

1. An overall mean f.L ... 

2. The main effect ai for factor A at the ith level. 

3. The main effect fJ j for factor B at the jth level. 

4. The interaction effect (afJ)ij when factor A is at the ith level and factor B is at the 
jth level. 

Replacing f-Lij in ANaVA model (19.15) by the expression in (19.22), we obtain an 
equivalent factor effects ANaVA model for two-factor studies: 

where: 

f-L .. is a constant 

ai are constants subject to the restriction Lai = 0 

fJj are constants subject to the restriction LfJj = 0 

(afJ)ij are constants subject to the restrictions: 

Li (afJ)ij = 0 
L/afJ)ij = 0 

j = 1, . .. ,b 

i = 1, ... , a 

Cijk are independent N (0, ( 2
) 

i = 1, ... , a; j = 1, ... , b; k = 1, ... , n 

(19.23) 

• 

Important Features of Model. Some important features of the factor effects model are: 

1. ANaVA model (19.23) corresponds to the fixed factor effects ANaVA model (16.62) 

for a single-factor study except that the single-factor treatment effect is here replaced by 
the sum of a factor A effect, a factor B effect, and an interaction effect. 

2. The properties of the observations Yijk for factor effects model (19.23) are the same 
as those for the equivalent cell means model (19.15). Since E{Cijk} = 0, we have: 

E {Yijk } = f.L .. + ai + fJj + (afJ)ij = f.Lij 

The second equality follows from identity (19.22). Further, we have: 

a 2 {yijk } = a 2 

(19.24) 

(19.25) 
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because the error term Cijk is the only random term on the right-hand side in (19.23) and 
(J2{Cijk} = (J2. Finally, the Yijk are independent normal random variables because the error 
terms are independent normal random variables. Hence, we can also state ANOVA model 
(19.23) as follows: 

(19.26) 

3. ANOVA model (19.23) is a linear model because it can be stated in the form 
y = X~ + E. We shall show this explicitly in Section 23.2. 

Analysis of Variance 

tUliJstration 

TABLE 19.7 , 
Sample Data 
and Notation 
for Two-Factor 
Study-Castle 
Bakery 
Example (sales 
in cases). 

Table 19.7 contains an illustration that we shall employ in this chapter and the next. The 
Castle Bakery Company supplies wrapped Italian bread to a large number of supermarkets 
in a metropolitan area. An experimental study was made of the effects of height of the 
shelf display (factor A: bottom, middle, top) and the width of the shelf display (factor B: 
regular, wide) on sales ofthis bakery's bread during the experimental period (Y, measured 
in cases). 1Welve supermarkets, similar in terms of sales volume and clientele, were utilized 
in the study. The six treatments were assigned at random to two stores each according to 
a completely randomized design, and the display of the bread in each store followed the 
treatment specifications for that store. Sales of the bread were recorded, and these results 
are presented in Table 19.7. 

'~ Factor B·(display width) 
Factor A 

j 
(display height) '0 

':,~ ..:~ B1 (regular) 'B2 (wide) 

Display 
Row Height 
Total Average 

Al (bottom) 47 (Yill) 46 (Yl2l) 
43 (Y1U) ,,\0, (Yu2l, 

Total 90 (Yll .) 86 (Yu.) 

Average 45'(Yn.) 43 (Yu.) 44,(Y, .. ) 

A2 (middle) 62 fY211) 67 (YnlX 
68 (Y212) llfYnz) 

Total 130(Yi,.) 138 (Yn.) 

Average 65 (Y2l.) ,69 (Yu,) 

A3 (top) 41 (Yiil) ;42 (Yi2~); 
39(Y312~ 46 (Y§22)' 

Total 80 (Y'n') '88 {Y32:) 

Average 40(Y31.) 44(~2~) 

Column total 300 (Y.l .) 312 02.) .612(Y..;) 
Display width average 50 (Y.l .) 52 C)';2.) 51 (Y..:) 
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Notation 
Table 19.7 illustrates the notation we shall use for two-factor studies. It is a straightforward 
extension of the notation for single-factor studies. An observation is denoted by Yijk . The 
subscripts i and j specify the levels of factors A and B, respectively, and the subscript k 
refers to the given case or trial for a particular treatment (i.e., factor level combination). 

A dot in the subscript indicates aggregation or averaging over the vmiable represented 
by the index. For instance, the sum of the observations for the treatment corresponding to 
the ith level of factor A and the jth level of factor B is: 

The corresponding mean is: 

n 

Yij . = LYijk 
k=1 

- Yij. 
Yij. =­

n 

The total of all observations for the ith factor level of A is: 
b n 

Yi.· = LLYijk 
j k 

and the corresponding mean is: 

(19.27a) 

(19.27b) 

(19.27c) 

(19.27d) 

Similarly, for the jth factor level of B the sum of all observations and their mean are 
denoted by: 

a II 

Y. j • 
Y. j • =­

an 

Finally, the sum of all observations in the study is: 

a b n 

Y. .. = LLLYijk 
j k 

and the overall mean is: 

Y. .. 
Y. .. = nab 

(19.27e) 

(19.27f) 

• 

(19.27g) 

(19.27h) 

Fitting of ANOVA Model 
Cell Means Model (19.15). Fitting the two-factor cell means model (19.15) to the sample 
data by either the method of least squares or the method of maximum likelihood leads to 
minimizing the criterion: 

Q = LLL(Y;jk - /-Lij)2 (19.28) 

i j k 
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When we perform the minimization of Q, we obtain the least squares and maximum like­
lihood estimators: 

(19.29) 

Thus, the fitted values are the estimated treatment means: 

(19.30) 

The residuals, as usual, are defined as the difference between the observed and fitted values: 

(19.31) 

Residuals are highly useful for assessing the appropriateness of two-factor ANOVA model 
(19.15), as they also are for the statistical models considered earlier. 

Factor Effects Model (19.23). For the equivalent factor effects model (19.23), the least 
squares and maximum likelihood methods both lead to minimizing the criterion: 

Q = L L L[Yijk - f.J., •• - ai - {Jj - (a{J)ij]2 (19.32) 
- i j k 

subject to the restrictions: 

L(a{J)ij = 0 
i 

When we perform this minimization, we obtain the following least squares and maximum 
likelihood estimators of the parameters: 

Parameter 

Jl- •• 

OIi=Jl-i· -Jl-•• 

fJj=Jl-·j-Jl-·· 

(OIfJ)ij = Jl-ij - Jl-i· - Jl-. j + Jl- •• 

Estimator 

it .. = Y. .. 

ai= Yi •• - Y. .• 

fJj= Y. j• - Y. .. 

(~h = )l;j. - )1; •• - Y. j • + Y. .. 

(19.33a) 

(19.33b) 

(19.33c) 

(19.33d) 

The correspondences of these estimators to the definitions of the parameters are readily 
apparent. 

The fitted values and residuals for factor effects model (19.23) are exactly the same as 
those for cell means model (19.15). Specifically, the fitted values for ANOVA model (19.23) 
are: 

(19.34) 

so that the residuals are again: 
~ . 

(19.35) 

1/ 

il 
,:/ 

-: 
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FIGURE 19.8 
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For the Castle Bakery example, the fitted values, i.e., the estimated treatment means Y;j-. are 
shown in Table 19.7. A plot ofthese estimated treatment means is presented in Figure 19.8. 
We see from this estimated treatment means plot that, for both display widths, mean sales 
for the middle display height are substantially larger than those for the other two display 
heights. The effect of display width does not appear to be large. Indeed, there may be no 
effect of display width; the variations between the estimated treatment means for any given 
display height may be solely of a random nature. In that event, there would be no interactions 
between display height and display width in their effects on sales. 

Figure 19.8 differs from the earlier treatment means plots because the earlier figures 
presented the true treatment means Mij, while Figure 19.8 presents sample estimates. We 
therefore need to test whether or not the effects shown in Figure 19.8 are real effects or 
represent only random variations. To conduct these tests, we require a partitioning of the 
total sum of squares, to be discussed next. 

Partitioning of Total Sum of Squares 
Partitioning of Total Deviation. We shall partition the total deviation of an observation 
Yijk from the overall mean Y. .. in two stages. First, we shall obtain a decomposition of the 

total deviation Yijk - Y. .. by viewing the study as consisting of ab tIfatments: 

Yijk - Y. .. = Yij. - Y. .. + Yijk - Y;j. 
'---v-' ~ '---v--' 

(19.36) Total Deviation of estimated Deviation 
deviation treatment mean around around estimated 

overall mean treatment mean 

Note that the deviation around the estimated treatment mean is simply the residual eijk in 
(19.35): 

Treatment and Error Sums of Squares. When we square (19.36) and sum over all cases, 
the cross-product term drops out and we obtain: 

SSTO = SSTR + SSE (19.37) 
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where: 
,-

SSTO = LLL(Yijk - y. .. i (19.37a) 
j k 

'" '" - - 2 SSTR = n ~ ~(Yij. - Y. .. ) (19.37b) 
j 

(19.37c) 
j k j k 

SSTR reflects the variability between the ab estimated treatment means and is the ordinary 
treatment sum of squares, and SSE reflects the variability within treatments and is the usual 
error sum of squares. The only difference between these formulas and those for the single­
factor case is the use of the two subscripts i and j to designate a treatment. 

For the Castle Bakery example, the decomposition of the total sum of squares in (19.37) is 
obtained as follows, using the data in Table 19.7: 

SSTO = (47 - 51i + (43 - 51)2 + (46 - 51)2 + ... + (46 - 51)2 = 1,642 

SSTR = 2[(45 - 51)2 + (43 - 51)2 + (65 - 51)2 + ... + (44 - 51i] = 1,580 

SSE = (47 - 45)2 + (43 - 45i + (46 - 43)2 + ... + (46 - 44)2 = 62 

Partitioning of Treatment Sum of Squares. Next, we shall decompose the estimated 
treatment mean deviation Y;j. - Y. .. in terms of components reflecting the factor A main 
effect, the factor B main effect, and the AB interaction effect: 

Y;j. - Y. .. = Y; .. - Y. .. + Y.j. - Y. .. + Yij. - Y; .. - Y.j. + Y. .. 
-----...-.. -----...-.. -----...-..., v ' 

Deviation of 
estimated treatment 

mean around 
overall mean 

Amain 
effect 

Bmain 
effect 

AB interaction 
effect 

(19.38) 

When we square (19.38) and sum over all treatments and over the n cases associated with 
each estimated treatm~nt mean Y;j-. all cross-product terms drop out and we obtain: 

where: 

SSTR = SSA + SSB + SSAB 

"'- - 2 SSA = nb ~(Y; .. - Y. .. ) 

"'- - 2 SSB = na ~(Y.j. - Y. .. ) 
j 

SSAB = n L L(Y;j. - Y; .. - Y.j. + y. .. i 
j 

The interaction sum of squares can also be obtained as a remainder: 

SSAB = SSTO - SSE - SSA - SSB 

(19.39) 

(19.39a) 

(19.39b) 

(19.39c) 

~ . 

(19.39d) 
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Example 

Example 

or from: 
SSAB = SSTR - SSA - SSB (19.3ge) 

where SSTO and SSTR are given in (19.37a) and (l9.37b), respectively. 
SSA, called .!.he factor A sum of squares, measures the variability of the estimated factor 

A level means li ... The more variable they are, the bigger will be SSA. Similarly, SSB, called 
~e factor B sum of squares, measures the variability of the estimated factor B level means 
Y. j .. Final! y, SSAB, called the AB interaction sum of squares, measures the variability of the 

estimated interactions ~j. - Y; .. - Y. j. + Y. .. for the ab treatments. Since the mean of all 
estimated interactions is zero, the deviations of the estimated interactions around their mean 
is not explicitly shown, as it was in SSA and SSE. The larger absolutely are the estimated 
interactions, the larger will be SSAB. 

The partitioning of SSTR into the components SSA, SSB, and SSAB is called an orthogonal 
decomposition. An orthogonal decomposition is one where the component sums of squares 
add to the total sum of squares (SSTR here), and likewise for the degrees of freedom. Thus, 
the decompositions of SSTO into SSTR and SSE for single-factor and two-factor studies are 
also orthogonal decompositions. While many different orthogonal decompositions of SSTR 
are possible here, the one into the SSA, SSB, and SSAB components is of interest because 
these three components provide information about the factor A main effect'>, the factor B 
main effects, and the AB interactions, respectively, as will be seen shortly. 

For the Castle Bakery example, we obtain the following decomposition of SSTR. using the 
data in Table 19.7 and the formulas in (19.39): 

SSA = 2(2)[(44 - 51)2 + (67 - 51)2 + (42 - 51)2] = 1,544 

SSB = 2(3)[(50 - 51)2 + (52 - 51i] = 12 

SSAB = 1,580 - 1,544 - 12 = 24 

Hence, we have: 

1,580 = 1,544 + 12 + 24 

SSTR = SSA + SSB + SSAB 

• 
Combined Partitioning. Combining the decompositions in (19.37) and (19.39), we have 
established that: 

SSTO = SSA + SSB + SSAB + SSE 

where the component sums of squares are defined in (19.37) and (19.39). 

For the Castle Bakery example, we have found: 

1,642 = 1,544 + 12 + 24 + 62 

SSTO = SSA + SSB + SSAB + SSE 

(19.40) 

Thus, much of the total variability in this instance is associated with the factor A (display 
height) effects. 
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" . 
R~rtitioning of Degrees of Fr~edom 
"~ We are familiar from single-factor analysis of variance with how the degrees of freedom 
", are divided between the treatment and error components. For two-factor studies with n 

cases for each treatment, there are a total of nT = nab cases and r = ab treatments; hence, 
the degrees of freedom associated with SSTO, SSTR, and SSE are nab - 1, ab - 1, and 
nab - ab = (n - l)ab, respectively. These degrees of freedom for the Castle Bakery 
example are 2(3)(2) - ,1 = 11,3(2) - 1 = 5, and (2 - 1)(3)(2) = 6, respectively. 

;Example 

Corresponding to the further partitioning of the treatment sum of squares in (19.39), 
we can also obtain a breakdown of the associated ab - 1 degrees of freedom. SSA has 
a-I degrees of freedom associated with it. There are a factor level deviations ~ .. - Y. .. , 
but one degree of freedom is lost because the deviations are subject to one restriction, i.e., 
lJ~ .. - Y. .. ) = O. Similarly, SSB has b - 1 degrees of freedom associated with it. The 
degrees of freedom associated with SSAB, the interaction sum of squares, is the remainder: 

(ab - 1) - (a - 1) - (b - 1) = (a - 1)(b - 1) 

The degrees of freedom associated with SSAB may be understood as follows: There are 
ab interaction terms. These are subject to b restrictions since: 

There are a additional restrictions since: 

L(l;~j. - Yi •. - Y. j • + Y. .. ) = 0 
j 

j = 1, .. . ,b 

i = 1, ... ,a 

However, only a - 1 of these latter restrictions are independent since the last one is implied 
by the previous b restrictions. Altogether, therefore, there are b + (a - 1) independent 
restrictions. Hence, the degrees of freedom are: 

ab- (b+a -1) = (a -1)(b-l) 

For the Castle Bakery example, SSA has 3 - 1 = 2 degrees of freedom associated with it, 
SSB has 2 - 1 = 1 degree of freedom, and SSAB has (3 - 1) (2 - 1) = 2 degrees of freedom. 

~Mean Squares 
Mean squares are obtained in the usual way by dividing the sums of squares by their 
associated degrees of freedom. We thus obtain: 

SSA 
MSA=-­

a-I 

SSB 
MSB=--

b-l 

SSAB 
MSAB = ---,--:--~ 

(a - 1)(b - 1) 

(19.41a) 

(19.41 b) 

(19.41c) 
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Example For the Castle Bakery example, these mean squares are: 

Expected Mean Squares 

1,544 
MSA= -- =772 

2 

12 
MSB= - = 12 

1 

24 
MSAB= - = 12 

2 

It can be shown, along the same lines used for single-factor ANaVA, that the mean squares 
for two-factor ANaVA model (19.23) have the following expectations: 

E{MSE} = (52 (19.42a) 

E{MSA} = (52 + nb La? = (52 + nbL(f-L;. - f-L .. )2 
a-I a-I 

(19.42b) 

E {MSB} = (52 + na L{J] = (52 + naL(fJ.,.j - f-L .. )2 
b-l b-l 

(19.42c) 

E{MSAB) = (52 + n LL(a{J);j 
(a - 1)(b - 1) 

(19.42d) 

2 LL(f-Lij - fJ.,i· - fJ.,.j + fJ., .. )2 
= (5 + n==-'---"-----=------'---

(a - l)(b - 1) 

These expectations show that if there are no factor A main effects (i.e., if all f-Li. are 
equal, or all ai = 0), MSA and MSE have the same expectation; otherwise MSA tends to 
be larger than MSE. Similarly, if there are no factor B main effects, MSB and MSE have 
the same expectation; otherwise MSB tends to be larger than MSE. Finally, if there are no 
interactions [i.e., if all (a{J)ij = 0] so that the factor effects are additive, MSAB has the 
same expectation as MSE; otherwise, MSAB tends to be larger than MSE. This suggests that 
F* test statistics based on the ratios MSA / MSE, MSB / MSE, and MSAB / MSE will provide 
information about the main effects and interactions of the two factors, with large values 
of the test statistics indicating the presence of factor effects. We shall see shortly that tests 
based on these statistics are regular F tests. 

Analysis of Variance Table 
The decomposition of the total sum of squares in (19.40) into the several factor and error 
components is shown in Table 19.8. Also shown there are the associated degrees of freedom, 
the mean squares, and the expected mean squares. Table 19.9 contains the two-factor analysis 
of variance for the Castle Bakery example. 

Figure 19.9 presents MINITAB output for the Castle Bakery example. The first output 
block shows ANaVA results similar to those presented in Table 19.9. The second block 
present" various estimated means. 
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TABLE 19.8 ANOVA Table for 1Wo-Factor Study with Fixed Factor Levels. 

Source:ot' 
Variation 

Factor A 

Factor B 

AB interactions 

Error 

Total 

• 

,~ . " 

:' :" '0 c· 
';:., (df ,55 

SSA = nq"L,(r; .. ...: y' .. )2 0 -'1 

SSB=no:L(Y.j.-y' .. )2 b-1 

SSAB = n"L,"L,(Y:j.- r; .. -'- y.j . + Y..y (0 -1)(b-1) 

,SSE = "L,"L,"L,(Yi/k - Y:j .)2 ob(n-1) 

, SSTO == TI"L, "L,(Y'jk - y' .. )2 nob-1 

., ......... MS' 

MSA = SSA 
0-1 

MSB _ SSB 
- b-1 

MSAB = SSAB 
(0-1)(b-1) 

MSE = SSE 
ob(n-1) 

~"'" ,- E{ MS} 

(I2 + bn2].fJ,i.- fJ, .. )4 
0-1 

(I2+ on2)fJ,.j - fJ, .. )2 

b-1 

_1-?l l. '\~'.;. 

(I2+ n"L,2)fJ,ij - fJ,j., '-~'j + fJ, .. )2 

(0'-1)(b-1) 
(I2 " 

~'=-~"---' ~~~---.--.'==-""""""'-" .. ,. 
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TABLE 19.9 SoLitce.ofVaticition 55 
ANOVATable 
for Two-Factor Factor' A (dispjayheigMt) 1,544 
Study-Castle Factor B (display width) :12 ' 
Bakery AS interactions' 24 
Example. Error '62 

Total 1,642 

FIGURE 19.9 Analysis of Variance for Cases Sold 

MINITAB Source Of SS 
Computer Height 2 1544.00 
Output for Width 1 12.00 
Two-Factor Height*Width 2 24.00 
Analysis of Error 6 62.00 

Variance- Total 11 1642.00 

Castle Bakery 
Means Example. 
Height N Cases So 
1 4 44.000 
2 4 67.000 
3 4 42.000 

Width N Cases So 
1 6 50.000 
2 6 52.000 

Height Width N 

1 1 2 
1 2 2 
2 1 2 
2 2 2 
3 1 2 
3 2 2 

df M5 

2 772 
1 .12 
2 J2 
6 10.3 

11 

MS 
772.00 

12.00 
12.00 
10.33 

Cases So 
45.000 
43.000 
65.000 
69.000 
40.000 
44.000 

F P 
74.71 0.000 

1.16 0.323 
1.16 0.375 

19.5 Evaluation of Appropriateness of ANOVA Model 

Before undertaking formal inference procedures, we need to evaluate the -appropriateness of 
two-factor ANOVA model (19.23). No new problems arise here. The residuals in (19.35): 

are examined for normality, constancy of error variance, and independence of error terms 
in the same fashion as for a single-factor study. 

Weighted least squares is a standard remedial measure when the error terms are normally 
distributed but do not have constant variance. When both the assumptions of normality and 

constancy of the error variance are violated, a transformation of the response variable may be 
sought to stabilize the error variance and to bring the distribution of the error terms closer to 
a normal distribution. Our discussion of these topics in Chapter 18 for single-factor ANOVA 
applies completely to two-factor ANOVA. 
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~!¢IJRE 19.10 MINITAB Diagnostic Residual Plots-Castle Bakery Example. 
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Our earlier discussion on the effects of departures from the single-factor ANOVA model 
applies fully to two-factor ANOVA. In particular, the employment of equal sample sizes for 
each treatment minimizes the effect of unequal error variances. 

In the Castle Bakery example, there are only two replications for each treatment. Also, the 
data are rounded to keep the illustrative computations simple. As a result, the analysis of 
residuals will only be oflimited value here. The residuals are obtained according to (19.35). 
Using the data in Table 19.7, we have, for instance: 

elll = 47 - 45 = 2 

el2l = 46 - 43 = 3 

A plot ofthe residuals against the fitted values Yijk = Y;j. is presented in Figure 19.1Oa. 
There is no strong evidence of unequal error variances for the different treatments here. A 
normal probability plot of the residuals is presented in Figure 19.1 Ob. The plot is moderately 
linear; the fact that only six plot points are visible is due to the rounded nature of the data. 
The coefficient of correlation between the ordered residuals and their expected values under 
normality is .966, which tends to support the reasonableness of approximate normality. 

On the basis ofthese diagnostics and since the inference procedures for ANOVA model 
(19.23) are robust, it appears to be reasonable to proceed with tests for factor effects and 
other inference procedures. 

F Tests 

In view of the additivity of sums of squares and degrees of freedom, Cochran's theorem 
(2.61) applies when no factor effects are present. Hence, the F* test statistics based on the 
appropriate mean squares then follow the F distribution, leading to the usual type of F tests 
for factor effects. . 
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Test for Interactions 
Ordinarily, the ~nalysis of a two-factor study begins with a test to detennine whether arnot 
the two factors Interact: 

or equivalently: 

Ho: f-Lij - f-Li· - f-L.j + f-L .. = 0 

Ha: f-Lij - f-Li· - f-L.j + f-L .. i= 0 

Ho: all (afJ)ij = 0 

for all i, j 

for some i, j 

Ha: not all (afJ)iJ equal zero 

(19.43) 

(19.43a) 

As we noted from an examination ofthe expected mean squares in Table 19.8, the appropriate 
test statistic is: 

* MSAB 
F =-­

MSE 
(19.44) 

Large values of F* indicate the existence of interactions. When Ho holds, F* is distributed 
as F[(a - l)(b - I), (n - l)ab]. Hence, the appropriate decision rule to control the Type I 
error at a is: 

If F* :s F[l - a; (a - I)(b - I), (n - l)ab], conclude Ho 

If F* > F[1 - a; (a - I)(b - I), (n - l)ab], conclude Ha 
(19.45) 

where F[l - a; (a - 1)(b -1), (n - I)ab] is the (1 - a) 100 percentile of the appropriate 
F distribution. 

Test for Factor A Main Effects 
Tests for factor A main effects and for factor B main effects ordinarily follow the test for 
interactions when no important interactions exist. To test whether or not A main effects are 
present: 

or equivalently: 

we use the test statistic: 

Ho: f-L,. = f-L2· = ... = f-La· 

Ha: not all f-Li. are equal 

Ho: a, = a2 = ... = aa = 0 

Ha: not all a; equal zero 

* MSA 
F =­

MSE 

(19.46) 

• 
(19.46a) 

(19.47) 

Again, large values of F* indicate the existence of factor A main effects. Since F* is 
distributed as F[a-l, (n-I)ab] when Ho holds, the appropriate decision rule for controlling 
the risk of making a Type I error at a is: 

If F* :s F[l - a; a - I, (n - I)ab], conclude Ho 

If F* > F[l - a; a - I, (n - l)abJ, conclude Ha 
(19.48) 
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'fest for Factor B Main Effects 
- This test is similar to the one for factor A main effects. The alternatives are: 

Example 

'i; 

or equivalently: 

The test statistic is: 

Ho: f.L·t = f.L.2 = ... = f.L·b 

Ha: not all f.L. j are equal 

Ho: fh = fh. = ... = fJb = 0 

Ha: not all fJ j equal zero 

* MSB 
F =­

MSE 

(19.49) 

(19.49a) 

(19.50) 

and the appropriate decision rule for controlling the risk of a Type I error at a is: 

If F* .:S F[l - a; b - 1, (n - l)ab], conclude Ho 

If F* > F[l - a; b - 1, (n - l)ab], conclude Ha 
(19.51) 

We shall investigate in the Castle Bakery example the presence of display height and display 
width effects, using a level of significance of a = .05 for each test. First, we begin by testing 
whether or not interaction effects are present: 

Ho: all (afJ)ij = 0 

Ha: not all (afJ)ij equal zero 

Using the ANOVA results from Table 19.9 in test statistic (19.44), we obtain: 

F* = ~ = 1.17 
10.3 

For a = .05, we require F(.~5; 2, 6) = 5.14, so that the decision rule is: 

If F* :::: 5.14, conclude Ho 

If F* > 5.14, conclude Ha 

Since F* = 1.17 .:S 5.14, we conclude Ho, that display height and display width do not 
interact in their effects on sales. The P-value of this test is P{F(2, 6) > 1.17} = .37. 

Since the two factors do not interact, we turn to test for display height (factor A) main 
effects; the alternative concl).lsions are given in (19.46). Test statistic (19.47) for our example 
becomes: 

* 772 F =-=75.0 
10.3 

For a = .05, we require F(.95; 2, 6) = 5.14. Since F* = 75.0> 5.14, we conclude Ha, 
that the factor A level means f.Li. are not equal, or that some definite effects ~ssociated with 
height of display level exist. The P-value ofthis test is P{F(2, 6) > 75.0} = .0001. 
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Next, we test for display width (factor B) main effects; the alternative conclusions 
given in (19.49). Test statistic (19.50) becomes for our example: are 

12 
F" = - = 1.17 

10.3 

For 0' = .05, we require F(.95; 1,6) = 5.99. Since F" = 1.17 ::: 5.99, we conclude H. 
that all f-L.j are equaL or that display width has no effect on sales. The P-value of this ~~ 
is P{F(I, 6) > 1.I7} = .32. 

Thus, the analysis of variance tests confirm the impressions from the estimated treatment 
means plot in Figure 19.8 that only display height has an effect on sales for the treatments 
studied. At this point, it is clearly desirable to conduct further analyses of the nature of 
the display height effects. We shall discuss analyses of the nature of the factor effects in 
Sections 19.8 and 19.9. 

Kimball Inequality 
If the test for interactions is conducted with level of significance 0'(, that for factor A 
main effects with level of significance 0'2, and that for factor B main effects with level of 
significance 0'3, the level of significance 0' for the family of three tests is greater than the 
individual levels of significance. From the Bonferroni inequality in (4.4), we can derive the 
inequality: 

(19.52) 

For the case considered here, a somewhat tighter inequality can be used, the Kimball in­
equality, which utilizes the fact that the numerators ofthe three test statistics are independent 
and the denominator is the same in each case. This inequality states: 

(19.53) 

For the Castle Bakery example, where 0'( = 0'2 = 0') = .05, the Bonferroni inequality 
yields as the bound for the family level of significance: 

0' ::: .05 + .05 + .05 = .15 

while the Kimball inequality yields the bound: 

0' ::: I - (.95)(.95)(,95) = .143 

This illustration makes it clear that the level of significance for the family· of three tests may 
be substantially higher than the levels of significance for the individual tests. 

Comment 

The F* test statistics in (19.44), (19.47), and (19.50) can be obtained by thegenerallineartestapplUuch 
explained in Chapter 2. For example. in testing for the presence of interaction effects, the alternatives 
are those given in (19.43) and the full model is ANOYA model (19.23): 

Yii~ = 11 .. + exi + fJj + (exfJ)ii + Eijk Full model (19.54) 

Fitting this full model leads to the titted values Y;jk = lfl' and the error sum of squares: 

(19.55) 
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which is the usual ANOVA error sum of squares in (19.37c). This error sum of squares has ab(n - I) 
degrees of freedom assOfiated with it. 

The reduced modeluhder Ho: (ex{J)ij == 0 is: 

Yijk = th·· + exi + {Jj + cijk Reduced model (19.56) 

It can be shown that the fitted values for the reduced model are Yijk = Yi .. + Y. j . - Y. .. , so that the 
error sum of squares for the reduced model is: 

(19.57) 

This error sum of squares can be shown to have nab - a - b + I degrees of freedom associated with 
it. Test statistic (2.70) then simplifies to F* = MSAB/MSEin (19.44). • 

~~9_.7 __ S_t_r_at_e~g~y_f_o_r_A_n_a~ly~s_is ____________________________ ___ 

Scientific inquiry is often guided by the principle that the simplest explanations of observed 
phenomena tend to be the most effective. Data analysis is guided by this principle, seeking 
to obtain a simple, clear explanation of the data. In the context of ANOVA studies, additive 
effects provide a much simpler explanation of factor effects than do interacting effects. The 
presence of interacting effects complicates the explanation of the factor effects because they 
must then be described in terms of the combined effects of the two factors. Of course, some 
phenomena are complex so that the factor effects cannot be described simply by additive 
effects. The desire for a simple, parsimonious explanation, when possible, suggests the 
following basic strategy for analyzing factor effects in two-factor studies: 

1. Examine whether the two factors interact. 
2. If they do not interact, examine whether the main effects for factors A and B are important. 

For important A or B main effects, describe the nature of these effects in terms of the 
factor level means f.J.,i. or f.J.,.j, respectively. In some special cases, there may also be 
interest in the treatment means f.J.,ij' 

3. If the factors do interact, examine if the interactions are important or unimportant. 
4. If the interactions are unimportant, proceed as in step 2. 
5. If the interactions are'important, consider whether they can be made unimportant by a 

meaningful simple transformation of scale. If so, make the transformation and proceed 
as in step 2. 

6 .. For important interactions that cannot be made unimportant by a simple transformation, 
analyze the two factor effects jointly in terms of the treatment means f.J.,ij' In some special 
cases, there may also be interest in the factor level means f.J.,i. and f.J.,. j. 

A flowchart of this strategy is presented in Figure 19.11. 
We have already discussed the testing for interaction effects, the possible diminution of 

important interactions by a meaningful simple transformation, as well as how to test for the 
presence of factor main effects. Now we turn to steps 2 and 6 of the strategy for analysis, 
namely, how to compare factor level means f.J.,i. or f.J.,.j when there are no interactions or 
only unimportant ones, and how to compare treatment means f.J.,ij when there are important 
interactions. We begin with a discussion of the analysis of factor effects when the factors 
do not interact or interact only in an unimportant fashion. ~ . 
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FIGURE 19.11 
Strategy for 
Analysis of 
Two-Factor 
Studies. 
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separately 

Stop 

NO 

YES 

NO 

Stop 

YES 

NO 

Try simple 
transformation 

of the data 

Are 

Use treatment 
means to examine 

factor effects jointly 

Stop. 

19.8 Analysis of Factor Effects when Factors Do Not Interact 

As just noted, the analysis of factor effects usually only involves the factor level mea 
and f.L.j when the two factors do not interact, or when they interact only in an unimp 
fashion. 

Estimation of Factor Level Mean 
Unbiased point estimators of f.Li' and f.L.j are: 

/li. = Y; .. 

/l.j = Y.j. 
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where £ .. and Y. j . are defin~d,in (l9.27d) and (l9.27f), respectively. The variance of£ .. is: 

2 - (52 
(5 {l{ .. } = -

bn 
(19.58a) 

since £ .. contains bn independent observations, each with variance (52. Similarly, we have: 

2 - (52 
(5 {Y. j .} = -

an 

Unbiased estimators of these variances are obtained by replacing (52 with MSE: 

2 - MSE 
s {Y; .. } = b;: 

2 - MSE 
s {Y.j .} =-­

an 

Confidence limits for f.Li. and f.L.j utilize, as usual, the t distribution: 

£ .. ± t[l-aI2; (n -l)ab]s{Y; .. } 

Y. j . ± t[l - a12; (n - l)ab]s{Y. j .} 

The degrees of freedom (n - 1 )ab are those associated with MSE. 

Estimation of Contrast of Factor Level Means 
A contrast among the factor level means f.Li': 

L=LC;f.Li' 

is estimated unbiasedly by: 

where LCi = 0 

Because of the independence of the Y; .. , the variance of this estimator is: 

An unbiased estimator of this variance is: 

2 A MSE
L 

2 
s {L} = -- c· 

bn I 

Finally, the appropriate 1 - a confidence limits for L are: 

L ± t[l- a12; (n -l)ab]s{L} 

To estimate a contrast among the factor level means f.L.j: 

where LCj = 0 

we use the estimator: 

(19.58b) 

(19.59a) 

(19.59b) 

(19.60a) 

(19.60b) 

(19.61) 

(19.62) 

(19.63) 

(19.64) 

(19.65) 

(19.66) 

~ . 
(19.67) 
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whose estimated variance is: 

o - MSE,"", 0 

s-{L}=--~c 
an J (19.68) 

The I - 0' confidence limits for L in (19.65) are still appropriate, with Land s{L} now 
defined in (19.67) and (19.68), respectively. 

Estimation of linear Combination of Factor level Means 
A linear combination of the factor level means f-Li.: 

L=LCif-Li. (19.69) 

is estimated unbiasedly by L in (19.62). The variance ofthis estimator is given in (19.63), and 
an unbiased estimator of this variance is given in (19.64). The appropriate I - ex confidence 
limits for L are given in (19.65). 

Analogous results follow for a linear combination of the factor level means f-L./ 

(19.70) 

Multiple Pairwise Comparisons of Factor level Means 
Usually, more than one pairwise comparison is of interest, and the multiple comparison 
procedures discussed in Chapter 17 for single-factor ANOVA studies can be employed 
with only minor modifications for two-factor studies. If all or a large number of pairwise 
comparisons among the factor level means f-Li. or f-L.j are to be made, the Tukey procedure of 
Section 17.5 is appropriate. When only a few pairwise comparisons are to be made that are 
specified in advance of the analysis, the Bonferroni procedure of Section 17.7 may be best 
Often, tests for differences between pairs of factor level means precede the construction 
of interval estimates so that the analysis of the interval estimates can be confined to active 
comparisons. Finally, when a large number of comparisons among the factor-level means 
is of interest, the Scheffe method is usually preferred. 

Tukey Procedure. The Tukey multiple comparison confidence limits for all pairwise 
comparisons: 

D=f-Li·-f-Li'. 

with family confidence coefficient of at least I - 0' are: 

where: 

D ± Ts{D} 

D = B .. - }j, .. 

o - 2MSE 
s-{D} =-­

bl/ 

I 
T = ,J2q[1 - 0'; a, (/1 - l)abJ 

(19.71) 

(19.72) 

(19.72a) 

(19.72b) 

(19.72c) 
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To use the Tukey procedure to conduct all simultaneous tests of the form: 

Ho: D = f.J.,i· - f.J.,i'. = 0 

Ha: D = f.J.,i. - f.J.,i'· i= 0 

the test statistic and decision rule are: 

* ,jiD 
q = s{D}; If Iq*1 > q[l - a; a, (n - l)ab], conclude Ha 

(19.73) 

(19.73a) 

For conciseness in this chapter, we state only the portion of the decision rule leading to 
conclusion Ha. As for single-factor ANOVA, the family level of significance for all pairwise 
tests here is 1 - a; in other words, the probability of concluding that there exist any pairwise 
differences when there are none is a. 

For pairwise comparisons of the factor level means f.J.,. j, the only changes are: 

* ,jiD 
q = s{D}; 

D = f.J.,.j -f.J.,.j' 

D = Y.j . - Y.j'. 

s2{D} = 2MSE 
an 

1 
T = ,jiq[l - a; b, (n - l)ab] 

If Iq*1 > q[l - a; b, (n - l)ab], conclude Ha 

(19.74) 

(19.75) 

(19.76) 

(19.77) 

(19.78) 

Bonferroni Procedure. When only a few pairwise comparisons specified in advance are 
to be made, the Bonferroni method may be best. The simultaneous estimation formulas 
above still apply, with the Tukey multiple T replaced by the Bonferroni multiple B: 

B = t[l - aj2g; (n - l)ab] (19.79) 

where g is the number of statements in the family. 
To test simultaneously each of g pairwise differences with the Bonferroni procedure, the 

test statis~ic and decision rule are: 

D 
t* - -_. 

- s{D}' 
If It'l'l > t[l - aj2g; (n - l)ab], conclude Ha (19.80) 

Combined Factor A and Factor B Family. When important factor A and factor B 
effects both are present, it is often desired to have a family confidence coefficient 1 - a, or 
family significance level a, for the joint set of pairwise comparisons involving both factor 
A and factor B means. The Bonferroni method can be used directly for this purpose, with 
g representing the total number of statements in the joint set. 

Alternatively, the Bonferroni method can be used in conjunction with tht? Tukey method. 
To illustrate this use, if the pairwise comparisons for factor A are made with the Tukey 
procedure with a family confidence coefficient of .95, and likewise for the pairwise com­
parisons for factor B, the Bonferroni inequality then assures us that the family confidence 
coefficient for the joint set of comparisons for both factors is at least .90. 
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Multiple Contrasts of Factor Level Means 
Scheffe Procedure. When a large number of contrasts among the factor level mean . 
or f.L.j are of interest, the Scheffe method should be used. If the contrasts involve the /J., !J.". 

in (19.61), the Schetfe confidence limits are: ,. as 

L ± Ss{L} (19.81) 

where: 

S2 = (a - I)F[I - 0'; a - I, (n - I)ab] (19.81a) 

and L is given by (19.62) and S2{ L) is given by (19.64). The probability is then 1 - a that 
every confidence interval (19.81) in the family of all possible contrasts is correct. lfthe 
contrasts involve the f.L'J as in (19.66), L is given by (19.67), s1{L} is given by (19.68), and 
the Schefte multiple in (19.81) is defined by: 

S2 = (b - I)F[I - 0'; b - I, (n - I)ab] (19.81b) 

When the Schetfe procedure is employed to conduct simultaneous tests of the form: 

Ho: L = 0 

HlI : L i= 0 
(19.82) 

for contrasts involving the factor level means f.Li-> the test statistic and decision rule are: 

U 
F*- . 

- (a - I)S2{L) , 
If F* > F[I - 0'; a - I, {n - I)ab], conclude H" (19.82a) 

When the contrasts involve the factor level means f.L.j, the test statistic and decision rule 
are: 

U 
F* = A ; 

(b - l)s1{L) 
If F* > F[l - 0'; b - I, {/1 - I)ab], conclude H" (19.82b) 

Bonferroni Procedure. When the number of contrasts of interest is small and has been 
specified in advance, the Bonferroni procedure may be best. Confidence limits (19.81) are 
modified by replacing the Schetfe multiple S with the Bonferroni multiple B: 

B = t[1 - 0'/2g; (n - I)ab] (19.83) 

where g is the number of statements in the family. 
Simultaneous testing of g tests with the Bonferroni procedure is based on the following 

test statistic and decision rule: 

L 
t* = --' 

s{L) , 
If It*1 > t[1 - 0'/2g; (n - I)abl, conclude HlI (19.84) 

Combined Factor A and Factor B Family. When important factor A and factor B effects 
are present and contrasts for each of the two factors are of interest, it is often desired that 
the inference procedure provide assurance for the combined family of factor A and fador B 
contrasts. Several possibilities exist to accomplish this: 

I. The Bonferroni method may be used directly, with g representing the total number of 
statements in the joint set. 
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2. The Bonferroni methodican be used to join the two sets of Scheffe multiple comparison 
families in the same way explained earlier for joining two Tukey sets. 

3. The Scheffe confidence limits (19.81) can be modified to use the S multiple defined by: 

S2 = (a + b - 2)F[l - a; a + b - 2, (n - l)ab] (19.85) 

For simultaneous testing, the test statistics and decision rules in (19.82a) and (19.82b) 
can be replaced by: 

f2 
F* = . 

(a + b - 2)S2{L} , 
If F* > F[l - a; a + b - 2, (n - l)ab], conclude Ha 

(19.86) 

(§timates Based on Treatment Means 
Occasionally in analyzing the factor effects in a two-factor study when no interactions 
are present, there is interest in particular treatment means fJ.,ij. For example, in a two­
factor study of the effects of price and type of advertisement on sales, interest may exist in 
estimating the mean sales for two different price levels when a particular advertisement is 
used. In such cases, the methods of analysis for single-factor studies discussed in Chapter 
17 are appropriate. The number of treatments now is simply r = ab, the degrees of freedom 
associated with MSE are nT - r = nab - ab = (n - 1 )ab, and the estimated treatment means 
are ~h based on n observations each. 

l~ample l-Pairwise Comparisons of Factor Level Means 

FIGURE 19.12 
Bar Graphs of 
Estimated 
Factor Level 
MeanS-Castle 
Bakery 
Example. 

In the Castle Bakery, the estimated treatment means plot in Figure 19.8 suggested that no 
interaction effects are present and that display width may not have any effect. The formal 
analysis of variance based on Table 19.9 supported both ofthese conclusions. Our interest 
now is in examining the nature of the display height effects in more detail. 

First, we shall obtain a preliminary view of the display height and width effects by plotting 
bar graphs of the estimated factorlevel means in Table 19.7. Figure 19.12a contains a bar 
graph ofthe estimated factor A lev~l means Y; ... For comparison, we show in Figure 19.12b 
a similar plot for the estimated factm B level means Y.j •• Figure 19.12a suggests that level 2 
of factor A (middle shelf display height) leads to significantly larger sales than the other 
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TABLE 19.10 
Pairwise 
Testing of 
Factor A Level 
Means--Castle 
Bakery 
Example. 

(1) 

Alternatives 

Ho: 0 1 = {.L2· -111· = 0 

Ha: 0 1 = 112. -111· =F 0 

Ho: 02 = 111· -113. = 0 

Ha: 02 = 111· -113. =F 0 

Ho: 0 3 = 112. - {.L3. = 0 

Ha: 0 3 = {.L2· - 113. =F 0 

(2) 
Test Statistic 

(19.73a) 

q* = .J2(23) = 14.33 
2.27 

• = .J2(2) = 1 25 
q 2.27 . 

q* = .J2(25) = 15.58 
2.27 

---(3) (4) 
Decision Rule 

Conclude Ha if Jq*J > Condusion 

q(.95; 3, 6) = 4.34 Ha 

q(.95; 3, 6) = 4.34 Ho 

q(.95; 3, 6) = 4.34 Ha 

two factor levels. In addition, Figure I9.12a also suggests that the mean sales for display 
height levels I and 3 may not be ditferent from each other. 

Turning now to formal inference procedures, we shall first test simultaneously all pairwise 
ditferences among the shelf height means, using the Tukey multiple comparison procedure 
with family significance level 0' = .05. The alternatives to be tested for the comparisons 
of display height means (i = I-bottom, 2-middle, 3-top) are shown in Table 19.10, 
column I. From Tables 19.7 and 19.9 we obtain the following information: 

D~ = YI .. - J\. = 44 - 42 = 2 

MSE = 10.3 
a=3 

b=2 
11=2 

D3 = Yz .. - 1\. = 67 - 42 = 25 (11-I)ab=6 

Hence, by (19. 72b) we obtain: 

o ~ ? ~ 0 ~ 2(10.3) 
s-{Dd = s-{D1 } = s-{D3 } = ~ = 5.15 

so that s{Dd = s{D~} = S{D3} = 2.27. The test statistics and decision rules based on 
(19.73a) are given in Table 19.10, columns 2 and 3, and the conclusions from the tests are 
shown in column 4. • 

It can be concluded from the tests in Table /9.10 with family significance level ex = .05 
that for the product studied and the types of stores in the experiment, the middle shelf 
height is far better than either the bottom or the top heights, and that the latter two cia not 
ditfer significantly in sales etfectiveness. All of these conclusions are covered by the family 
significance level of .05. 

Next, we wish to estimate how much greater are mean sales at the middle shelf height 
than at either of the other two shelf heights. We shall continue to use the Tukey multiple 
comparison procedure because the two pairwise comparisons now of interest are the result 
of the earlier testing of all pairwise comparisons. From our previous work, we have: 
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We also require, from (19.72): 

q(.95; 3, 6) = 4.34 

4.34 
T = "'2 =3.07 'k "1/£ 

Ts{Dd = Ts{D3 } = 3.07(2.27) = 7.0 

We therefore find the following confidence intervals for the two pairwise comparisons 
of the shelf height factor level means: 

16 = 23 - 7.0::; f,),2. - f,),1. ::; 23 + 7.0 = 30 

18 = 25 - 7.0 ::; f,),2. - f,),3. ::; 25 + 7.0 = 32 

With family confidence coefficient of .95, we conclude that mean sales for the middle shelf 
height exceed those for the bottom shelf height by between 16 and 30 cases and those for 
the top shelf height by between 18 and 32 cases. 

We can summarize the effects of shelf height on mean sales by the fonowing line plot: 

TOp 
shelf 

\ 
I • 

40 

Bottom 
shelf 

I 
• 

50 
Cases Sold 

,Example 2-Estimation of Treatment Means 

60 

Middle 
shelf 

f 
• 

The manager of a supermarket that has sales volume and clientele similar to the supermarkets 
included in the Castle Bakery study has room only for the regular shelf display width, and 
wishes to obtain estimates of mean sales for the middle and top shelf heights. We shall 
now obtain interval estimates with a 90 percent family confidence coefficient using the 
Bonferroni procedure. 

From Tables 19.7 and 19.9, we have: 

MSE= 10.3 

Hence, we obtain: 

2 - 2 - MSE 10.3 
s {Y21.} = s {Y31.} = -- = - = 5.15 

n 2 

S{Y21.} = S{Y31 .} = 2.27 

For g = 2, we require B = t[l- ct/2g; (n -1)ab] = t(.975; 6) = 2.447. Thus, we obtain 
the confidence limits: 

65 ± 2.447(2.27) 40 ± 2.447(2.27) 

and the desired confidence intervals are: 

59.4::; f,),21 ::; 70.6 34.4 :S f,),31 ::; 45.6 
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19.9 Analysis of Factor Effects when Interactions Are hnportant -When important interactions exist that cannot be made unimportant by a simple transfor_ 
mation, the analysis of factor effects generally mu'>t be based on the treatment means /1, .. 

Typically, this analysis will involve estimation of multiple comparisons of treatment mea~~ 
or single degree of freedom tests. F1Il1hermore, one often compares the levels of one factor 
across levels ofthe other factor, referred to as the comparison of simple etfects. For example, 
in a 2 x 3 factorial structure study, we compare individual cell means within levels of each 
factor, e.g., /-i II = /-i 12 = /-i 13 and /-i21 = /-i22 = /-i2J and/or /-i II = /-i2l, /-i 12 = /-i22, and 
/-i13=/-i2J· 

Multiple Pairwise Comparisons of Treatment Means 
If pairs of treatment means /-iij are to be compared, either the Tukey or the Bonferroni 
multiple comparison procedure may be used, depending on which is more advantageous. 
In effect, the analysis is equivalent to that for single-factor ANOVA, with the total number 
of treatments here equal to r = ab, the degrees offreedom associated with MSE here equal 
to 111' - r = (n - 1 )ab, and each estimated treatment mean, now denoted by Y;j-, based on 
11 cases. 

Tukey Procedure. The Tukey 1 - 0' multiple comparison confidence limits for all pair­
wise comparisons: 

D = /-iij - /-ii'j' i,j#i',j' (19.87) 

are: 

D ± Ts{D) (19.88) 

where: 

(19.88a) 

o A 2MSE 
s-{D} =-- (19.88b) 

11 

I 
T = .J2q [1 - 0'; ab, (n - I)ab] 

• (19.88c) 

The test statistic and decision rule for all simultaneous Tukey tests of the form: 

Ho:D=O 

HlI : DolO 
(19.89) 

are as follows when the family significance level is controlled at a: 

* .J2D q._--' 
- sID)' 

If Iq*1 > q[1 - 0'; ab, (n - I)ab], conclude H" (19.89a) 

Bonferroni Procedure. If the Bonferroni method is employed for a family of g compar­
isons, the mUltiple T in confidence interval (19.88) is replaced by: 

B = t[1 - 0'/2g; (11 - I)ab] (19.90) 
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and the test statistic and decision rule in (19.89a) become: 

* j) 
t =~; 

s{D} 
If It*1 > t[l - a/2g; (n - l)ab], conclude Ha 

Multiple Contrasts of Treatment Means 

(19.91) 

Scheffe Procedure. The Scheffe multiple comparison procedure for single-factor studies 
is directly applicable to the estimation of contrasts involving the treatment means f.Lij. The 
joint confidence limits for contrasts of the form: 

where LLCij =0 (19.92) 

are: 

i ± Ss{i} (19.93) 

where: 

i = LLCijY;j. (19.93a) 

2 A MSE LL 2 
s {L} = - c·· n I} 

(19.93b) 

S2 = (ab - l)F[l- a; ab - 1, (n -1)ab] (19.93c) 

The test statistic and associated decision rule for all simultaneous Scheffe tests of the 
form: 

(19.94) 

are as follows when the family si~nificance level is controlled at a: 

f2 
F* = . 

(ab -1)s2{i}' 
If F* > F[l-a; ab-l, (n-l)ab], conclude Ha (19.94a) 

Bonferroni Procedure. When the number of contrasts is small, the Bonferroni procedure 
may be preferable. The confidence intervals (19.93) are simply modified by replacing S 
with B as defined in (19.90). The test statistic and decision rule in (19.94a) are replaced 
by: 

L t* - --' 
- s{i}' 

If It*1 > t[l - a/2g; (n - l)ab], conclude Ha (19.95) 

Example l-Pairwise Comparisons of Treatment Means 
A junior college system studied the effects of teaching method (factor Aj and student's 
quantitative ability (factor B) on learning of college mathematics. Tho teaching methods 
were studied-the standard method of teaching (to be called the standard method) and a 
method that emphasizes teaching of concepts in the abstract before going into drill routines 
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TABLE 19.11 
Results­
Mathematics 
Learning 
Example. 

(a) Mean Learning Scores (n = 21) 

Teaching 
Method 

; 

Quantitative Ability (j) 

Abstract 
Standard 

Excellent 

92 (YJ1.) 
90 (Y21 .) 

(b) ANOVA Table 

Source of Variation 

Factor A (teaching methods) 
Factor B (quantitative ability) 
AB interactions 
Error 

Total 

SS 

504 
3,843 

651 
3,360 

8,358 

Good Moderate 

81 (r;2» 73 (Yn .) 
86 (Y22.) 82 (Y;3') 

df MS 

1 504 
2 1,921.5 
2 325.5 

120 28 

125 

(to be called the abstract method). The quantitative ability of a student was determined by a 
standard aptitude test, on the basis of which the student was classified as having excellent, 
good, or moderate quantitative ability. Thus, factor A (teaching method) has a = 2 levels, 
and factor B (student's quantitative ability) has b = 3 levels. 

For each quantitative ability group, 42 students were selected and randomly placed into 
classes according to the designated teaching method, with each class containing equal 
numbers of students of each quantitative ability leveL For simplicity, it is assumed that any 
effects associated with the classes are negligible. 

This study has one experimental factor-teaching method-and one observational 
factor-quantitative ability. Equal numbers of students with excellent, good, and mod­
erate quantitative ability are randomly selected and then within these categories, students 
are randomly assigned to a teaching method. Therefore, teaching ability is a blocking fac­
tor here with replication within blocks. This experimental study is called a generalized 
randomized block design and is discussed further in Section 21.6. 

The response variable of interest is the amount of learning of college mathematics, 
as measured by a standard mathematics achievement test. The ~esults of the study are 
summarized in Table 19.11 (the original data are not shown). The estimated treatment 
means are shown in Table 19.11 a, and the analysis of variance table is presented in 
Table 19.1lb. 

Figure 19.13 contains two plots of the estimated treatment means ~j •• In Figure 19.13a, 
the two curves represent the different factor A levels, and in Figure 19.13b, the three curves 
represent the different factor B levels. The clear lack of parallelism of the curves suggests the 
presence of interaction effects between teaching method and student's quantitative ability 
on amount of mathematics learning. A formal test for interactions confirms this. From 
Table 19.1lb, we have F* = MSAB/MSE = 325.5/28 = 11.625. Fora = .01 we require 
F(.99; 2,120) = 4.79. Since F* = 11.625> 4.79, we conclude that interaction effects are 
present. The P-value of this test is 0+. 
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(b) Student Ability Curves 
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Figure 19.13 suggests that the interactions are important: students with excellent quan­
titative ability are but little affected by teaching method (perhaps doing slightly better with 
the abstract method); students with good or moderate abilities learn much better with the 
standard teaching method. Hence, we shall first investigate whether some simple transfor­
mation can make the interactions unimportant. We do this in an approximate fashion by 
considering the logarithmic and square root transformations of the response. In neither case 
did the interactions become unimportant, so it appears that the interactions here may be 
nontransformable. 

We now wish to investigate the nature of the interaction effects in Figure 19.13. We shall 
do this by estimating separately for students with excellent, good, and moderate quantitative 
abilities how large is the difference in mean learning for the two teaching methods. Thus, 
we wish to estimate: 

DI = f.L1l - f.L21 

D2 = f.L 12 - f.L22 

D3 = f.L13 - f.L23 

We shall employ the Bonferroni multiple comparison procedure with family confidence 
coefficient .95. (Since only three pairwise comparisons are of interest, the Bonferroni method 
yields more precise estimates here than the Tukey method.) 

For the data in Table 19.1la, the point estimates of the pairwise comparisons are: 

0 1 = 92-90=2 

O2 = 81 - 86 = -5 

0 3 = 73 - 82 = -9 
, . 
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We find the estimated variances of these estimates by (19.88b), for 11 = 21: 

o A 0 A ) A 2(28) 
s-{Dd = s-{DJ} = s-{D1 } = -- = 2.667 - . 21 

so that: 

Finally, for family confidence coefficient I - 0' = .95 and g = 3, we require B:::: 
1[1- .05/2(3); 120] = 1(.99167; 120) = 2.428. Hence, the confidence limits are by (19.88) 
and (19.90): 

2 ± 2.428( 1.633) -5 ± 2.428(1.633) -9 ± 2.428( 1.633) 

and the 95 percent confidence intervals for the family of comparisons are: 

-1.96:::: /-ill - /-i21 :::: 5.96 

-8.96 :::: /-i 12 - /-in :::: -1.04 

-12.96:::: /-i1J - /-in:::: -5.04 

For this family of confidence intervals, the following conclusions may be drawn with 
family confidence coefficient of 95 percent: (I) For students with excellent quantitative 
ability, the mean learning scores with the two teaching methods do not differ. (2) For 
students with either good or moderate quantitative abilities, the mean learning score with 
the abstract teaching method is lower than that with the standard method. The superiority 
of the standard teaching method may be particularly strong for students with moderate 
quantitative ability. 

Example 2-, Contrasts of Treatment Means 
In the mathematics learning example, a school administrator also wished to know whether 
the amount of learning gain with the standard teaching method over the abstract method is 
greater for students with moderate quantitative ability than for students with good quanti­
tative ability. This question had been raised before the study began. We shall estimate the 
single contrast: • 

L = (/-i23 - /-i1J) - (/-i22 - /-i12) 

by means of a one-sided lower confidence interval. For the results in Table 19.1la, the point 
estimate of Lis L = (82 - 73) - (86 - 81) = 4. The estimated variance by (l9.93b) is: 

so that the estimated standard deviation is s{L} = 2.309. For a 95 percent confiden~ 
coefficient, we require 1 (.05; 120) = -1.658. Hence, the lower confidence limit IS 

4 - 1.658(2.309) and the desired confidence interval is: 

L:::: .17 
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We conclude, therefore, with 95 percent confidence coefficient that the gain in learning 
with the standard teaching method over the abstract method is greater for students with 
moderate quantitative ability than for students with good quantitative ability, the difference 
in the mean gain being at least .17 point. 

Pooling Sums of S~uares in Two-Factor Analysis 
of Variance 

'~'------------------------------------------------------------------------

The testing approach presented in this chapter assumes that ANOVA model (19.23) is the 
full model for all tests of factor effects, regardless ofthe conclusions reached in any of these 
tests. The rationale for this approach is that ANOVA model (19.23) is based on the identity 
(19.2,2) for the treatment means f.Lij' Once the analysis of residuals and other diagnostics 
demonstrate that this model is appropriate, it is used for all tests. 

Some statisticians take the view thatANOVA model (19.23) should be revised when the 
test for interaction effects leads to the conclusion that no interactions are present. With this 
approach, the full model considered in testing for factor A and factor B main effects when 
the test for interaction effects leads to the conclusion that no interactions are present is the 
revised model: 

Revised full model (19.96) 

As we just noted with the regression approach for the Castle Bakery example, the extra 
sums of squares for factor A and factor B main effects do not depend on the order of the 
extra sums of squares for factor effects when all treatment sample sizes are equal. Hence, 
the numerator sums of squares SSA and SSB of the test statistic F* are not affected by this 
revision in the full model when the treatment sample sizes are equal. The denominator sum 
of squares ofthe F* test statistic is affected, however, leading to the following error sum of 
squares for the full model: 

SSE( F) = SSE + SSAB (19.97) 

Thus, the error sum of squares for the full model with this approach involves the pooling 
of the interaction and error sums of squares. Likewise, the degrees of freedom are pooled; 
the degrees of freedom associated with SSE(F) are: 

dh- = (a - 1)(b - 1) + (n - l)ab = nab - a - b + 1 

For the Castle Bakery example, the pooled error sum of squares for testing factor A and 
factor B main effects would be '(Table 19.9): 

SSE(F) = 62 + 24 = 86 

and the pooled degrees of freedom would be: 

Hence, the error mean square for testing factor A or factor B main effects with the model 
revision approach here would be 86/8 = 10.75. .' . 

This pooling procedure affects both the level of significance and the power ofthe tests for 
factor A and factor B main effects, in ways not yet fully understood. It has been suggested 
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19.11 

therefore by some statisticians that pooling should not be considered unless: (I) the de r 
of freedom associated with MSE are small, perhaps 5 or less. and (2) the test st!. e~ 
MSABjMSE falls substantially below the action limit of the decision rule, perhaps w~1C 
MSAB j MSE < 2 for 0' = .05. Pm1 (I) of this rule is designed to limit pooling to ca n 
where the gains may be substantial, while part (2) is designed to give reasonable assura:S 

h . d' . ce that t ere are mdee no interactIOns. 

Planning of Sam )Ie Sizes for T\vo-Factor Stlldies 

We introduced the power approach to sample size planning for single-factor studies in 
Section 16.10, and the estimation approach to sample size planning for single-factor studies 
was discussed in Section 17.8. We now consider these two approaches in the context of 
two-factor studies. 

Power Approach 
Power of F Test. Table B.II can be used for determining the power of tests for multi­
factor studies in the same fashion as for single-factor studies. The only differences arise 
in the definition of the noncentrality parameter and the degrees of freedom. For two-factor 
fixed effects ANOVA model (19.23) with equal treatment sample sizes, the noncentrality 
parameter ¢ and the degrees of freedom VI and V2 for testing for interaction effects, factor A 
main effects. and factor B main effects are as follows: 

Test for interactions: 

I 
¢=­

(J 

11 LIJO'(3)j; 
----------~-- = 
(0 - I)(b - l) + I (J 

VI = (0 - I)(b- I) 

Test for A main etfects: 

I I1b La; 
¢= -

(J 0 (J a 

VI =0-1 

Test for B main effects: 

I1LL(f-Lij - f-Li' - f-L.j + f-L .. f 
(0 - I)(b - I) + 1 

V2 = Ob(11 - I) 

V2 = ((b(n - I) • 

I ~1OL{3? ¢ = _ j 
/UI L(f-L'j - f-L .. )2 

(J b (J b 

V2 = ob(1l - l) 

(19.98a) 

(19.98b) 

(19.98c) 

Use of Table B.12 for Two-factor Studies. When planning sample sizes for two-factor 
studies with the power approach, one is concerned typically with both the powel' of detecting 
factor A main effects and the power of detecting factor B main etfects. One can ficst specify 
the minimum range of factor A level means for which it is important to detect factor A 
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main effects, and obtain the needed sample sizes from Table B.12, withr =a. The resulting 
sample size is bn, from which n can be obtained readily. The use of Table B.12 for this 
purpose is appropriate provided the resulting sample size is not small, specifically provided 
a(bn -1) 2: 20. If this condition is not met, the ANOVA power tables in Table B.11 should 
be used. These tables, as noted earlier, require an iterative approach for determining needed 
sample sizes. -:::; 

In the same way, the 'minimum range of factor B level means can then be specified for 
which it is important to detect factor B main effects, and the needed sample sizes found. 
If the sample sizes obtained from the factor A and factor B power specifications differ 
substantially, a judgment will need to be made as to the final sample sizes. 

~jjtuation Approach 

~ample 

The estimation approach to planning sample sizes described in Section 17.8 for single-factor 
studies is readily adapted for use in two-factor studies. We specify the set of comparisons of 
interest and determine the expected widths of the confidence intervals for various advance 
planning values for the standard deviation, (J. Through an iterative, trial-and-error process, 
we determine a sample size plan that represents an acceptable compromise between the cost 
of running the study and the precision obtained for comparisons of interest. We illustrate 
this procedure with a two-factor study example. 

In a two-factor study, factor A has a = 3 levels and factor B has b = 2 levels. No interaction 
effects are anticipated, and all pairwise comparisons of factor level means are to be made for 
each of the two factors. A family confidence coefficient of .90 is specified for the 3 + 1 = 4 
pairwise comparisons. Equal treatment sample sizes of n experimental units are to be used. 
The width of each confidence interval is to be ±30. A reasonable planning value for the 
standard deviation of the error terms is (J = 50. 

We know from (19.63) that the variance of a comparison of factor A level means, 
L = Y; .. - Y;, .. , is: 

Factor A comparisons 

Similarly, the variance ofthe comparison ofthe two factor B level means, L = y.!. - Y.2., 

IS: 

Factor B comparison 

Since equal precision is specified for all pairwise comparisons and since a = 3 and b = 2, 
the variance for the factor A comparisons will be larger for any given treatment sample size 
n and hence will be the critical consideration. 

Suppose that we begin the iterative process with n = 30. We then find for the factor A 
comparisons that (J2{L} = 2(50)2/2(30) = 83.33 or (J{L} = 9.13. For nT = 6(30) = 
180, a = .10, and g =4 comparisons, the Bonferroni multiple is B =t(.9875; 174) = 
2.26. Hence, the anticipated width of the confidence intervals is 2.26(9.13) =i±20.6. This 
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anticipated width is somewhat tighter than the specified width ±30, and a smallertreat 
. h lIb 'd' I .. ment sample size s ou ( e tne 10 t le next IteratIOn. 

Finding the "Best" Treatment 

Problems' 

As we discussed earlier in Section 16.11 in the context of single-factor studies, there ar 
occasions when the chief purpose of the study is to ascertain the treatment with the high~ 
or lowest mean. This is rtlso true for two-factor studies, where the objective is to identify 
the best of the r = ab factor level combinations. We illustrate the use of this approach with 
an example. 

Two-Factor Study Example. Suppose that in the Castle Bakery example, the chief ob­
jective is to identify the combination of shelf height and shelf width that maximizes sales 
(in cases). There are 3 x 2 = 6 treatment combinations. We anticipate that (J = 10. Furthel; 
we want to be able to detect an average difference of A = 8 cases between the highest and 
second highest treatment means with probability I - 0' = .90 or greater. 

The entry in Table 8.13 is A.J11 /a. For r = 6 and probability I - 0' = .90, we find from 
Table 8.13 thatA.J11/a = 2.7100. Hence, since A = 8, we obtain: 

(8).J11 = 2.7100 
10 

fo = 3.3875 or 11 = 12 

Thus, when the average number of cases for the best shelf height and shelf width treatment 
mean exceeds that of the second best by at least 8 cases and (J = 10, sample sizes of 
12 supennarkets for each shelf height and shelf width combination are needed to provide 
an assurance of at least .90 that the highest estimated mean Y;;. corresponds to the highest 
population mean. 

19.1. Refer to the SENIC data set in Appendix C.I. An analyst wishes to investigate the effects of 
medical school affiliation (factor A) and geographic region (factor B) on infection lisk. Ail 
factor level combinations will he included in the study. 

a. How many treatments are being studied? 

b. What is the response variable here? • 
19.2. A student in a cla~s discussion stated: "A treatment is a treutment, whether the study involves 

a single factor or multiple factors. The number of factors has little effect on the interpretation 
of the results:' Discuss. 

19.3. Verify the interactions in Table 19.3b. 

* 19.4. In a two-factor study. the treatment means I~;i are as follows: 

FactOr A 

34 
40 

Factor B 

23 
29 

36 
42 
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a. Obtain the factor A level means. 

b. Obtain the main effects offactor A. 

c. Does the fact that /1-12 - /1-11 = -II while /1-13 - /1-12 = 13 imply that factors A and B 
interact? E;lCplain. 

d. Prepare a tr~~tment means plot and determine whether the two faciOrs interact. What do 
you find? 

19.5. In a two-factor study, the treatment means /1-tj are as follows: 

Factor A 

250 
288 

Factor 8 

265 
273 

268 
270 

269 
269 

a. Obtain the factor B main effects. What do your results imply about factor B? 

b. Prepare a treatment means plot and determine whether the two factors interact. 
How can you tell that interactions are present? Are the interactions important or 
unimportant? 

c. Make a logarithmic transformation of the /1-ij and plot the transformed values to ex­
plore whether this transformation is helpful in reducing the interactions. What are your 
findings? 

19.6. Three sets of treatment means /1-ij for students' grades in a COurse follow, where factor A 
is student's major (A I: computer science; A2 : mathematics) and factor B is student's class 
affiliation (BI: junior; B2 : senior; B3: graduate). 

Set 1 Set 2 Set 3 

83 

85 
100 

Prepare a treatment means plot for each set of /1-ij to study interaction effects. Interpret each 
plot and state your findings. If interactions are present, desc'fibe their nature and indicate 
whether they are important Or unimportant. 

*19.7. Refer to Problem 19.4. Assume that a = 1.4 and n = 10. 

a. Obtain E{MSE} and E{MSA}. 

b. Is E {MSA} substantially larger than E {MSE}? What is the implication of this? 

19.8. Refer to Problem 19.5. Assume that a = 4 and n = 6. 

a. Obtain E{MSE} and E{MSAB}. 

b. Is E{MSAB} substantially larger than E{MSE}? What is the implication of this? 

19.9. A psychologist stated: "I feel uncomfortable about deciding in a research study whether 
the interactions are important Or unimportant. I would rather have the statistician make that 
decision." Comment. . . 



866 Part Five Multi-FactorSrudie.\· 

Refer to Cash offers Problem 16.10. Six Ilklle and six female volunteers were used' 
. 10 each 

age group. The observations (in hundred dollars), classified by age (factor A) and "end 
" er of 

owner (factor B), follow. 

Factor A 
(age) 

i = 1 Young 

i = 2 Middle 

i = 3 Elderly 

Factor B 
(gender of owner) 

j=l j= 2 
Male Female 

21 21 
23 22 

23 25 
30 26 
29 29 

27 29 

25 23 
22 19 

21 20 

a. Obtain the titted values for ANOYA model (19.23). 

b. Obtain the residuals. Do they sum to zero for each treatment? 

c. Prepare aligned residual dot plots for the treatments. What departures from ANOYA model 
(19.23) can be studied from these plots? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of con'ela­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

e. The observations for each treatment were obtained in the order shown. Prepare residual 
, sequence plots and interpret them. What are your findings? 

*19.11. Refer to Cash offers Problems 16.10 and 19.10. Assume that ANOYA model (19.23) is 
applicable. 

a. Prepare an estiIlklted treatment means plot. Does it appear that any factor effects are 
present? Explain. 

• b. Set up the analysis of variance table. Does anyone source account for most of the total 
variability in cash offers in the study? Explain. 

c. Test whether or not interaction effects are present; use 01 = .05. State the alternatives. 
decision rule, and conclusion. What is the P-value ofthe test? 

d. Test whether or not age and gender main effects are present. In each case, use ex = .05 and 
state the alternatives, decision rule, and conclusion. What is the P-value of the lest? Is it 
meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in pmts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 
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" g. What are the relations between the sums of squares in the two-fdctor analysis of variance 
in part (b) and the sums of squares in the single-factor analysis of variance in Problem 
16.lOd? Do the same relations hold for the degrees of freedom? 

19.12. Eye contact effe';,t. In a study of the effect of applicant's eye contact (factor A) and personnel 
officer's gender t\actor B) on the personnel officer's assessment of likely job success of 
applicant, 10 male and 10 female personnel officers were shown a front view photograph of 
an applicant's face and were asked to give the person in the photograph a success rating on a 
scale of 0 (total failure) to 20 (outstanding success). Half of the officers in each gender group 
were chosen at random to receive a version of the photograph in which the applicant made 
eye contact with the camera lens. The other half received a version in which there was no eye 
contact. The success ratings follow. 

Factor A 
(eye contact) 

i = 1 Present 

i = 2 Absent 

Factor B 
(gender of officer) 

j=l j=2 
Male Female 

11 15 
7 12 

10 16 
12 14 
16 17 

14 18 

a. Obtain the fitted values for ANOVA model (19.23). 

b. Obtain the residuals. Do they sum to zero for each treatment? 

c. Prepare aligned reSidual dot plots for the treatments. What departures from ANOVA model 
09.23) can be studied from these plots? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

e. The observations for each treatment were obtained in the order shown. Prepare residual 
sequence plots and interpret them. What are your findings? 

19.13. Refer to Eye contact effect Problem 19.12. Assume that ANOVA model (19.23) is applicable. 

a. Prepare an estimated treatment means plot. Does it appear that any factor effects are 
present? Explain. 

b. Set up the analysis of variance table. Does anyone SOurce account for most of the total 
variability in the success ratings in the study? Explain. 

c. Test whether or not interaction effects are present; use 01 = .01. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

d. Test whether Or not eye contact and gender main effects are present. In each case, use 
01 = .01 and state the alternatives, decision rule, and conclusion. What is the P-value of 
each test? Is it meaningful here to test for main factor effects? Explain. . . 
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e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d. 
usc the Kimball inequality (19.53). ), 

f. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 

*19.14. Hay fever relief. A research laboratory was devcloping a new compound for the relief f 
severe cases of hay fever. In an cxperiment with 36 volunteers. the amounts of the two acti~ 
ingredients (factors A and B) in the compound were varied at three levels each. Randomizatio e 
was used in assigning four volunteers to each of the nine trentments. The datl! on hours o~ 
relief follow. 

Factor B (ingredient 2) 

Factor A j = 1 j=2 j=3 
(ingredient 1) Low Medium High 

i = 1 Low 2.4 4.6 4.8 

2.5 4.7 4.6 

i=2 Medium 5.8 8.9 9.1 

5.3 9.0 9.4 

i=3 High 6.1 9.9 13.5 

6.2 10.1 13.2 

a. Obtain the fitted values for ANOYA model (19.23). 

b. Obtain the resicluals. 

c. Plot the residuals against the fitted values. What deptntures from ANOYA model (19.23) 
can be studied from this plot? What are your findings'? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correia-­
tion between the ordered residuals and their expected values under normality. Does the 
nonnality assumption appear to be reasonable here? 

*19.15. Refer to Hay fever relief Problem 19.14. Assume thnt ANOYA model (19.23) is applicable. 

a. Prepare an estimated treatment means plot. Does your graph suggest that any factor effects 
are present'? Explain. 

b. Obtain the analysis of variance rable. Doef.; anyone source account for most of the total 
variability in hours of relief in the study? Explain. • 

c. Test whethcr or not the two factors internct: use ex = .05. State the ulternatives, decision 
rule. and conclusion. What is the P-value of the test? 

d. Test whether or not main effects for the two ingredients are present. Use ex = .05 in each 
case and state the alternatives. decision rule. and conclusion. What is the P-value of each 
test'! Is it meaningful here to tcst for main ractor etfects? Explain. 

e. Obtain an upper bound on the family level of signiflcunce for the tests in pmts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in pmts (c) and (d) confirm your graphic unalysis in part (a)? 

19.16. Disk drive service. The staff of u service center for electronic equipment includes three 
technicians who speciulize in repairing three widely used makes of disk drives for desktOP 
computers. It was desired to study the effects of technician (factor A) and make of disk drive 
(factor B) on the service time. The data thm follow show the number of minutes requil'ed to 
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complete the repair job in a study where each technician was randomly assigned to five jobs 
on each make of disk drive. 

Factor B (make of drive) 

Factor A 
(technidan) 

i = 1 Technician 1 

i = 2 Technician 2 

i = 3 Technician 3 

j=l 
Make 1 

62 
48 

69 

51 
57 

39 

59 
65 

70 

a. Obtain the fitted values for ANOVA model (19.23). 

b. Obtain the residuals. 

j=2 j=3 
Make 2 Make 3 

57 59 
45 53 

44 47 

61 55 
58 58 

51 49 

58 47 
63 56 

60 50 

c. Plot the residuals against the fitted values. What departures from ANOVA model (19.23) 
can be studied from this plot? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

e. The observations for each treatment were obtained in the order shown. Prepare residual 
sequence plots and analyze them. What are your findings? 

19.17. Refer to Disk drive service Problem 19.16. Assume that ANOVA model (19.23) is applicable. 

a. Prepare an estimated treatment means plot. Does your graph suggest that any factor effects 
are present? Explain. 

b. Obtain the anal¥sis of variance table. Does anyone source account for most of the total 
variability? Explain. 

c. Test whether or not the two factors interact; use 01 = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

d. Test whether Or not main effects for technician and make of drive are present. Use 01 = .01 
in each case and state the alternatives, decision rule, and conclusion. What is the P-value 
of each test? Is it meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 

19.18. Kidney failure hospitalization. Kidney failure patients are commonly treated on dialysis 
machines that filter toxic substances from the blood. The appropriate "dose" for effective 
treatment depends, among other things, on duration of treatment and weight gain between 
treatments as a result of fluid buildup. 1b study the effects of these two factors on the number 
of days hospitalized (attributable to the disease) during a year, a random sample (}f·lD patients 
per group who had undergone treatment at a large dialysis facility was obtained. Treatment 
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duration (factor A) was cutegorized into two groups: short duration (average dialysis time for 
the year under four hours) and long duration (average dialysis time for the year equal to or 
greater than four hours). Average weight gain between treatments (factor B) during the year 
was categorized into three groups: slight, moderate, and substantial. The data on number of 
days hospitalized follow. 

Factor B (weight gain) 

Factor A j = 1 j=2 j=3 
(duration) Mild Moderate Substantial 

i = 1 ShOit 0 2 2 4 15 16 
2 0 4 3 10 7 

0 8 15 20 25 27 

;=2 Long 0 2 5 1 10 15 
7 3 3 8 4 

4 3 9 7 

The transformed data Y' :=; 10gw(Y + I) are to be used for the analysis. 

a. Obtain the fitted values and residuals for ANOYA model (j 9.23) for the transfonned 
data. 

b. Prepare aligned residual dot plots for the treatments. What departures from ANOYA model 
(19.23) can be studied from these plots? What are your findings? 

c. Prepare a normal probability plot of the residuals. Also obtain the coefficient of con'ela­
tion between the ordered residuals and their expected values under nonnality. Does the 
normality assumption appear to be reasonable here? 

19.19. Refer to Kidney failure hospitalization Problem 19.18. Assume that ANOYA model (19.23) 
is appropriate for the transformed response variable. 

a. Prepare an estimated treatment means plot. Does your graph suggest that any factor effects 
are present? Explain. 

b. Obtain the analysis of variance table. Does anyone source account f2r most of the total 
variability? Explain. 

c. Test whether or not the two factors interact; use ex = .05. State the alternatives, decision 
rule, and conclusion. What i~ the P-value of the test? 

d. Test whether or not main effects for duration and weight gain are present. Use ex = .05 in 
each case and state the alternatives, decision IUle, and conclusion. What is the p-value of 
each test? Is it meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d); 
use the Kimball inequality (19.53). 

1'. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 

* 19.20. Programmer requirements. A computer software finn was encountering difficulties in fore­
casting the programmer requirements for large-scale programming projects. As pmt of a study 
to remedy the difficulties, 24 programmers, classified into equal groups by type of experi­
ence (factor A) and amount of experience (factor B), were asked to predict the number of 
programmer-days required to complete a large project about to be initiated. After this project 
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was completed, the prediction errors (actual minus predicted programmer-days) were deter­
mined. The data on prediction errors follow. 

Factor B (years of experience) 

.~lIctor A j=l j=2 j=3 
(type of experience) Under 5 5-under10 10 or more 

i = 1 Small 240 110 56 
systems only 206 118 60 

217 103 68 
225 95 58 

i = 2 Small and 71 47 37 
large systems 53 52 33 

68 31 40 
57 49 45 

a. Obtain the fitted values for ANOVA model (19.23). 

b. Obtain the residuals. 

c. Prepare aligned residual dot plots for the treatments. What departures from ANOVA model 
(19.23) can be studied from these plots? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

*19.21. Refer to Programmer requirements Problem 19.20. Assume that ANOVA model (19.23) is 
applicable. 

a. Prepare an estimated treatment means plot. Does your graph suggest that any factor effects 
are present? Explain. 

b. Obtain the analysis of variance table. Does anyone source account for most of the total 
variability? Explain. 

c. Test whether or not the two factors interact; use 01 = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

d. Test whether or not main effects for type of experience and years of experience are present. 
Use 01 = .01 in each case and state the alternatives, decision rule, and conclusion. What is 
the P-value of each~test? Is it meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in parts,(c) and (d) confirm your graphic analysis in part (a)? 

19.22. How does the randomization of treatment assignments in a two-factor study differ when both 
factors are experimental factors and when only one factor is an experimental factor? 

19.23. Refer to Eye contact effect Problem 19.12. 

a. Explain how you would make the assignments of personnel officers to treatments in this 
two-factor study. Make all appropriate randomizations. 

b. Did you randomize the officers to the factor levels of each factor? 

* 19.24. Refer to Hay fever relief Problem 19.14. 

a. Explain how you would make the assignments of volunteers to treatmtmts in this study. 
Make all appropriate randomizations. 

b. Did you randomize the volunteers to the factor levels of each factor? 
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19.25. Refer to Disk drive service Problem 19.16. 

a. Is any randomization of treatment assignments called for in this study? Is any randomizati 
utilized? Explain. on 

b. Would you consider this study to be experimental in nature? Discuss. 

19.26. Why is it suggested in the flowchart in Figure 19.11 that a test for interactions should be 
conducted before tests for main factor effects? Explain. 

* 19.27. A two-tactor study was conducted with a = 5, b = 5, and 11 = 4. No interactions between 
tactors A and B were noted, and the analyst now wishes to estimate all pairwise comparisons 
among the factor A level means and all pairwise compadsons among the faetor B level means. 
The family confidence coefficient for the joint set of interval estimates is to be 90 percent 

a. Is it more efficient to use the BonfelTOni procedure for the entire family or to USe the 
Tukey procedure for each tamily of factor level mean comparisons and then to join thetwo 
fam i lies by means of the BonfelTOni procedure? 

b. Would your answer differ if each factor had tlH'ee levels, everything else remaining the 
same? 

19.28. A two-factor study was conducted with a = 6. b = 6, and II = 10. No interactions between 
factor~ A and B were found, and it is now desil'ed to estimate five contrasts of factor A level 
means and four contrasts of factor B level means. The t~lIni Iy confidence coefficient for the 
joint set of estimates is to be 95 percent. Which of the tllI'ee procedures at the bottom of 
page 852 and the top of page 853 will be most efficient here? 

19.29. Refer to the Castle Bakery example at the top of page 855, where two pairwise comparison 
estimates were made by means of the Tukey procedure. Why would it not be appropriate to 
use the Bonfen·oni procedure here? Discuss. 

* 19.30. Refer to Cash offers Problems 19.10 and 19.11. 

a. Estimate 1111 with a 95 percent confidence interval. Interpret your interval estimate. 

b. Prepare a bar graph of the estimated factor B level means. What does this plot suggest 
about the equality of the factor B level means? 

c. Estimate D = 11., - 11.] by means of a 95 percent confidence interval. Is your confidence 
interval consistent with the test result in Problem 19.1ld? Is your confidence interval 
consistent with your finding in pmt (b)? Explain. 

d. Prepare a bar graph of the estimated factor A level means. What does this plot suggest 
about the factor A main effects? 

e. Obtain all pairwise comparisons among the factor A level means; use the Tukey procedure 
with a 90 percent family confidence coefficient. Present your findings graphically and 
summarize your l'esults. Are your conclusions consistent with those in pmt (d)? 

f. Is the 1l.!key procedlll'e used in part (e) the most efficient one that could be used here? 
Explain. 

g. Estimate the contrast: 

L 
= 11 1. + 11 3. 
- 2 -11 ]. 

with a 95 percent confidence interval. Interpret your interval estimate. 

h. Suppose that in the population of female owners, 30 percent are young, 60 percent are 
middle-aged, and 10 percent are elderly. Obtain a 95 percent confidence interval for the 
mean cash offer in the population of female owners. 
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19.31. Refer to Eye contact effect Problems 19.12 and 19.13. 

a. 

b. 

c. 

d. 

e. 

f. 

Estimate /1-21 with a 99 percent confidence interval. Interpret your interval estimate. 

Estimate /1-1' with a 99 percent confidence interval. Interpret your interval estimate. 

Prepare a bar graph of the estimated factor B level means. What does this plot suggest 
abou~ the factor B main effects? 

Obtain donfidence intervals for /1-'1 and /1'2, each with a 99 percent confidence coefficient. 
Intergret your interval estimates. What is the family confidence coefficient for the set of 
two estimates? 

Prepare a bar graph of the estimated factor A level means. What does this plot suggest 
about the factor A main effects? 

Obtain confidence intervals for DI = /1-2' - /1-1' and D2 = /1-'2 - /1'1; use the Bonferroni 
procedure and a 95 percent family confidence coefficient. Summarize your findings. Are 
your findings consistent with those in parts (c) and (e)? 

g. Is the Bonferroni procedure used in part (f) the most efficient one that could be used here? 
Explain. 

*19.32. Refer to Hay fever relief Problems 19.14 and 19.15. 

a. Estimate /1-23 with a 95 percent confidence interval. Interpret your interval estimate. 

b. Estimate D = /1-12 - /1-11 with a 95 percent confidence interval. Interpret your interval 
estimate. 

c. The analyst decided to study the nature of the interacting factor effects by means of the 
following contrasts: 

L /1-12 +/1-13 
1 = 2 - /1-11 

L /1-22 + /1-23 
2 = 2 - /1-21 

L /1-32 + /1-33 
3 = 2 - /1-31 

Obtain confidence intervals for these contrasts; use the Scheffe multiple comparison pro­
cedure with a 90 percent family confidence coefficient. Interpret your findings. 

d. The analyst also wished to identify the treatment(s) yielding the longest mean relief. Using 
the Thkey testing procedure with family significance level a = .10, identify the treatment(s) 
providing the I,ongest mean relief. 

e. To examine whether a transformation of the data would make the interactions unimportant, 
plot separately the transformed estimated treatment means for the reciprocal and square 
root transformations. Would either of these transformations have made the interaction 
effects unimportant? Explain. 

19.33. Refer to Disk drive service Problems 19.16 and 19.17. 

a. Estimate /1-11 with a 99 percent confidence interval. Interpret your interval estimate. 

b. Estimate D = /1-22 - /1-21 with a 99 percent confidence interval. Interpret your interval 
estimate. 

c. The nature of the interaction effects is to be studied by making, for each technician, all 
three pairwise comparisons among the disk drive makes in order to identify, if possible, 
the make of disk drive for which the technician's mean service time is lowest. The family 
confidence coefficient for each set of three pairwise comparisons is to be 95'percent. Use 
the Bonferroni procedure to make all required pairwise comparisons. Summarize your 
findings. 
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d. The service center cUITently services 30 disk drives of each of the three makes per 
. I h . . .. 10 h' t' I k' Week, Wit] each tec nlCI<1O servlclIlg mnc lI]es 0 eac] ma e. Eshmate the expected 

amount of service time required per week to service the 90 disk drives' use a 99 total 
confidence interval. ,. percent 

e. How much time could be !laved per week. on the avemge, if technician I services 0 I 
make 2, technician 2 services only make I, and technician 3 services only make 31 U n y . Se a 
99 percent confidence interval. 

e To examine whether a transformation of the data would make the interactions unimportant, 
plot separately the transformed estimated treatment means for the (eciprocal and logarith_ 
mic transformations. Would either of these transformations have made the interaction 
effects unimportant? Explain. 

19.34. Refer to Kidney failure hospitalization Problems 19.18 and 19.19. Continue to work with 
the transformed observations Y' == loglU(Y + I). 
a. Estimate fJ.22 with a 95 percent confidence interval. Interpret your interval estimate. 

b. Estimate D = fJ.2.' - P21 with a 95 percent confidence interval. Interpret your interval 
estimate. 

c. Prepare separate bar graphs of the estimated factor A and factol' B level means. What do 
these plots sugge~t about the factor main effects? 

d. The researeher wishes to study the main effects of each of the two factors by making all 

pairwise comparisons oHactor level means with a 90 percent family confidence coefficient 
for the entire set of comparisons. Which multiple comparison procedure is most efficient 
here? 

e. Using the Bonferroni procedure, make all pairwise comparisons called for in part (d). State 
your findings and prepare a graphic summary. Are your findings consistent with those in 
part (c)'? 

f. It is known frOill past experience that 30 percent of patients have mild weight gains, 
40 percent have moderate weight gains, and 30 percent have severe weight gains, and that 
these proportions are the same for the two duration groups. Estimate the mean number 
of days hospitalized (in transformed units) in the entire population with a 95 percent 
confidence interval. Convert your confidence limits to the original units. Does it appear 
that the mean number of days is less than 7? 

*19.35. Refer to Programmer requirements Problems 19.20 and 19.21. 

a. Estimate fJ.2.' with a 99 percent confidence interval. Interpret your interval estimate. 

b. Estimate D = fJ'12 - fJ· u with a 99 percent confidence interval. Interp(et your iPiterval 
estimate. 

c. The natu(e of the inte(action effects is to be studied by comparing the effect of type of 
experience for each years-of-experience group. Specifically, the following comparisons 
lire to be estimated: 

L2 == DI - D3 

L3 == D2 - D3 

The fam ily confidence coefficient is to be 95 percent. Wh ich multiple comparison procedure 
is most efficient here? 

d. Use the most efficient procedure to estimate the comparisons specified in pmt (c). State 
your findings. 
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e. Use the Tukey testing procedure with family significance level ex = .05 to identify the type 
of experience-years of experience group(s) with the smallest mean prediction errors. 

f. For each group identified in part (e), obtain a confidence interval for the mean prediction 
error. Use the Bonferroni procedure with a 95 percent family confidence coefficient. Does 
any group have a mean prediction error that could be zero? Explain. 

g. To examine whether wtransformation ofthe data would make the interactions unimportant, 
plot separately the ti~nsformed estimated treatment means for the reciprocal and logarith­
mic transformations. Would either of these transformations have made the interaction 
effects unimportant? Explain. 

19.36. Refer to Brand preference Problem 6.5. Suppose the market researcher first wished to employ 
analysis of variance model (19.23) to determine whether or not moisture content (factor A) 
and sweetness (factor B) affect the degree of brand liking. 

a. State the analysis of variance model for this case. 

b. Obtain the analysis of variance table. 

c. Test whether or not the two factors interact; use ex = .01. State the alternatives, decision 
rule, and conclusion. 

d. Study possible curvilinearity of the moisture content effect by estimating the following 
contrast: 

Use a 95 percent confidence interval. What do you conclude? 

e. Test whether or not sweetness affects brand liking; use ex = .01. State the alternatives, 
decision rule, and conclusion. 

19.37. A market research rrumager is planning to study the effects of duration of advertising (factor A) 
and price level (factor B) on sales. Each factor has three levels. No important interactions are 
expected, and the primary analysis is to consist of pairwise comparisons of factor level means 
for each factor. Equal sample'sizes are to be used for each treatment. The precision of each 
comparison is to be ±3 thousand dollars. The family confidence coefficient for the joint 
set of comparisons is to be 90 percent, the Tukey procedure is to be used in making the 
comparisons for each factor, and the Bonferroni procedure is then to be used to join the two 
sets of comparisons. Assume that a = 7 thousand dollars is a reasonable planning value for 
the error standard deviation. What sample sizes do you recommend? 

* 19.38. Refer to Cash offers Problem ·19.1 O. Suppose that the sample sizes have not yet been deter­
mined but it has been decided to use the same number of "owners" in each age-gender group. 
What are the required sample sizes if: (1) differences in the age factor level means are to be 
detected with probability .90 or more when the range of the factor level means is 3 (hundred 
dollars), and (2) the ex risk is to be controlled at .05? Assume that a reasonable planning value 
for the error standard deviation is a = 1.5 (hundred dollars). 

19.39. Refer to Eye contact effect Problem 19.12. Suppose that the sample sizes have not yet been 
determined but it has been decided to use equal sample sizes for each treatment. Primary 
interest is in the two comparisons L, = /1-,. - /1-2' and L2 = /1-., - /1-'2' What are the required 
sample sizes if each of these comparisons is to be estimated with precision not to exceed ± 1.2 
with a 95 percent family confidence coefficient, using the most efficient multiple compari­
son procedure? Assume that a reasonable planning value for the error standard deviation is 
a = 2.4. ~ . 

*19.40. Refer to Hay fever relief Problem 19.14. Suppose that the sample sizes have not yet been 
determined but it has been decided to use equal sample sizes for each treatment. The chief 
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Exercises 

Projects 

objective i~ to identify the dosage combination that yields the longest mean relief. The : 
ability should be at least .99 that the correct dosage combination is identified when the p£ob-­
relief duration for the second best combination differs by .5 hour or more. What are th

mean 

quired sample sizes? Assume that a reasonable planning value for the error standard de . e.re. 
is a = .29 hour. vlabon 

19.41. Refer to Kidney failure hospitalization Problem 19.18. Suppose that the sample sizes h 
not yet been determined but it has been decided to use equal sample sizes for each tream: 
The chief objective is to estimate the pairwise comparisons: 

LI =fJ-I·-fl1' 

L2 = fJ-'1 - fJ-'1 

L.1 = fl'l - fJ-·3 

L4 = fJ-'2 - fJ-·, 

What are the required sample sizes if the precision of each of the estimates should not exceed 
±.20 (in transfonned units), using the Bonferroni procedure with a family confidencecoeffi_ 
cient of 90 percent for the joint set of comparisons? A reasonable planning value for the error 
standard deviation is a = 32 (in transfOimed units). 

*19.42. Refer to Programmer requirements Problem 19.20. Suppose that the sample sizes have not 
yet been determined but it has been decided to use equal sample sizes for each treatment 
Pdmary interest is in identifying the type of experience-years of experience combination 
for which the mean prediction error is sIlklllest. The probability should be at lea~t .95 that 
the correct combination is identified when the mean prediction error for the second best 
combination differs by 8.0 programmer-days or more. Assume that a reasonable planning 
value for the elTor standard deviation b a = 9.1 days. What are the required sample sizes? 

19.43. Derive (19.7a) from (19.7). 

19.44. Prove the result in (19.9b). 

19.45. (Calculus needed.) State the likelihood function for ANOYA model (19.15) when a = 2, 
b = 2, and 11 = 2. Find the maximum likelihood estimators. 

19.46. (Calculus needed.) Derive ( 19.29). 

19.47. Derive (1939) from (1938). 

19.48. Show that the point estimator ( 19.67) is unbiased. Find the variance of this estimator. 

19.49. Find the variance of the estimator (19.93a). • 

19.50. Consider a two-factor study with a = 2 and b = 2. Show that the interactions (a{J)12 and 
(a{:3b are equal. 

19.5 I. Refer to the SENIC data set in Appendix CI. The following hospitals are to be considered 
in a study of the effects of region (factor A: variable 9) and average age of patients (factor B: 
variable 3) on the mean length of hospital stay of patients (variable 2): 

1-44 
76 

46 
79 

48 
80 

51 
83 

53 
84 

57 
88 

58 
94 

60 
101 

63 
103 

66 
111 

74 

For purposes of this ANOYA study, average age is to be classified into two categories: lesS 
than or equal to 53.9 years, 54.0 years or more. 

a. Assemble the required data and obtain the fitted values for ANOYA model (19.23). 

b. Obtain the residuals. 
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c. Plot the residuals against the fitted values. What departures from ANOVA model (19.23) 
can be studied from this plot? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

52. Refer to the SENIC data set in Appendix C.l and Project 19.51. Assume that ANOVA model 
(19.23) isoapplicable. 

a. Prepare an estimated treatment means plot. Does it appear that any factor effects are 
present? ,Explain. 

b. Obtain the analysis of variance table. Does anyone source account for most of the tOtal 
variability in the study? Explain. 

c. Test whether or not interaction effects are present; use 01 = .05. State the alternatives, 
decision rule, and conclusion. What is the P -value of the test? 

d. Test whether or not region and age main effects are present. In each case, use 01 = .05 and 
state the alternatives, decision rule, and conclusion. What is the P-value of each test? Is it 
meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 

53. Refer to the CDI data set in Appendix C.2. The following metropolitan areas are to be 
considered in a study of the effects of region (factor A: variable 17) and percent below poverty 
level (factor B: variable 13) on the crime rate (variable 10 -;- variable 5): 

1-5 
51-52 

164 

7 
54 

178 

10-17 
57 

182 

19-29 
75 

202 

32-34 
84 

218 

36-42 
87 

410 

44 
94 

421 

46 
136 
434 

49 
151 

For purposes of this ANOVA study, percent of population below poverty level is to be classified 
into two categories: less than 8 percent, 8 percent or mOre. 

a. Assemble the required data and obtain the fitted values for ANOVA model (19.23). 

b. Obtain the residuals. 

c. Prepare aligned residual dot plots for the treatments. What departures from ANOVA model 
(19.23) can be studied from these plots? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

54. Refer to the CDI data set in Appendix C.2 and Project 19.53. Assume that ANOVA model 
(19.23) is applicable. 

a. Prepare an estimated treatment means plot. Does it appear that any factor effects are 
present? Explain. 

b. Set up the analysis of variance table. Does anyone source accoWlt for most ot the total 
variability in the study? Explain. 

c. Test whether or not interaction effects are present; use 01 = .01. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

d. Test whether or not region and percent of population below poverty level mai~ effects are 
present. In each case, use 01 = .01 <lid state the alternatives, decision rule, and' conclusion. 
What is the P-value of each test? Is it meaningful here to test for main factor effects? 
Explain. 
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19.55. 

4 

e. Obtain an upper bound on the f<lmily level of significance for the tests in parts (c) ad; 
use the Kimb<lll inequality (19.53). n (d);, 

r. Do the results in parts (c) and (d) confirm your graphic analysis in part (a)? 

Refer to the Market share data set in Appendix C.3. A balanced ANOYA study of the effe' 
of discount price (factor A: variable 5) and package promotion (factor B: vadable 6) on: 
average monthly market share (variable 2) is to be conducted. Order the observations in the 
four factor-level combination cells from smallest to largest observation number and retain ~ 
first 7 observations in each cell for a total of 28 observations. (This process omits ca'ieS with 
identification numbers (variable I) equal to 24, 25, 27.28,30,33,34, and 36.) 

a. Assemble the required data and obtain the fitted values for ANOYA model (19.23). 

b. Obtain the residuals. 

c. Plot the residuals against the fitted values. What departures from ANOYA model (19.23) 
can be studied from this plot? What are your findings? 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under norn]ality. Does the 
normality assumption appear to be reasonable here? 

19.56. Refer to the Market share data set in Appendix C.3 and Project 19.55. Assume that ANOVA 
model (19.23) is applicable. 

a. Prepare an estimated treatment means plot. Does it appear that any factor effects are 
present? Explain. 

b. Obtain the analysis of variance table. Does any one ~ource account for most of the total 
variability in the study? Explain. 

c. Test whether or not interaction effects are present; use ex = .05. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

d. Test whether or not discount price and package promotion main effects are present. In each 
case, use ex = .05 and state the alternatives. decision rule, and conclusion. Wlli,t is the 
P-value of each test? Is it meaningful here to test for main factor effects? Explain. 

e. Obtain an upper bound on the family level of significance for the tests in parts (c) and (d); 
use the Kimball inequality (19.53). 

f. Do the results in parts (c) and (d) confirm your graphic analysis in pmt (a)? 

19.57. Refer to the SENIC data set in Appendix C.I and Projects 19.51 and 19.52. 

a. Prepare a bar graph of the estimated factof level means Y; ... What does this plot suggest 
regarding the fegion main effects? 

b. Analyze the effects of region on mean length of hospital stay by making all pairwise 
comparisons between regions: use the Tukey procedure and a 90 percent family confidence 
coefficient. State your findings and present a graphic summary. Are your findings consistent 
with those in pmt (a)'? 

19.58. Refer to the CDI data set in Appendix C.2 and Projects 19.53 and 19.54. 

a. Prepare a bar graph of the estimated factor level means B ... What does this plot suggest 
regarding the region main effects? 

b. Analyze the effects of fegion on crime rate by making all pairwise comparisons between 
fegions; use the Tukey procedure and a 95 percent family confidence coefficient. Sta~e 
your findings and present a graphic summary. Are your findings consistent with those III 
part (a)? 



as~ 
,;'dies 

Chapter 19 Two-Factor Studies with Equal Sample Sizes 879 

19.59. Refer to the Real estate sales data set in Appendix C. 7. Carry out a balanced two-way analysis 
of variance of this data set where the response of interest is sales price (variable 2) and the 
two crossed factors are quality (variable 10) and style (variable II). Style is recoded as either 
1 or not 1. Order the observations in the six factor-level-combination ceIls from smallest 
to largestcobservation number and retain the first 25 observations in each cell for a total 
of 150 observations. The analysis should consider transformations of the response variable. 
Document tbe steps taken in your analysis and justify your conclusions. 

19.60. Refer to the Ischemic heart disease data set in Appendix C.9. Carry out a balanced two-way 
analysis of variance of this data set where the response of interest is total cost (variable 2) and 
the two crossed factors are number of interventions (variable 5) and number of comorbidities 
(variable 9). R,ecode the number of interventions into six categories: 0, 1, 2, 3-4, 5-7, and 
greater than or equal to 8. Recode the number of comorbidities into two categories: 0-1, and 
greater than or equal to 2. Order the observations in the twelve factor-level-combination cells 
from smallest to largest observation number and retain the first 43 observations in each cell 
for a total of 516 observations. The analysis should consider transformations of the response 
variable. Document the steps taken in your analysis and justify your conclusions. 

~ . 
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-
Two-Factor Studies-One 
Case per Treatlllent 

[n many studies, constraints on cost, time, and matel'ials severely limit the number of 
observations that can be obtained. For example, a process engineer in a manufacturing 
company may have only a limited time to expel'iment with the production line. If the line 
is available for one day and only eight batches of product can be produced in a day, the 
experiment may have to be limited to eight observations. If the study involves one factor at 
four levels and a second factor at two levels so that there are eight factor level combinations, 
only one replication of the experiment is then possible for each treatment. 

Another reason why some studies contain only one case pel' treatment is that the response 
of interest is a single aggregate measure of pel'fonTIance. For example, in a marketing 
research study of alternative package designs, evaluation of each alternative may require a 
separate market test. The response of interest is the observed market share, and this results 
in a single response for each treatment combination. 

'A modification of the ANOVA model is required for the analysis of two-factor studies 
containing only one replication per treatment because no deg(ees of freedom afe available 
for estimation of the experimental error with the standard two-factor ANOVA model (19.23). 
In this chapter, we describe a modification of the ANOVA model that permits the two-factor 
analysis of variance to be conducted with only one case per tl'eatment. This modification • 
requires the assnmption that the two factors do not interact. We then discuss inference 
pl'Ocedures with this additive model. We conclude the chaptel' by considering a test for 
examining the reasonableness of the assumption of additivity of the two factol's-the Tukey 
test. This test is impoltant not only when there is just a single case fol' each treatment in a 
two-factor study, but it is also useful for a variety of expel'imental designs to be discussed 
in later chapters. 

No-Interaction J\lode1 

When thel'e is only one case fol' each treatment, we no longel' can work with two-factor 
ANOVA model (19.23) because no estimate of the el'ror variance (52 will be available. 
Recall from (19.37c) that SSE is a sum of squares made up of components measUl'ing the 
val'iability within each treatment, Lk(Y,jk - B.i')~' With only one case per treatment, there 
is no variability within a treatment, and SSE will then alw,IYs be zel'O. 
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A way out of this difficulty is to change the model. Formula (l9.42d) indicates that if 
the two factors do not interact so that (af3)ij == 0, the interaction mean square MSAB has 
expectation (52. Thus, if it is possible to assume that the two factors do not interact, we 
may use MSAB as the estimator of the error variance (52 and proceed with the analysis of 
factor effects as usual. If it is unreasonable to assume that the two factors do not interact, 
transformations may be tried to remove the interaction effects. We shall say more about this 
in the next section. 

The two-factor ANOVA model with fixed factor levels in (19.23), when all interactions are 
zero so that (af3)ij == 0, becomes for n = 1, the case considered here: 

Yij = f.J., •• + ai + f3 j + eij (20.1) 

Note that the third sUbscript has been dropped from the Y and e terms because there is now 
only one case per treatinent. 

~nalysis of Variance 
The factor effects sums of squares SSA and SSB are calculated as before from (19.39a) and 
(19.39b), respectively, with n = 1. The interaction sum of squares in (19.39c) with n = 1 
now is expressed as follows: 

SSAB = L.L(Yij - ~. - Yj + y.)2 
j 

n=1 (20.2) 

Note that SSAB in (20.2) is identical to SSAB in (19.39c) with n = 1; the third subscript has 
been dropped because there is only one case per treatment, and the mean ~j. is replaced by 
the observation Yij for the same reason. The number of degrees of freedom associated with 
SSAB in (20.2) is the same as before, namely, (a -1)(b - 1). The analysis of variance table 
for the case n = 1 for no-interaction model (20.1) is shown in Table 20.1. 

Inference Procedures 
No new problems arise in the tests for factor A and factor B main effects, nor in estimating 
these effects. Since the expected value of MSAB is (52 for no-interaction model (20.1), as 

TABLE 20.1 ANOVA Table for No-Interaction Two-Factor Model (20.1) with Fixed Factor Levels, n = 1. 

~0\rte;of·· 
~ati6~ SS df 

a-1 

SSB = a E(Y.l. _f)2 b-1 

SSAB=,EEO:;f;-Y;: - Y.;+ Y..)2 (a-1){b-l) 

bb-l 

MS 

MSA= SSA 
. ·0-1 

MSB= SSB 
b~l 

MSAB = SSAB (52 
. (a-1)(b-l) 

E{MS} 
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Example 

TABLE 20.2 
Two-Factor 
Study with 
n=l-
Insurance 
Premium 
Example. 

shown in the last column of Table 20.1, the F* test statistics for testing factor A and factor B 
main effects will now utilize MSAB in the denominator, instead of MSE as before: 

Factor A main effects: 

Factor B main effects: 

F* = MSA 
MSAB 

* MSB F =--
MSAB 

(20.3 a) 

(20.3b) 

Similarly, for estimating comparisons of factor A and factor B level means, we simply 
replace MSE in all of the earlier results with MSAB as the estimator of the error variance 
(52 and modify the degrees of freedom accordingly. 

A special problem exists in estimating treatment means. We shall explain how to handle 
this problem after presenting an example. 

An analyst in an insurance commissioner's office studied the premiums for automobile 
insurance charged by an insurance company in six cities. The six cities were selected to 
represent different regions of the state and different sizes of cities. Table 20.2a shows the 
amounts of three-month premiums charged by the automobile insurance firm for a specific 
type and amount of coverage in a given risk category for each of the six cities, classified by 
size of city (factor A) and geographic region (factor B). Note there is only one observation 
per ceil, namely, the amount of the premium charged in the city for each factor level 
combination. The analyst wished to evaluate the effects of city size and geographic region 
on the amount of the premium. 

Figure 20.1 contains a plot of the observations Yij. Note since n = 1 here that the 
observations Yij constitute estimates of the treatment means f.Lij' It appears from Figure 20.1 
that there could be a slight interaction between region and size of city in their effects on the 

(a) Premiums for Automobile Insurance Policy (in dollars) 

Region (factor 8) 

Size of City East West 
(factor A) (j = 1) (j =2) Average 

Small (i = 1) 140 100 120 
Medium (i = 2) 210 180 195 • 
Large (i = 3) 220 200 210 

Average 190 160 175 

(b) ANOVA Table 

Source of 
Variation SS df MS 

Size of city (A) 9,300 2 4,650 
Region (B) 1,350 1 1,350 
Error 100 2 50 

. Total 10,750 5 
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~Largecity 
~ Medium city 

OL-------L--------L------~ 
East West 

Region 

premium. However, since there is only one observation per treatment, the moderate lack of 
parallelism in the response lines could simply be the result of random effects within each 
treatment cell. The analyst conducted the Tukey test for interactions (to be discussed in 
Section 20.2), which indicated that no interaction effects are present. Hence, the analyst 
adopted the no-interaction model (20.1). 

The analyst obtained the required sums of squares as follows, using (19.37a) and (19.39) 
for n = 1: 

SSA = 2[(120 - 175i + (195 - 175)2 + (210 - 175)2] = 9,300 

SSB = 3[(190 - 175)2 + (160 - 175)2] = 1,350 

SSAB = (140 - 120 - 190 + 175)2 + ... + (200 - 210 - 160 + 17~)2 = 100 

SSTO = (140 - 175)2 -t ... + (200 - 175)2 = 10,750 

The ANOVA table is given in Table 20.2b. For the test of city size (factor A) effects, the 
alternative conclusions are: 

Ho: a, = a2 = a3 = 0 

Ha: not all ai equal zero 

The F* test statistic is given by (20.3a): 

F* = MSA = 4,650 = 93 
MSAB 50 

and the decision rule for a = .05 is [remember that the denominator of F* here involves 
(a - 1)(b - 1) degrees of freedom]: 

If F* .:::: F[l- a; a-I, (a - l)(b - 1)] = F(.95; 2,2) = 19.0, conclude Ho 

If F* > F[l - a; a -1, (a - l)(b - 1)] = F(.95; 2,2) = 19.0, conclude Ha 

Since F* = 93 > 19.0, we conclude Ha, that city size effects are present. The P-value of 
thetestis.Oll. ~. 
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The test fOI" geographic fegion (factol" B) effects pmceeds similady, the alternative Con­

clusions being: 

Hu: f31 = fh = 0 

HlI : not all f3 j eq ual zem 

For 0' = .05 the decision rule is: 

If F* :s F(.95: I, 2) = 18.5, conclude Hu 

If F* > F(.95; 1.2) = 18.5, conclude HlI 

Test statistic (20.3b) here is: 

. MSB 1,350 
F~ = -- = -- = 27 

MSAB 50 

Since F* = 27 > 18.5, we conclude HlI , that geographic region effects are present The 
P-value of this test is .035. 

The analysis of the magnitudes of the geographic region and city size main effects 
involves no new problems. The analyst employed three pairwise compal"isons of the factor 
level means f.Li. for city size effects and a pairwise comparison of the geographic region 
factor level means M.J. The methods described in Section 19.8 are entirely applicable here; 
the el"ror val"iance (52 is now estimated by MSAB, and the degrees of freedom associated 
with the estimate of the error variance now are (0 - l)(b - I). Since no new issues are 
involved in the analysis, we do not present furthel" details. 

Estimation of Treatment Mean 

Example 

Occasionally when no-interaction model (20.1) is employed with n = I, there is interest 
in estimating a treatment mean f.Lij. We could estimate treatment mean f.Lij in the usual 

fashion with the sample mean Y;j., here simply the single observation Yij. However, we can 
obtain an improved estimate by making use of the model assumption of no interactions. We 
know from (l9.7a) that when the factor effects are additive, the treatment mean f.LiJ can be 
expressed as follows: 

f.Lij = f.Li· + f.L.j - f.L •• (20.4) 

Hence, we can estimate f.Lij for additive model (20.1) by substituting the estimated values 
- - - .. 

Pi· = Y;., p.] = Y.J' and p .. = Y.. into (20.4): 

fliJ = Y;. + Y. j - Y.. (20.5) 

The estimator ofthe treatment mean f.Li; in (20.5) is an improved estimator because it has 
minimum variance in the class of unbi~sed linear estimatol"S according to an extension of 
the Gauss-Markov theorem (1.11). 

For the insurance premium example in Table 20.2a, we shall use (20.5) to obtain improved 
estimates ofthe treatment means f.Lij. We obtain, fOI" instance: 

PII = 120+ 190- 175 = 135 

Pll = 120 + 160 - 175 = 105 
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The other treatment mean estimates are: 

fl31 = 225 fl32 = 195 
, 

Note that these improved estirriates differ only slightly from the simpler estimates Yij in 
Table 20.2a. 

Precision of Estimated Treatment Mean. To set up a confidence interval for a treatment 
mean f.Lij' we require the estimated variance of flij in (20.5). One simple method of estimat­
ing this variance is by means of the regression model equivalent to ANOVA model (20.1). 
For the insurance premium example, this equivalent regression model is: 

where: 

Yij = f.L •• + Q',IXijl + Q',2Xij2 + f3IXij3 + cij 

if small city 
if large city 
if medium city 

if medium city 
iflarge city 
if small city 

if region East 
if region West 

Note that the fitted value for observation Yij will be: 

Yij = Y.. + &1 + ~ j 
which is identical to flij in (20.5): 

Yij = Y.. + (~. - Y..) + (Y. j - Y..) = ~. + Y.j - Y.. = flij 

Hence, the estimated variance of Yij is also the estimated variance of flij' The estimated 
variance S2{Yij} is furnished by most computer regression packages or can be calculated 
by means of (6.58). 

Comments 

1. The analysis oftwo-factor studies with n = I just outlined depends on the assumption that the 
two factors do not interact. If this analysis is used when in ·fact interactions are present, the result is 
that the actual level of significance for testing factor A and factor B main effects is below the specified 
level and the actual power of the tests is lower than the expected power. Correspondingly, confidence 
intervals for contrasts offactorlevel means will tend to be too wide. This means that when interactions 
are present, the analysis is more likely to fail to disclose real effects than anticipated. However, when 
the analysis based on the no-interaction model does indicate the presence of factor A or factor B main 
effects, they may be taken as real effects even though interactions are actually present. 

2. Sometimes, the case n = I is encountered when the observations Yij are proportions. For 
instance, the data may consist of the proportion of employees in a plant absent during the past week, 
with the plants classified by size and geographic area. As noted earlier, the arcsine tnmsformation C"lli 
be used for such data to stabilize the error vari"llice. The transformed data then can be analyzed using •. 
no-interaction model (20.1), provided that each proportion is based on roughly the same number of 
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cases. If the number of casc~ differs gre<ltly. weighted least squilres or logi~tic regression sh 
utilized. ould be 

• 
20.2 Tukey Test for Addi1 ivi1 y -­We descdbe now the Tukey test that may be used for examining. when 11 = I, whether 

not the two factors in a two-factor study interact. This test is also useful for a Variety: 
experimental designs to be discussed in later chapters. 

Development of Test Statistic 
As noted in Section 20.1, we considered no-interaction model (20.1) when 11 = I to enable 
us to obtain an estimate of the erfOr variance in thi:;, case. It would have been possible 
however, to impose less severe restrictions on the interaction effects (af3)ij and include th~ 
restricted interaction effects in the ANOVA model. Suppose we assume that: 

(20.6) 

where D is some constant. One motivation for this resuiction is that if ta(3)i.; is any second­
degfee polynomial function of a , and f3j, then it must be of the form (20.6) because of the 
I'estrictions on the a;, f3.;. and (af3);j in (19.23) that the sums over each subscript be Zero. 

Using (20.6) in a fegulaf two-factol' ANOVA model with interactions for the case n = 1, 
we obtain: 

Yi ; = f.L •• + ai + f3.i + Da;f3.; + FI./ (20.7) 

where each term has the usual meaning. Remembel' thefe is no thifd subscript here because 
11 = I. The interaction sum of squares r:;r:JD)a;f3} now needs to be obtained. Assuming 
the othef parameters afe known, the least squares and maximum likelihood estimator of D 
tums out to be: 

(20.8) 

The usual estimator of ai is Y;. - y.. and that of f3 j is Y. j - Y. .. Replacing the parameters in 
b by these estimators, we obtain: 

b = LiLj(Y;· - Y..)(Y..; - Y.')Yij 

LtUi. - y..») LY:' - Y..») 
• (20.8a) 

The sample counterpart of the interaction sum of squares LL D"a; f3; will be denoted by 
SSAB' to remind us that this interaction sum of squares is for the special form ofillteraction in 
model (20.7). Substituting the sample estimates into LL D)al f3J. we obtain the interaction 
sum of squares: 

SSAB* = L L b)(Y;. - y'.)2(y'.; - Y..») 
j 

[LiLjd~. - Y..)(Y.j - y")yiir 
Li(Y;' - y'.)2 L (Y. j - y..») 

.f 

(20.9) 
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The analysis of variance decomposition for the special interaction model (20.7) there­
fore is: 

SSTO = SSA + SSB + SSAl!" + SSRem* (20.10) 

where SSRem* is the remainder sum of squares: 

SSRem* = SSTO - SSA - SSB - SSAB* (20.10a) 

It can be shown that if D = O-that is, if no interactions of the type Da;{3j exist­
SSAB* and SSRem* are independently distributed as chi-square random variables with 1 
and ab - a - b degrees of freedom, respectively. Hence, if D = 0, the test statistic: 

F* = SSAB* -;- SSRem* 
1 ab -a-b 

is distributed as F(I, ab - a - b). 
Thus, for testing: 

Ho:D=O 

Ha: D =1= 0 

(no interactions present) 

(interactions Dai fJ j present) 

(20.11) 

(20.12a) 

we use test statistic F* defined in (20.11). Large values of F* lead to conclusion Ha. The 
appropriate decision rule for controlling the risk of a Type I error at a is: 

If F* .:'S F(1 - a; 1, ab - a - b), conclude Ho 

If F* > F(1 - a; 1, ab - a - b), conclude Ha 
(20.12b) 

The power of this test has been studied, and it appears that if interactions of approximately 
the type postulated in (20.6) are present and the factor A and factor B main effects are large, 
the test is effective in detecting the interactions. The test is usually called the Tukey one 
degree of freedom test. This test also may be used for testing for the presence of general 
interactions. 

We shall conduct the Tukey test for the insurance premium example. The data are presented 
in Table 20.2a. First, we obtain the·elements of SSAB*: 

L L(Yi ' - Y.)(Yj - Y')Yir= ~120 - 175)(190 - 175)(140) + ... 
+ (210 - 175)(160 - 175)(200) = -13,500 

'" - - 2 SSA 9,300 
L..,/yt. - Y..) = 2: = -2- = 4,650 

L(Yj - y.)2 = S~B = 1,~50 = 450 

Hence, the special interaction sum of squares is: 

B* 
( - 13 ,500)2 1 

SSA = = 87. 
. 4,650(450) 
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Using the ANOYA sums of squures in Table 20.2b, we have by (20. lOa): 

SSRc1l1* = 10,750 - 9,300 - 1,350 - 87.1 = 12.9 

Finally, we obt11in the test statistic by (20.1 I): 

F* = 87.1 -:- 12.9 = 6.8 
3(2) - 3 - 2 

For ~ = .10. ~e re~u~re F(.90; ~. I) = 39.9. Since F* ~ ~.8 :::: 39.9, we conclude 
that region and size of City do not Interact. The P-value of this test is .23. Use of the 
no-interaction model for the data in Table 20.2a therefore appears to be reasonable. 

Remedial Actions if Interaction Effects Are Present 
When the Tukey test indicates the presence of interaction effects in an analysis of variance 
application where 11 = I, efforts should be made to remove the interactions So that the 
analysis described in Section 20.1 can be utilized. As we described in Chapter 19, trans­
formations of the data can often be used to remove interaction effects or to make them 
unimportant. 

One possibility is to try simple transformations of the response variable, such as a 
square root or a logarithmic transformation. Another possibility is to search in the family 
of power transformations on Y described in Chapter 3 in connection with the Box-Cox 
transformations. The procedure is to make transformations on Y according to (3.36) for 
selected values of A. For each value of A, the Tukey test statistic (20.11) is then obtained. 
If a A value leads to a nonsignificant F* test statistic, a transformation will then have 
been found that removes the interaction effect. Frequently, a range of A values will yield 
nonsignificant test statistics, in which case a simple A value in this range, such as A = .5, 
may be chosen. 

If no transformation can be found to make the interactions unimportant. an approximate 
method of analysis can be employed: see. for instance. Reference 20.1. 

Comment 

If one or both factors are quantitative. a test for interactions effects can be obtained by regression 
methods. For example. consider a study in which both factors are quantitative. each has three levels, 
and II = I so that 111" = 9. Let Xijl denote the value of the first factor for the treatment for which 
factor A is at the ith level and factor B is at the jth level. Xij2 is defined similarly for the second 
factol: Second-order regression Illodel (S.7) may then be used: 

• 
Yii = 11n + fJlXijl + fhrijl + fJ.1 Xtl + fJ~.ti~l + fJ5 X ijlXijl + Eii 

where: 

With this model, there would be liT - P = 9 - 6 = 3 degrees of freedom for estimating the error 
variance cr1 . and the test for the presence of an interaction effect would be the usual test in (6.51) for 
testing whether fJ5 = O. 

Still other test~ for interactions could be conducted since additional cross-product terms could be 
incorporated into the regression Illodel. However. this would not be desirable here since the number 
of degrees of freedom available for estimating the error variance cr1 is already very small. • 
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20.1. Johnson, D. E., and F. A. Graybill. "Estimation of a 2 in a Two-Way Classification Model with 
Interaction," Journal o/the American Statistical Association 67 (1972), pp. 388-94. 

20.1. Suppose that two-factor analysis of variance model (19.23) were to be employed with n = 1 
for each factor level combination. How many degrees of freedom would be associated with 
SSE in (19.37c)? What does this imply? 

*20.2. Coin-operated tenninals. A university computer service conducted an experiment in which 
one coin-operated computer graphics terminal was placed at each of four different locations 
on the campus last semester during the midterm week and again during the final week of 
classes. The data that follow show the number of hours each terminal was not in use during 
the week at the four locations (factor A) and for the two different weeks (factor B). 

Factor B (week) 

Factor A j = 1 j=2 
(location) Midterm Final 

i = 1 16.5 21.4 
i=2 11.8 17.3 
i= 3 12.3 16.9 
i=4 16.6 21.0 

Assume that no-interaction ANOVA model (20.1) is appropriate. 

a. Plot the data in the format of Figure 20.1. Does it appear that interaction effects are present? 
Does it appear that factor A and factor B main effects are present? Discuss. 

b. Conduct separate tests for location and week main effects. In each test, use level of sig­
nificance 01 = .05 and state the alternatives, decision rule, and conclusion. Give an upper 
bound for the family level of significance; use the Kimball inequality (19.53). What is the 
P-value for each test? 

c. Make all pairwise comparisons among location means and estimate the difference between 
the means for the two weeks; use the Bonferroni procedure with a 90 percent family 
confidence coefficient. State your findings. 

*20.3. Refer to Coin-operated terminals Problem 20.2. It is desired to estimate /1-32' 

a Obtain a point estimate Of./1-32 using (20.5). 

b. Obtain the estimated variance of il32 by fitting the eqUivalent regression modeL 

c. Construct a 95 percent confidence interval for /1-32' Interpret your interval estimate. Is your 
interval estimate applicable if next year two graphics terminals will be placed at location 
3? Explain. 

*20.4. Refer to Coin-operated terminals Problem 20.2. Conduct the Thkey test for additivity; use 
01 = .025. State the alternatives, decision rule, and conclusion. If the additive model is not 
appropriate, what might you do? 

20.5. Brainstorming. A researcher investigated whether brainstorming is more effective for larger 
groups than for smaller ones by setting up four groups of agribusiness executives, the group 
sizes being two, three, four, ,and five, respectively. He also set up four groups of agribusiness 
SCientists, the group sizes being the same as for the agribusiness executives. The researcher 
gave each group the same problem: "How can Canada increase the valll,£ -of its agricultural 
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exponsT' Each group was nllowed 30 minutes to generate ideas. The varinble of intCl' 
the number or ditferent idcas proposed by the group. The results. classified by type o~twas 
(factor A) und size of group (factor B). were: grOUp 

Factor B (size of group) 

Factor A j = 1 j=2 -j=3 i==4 
(type of group) Two Three Four Five 

i= 1 Agribusiness executives 18 22 31 32 
i=2 Agribusiness scientists 15 23 29 33 

Assume th'lt no-interaction ANOVA model (20.1) is nppropriate. 

a. Plot the data in the fonnut of Figure 20.1. Does it appear th'lt interaction effects are present? 
Does it appear that factor A and factor B main etfects are present'! Discuss. 

b. Conduct separate tests for type of group and size of group main effects. In each test, use 
level of significance ex = .0 I and state the alternatives. decision rule, and conclusion. Give 
an upper bound for the family level of significance: use the Kimball inequality (19.53). 
What is the P-value for each test? 

c. Obtain confidence intervals for DI = 1.1.2 - 1.1. I, D2 = 1.1..~ - fJ-·2, and D3 = fL·4 - fL.]; 

use the Bonferroni procedure with a 95 percent family confidence coefficient State your 
findings. 

d. Is the Bonferroni procedure used in pan (c) the most efficient one here? Explain. 

20.6. Refer to Brainstorming Problem 20.5. It is desired to estimate 1.11~. 

a. Obtain a point estimate of 1.11~ using (20.S). 

b. Obtain the estimated variance of fll~ by fitting the equivalent regression model. 

c. Construct a 99 percent confidence interval for 1.11~' Interpret your interval estimate. Is your 
interval estimate applicable if the two factors interact? 

20.7. Refer to Brainstorming Problem 20.S. Conduct the Tukey test for additivity: use a = .01. 
State the alternatives. decision rule. and conclusion. [I' the additive model i~ not appropriate, 
whM might you do? 

20.8. Soybean sausage. A food technologist, testing storage capabilities for a newly developed 
type of imitation sausage made from soybeans, conducted an experiment to test the effects 
of humidity level (factor A) and temperature level (factor B) in the freezer compt1l'tmenr on 
color change in the sausage. Three humidity levels and four temperature levels were consid­
ered. Five hundred sausages were stored at each of the 12 humidity-temperature combinations 
for 90 days. At the end of the storage period, the researcher determined the pr(Jportion of 
sausages for each humidity-temperature combination that exhibited color chanb>es. The re­
searcher transformed the data by means of the arcsine transformation (18.24) to stabilize the 
variances. The transformed duta Y' = 2 arcsin JY follow. 

Factor A 
Factor B (temperature level) 

(humidity level) i = 1 i=2 j=3 i=4 

i = 1 13.9 14.2 20.5 24.8 
i=2 15.7 16.3 21.7 23.6 
i=3 15.1 15.4 19.9 26.1 
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Assume that no-interaction ANOVA model (20.1) is appropriate. 

a. Plot the data in the format of Figure 20.1. Does it appear that interaction effects are present? 
Does it appear that factor A and factor B main effects are present? Discuss. 

b. Conduct separate tests for humidity and temperature main effects. In each test, use level 
of significance 01 = .025 and state the alternatives, decision rule, and conclusion. What 
is the P-vaIue for each test? 

c. Obtain confidence intervals for Dl = /1-.2 - /1-.\, D2 = /1-·3 - /1-.2, and D3 = /1-'4 - /1-·3; 
use the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings. 

d. Is the Bonferroni procedure used in part (c) the most efficient one here? Explain. 

20.9. Refer to Soybean sausage Problem 20.8. It is desired to estimate /1-23, 

a. Obtain a point estimate of /1-23 using (20.5). 

b. Obtain the estimated variance of jl23 by fitting the equivalent regression model. 

c. Construct a 98 percent confidence interval for /1-23 and transform it back to the original 
units. Interpret your interval estimate. Is your interval estimate applicable if the two factors 
interact? 

20.10. Refer to Soybean sausage I'foblem 20.8. Conduct the Tukey test for additivity; use 01 = .005. 
State the alternatives, decision rule, and conclusion. If the additive model is not appropriate, 
what might you do? 

20.11. Modify formulas (l9.39a) and (l9.39b) to apply to ANOVA model (20.1), where n = 1. 

20.12. Show that (20.7) is the only second-degree polynomial function of OIi and fJj such that 
L/OIfJ)ij = Lj(OIfJ)ij = O. 

20.13. Refer to Soybean sausage Problem 20.8. Assume that the humidity levels and temperature 
levels employed are equally spaced-that is, actual humidity increases linearly with i, and 
actual temperature increases linearly with j so that i and j are coded levels of humidity and 
temperature. Use techniques discussed in Chapter 8 to develop a polynomial regression model 
to predict the transformed percentage of sausages exhibiting color change as a function of 
coded humidity and temperature levels. Your model should consider, at most, second-order 
terms in coded humidity level, and third-order terms in coded temperature level. What does 
your model suggest concerning the presence or absence of interactions? Use appropriate 
graphics to summarize your fitted regres.sion model. 

.. 
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21.1 

Randolllized COlllplete 
Block Designs 

In Chapter 15, we introduced the concept of blocking. We noted there that when the available 
experimental units are not homogeneous, grouping the experimental units into blocks of 
homogeneous units will reduce the experimental error variance and also increase therang~ 
of validity for inferences about the treatment effects. 

In this chapter, we shall take up the design and analysis of randomized complete block 
experiments in detail. We discuss when and how to conduct a randomized complete block 
design, the analysis of a I"<mdomized complete block design, and planning of sample sm; 
for blocked experiments. 

For complete block designs, each block consists of one complete replication of the s~ 
of treatments. When the number of experimental units available in a block is less than the' 
number of treatments, incomplete block designs may at times be useful. We shall conside~ 
incomplete block designs in Chapters 28 and 29. 

Elenlellts oJ RandOlUized COlIlplete Block Designs 

Description of Designs 

892 

In a ralldol1li-;,ed complete block design, the experimental units are first sorted into homoge­
neous groups, called blocks, and all treatment combinations are then assigned at random t~ 
experimental units within the blocks. Note that this requires a series of separate, restricted 
randomizations-one for each block. In effect, separate experiments are conducted within 
each block, which leads to greater homogeneity of experimental units. reduced experimental 
error. and more precise estimates of treatment effects. We illustrate the use of randomized 
block designs by considering three examples. 

I. In an experiment on the effects of four levels of newspaper advel1ising saturation on 
sales volume, the experimental unit is a city, and 16 cities are available for the study. Size 
of city usually is highly correlated with the response variable, sales volume. Hence, ~ is 
desirable to block the 16 cities into four groups of four cities each, according to populatIOn 
size. Thus. the four largest cities will constitute block I, and so on. Within each block, the 
four treatments are then assigned at random to the four cities, and the four randomizations, 
one for each block, are conducted independently. 
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2. In an experiment on the effects of three different incentive pay schemes on employee 
productivity of electronic assemblies, the experimental unit is an employee, and 30 em­
ployees are available for the study. Since productivity here is highly correlated with manual 
dexterity, it is desirable to block the 30 employees into 10 groups of three according to their 
manual dexterity. Thus, the three employees with the highest manual dexterity ratings are 
grouped into one block, and so on for the other employees. Within each block, the three 
incentive pay schemes are then assigned randomly to the three employees. 

3. A chemist is studying the reaction rate of five chemical agents. Only five agents can 
be analyzed effectively per day. Since day-to-day differences may affect the reaction rate, 
each day is used as a block, and all five chemical agents are tested each day in independently 
randomized orders. 

As these examples imply, the key objective in blocking the experimental units is to make 
them as homogeneous as possible within blocks with respect to the response variable under 
study, and to make the different blocks as heterogeneous as possible with respect to the 
response variable. As noted earlier, the design in which each treatment is included once in 
each block is called a randomized complete block design. Often, we shall drop the term 
"complete" because the context makes it clear that all treatments are included in each block. 

Comments 

l. In a complete block design, each block constitutes a replication of the experiment. For that 
reason, it is highly desirable that the experimental units within a block be processed together whenever 
this will help to reduce experimental error variability. As an example, an experimenter may tend to 
make changes in experimental techniques over time (e.g., in the administration of the experiment to 
subjects) without being aware of it. Consecutive processing of the experimental units block by block 
will tend to exclude such sources of variation from the within-blocks analysis and thereby make the 
experimental results more precise. 

2. In factorial experiments, some of the factors of interest may be characteristics of the experi­
mental units, such as gender, age, and amount of experience on the job. Even though these factors 
are not introduced to reduce experimental error variability but rather are included for their intrinsic 
interest, we shall nevertheless consider such experiments to be randomized block designs because the 
randomization of the experimental factors to the experimental units is restricted by the nature of the 
observational factors considered. • 

btiteria for Blocking 
As noted earlier, the purpose of blocking is to sort experimental units into groups within each 
of which the elements are homogeneous with respect to the response variable, such that the 
differences between groups are as great as possible. To help recognize some of the character­
is tics of experimental units that are useful criteria for blocking, we need a precise definition 
of an experimental unit. Any aspect of the experimental setting that changes from treatment 
application to treatment application--excluding the treatment changes themselves-is a 
characteristic of the experimental unit. For example, suppose the treatment in a taste-testing 
experiment consists of a vegetable containing a particular additive. The experimental unit 
might then be defined as a homemaker of a given age, evaluated by a given observer on a 
specified day at a particular time, and served food from a given batch of cooked vegetable. 
Still other elements of the experimental setting might be included in the definition of the 
experimental unit, and should be if they contribute to variability in the responses. 
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A full definition of the experimental unit such as the one just given suggests two 
t· b k· .. types o loc mg cntena: 

I. Characteristics associated with the unit-for persons: gender, age, income, intellig 
~ducation, job experience, attitudes, etc.; for geographic areas: population size, av::~ 
lI1come, etc. 

2. Characteristics associatecl with the experimental setting-observer, time of processin 
h· b h t·· .. g, mac me, atc 0 matenal, measurIng mstrument, etc. 

Use of time as a blocking vmiable frequently captures a number of different sources of 
variability, such as learning by observer, changes in equipment, and drifts in environmental 
condition~ (e.g., weather). Blocking by observers often eliminates a sub:;tantial amount 
of interobserver variability; similarly, blocking by batches of material frequently is very 
effective. There is no need to use only a single blocking criterion: several may be employed 
if the experimental error can be further reduced by doing so. 

The design of an effective randomized block experiment requires the ability to "lliticipate 
potential sources of variation-the blocking variables-in advance of experimentation. 
These variables are then held constant within blocks as the experiment is conducted in order 
to reduce the experimental error variability. Often, past experience in the subject matter field 
enables the experimenter to select good blocking variables. If some experiments have been 
run in the past in which blocking h<L~ been employed, these results can be analyzed to 
determine the effectiveness of the blocking variables. In the absence of any information 
on the effectiveness of potential blocking variables, uniformity trials can be run where all 
experimental units are assigned the same treatment. From these hials, information can be 
obtained on the effectiveness of different blocking variables. 

Comment 

As noted in Chapter IS, when subjects are used as a blocking variable, the resulting design is sometimes 
called a repc[lted mC{{surcs desigll. Since these designs involve some special problems, we will discuss 
them separately in Chapter 27. • 

Advantages and Disadvantages 
The advantages of a randomized complete block design are: 

I. It can. with effective grouping, provide substantially more precise result~ than a com-
pletely randomized design of comparable size. • 

2. It can accommodate any number of treatments and replications. 
3. Different treatments need not have equal sample sizes. For instance, if the control is to 

have twice as large a sample size as each of three treatments, blocks of size five would 
be used; three units in a block are then assigned at random to the three treatments and 
two to the control. 

4. The statistical analysis is relatively simple. 
5. If an entire treatment or a block needs to be dropped from the analysis for some reason, 

such as spoiled results, the analysis is not complicated thereby. 
6. Variability in experimental units can be deliberately introduced to widen tile range of 

validity of the experimental results withoul sacrificing the precision of me results. 
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Disadvantages include: 

1. 
2. 

3. 

4 . 

If observations ~e missing within a block, a more complex analysis is required. 
The degrees of freedom for experimental error are not as large as with a completely 
randomized design. One degree of freedom is lost for each block after the first. 
More assumptions are required for the model (e.g., no interactions between treatments 
and blocks, constant variance from block to block) than for a completely randomized 
design modeL 
Because the blocking .variable is an observational factor and not an experimental factor, 
cause-and-effect inferences concerning the relationship between the blocking variable 
and the response variable is problematic. This is not a serious disadvantage, because 
investigators usually are not concerned with estimating or making inference about block 
effects. Blocking is primarily a device for reducing experimental variation and thereby 
increasing the precision of the estimates of the treatment effects. 

liow to Randomize 

Illustration 

FIGURE 21.1 
1:AIYout for 
~andomized 
Complete 
Block 
Design_Risk 
~remium 
Example. 

The randomization procedure for a randomized block design is straightforward. Within 
each block a random permutation is used to assign treatments to experimental units, just as 
in a completely randomized design. Independent permutations are selected for the several 
blocks. 

In an experiment on decision making, executives were exposed to one of three methods of 
quantifying the maximum risk premium they would be willing to pay to avoid uncertainty 
in a business decision. The three methods are the utility method, the worry method, and the 
comparison method. After using the assigned method, the subjects were asked to state their 
degree of confidence in the method of quantifying the risk premium on a scale from 0 (no 
confidence) to 20 (highest confidence). 

Fifteen subjects were used in the study. They were grouped into five blocks of three 
executives, according to age. Block 1 contained the three oldest executives, and so on. 
The design layout, after five independent random permutations of three were employed, is 
shown in Figure 21.1. Table 21.1 contains the results of the experiment, and Figure 21.2 

Experimental Unit 

,2 3 

Block 1 (oldest executives) C W U 

2 C U W 

3 U W C 

4 W U C C : Comparison method 
W: Worry method 

5 (youngest executives) W C U U : Utility method 
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TABLE 21.1 
Data on 
Confidence 
Ratings 
(ratings on 
scale from 0 
to 20)-Risk 
Premium 
Example. 

FIGURE 21.2 
Plot of 
Confidence 
Ratings by 
Blocks-Risk 
Premium 
Example. 

Multi-Factor Studies 

Block 
Methpd (j) 

Utility Worry Comparison 

1 (oldest) 1 5 8 
2 2 8 14 
3 7 9 16 
4 6 13 18 
5 (youngest) 12 14 17 

Average 5.6 9.8 14.6 

iii 
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10.7 
12.3 
14.3 

10.0 

presents graphically the confidence ratings for each method by block. It appears from fig­
ure 21.2 that there is much variation between blocks, but that in all blocks the comparison 
method has the highest confidence rating and the utility method the lowest. It also appears 
that there are no important interaction effects between blocks and treatments on the re­
sponses; the response curves do not seem to deviate too much from being parallel. We 
discuss next a widely used model for randomized complete block designs and the anal­
ysis of variance for this model before undertaking a formal analysis of the results in our 
example. 
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2tJ5:2 Moder for Randomized Complete Block Designs 
--~ .~ ·r~· 

Table 21.1 is similar in appearance to Table 20.2a, which shows the data for a two-factor 
study with one observation in each cell. In fact, a randomized complete block design may 
be viewed as corresponding to a two-factor study (blocks and treatments are the factors), 
with one observation in each cell. As we noted in Section 20.1, the assumption of no 
interactions between the two factors permits an analysis of factor effects when there is only 
one observation in each cell and the factors have fixed effects. 

The model for a randomized complete block design containing the assumption of no 
interaction effects, when both the block and treatment effects are fixed and there are nb 
blocks (replications) and r treatments, is as follows: 

Yij = f.J., •• + Pi + Lj + eij 

where: 

f.J.,.. is a constant 

Pi are constants for the block (row) effects, subject to the restriction E Pi = 0 

Lj are constants for the treatment effects, subject to the restriction E Lj = 0 

eij are independent N (0, (J2) 

i = 1, ... , nb; j ~ 1, ... ,r 

(21.1) 

The responses Yij with randomized block model (21. 1) are independent and normally 
distributed, with mean: 

E{Yij } = f.J., •• + Pi + Lj (21.2a) 

and constant variance: 

(21.2b) 

Randomized block model (21.1) is identical to the two-factor, no-interaction model 
(20.1), except that we now use Pi for the block effect, Lj for the treatment effect, and nb to 
designate the total number of blocks. Note that Yi} here stands for the response for the jth 
treatment in the ith block. 

Comments 
1. When the experimental units are grouped according to specified categories, such as into partic­

ular age groups, income groups, and order-of-processing groups, the block effects Pi are usually con­
sidered to be fixed. Sometimes the block effects are viewed as random. For instance, when observers 
or subjects are used as blocks, the particular observers or subjects in the study may be considered 
to be a sample from a popUlation of observers or subjects. The case of random block effects will be 
taken up in Chapter 25. 

2. If the treatment effects are random, the only changes in model (21.1) are that the Lj now 
represent independent normal variables with expectation zero and variance a;, and that the Lj are 
independent of the Cij. Random treatment effects are also considered in Chapter 25. 

3. The additive model (21.1) implies that the expected values of observations in different blocks 
for the same treatment may difftlr (e.g., older executives may tend to have lower confidence ratings 
for any of the methods of quantifying the risk premium than younger executives), but the t~e1!.tment 
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21.3 

effects (e.g .. how mllch higher the confidence rating for one method is over thaI for another) are th 
same for all blocks. We shall consider the possibility of interactions between blocks and treatm e 
I 'S'27 ents ater III ectlOn I.. • 

Analvsi::; of Variau('.c alHl Tc~ts 
.' 

Fitting of Randomized Complete Block Model 
The least squares and maximum likelihood estimators of the parameters in randomized block 
model C21.1) are obtained in the customary fashion and again are the same. Employing OUr 
usual notation, they are: 

Parameter 

fJ- .. 

Pi 

The fitted values therefore are: 

Estimator 

p .. = Y. 
Pi = Y;. - Y.. 

Tj = Y.j - Y.. 

Yi; = Y.. + CY;. - Y.) + (Yj - Y..) = Y;. + Yj - Y.. 

and the residuals are: 

Analysis of Variance 

(21.3a) 

(21.3b) 

(21.3c) 

(21.4) 

(21.5) 

The analysis of variance for a randomized complete block design is identical to that for a 
two-factor, no-interaction model with one observation per cell, as described in Section 20.1: 

SSBL = r LCY;, - y")2 

SSBL.TR = L LCY;; - ri . - Yj + y")2 = L Le?j 
j 

(21.6a) 

(21.6b) 

(21.6c) 

Here, SSBL denotes the slim (~fsqllaresfor blocks, SSTR denotes, as usual, the treatment 
sum of squares, and SSBL. TR denotes the interaction .1'11171 (~f squares between blocks and 
treatments [note from C21.5) that this sum of squares here is the same as the sum of the 
squared residuals I: nll> is the total number of experimental units in the study. 

A summary of the analysis of variance, including the expected mean squares for fixed 
treatment effects, is given in Table 21.2. Note that since there are no interaction termS in the 
model, the expected mean squares contain onl y a 2 and, as appropriate, the treatment or bl?ck 
main effects term, Also note from the E {MS} columns in Table 21.2 that the appropnate 
denominator in the F" test statistic for testing treatment effects is the interaction mean 
square, here denoted by MSBL. TR. This is the~same as in Section 20.1 for the two-factor 
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SOiJrce:of 
Variation 55' 

Blocks. SS8L 

Treatments SSTR 

Error SSBLTR 

T,otal SSTO 

Ji 
nb-cJ 

( T-"-l 

(n~"i-l )(r - 1) 
'nbr,-l 

M5 

M$§L, 

M~7'R' 

NiSBI.. 'rR: 

no-interaction model with nb = 1. Hence, to test for treatment effects: 

we use the same test statistic: 

Fixed Treatment Effects 

H"o: all Lj = 0 

H'a: not all Lj equal zero 

F* = _M_ST_'R_ 
MSBL.TR 

and the decision rule for controlling the Type I error at a is: 

If F* .::; F[1 - a; r - 1, (nb - 1)(r - 1)], conclude Ho 

If F* > F[1 - a; r - 1, (nb - l)(r - 1)], conclude Ha 

(21.7a) 

(21.7b) 

(21.7c) 

Table 21.3 contains the analysis of variance for the risk premium example in Table 21.1. 
The calculations are straightforward and were carried out by a computer package. To test 
for treatment effects: 

Ho: L[ = L2 = L3 = 0 

Ha: not all Lj equal zero 

TABLE 21.3 ANOVA Table for Randomized Complete Block Design-Risk 
Premium Example of Table 21.1. 

; SourCe of Variation 

Blocks 
Methods for risk premium specification:· , 

'Error " 

Total' 

55, 
171:3 
202;,8 
2359 

398.0 

, ,:> 

Ms 
42:8 

'19·1\1 
2/j9 
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we use the results in Table 21.3: 

F* = MSTR = IOI.4 = 33.9 
MSBL. TR 2.99 

For level of significance a = .01, we require F(.99; 2,8) = 8.65. Since F* = 33.9 > 8.65 
we conclude Ha , that the mean confidence ratings for the three methods differ. The P-Val~ 
of the test is .000 I. 

Comments 

I. Sometimes one may also wish to conduct a test for block effects: 

HlI:all Pi =0 

H,,: not all Pi equal zero 
(21.8a) 

Usually, however, the treatments are of primary interest, and blocks are chiefly the means for reducing 
the experimental error variability. Table 21.2 indicates that the test for fixed block effects uses the test 
statistic: 

MSBL 
F*= ----

MSBL.TR 

For the risk premium example, this test statistic is: 

F* = 42.8 = 14.3 
2.99 

(21.8b) 

For level of significance a = .01, we require F(.99;4, 8) =7.01. Since F* = 14.3> 7.01. we conclude 
that the mean confidence ratings (averaged over treatments) differ for the various blocks. 

Since blocks con~spond to an observational factor, care needs to be used in interpreting the 
implications of block effects. In our risk premium example, for instance, the block effects might not 
be due to age, even though age was the grouping variable. Education could be the pivotal explanatory 
variable, the effect by age appearing if older executives have less formal education than younger ones. 

2. If only two treatments are investigated in a randomized complete block design, it can be shown 
that the F test fOI~ treatment effects based on test statistic (21 . 7b) is equivalent to the two-sided r test 
for paired observations based on test statistic (A.69). 

3. When the responses Yi i in a randomized complete block design are far from normally distributed 
and transformations of the data are not successful to meet the robustness properties of the srandard 
inference procedures, a nonparametric test of treatment effects may be useful. The nonparametric 
rank F test introduced in Section 18.7 for single-factor studies is easily adapted for use in studies 
based on randomized complete block designs. The r observations in each block are ranked from I 
to r in ascending order and the usual F* test in (21.7b) for testing treatment effects in a randomized 
block design is carried out, but now based on the ranked data. We use F~ to denote the F* test statistic 
when the test is based on the ranked data. 

The rank F test statistic is equivalent to the statistic for the Friedman test, a widely used non­
parametric rank procedure for testing the equality of treatment means in randomized complete block 
designs. The Friedman test is also based on the within-block ranks Ri} of the data. The Friedman test 
statistic is: 

? SSTR + SSBL.TR 
KF = SSTR -:- -----­

n,,(r - I) 

which can be reduced to (when no ties are present): 

x- = R-. ? [ 12 L? 1 
F n"r(r+ I) j ./ 
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Instead of using the F distribution, the Friedman test approximates the distribution of X} when Ho 
holds by the chi-square distribution with r - 1 degrees of freedom, provided that the number of blocks 
is not too small. The decision rule is therefore: 

If X} ::: x2(l - a; r - 1), conclude Ho 

If X} > x2 (l - a; r - 1), conclude H" 

The rank F test statistic FR and the X} test statistic are related as follows: 

* (nb-I)X} 
F R = --''-'---'--'---=-

nb(r-l)-X} 

Evaluation of Appropriateness of Randomized Complete 
Block Model 

• 

The importance of examining the appropriateness of a statistical model for a given set of 
data has been mentioned many times. Since the techniques of examination are similar, we 
shall make only a few· points of special relevance to randomized complete block designs 
here. 

Diagnostic Plots 
Some of the chief ways in which the data may not fit randomized complete block model (21.1) 
are: 

1. Unequal error variability by blocks 
2. Unequal error variability by treatments 
3. Time effects 
4. Block-treatment interactions 

Use of residual plots in connection with points 2 and 3 has been considered in Section 18.1 
with reference to a completely randomized design. The discussion there applies also to the 
residuals of a randomized complete block design, given in (21.5): 

eij = Yij - Yi. - Y.j + Y.. 

We simply add here that if treatments do have unequal error variability in a randomized 
complete block design, the differences between any two treatments can always be estimated 
by working with the differences between the paired observations, Yij - Yij', which are 
unaffected by any unequal treatment variances. 

Unequal error variability by blocks can be studied by aligned residual dot plots for 
each block, as shown in Figure 21.3 for a randomized block study with 10 treatments run 
in three blocks. The residual dot plots in Figure 21.3 are suggestive of increasing error 
variability with increasing block number. If, for instance, the blocks were processed in 
block number order, some modifications in procedures may have taken place leading to 
larger experimental error variability over time. Tests concerning the equality of variances, 
such as those described in Section 18.2, may be employed for a more formal determination, 
provided that the sample sizes are reasonably large so that the residuals can be treated as if 
they were independent. 
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FIGURE 21.3 
Residual Dot 
Plots 
Suggesting 
Unequal Error 
Variances by 
Blocks. 

FIGURE 21.4 
Residual Dot 
Plots 
Suggesting 
B1ock-
Treatment 
Interactions. 
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Interactions between. treatments and blocks are somewhat more difficult to detect from 
residual plots. Figure 21.4 contains the residuals for an experiment with two treatments run 
in four blocks. The reversal in pattern of the residuals is suggestive of an interaction effect 
There are, however, many other possible types of interaction patterns that would appear 
very much different from that in Figure 21.4. 

Another diagnostic plot that may be helpful to detect interaction effects is a plot of the 
residuals eij against the fitted values Yij. A curvilinear pattern of the residuals in such a plot 
often suggests the presence of interaction effects between blocks and treatments. This plot 
also provides information about the constancy of the error variance. 

Still another diagnostic plot for interactions, which is often more effective than a residual 
plot, is a plot of the responses Yij by blocks. Figure 21.2 illustrates this type of plot. A severe 
lack of parallelism in such a plot is a strong indication that blocks and treatments interact 
in their effects on the response. 

We already noted that the plot of responses by block in Figure 21.2 for the risk premium 
example does not exhibit a severe lack of parallelism, thus suggesting that blocks and 
treatments do not interact in any major fashion. Figure 21.5a, which presents a plot ofthe 
residuals against the fitted values, leads to a similar conclusion. There is no strong evidence 
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'FIGURE 21.5 Diagnostic Residual Plots-Risk Premium Example. 

(a) Residual Plot against Y (b) Normal Probability Plot 
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of a curvilinear pattern h,~re. In addition, Figure 21.5a does not indicate the existence of 
substantially unequal error variances. 

Figure 21.5b contains a normal probability plot of the residuals. This plot does not 
suggest any strong departures from a normal error distribution. The coefficient of correlation 
between the ordered residuals and their expected values undernormality is .959 and supports 
this conclusion. Residual dot plots for each treatment and for each block were also prepared 
(they are not shown here). They suggested that the error variances did not differ substantially 
between treatments and between blocks. These results, in addition to a formal test that found 
no interactions between block and treatment effects (to be discussed next), led the analyst 
to conclude that randomized block model (21.1) is appropriate for the data. 

Tukey Test for Additivity 

'Example 

The Tukey test for additivity, discussed in Section 20.2, may be employed for a formal test 
of interaction effects between blocks and treatments for a randomized block design. The 
special interaction sum of squares in (20.9) will be denoted here by SSBL.TR*. 

To test for interaction effects between blocks and treatments in the risk premium example, 
we calculate the special interaction sum of squares in (20.9) as follows, using the data in 
Tables 21.1 and 21.3: 

L L(Y;· - Y..)(Y.j - Y..).Iij = 24.80 

L - - 2 SSBL 171.3 
(.Ii. - Y..) = -- = -- = 57.10 

r 3 

'"' - - 2 SSTR 202.8 
L.)Y.j - Y..) = -- = -- = 40.56 

.. nb 5 

Hence: 

(24.80)2 
SSBL.TR* = = .27 

57.10(40.56) 
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21.5 

Example 

Using the results from Table 21.3, we can now obtain the remainder sum of squares (20.lOa 
for the special interaction model (20.7): ) 

SSRclI1* = SSTO - SSBL - SSTR - SSBL. TR< 

= 398.0 - 171.3 - 202.8 - .27 

= 23.63 

Hence, test statistic (20.11) is: 

SSBL.TR* 
F*= ----

SSRclI1* 

1 

.27 23.63 
=---:-~-=.08 

1 7 

For level of significance a = .05, we need F(.95; I, 7) = 5.59. Since F' = .08 :::: 5.59, We 
conclude that no block-treatment interaction effects are present. The P -value of this test 
is .79. 

Comment 

When interaction effects are present. transformations of the data should be attempled 10 remove at 
least the important interaction effects. The discussion in Section 20.2 is relevant to this point. • 

Analysis of T'reatlnent Effects 

Once the existence of fixed treatment effects has been established through the analysis of 
variance, the analysis of these effects proceeds as described in Chapter 17 for single-factor 
studies. Often, a useful preliminary view of the treatment effects can be obtained from a 
bar-interval plot of the estimated treatment means Yi . The formal analysh of the treatment 
effects usually involves estimation of one or more contrasts of the tfeatment means /Lj, 

where /.1'j is the mean response for treatment j averaged over all blocks. The formulas in 
Chapter 17 for estimating contrasts of the treatment means apply here, with the treatment 
meaI\s now denoted by f.1'J and the estimated treatment means by Yj . The appropriate mean 
square term to be used in the estimated variance of the contrast is MSBL. TR. obtained from 
(21.6c), since it is the denominator of the F* statistic for testing fixed treatment effects. The 
mUltiples for the estimated standard deviation of the contrast are now a~ follows: 

Single comparison 

Tukey procedure (for 
pairwise comparisons) 

Scheffe procedure 

Bonferroni procedure 

t[1 - aj2; (Ilf, - l)(r - I)] 

I 
T = .j2CJ[1 - a;r, (Ilf, - 1)(1' - I)] 

S2 = (I' - I)F[I - a;,. - I, (/1f, - I)(r - I)] 

B = t[1 - aj2g; (11f, - IHr - I)] 

• 
(21.9a) 

(21.9b) 

(21.9c) 

(21.9d) 

The researcher who conducted the risk premium study was satisfied, on the basis of the 
residual analyses and tests, that randomized complete block model (21.1) is appropriate for 
the experiment. To analyze the treatment effects formally, the researcher wished to obtain all 



;0 

Chapter 21 Randomized Complete Block Designs 905 

pairwise comparisons with a 95 percent family confidence coefficient, utilizing the Tukey 
procedure. Using (17.30b), with MSE replaced by MSBL.TR and the results in Table 21.3, 
we obtain: 

s2{i} = MSBL.TR (~ + ~) = 2MSBL.TR = 2(2.99) = 1.20 
nb nb nb 5 

Remember that each estimated treatment mean Yj consists of nb observations (one from 
each of nb blocks). Using (21.9b), we find for a 95 percent family confidence coefficient: 

1 1 
T = .,/2q(.95; 3,8) = .,/2(4.04) = 2.86 

Hence: 

Ts{i} = 2.86.)1.20 = 3.1 

We now obtain for the pairwise comparisons using (17.30) and Table 21.1 for the Yj: 

1.7 = (14.6 - 9.8) - 3.1 ::: f.L.3 - f.L.2 :::. (14.6 - 9.8) + 3.1 = 7.9 

5.9 = (14.6 - 5.6) - 3.1 :::. f.L'3 - f.L'1 ::: (14.6 - 5.6) + 3.1 = 12.1 

1.1 = (9.8 - 5.6) - 3.1 :::. f.L'2 - f.L'1 :::. (9.8 - 5.6) + 3.1 = 7.3 

Here. f.L.l is the mean confidence rating, averaged over ail blocks, for the utility method, 
and fL.2 and f.L.3 are the mean confidence ratings for the worry and comparison methods, 
respectively. 

We conclude, just as Figure 21.2 suggests, that the comparison method has a higher 
mean confidence rating than the worry method, which in tum has a higher mean confidence 
rating than the utility method. The family confidence coefficient of .95 applies to this entire 
set of comparisons. A line plot of the estimated treatment means summarizes the results: 

Utility 

• 
7.5 

Worry 

• 
12.5 

Confidence Rating 

Comparison 

• 

~1.6 Use of More than One Blocking Variable 

Sometimes, a substantial reduction in the experimental error variability can only be obtained 
by utilizing more than one variable for determining blocks. For instance, both age and gender 
might be needed for designating blocks: 

Block 

1 
2 
3 
4 

etc. 

Characteristics of Experimental Units 

Male, aged 20-29 
Female, aged 20-29 
Male, aged 30-39 
Female, aged 30-39 
etc. 
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As another example, both observer and day of treatment application may be helpful 
blocking variables: as 

Block 

1 
2 
3 
4 

etc. 

Characteristics of Experimental Units 

Observer 1, clay 1 
Observer 2, day 1 
Observer 1, day 2 
Observer 2, day 2 
etc. 

Unless the separate effects of each of the blocking variables need to be studied, no new 
problems arise when the blocks are defined by two or more variables. The nh blocks are 
simply treated as ordinary blocks, and the usual block sum of squares is calculated. 

When the effect of each of the blocking variables is to be isolated and the blocks are 
defined in a complete factorial fashion, the analysis simply treats each of the blocking 
variables as a factor and utilizes the methods developed in Chapter 19 for two-t~lctor studies. 
For example, if twelve blocks are used when four observers and three days are employed 
for blocking, the analysis of variance would decompose the 12 - I = 8 degrees of freedom 
for blocks into 4 - I = 3 degrees of freedom for observer main effects, 3 - I = 2 degrees 
of freedom for day main effects, and 3 x 2 = 6 degrees of freedom for observer x day 
interactions. 

A problem thal sometimes arises when two or more blocking variables me to be used is 
the large number of blocks called for. Suppose an experiment is to be conducted where the 
experimental units are stores. In order to reduce the experimental error variability to a rea­
sonable level, it would be desirable to group the stores into six sales volume classes and also 
into six location classes (suburban shopping center, suburban other, etc.). Thirty-six blocks 
result from combining these two blocking variables. If six treatments were to be studied, 
216 stores would be required for the experiment. Often, use of thi5 many stores would be 
much too costly. Latin square design~, to be discussed in Chapter 28, permit in this type of 
study the use of a much smaller number of experimental nnits while still preserving the full 
benefits of error variance reduction by using both blocking variables in six classes each. 

Use of Nlore 1ha11 Ollt' Heplica1e in Each Block 
• 

When block effects are fixed, use of an additive model in the presence of interactions between 
blocks and treatments has the effect of reducing the power of the test and increasing the 
width of interval estimates of treatment effects, thus making the experiment less sensitive. 
In addition, there are occasions when the nature of the interactions between blocks and 
treatments is of interest. It is possible to use a design that permits an interaction term in the 
model even when the block effects are fixed, and that allows the nature of the interaction 
effects to be investigated. This design is called a generalized randomized block design. It is 
the same as a randomized block design except that d experimental units are assigned to each 
treatment within a block. This generalized design increases the size of a block from ( units 
for a randomized block c1esign to £II' units. The increase in block size will often have the 
effect of increasing experimental error variability when the total number of experimental 
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units is fixed. In the social sciences, however, increasing the size of the block moderately 
may cause little loss in efficiency. For instance, having one block of 10 persons aged 20-29 
instead of two blocks of five persons of ages 20-24 and 25-29, respectively, will for many 
types of experiments involve little loss of efficiency. 

As we shall demonstrate by an example, a generalized randomized block design is ana­
lyzed like an ordinary two-factor study where blocks are one factor. Hence, no new problems 
are encountered with a generalized randomized block design in testing for treatment effects 
or in estimating them. In particular, we can now calculate MSE and use it as an estimator 
of the error variance (J2. 

Table 21.4 contains the data for a single-factor experiment in which the effects of distraction 
level (factor A: low distraction, high distraction) on the time required to complete a task 
were studied, using eight men and eight women. Four men were assigned at random to each 
of the r = 2 treatments, and independently four women were assigned at random to each 
treatment. Here gender is the blocking variable. Each block contains eight persons, with four 
randomly assigned to each treatment within the block. The layout in Table 21.4 corresponds 
to the layout in Table 19.7 for a two-factor study; to stress the correspondence, we have 
placed the blocks in columns rather than in rows as usuaL Since blocks and distraction 
levels are considered to be fixed, we utilize the fixed effects two-factor model (19.23), with 
notation modified to fit the present context: 

(21.10) 

where: 

f.J., •• is a constant 

Pi, Tj, are constants subject to the restrictions E Pi = E Tj = 0 

(pT)ij are constants subject to the restrictions that the sums over any subscript are zero 
Cijk are independent N (0, (J2) 

i = 1, ... , nb; j = 1, ... , r; k = 1, ... , d 

We shall refer to model (21.10) as the generalized randomized block model. 

Block (gender) 

Male Female 

low Distraction: 
12 3 
8 9 
7 5 
5 9 

High Distraction: 
14 11 
16 9 
15 10 
13 14 
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FIGURE 21.6 
Portion of SAS 
GLMANOVA 
Output for 
Data in 
Table21.4-
Task 
Completion 
Example 
(nb = 2,r = 2, 
d =4). 

Source DF Sum of Squares Mean Square F Value -Pr>F -Model 3 150.0000000 50.0000000 8.33 0.0029 

-Error 12 72.0000000 6.0000000 

-Corrected Total 15 222.0000000 

R-Square CoeffVar Root MSE yMean 

0.675676 24.49490 2.449490 10.00000 

Source DF Type I SS Mean Square F Value PI'> F 

Distraction 1 121.0000000 121.0000000 20.17 0.0007 

Gender 1 25.0000000 25.0000000 4.17 0.0639 

Dist*Gender 1 4.0000000 4.0000000 0.67 0.4301 

The analysis of variance for generalized randomized block model (21.10) is the ordinary 
two-factor ANOVA of Table 19.8, with slight modifications in notation. The SAS GLM 
procedure was employed to obtain Figure 21.6 for the data in Table 21.4. We know from 
Table 19.8 that all test statistics use MSE in the denominator. These F* statistics are shown 
in Figure 21.6. For 0' = .01, we require F(.99; I, 12) = 9.33 for each of the tests. It 
is evident from the results in Figure 21.6 (see also the P-values given there) that blocks 
(gender) do not interacl with treatments (distraction level) and that high distraction level 
increases the time required to complete the task, compared to the low distraction level. 

21.8 F~ctorial TreatInents 

Randomized complete block designs Can also be used when the treatments have a factorial 
structure. For example, Figure 21.7 displays the layolll for a randomized block design for 
a two-factor study, where each factor has two levels. Because the number of treatments is 
r = ab = 4, the block size here is four. 

When factorial treatments are employed, the ANOVA model can be modified by showing 
the component factor effects in place ofthe treatment effect. For a two-factor study, we have: 

(21.11) 

where the terms in the model have the usual meaning and (j, k) corresponds to the treatment 
mean fJ.-'jk. In the analysis of variance, we proceed as always by decomposing the treatm~t 
sLIm of squares SSTR into sums of squares for the factor main effects and interactions. ThIS 
is shown in Table 21.5 for a two-factor study, the factors having a and b levels, respectively. 
The decomposition is done in the uSLlal fashion, as explained in Section 19.4, Lltilizing the 
relation in (19.39): 

SSTR = SSA + SSB + SSAB 
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A1 A2 

81 82 81 82 

Block 1 I] 11 I] 12 Y121 1]22 

2 Y211 Y212 Y221 Y222 

3 Y311 Y312 Y321 Y322 

Source of 
Variation SS df MS 

Blocks SSBL nb- 1 MSBL 
Treatments SSTR r-1 MSTR 

Factor A SSA a-1 MSA 
Factor B SSB b-1 MSB 
AB interactions SSAB (a-1)(b-1) MSAB 

Error SSBL. TR (nb -l)(r -1) MSBL.TR 

Total ssm nbf- 1 

Note: r = ab 

Formulas (19.39a, b, c) are still appropriate for calculating the component sums of squares, 
remembering that (i, j) subscripts are there used to identify the treatments in terms of 
the factor level combinations. Tests for factor effects are conducted as usual, and no new 
problems are encountered in the estimation of fixed factor effects. 

21.9 Planning Randomized Complete Block Experiments 

The planning of sample sizes for a randomized complete block design is very similar to that 
for a completely randomized design. The needed number of blocks nb may be determined 
either by specifying protection needed against making Type I and Type II errors or by 
specifying precision required for key contrasts ofthe treatment means. With either approach, 
it is necessary to assess in advance the magnitude of the experimental error variance (J2. 

Power Approach 
Power of F Test. The power of the F test for treatment effects for a randomized com­
plete block design involves the same noncentrality parameter as for a completely randomized 
design. Formula (16.88) gives the appropriate measure. Despite the same form of the non­
centrality parameter, the two designs generally lead to different power levels even when 
based on the same sample sizes, for two reasons. First, the experimental ~error variance 
(J2 will differ for the two designs. Second, the degrees of freedom associated with the 
denominator of the F* statistic differ for the two designs. 
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Example 

Use of Table B.12. As when planning the sample size~ for a completely randomized 
design, an easy way to implement the power approach for planning the sample sizes [, 
a randomized complete block design is to use Table 8.12. This table may be used f: 
planning randomized complete block designs provided that the number of treatments and 
blocks are not very small, specifically provided that r(nb - I) ~ 20. If this condition is not 
met, Table 8.1 I must be used iteratively to implement the power approach. 

In the risk premium example, suppose that the number of blocks had not yet been determined 
and the experimenter desired the following risk protections: 

I. Type I error is to be controlled at 0' = .OS. 
2. If any two treatment means differ by three or more rating points, i.e., if the minimum 

range of the treatment means is t:,. = 3, the risk of concluding that there are no treatment 
effects should not exceed f3 = .20. 

The experimenter anticipates that the experimental error standard deviation when ex­
ecutives are grouped by age will be approximately a = 2. Thus, the specifications can be 
summarized as follows: 

r = 3 

f3 = .20 

Using (16.91) we find: 

0' = .05 

1- f3 = .80 

t:,. 3 
- = - = I.S 
a 2 

Entering Table 8.12 for power I - f3 = .80, r = 3, t:,. /a = I.S, and 0' = .05, we find 
I1b = 10. Thus, the experimentef requires approximately 10 blocks of three executives each 
in order to obtain the desired protection against incorrect decisions. 

Estimation Approach 

Example 

For planning the number of blocks n b by means of the estimation approach, we evaluate the 
anticipated standard deviations of key contrasts for different sample sizes until the desired 
precision is attained. Often, a mUltiple comparison procedure will be used for encompassing 
the different estimates under a family confidence coefficient. 

For the risk premium example, all pairwise comparisons are of interest. ;fhe desired width 
of the confidence intervals is ± I.S. The Tukey procedure is to be used with a 95 percent 
family confidence coefficient. A planning value of (J = 2 is reasonable. Using I1b = 10 as 
a starting point, the anticipated variance of any pairwise difference is: 

o 0 o( I I ) 7( I I ) a-{L}=a- -+- =(2)- -+- =.8 
Il,) Il,} 10 10 

ora{L} = .89. Fluther: 

I I I 
T = .j2q[.9S; r, (lib - I)(r - 1)1 = ~q(.9S; 3,18) = .J2(3.61) = 2.55 

Thus, the anticipated half-width of the confidence interval is Ta{L} = 2.SS(.89) = 2.3. 
Since this precision is not adequate, II larger number of blocks should be tried next 
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Continuing this iterative process, we find that nb = 21 blocks are anticipated to meet 
the precision specification. 

Efficiency of Blocking Variable 
Once a randomized complete block experiment has been run, we often wish to estimate 
the efficiency of the blocking variable for guidance in future experimentation. This can be 
done readily. Let al stand for the experimental error variance for the randomized complete 
block design. Up to this point, we have used a 2 for this error variance, but now that we will 
compare two designs we need to be more specific. Let a/~ denote the experimental error 
variance for a completely randomized design. The relative efficiency of blocking, compared 
to a completely randomized design, is then defined as follows: 

(21.12) 

The measure E indicates how much larger the replications need be with a completely 
randomized design as compared to a randomized complete block design in order that the 
variance of any estimated treatment contrast be the same for the two designs. 

We know that for the randomized block design, MSBL. TR is an unbiased estimator of 
al. The question is how to estimate a} from the data for the randomized block design. 
Since the same experimental units are involved in either case and there are assumed to be 
no interactions between treatments and blocks, it can be shown that an unbiased estimator 
of a} is: 

2 (nb - I)MSBL + nb(r - I)MSBL.TR 
s = ----------------~--~-------

r nbr - 1 

Hence, we estimate E as follows: 

S2 
E = r 

MSBL.TR 

(nb - I)MSBL + nb(r - I)MSBL.TR 

(nbr - I)MSBL.TR 

(21.13) 

(21.14) 

Since the number of degrees of freedom for experimental error for a randomized block 
design is not as great as for a completely randomized design, E overstates the efficiency a 
little because it considers only the error variances. Several modified measures of efficiency 
have been suggested to take this overstatement into account. Unless the degrees offreedom 
for experimental error with both designs are very small, these modifications have little 
effect. One frequently used modification, applicable for assessing any design relative to 
another, is: 

~I (df2 + 1)(dfl + 3) ~ 
E= E 

(df2 + 3) (dfl + 1) 
(21.15) 

where df I denotes the degrees of freedom for the experimental error in the base design 
(completely randomized design, in our case) and df 2 denotes the degrees of freedom for the 
experimental error in the design whose efficiency is being assessed (randomized complete 
block design, in our case). ' . 
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Example 

Problems 

MulTi-Factor .\'rudil'.I' 

We shall evaluate the efficiency of blocking by age of executives in the risk pre . 

example. Placing the appropriate results from Table 21.3 in efficiency measure (2U;n) um 
b 

. ,We 
o tam: 

~ 4(42.8) + 5(2)(2.99) 
E = = 4.8 

14(2.99) 

Thus, we would have required almost fi ve times as many replications per treatment with a 

completely randomized design to achieve the same variance of any estimated contrast as is 
obtained with blocking by age. Clearly, blocking by age was highly effective here. 

If we had used modified efficiency measure (21.14), we would have found: 

~I (8+1)(12+3) 
E = (4.8) = 4.5 

(8 + 3)(12 + I) 

This result does not differ greatly from that obtained by using (21.13). 

Comment 

The efficiency measure E in (21.13) equals I if MSBL = MSBL.TR; it is greater than I if MSBL > 
MSBL.TR; and it is less than I if MSBL < MSBL. TR. Since the test statistic for block effects in (21.8b) 
is F* = MSBLj MSBL. TR, it follows that good blocking is achieved when this F" value exceeds 1 by 
a considerable margin. • 

21.1. A student commented in a discussion group: "Random permutations are used to assign treat­
ments to experimental units with a randomized block design just as with a completely ran­
domized design. Hence, there is no basic difference between these two designs." Comment 

21.2. a. What might be some useful blocking variables for an experiment about the effects of 
different price levels on sales of a product, using stores as experimental units? 

b. What might be some useful blocking variables for an experiment about the effect~ of 
different flight crew schedules on the morale of crews, using flight crews as experimental 
units? 

c. What might be some useful blocking variables for an experiment about the effect~ of 
different drugs on the speed of a response to a stimulus. using laboratory animals as 
experimental units? 

21.3. Five treatments are studied in an experiment with a randomized cOI~plete block desib'I1 using 
four blocks. Obtain randomized assignments of treatments to experimental units. 

21.4. Two treatments and a control are studied in an experiment with a randomized block design. Five 
blocks are employed, each containing four experimental units. In each block. each treatment is 
to be assigned to one experimental unit, and the control is to be assigned to two experimental 
units. Obtain randomized assignments of treatments to experimental units. 

*21.5. Auditor training. An accounting firm. prior to introducing in the firm widespread traini~g 
in statistical sampling for aUditing. tested three training methods: (I) study at home WIth 

programmed training materials. (2) training sessions at local offices conducted by local staff, 
and (3) training sessions in Chicago conducted by national staff. Thirty auditors were grouped 
into 10 blocks of three. according to time elapsed since college graduation. and the audit~rs 
in each block were randomly assigned to the three training methods. At the end of the trrun­
ing. each auditor was asked to analyze a complex case involving statistical applications; a 
proficiency measure based on this analysis was obtained for each auditor. The results were 
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(block 1 consists of auditors graduated most recently, block 10 consists of those graduated 
most distantly): 

Block 
Training Method (j) 

Block 
Training Method (j) 

1 2 3 1 2 3 

1 73 81 92 6 73 75 86 
2 76 78 89 7 68 72 88 
3 75 76 87 8 64 74 82 
4 74 77 90 9 65 73 81 
5 76 71 88 10 62 69 78 

a. Why do you think the blocking variable "time elapsed since college graduation" was 
employed? 

b. Obtain the residuals for randomized block model (21.1) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What are your findings? 

c. Plot the responses Yij by blocks in the format of Figure 21.2. What does this plot suggest 
about the appropriateness of the no-interaction assumption here? 

d. Conduct the Tukey test for additivity of block and treatment effects; use ex = .01. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

*21.6. Refer to Auditor training Problem 21.5. Assume that randomized block model (21.1) is 
appropriate. 

a. Obtain the analysis of variance table. 

b. Prepare a bar graph of the estimated treatment means. Does it appear that the treatment 
means differ substantially here? 

c. Test whether or not the mean proficiency is the same for the three training methods. Use 
level of significance ex = .05. State the alternatives, decision rule, and conclusion. What 
is the P-value of the test? 

d. Make all pairwise comparisons between the training method means; use the Tukey proce­
dure with a 90 percent family confidence coefficient. State your findings. 

e. Test whether or not blocking effects are present; use ex = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

21.7. Fat in diets. A researcher studied the effects of three experimental diets with varying fat 
contents on the total lipid (fat) level in plasma. Total lipid level is a widely used predic­
tor of coronary heart disease. Fifteen male subjects who were within 20 percent of their 
ideal body weight were grouped into five blocks according to age. Within each block, the 
three experimental diets were rrmdomly assigned to the three subjects. Data on reduction in 
lipid level (i~ grams per liter) after the subjects were on the diet for a fixed period of time 
follow. 

Block 

1 
2 
3 
4 
5 

Ages 15--24 
Ages 25--34 
Ages 35-44 
Ages 45-54 
Ages 55-64 

Fat Content of Diet 

j=l 
Extremely Low 

.73 

.86 

.94 
1.40 
1.62 

j=2 
Fairly Low 

.67 

.75 

.81 
1.32 
1.41 

j=3 
Moderately Low 

.15 

.21 

.26 
~ )5 

.78 
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u. Why do you think [hat agc of subject was used as a blocking variable? 

b. Obtain the residuals for randomized block model (21.1) and plot them 
fitted values. Also prepare a normal probability plot of the residuals. 

against the 
What are your 

findings? 

c. Plot the responses Yij by blocks in the format or Figure 21.2. What does this plot Sli 

b I . f' I .. . I ) . ggest a out t le appropnateness 0 t le no-mteracUon assumptIon lere·. 

d. Conduct the Tukey test for additivity of block and treatment effects; use ex == .01. Stateth 
alternatives, decision rule, and conclusion. What is the P-value of the test? e 

21.8. Refer to Fat in diets Problem 21.7. Assume that randomized block model (21.1) is appropriate. 

a. Obtain the analysis of variance table. 

b. Prepare a bar-interval graph ofthe estimated treatment means, using 95 percent confidence 
intervals. Does it appear that the treatment means differ substantially here? 

c. Test whether or not the mean reductions in lipid level differ for the three diets; use 01 == .05. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Estimate L, = 1.1., - 1.1·~ <Ind L1 = 1.1.~ - 1.1'3 using the Bonferroni procedufe with a 
95 percent family confidence coefficient. State your findings. 

e. Test whether ornot blocking effects are present; use ex = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

f. A standard diet was not used in this experiment as a control. What justification do you 
think the experimenters might give for not having a control treatment here for comparative 
purposes'! 

21.9. Dental pain. An anesthesiologist made a comparative study of the effects of acupuncture and 
codeine on postoperative dental pain in male subjects. The four treatments were: (I) placebo 
treatment-a sugar capsule and two inactive acupuncture points (A,B,), (2) codeine treat­
ment only-a codeine capsule and two inactive acupuncture points (A 2 B,), (3) acupuncture 
treatment only-a sugar capsule and two active acupuncture points (A, B~), and (4) codeine 
and acupuncture treatment-a codeine capsule and two active acupuncture points (AzB2)' 

Thilty-two subjects were grouped into eight blocks or four according to an initial evaluation 
of their level of pain tolerance. The subjects in each block were then randomly assib'Iled to 
the four treatments. Pain relief scores were obtained for all subjects two hours after dental 
treatment. Data were collected on a double-blind basis. The data on pain relief scores follow 
(the higher the pain relief score, the more effective the treatment). 

Block 
Treatment (j, k) 

AlB1 A2B1 A1 B2 • A2B2 

1 (Lowest) 0.0 .5 .6 1.2 
2 .3 .6 .7 1.3 

7 1.0 1.8 1.7 2.1 
8 (Highest) 1.2 1.7 1.6 2.4 

a. Why do you think that pain tolerance of the subjects was used as a blocking variable? 

b. Which of the assumptions involved in randomized block model (21.11) are you most 
concerned with here? 

c. Obtain the residuals for randomized block model (21.11) and plot them against the fitted 
values. Also prepare a nonnal probability plot of the residuals. What are your findings? 
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d. Plot the responses Yijk by blocks in the format of Figure 21.2, ignoring the factorial 
structure of the treatments. What does this plot suggest about the appropriateness of the 
no-interaction assumption here? 

e. Conduct the Tukey test for additivity of block and treatment effects, ignoring the factorial 
structure of the treatments; usea = .01. State the alternatives, decision rule, and conclusion. 
What is the P-value of the test? 

21.10. Refer to Dental pain Problem 21.9. Assume that nmdomized block model (21.11) is appro­
priate. 

a. Obtain the analysis of variance table. 

b. Test whether or not the two factors interact; use a = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

c. Prepare separate bar-interval graphs for each set of estimated factor level means using 
95 percent confidence intervals. Does it appear that substantial main effects are present 
here? 

d. Test separately whether main effects are present for each of the factors; use a = .01 for 
each test. State the alternatives, decision rule, and conclusion for each test. What is the 
P-value of each test? 

e. Estimate: 

LI = P,.I. - P,'2' = al - a2 

L2 = fJ.,··1 - P,··2 = fJl - fJ2 

Use the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings. 

f. Test whether ornot blocking effects are presen t; use a = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

21.11. A social scientist, after learning about generalized randomized block designs, asked: "Why 
would anyone use a randomized complete block design that requires the assumption that block 
and treatment effects do not interact when this assumption c"m be avoided with a generalized 
randomized block design?" Comment. 

*21.12. Refer to the task completion example in Table 21.4. 

a. Verify the analysis of variance in Figure 21.6. 

b. Estimate the difference in mean effects for the two motivation levels using a 99 percent 
confidence intervaL 

*21.13. Refer to Auditor training Problem 21.5. The accounting firm repeated the experiment with 
another group of 30 auditors, but this time grouped them into five blocks of six each. In each 
block, each treatment was randomly assigned to two auditors. The results were: 

Block 
Training Method (j) 

Block 
Training Method (j) 

1 2 3 1 2 3 

74 84 91 4 65 73 84 
71 78 95 70 78 87 

2 73 75 93 5 64 71 81 
69 83 98 61 74 74 

3 75 81 89 
67 74 86 ~ . 
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Exercises 

Assume that generalized randomized block model (21.10) is appropriate. 

a. State the generalized randomized block model for this application. 

b. Obtain the analysis of variance table. 

c. Test whether or not the mean proficiency scores for the three training methods differ: 
ex = .0 I. State the alternatives. decision rule. and conclusion. What b the P-value or:: 
test? 

d. Make all pairwise comparisons between the three training methods: use the Ttlkey proc , 
dure with a 95 percent family confidence coefficient. Summarize your findings. e 

e. Obtain the residuals and plot them against the fitted values. Also prepare a nornml proba­
bility plot of the residuals. State your findings. 

f. Test whether or not blocks interact with treatments: use ex = .0 I. State the alternatives 
decision rule. and conclusion. What is the P-value of the test? ' 

*21.14. Refer to Auditor training Problems 21.5 and 21.6. Assume that CJ = 2.5. What is the Power 
of the test for training method effects in Problem 21.6c if /.1.1 = 70. 11'2 = 73, and fl'3 == 76? 

21.15. Refer to Fatin diets Problems 21.7 and 21.8. Assume that CJ = .04. What is the power of the 
test for diet effects in Problem 21.8c if {.l'l = 1.1, {.l.l = 1.0. and 11'3 = .9? 

*21.16. Refer to Auditor training Problem 21.5. Another accounting firm wishes to conduct the 
same experiment with some or its auditors. using the same design and model. How many 
blocks would you recommend that this finn employ if it wishes to make all pairwise treatment 
comparisons with precision ± 1.5 with a 99 percent family confidence coefficient? Assume 
that a reasonable planning value for the en'or standard deviation in model (21.1) is CJ = 2.5. 

21.17. Refer to Fat in diets Problem 21.7. Suppose that the number of blocks to be used in the 
study, to consist of male subjects of similar ages, has not yet been detennined. Assume that a 
reasonable planning value for the error standard deviation in model (21.1) is CJ = .04. 

a. What would be the required number of blocks if it is desired to make all pairwise diet 
comparisons with precision ±.03 with a 95 percent family confidence coefficient? 

b. What would be the required number of blocks if: (I) differences in lipid level reduction 
means for the three diets are to be detected with probability .95 or more when the range of 
the treatment means is .12, and (2) the ex risk is to be controlled at .0 I? 

*21.18. Refer to Auditor training Problems 21.5 and 21.6. According to the estimated efficiency mea­
sure (21.13), how effective was the use of the blocking variable as compared to a completely 
randomized design? 

21.19. Refer to Fat in diets Problems 21.7 and 21.8. According to the estimated efficiency measure 
(21.14). how effective was the use of the blocking variable as compared to a completely 
randomized design? 

21.20. Refer to Dental pain Problems 21.9 and 21.10. According to the estimated efficiency measure 
(21.13). how effective was the use of the blocking variable as compared to a completely 
randomized design? • 

21.21. (Calculus needed.) State the likelihood function for the randomized block fixed effects model 
(21.1) when 11" = 3 and,. = 2. Find the maximum likelihood estimators of the parameters. 

21.22. For randomized block fixed effects model (21.1), derive E {MSTR}. 

21.23. Show that when two treatments are studied in a randomized complete block design. the F' 
test statistic (21. 7b) for treatment effects is equivalent to the square of the Iwo-sided t test 
statistic for paired observations based on (A.69). 

21.24. Show that the two expressions for X} on page 900 are equivalent when no ties are present. 
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Analysis of Covariance 

Analysis of covariance (ANCOVA) is a technique that combines features of analysis of vari­
ance and regression. It can be used for either observational studies or designed experiments. 
The basic idea is to augment the analysis of variance model containing the factor effects 
with one or more additional quantitative variables that are related to the response variable. 
This augmentation is intended to reduce the variance of the error terms in the model, i.e., to 
make the analysis more precise. We considered covariance models briefly in Chapter 8 on 
page 329, and noted there that they are linear models containing both qualitative and quan­
titative predictor variables. Thus, covariance models are just a special type of regression 
model. 

In this chapter, we shall first consider how a covariance model can be more effective than 
an ordinary ANOVA model. Then we shall discuss how to use a single-factor covariance 
model for making inferences. We conclude by taking up analysis of covariance models for 
two-factor studies and some additional considerations for the use of covariance analysis. 

22.1 Basic Ideas 

How Covariance Analysis Reduces Error Variability 
Covariance anal ysis may be helpful in reducing large error term variances that sometimes are 
present in analysis of variance models. Consider a study in which the effects of three different 
films promoting travel in a state are studied. A subject receives an initial questionnaire to 
elicit information about the subject's attitudes toward the state. The subject is then shown 
one of the three five-minute films, and immediately afterwards is questioned about the film, 
about desire to travel in the state, and so on. 

In this type of situation, covariance analysis can be utilized. To see why it might be 
highly effective, consider Figure 22.1a. Here are plotted the desire-to-travel scores, obtained 
after each of the three promotional films was shown to a different group of five subjects. 
Three different symbols are used to distinguish the different treatments. It is evident from 
Figure 22.1a that the error terms, as shown by the scatter around the estimated treatment 
means Yi ., are fairly large, indicating a large error term variance. 

Suppose now that we were to utilize also the subjects' initial attitude scores. We plot in 
Figure 22.1 b the desire-to-travel score (obtained after exposure to the film) against the initial 
attitude score for each of the 15 subjects. Note that the three treatment regression relations 

917 
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FIGURE 22.1 D1ustration of Error Variability Reduction by Covariance Analysis. 

(a) Error Variability with Single-factor Analysis of Variance Model 
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(b) Error Variability with Covariance Analysis Model 
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happen to be linear (this need not be so). Also note that the scatter around the treatm~nt 
regression lines is much less than the scatter in Figure 22.la around the treatment me,elliS Yi·, 

as a result of the desire-to-travel scores being highly linearly related to the initial attitude 
scores. The relatively large scatter in Figure 22.la reflects the large err9r tenn variability 
that would be encountered with an analysis of variance model for this single-factor study. 
The smaller scatter in Figure 22.1 b reflects the smaller error tenn variability that would be 
involved in an analysis of covariance model. 

Covariance analysis, it is thus seen, utilizes the relationship between the response variable 
(desire-to-travel score, in our example) and one or more quantitative variables for which 
observations are available (prestudy attitude score, in our example) in order to reduce the 
error tenn variability and make the study a more powerful one for comparing treatment 
effects. 
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(omitant Variables 
In covariance analysis terminology, each quantitative variable added to the ANOVA model is 
called a concomitant variable. We already encountered concomitant variables in Chapter 9, 
though not by that name. We mentioned in Chapter 9 that supplemental or uncontrolled 
variables are sometimes used in regression models for controlled experiments to reduce the 
variance of the experimental error terms. We also noted in that chapter that control variables 
may be added to the regression model in confirmatory observational studies to reflect the 
effects of previously identified explanatory variables as the effects of the new, primary 
explanatory variables on the response variable are being tested. Both the supplemental or 
uncontrolled variables in a controlled experiment and the control variables in a confirmatory 
observational study are concomitan t variables that are added to the model primarily to reduce 
the variance of the error terms. Concomitant variables are sometimes also called covariates. 

Choice of Concomitant Variables. The choice of concomitant variables is an important 
one. If such variables have no relation to the response variable, nothing is to be gained 
by covariance analysis, and one might as well use a simpler analysis of variance model. 
Concomitant variables frequently used with human subjects include prestudy attitudes, age, 
socioeconomic status, and aptitude. When retail stores are used as study units, concomitant 
variables might be last period's sales or number of employees. 

Concomitant Variables Unaffected by Treatments. For a clear interpretation of the 
results, a concomitant variable should be observed before the study; or if observed during 
the study, it should not be influenced by the treatments in any way. A prestudy attitude 
score meets this requirement. Also, if a subject's age is ascertained during the study, it 
would be reasonable in many instances to expect that the information about age provided 
by the subject will not be affected by the treatment. The reason for this requirement can be 
seen readily from the following example. A company was conducting a training school for 
engineers to teach them accounting and budgeting principles. Two teaching methods were 
used, and engineers were assigned at random to one of the two. At the end of the program, a 
score was obtained for each engineer reflecting the amount oflearning. The analyst decided 
to use as a concomitant variable in covariance analysis the amount of time devoted to study 
(which the engineers were required to record). After conducting the analysis of covariance, 
the analyst found that trab1ing method had virtually no effect. The analyst was baffled by 
this finding until it was pointed out that the amount of study time probably was also affected 
by the treatments, and analysis indeed confirmed this. One of the training methods involved 
computer-assisted learning which appealed to the engineers so that they spent more time 
studying and also learned more. In other words, both the learning score and the amount of 
study time were influenced by the treatment in this case. As a result of the high correlation 
between the amount of study time and the learning score, the marginal treatment effect of 
the teaching methods on amount of learning was small and the test for treatment effects 
showed no significant difference between the two teaching methods. 

Whenever a concomitant variable is affected by the treatments, covariance analysis will 
fail to show some (or much) of the effects that the treatments had on the response variable, 
so that an uncritical analysis may be badly misleading. 

A symbolic scatter plot can provide evidence as to whether the concomitant variable is 
affected by the treatments. Figure 22.2 shows a scatter plot of learning score and amount of 
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FIGURE 22.2 Y 
Illustration of 
Treatments 
Mfecting the 
Concomitant 
Variable-
Engineer 
Training 
Example. 
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study ti me for the engineer training example. Treatment I is the one using computer-assisted 
learning. Note thal most persons with this treatment devoted large amounts of time to study. 
On the other hand. persons receiving treatment 2 tended to devote smaller amounts of time 
to study. As a result, the observations for the lwo treatments tend to be concentrated oVer 
different intervals on the X scale. 

Contrast this situation wilh the one seen in Figure 22.1 b for the study on promotional 
films. Figure 22.1 b illustrates how the concomitant variable observations should be scattered 
in a randomized experiment if the treatments have no effect on the concomitant variable. 
Here, the distribution of subjects along the X scale by prestudy attitude scores is roughly 
similar fOI" all treatments, subject only to chance variation. 

Comment 

Covariance analysis is concerned with quantitative concomitant variables. When qualitative concomi­
tam variables need to be added (e.g .. gender. geographic region). the model remains an analysis of 
variance model where some of the factors are of primary interest and the others represent concomitant 
variables that are included for the purpose of elTor variance reduction. • 

22.2 SingJe-Factor Covariallc(, ]\10<1('1 
( 

The covariance models to be presented in this chapter are applicable to observational studies 
and to experimental studies based on a completely randomized design. In the earlier engineer 
training example, the 24 engineers pm1icipating in the study were randomly assigned to 
the two teaching methods, with 12 engineers assigned to each leaching method. Thus, thiS 
experimental study was based on a completely randomized design. 

The covariance models to be taken up in this chapter are also applicable to observational 
stlluies, such as an investigation of the salary increases of a company's employees in the 
accounting dep~1I1ment by gender. where age is utilized as a concomitant variable. 
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We shall employ the notation for single-factor analysis of variance. The number of cases 
for the ith factor level is denoted by nt, the total number of cases by nT = En/, and the 
jth observation on the response variable for the ith factor level is denoted by Yij. We shall 
initially consider a single-factor covariance model with only one concomitant variable. 
Later we shall take up models with more than one concomitant variable. We shall denote 
the value of the concomitant variable associated with the jth case for the ith factor level 
by Xij. 

D~velopment of Covariance Model 
- The single-factor ANaVA model in terms of fixed factor effects was given in (16.62): 

(22.1) 

The covariance model starts with this ANaVA model and adds another term (or several), 
reflecting the relationship between the response variable and the concomitant variable. 
Usually, a linear relation is utilized as a first approximation: 

Yij = f.J.,. + i/ + Y Xij + Clj (22.2) 

Here y is a regression coefficient for the relation between Y and X. The constant f.J.,. now 
is no longer an overall mean. We can, however, make this constant an overall mean, and 
incidentally simplify some computations, if we center the concomitant variable around the 
overall mean X ... The resulting model is the usual covariance model for a single-factor 
study with fixed factor levels: 

Yij = p,. + i/ + y(Xij - X .. ) + cij 

where: 

f.J.,. is an overall mean 

i/ are the fixed treatment effects subject to the restriction E i/ = ° 
y is a regression coefficient for the relation between Y and X 

Xij are constants 

cij are independent N (0, (J2) 

i = 1, ...• r; j = 1, ... , n/ 

(22.3) 

Covariance model (22.3) corresponds to ANaVA model (22.1) except for the term 
y(Xij - X .. ), which is added to reflect the relationship between Y and X. Note that the 
concomitant observations Xij are assumed to be constants. Since cij is the only random 
variable on the right side of (22.3), it follows at once that: 

E{Y/j } = f.J.,. + i/ + y(Xij - X .. ) 

(J2{Yij} = (J2 

(22.4a) 

(22.4b) 
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In view of the independence of the cij. the Yij are also independent Hence, an altemat-
statement of covariance model (223) is: lYe 

where: 

fJ.,ij = fJ.,. + Li + y(Xij - X .. ) 

ELi=O 

(22.5) 

Properties of Covariance Model 

FIGURE 22.3 
Example of 
Treatment 
Regression 
Lines with 
Covariance 
Model (22.3). 

Some of the properties of covariance model (22.3) are identical to those of ANOVA 
model (22.1). For instance, the error terms cij are independent and have constant variance. 
There are also some new properties, and we discuss these now. 

Comparisons of Treatment Effects. With the analysis of variance model, ail observations 
for the i th treatment have the same mean response; i.e., E {Yij} = fJ.,i for all j. This is not 
so with the covariance model, since the mean response E{Y,'jJ here depends not only on 
the treatment but also on the value of the concomitant variable Xij for the study unit Thus, 
the expected response for the ith treatment with covariance model (223) is given by a 
regression line: 

fJ.,ij = fJ.,. + Li + y(Xij - X .. ) (22.6) 

This regression line indicates, for any value of X, the mean response with treatment i. 
Figure 22.3 illustrates for a study with three treatments how these treatment regression 
lines might appear. Note that fJ.,. + Li is the ordinate of the line for the ith treatment when 

Treatment 3 

Treatment 1 

• 
Treatment 2 

x.. x 

o x-x 
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y 

Treatment 2 

~ 
~----=---:Treatment 1 

x 

x - X .. = 0, that is, when X = X .. , and that y is the slope of each line. Since all treatment 
regression lines have the same slope, they are parallel. 

While we no longer can speak of the mean response with the i th treatment since it varies 
with X, we can still measure the effect of any treatment compared with any other by a 
single number. In Figure 22.3, for instance, treatment I leads to a higher mean response than 
treatment 2 by an amount that is the same no matter what is the value of X. The difference 
between the two mean responses is the same for all values of X because the slopes of the 
regressi~ lines are equal. Hence, we can measure the difference at any convenient X, say, 
atX=X .. : 

(22.7) 

Thus, LI - L2 measures how much higher the mean response is with treatment I than with 
treatment 2 for any value of X. We can compare any other two treatments similarly. It follows 
directly from this discussion that when all treatments have the same mean responses for 
any X (i.e., the treatments· have no differential effects), the treatment regression lines must 
be identical; and hence; LI - L2 = 0, LI - L3 = 0, etc. Indeed, all Li equal zero in that case. 

Constancy of Slopes. The assumption in covariance model (22.3) that all treatment re­
gression lines have the same slope is a crucial one. Without it, the difference between the 
effects of two treatments cannot be summarized by a single number based on the main 
effects, such as L2 - LI. Figure 22.4 illustrates the case of nonparallel slopes for two treat­
ments. Here, treatment I leads to higher mean responses than treatment 2 for smaller values 
of X, and the reverse holds forlarger values of X. When the treatments interact with the con­
comitant variable X, resulting in nonparallel slopes, covariance analysis is not appropriate. 
Instead, separate treatment regression lines need to be estimated and then compared. 

;Generalizations of Covariance Model 
Covariance model (22.3) for single-factor studies can be generalized in several respects. 
We mention briefly three ways in which this model can be generalized. 

Nonconstant Xs. Covariance model (22.3) assumes that the observations Xij on the 
concomitant variable are constants. At times, it might be more reasonable to consider the 
concomitant observations as random variables. In that case, if covariance model (22.3) can 
be interpreted as a conditional one, applying for any X values that might be observed, the 
covariance analysis to be presented is still appropriate. • . 
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Nonlinearity of Relation. The linear relation between Y and X assumed in Cov . 
model (22.3) is not essential to covaJ"iance analy,is. Any other relation could be us:ance 

instance. the model for a quadratic relalion is as follows: . Fot 

Yij = /.1. + Ti + YI (Xii - X .. ) + Y2(X ii - X .. )2 + Fij (22.8) 
Linearity of the relation leads 10 simpler analysis and is often a sufficiently good ap 
.. . I . t' I I I . I' I" prOll-!IllatIOn 10 proVI( e I11CaI1lng u resu ts. t a lI1ear re atlon IS not a good approximati 
however. a more adequate dc);cription of the relation should be utilized in the covar' on, 

mnce 
model. Covariance analysis does !"equire. however. that the treatment response functions be 
parallel; in other words, there must not be any interaction effects between the treatment and 
concomitant variables. 

Several Concomitant Variables. Covariance model (22.3) uses a single concomitant 
variable. This is often sufficient to reduce the error variability substantially. However, the 
model can be extended in a straightforward fashion to include two or more concomitant 
variables. The single-t~lctor covariance model for two concomitant variables, X I and X

2
, to 

the first order is as follows: 

(22.9) 

Regression Formulation of Covariance Model 
An easy way to estimate the parameters of covariance model (22.3) and make inferences 
is through the regression approach. Computational formulas fo!" manual calculation Were 

developed before the advent of computers. making use of the special structure of the X 
matrix for covariance models. Today, however, cllvariance calculations can be carried out 
readily by means of standard regression packages. 

As for the regression formulation of analysis of variance models, we shall employ r -I 
indicator variables taking on the values I. - I. or 0 to represent the r treatments in a 
covariance analysis model: 

if case from treatment I 
if case from treatment r 
otherwise 

if case from treatment r -
if case from treatment r 
otherwise 

(22.10) 

Note thaI we now denote the indicator variables by the symbol I to clearly distinguish 
the treatment effects from the concomitant variable X. • 

In expressing covariance model (22.3) in regression form. we shalL as in the regression 
chapters. denote the centered observations Xu - X .. by xij. Covariance model (22.3) can 
then be expressed as follows: 

Yii = /.1. + Tl/ijl + ... + T,·-l/ij.l"-1 + YXij + Fij (22.11) 

where: 
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Here, I ijl is the value of indicator variable II for the jth case from treatment i, and sim­
ilarly for the other indicator variables. Note that the treatment effects LI, ... , Lr-I are the 
regression coefficients for the indicator variables. 

Now that we have formulated covariance model (22.3) as a regression model, our discus­
sion of regression analysis in previous chapters applies. We therefore consider only briefly 
how to examine the appropriateness of the covariance model and how to make relevant 
inferences before turning to an example to illustrate the procedures. 

propriateness of Covariance Model 
. . Some of the key issues concerning the appropriateness of covariance model (22.3) and the 

equivalent regression model (22.11) deal with: 

1. Normality of error terms. 

2. Equality of error variances for different treatments. 

3. Equality of slopes of the different treatment regression lines. 

4. Linearity of regression relation with concomitant variable. 

5. Uncorrelatedness of error terms. 

The third issue, concerning the equality of the slopes of the different treatment regression 
lines, is particularly important in evaluating the appropriateness of covariance model (22.3). 
The test in Section 8.7 to compare several regression lines is applicable for determining 
whether the condition of equal slopes in the covariance model is met. We shall illustrate 
this test in the example in Section 22.3. 

f,jf~rences of Interest 
The key statistical inferences of interest in covariance analysis are the same as with analysis 
of variance models, namely, whether the treatments have any effects, and if so what these 
effects are. Testing for fixed treatment effects involves the same alternatives as for analysis 
of variance models: 

Ho: LI = L2 = ... = Lr = 0 

Ha: not all Li equal zero 
(22.12) 

As we can see by referring to the equivalent regression model (22.11), this test involves 
testing whether several regression coefficients equal zero. The appropriate test statistic 
therefore is (7.27). 

If the treatment effects are found to differ, the next step usually is to investigate the 
nature of these effects. Pairwise comparisons of treatment effects Li - Li' (the vertical 
distance between the two treatment regression lines) may be of interest, or more general 
contrasts of the Li may be relevant. In either case, linear combinations of the regression 
coefficients LI, ... , Lr-I are to be estimated. 

Occasionally, the nature of the regression relationship between Y and X is of interest, but 
usually the concomitant variable X is only employed in ANCOVA models to help reduce 
the error variability. 

Comment 
In covariance analysis there is usually no concern with whether the regression coefficient y is zero, 
that is, whether there is indeed a regression relation between Y and X. If there is no relation, no bias 
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results in the covariancc an<llysis. The error mcan square would simply be the same <IS forthe, . 
•. ,I I II " I' . - I ,I 1'1- ,I analysIS 01 varJilnce mouc (a oWing lor s<lmp 109 variatIOn). am one uegrcc 0 reeuoll1 Would be lost for th 

error mean squarc. e • 
22.3 Exam )k of Sillgle-Factor Covariallce AIlalvsi::-; 

A company studied the etfects of three different types of promotions on sales of its crackers: 

Treatment I-Sampling of product by customers in store and regular shelf Space 

Treatment 2-Additional shelf space in regular location 

Treatment 3-Special display shelves at ends of aisle in addition to regular shelf space 

Fifteen stores were selected for the study, and a completely randomi7ed experimental design 
was utili7ed. Each store was randomly assigned one of the promotion types, with five stores 
assigned to each type of promotion. Other relevant conditions under the control of the 
company, such as price and advertising, were kept the same for all stores in the study. Data 
on the number of cases of the product sold during the promotional period. denoted by Y, are 
presented in Table 22.1, as are also data on the sale~ of the product in the preceding period, 
denoted by X. Sales in the preceding period are to be used as the concomitant variable. 

Development of Model 

TABLE 22.1 
Data-Cracker 
Promotion 
Example 
(number of 
cases sold). 

Figure 22.5 presents the data of Table 22.1 in the form of a symbolic SCatter plot. Linear 
regression and parallel slopes for the treatment regression lines appear to be reasonable. 
Therefore. the following regression model was tentatively selected: 

where: 

if store received treatment I 
if store received treatment 3 
otherwise 

if store received treatment 2 
if store received treatment 3 
otherwise 

Xu = Xij - X .. 

Treatment 
1 2 

Y/1 Xil Y/2 X/2 

1 38 21 39 26 
2 43 34 38 26 
3 24 23 32 29 

Full model (22.13) 

Store (j) 

3 4 5 

YB X/3 Yt4 Xi4 ViS XiS 

36 22 45 28 33 19 
38 29 27 18 34 25 
31 30 21 16 28 29 
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Table 22.2 repeats a portion of the data on the responses Y and the concomitant variable 
X in columns I and 2. The centered concomitant variable x is presented in column 3 and 
the indicator variables for the treatments in columns 4 and 5. Note that the centering of 
the concomitant variable is around the overall mean x .. = 25. Regressing Y in column I 
of Table 22.2 on x, 11> and h in columns 3-5 by a computer package led to the results 
summarized in Table 22.3. 

Various residual plots were obtruned to examine the appropriateness of regression model 
(22.13). Figure 22.6 contains two of these. Figure 22.6a contains aligned residual dot plots 
for the three treatments. These do not suggest any major differences in the variances of the 
error terms. Figure 22.6b contains a normal probability plot of the residuals, which shows 
some modest departure from linearity. However, the coefficient of correlation between the 
ordered residuals and their expected values under normality is .958, for which Table B.6 
does not suggest any significant departure from normality. The analyst also conducted a test 
to confirm the equality of the slopes of the three treatment regression lines. This test will 
be described shortly. On the basis of these analyses, the analyst concluded that regression 
model (22.13) is appropriate here. 
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TABLE 22.3 
Computer 
Output for 
Covariance 
Model 
(22.13)­
Cracker 
Promotion 
Example. 

Multi-Factor Studies 

Source of 
Variation 

Regression 
Error 

lb1!l1 /" , ~ 

(a) Regression Coefficients 

fl. = 33.800 
-[1 = 6.017 

-[2 = .942 
Y = .899 

(b) Analysis of Variance 

SS df 

SSR = 607.829 3 
SSE = 38.571 11 

ssm = 646.400 14 

MS 

MSR = 202.610 
MSE= 3.506 

(c) Estimated Variance-Covariance Matrix of Regression Coefficients 
!o 

~~~~~: 
-[1 -[2 Y "/-1,. 

fl· 

[T .oJ 
-[1 .5016 
-[2 -.2603 .4882 
Y .0189 -.0147 

FIGURE 22.6 Diagnostic Residual Plots-Cracker Promotion Example. 

(a) Residual Dot Plots (b) Normal Probability Plot 
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Test for Treatment Effects 
To test whether or not the three cracker promotions differ in effectiveness, we can ei 
follow the general linear test approach of fitting full and reduced models and using 
statistic (2.70) or use extra sums of squares and test statistic (7.27). In either case, 
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TABLE 22.4 Regression ANOVA Results for Reduced 
Model (22.15)-Cracker Promotion Example. 

Source of 
Variation SS df 

Regression SSR ~,190:678 1 
Error SSE = 455:724' 13 

Total ssm = 646.400 14 

alternatives are: 

Ho: L[ = L2 =0 

Ha: not both L[ and L2 equal zero 

Note that L3 = -L[ - L2 must equal zero when Ll = L2 = o. 

(22.14) 

We shall conduct the test by means of the general linear test approach. First, we develop 
the reduced model under Ho: 

Reduced model (22.15) 

Model (22.15) is just a simple linear regression model where none of the parameters vary 
for the different treatments. When regressing Y in column 1 of Table 22.2 on x in column 3, 
we obtain the analysis of variance results in Table 22.4. 

We see from Table 22.4 that SSE(R) = 455.722 and from Table 22.3b that SSE(P) = 
38.571. Hence, test statistic (2.70) here is: 

P* = __ S_SE_(-,-R-'-.) _-_S_S_E-'-.( P-C.)_ SSE(P) 

(nT - 2) - [nT - (r + 1)] nT - (r + 1) 

455.722 - 38.571 38.571 
= -:- -- = 59.5 

13-11 11 

The level of significance is to be controlled at a = .05; hence, we need to obtain 
P(.95; 2, 11) = 3.98. The decision rule therefore is: 

If F* :s 3.98, conclude Ho 

If F* > 3.98, conclude Ha 

Since P* = 59.5 > 3.98, we conclude Ha , that the three cracker promotions differ in sales 
effectiveness. The P-value of the test is 0+. 

Comment 

Occasionally, a test whether or not y = 0 is of interest. This is simply the ordinary test whether or 
not a single regression coefficient equals zero. It can be conducted by means of the t* test statistic 
(7.25) or by means of the F* test statistic (7.24). • 
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Estimation of Treatment Effects 
Since treatment etlects were found to be present in the cracker promotion stud th ~ 
next wished to investigate the nature of these effects. We noted earlier that a c~:n e ~naIy~:. 

. I h' I d' b h pansGnOfl two Ueatments mvo ves Ti - Ti', t e veltlca lstance etween t e two treatment .' < 

lines. Using the fact that T.~ = -T, - T1 and (A.30b) for the variance of a linearco:~es~()1i 
of two random variables, we see that the estimators of all pairwise Comparisons a~~~~~ 
variances are ,LS follows: eI):-. 

Comparison Estimator Variance 

T, - T2 1', - 1'1 a 1{1'd + a 1{1'11- 2a{1',. I'll 

T, - T3 = 2T, + T1 21', + 1'2 4a1{1'd + a 1{1'11 + 4o{1'" I'll (22.16) 
T2 - T3 = T, + 2T2 1', + 21'2 a 1{1'd + 4a 1 {1'11 + 4o{1'" I'll 

Table 22.3a furnishes the needed estimated regression coefficients, and Table 22.3c 
provides their estimated variances and covariances. We obtain from there: 

Comparison Estimate Variance 

T, - T1 6.017 - .942 .5016 + .4882 - 2(-.2603) 
= 5.075 = 1.5104 

T, - T3 2(6.017) + .942 4(.5016) + .4882 + 4(-.2603) (22.16a) 
= 12.976 = 1.4534 

T2 - T3 6.017 + 2(.942) .5016 + 4(.4882) + 4(-2.2603) 
= 7.901 = 1.4132 

When a single interval estimate is to be constructed, the t disUibution with I1r - r-I 
degrees of freedom is used. (The degrees of freedom are those associated with MSE in the 
full covariance modeL) Usually, however, a family of interval estimates is desired. In that 
cllse, the Scheffe multiple comparison procedure may be employed with the S multiple 
defined by: 

S1 = (r - I)F(l - 0'; r - 1,111' - r - I) (22.17) 

or the Bonferroni method may be employed with the B multiple: 

B = t(l - 0'/2g; 111' - r - I) (22.18) 

where g is the number of statements in the family. The Tukey method is not appropriate for 
covariance analysis. 

In the case at hand, the analyst wished to obtain all pairwise comparisons with a 95 percent 
family confidence coefficient. The analyst used the Scheffe procedure in anticipation that 
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some additional estimates of contrasts might be desired. We require therefore: 

S2 = (3 - 1)F(.95; 2,11) = 2(3.98) = 7.96 S = 2.82 

Using the results in (22. 16a), the confidence intervals for all pairwise treatment comparisons 
with a 95 percent family confidence coefficient then are: 

1.61 = 5.075 - 2.82,J1.5104 :s L[ - L2:S 5.075 + 2.82,J1.5104 = 8.54 

9.58 = 12.976 - 2.82,J1.4534 :s L[ - L3 :s 12.976 + 2.82,J1.4534 = 16.38 

4.55 = 7.901 - 2.82,J1.4132 :s L2 - L3:S 7.901 + 2.82,J1.4132 = 11.25 

These results indicate clearly that sampling in the store (treatment 1) is significantly better 
for stimulating cracker sales than either of the two shelf promotions, and that increasing 
the regular shelf space (treatment 2) is superior to additional displays at the end of the aisle 
(treatment 3). 

Comments 

1. Occasionally, more general contrasts among treatment effects than pairwise comparisons are 
desired. No new problems arise either in the use of the t distribution for a single contrast or in the 
use of the Scheffe or Bonferroni procedures for multiple comparisons. For instance, if the analyst 
desired in the cracker promotion example to compare the treatment effect for sampling in the store 
(treatmenl 1) with the two treatments involving shelf displays (treatments 2 and 3), the following 
contrast would be of interest: 

(22.19) 

The appropriate estimator is: 

t ~ 1:2 + (-1:[ - 1:2) 3 ~ 
= r[- 2 = 2r [ (22.20) 

The variance of this estimator is by (A.16b): 

(22.21) 

2. Sometimes there is interest in estimating the mean response with the i th treatment for a "typical" 

value of X. Frequently X = X .. is considered to be a "typical" value. We know from Figure 22.3 that 

at X = X .. , the mean response for the i th treatment is the intercept of the treatment regression line, 
p,. + ri. An estimator of p,. + Li can be readily developed. For the cracker promotion example, we 
obtain the following estimators and their variances: 

Mean Response 

at X =X .. Estimator 

jl. +1:[ 

jl. + 1:2 

jl. - 1:[ - 1:2 

Variance 

a 2{jl.} + a 2{1:[} + 2a{jl., 1:[} 

a 2{jl.} + a 2{1:2} + 2a{jl., 1:2} 

a 2{jl.} + a 2{1:[} + a 2{1:2} - 2a{jl., 1:d 
- 2a{jl., 1:2} +2a{1:[' 1:2} 

(22.22) 
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Use or the result~ ill Table 22.3 leads to the rollowing estimates: 

Treatment 

2 

3 

Estimated Mean Response 

at X .. 

33.800 + 6.017 = 39.817 

33.800 + .942 = 34.742 

33.800 - 6.017 - .942 

= 26.841 

----Estimated Variance -­.2338 + .5016 + 2(0) = .7354 

.2338 + 4882 t- 2(0) = .7220 

.2338 + .5016 + .4882 - 2(0) _ 2(0) 

+ 2(-.2603) = .7030 

-
The estimated mean response for treatment i at X = X .. is often called the adjusted estimated 

,,.carll/cl/( /IIcal/. It is said to be "adjusted" bel:ause it takes into account the effect of the concomi_ 
tant variable. A comparison of the tldj usted treatment means leads. of course. to the same pairwise 
comparisons of treatment etrects us berore: for instance. 39.R 17 - 34.742 = 5.075 = TI - T~. • 

Test for Parallel Slopes 
An important assumption in covariance analysis is that all treatment regression lines have 
the same slope y. The anal ySl who conducted the cracker promotion study. indeed, tested 
this assumption before proceeding with the analysis discussed earlier. We know from Chap­
ter 8 that regression model (22.13) can be generalized to allow for differenl slopes for the 
treatments by introducing cross-product interaction terms. Specifically. interaction variables 
II x and hx will be required here. We shall denote the corresponding regression coefficients 
by f31 and f3~. Thus. the generalized model is: 

Generalized model 

(22.23) 

Table 22.2 contains in columns 6 and 7 the interaction variables for this model for the 
c(acker promotion example. Regressing the response variable Y in column I of Table 22.2 
on x. II, 12 , II X, hr in columns 3-7 by means of a computer multiple regression package 
yielded the AN OVA results in Table 22.5. The error sum of squares SSE obtained by fitting 
generalized model (22.23) is the equivalent of fitting separate regressioll lines for each 
treatment and summing these error Slims of squares. 

TABLE 22.5 Regression ANOVA Results for Generalized 
Model (22.23)-Cracker Promotion Example. 

Source of 
Variation 55 df 

Regression SSR = 614.879 5 
Error SSE = 31.521 9 

Total ssm = 646.400 14 
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The test for parallel slopes is equivalent to testing for no interactions in generalized 
model (22.23): 

Ho: f31 = f32 = 0 

Ha: not both f31 and f32 equal zero 
(22.24) 

We need to recognize that generalized model (22.23) now is the "full" model and covariance 
model (22.13) is the "reduced" model. Hence, we have from Tables 22.3b and 22.5: 

SSE(F) = 31.521 SSE(R) = 38.571 

Thus, test statistic (2.70) becomes here: 

F* = 38.571 - 31.521 -:- 31.521 = 1.01 
11-9 9 

For level of significance a = .05, we require F(.95; 2, 9) = 4.26. Since F* = 1.01 :::: 4.26, 
we conclude Ho, that the three treatment regression lines have the same slope. The P-value 
of the test is .40. Hence, the requirement of equal treatment slopes in analysis of covariance 
model (22.13) is met in the cracker promotion example. 

Comments 

1. An indication of th~ effectiveness of the analysis of covariance in reducing error variability can 
be obtained by comparing MSE for covariance analysis with MSE for regular analysis of variance. 
·For the cracker promotion example, we know from Table 22.3 that MSE for the covariance analysis 
i~ 3.51. It can be shown that the error mean square for regular analysis of variance would have been 
26.63. Hence, in this case, covariance analysis was able to reduce the residual variance by about 
87 percent, a substantial reductipn. 

2. Covariance analysis and analysis of variance need not lead to the same conclusions about the 
treatment effects. For instance, analysis of variance might not indicate any treatment effects, whereas 
covariance analysis with a smaller error variance could show significant treatment effects. Ordinarily, 
of course, one should decide in advance which of the two analyses is to be used. • 

22.4 Two-Factor Covariance Analysis 

We have until now considered covariance analysis for single-factor studies with r treatments. 
Covariance analysis can also be employed with two-factor and multifactor studies. We 
illustrate now the use of covariance analysis for two-factor studies with one concomitant 
variable. For notational simplicity, we consider the case where the treatment sample size 
is the same for all treatments. However, the regression approach to covariance analysis is 
general and applies directly when the study is unbalanced, with unequal treatment sample 
sizes. 

Covariance Model for Two-Factor Studies 
The fixed effects ANOVA model for a two-factor balanced study was given in (19.23): 

i = 1, ... ,a; j = 1, ... , b; k = 1, ... , n 

(22.25) 
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where ai is the main effecl offactor A at the ith level, {3j is the main effect of facto ' 
!th level,. and (a{3)ij is the i~teraction eft~ct when t~ICtO[" A is at t~e ith level andrf:cat~ 
IS at the )th level. The covarIance model tor a two-factor study wIth a sinale c t~~i 

b onconut~'"''' 
va["iable, assuming the ["elation between Y and the concomitant variable X is lin . o.aut; 

ear, IS: 

Yijk = fL. +a; + Pi + (a{3)ij + y(X;jk - X ... ) +Sijk 

i = I. .... a;.i = I. ... , b; k = 1, ... ,11 (22.26)' 

Regression Approach 

Example 

We illustrate the ["egression app["oach to covariance analysis for a balanced two-factor stud 
with one concomitant variable when both factors A and B are at two levels i e wh Y , .. , en 
£l = b = 2. The regression model counterpart to covariance model (22.26) then is: 

where: 

10 = { I - -I 

if case from level 1 for factor A 
if case from level 2 for factor A 

if case from level I for factor B 
if case ti'om level 2 for factor B 

Xijk = X;jk - X ... 

(22.27) 

Note that the regression coefficients in (22.27) are the analysis of variance factor effects i¥[, 

{31, and (a{3) II and the concomitant variable coefficient y. 

Testing fo[" facto[" A main eft'ects requires that al = 0 in the reduced model. Correspond­
ingly, (31 = 0 is required in the reduced model when testing for factor B main effects, and 
(a{3) II = 0 is required in the reduced model when testing for AB interactions. 

Estimation of factor A and factor B main effects can easily be done in terms of com­
parisons among the ["egression coefficients. The use of the Schetfe and Bonferroni multiple 
comparison procedures presents no new issues. For instance, the S multiple for multiple 
comparisons among the factor A level means is defined as follows: 

S2 = (a - I)F(I - a;a - I, nab - ab - I) (22.28) 

and the B mUltiple is the same as in (22.18). with fl1' = l1ab and r = abo 

A horticulturist conducted an experiment to study the effects of flower variety (factor A: 
varieties LP, WB) and moisture level (factor B: low, high) on yield of saJ.able flowers (Y). 

Because the plots were not of the same size, the horticulturist wished to use plot size (X) as 
the concomitant variable. Six replications were made for each treatment. A portion of the 
data m'e presented in Table 22.6. Figure 22.7 contains a symbolic scatter plot of the data. 
The model assumptions of linear relations between Y and the concomitant variable X, as 
well as of parallel slopes for the four treatments, appear to be reasonable here. 

A fit of regressioll model (22.27) to the data by a computer regression package yielded 
the fitted regression function in Table 22.7a. The analyst plotted the data together with the 
fitted regression lines and made a variety of residual plots and tests (not shown). On the 
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basis of these diagnostics, the analyst was satisfied that regression model (22.27), which 
assumes parallel linear regression functions and constant error variances, is suitable here. 

To examine the nature of the factor effects, we show in Figure 22.8 the estimated treatment 
means plot for the two moisture levels BI and B2 . These estimated means all correspond 
to plot size X = x ... = 8.25 or x = O. Any other plot size would yield exactly the same 
relationships as those in Figure 22.8. It appears from Figure 22.8 that there are no important 
interactions between flower variety and moisture level, and that there may be main effects 
for both factors, particularly for moisture level. 

To study formally the factor effects, reduced models were formed by deleting from 
regression model (22.27) one predictor variable at a time (recall that both factors have only 
two levels), and the reduced models were then fitted. The extra sums of squares so obtained, 
as well as the error sum of squares for the full model, are presented in Table 22.7b. together 
with the degrees of freedom and mean squares. No total sum of squares is shown because 
the factor effect components are not orthogonal. 
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TABLE 22.7 
Computer 
Output for Fit 
of Regression 
Model 
(22.27)­
Salable 
Flowers 
Example. 

FIGURE 22.8 
Estimated 
Treatment 
Means 
Plot-Salable 
Flowers 
Example. 

\ 
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Q) 

~ 
0 

;:;: 

0 ... 
Q) 
.0 
E 
::J 

Z 

(a) Fitted Regression Function ~ 

9' = 70.0 + 2.04234/1 + 3.6807812 + .81922/1/2 + 3.27688x 

Estimated 
Regression CoeffiCient Regressioll Coefficient 

al 2.04234 
/31 3,68078 

(a/3)l1 .81922 
Y 3.27688 

(b) Extra Sums of Squares -. 
" Source of !" 
Effect Variation SS 

Concomitant variable xlh, 12 , '1/2 3,994.52 
A 
B 

AB 

y 

100 

80 

60 

40 

0 

'1Ix, 12, '1/2 
121x, 11, '112. 
'1/2IX, 11, 12. 
Error 

Estimated Treatment Means 
atx = 0 

&-~ ____________ ~M:O::5w,reLe~1 
• -B1 

&----------------.~ 

Variety 

96.60 
323.85 

16.04 
119.48 

Estimated 
Standard Deviation 

.52108 

.51291 

.51291 

.13002 

df MS 

1 3,994.52 
1 96.60 
1 323.85 
1 16.04 

19 6.2884 

We test first for the presence of interactions by means of the usual general linear 
statistic F*, using the results in Table 22.7b: 

F* = SSR(l[/2 \x, II> 12 ) -7- MSE = 16.04 = 2.55 
1 6.2884 

For a = .01, we require F(.99; 1, 19) = 8.18. Since F* = 2.55 ::::. 8.18, we conclude 
no interactions are present. The P-value of the test is .13. 
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We now wish to compare both the factor A main effects and the factor B main effects 
by means of confidence intervals, with a 95 percent family confidence coefficient. Since 

~, a2 = -a[, we have for our example: 

LI = al - a2 = al - (-al) = 2al 

Similarly, we obtain for the comparison of factor B main effects: 

L2 = 2f31 

Point estimates are readily obtained from the results in Table 22,7a: 

i l = 2&1 = 2(2,04234) = 4.08 

i2 = 2~1 = 2(3.68078) = 7.36 

The estimated standard deviations also follow easily, using (A.16b): 

s{i I} = 2s{ad = 2(.52108) = 1.042 

s{i2 } = 2s{~d = 2(.51291) = 1.026 

We utilize the Bonferroni simultaneous estimation procedure for g = 2 comparisons. 
For a 95 percent family ,confidence coefficient, we require t[1 - .05/2(2); 19] = 
t(.9875; 19) = 2.433. The two desired confidence intervals therefore are: 

1.5 = 4.08 - 2.433(1.042) :s al - a2 :s 4.08 + 2.433(1.042) = 6.6 

4.9 = 7.36 - 2.433(1.026) :s f31 - f32 :s 7.36 + 2.433(1.026) = 9.9 

With family confidence coefficient .95, we conclude that variety LP yields. on the average, 
between 1.5 and 6.6 more salable flowers for any given plot size than variety WB. Also, 
for any given plot size, the mean number of salable flowers is between 4.9 and 9.9 flowers 
greater for the low moisture level than for the high one, thus indicating a substantial effect 
of moisture level on yield. 

If interactions had been present, we could have studied the nature of the interaction 
effects by, for instance, comparing the effect of the moisture level for each of the two flower 
varieties. It can be shown that this comparison is given by (af3)12 = -(af3)II. Hence, we 
could estimate the desired interaction effect by using the estimated regression coefficient 
(~)1I and its estimated standard deviation in Table 22.7a. 

Covariance Analysis for Randomized Complete Block Designs 
Covariance analysis can be employed to further reduce the experimental error variability in a 
randomized complete block design. The extension is a straightforward one from covariance 
analysis for a completely randomized design. 

Covariance Model. The usual randomized block design model was given in (21.1). The 
covariance model for a randomized block design with one concomitant variable is obtained 
by simply adding a term (or several terms) for the relation between the response variable 
Y and the concomitant variable X. Assuming this relation can be described by a linear 
function, we obtain: 

Yij = fJ., .. + Pi + 7:j + y(Xij - X .. ) + cij i = 1, ... , nb; j = 1, ... ,r (22.29) 
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Regression Approach. The regression approach to covari~ce model (22.29) inv I 
new principles. We shall den?te the centered. v~able Xij ~ X .. in covariance mOde~(;~s2no 
by xij. Further, we shan agaIn use 1, -1, 0 IndIcator vanables for the block and tre . 9) 
effects. To illustrate an equivalent regression model, consider a randomized COmple::ent 

design study with nb = 4 blocks and r = 3 treatments. The regression model count ock 
to covariance model (22.29) then is: erpan 

where: 

if experimental unit from block 1 
if experimental unit from block 4 
otherwise 

/2;h are defined similarly 

if experimental unit received treatment 1 
if experimental unit received treatment 3 
otherwise 

if experimental unit received treatment 2 
if experimental unit received treatment 3 
otherwise 

Xij = Xij - X .. 

To test for treatment effects: 

Ho: L[ = L2 = L3 = 0 

Ha: not all L j equal zero 

we would either need to fit the reduced model under Ho: 

Full model 

(22.30) 

(22.31) 

Reduced model (22.32) 

or else use the appropriate extra sum of squares. The test for treatment effects is then 
conducted in the usual way. 

Comparisons of two treatment effects by the regression approach are straightforward. 
For estimating L[ - L2, for instance, we use the unbiased estimator TJ - T2 based on the 
estimated regression coefficients obtained when fitting the full model (22.30). The esti mated 
variance of this estimator is: 

(22.33) 

The estimated variance-covariance matrix of the regression coefficients, available in many 
regression package printouts, can then be used to obtain the required estimated variances 
and covariances. 
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Comment 

Some computer packages for covariance analysis produce analyses that are only valid when all 
treatment sample sizes are equal. Computer packages should therefore be used with great care when 
the treatment sample sizes are unequal, to make sure that the package conducts the tests of interest . 

• 
Additional Considerations for the Use of Covariance Analysis 

~yariance Analysis as Alternative to Blocking 
o At times, a choice exists between: (1) a completely randomized design. with covariance 
.{ analysis used to reduce the experimental errors and (2) a randomized block design, with 

the blocks formed by means of the concomitant variable. Generally, the latter alternative is 
preferred. There are several reasons for this: 

1. If the regression between the response variable and the concomitant (blocking) vari­
able is linear, a randoniized block design and covariance analysis are about equally efficient. 
If the regression is:not linear but covariance analysis with a linear relationship is utilized, 
covariance analysis with a completely randomized design will tend to be not as effective as 
a randomized block design. 

2. Randomized block designs are essentially free of assumptions about the nature of 
the relationship between the blocking variable and the response variable, while covariance 
analysis assumes a definite form of relationship. 

3. Randomized block designs have somewhat fewer degrees of freedom available for 
experimental error than with covariance analysis for a completely randomized design. How­
ever, in all but small-scale experiments, this difference in degrees of freedom has little effect 
on the precision of the estimates. 

i;tJse of Differences 
In a variety of studies, a prestudy observation X and a poststudy observation Y on the same 
variable are available for each unit. For instance, X may be the score for a subject's attitude 
toward a company prior to reading its annual report, and Y may be the score after reading 
the report. In this situation, an obvious alternative to covariance analysis is to do an analysis 
of variance on the differences Y - X. Sometimes, Y - X is called an index of response 
because it makes one observation out of two. 

If the slope of the treatment regression lines is y = 1, analysis of covariance and analysis 
of variance on Y - X are essentially equivalent. When y = 1, covariance model (22.2) 
becomes: 

Yij = fJ.,. + Li + Xij + eij (22.34) 

which can be written as a regular analysis of variance model: 

(22.34a) 

Thus, if a unit change in X leads to about the same change in Y, it makes sense to 
perform an analysis of variance on Y - X rather than to use covariance analysis, because 
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the analysis of variance model i!; a !;impler model. If the regression !;Iope is not 
however, covariance analysis may be sub!;tantially more effective than use of the ~~ 1, 
ences Y - X. b!er_ 

In the earlier cracker promotion example, use of Y - X would have been effecti 
would have yielded the en"Of mean square MSE = 3.500, which is practically the Ve. It 

. . I' S 506 same as the error mean square for covanance ana YSIS, M E = 3. (see Table 22.3b) R 
I h . I' . I I ~ 899 . ecaIl t lal t e regreSSIOn s ope II1 our example IS c ose to (y = . ). hence, the approximate 

equivalence of the two procedures. 

Correction for Bias 
The suggestion is sometimes made that analy!;is of covariance can be helpful in correcting £ 
bias with observational data. With such data, the groups under study may differ sUbstantiaI~ 
with ~espect t~ a concomitant v~riabl~, and ~his may bias the c.omparisons o~ the group~ 
ConSIder, for II1stance, a !;tudy 111 whIch attItudes toward no-fault automobIle insurance 
were compared for persons who are risk averse and persons who are risk seeking. It was 
found that many persons in the risk-averse group tended to be older (50 to 70 years old), 
while many persons in the risk-seeking group tended to be younger (20 to 40 years old). 
In this type of situation, some researchers would advise that covariance analysis, with age 
as the concomitant variable, be employed to help remove any bias in the analysis of the 
observational data on attitudes toward no-fault insurance because the two age groups differ 
sO much. 

Even though there is great appeal in the idea of removing bias in observational data, 
covariance analy!;is should be used with caution for this purpose. In the first place, com­
parisons of means al a common value of X may require substantial extrapolation of the 
regression lines to a region where there are no or only few data points (in our example, 
to near 45 years). It may well be thal the regression relationship used in the covariance 
analysis is not appropriate for substantial extrapolation. In the second place, the treatment 
variable may depend on the concomitant variable (or vice versa), which could affect the 
proper conclusions to be drawn. 

Interest in Nature of Treatment Effects 
Covariance analysis is sometimes employed for the principal purpose of shedding more 
light on the nature of the treatment effects, rather than merely for increasing the precision 
of the analysis. For instance, a market researcher in a study of the effect!; of lhree different 
advertisements on the maximum price consumer!; are willing to pay for a new type of home 
siding may use covariance analysis, with value of the consumer's home as the concomitant 
variable. The reason is because the researcher is truly interested in the relation for each 
adveltisement between home value and maximum price. Reduction of enor variance in this 
instance may be a secondary consideration. • 

As in all regression analyses, care must be used in drawing inferences about the causal 
nature of the relation between the concomitant variable and the response. [n the advertising 
example. it might well be that value of a consumer's home is largely influenced by income. 
If this were so, the relation between value of the consumer's home and maximum price the 
consumer is willing to pay may actually be largely a reflection of the underlying relation 
between income and maximum price. 
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22.1. A student's reaction to the instructor's statement that covariance analysis is inappropriate 
when the treatment regression lines do not have the same slope was as follows: "It seems to 
me that this is ducking a real-world problem. If the treatment slopes are different, just use a 
covariance model that allows for different treatment slopes." Evaluate this reaction. 

22.2. A survey analyst remarked: "When covariance analysis is used with survey data, there is a 
danger that the treatments may be related to the concomitant variable." What is the nature of 
the problem? Does this same problem exist when the treatments are randomly assigned to the 
experimental units? 

22.3. Portray, analogously to the format of Figure 1.6 on page 11 for a regression model, the nature 
of covariance model (22.3) when there are three treatments and the parameter values are: 

p,. = 150, <I = IS, <2 = -5, <3 = -10, Y = 6, x .. = 70, a = 5. Show several distributions 
of Y for each treatment. 

22.4. Refer to the cracker promotion example on page 926. A student stated, in di scussing this case: 
"Strictly speaking, you cannot conclude anything about whether the three promotions differ 
in effectiveness because there was no control. The preceding period does not qualify as a 
control because it might have differed from the promotion period due to seasonal factors or 
other unique circumstances." Comment. 

22.5. Refer to the cracker promotion example on pages 930 and 931, where three pairwise compar­
isons of treatment effects were made by the Scheffe procedure. 

a. What would be the value of the Bonferroni multiple here for estimating the three 
comparisons? 

b. Did the analyst obtain substantially less precise interval estimates using the Scheffe pro­
cedure, which permits making additional estimates without modifying the present ones? 

22.6. State the analysis of covariance model for a single-factor study with four treatments when 
there are two concomitant variables, each with linear and quadratic terms in the model. 

*22.7. Refer to Productivity improvement Problem 16.7. The economist also has information on 
annual productivity improvement in the prior year and wishes to use this information as a 
concomitant variable. The data on the prior year's productivity improvement (Xij) follow. 

j 

1 2 3 4 5 6 7 8 9 10 11 12 

1 8.2 7.9 7.0 5.7 7.2 7.0 6.5 7.9 6.3 
2 8.8 10.0 10.7 10.0 9.7 9.4 10.6 9.8 10.0 10.3 8.9 10.0 
3 11.5 12.2 12.8 11.0 12.3 12.1 

a. Obtain the residuals for covariance model (22.3). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal 
probability plot of the residuals and calculate the coefficient of correlation between the 
ordered residuals and their expected values under normality. What do you conclude from 
your analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regreSSion lines have the same slope. Conduct this test using (){ = .01. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Could you conduct a formal test here as to whether the regression functions are linear? If 
so, how many degrees of freedom are there for the denominator mean square in the test 
statistic? 
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*22.8. Refer to Productivity improvement Problems 16.7 and 22.7. Assume that cWu1a 
(22.3) is appropriate. ' nce model 

<t. Prepare a symbolic scatter plot of the data. Does it appear that there are effects of th 
of research and development expenditures on mean productivity improvement? D' elevel 

. 1SCUss 
b. State the regression model equivalent to covariance model (22.3) for this ca~e; use I _. 

o .i.ndicator variables. Also state the reduced regression model for testing for trea~~~ 
effects. 

c. Fit the full and reduced regression models and test for treatment effects; Use a == Os S 
the alternatives, decision rule, and conclusion. What is the P-value of the test?' . tate 

d. Is MSE( F) for the covariance model substantially smaller than MSE for the analysis f 
variance model in Problem 16.7d? Does this affect the conclusion reached abouttreatme

O 

effects? Does it affect the P-value? nt 

e. Estimate the mean productivity improvement for finns with moderate research and de­
velopment expenditures that had a prior productivity improvement of X == 9.0; use a 
95 percent confidence interval. 

f. Make all pairwise comparisons between the treatment effects; use either the Bonferroni or 
the Scheffe procedure with a 90 percent family confidence coefficient, whichever is more 
efficient. State your findings. 

22.9. Refer to Questionnaire color Problem 16.8. It has been suggested to the investigator that size 
of parking lot might be a useful concomitant variable. The number of spaces (Xij ) in each 
parking lot utilized in the study follow. 

1 
2 
3 

300 
153 
144 

2 

381 
334 
359 

j 

3 

226 
473 
296 

a. Obtain the residuals for covariance model (22.3). 

4 

350 
264 
243 

5 

100 
325 
252 

b. For each treatment, plot the residuals against the fitted values. Also prepare a nonnal 
probability plot of the residuals and calculate the coefficient of cOiTelation between the 
ordered residuals and their expected values under normality. What do you conclude from 
your analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using a = .OOS. State the 
alternatives, decision rule. and conclusion. What is the P-value of the test? 

d. COUld you conduct a formal test here as to whether the regression functions are linear? 
Explain. 

22.10. Refer to Questionnaire color Problems 16.8 and 22.9. Assume that covariance model (22.3) 
is applicable. 

a. Prepare a symbolic scatter plot of the data. Does it appear that there are color effects on 
the mean response rate? Discuss. 

b. State the regression model equivalent to covariance model (22.3) for this case; use 1, -I, 
o indicator variables. Also state the reduced regression model for testing for treatment 
effects. 

c. Fit the full and reduced regression models and test for treatment effects; use a = .10. State 
the alternatives. decision rule, and conclusion. What is the P-value of the test? 
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d. Is MSE(F) for the covariance model substantially smaller than MSE for the analysis of 
variance model in Problem 16.8d? How does this affect the conclusion reached about 
treatment effects? 

e. Estimate the mean response rate for blue questionnaires in parking lots of size X = 280; 
use a 90 percent confidence interval. 

f. Make all pairwise comparisons between the treatment effects; Use either the Bonferroni or 
the Scheffe procedure with a 90 percent family confidence coefficient, whichever is more 
efficient. State your findings. 

22.11. Refer to Rehabilitation therapy Problem 16.9. The rehabilitation researcher wishes to use 
age of patient as a concomitant variable. The ages (Xij) of patients in the study follow. 

j 

1 2 3 4 5 6 7 8 9 10 

1 18.3 30.0 26.5 28.1 29.7 27.8 19.8 29.3 
2 20.8 25.2 29.2 20.0 21.5 22.1 19.7 24.7 20.2 22.9 
3 22.7 28.7 18.9 18.0 21.7 20.0 

a. Obtain the r.esiduals for covariance model (22.3). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal 
probability plot of the residuals and calculate the coefficient of correlation between the 
ordered residuals and their expected values under normality. What do you conclude from 
your analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using ex = .05. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Could you conduct a formal test here as to whether the regression functions are linear? 
Explain. 

22.12. Refer to Rehabilitation therapy Problems 16.9 and 22.11. Assume that covariance model 
(22.3) is applicable. 

a. Prepare a symbolic scatter plot of the data. Does it appear that there are effects of physical 
fitness status on the mean number of days required for therapy? Discuss. 

b. State the regression model equivalent to covariance model (22.3) for this case; use 1, -1, 
o indicator variables. Also state the reduced regression model for testing for treatment 
effects. 

c. Fit the full and reduced regression models and test for treatment effects; use ex = .01. State 
the alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Is MSE(F) for the covariance model substantially smaller than MSE for the analysis of 
variance model in Problem 16.9d? Does this affect the conclusion reached about treatment 
effects? Does it affect the P-value? 

e. Estimate the mean number of days required for therapy for patients of average physical 
fitness and age 24 years; use a 99 percent confidence interval. 

f. Make all pairwise comparisons between the treatment effects; use either the Bonferroni or 
the Scheffe procedure with a 95 percent family confidence coefficient, whichever is more 
efficient. State your findings. 

22.13. Product display. A manufacturer of felt-tip markers investigated by an experiment whether 
a proposed new display, featuring a picture of a physician, is more effective in drugstores 
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/1 "-;" 

than the present counter display, featuring a pIcture of an athlete and deSigned to b I 
in the stationery area. Fifteen drugstores of similar characteristics were chosen for ~ ocated 
They were a!.signed at random in equal numbers 10 one of the following three tre e study. 
( I ) \. I" 2 d' I" atments· present counter (ISP ay III statIOnery area, ( ) neW ISP ay III statIOnery area, (3) new d' . 
in checkout area. Sales with the present display (Xij) were recorded in all 15 stores fora~lay 
week period. Then the new display was set up in the 10 store& receiving it and salesfo.th ee-

. . ' • • I enext 
three-week penod (Yii ) were recorded III all 15 stores. The data on sales (in dollarS)folIow. 

j 

2 3 4 5 

Treatment 1 
First 3 weeks 92 68 74 52 65 
Second 3 weeks 69 44 58 38 54 

Treatment 2 
First 3 weeks 77 80 70 73 79 
Second 3 weeks 74 75 73 78 82 

Treatment 3 
First 3 weeks 64 43 81 68 71 
Second 3 weeks 66 49 84 75 77 

The analyst wishes to analyze the effects of the three different display treatments by means 
of covariance analysis. 

a. Obtain the residuals for covariance model (22.3). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a nonnal prob­
ability plot of the residuals and calculate the coefficient of correlation between the ordered 
residuals and their expected values under normality. What do you conclude from your 
analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using a = .OS. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Could you conduct a formal test here as to whether the regression functions are linear? 
Explain. 

22.14. Refer to Product display Problem 22.13. Assume that covariance model (22.3) is applicable. 

a. Prepare a symbolic scmter plot of the data. Does it appear that there are display effect~ on 
mean sales? Discuss. 

b. State the regression model equivalent to covariance model (22.3) for this case; use 1, -1,0 
indicator variables. Also state the reduced regression model for testing for treatmentetfects. 

c. Fit the full and reduced regression models and test for treatment effects: use a = .OS. State 
the alternatives, decision mle, and conclusion. What is the P-value of the test? 

d. Is MSE( F) for the covariance model substantially smaller dJan the mean square error if 
analysis of variance model (16.2) had been employed? 

e. Estimate the mean sales with display treatment 2 for stores whose sales in the preceding 
three-week period were $75: use a 95 percent confidence interval. 

f. Make all pairWise comparisons between the treatment effects: use either the Bonferroni or 
the Scheffe procedure with a 90 percent family confidence coefficient. whichever is more 
efficient. State your findings. 
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*22.15. Refer to Cash offers Problem 19.10. An analyst wishes to use each dealer's sales volume as 
a concomitant variable. The sales data (Xijb in hundred thousand dollars) follow. 

;=1 ; = 2 ;= 3 

j=l j=2 j=l j=2 j=l j=2 

3.0 3.5 6.5 2.2 5.0 4.0 
5.1 4.2 4.1 5.4 3.1 .8 

4.9 6.6 3.0 5.0 2.9 1.9 

a. Obtain the residuals for covariance model (22.26). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal prob­
ability plot of the residuals and calculate the coefficient of correlation between the ordered 
residuals and their expected values under normality. What do you conclude from your 
analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using ex = .01. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

*22.16. Refer to Cash offers Problems 19.10 and 22.15. Assume that covariance model (22.26) is 
applicable. 

a. 

b. 

c. 

d. 

e. 

f. 

State the regression model equivalent to covariance model (22.26) for this case; use 1, -1, 
o indicator variables. Fit this full model. 

State the reduced regression models for testing for interaction and factor A and factor B 
main effects, respectively. Fit these reduced regression models. 

Test for interaction effects; use ex = .05. State the alternatives, decision rule, and conclu­
sion. What is the P-value of thy test? 

Test for factor A main effects; use ex = .05. State the alternatives, decision rule, and con­
clusion. What is the P-value of the test? 

Test for factor B main effects; use ex = .05. State the alternatives, decision rule, and con­
clusion. What is the P-value of the test? 

For each factor, make all pairwise comparisons between the factor level main effects. 
Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 

22.17. Refer to Eye contact effect Problem 19.12. Age of personnel officer is to be used as a con­
comitant variable. The ages (Xijk) of the personnel officers follow. 

; = 1 ;=2 

j=l j=2 j=l j=2 

42 51 43 42 
30 35 53 47 

35 49 49 56 

a. Obtain the residuals for covariance model (22.26). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal plDb­
ability plot of the residuals and calculate the coefficient of correlation between the ordered 
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residuah; and their expected values under normality. What do you conclude f 
I .? rom your, ana YSls. 

t. State the gen~rali~ed regression model to be employed f~r testing whether or not thetr'" 
ment regressIOn hnes have the same slope. Conduct thiS test using a == ,OOS seat" 

. d" I d I' h' h . tate the alternatives, enslon ru e, an conc US Ion. W at IS t e P-value of the test? 

22.18, Refer to Eye contact effect Problems 19.12 and 22.17. Assume that covariance model (22. '. 
is applicable, 26) 

a. State the regression model equivalent to covariance model (22,26) for this case; use 1 _ ' 
o indicator variables, Fit this full model. ' 1, 

b. State the reduced regression models for testing for interaction and factor A and fact 
main effects, respectively. Fit these reduced regression models. or B 

c. Test for interaction effects~ use a = ,0 I, State the alternatives, decision rule, and conclu_ 
sion, What is the P -value of the test? 

d. Test for factor A main effects~ use a = .0 I, State the alternatives, decision rule, and con­
dusion. What is the P-value of the test? 

e, Test for factor B main effects; use a = .01. State the alternatives, decision rule, and con­
clusion. What is the P-value of the test? 

f. Compare the gender main effect~ by means of a 99 percent confidence interval. Interpret 
your interval estimate, 

g. Estimate the mean success rating by female personnel officers aged 40 When eye contact 
is present; use a 99 percent confidence interval. 

*22.19. Refer to Auditor training Problem 21.5, The analyst wishes to examine whether use of 
pretraining statistical proficiency scores as a concomitant variable would help to reduce the 
experimental error variability significantly, The pretraining statistical proficiency scores for 
the auditors are as follows: 

Training Training 

Block Method (j) Block Method (j) 

I 2 3 2 3 

93 98 91 6 75 74 78 
2 94 93 94 7 79 76 72 
3 89 91 92 8 71 69 64 
4 86 84 90 9 74 71 70 
5 78 76 84 10 63 68 64 

a, Would you expect the auditor's age to have been a better concomitant variable here than 
the pretraining statistical proficiency score? Discuss, 

b. State the regression model equivalent to covariance model (22.29); use I, -1,0 indicator 
variables, 

e. Fit the full regression model. 

d, State the reduced regression model for testing treatment effects. Fit the reduced model. 

e, Test whether or not the training methods differ in mean effectiveness~ use a = ,OS. State 
the alternatives. decision mle, and conclusion. What is the P-value of the test? 

f Obtain a 95 percent confidence interval for L = T( - T2' Interpret your interval estimate. 

g. Has the error variance been reduced substantially by adding the concomitant variable? 
Explain. 
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22.20. Refer to Fat in diets Problem 21.7. The researcher wishes to examine whether each subject's 
body weight expressed as a percent of the ideal weight for that person would be a useful 
concomitant variable. The body weights as percents of the ideal weights for the 15 subjects 
are as follows: 

Block Fat Content of Diet 

j=l j=2 j=3 

1 94 96 101 
2 97 102 99 
3 105 100 106 
4 108 107 112 
5 118 115 107 

a. State the regression model equivalent to covariance model (22.29); use 1, -1, 0 indicator 
variables. 

b. Fit the full regression modeL 

c. State the reduced regression model for testing treatment effects. Fit the reduced modeL 

d. Test whether or not the mean reductions in lipid level differ for the three diets: use ex = .05. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

e. Obtain confidence intervals for L[ = <[ - <2 and L2 = <2 - <3, using the Bonferroni pro­
cedure with a 95 percent family confidence coefficient. Interpret your interval estimates. 

f. Has the error variance been reduced substantially by adding the concomitant variable? 
Explain. 

*22.21. Refer to Productivity improvement Problems 22.7 and 22.8. The analyst is considering the 
use of the difference between the productivity improvements in the two years (Yij - Xij) as 
the response variable with the regUlar analysis of variance model (22.29a). 

a. Obtain the analysis of variance table. 

b. How effective here is the use of differences with the regular ANOVA model compared to 
the use of covariance model (22.3)? Discuss. 

22.22. Refer to Product display Problems 22.13 and 22.14. The analyst is considering the use of 
the difference in sales between the two periods (Ylj - XI}) as the response variable with the 
regular analysis of variance model (22.29a). 

a. Obtain the analysis of variance table. 

b. How effective here is the use of differences with the regular ANOVA model compared to 
the use of covariance model (22.3)? Discuss. 

22.23. (Calculus needed.) Denote p,. + <i in covariance model (22.3) by [,,1. Derive the least squares 
estimators for ["i and y in covariance model (22.3). 

22.24. Refer to the SENIC data set in Appendix Cl. The following hospitals are to be considered 
in a study of the effects of region (variable 9) on the mean length of hospital stay of patients 
(variable 2), with available facilities and services (variable 12) as a concomitant variable: 

1-52 54 55 57 58 63 .76 83 84 94 101 103 III 
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22.25. 

a, Obtain the residuals for covariance model (22.3), 

b, :or each ~egion. Flot the residuals against th~ fi.tted v~lues, Also prepare a nOOTIal r , .. ,;' 
Ity plot of the resIduals and calculate the coefficIent of con'elation between the 'd P oba~ 

• • 01 ered ... '" 
uals and their expected values under normalIty. What do you conclude from" . reSIIPc 

., • JOUI anal s··'it 
Co State the generalIzed regressIOn model to be employed for testing whether Or no y IS,. 

ment regression lines have the same slope, Conduct this test using a == .005 t Sthe tre!ll1 
I . d" I d I' h' h . tatethe a ternatlves. eClslon ru e, an conc USIOn. W at IS t e P-value of the test? 

Refer to the SEN! C data set in Appendix CI and Project 22.24. Assume that covariance.' 
model (22.3) is applicable. 

a. Prepare a symbolic scatter plot of the data. Does it appear that there are region eff 
the mean length of hospital stay? Discuss. eets o~ 

b. State the regression model equivalent to covariance model (22.3) for this case; use 1 _ '; 
o .~ndicator variables, Also state the reduced regression model for testing for trea~e~~ 
effects, 

c, Fit the full and reduced regression models and test for treatment effects; use a == ,OS. St 
h I 'd " d " ate tea ternatlves, eClslon rule, an conclusIOn. What IS the P-value of the test? 

d. Make all pairWise comparisons between the region effects; use eithel' the Bonferroni or 
the Scheffe procedure with a 90 percent family confidence coefficient, whichever is more 
efficient. State yoU!' findings. 

22,26. Retel'to the Market share data set in Appendix C,3 and Project 16.45, Use price (variable 3) 
as a concomitant variable. 

a. Obtain the residuals for coval'iance model (22.3). 

b. For each treatment, plot the residuals against the fitted values, Also prepare a normal 
probability plot of the residual& and calculate the coefficient of conelation between the 
ordered residuals and their expected values undel' normality, What do you conclude from 
your analysis? 

c. State the genel'alized regression model to be employed for testing whethel' 01' not the 
treatment regression lines have the &ame slope, Conduct this tesl using a = .05, State the 
altematives. decision rule. and conclusion. What is the P-value of the test? 

d. Could you conduct a formal test here as to whether the regression functions are linear? 
Explain. 

22.27, Refer to the Market share data set in Appendix C3 and Project 22.26, 

a. Prepare a symbolic scatter plot of the data. Does it appear that mean monthly market 
share changes with the discount pI'ice and package promotion factor-level combinations? 
Discuss. 

b, State the regression model equivalent to covariance model (22.3) fOJ' this case; use 1, -1, 
o indicator variables. Also state the reduced regression model for testing for treatment 
effects. 

c. Fit the full and reduced regression models and test for treatment effects; use a = ,0 I. State 
the altematives, decision rule, and conclusion, What is the P-val~e of the test? 

d. J s MSE (F) for the covariance model substantially smaller than MSE for the analysis of 
vaI'iance model in Project 16.45? Does this affect the conclusion reached about treatment 
effects? Does it affect the P-value7 

e, Estimate the average monthly mal'ket share for product with discount price present, package 
promotion absent. and average monthly pI'ice of product 2,5: use a 99 percent confidence 
interval. 
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f. Make all pairwise comparisons between the treatment effects; use either the Bonferroni or 
the Scheffe procedure with a 95 percent family confidence coefficient, whichever is more 
efficient. State your findings. 

22.28. Refer to the CDI data set in Appendix C2 and Project 19.53. The metropolitan areas identified 
in Project 19.53 are to be considered in a study of the effects of region (factor A: variable 17) 
and percent below poverty level (factor B: variable 13) on crime rate (variable 10-:- variable 5), 
with percent of popUlation 65 or older (variable 7) as a concomitant variable. For purposes 
of this analysis of covariance study, percent below poverty level is to be classified into two 
categories: less than 8.0 percent, and 8.0 percent or more. 

a. Obtain the residuals for covariance model (22.26). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal 
probability plot of the residuals and calculate the coefficient of correlation between the 
ordered residuals and their expected values under normality. What do you conclude from 
your analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using ex = .001. State the 
alternatives, decisipn rule, and conclusion. What is the P-value of the test? 

22.29. Refer to the CDI data set in Appendix C.2 and Project 22.28. Assume that covariance model 
(22.26) is applicable. 

a. State the regression model equivalent to covariance model (22.26) for this case; use 1, -1, 
o indicator variables. Fit this full modeL 

b. State the reduced regression models for testing for interaction and factor A and factor B 
main effects, respectively. Fit these reduced regression models. 

c. Test for interaction effects; use ex = .01. State the alternatives, decision rule, and conclu­
sion. What is the P-value of the test? 

d. Test for factor A main effects; use ex = .01. State the alternatives, decision rule, and con­
clusion. What is the P-value of the test? 

e. Test for factor B main effects; use ex = .01. State the alternatives, decision rule, and con­
clusion. What is the P-value of the test? 

22.30. Refer to the Market share data set in Appendix C3 and Project 19.55. Use price (variable 3) 
as a concomitant variable. 

a. Obtain the residuals for covariance model (22.26). 

b. For each treatment, plot the residuals against the fitted values. Also prepare a normal 
probability plot of the residuals and calculate the coefficient of correlation between the 
ordered residuals and their expected values under normality. What do you conclude from 
your analysis? 

c. State the generalized regression model to be employed for testing whether or not the 
treatment regression lines have the same slope. Conduct this test using ex = .05. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

22.31. Refer to the Market share data set in Appendix C3 and Project 22.30. 

a. State the regression model equivalent to covariance model (22.26) for this case; use 1, -1, 
o indicator variables. Fit this full modeL 

b. State the reduced regression models for testing for interaction and factor A and factor B 
main effects, respectively. Fit these reduced regression models. 

c. Test for interaction effects; use ex = .01. State the alternatives, decision rule, and conclu­
sion. What is the P-value of the test? 
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Case 
Studies 

2232. 

2233, 

d. Test for ractor A main effects: use a = .01. State the alternatives, decision rule 
elusion. What is the P-value of the test'? ,andcOfi\ 

e. Test ror faclllr B main cflects: use a = .0 I. State the alternatives, decision rule. 
elusion. What is the P -value of the test? ' and Con< 

~ 
Refer to [he Prostate cancer data set in Appendix e.5 and Case Study 16.49. Carr " 
one-way analysis of cov,u'iance of this data set, where the respon~e of interest is PS~ out a 
(variable 2), the single tactor is Gleason score (variable 9), and the possible covarlatelevel 

cancer volume (variable 3) and weight (variable 4), The analysis should considertrans£ s are 
tions of the response variable and the covariates. Document step~ taken in your analys~rma­
, 'f' I . ,and Justl y your cone USlons, 

Refer to the Real estate sales data set in Appendix e.7 and Case Study 16,50. Carry a 
one-way analysis of covariance of this data set, where the response of interest is sales ~a 
(variable 2), the ~ingle factor is number of bedrooms (variable 4), and the possible cova;:ce 
are finished square feet (variable 3) and lot size (variable 12). ReClxle the number ofbedroo~ 
into four categories: 0-2, 3, 4, and greater than or equal to 5. The analysis should consider 
trdnsformation~ of the response variable and the covariate~. Document steps taken in YOUr 
analysis, and justify your conclusions. 

2234. ReteI' to the Ischemic heart disease data set in Appendix e.9 and Case Study 16.51. Carry out 
a one-way analysis of covariance of this data set, where the response of interest is total cost 
(variable 2). the single tactor is total number of interventions (variable 5). and the Possible 
covariates are dumtion (variable 10) and age (variable 3). Recode the number ofinterventions 
into six categories: 0, I. 2, 3-4, 5-7. and greater than or equal to 8. The analYsis should 
consider transfonnations of the response variable and the covariates. Document steps taken 
in your analysis. and Justify your conclugions. 

2235. Refer to the Real estate sales data set in Appendix e. 7 and Case Study 19.59. Carry out a 
balanced two-way analysis of covariance of this data set where the response of interest is sales 
price (variable 2), the two crossed factors are quality (variable 10) and style (variable II), and 
the possible covariates are finished square feet (variable 3) and lot size (variable 12). Style 
i~ recoded as either I or not I. Order the observations in the six factOI'-level-combination 
cells from smallest to largest observation number and retain the first 25 observations in each 
cell for a total of 150 observations. The analysis should consider transf0I1l1ations of the 
response variable and the covariates, Document the steps taken in your analysis and justify 
your conclusion~, 

2236. Refer to the Ischemic heart disease data set in Appendix e.9 and Case Study 16,60, Carry 
out a balanced two-way analysis of covariance of this data set where the response of interest 
is total cost (variable 2), the two crossed factors are number of interventions (variable 5) 
and number of comorbidities (variable 9). and the possible covariates are duration (vari­
able 10) and age (variable 3). Recode the number of interventions into six categories: 0, 1,2, 
3--4, 5-7, and greater than or equal to 8, Recode the number of comorbidities into two 
categories: 0-1, and greater than or equal to 2, Order the observ;ttions in the twelve factor­
level-combination cells from smallest to largest observation number and retain the first 43 
observation" in each cell for a total of 516 observations, The analysis should consider trans­
formations of the response variable and the covariates, Document the steps taken in your 
analysis and justify your conclusions, 
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Two-Factor Studies with 
Unequal Salllple Sizes 

Up to this point in our discussion of two-factor studies we have restricted ourselves to equal 
treatment sample sizes for the two-factor ANOVA model (19.23). Often, however, two­
factor studies involve unequal treatment sample sizes. The resulting imbalance destroys the 
orthogonality of the ANOVA decomposition. Consequently, the general linear test approach 
is utilized for ANOVA tests. In Sections 23.1 through 23.4 we shall take up procedures for 
handling two-factor studies with unequal treatment sample sizes. We continue to assume 
that all treatment means are of equal importance in these sections. 

In occasional ANOVA studies, the treatment means are not of equal importance. This 
also makes the standard ANOVA decomposition inappropriate, and the general linear test 
approach consequently is employed. We consider in Section 23.5 procedures for conducting 
the analysis of variance when the treatment means have unequal importance. We conclude 
this chapter by discussing briefly In Section 23.6 the use of statistical computing packages 
in the presence of unequal treatment sample sizes. . 

Unequal Sample Sizes 

Two-factor studies frequently involve unequal treatment or cell sample sizes for a variety 
of reasons. In observational studies, the investigator often has little or no control over the 
cell sample sizes. For example, in a comparative study of U.S. manufacturing practices, 
researchers examined the performance of manufacturing plants as a function of size of plant 
(factor A: small, medium, large) and ownership (factor B: Japan, United States). In this 
two-factor study, cell sample sizes for the six treatments were not under the complete control 
of the researchers. First, the number of plants available for study in each size-ownership 
category varied. Second, many plants were unable or unwilling to participate in the study. 

Unequal treatment sample sizes are also encountered in experimental studies. For in­
stance, an experimenter may seek to have the same number of cases for each treatment, 
but for a variety of reasons (e.g., illness of subject, incomplete records, technical problems) 
ends up with unequal cell sample sizes. 

Another reason for unequal treatment sample sizes is that investigators in both observa­
tional and experimental studies may use larger sample sizes for treatments for which the cost 
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Notation 

is lower. In still other instances, unequal treatment sample sizes may be desired to enable 
certain treatment means or certain linear combinations of treatment means to be estimated 
with greater precision. For example, a packaged foods manufacturer wished to measure the 
impact on consumer product ratings of a change from corn syrup to a low-calorie Sweetener 
(factor A) in one of its breakfast cereals. Three categories of consumers, (factor B: children, 
female adults, and male adults) were considered to be important. It was known that about 
60 percent of the consumers are children, 20 percent are adult males, and 20 perCent are 
adult females. It was therefore considered to be reasonable to require that 60 percent of the 
subjects be children, 20 percent be adult males, and 20 percent be adult females to provide 
greatt;r precision for the most important consumer group. 

The fact that treatment sample sizes are unequal often does not affect the importance 
of the treatment means. As we just noted, sample sizes frequently are unequal for reasons 
that have nothing to do with the importance of treatment means. In our discussion of 
unequal treatment sample sizes in Sections 23.2-23.4, we shall continue to assume that all 
treatment means have the same importance. Procedures for handling ANOVA inferences 
when treatments have unequal importance are considered in Section 23.5. 

Throughout Sections 23.1-23.3, we assume that there is at least one case for each treat­
ment. Techniques for the analysis of studies with one or more cells empty are diSCUSSed in 
Section 23.4. 

Our notation remains the same as before, except that the sample size for the treatment 
consisting of the ith level of factor A and the jth level of factor B will now be denoted by 
nij. The total number of cases for the i th level of factor A will be denoted by: 

ni· = Lnij 
j 

the total number of cases for the j th level of factor B by: 

and the total number of cases for the entire study by: 

(23.1a) 

(23.1b) 

(23.1c) 

The estimated treatment mean when'factor A is at the ith level and factor B is at the jth 
level is defined as usual: 

(23.2) 

where: 

Il;j 

Yij. = L Y;jk (23.2a) 
k=l 
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Use of Regression Approach for Testing Factor Effects when 
Sample Sizes Are Unequal 

When the treatment sample sizes are unequal, the analysis of variance for two-factor studies 
becomes more complex. The least squares equations are no longer of a simple structure that 
yields direct and easy solutions, and the regular analysis of variance formulas in (19.37) and 
(19.39) are now inappropriate. Furthermore, the factor effect component sums of squares 
are no longer orthogonal; that is, they do not sum to SSTR. 

Hence, we wiIl utilize the general linear test approach described in Section 2.8 when 
the treatment sample sizes are unequal. An easy way to obtain the proper error sums of 
squares for testing factor inter~tions and main effects by the general linear test approach 
is through the regression formulation of the ANaVA model described below. The only 
difference when cell sample sizes are unequal is that a reduced regression model needs to 
be fitted explicitly for each test of factor interactions and main effects because of the lack 
of orthogonality. Since no new principles are involved, we tum directly to an example to 
illustrate how ANaVA tests are conducted by means of the regression approach when the 
treatment sample sizes are unequal. 

Regression Approach to Two-Factor Analysis of Variance 
We shall explain the regression approach to two-factor analysis of variance in terms of the 
factor effects model (19.23): 

Y;jk = M.· + eti + {3j + (et{3)ij + C;jk (23.3) 

As we know from (19.24), the mean responses for this model are given by: 

(23.4) 

To represent this model in matrix terms. we proceed in the same fashion as in the regres­
sion approach to single-factor ANaVA. Since Eet; = 0, we need only a-I parameters eti 
in the regression model, and we represent the parameter eta as follows: 

(23.5) 

Hence, we utilize a-I indicator variables that can take on values 1, -1, or 0 for the et; 

parameters, as in the single-factor ANaVA representation. Similarly, we need only b - 1 
parameters {3 j in the regression model, and we represent the parameter {3b as follows: 

{3b = -{31 - fh - ... - {3b-l (23.6) 

Hence, we utilize b - 1 indicator variables that can take on values 1. -1, or 0 for the {3j 
parameters. 

For the interaction parameters, we need to recognize that: 

L(a{3);j = 0 

L(et{3)ij = 0 
j 

j = 1, ...• b 

i = 1, .. . ,a 
(23.7) 
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Example 

TABLE 23.1 
Sample Data 
and Notation­
Growth 
Hormone 
Example 
(growth rate 
difference in 
centimeters per 
month). 

Therefore. we represent the parameters (a[:3);/, and (a[:3)"j as follows: 

ta(3)i1, = -(a[:3);1 - (a[:3)i2 - ... - (a[:3k/,-1 

(a[:3)"j = -(a{3)u - (af-3)2j - ... - (a[:3),,-l.j 

(23.8) 

(23.9) 

Indeed, because of the interrelations in the constraints in (23.7). only (a - I )(b - 1) term 
(a{j);; are needed in the regression model. As we shall demonstrate below. these are precisel S 

the terms associated with the cross products between the indicator variables forthe factor l 
and factor B main effects. We turn now to an example to illustrate how ANQYA tests are 
conducted by means ofthe regression approach when the treatment sample sizes are unequal. 

Synthetic growth hormone was administered at a cI inical research center to growth hormone 
deficient, short children who had not yet reached pubel1y. The investigator was interested 
in the effects of a child's gender (hlctor A) and bone development (factor B) on the rate of 
growth induced by hormone administration. A child's bone development was classified into 
one of three categories: severely depressed. moderately depressed, mildly depressed. Three 
children were randomly selected for each gender-bone development group. The response 
variable (Y) of interest was the difference between the growth rate during growth hormone 
treatment and the normal growth rate prior to the treatment, expressed in centimeters per 
month. Four of the 18 children were unable to complete the year-long study, thus creating 
unequal treatment sample sizes. Note that this is an observational study. All children received 
the same hormone therapy, and, subsequently, changes in growth rates were observed for 
children in each bone development -by-gender category. No randomization of treatments to 
subjects was employed. 

Table 23.1 presents the study data. A plot of the estimated treatment means is shown 
in Figure 23.1. It is clearly suggested there that a child's bone development has a major 
impact on the change in growth rate. The plot also raises the questions as to whether some 
interaction effects are present and whether the gender of a child affects the growth rate. 

To test formally whether or not these factor effects are presenl, we utilize the general 
linear test approach and the equivalent regression model formulation because of the unequal 
sample sizes. 

Bone Development (factor 8) 
j 

Gender (factor A) Severely Moderately Mildly 
Depressed (81) Depressed (82) Depressed (83) 

Male (AT) 1.4 (Y111) 2.1 (Y121 ) .7 (Ym) 
2.4 (Y112) 1.7 (Y122) 1.1 (YI32) 
2.2 (Y113 ) • 

Mean 2.0 (YlI .) 1.9 (YT2') .9 (V;3') 

Female (A2) 2.4 (Y211) 2.5 (Y221 ) .5 (Y23T) 
1.8 (Ym ) .9 (Ym) 
2.0 (Ym ) 1.3 (Ym) 

Mean 2.4 (Y2J.) 2.1 (Y22.) .9 (Y23.) 
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Development of Regression Model. The two-factor ANOVA model (19.23) here is: 

i = 1,2; j = 1,2,3 (23.10) 

To express this model in regression terms, we utilize indicator variables that take on the 
values 1, -1, or 0, as explained below. Specifically, we need a-I = 2 - 1 = 1 indicator 
variable for the factor A main effects and b - 1 = 3 - 1 = 2 indicator variables for the 
factor B main effects. The interaction terms correspond to the cross products of the indicator 
variables for factor A and factor B main effects. Specifically, the regressi on model equivalent 
to ANOVA model (23.10) is: 

Yijk = f.J., •• + atXijkl + {31Xijk2 + f32Xijk3 

where: 

Xl = {_~ 

x,={-i 

x'={-i 

'-v--" v ' 
A main effect B main effect 

+ (a{3)llXijkIXijk2 + (a{3)12XijklXijk3 + Cijk 
, J 

v 
AB interaction effect 

if case from leve11 for factor A 
if case from level 2 for factor A 

if case from level 1 for factor B 
if case from level 3 for factor B 
otherwise 

if case from level 2 for factor B 
if case from level 3 for factor B 
otherwise 

Full model (23.11) 
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TABLE 23.2 
Data for 
Regression 
Fits-Growth 
Hormone 
Example. 

The regression coefficients in (23.11) are the ANaVA model parameters: 

fJ., .. 

al =fJ.,I·-fJ.,.· 

f31 = fJ.,·1 - fJ., .. 

th = fJ.,·2 - fJ., •. 

(af3)1I = fJ.,1I - fJ.,1· - fJ.,·1 + fJ., •. 

(af3)12 = fJ.,12 - fJ.,1· - fJ.,·2 + fJ., •. 

(23.12) 

The remaining ANaVA model parameters are not required in the regression model because 
of the constraints in (19.23). Thus, for instance: 

fh = -f31 - th 
(af3)I3 = -(af3)Il - (af3)12 

(af3b = -(af3)1I 

(23.13) 

Table 23.2 repeats in column 1 a portion of the response data from Table 23.1. The 
codings of the indicator variables and the interaction terms are shown in columns 2-fi. 
Note, for instance, that the codings for the first male child whose bone development is 
severely depressed (i = 1, j = 1, k = 1) are XI = 1, X2 = 1, and X3 = 0, so that 
XIX2 = 1 andXIX3 = o. Table 23.3apresents the fitted regression function and regression 
ANaVA table when the full regression model (23.11) is fitted to the data, i.e., when Y in 
column 1 of Table 23.2 is regressed on the X variables in columns 2-6. Note that the fitted 
values for the full model are the estimated treatment means Y;j-. just as when all treatment 
sample sizes are equal. For instance, we have for the first case (k = 1) from treatment 
i = 1, j = 1: 

:VIII = 1.7 - .1(1) + .5(1) + .3(0) - .1(1) - 0(0) = 2.0 = Yll . 

and for the last case (k = 3) from treatment i = 2, j = 3: 

:V233 = 1.7 - .1(-1) + .5(-1) + .3(-1) - .1(1) - 0(1) =.9 = Y23. 

(1) (2) (3) (4) (5) (6) 
j k Y Xt X2 X3 Xt X2 Xt X3 

1 1.4 1 0 0 
2 2.4 1 0 '> 

2 2 1.7 0 1 0 1 
3 1 .7 -1 -1 -1 -1 

2 3 2 .9 -1 -1 -1 
2 3 3 1.3 -1 -1 -1 
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'ptE 23.3 Fits of Full and Reduced Regression ModeIs-Growth Hormone Example. 

"1:;". (a} FuIlMo~eIJ23:11) 
~of 
ito., frO' ..•.. 

t:i>iiQn 
t'l~ 

r~ 

~1:' 
_ ,l'SSion 
.~~ 

.IJ; 
., 
~ 
-i! 

• -; 
" 

of 

55 

4.4743 
1.3000 

5.7743 

55 

4.3989 
1.3754 
-,-,~-' 

5.7743 

55 

4.3543 
1.4200 

5.7743 

55 

0.2846 
5.4897' 

, . 

5.7743 

df 
5 
8 

13 

df 

3 
'fO' 

13 

df 

4 
9 

13. 

df 

3 
10 

13 

SSE(R}-SSE(F) = 1.3754-,,1.3000=.0754 

(c) Reduced Model (23.17) 

Y = 1.69 + .444X2+.328X~·-:-.0667X1X7-.0167X1X3; 
) 

SSf(R),-,- SSE(F)':;:: 1.4200-1.3000 = ~ 1200; 

(d) Reduced Model (23.18) 

SSE(R) - SSE(F) = 5.4897,~,J .300,0 = 4.1897 

Test for Interaction Effects. To test whether or not interaction effects are present, the 
ANOVA model alternatives: 

Ho: all (af3)ij = 0 

Ha: not all (af3)ij equal zero 
(23.14) 

become for regression model (23.11): 

Ho: (af3)ll = (af3h2 = 0 

Ha: not both (af3)l1 and (af3h2 equal zero 
(23.14a) 
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Thus, we are simply testing whether or not two regression coefficients equal leI' 
reduced regression model therefore is: o. The 

Reduced model (23.15) 
When this reduced model is fitted by regressing Y in column I of Table 23.2 on XI X 

X 3 in columns 2-4, the results presented in Table 23.3b are obtained. The gene:al ~i and 
test statistic (2.70) therefore is: near 

F' = SSE(R) - SSE(F) -T SSE(F) 

elf;, - ((I;; {(f;; 

1.3754 - 1.3000 1.3000 .0377 = -;- -- = -- = .23 
10 - 8 8 .1625 

To control the risk of making a Type 1 error at 0' = .05, we require F(.95; 2,8) = 4.46. Since 
F* = .23 S 4.46, we conclude Ho, that no interaction etlects are present. The P-valuefor 
this test statistic is .80. 

Tests for Factor Main Effects. We now proceed to test whether or not factor A and 
factor B main effects are present. The ANOYA model alternatives: 

Ho: 0'1 = 0'2 = 0 

H,,: not both 0'; equal zero 

become for regression model (23.1 I): 

Ho: 0'1 = 0 

H,,:O'I #0 

Ho: {:31 = {:3~ = f3J = 0 

H,,: not all {:3j equal zero 

Ho: {:31 = f3~ = 0 

H,,: not both {:3j equal zero 

(23.16) 

(23.16a) 

The reduced regression models for testing for factor A main effects and factor B main 
effects therefore are: 

Y,jk = fJ·· + {:31 X;jkl + {:3~ X;jk3 + (0'f3) II X ijkl Xijk~ 

+ (O'f3)I~Xijkl X iik3 + Cijk Reduced model (23.17) 

Yiik = fJ·· +O'IXi.ikl + (O'{:3)IIXijkIXijk~ 
+ (O'{:3)I~XijkIX;jO + Cijk Reduced model (23.18) 

Table 23.3c presents the results of fitting reduced model (23.17), where Y in column I 
of Table 23.2 is regressed on X 2, X J , XI X~, and X I X 3 in columns 3-6. Finally, Table 23.3d 
contains the results of fitting reduced model (23.18), where Y in colupm I of Table 23.2 is 
regressed on X I, X I X 2, and X I X 3 in colunins 2, 5, and 6. The two test statistics therefore 
are: 

F* = 1.4200 - 1.3000 -;- 1.3000 = .1200 = .74 
I 9 - 8 8 .1625 

F* = 5.4897 - 1.3000 -;- 1.3000 = 2.0949 = 12.89 
~ 10 - 8 8. 1625 
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For a = .05, we require F(.95; 1,8) = 5.32 and F(.95; 2, 8) = 4.46 for the two tests. 
Since F: = .74 :::: 5.32 and F; = 12.89 > 4.46, we conclude that there are no factor A 
main effects but that factor B main effects are present. The respective P-values for these 
two test statistics are .41 and'.003. 

Thus, these tests support the indications obtained previously from the estimated treatment 
means plot in Figure 23.1, that a child's bone development affects the change in growth 
rate during growth hormone treatment and that there are no gender and interaction effects. 
The family level of significance for the set of three tests just conducted, according to the 
Bonferroni inequality (4.4), is .15. 

At this point, the next step in the analysis of the study results is to examine the nature of 
the bone development effects. We shall discuss this analysis in the next section. 

Table 23.4 contains a consolidated ANOVA table presenting the results from fitting the 
four regression models in Table 23.3. The sum of squares for a factor effect in each instance 
is the difference between the error sums of squares for the reduced and full models shown in 
Table 23.3, and the associated degrees of freedom are the difference between the respective 
degrees of freedom for these error sums of squares. Note that a total sum of squares is not 
shown in Table 23.4 because the sums of squares for the three factor effects and for error 
do not add to SSTO when the treatment sample sizes are unequal. 

Comment 
In the event that pooling of sums of squares is desired for testing factor main effects when the test 
for interactions leads to the conclusion that there are none, as discussed in Section 19.10, the full 
regression model for testing factor A and factor B main effects needs to be revised. Specifically with 
reference to the growth hormone example, the full regression model in (23.11) would need to be 
revised by excluding the interaction effects and would be as follows: 

Revised full model (23.19) 

• 

g3.3 Inferences about Factor Effects when Sample Sizes 
Are Unequal 

The estimation of factor effects when the treatment sample sizes are unequal is completely 
analogous to when the sample sizes are equal. The nature of the analysis depends on whether 
or not important interactions are present. When no important interactions are present, the 
analysis generally is concerned with the factor level means f.J.,i. and f.J.,.j. On the other 
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hand, when impOitant interactions are presenl, the analysis usually focuses on the t 
reatment 

means !Jij' 
The estimators and estimated variances presented in Chapter 19 for equal sample . 

must, of course, be modified to recognize the unequal treatment sample sizes. For inst SIZes 

if interest is in estimating the factor level means !Ji. as defined in (19.2) when all treat
ance

, 
. I. ment means are of equa Importance: 

L J !Jij 
!Ji· = --b-

the app~opriate estimator is simply the unweighted average of the estimated treatment 
means Yij.: 

These estimated factor level means are referred to as least squares means. Since the y. are 
I)' 

independent, the variance of this estimator is: 

and the estimated variance is: 

? ~ MSE I 
S-{!Ji.} = -? ~-

b- n·· j IJ 

Table 23.5 presents the formulas for the point estimator and estimated variance when 
estimating factor level means, pairwise comparisons of factor level means, and contrasts 
or linear combinations of factor level means, when the sample sizes are unequal. The 
con·esponding formulas for treatment means, pairwise comparisons of treatment means, 
and contrasts or linear combinations of treatment means are also presented in this 
table. 

All multiple comparison procedures applicable for equal sample sizes are appropriate 
when the treatment sample sizes are unequal. The Tukey pairwise comparison procedure 
then is conservative. The degrees of freedom associated with MSE are I1T - ab, as before. 
[Recall for equal sample sizes thatnT = nab; hence,I1T -ab = (n -1)ab.J Table 23.5aIso 
presents the appropriate simultaneous comparison multiples for making inferences about 
factor level means or treatment means. 

Test statistics and decision ndes for simultaneous tests based on the Bonferroni, Tukey, 
and Scheffe procedures are easily adapted from the formulas in Chapter 19. The form of 
a test statistic does not change, but the degrees of freedom associated with MSE in each 
decision rule must now be expressed as nT - ab. 

Since no new issues are involved in estimating factor effects when the sample sizes are 
unequal, we proceed directly to two examples. 
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/BftE 23.5 Point Estimators and Estimated Variances for Two-Factor Analyses when Sample Sizes 
,1 Unequal. 

~~~~------~~~~~~--~----~~~~--~--~~~~--~--~-----

(aYFactorLe~~1 Mean 
" ;' . .,..:.:.:0;"----'-"-"---'-' ____ ....i. '-'-~'....i' . ....i •. .,i;.""--' ,"""',: ....ii· '-". ';';';' ,-,-' ~..;;:,..;;.~~"--'-. ..,.. •• :...; •... ';"'."';;.,; ... "". "--~--.,...-,.,-;---~-----~ 

-i,~; ''ti;ii ~'J= t;:u' 

",,-, .. ~,J[(~ j;ii·-'-f.£f'· 

ta'i,~ /£1, ~P-jf. 

• 1 

i;;: "; 'MSE:~ ( 1 1) ,tJPJ .=;: . 62 7 ni j +ni'j . 

~ pl'L·CtJii. 
-( 

i . 

.. ~~: - MSEE' _2 L" 1 
~M} - -b2Cj -:-
~ . ~ .. 

. i j 1/ 

p-.j :=EraPh 

S2{P-~t} =~!~r;~ir 

D ::; fl..] 7". /.f·i: 
. . 

j 

(d) Confid~nc~ Interval,Mult!jlle 

Singlti'Estimilfe 

, iB,:=d(l - aj2g;nr - ab) 

t(17" ct/2;'nr - Cib): 

l\I1ul1:ip-'e. c:0n:iPfl~\solJs 

B ,=' t(1.,,-aj2g; YJr ~ 'ab), 

t . ' '. r .=,,,--n(J'""'"Ciib; nr,~ab} .. .f1'1 ... ... ". .. 

:-'S2 ;=.(b~ UlD:-,a-;b-l,nr.- db) 
;"_', ,_ ,_~ 0_<." '" _." - • , ,_. ,,', -,. ". _ >~ • 

(23,20) 

(23.21) 

(23.22) 

( continued) 
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TABLE 23.5 
Point 
Estimators and 
Estimated 
Variances for 
Two-Factor 
Analyses when 
Sample Sizes 
AreUneqnai 
(concluded). 

Multi-Factor Stut/ie',' 

(e) Treatment Mean 

2 MSE 
s (/lid =-­

ni; 

(f) Pairwise Comparison of Treatment Means 

D = ILii - ILi'i' 

s2(D) = MSE (~. + n~,) 
'/ '/ 

(g) Contrast or Linear Combination of Treatment Means 

L = LLciiILii 

[ = LLciiV,'i' 

(h) Confidence Interval Multiple 

Single Estimate 

t(l - a12; nr - ob) 

Multiple Comparisons 

B = t(l - al2g; nr - ob) 

1 
T = .J2q(l - a; ob, nr - ob) 

Y = (ob -l)F (1 - a; ob -1, nr - ob) 

(23.2S~ 

(23.26~ 

(23.27) 

Example l-Pairwise Comparisons of Factor level Means 
• 

We continue with the growth hormone example. We found earlier that a child's gender and 
bone development do not interact in their effects on the change in the growth rate when 
growth hormone is administered. We further found no main gender (factor A) effects, but 
concluded that a child's bone development (factor B) does affect the change in growth rate. 
We shall now analyze the nature of the bone development effects by means of pairwise 
comparisons among the three bone development groups. The Tukey multiple comparison 
procedure will be used. This procedure is conservative when sample sizes are unequal, and 
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use of the Bonferroni procedure would lead to wider confidence intervals here. The family 
confidence coefficient has been specified to be .90. 

We use formulas (23.21) in Table 23.5 for the point estimates and estimated variances. 
The estimated treatment means are given in Table 23.1, and MSE is found in Table 23.4. 
For the pairwise comparisons of the bone development factor level means (j = 1: severely 
depressed; j = 2: moderately depressed; j = 3: mildly depressed), we obtain: 

{L.I = Yll . + Y21 . = 2.0 + 2.4 = 2.2 
2 2 

{L.2 = Y12• + Y22• = 1.9 + 2.1 = 2.0 
2' 2 

{L.3 = Y!3. + Y23. = .9+ .9 =.9 
2 2 

VI = {L'I - {L.2 = 2.2 - 2.0 =.2 

V2 = {L.I - {L.3 = 2.2 -.9 = 1.3 

V3 = {L.2 - {L·3 = 2.0 - .9 = 1.1 

2 ~ .1625 (1 1 1 1) 
s {Dd = (2)2 3" + 2: + 1 +"3 = .0880 

2 ~ .1625 (1 1 1 1) 
s {D2} = (2)2 3" + 2: + 1 + "3 = .0880 

2 ~ .1625 (1 1 1 1) 
S {D3} = (2)2 2: + 2: + 3" +"3 = .0677 

For a 90 percent family confidence coefficient, we require: 

1 1 

s{Vd = .297 

T = -/2q(.90; 3,8) = -/2(3.37) = 2.38 

Hence, we obtain the following confidence intervals: 

-.51 = .2 - 2.38(.297) :'S /L.I - /L.2:'S .2 + 2.38(.297) = .91 

.59 = 1.3 - 2.38(.297) :'S /L.I - /L.3 :'S 1.3 + 2.38(.297) = 2.01 

.48 = 1.1 - 2.38(.260) :'S /L.2 - /L.3 :'S 1.1 + 2.38(.260) = 1.72 

We conclude from these confidence intervals with 90 percent family confidence 
coefficient that growth hormone deficient, short children with mildly depressed bone de­
velopment on the average have a substantially smaller increase in the growth rate than 
children with either moderately depressed or severely depressed bone development. Fur­
ther, the latter two groups of ~hildren do not show significantly different mean changes in 
the growth rate. We summarize these findings in the following line plot of the estimated 

j 

'I 

I 

I 
I 
! 
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factor level means: 

Mild Moderate Severe 

! \ I • " • 
0.5 1.5 2.5 

Change in Growth Rate 

Example 2-Single-Degree-of-Freedom Test 

23.4 

In the growth hormone example, a researcher wanted to know whether children with oni 
mildly depressed bone development obtain. on the average, any increase in the growth rat~ 
with administration of growth hormone. Thus, the alternatives to be considered are those 
for a one-sided test: 

Ho: fl.3 :::: 0 

HlI : fl'3 > 0 

The level of significance is to be controlled at a = .05. 
The test statistic to be employed is: 

* fl·3 t =--
slit·) } 

We found earlier that fl'3 = .9 and MSE = .1625. Using (23.20), we obtain: 

? .1625 (I 1) s-{fl'31 = --? - + - = .0339 
- (2)- 2 3 

Hence, the test statistic is: 

.9 
t*= - =4.89 

.184 

s{fl.J} = .184 

For a = .05, we require t (.95; 8) = 1.860. Therefore the one-sided decision rule is: 

If t* :::: 1.860, conclude Ho 

If t* > 1.860, conclude HlI 

Since t* = 4.89 > 1.860, we conclude H lI , that the mean change in the growth rate for 
children with mildly depressed bone development is greater than zero. The one-sided 
P-value for this test statistic is .0006. 

Empty Cells in Two-Factor Studies 

Occasionally after a two-factor study has been completed, it tums out that there are no caseS 
in one or several treatment cells. Not only are the treatment sample sizes unequal then, but 
there is no sample information aboul the treatment means for the empty cells. Consider 
again Table 23.1 for the growth hormone study. Note that two female children with severely 
depressed bone condition dropped out of the study before its completion so that only one 



Chapter 23 Two-Factor Studies with Unequal Sample Sizes 965 

case (n21 = 1) is present for that treatment. We can imagine easily that all three of these 
children could have dropped out of the study. Then we would have had n21 = 0, and no 
sample information would have been available about the treatment mean !L21. 

Jirtial Analysis of Factor Effects 
··r" When one or several treatment cells are empty, the analysis of variance for unequal sample 

sizes by means of the equivalent regression model, as explained earlier, cannot be con­
ducted. This does not mean, however, that the entire two-factor study has become useless. 
A variety of partial analyses usually can be conducted that will provide at least some 
information about the nature of the factor effects. The analyses that can be undertaken de­
pend on the particular cells for which no sample information is available. We illustrate by 
means of an example how partial information can be obtained from two-factor studies with 
empty cells. 

~ample 

\F'IGURE 23.2 
Schematic 
(irepresentation 
of Growth 
Hormone 
Study with 
};mpty 
Cell-Growth 
,Hormone 
,Example 
'fnzl = 0). 

In the growth hormone example, suppose that there are no observations for female children 
with severely depressed bone development; i.e., n21 = 0. In that case no sample information 
is available about the treatment mean !L21. We represent this situation in Figure 23.2a 

Partial information about interactions can still be obtained by restricting attention to 
children with moderately depressed and mildly depressed bone development, as represented 
in Figure 23.2b. For these children, interactions are present if the differences between the 

Gender 

Male (A1 ) 

Female (A 2 ) 

Male (A1 ) 

Female (A 2 ) 

Severely 
Depressed 

B1 

Bone Development 

Moderately 
Depressed 

82 

(a) Empty Cell 

1L11 1L12 

Empty cell 1L22 

(b) Partial Study of Interactions 

Mildly 
Depressed 

8 3 

(c) Partial Study of Factor A and Factor B Main Effects 

Male (A1 ) 

Female (A 2 ) 

(d) Partial Study of Fac~or 8 Main Effects 

Male (A1 ) 

Female (A2 ) 

1L12 
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treatment means for the two genders are not the same for the two bone development 
. . groups 

The two differences are: . 

/112 - /122 /113 - /123 

Thus, we consider the following contrast among the treatment means: 

L = /112 - /122 - /113 + /123 

,!"e can .either eslimate L by means of a c.onfidence interval and note whether or not the 
lI1terval mcludes zero, or we can conduct a smgle degree of freedom test to establish wheth 
or not interactions are present. With either approach, we use MSE based on all sam ~r 
observations so that the associated degrees of freedom for MSE would be nT - (ab - I}P~ 
13 - 5 = 8 (remember that 1121 = 0 now). 

If the pm1ial analysis of interactions were to suggest that no interactions are present, the 
effect of gender can be studied by comparing the factor level means eXcluding children with 
severely depressed bone development, as represented in Figure 23.2c: 

/11' = 
/112 + /113 

2 
/12, = 

/122 + /123 

2 

In addition, the effect of bone development can be studied for male children by comparing 
the treatment means /11 J, /112, and /113, as represented in Figure 23.2d, or it can be studied 
for children of both genders by excluding those with severely depressed bone development, 
as represented in Figure 23.2c: 

/112 + /122 /113 + /123 
/1·2= 2 /1'3= 2 

Analysis if Model with No Interactions Can Be Employed 
Occasionally, information is available from previolIs studies thal the two factors in a two­
factor study do not interact. In that case, a model with no interaction effects can be employed. 
Such a model was introduced in (20.1) for the case il = I. When there are l7;j observations 
for the treatment consisting of the ith level of factor A and the Jth level of factor B, the 
no-interaction model is: 

Yijk = /1 .. + O'i + {3j + C;jk No-interaction model (23.28) 

When no-interaction model (23.28) is appropriate, the analysis of variance and the analysis 
of factor main effects can be conducted by means of the equivalent regression model even 
when one or several cells are empty, as long as relevant other cells are not empty. [The 
relevant other cells are ones that satisfy the relations in (l9.7b}.J 

The reason why the usual analysis of variance by means of the equivalent regression 
model can be conducted for ANOYA model (23.28), even thOltgh one or more cells are 
empty, is that the assumption of no interactions permits us in effect to estimate the empty 
cell means. Conceptually, estimation of an empty cell mean, say /121, requires two steps. 
Firsl, we need to estimate the treatment means for the nonempty cells. These estimates 
are more complicated than simply using the estimated treatment means because the model 
assumption of no interactions needs to be utilized. We encountered such estimates for a 
no-interaction model in Chapter 20 when we considered studies where l7 = l for each ceIl. 
Once we have estimates of the treatment means /1ij for the nonempty cells, the second step in 
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estimating the empty cell mean fJ.,21 is to utilize the relation in (19.7b) for the no-interaction 
case, whereby we can express fJ.,21 in terms of three other treatment means. For instance, 
fJ.,21 can be estimated from [hi = fl22 + flll - fl12. 

In the growth hormone example, suppose that the cell for female children with severely 
depressed bone development is empty. From past knowledge, the researcher is able to 
assume that there are no interactions between gender and bone development. In that case, 
regression model (23.3) reduces to: 

Full model (23.29) 

To test for, say, gender main effects, we first fit this full model and obtain SSE(F). The 
alternatives to be tested are: 

Hence, the reduced model is: 

Ho: al = 0 

Ha: a. i- 0 

Reduced model (23.30) 

We then fit this reduced model, obtain SSE(R), and calculate the general linear test statistic 
(2.70) in the usual fashion. A test for bone development effects is carried out similarly. 

Comments 

1. We need to caution that it is not appropriate in the presence of empty cells to use a no-interaction 
model as the full model when no prior information about the absence of interactions is available. Only 
partial analyses of factor effects should then be undertaken, as explained earlier. 

2. We have considered one cause of empty cells, when cases are missing or lost at random in 
an experimental study or when the sample in an observational study fails to include any cases for 
a particular cell. In these situations, the cell mean for the empty cell exists even though no cases 
are available for that cell. In contrast, a structural empty cell occurs when it is known a priori that 
it is impossible to obtain data for that cell. In this latter situation, the factorial structure is partially 
destroyed since the cell mean for the empty cell does not exist, and it is therefore meaningless to 
estimate the mean for such a structural empty cell on the basis of the other cases. • 

Missing Observations in Randomized Complete Block Designs 
There are occasions when one or several observations in a randomized complete block 
design are "missing"-a subject may have been sick, a record may have been mislaid, a 
treatment may have been applied incorrectly in one instance. Such missing responses destroy 
the balance (orthogonality) of the complete block design and make the usual ANOVA 
calculations inappropriate. However, the regression approach discussed in Section 23.2, is 
ordinarily still appropriate when there are missing responses. 

Since no new principles are involved, -we turn to an example to illustrate the use of 
the regression approach when observations are missing in a randomized block design 
experiment. 
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Example 

TABLE 23.6 
Example of 
Missing 
Observation in 
Randomized 
Block Design 
(r = 3, nb = 3). , 

Table 23.6a contains the data for a simple randomized block design experiment with r:::: 3 
treatments and nb = 3 blocks, where observation Y ll is missing. We set up the regress' 
model equivalent to randomized block design model (21.1) as follows: IOn 

where: 

Block effect Treatment effect 

if experimental unit from block 1 
if experiment unit from block 3 
otherwise 

if experimental unit from block 2 
if experiment unit from block 3 
otherwise 

if experimental unit received treatment 1 
if experiment unit received treatment 3 
otherwise 

if experimental unit received treatment 2 
if experiment unit received treatment 3 
otherwise 

Full model (23.31) 

Table 23. 6b repeats the Y observations in column 1 and presents the four indic ator variable 
in columns 2-5. 

Jet) Re~f>0nse Data 

Block 
Tr:~atment(j) 

1 2 3, 

1 Missing 10 9 
2 11 10 7 
3 6 4 3 

(b) Re~ression Variables 

(1) (2) (3) (4t (5) 
j Y Xl X2 X3 X4 • 

1 2 10 1 0 .0 1 
1 3 9 1 .0 -1 -1 
2 1 11 0 1 J .0 
2 2 10 (> 1 0 J 
2 3 i 0 i ,-1 ~J 
3 1 15 -1 -1 ·1 0 
3 :2 4 -1 -1 0 1 
3 <3 3 -1 -1 -"'1 -1' 



TABLE 23.7 
ANOVATable 
and Other 
Regression 
Output-
Missing Data 
ij;xampIeof 
Table 23.6. 
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The analysis of variance for testing treatment effects and block effects is carried out in 
the usual manner by first fitting the full model (23.31) and then fitting each ofthe following 
reduced models: 

Test for Block Effects 

Yij = M .. + 7: I Xij3 + 7:2Xij4 + eij 

Test for Treatment Effects 

Yij = M .. + PIXijl + P2Xij2 + eij 

Reduced model (23.32) 

Reduced model (23.33) 

The extra sums of squares SSR(XI, X2 1X3, X4) for blocks and SSR(X3, X4 1X h X 2 ) for 
treatments are then calculated in the usual manner. Table 23.7a presents these extra sums 
of squares for our example obtained from fitting the full and reduced models, as well as the 
error sum of squares for the full model. No total sum of squares is shown because of lack 
of orthogonality as a result of the missing observation. 

(a) ANOVA Table 

Source of 
Vanation 55,' df M5 

Blocks 53.83 2 26.92 
Treatments 12.50 2 6.25 
Error 1.33 3 .44 

(b) Estimated Regression Coefficients for Full Model (23.31) 

Regression 
Coefficient 

/L •• 

Pl 

P2 

Estimated Regression 
Coefficient 

fl .. = 8.000 

Pl = 2.333 

P2 = 1.333 

Tl ~ 1.667 

T2 = 0.0 

(c) Estimated Variance-Covariance Matrix of Regr:ession Co~ffici~nts 

/L .. Pl P2 Tl T2 

fl.· .06173 

Pl .02469 .14815 

P2" -.01235 -.07407 .1111l 

Tl ,02469 .04938 -.02469 ~14815 

T2 -.01235 -.02469 .01235 -.07407 .11111" 
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23.5 

Example 

The test for treatment effects i.s conducted as usual. From Table 23.7a we find: 

F* = MSR(X3 , X4 IX" X2 ) = 6.25 = 14.2 
MSE .44 

For 0' = .05, we need F(.95; 2, 3) = 9.55. Since F* = 14.2 > 9.55, we conclude th 
differential treatment effects are present. The P-value of this test is .03. The test for bloc~ 
effects can be carried out along similar lines when it is of interesl. 

No new problems are encountered with the regression approach in analyzing fixed treat­
ment effects when there are missing observations. For instance, to estimate the pairwiSe 
comparison L = fl., - fl.3 = T, - T3, we utilize the fact that T3 = -T, - T2 so that we 
have: 

L = fl., - fl.) = T, - T3 = T, - (-T, - T2) = 2T, + T2 (23.34) 

An unbiased estimator of (23.34) is: 

(23.35) 

whose estimated variance is, using (A.30b): 

(23.36) 

Table 23.7b contains the estimated regression coefficients for the full model, and Table 23.7c 
contains the estimated variance-covariance matrix of the regression coefficients. We there­
fore obtain the following estimates: 

L = 2(1.667) + 0.0 = 3.334 

s2{L} = 4(.14815) + .11111 + 4(-.07407) = .4074 

so that the estimated standard deviation is s{L} = .638. A 95 percent confidence interval 
for L requires t(.975; 3) = 3.182, yielding the confidence limits 3.334 ± 3.182(.638) and 
the confidence interval: 

ANOVA Inferences when Treatlnent J\;leans Are 
of Unequal hnportance 

On occasion, the treatment means flij in a two-factor study are not Qf equal importance, so 
the unweighted factor level means fl.j and fli' defined in (19.1) and (19.2) are not relevant. 

In a breakfast cereal study 60 percent of the consumers of this product were children, 
20 percent male adults, and 20 percent female adults. In this study, factor A was type of 
sweetener (i = I: com syrup, i = 2: low-calorie sweetener) and factor B was consumer 
category (j = I: child, j = 2: male adult, j = 3: female adult). The company wishes to 

determine if a change to a low-calorie sweetener will change the mean rating of its product 
in the population of consumers. Here, the treatment means flij have unequal importance 
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and the company therefore wishes to compare the two weighted means: 

Corn syrup: .6Mll + .2M12 + .2MI3 

Low-calorie sweetener: .6M21 + .2M22 + .2M23 

This can be done by estimating the contrast: 

or by testing the alternatives: 

Note the use of the weights .6, .2, and .2 to reflect the unequal importance of the treatment 
means Mij. 

istimation of Treatment Means and Factor Effects 

EXample 

Estimation of treatment means and factor effects when the treatment means have unequal 
importance does not lead to any additional complexities. The general formulas in Sec­
tion 23.3 for estimating treatment means Mij and for contrasts of treatment means still 
apply. We illustrate the analysis of factor effects when the treatment means are of unequal 
importance by returning to the mathematics learning example in Table 19.11. 

A school administrator in the mathematics learning example had requested information 
about which teaching method leads to better learning of college mathematics when 20 per­
cent of the students in the class have excellent quantitative ability, SO percent have good 
ability, and 30 percent have moderate ability. The mean learning scores for such a class 
mix with the two teaching methods are the following linear combinations of the treatment 
means: 

Abstract method: LI = .2Mll + .SMI2 + .3M13 

Standard method: L2 = .2M21 + .SM22 + .3M23 

We assume here that the mean learning scores for students with different quantitative abilities 
will not be affected by a class mix that is somewhat different from the one in the experimental 
study. 

Point estimates ofthe mean scores are (data in Table 19.11a): 

LI = .2(92) + .S(81) + .3(73) = 80.8 

L2 = .2(90) + .S(86) + .3(82) = 8S.6 

The difference between the two mean scores is a contrast: 

This contrast is estimated to be: 

L = LI - £2 = 80.8 - 8S.6 = -4.8 

We can obtain the estimated variance of L by (l9.93b) since there are equal sample sizes 
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here: 
o A 28 0 0 ? ? ? 0 

s-fL} = 21[(.2)- + (.5)- + (.3)- + (-.2t + (-.5)- + (-.3tl = 1.013 

so that the estimated standard deviation is s{.L1 = 1.006. For a 95 percent confiden 
coefficient, we require (.975; 120) = 1.980. Hence, the confidence limits are -4.8 ~ 
1.980( 1.006) and the desired confidence interval is: 

-6.79 S L S -2.81 

With 95 percent confidence we conclude that the standard teaching method is better forthe 
specified class mix, leading to a mean learning score that is at least 2.81 points greaterthan 
that for the abstract teaching method and may be as much as 6.79 points greater. 

Test for Interactions 
The test for interactions also is not affected by unequal importance of treatment means since 
this test is concerned with the parallelism, or lack of it, of the treatment mean curves. This 
was illustrated in Figures 19.3, 19.4, and 19.5. The treatment mean curves are based solely 
on the individual treatment means fJij and hence do not involve averages of the treatment 
means. Thus, the test for interactions is conducted as explained in Section 19.6 when the 
sample sizes are equal and as explained in Section 23.2 when the sample sizes are unequal, 
whether the treatment means are of equal or unequal importance. 

Tests for Factor Main Effects by Use of Equivalent Regression Models 

Example 

Tests for factor main effects when the treatment means are of unequal importance are carried 
out by the general linear test approach of Chapter 2. First, we shall explain how to implement 
factor tests with the general linear test approach by use of equivalent regression models; we 
then shall explain implementation by means of a matrix formulation. 

When the treatment means are of unequal importance, the use of equivalent regression 
models to carry out the general linear test approach is easiest when cell means model (19.15) 
is employed. Since no new plinciples with the regression approach are involved. we turn to 
an example to illustrate the tests for main effects. 

In the growth hormone example in Table 23.1, it is known that twice as many male as female 
children undergo growth hormone treatment therapy, and that this ratio is the same for 
children who have severe, moderate, and mild depression in bone development. Inferences 
are desired about the target population of children undergoing therapy. Specifically, we wish 
to test whether or not the state of bone development affects the change in growth r~te in the 
target population. The alternatives therefore are: ' 

2fJ 12 + fJ22 

3 
H,,: not all equalities hold 

2fJ 13 + fJ23 • 

3 

We restate the alternative Ho in the following equivalent fashion: 

(~3.37) 

(23.37a) 
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Implementation of the general linear test (2.70) requires that we fit the full model and 
then fit the reduced model under Ho. The full ANOVA model is cell means model (19.15): 

Following the example in (16.85), we obtain the equivalent full regression model: 

where: 

Yijk = 1L1lXijkl + 1L12 X ijk2 + ILI3Xijk3 + 1L21 X ijk4 

+ 1L22Xijk5 + 1L23Xijk6 + eijk Full model 

if case from level 1 of factor A and level 1 of factor B 

otherwise 

if case from level 1 of factor A and level 2 of factor B 

otherwise 

{

I if case from level 2 of factor A and level 3 of factor B 
X6= 0 

otherwise 

(23.38) 

Table 23.8 repeats in column 1 a portion ofthe data on the Y observations from Table 23.1 
and presents in columns 2-7 the codings of the X variables for the full model. Note, for 
instance, that the codings of the X variables for observation YIlI are X I = 1, X2 = X3 = 
X4 = X5 = X6 = O. 

When Y in column 1 of Table 23.8 is regressed on the X variables in columns 2-7 for 
a no-intercept regression model, we obtain SS£(F) = 1.3000, associated with dfF = 
14 - 6 = 8 degrees of freedom. These results, of course, are the same as in Table 23.3a 
when the equivalent regression model in the factor effects form was used. 

To obtain the reduced regression model under Ho, we need to incorporate the conditions 
in (23.37a) into the full modeL We shall do this by solving the system of two equations in 

TABLE 23.8 Data for Regression Fits when Treatment Means ofUnequaI Importance­
Growth Hormone Example. 

(1) 

~I j k Y 

D 
'" 

1 1 1.4 
~ 1 2 2.4 

i 2 2 1.7 
~. 3 1 .7 

~~L 
3 2 .9 
'3 '3 1.3 

(2) 

o 
o 

o 
o 

(3) 

Xz 
0 
0 

1 
0 

0 
0 

(4) (5) 

Full Model 

X3 X4 

0 0 
0 0 

0 0 
1 0 

0 .-~ 0 
0 0 

(6) (7) (8) (9) (10) (11) 

Reduced Model 

Xs X6 Zl Zz Z3 Z4 

0 0 1 0 0 0 
0 0 1 0 0 0 

0 0 0 1 0 0 
0 0 0 0 1 0 

0 J 1 0 2 -2 
0 1 0 2 -2 
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(23.37a) for any two of the parameters and replacing these two parameters in the full m d 
by the resulting expressions. Arbitrarily choosing /121 and /123, we find in Solving the ~ el 
equations in (23.37a): Wo 

/121 = 2/112 + /122 - 2/111 
(23.39) 

Replacing /121 and /123 in full model (23.38) by the expressions in (23.39), we obtain the 
reduced model: 

YijA = /1I1 X iikl + /112 Xijk2 + /1I.1X ijk3 + (2/L12 + /122 - 2/1I1)Xijk4 

+ /122 X ijkS + (2/112 - 2/11J + /122)X ijk6 + Eijk 

This model can be simplified algebraically, as follows: 

where: 

Zijkl = X ijkl - 2Xijk4 

Zijk2 = X ijk2 + 2X ijk4 + 2Xijk6 

ZijO = X ijk3 - 2X ijk6 

Zijk4 = Xijk4 + Xijk5 + Xijk6 

Reduced model 

(23.40) 

Table 23.8 shows the codings of the new Z variables in columns 8-11. For instance, the 
codings for the new Z variables associated with Y111 are obtained as follows: 

X2 = 0 X3 = 0 X4 = 0 

ZI = 1 - 2(0) = I 

Z2 = 0 + 2(0) + 2(0) = 0 

ZJ = 0 - 2(0) = 0 

Z4 = 0+0+0=0 

Xs =0 

When Y in column 1 of Table 23.8 is regressed on the Z variables in columns 8-11 with a 
no-intercept regression model, we obtain SSE(R) = 4.754 and dk = 14 - 4 = 10. Hence, 
the general linear test statistic (2.70) is: 

F* = SSE(R) - SSE(F) ...;- SSE(F) 

dk - dk dk 

4.754 - 1.3000 . 1.3000 0 
10 - 8 ...,.. -8- = I .63 

If Ho holds, F* follows the F distribution with 2 and 8 degrees of freedom. To control the 
level of significance at 0' = .05, we require F(.95; 2, 8) = 4.46. Since F* = 10.63 > 4.46, 
we conclude H", that the weighted mean change in the growth rate is not the same for the 
three bone development groups. The P-value of this test is .006. 
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~s'fs for Factor Main Effects by Use of Matrix Formulation 
We saw in the growth hormone example when using the equivalent regression models 
to implement the general linear test approach that it was necessary to solve a system of 
two equations in six unknown parameters in terms of any two of the parameters. As the 
number of equations in Ho increases, the algebra can become quite tedious. Under these 
circumstances, it may be easier to carry out the F test when the treatment means are of 
unequal importance by means of formulating the general linear test in matrix terms. 

The full model, as before in (23.38), is represented by: 

y=X ~+€ (23.41) 
llxl llXP pxl llxl 

For the growth hormone example, the X matrix is a 14 x 6 matrix consisting of the columns 
for X I-X6 in Table 23.8, and the ~ vector is: 

ILIi 

IL12 

~ = ILl3 

6xl IL21 

IL22 

IL23 

The least squares and maximum likelihood estimators of the parameters in the full normal 
error model (23.41) will now be denoted by bF and are, as before, given by (6.25): 

bF = (X'X)-IX'y 

Also, the error sum of squares is given by (6.35): 

SS£(F) = (y -XbF)'(Y - XbF ) = y'y - b~X'Y 

A linear test hypothesis Ho is represented in matrix form as follows: 

Ho: C ~ = h 
sxppxl sxl 

(23.42) 

(23.43) 

(23.44) 

where C is a specified s x p matrix of rank sand h is a specified s x 1 vector. For the 
growth hormone example, the hypothesis Ho in (23.37a) can be stated in the form (23.44) 
with the following matrices: 

fi 

2 1 1 

-i1 
0 - --

C= 3 3 3 
2x6 2 1 

0 - 0 
3 3 

ILIi 

ILl2 

2~1 = [~l ~ = ILi3 

6xl IL21 

IL22 

IL23 



976 Part Five Multi-F,,,·roJ" Sfll"ie.~ 

Note that this formulation yields (23.37a): 

[~l = h 

The reduced model then is: 

where C~=h (23.45) 

It can be shown that the least squares and maximum likelihood estimators under the reduced 
model, to be denoted by b R , are: 

(23.46) 

and the error sum of squares is: 

(23.47) 

which has associated with it djR = n - (p - s) degrees of freedom. It can be shown also 
that the difference SSE(R) - SSE(F) can be expressed as follows: 

SSE(R) - SSE(F) = (CbF - h)'(C(X'X)-'CY'(CbF - h) (23.48) 

which has associated with it dfR - dfF = (n - p + s) - (n - p) = s degrees of freedom. 
Hence, the general linear test statistic (2.70) here is: 

* SSE(R) - SSE(F) . SSE(F) 
F = -;--- (23.49) 

S n-p 

where SSE(R) - SSE(F) is given by (23.48) and SSE(F) is given by (23.43). Note for 
the growth hormone example that the numerator degrees of freedom are s = 2 and the 
denominator degrees of freedom are n - p = 14 - 6 = 8, which agree with the degrees of 
freedom obtained when using the equivalent regression models. 

Comments 
I. Many of the m<\ior statistical packages require only that the user furnish Ho in the matrix form 

(23.44) and will then conduct the general linear test. 

2. The least squares estimators b R in (23.46) under the reduced model can be derived by mini­
mizing the least squares criterion Q = (Y - X~)'(Y - X~) subject to the constrai;lt C~ - h = 0, 
using Lagrange mUltipliers. 

3. The test for the alternatives (23.37a) in the growth hormone example can also be conducted by 
estimating the two contrasts: 

IYith a multiple comparison procedure (e.g., the Bonferroni procedure) and noting whether or not both 
confidence intervals include zero. • 



Chapter 23 Two-Factor Studies with Unequal Sample Sizes 977 

'lrests for Factor Effects when Weights Are Proportional to Sample Sizes 
Simplifications in determining the term SSE(R) - SSE(F) in the general linear test statistic 
for testing weighted factor A and factor B effects occur when the weights nij for the means 
lLij are proportional to the total sample sizes ni. and n.j for factor A and factor B levels, 
respectively. Such weights are appropriate in some circumstances but not in many others. 

Consider a study of retail stores. The effects on shoplifting losses of size of store (factor A) 
and location of store within the city (factor B) are to be studied. Inferences about all retail 
stores in the population of interest are to be made. A random sample of nT retail stores 
is selected from the population of all stores, and the selected stores are then classified 
by size and location. We denote the resulting cell sample sizes as usual by nij. If the 
proportions of stores in the differe_nt size-location groups in the population were known, 
these known proportions would serve as the appropriate weights in making inferences about 
size and location main effects, and the general linear test procedures just discussed would 
be employed. Often, however, these proportions are not known. Under these conditions, the 
cell sample sizes nij may be used to estimate the unknown proportions and therefore may 
serve as reasonable weights. 

To illustrate this, suppose that a = 2 store sizes and b = 3 locations are employed in the 
study of retail stores, and that a random sample of nT = 60 stores resulted in the following 
cell sample sizes nij: 

Store Size 
Location (j) 

j = 1 j=2 j=3 Total 

; = 1 20 5 4 29 
;=2 10 15 6 31 

Total 30 20 10 60 

Thus nIl = 20, n2l = 10, and so on. Further, denoting by ni. and n.j the total factor A 
and factor B level sample sizes as defined in (23.1a) and (23.1b), respectively, we have 
nl. = 29, n.l = 30, and so on. 

The test for comparing factor A effects, when the weights nij / ni. reflect the importance 
of the factor A means, would then involve a comparison of the weighted mean for factor A 
level i = 1: 

20ILn + 51L12 + 41L13 

29 

and the weighted mean for factor A level i = 2: 

101L21 + 151L22 + 61L23 
31 

Expressed in symbolic notation, the alternatives would be: 

( nIl) (nI2) (nI3)- (n21) (n22) (n23) Ho: - ILII + - 1L12 + - 1L13 = - 1L21 + - 1L22 + - 1L23 
nl. nl· nl· n2. n2. n2. 

Ha: equality does not hold 
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Similarly, the alternatives for testing weighted factor B effects would be as fOllows h 
weights 17;J17.j reflect the importance of the factor B means: w en 

(
1711) (1721) Ho: - Mil + - /121 
17.1 17.1 

= - /112 + - /122 = - /113 + 2 ( 1112) (1122) (
17

13) (n? ) 
11·2 17·2 17·3· 17.3 1L23 

Ha: not all equalities hold 

. We must caution that sample s.izes. often do not reflect appropriate imP.OItance. Sample 
SIzes may have been chosen arbItranly or they may reflect unequal attntion losses in 
study. Sample sizes may also reflect cost ~onsiderations; for instance, larger sample Size; 
may be used by a market researcher for children than for adults because selection Costs are 
lower. In all of these instances, use of weights based on sample sizes may lead to misleadin 
. c g 
Ill~erences. 

When sample sizes do constitute appropriate weights, the alternatives for testing for 
weighted factor A effects can be stated in general as follows: 

'"' (17lj) '" (17aj) Ho: ~ - /1lj = ... = ~ - /1aj 
_ nl. . 17a. 

1 1 (23.50) 
He,: not all equalities hold 

and the alternatives for testing for weighted factor B effects are: 

Ho: L (~) /1t1 = ... = L (n;b) /1ib 
; n·1 ; 17.b (23.51) 

He,: not all equalities hold 

It can be shown that the term SSE(R) - SSE(F) for testing weighted factor A effects 
involving the alternatives in (23.50) simplifies to the ordinary single-factor treatment sum 
of squares in (16.28), with the factor A levels considered to be the treatments: 

where: 

'"' - -? SSA = ~17;-(.Y; .. - Y. .. )-

Y, ... 
Y i··=-

17i· 

Y. .. 
Y. .. 

b lIij 

Yi·. = LLYijk 
j=1 k=1 

a b IIi) 

Y. .. = LLLY,jk 
;=1 j=1 k=1 

(23.52) 

.(23.513) 

(23.52b) 

(23.52C) 

(23.52d) 
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Similarly, the term SSE(R) - SSE(F) for testing weighted factor B effects involving the 
alternatives in (23.44) simplifies to the single-factor treatment sum of squares in (16.28), 
with the factor B levels considered to be the treatments: 

'"' - - 2 SSE = ~n.j(Y.j. - Y. .. ) (23.53) 
j 

where: 

(23.53a) 

a nij 

Y. j. = LLYijk (23.53b) 
j",l k=l 

In the growth hormone example of Table 23.1, suppose that the treatment sample sizes 
nij reflect the relative importance of the factor means. We saw in Section 23.2 that gender 
(factor A) and bone development (factor B) do not interact. We now wish to test whether 
gender affects the weighted mean change in the growth rate. The alternatives (23.50) here 
are: 

322 133 
Ho: ""j1L11 + 71L12 + 71Li3 = 71L21 + 71L22 + 71L23 

Ha: equality does not hold 

To calculate SSA in (23.52), we require from Table 23.1: 

We then obtain: 

Y1 •• = 11.6 

Y2 •• = 11.4 

Y. .. = 23.0 

nl. = 7 

n2. = 7 

nT = 14 

~ .. = 1.65714 

Y2.. = 1.62857 

Y. .. = 1.64286 

SSA = 7(1.65714 - 1.64286)2 + 7(1.62857 - 1.64286)2 = .002857 

The number of degrees of freedom associated with SSA is a-I = 2 - 1 = 1. 
We found earlier in Table 23.3a that the error sum of squares for the full model is 

SSE(F) = 1.3000, with 8 degrees of freedom associated with it. Hence, the general linear 
test statistic here is: 

F* = SSE(R) - SSE(F) -;- SSE(F) = SSA -;- MSE(F) 
dfR - dfF dfF 1 

= .002857 -;- 1.3000 = .018 
1 8 

For a = .05, we require F(.95; 1,8) = 5.32. Since F* = .018 ::'5 5.32, we conclude Ho, 
that the weighted mean change in the growth rate is the same for male and female children. 
The P-value ofthe test is .897. 

The test for factor B effects would be carried out in similar fashion. 
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23.6 

Comments 
I. A special case of weights proportional to the s<1mple sizes occurs in designed experiments wh 

the $tlll1ple sizes themselves follow <1 proportion<11 pattern. Suppose that <1 chain of diet establishme en 
is experimenting with two diets that are of equal importance. The establishments cater to three t. nts 

Irnes 
as Illany women as men. One hundred men and 300 women are selected, and half of each grou . 
randomly assigned to each diet. Hence. the treatment sample sizes are as follows: PIS 

DIet 

1 
2 

Total 

Men 

50 
50 

100 

Women 

150 
150 

300 

Note that these treatment sample sizes follow the feIation: 

1I,.l1.j 
11,--=--

J nT 

Total 

200 
200 

400 

(23.S4) 

Condition (23.54) implies that the sample sizes in any two rows (or columns) are proportional. This 
is called a case of propol1ionalfrequencies. Here the test of diet effects reduces to the comparison 
of (fl.1I + 3fl.12)/4 versus (fl.21 + 3fl.n) /4 and the test of gender effects reduces to the comparison of 
(fl.1I +fl.2il/2 vefSUS (fl.12 +fl.221/2.lt can be shown thatthe terms SSE(R) -SS E(F) for testing these 
factor A effects (diet) and factor B effects (gender) are given by (23.52) and (23.53), respectively. It 
can also be shown that the interaction sum of squares here is given by a simple formula: 

SSAB = LLnij(Yij - Yi. - Yj + y)2 

J 

(23.SS) 

FUfthermore. the sum~ of squares in this special case are orthogonal so thaI SSA. SSB. SSAB, and SSE 
sum to SSTO. 

2. When proportional sample sizes are employed but the sample sizes do not reflect the importance 
of the factor level means (e.g., when the sample sizes are unequal but the factor level means are of 
equal importance). the regression approach or the general linear test approach explained earlier must 

. be employed. 

3. The cell sample sizes in alternatives (23.50) and (23.5 I) are considefed to be fixed, not random 
variables. Thus. the relevance of the altematives depends on the reasonableness of the actual cell 
sample sizes as indicators of the importance of the treatment means. • 

Stat istieal COlnpll1ing Packagt's 

Extreme care must be exercised when using packaged analysis of variance programs with 

unequal sample sizes because the default option of the package may not necessarily assign 

proper importance to each treatment mean. The user should read the package documentation 

carefully and make sure that the package generates the appropriate sums of squares forthe 

tests of interest. 
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For the JMp, MINITAB, SAS, SPSS, and SYSTAT statistical packages, the outputs that 
are the equivalents ofthe regression results obtained in Sections 23.1-23.3 for the case of 
treatment means with equal importance and no empty cells are obtained as follows at the 
time of this writing: 

JMP-Fit Model 

MINITAB-GLM 

SAS PROC GLM-Type III or Type IV sums of squares 

SPSS GLM-UNIANOVNSSTYPE(3) 

SYSTAT-Default option 

Extreme caution should also be used with ANOVA computer packages that provide 
results when some treatment cells are empty. The package may make assumptions about 
interactions that the researcher is unwilling to make. In the absence of a clear description of 
how the package handles empty cells, it is preferable that appropriate analyses be conducted 
by the user specifying the appropriate contrasts of interest. 

When weights assigned to the treatment means are proportional to the sample sizes, 
numerator sums of squares SSA and SSB given in (23.52) and (23.53) may be obtained 
using JMP Sequential (Type 1) Tests option, MINITAB Sequential SS option, SAS PROC 
GLM-Type I sum of squares, SPSS GLM-UNIANOVNSSTYPE(l), and SYSTAT­
Option Weighted Means Model. When a sequential Type I sum of squares is used to obtain 
SSA and SSB given in (23.52) and (23.53), two separate computing runs are needed, where 
in one run factor A is brought in first and in the second run factor B is brought in first. 

A simple option in using computer packages when the cell sample sizes are unequal, 
cell means have unequal importance, and/or some cells are empty is to use a single-factor 
ANOVA package that permits specification of contrasts to be estimated. The user can then 
specify the various contrasts of interest. 

23.1. A market research intern selected a random sample of 4()() communities and classified them 
according to population size (four levels) and geographic region (five levels) to study the effects 
of these factors on sales of the company's products. When the intern found tha.t the treatment 
sample sizes were unequal, the smallest cell frequency being four, the intern generated random 
numbers to reduce the number of communities in each cell to four and then proceeded to 
analyze the effects of population size and region on the basis of the 80 communities remaining. 

a. Does the method of randomly discarding cases lead to any biases? Explain. 
b. Was it wise for the intern to discard 320 cases randomly in order to obtain equal treatment 

sample sizes? 

23.2. A student asked: "If two-factor studies with unequal sample sizes must be analyzed by a 
regression approach, why bother with the two-factor analysis of variance model at all?" 
Comment. 

23.3. Refer to Eye contact effect Problems 19.12 and 19.13. 

a Modify regression model (23~11) to apply to this two-factor study with a = 2 and b = 2. 
b. Set up the Y, X, and ~ matrices for the regression model in part (a). 

c. Obtain X~. Verify the correctness of the expected values. 
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d. Obtain the titted regression function. What is estimated by the illIercept term? 

e. Obtain the regression an:dysis or varia~lce tab~e based on appropriate extra sumsof squares. 
Do your results agree With those obtaIIled uSlllg the ANOYA approach in 19.13b? 

r. Test separately for interaction erfects. factor A main elfects. and factor B main effcc 
Use a = .01 for each test and state the alternatives. decision rule. and conclusion. Is. 

*23.4. Refer to Hay fever relief Problem~ 19.14 and 19.15. 

a. Modify regression model (23.11) to apply to this two-fuctor study with l/ = 3 and b = 3. 
b. Set up the Y. X. and ~ matrices for the regression model in part (a). 

c. Ohtain X~. Yerify the correctness of the expected values. 

d. Obtain the litted regression function. What is estimated by 6t I: 
e. Obtain the regression analysis of variance table based on appfOpriate extra sums of squares. 

Do your results agree with those obtained using the ANOYA approach in Problem 19.ISb? 

f. Test separately for interaction eftects. factor A main effects. and factor B main effCCIS. 
Use a = .05 for each test and st,lte the alternatives. decision rule. and Clll]clusion. 

23.5. Refer to Disk drive service Problems 19.16and 19.17. 

a. Modify regression model (23.11) to apply to this two-factor study with a = 3 and b = 3. 

b. Obtain the titted regression function. What is estimated by ~I? 

c. Obtain the regression analysis of variance table based on appropfiate extra sums of squares. 
Do your results agree with those obtained using the ANOYA approach in 19.17b? 

d. Test ~epannely for interaction effects. factor A main etTects. ,md factor B main effeclS. 
Use a = .0 I for each test and state the altefI1atives. decision rule. and conclusion. 

*23.6. Refer to Cash otters Problem 19.10. Suppose thtlt observations Y~ I~ = 28 and Y12J = 20 are 
missing because the offer received in each of these cases was a trade-in otfer. not a cash offer. 

a. State the ANOYA model for this c'lse. Also state the equivalent regression model; use I, 
-I. a indic<ltor variables. 

b. Present the X and ~ matrices for the regression model in part (a). 

c. Obtain X~ <1I1d show that the proper treatment means arc obtained by your model. 

d. What is the reduced regression model for testing for interaction etfects? 

e. Test whether or not interaction etTects are present by fitting the full and reduced regression 
models: use a = .05. State the alternatives. decision rule. and conclusion. What is the 
P-value of the tes!'! 

f. State the reduced regression models for testing for age and gender main effects. respectively, 
and conduct each of the tesL~. Use a = .05 each time and state the alternatives. decision 
rule. and conclusion. What is the P-value of each test? 

g. To study the nature of the age main effects. estimate the following pairwise compmisons: 

Use the most efficient mUltiple comparison procedure with a 90 percent family confidence 
coeffic ient. 

h. In the population of female owners. 30 percent are young. 60 percent are middle-aged. and 
10 percent are elderly. Estimate the mean cash offer for this popUlation with a 95 percent 
contidence interv,Il. 

*23.7. Refer 10 Hay fever relief Problem 19.14 and 23.4. Suppose that observations YIIJ = 2.3. 
Ynl = 8.9. and Y~~~ = 9.0 are missing becau$e the subject~ did not immediately record the 
time when they began to suffer again from hay fever. 
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a State the ANOVA model for this case. Also state the equivalent regression model; use 1, 
-1,0 indicator variables. 

b. Present the X and ~ matrices for the regression model in part (a). 

c. Obtain X~ and show that the proper treatment means are obtained by your model. 

d. What is the reduced regression model for testing for interaction effects? 

e. Test whether or not interaction effects are present by fitting the full and reduced regression 
models; use a = .05. State the alternatives, decision rule, and conclusion. What is the 
P-value of the test? How do your results compare with those obtained in 23.4f, where 
there is no missing data? 

f. The nature of the interaction effects is to be studied by means of the following contrasts: 

LI = fJ-12 + fJ-13 - fJ-I1 
2 

L fJ-22 + fJ-23 
2 = 2 - fJ-21 

L3 = fJ-32 + fJ-33 - fJ-31 

2 
Obtain confidence intervals for these contrasts; use the Scheffe multiple comparison pro­
cedure with a 90 percent family confidence coefficient. Interpret your findings. 

23.8. Refer to Kidney failure hospitalization Problem 19.18. Suppose that observations Y I24 = 12, 
Y216 = 2, and Y 238 = 9 are missing because the hospitalization records for these patients were 
not complete. Continue to work with the transformed data Y' = 10gIO(Y + 1). 

a State the ANOVA model for this case. Also state the equivalent regression model; use 1, 
-1,0 indicator variables. 

b. Present the X and ~ matrices for the regression model in part (a). 

c. Obtain X~ and show that the proper treatment means are obtained by your model. 

d. What is the reduced regression model for testing for interaction effects? 

e. Test whether or not interaction effects are present by fitting the full and reduced regression 
models; use a = .05. State the alternatives, decision rule, and conclusion. What is the 
P-value of the test? 

f. State the reduced regression models for testing for treatment duration and weight gain 
main effects, respectively. Conduct each of the tests. Use a = .05 each time and state the 
alternatives, decision rule, and conclusion. What is the P-value of each test? 

g. Use the single degree of freedom t* statistic for testing whether or not the mean number 
of days hospitalized (in transformed units) for persons with mild weight gains exceeds .5; 
use a = .05. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

h. To analyze the nature of the factor main effects, estimate the following pairwise 
comparisons: 

DI =fJ-I'-fJ-2' 

~=fJ-'2-fJ-'1 

D3 = fJ-·3 - fJ-., 

D4 = fJ-'3 - fJ-'2 

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 

23.9. Adjunct professors. A sociologist selected a random sample of 45 adjunct professors who 
teach in the evening division of a large metropolitan university for a study of special problems 
associated with teaching in the evening division. The data collected include the amount of 
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payment received by the faculty member for teaching a course during the past semester Th 
sociologist classified the faculty members by subject matter of course (factor A) and hi' h e 
degree earned (factor B). The earnings per course (in thousand dollm's) follow. g est 

Factor B (highest degree) 

Factor A j = 1 j=2 j=3 
(subject matter) Bachelor's Master's Doctorate 

i = 1 Humanities 1.7 1.8 2.5 
1.9 2.1 2.7 

2.9 

i = 2 Social sciences 2.5 2.7 3.5 
2.3 2.4 3.3 

2.4 2.5 3.4 

i = 3 Engineering 2.7 2.9 3.7 
2.8 3.0 3.6 

2.7 3.9 

i=4 Management 2.5 2.3 3.3 
2.6 2.8 3.4 

3.6 

a. State the ANOYA model for this case. Also state the equivalent regression model; use I, 
- I, 0 indicator variables. 

b. Present the X and ~ matdces for the regIl~ssion model in part (a). 

c. Obtain X~ and show that the pmper h'eatment means are obtained by your model. 

d. Fit the equivalent l-egression model and obtain the residuals. Prepal-e aligned residual dot 
plots for the treatments. What are your findings? 

e. Prepare a nonnal pmbability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and theiJ' expected values under nonnality. Does the 
normality assumption appear to be reasonable here? 

23.10. Refer to Adjunct professors Problem 23.9. Assume that ANOYA model (19.23), is appro­
priate, except that now k = I, ...• 17ij. 

a. Plot the estimated tl-eatment means Y;j. in the format of Figure 23.1. Does it appear that 
any factor effects m-e pl-esent? Explain. 

b. What is the reduced regression model for testing for interaction effects? 

c. Test whether or not inteJ"action effects al-e present by fitting the full and reduced regt-ession 
models; use ex = .01. State the altematives, decision rule, and conclusion. What is the 
P-value of the test? 

d. State the reduced regression models for testing for subject matter and highest degree main 
effects, respectively, and conduct each of the tests. Use ex = .01 each time and state the 
altematives, decision rule, and conclusion. What is the P-value of each test'! 

e. Make all pairwi~e comparisons between the subject matter means; use the Tukey procedure 
with a 95 percent family confidence coefficient. State your findings and present a graphiC 
summary. 
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f. Make all pairwise comparisons between the highest degree means; use the Tukey procedure 
with a 95 percent family confidence coefficient. State your findings and present a graphic 
summary. 

23.11. Refer to Adjunct professors Problem 23.9. Suppose that the sociologist had prior information 
indicating that the two factors do not interact and that no-interaction model (23.28) is therefore 
appropriate. 

a. State the equivalent full regression model for this case. Also state the reduced regression 
models for testing for factor A and factor B main effects. Use 1, -1,0 indicator variables. 

b. Fit the full and reduced regression models and test for factor A and factor B main effects; 
use ex = .05 for each test. State the alternatives, decision rule, and conclusion for each test. 
What is the P-value of each test? 

*23.12. Refer to Hay fever relief Problem 19.14. Suppose that the data for the treatment when each 
of the two active ingredients is at the medium level were lost and immediate analyses of the 
available data are required; i.e., assume that nT = 32 and n22 = o. 
a. To study whether or not interaction effects are present, estimate the following comparisons: 

DI = 11-13 - 11-11 

D2 = 11-23 - 11-21 

D3 = 11-33 - 11-31 

LI = D1 - D2 

L2 = DI-D3 

Use the Bonferroni procedUre with a 90 percent family confidence coefficient. State your 
findings. 

b. To further explore the nature of possible interaction effects, conduct separate single degree 
of freedom tests of whether 11-12 = 11-13 and whether 11-32 = 11-33. Use ex = .02 for each 
test and state the alternatives, decision rule, and conclusion. What is the family level of 
significance, using the Bonferroni inequality? 

23.13. Refer to Kidney failure hospitalization Problem 19.18. Suppose that there were no patients 
who received the dialysis treatment for long duration and had mild weight gains; i.e., assume 
that nT = 50 and n21 = O. Continue to work with the transformed data Y' = 10glo(Y + 1). 

On the basis of related research, the analyst believes it is reasonable to assume that the two 
factors do not interact and that no-interaction model (23.28) is appropriate. 

a State the equivalent full regression model for this case. Also state the reduced regression 
models for testing for factor A and factor B main effects. Use 1, -1, 0 indicator variables 
in the regression model. 

b. Fit the full and reduced regression models. Test for factor A and factor B main effects; use 
ex = .05 for each test. State the alternatives, decision rule, and conclusion for each test. 
What is the P-value of each test? 

*23.14. Refer to Programmer requirements Problem 19.20. Suppose that there were no programmers 
with experience on both small and large systems who had less than five years' experience; 
i.e., assume that nT = 20 and n21 = O. 

a To study whether or not interaction effects are present, estimate the following comparisons: 

DI = 11-12 - 11-13 

D2 = 11-22 - 11-23 

Use the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings. 
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b. To study further the nature of possible interaction effects. test whether or not /:.< 
()5 S h I . . . I I' 12 exceeds 

1123: use a =. . tate tea ternatIves. deCISion ru e. anl conclUSion. What is th p 
of the test"! e -valUe 

23.15. Refer to Adjunct pmfessors Problem 23.9. Suppose that there were no professors teachin 
humanities courses who had only a bachelor's degree. so that the study consists of g 
d· ,. d 0 0 lb','· I I nT =:: 43 a Junct pro essors an 1/ II = . n t Ie aSI~ 0 prevIous researc 1. tIe sociologist ber 

it is reasonahle to assume that the two t~lctors do not interact and thai no-interaction ~:~ 
(23.28) i~ appropriate here. 

u. State the equivalent full regres~ion 1110del for this case. Also state the reduced regres . 
I r ••• r B . .. U I' Slon mOl el.~ lor testing for 'actor A and luctor mam effects. se . -\. 0 mdicator variabl 

. I . dies m t Ie regression mo e. 

b. Fit the full and reduced regression models and test for factor A and factor B main effects 
Use a = .0 I for each test and sttlte the alternatives. decision rule, and conclusion. What i~ 
the P-value of each test? 

*23.16. Refer to Auditor training Problem 21.5. 

a. State the regression model equivalent to randomized block model (21.1); use I, -1,0 
indicator variables. 

b. Fit the regression model to the data. 

c. Obttlin the regression antilysis of vtlriance table based on appropriate extra sums of 
sqmlres. 

d. Test for treatment main effects: use a = .05. State the alternatives. decision Illle, and 
conclusion. 

23.17. Refer to Fat in diets Problem 2 L7. 

a. State the regression model equivalent to randomized block model (21.1); use I, -1,0 
indicator variables. 

b. Fit the regression model to the dattl. 

c. Obtain the regression amtlysis of variance table based on appropriate extra sums of squares. 

d. Test for treatment main effects: use a = .05. State the alternatives. decision rule, and 
conclusion. 

*23.18. Refer to Auditor training Problems 21.5 and 23.16. Assume that observation Y23 = 89 is 
missing beCtlUSe the auditor became ill and dropped out from the study. 

a. State the ANOYA model for this case. Also state the equivalent regression model; use I, 
-1.0 indicator varitlbles. 

b. State the reduced regression model for testing for differences in the mean proficiency scores 
for the three training methods. 

c. Tesl whether or not the mean proficiency scores for the three tnlining methods differ by 
fitting the full and reduced models; use ex = .05. State the alternatives. decision Illle, and 
conclusion. How do your results compare with those obtained in Problem 23.160, where 
there are no missing observations? • 

d. CompW'e the me<in proficiency scores for training methods 2 and 3 by means of the regres­
sion approach; use tl 95 percent confidence interval. 

23.19. Refer to Fat in diets Problems 21.7 and 23.17. Assume that observations Y" = .15 and 
Y,i\ = 1.62 are missing because the subjects did not st<iY on the prescribed diet. 

a. St,lte the ANOYA model for this case. Also stute the equivalent regression model; use I, 
-I. 0 indicator variables. 
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b. State the reduced regression model for testing for differences in the mean reductions in 
lipid level for the three diets. 

c. Test whether or not the mean reductions in lipid level differ for the three diets by fitting the 
full and reduced models; use ex = .05. State the alternatives, decision rule, and conclusion. 
How do your results compare with those obtained in Problem 23.17d, where there are no 
missing observations? 

d. Compare the mean reductions in lipid level for diets 1 and 3 by means of the regression 
approach; use a 98 percent confidence intervaL 

*23.20. Refer to Cash offers Problem 19.10. It is known that in both populations of male and female 
owners, 30 percent are young, 60 percent are middle-aged, and 10 percent are elderly. Test 
by means of the single degree of freedom t* test statistic whether or not the mean cash offers 
for male and female owners are equal; use ex = .05. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

23.21. Refer to Kidney failure hospitalization Problem 19.18. Continue to work with the trans­
formed data Y' = 10glQ(Y + 1). It is known that 75 percent of patients in each weight gain 
group receive the short duration treatment. Inferences are desired about the target population 
of patients at the dialysis facility. 

a Use cell means model (19.15) to express the two alternatives for testing whether or not 
factor B main effects are present in the form of (23.37a). 

b. State the regression model equivalent to ANOVA model (19.15), using 1, 0 indicator 
variables. 

c. State the reduced regression model for testing for factor B main effects; express ILl I and 
P-13 in terms of the other cell means. 

d. Fit the full and reduced regression models and test for factor B main effects; use ex = .05. 
State the decision rule and conclusion. What is the P-value of the test? 

e. Compare the mean number of days of hospitalization (in transformed units) for patients 
with severe and mild weight gains; use a 95 percent confidence intervaL 

23.22. Refer to Adjunct professors Problem 23.9. It is known that 10 percent of professors in each 
subject matter area have a bachelor's degree, 20 percent have a master's degree, and 70 percent 
have a doctorate. Inferences are desired about the target population of adjunct professors. 

a. Use cell means model (19.15) to express the two alternatives for testing whether or not 
factor A main effects are present in the form of (23.37a). 

b. Define the X matrix and ~ vector for expressing full model (19.15) in matrix form for this 
case. 

c. Express the two alternatives in part (a) in matrix form (23.44). 

d. Use (23.48) to calcula.te SSE(R) - SSE(F). 

e. Test whether or not factor A main effects are present; use ex = .01. State the decision rule 
and conclusion. What is the P-value of the test? 

f. Compare the mean amounts of payment received by faculty members teaching humani­
ties and engineering cou~ses; use a 99 percent confidence intervaL Interpret your interval 
estimate. 

*23.23. Refer to Programmer requirements Problem 19.20. Suppose that the observations Y I33 = 68, 
Y I34 = 58, and Y234 = 45 did not exist and that the sample sizes reflect the importance of the 
treatment means. Test whether or not type of experience main effects are present; control the 
level of significance at ex = .01. State the alternatives, decision rule, and conclusion. What is 
the P-value of the test? 
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Exercises 

Projects 

23.24. Refer to Adjunct professors Problem 23.9. Assume that the sample sizes reflect the' 
. h .,., h h b' . ImPOr-tance ot t e treatment means. lest w et er or not su ~ect matter mmn effects are 

control the level of significance at ex = .05. State the alternatives. decision IlIle and preSent; 
sion. What is the P-value of the test? ' eonelu_ 

23.25. Derive a 2{L\ for the estimated contrast involving !lj. in (23.22). 

23.26. Show that s2{L\ in (23.26) is an unbiased estimator of a 2{L\. 

-
23.27. Refer to Il~gfession model (23.31). the equivalent to ANOYA model (21.1) when 11b == 3 and 

r = 3. Suppose that the indicator variables in model (23.31) were coded as follows: 

XI = {~ 

X 2 = {~ 

X3 = {~ 

X~ = {~ 

if experimental unit from block I 
othelwise 

if experimental unit from block 2 
othelwise 

if experimental unit from treatment I 
otherwise 

if experimental unit from treatment 2 
otherwise 

and that the regression coefficients are denoted by f3o, f31, f32, f33, and f34. 

a. Exhibit the X matrix for this regression model. 

b. Find the correspondences between the regression coefficients f3o, f31 .... ,f34 and the 
parameters in ANOYA model (21.1). 

c. Discuss the advantages and disadvantages of using l, 0 indicator variables and 1,-1, 
o indicator variables heIl~. 

23.28. Consider a two-factor study where a = 2. b = 2. 1711 = 1112 = 1121 = 2. 1722 = l, and 
no-interaction model (23.28) applies. Use the matrix methods in Section 23.5 to obtain the 
estimator of /122, [Hillt: Begin with interaction model (23.3) as the full model, express the 
assumption of no interactions in the form of (23.44), and use (23.46) to obtain the estimator 
of /122 for the no-interaction model.l 

23.29. Refer to Kidney failure hospitalization Problem 23.13. Suppose that you are going to use 
the m~trix approach in Section 23.5, rather than the regIl~ssion approach, to test for factor A 
main effects. 

a. State the X and ~ matrices to be used in the full modeL 

b. State the test hypothesis in matrix form (23.44). 

23.30. Refer to the SENIC data set in Appendix C.l. The effects of region (factor A: vm'iable 9) and 
average age of patients (factor B: variable 3) on mean length of hospital stay (variable 2) are 
to be studied. For purposes of this ANOYA study, average age is to be classified into three 
categories: under 52.0 years. 52.0-under 55.0 years, 55.0 years of mOIl~. 

a. State the ANOYA model for this case. Also state the equivalent regression model; use 
l. -I, 0 indicator variables. 

b. Fit the regression model, obtain the I'esiduals. and prepare aligned residual dot plOts for 
the treatments. What al'e your findings? 
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c. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

23.31. Refer to the SENIC data set in Appendix C.1 and Project 23.30. Assume tha.t ANOVA model 
(19.23), with k == 1, ... ,17ij' is appropriate. 

a. Plot the estimated treatment means Yu. in the format of Figure 23.1. Does it appear that 
any factor effects are present? Explain. 

b. State the reduced regression model for testing for interaction effects. 

c. Fit the reduced regression model and test whether or not interaction effects are present; 
use ex = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

d. State the reduced regression model for testing for factor A main effects. Conduct this test 
using ex = .01. State the alternatives, decision rule, and conclusion. Wha.t is the P-value 
of the test? 

e. State the reduced regression model for testing for factor B main effects. Conduct this test 
using ex = .01. State the alternatives, decision rule, and conclusion. What is the P-value 
of the test? 

f. Make all pairwise comparisons between regions; use the Tukey procedure and a 95 percent 
family confidence coefficient. State your findings and present a graphic summary. 

23.32. Refer to the CDI da.ta set in Appendix C.2. The effects of region (factor A: variable 17) and 
percent below poverty level (factor B: varia.ble 13) on the crime rate (variable 107 variable 5) 
are to be studied. For purposes of this ANOVA study, percent below poverty level is to be 
classified into three categories: under 6.0 percent, 6.0--under 10.0 percent, 10.0 percent or 
more. 

a. State the ANOVA model for this case. Also state the equivalent regression model; use 
1, -1,0 indicator variables. 

b. Fit the regression model, obtain the residuals, and prepare aligned residual dot plots for 
the trea.tments. Wha.t are your findings? 

c. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

23.33. Refer to the CDI data set in Appendix C.2 and Project 23.32. Assume that ANOVA model 
(19.23), with k = 1, ... , nij, is appropriate. 

a. Plot the estimated treatment means Y;j. in the format of Figure 23.1. Does it appear that 
any factor effects are present? Explain. 

b. State the reduced regression model for testing for interaction effects. 

c. Fit the reduced regression model and test whether or not interaction effects are present; 
use ex = .005. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

d. State the reduced regression model for testing for factor A main effects. Conduct this test 
using ex = .005. State the alternatives, decision rule, and conclusion. What is the P-value 
of the test? 

e. State the reduced regression model for testing for factor B main effects. Conduct this test 
using ex = .005. Sta.te the alternatives, decision rule, and conclusion. What is the P-value 
of the test? 
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f. Make all pairwi.~e comparisons helween regions: use thc Tukey procedure and a 95 pe~ 
"1 I'd fl" S f' d' d . cent laml y con I ence coe lClent. tate your m mg~ an present a graphic Summary. 

23.34. Refer to the Market share data set in Appcndix C.3. The effect~ of discount price (factor A' 
variable 5) and package promotion (factor B: vari~,ble 6) on market share (variable 2) are t~ 
be studied. 

a. State the ANOVA model for this case. Also state the equivalent regression mode!' Use 
I. -I. 0 indicator variables. ' 

b. Fit the regression model. obtain the residuals. and prep<!re aligned residu<!1 dot plots for 
the tre<,tments. What are your findings"! 

c. Prepare a normal probability plot of the residuab. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under nOimality. Does the 
normality assumption appear to he reasonable here? 

23.35. Refer to the Market share dat<! set in Appendix C.3 and Project 23.34. Assume that ANQVA 
model (19.23) with k = I ..... lIij is appropriate. 

a. Plot the estimated treatment means Yij. in the t(lrmat of Figure 23.1. Does it appear that 
any factor effects are present"J Explain. 

b. State the reduced model for testing for interaction eHects. 

c. Fit the reduced regression model and test whether or not interaction effects are present; 
use Q' = .05. St<lte the alternatives. decision rule. and conclusion. Wh<lt is the P-value of 
the test? 

d. State the reduced regression model for testing for factor A main effect~. Conduct this lest 
using a = .05. State the alternatives. decision rule. <lnd conclusion. What is the P-value 
of the test? 

e. State the reduced regression model for testing for tactor B main effect~. Conduct this test 
using ex = .05. State the alternatives. decision rule, and conclusion. Whut is the P-value 
of the test? 

23.36. Refer to the SENIC data set in Appendix C.I and Project~ 23.30 <lnd 23.31. Assume that the 
sample sizes reflect the importance of the treatment means. 

a. Test for region (factor A) main etfect~: use Q' = .0 I. State the altematives. decision 111 Ie, 
<lnd conclusion. What is the P-value of the test"! 

b. Test for avenlge age of patients (tilctor B) main effects; lise Q' = .01. State the alternatives, 
deci~ion rule. and conclusion. What is the P-value of the test? 

23.37. Refer to the CDI data set in Appendix C.2 and Project~ 23.32 and 23.33. Assume that the 
sample sizes reflect the imp0l1<!nce of the treatlllent means. 

11. Test for region (factor A) main etfects: use a = .005. State the alternatives. decision rule, 
and conclusion. What is the P-v<due of the test? 

b. Test for percent below povel1y level (tilctor B) main etfects: use a = .005. State the. 
alternatives. decision rule. and conclusion. What is the P-value of the test"! 

23.38. Refer to the Prostate cancer data set in Appendix C.5. Assume that the sample sizes do not 
reflect the importance of the treatment means. Carry out an unbalanced two-W<lY analysis of 
v<!riance of this d<!ta set. where the response of interest is PSA level (vari<lble 2). the twO 

crossed facton; <lre Gleason score (variable 9) and seminal vesicle invasion (variable 7). The 
analysis should consider transformations of the response variable. Document the steps taken 
in your analysis and justify your conclusions. 
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23.39. Refer to the Prostate cancer data set in Appendix C.5 and Case Study 23.38. Assume that the 
sample sizes reflect the importance of the treatment means. Carry out an unbalanced two-way 
analysis of variance ofthis data set, where the response of interest is PSA level (variable 2), the 
two crossed factors are Gleason score (variable 9) and seminal vesicle invasion (variable 7). 
The analysis should consider transformations of the response variable. Document the steps 
taken in your analysis and justify your conclusions. 

23.40. Refer to th~ Real estate sales data set in Appendix C.7. Assume that the sample sizes do not 
reflect the importance of the treatment means. Carry out an unbalanced two-way analysis of 
variance of this data set, where the response of interest is sales price (variable 2), the two 
crossed factors are quality (variable 10) and style (variable 11). Recode style as I or not 1. 
The analysis should consider transformations of the response variable. Document the steps 
taken in your analysis and justify your conclusions. 

23.41. Refer to the Real estate sales dataset in Appendix C.7 and Case Study 23.40. Assume that the 
sample sizes reflect the importance of the treatment means. Carry out an unbalanced two-way 
analysis of variance of this data set, where the response of interest is sales price (variable 2), 
the two crossed factors are quality (variable 10) and style (variable 11). Recode style as 1 or 
not 1. The analysis should consider transformations of the response variable. Document the 
steps taken jn your analysis and justify your conclusions. 

23.42. Refer to the Ischemic heart disease data set in Appendix C.9. Assume that the sample sizes 
do not reflect the importance of the treatment means. Carry out an unbalanced two-way 
analysis of variance of this data set, where the response of interest is total cost (variable 2), 
the two crossed factors are number of interventions (variable 5) and number of comorbidities 
(variable 9). Recode the number of interventions into six categories: 0, 1, 2, 3-4, 5-7, and 
greater than or equal to 8. Recode the number of comorbidities into two categories: 0-1, 
and greater than or equal to 2. The analysis should consider transformations of the response 
variable. Document the steps taken in your analysis and justify your conclusions. 

23.43. Refer to the Ischemic heart disease data set in Appendix C.9 and Case Study 23.42. Assume 
that the sample sizes reflect the importance of the treatment means. Carry out an unbalanced 
two-way analysis of variance of this data set, where the response of interest is total cost 
(variable 2), the two crossed factors are number of interventions (variable 5) and number of 
comorbidities (variable 9). Recode the number of interventions into six categories: 0, 1,2,3-4, 
5-7, and greater than or equal to 8. Recode the number of comorbidities into two categories: 
0-1, and greater than or equal to 2. The analysis should consider transformations of the 
response variable. Document the steps taken in your analysis and justify your conclusions. 
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Multi -F actor Studies 

When three or more factors are studied simultaneously. the model and analysis employed 
are straightforward extensions of the two-factor case. We shall illustrate the nature of the 
extensions with reference to three-factor studies. Ordinarily. computer ANOVA packages 
will be utilized for pelfonning the needed calculations for multi-factor studies involving 
three or more factors. For completeness, however, we shall present the necessruy defini­
tional formulas for three-factor studies. The ANOVA model with fixed factor levels when 
all treatment sample sizes are equal and all treatment means are of equal importance is 
considered in Sections 24.1-24.5. Then the analysis of variance with unequal srunple sizes 
is taken up in Section 24.6. The chapter concludes with the planning of sample sizes for 
multi-factor studies. 

24.1 ANOVA lVlodel for Three-Factor Studies 

Notation 

992 

We now tum to the development of the ANOVA model with fixed factor levels for three­
factor studies. This ANOVA model will be applicable to observational studies and to ex­
perimental studies based on a completely randomized design. 

Three factors, A, B, and C, are investigated at a, b, and c levels, respectively. The mean 
response for the treatment when factor A is at the ith level (i = I, ... , a), factor B is at the 
jth level (j = I, . .. , b), and factor C is at the kth level (k = I, ... , c) is denoted by Milk· 
The number of cases for each treatment is assumed to be constant, denoted by 11. We assume 
n 2: 2. The mean response when A is at the ith level and B is at the jth level is denoted by 
fAi)"' and similar notation is used for other pairs of factor levels. Since all treatment means 
are assumed to have equal importance, we define: • 

Lk fAijk 
fAu· = c 

Lj fAijk 
fAi·k= --b-

Li lLijk 
fA·jk = --a-

(24.1 a) 

(24.1 b) 

(24.1 c) 
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The mean response when A is at the ith level is denoted by lLi .. , and similar notation is 
used for the other factor level means. We define: 

(24.2a) 

(24.2b) 

(24.2c) 

Finally, the overall mean response is denoted by IL ... and is defined: 

(24.3) 

To illustrate the meaning of the model terms for a three-factor analysis of variance model, 
we consider a study of the effects of gender, age, and intelligence level of college gradu­
ates on learning time for a complex task. Gender is factor A and has a = 2 levels (male, 
female). Age is factor B and is defined in terms of b = 3 levels (young, middle, old). 
Finally, intelligence is factor C and is defined in terms of c = 2 levels (high IQ, normal IQ). 
Table 24.1a shows the treatment means lLijk for all factor level combinations, as well as 
the notational representation for each. Also shown in Table 24.1a are the various means of 
the lLijk. Shown in Thble 24.1b are various ANOVA model parameters that were computed 
from the treatment means in Table 24.1a. We shall refer repeatedly to this learning time 
example as we explain the model terms for a three-factor study. 

The main effects in a three-factor study are defined analogously to those for a two-factor 
study. Thus, the main effect of the ith level of factor A is defined: 

ai = lLi·· - IL··· 

Similarly, we define the main effect of the jth level of factor B: 

{3j = lL·j· - IL··· 

and the main effect of the kth level of factor C: 

Yk = 1L··k - IL··· 

Forlearning time example 1 in Table 24.1, we have, for instance: 

al = ILl·· - IL··· = 16.5 - 16 = .5 

{3l = lL·t· - IL··· = 14 - 16 = -2 

fh = 1L·2· - IL··· = 15.5 - 16 = -.5 

Yt = 1L··1 -IL··· = 12 - 16 = -4 

(24.4a) 

(24.4b) 

(24.4c) 
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TABLE 24.1 

Factor 
A-
Gender 

; = 1 
Male 

;=2 
Female 

Average 

p, ... = 16.0 
al = .5 

Mean Learning Times and ANOVA Model Parameters-Learning Time Example 1. 

i = 1 
Young 

9 
(P,111 ) 

9 
(J1.211 ) 

9 
(p"11 ) 

k= 1 High IQ 

j=2 j=3 
Middle Oid 

12 18 
(P,121 ) (P,131 ) 

10 14 
(P,221 ) (J1.231 ) 

11 16 
(p,.21 ) (p,.31 ) 

,81 = -2.0 
,82 = -.5 

(a) Mean Learning Times (in minutes) 

Intelligence (factor C) and Age (factor 8) 

k = 2 Normal IQ 

i = 1 j=2 j=3 
Average Young Middle Old 

13 19 20 21 
(P,1.1 ) (P,112) (P,122) (P,132) 

11 19 20 21 
(P,2'1 ) (P,212) (P,222) (P,232) 

12 19 20 21 
(p, .. 1 ) (P,'12) (p"22) (P,'32) 

(b) ANOVA Model Parameters 

Y1 = -4.0 (a,8)12 = 0.0 
(a,8)" = -.5 (aY)ll = .5 

Average 

20 
(P,1.2) 

20 
(P,202) 

20 
(p, .. 2) 

Average 

i=l j=2 
Young Middle 

14 
(Ull' ) 

14 
(P,21.) 

14 
(p,.1·) 

16 
(P,12.) 

15 
(P,22.) 

15.5 
(p,.2· ) 

(,8Y)ll = -1.0 
(,8yhl = -.5 

j=3 
Old Average 

19.5 
(P,13.) 

17.5 
(P,23.) 

18.5 
(P,'3') 

16.5 
(P,1 .. ) 

15.5 
(P,2 .. ) 

16 
(p, ... ) 

(a,8Y)lll = -.5 
(a,8Y)121 = 0.0 
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These parameters are shown in Table 24.1b. It follows from the definitions in (24.4) that 
the sums of the main effects are zero: 

Lai = Lf3j = LYk =0 (24.5) 
j k 

For example, sinceal +a2 = 0, itfollowsthata2 = -al = -.5; fh and Y2 can be obtained 
in similar fashion. Since all main effects terms are nonzero, we know that all three main 
effects are present here. 

Two-Factor Interactions 
The two-factor interaction effects in a three-factor study are defined in the same fashion 
as for a two-factor study, except that all means are averaged over the third factor. Thus, 
following (l9.8a) we define the two-factor interaction between factor A at the ith level and 
factor B at the jth level, denoted as before by (af3)ij, as follows: 

(af3)ij = fJ.,ij· - fJ.,i·· - fJ.,.j. + fJ., ... 

In corresponding fashion, we define the AC and BC two-factor interactions: 

(aY)ik = fJ.,i·k -fJ.,i·· -fJ.,··k + fJ., .. . 

(f3Y)jk = fJ.,·jk -fJ.,.j. -fJ.,··k + fJ., .. . 

For learning time example 1 in Table 24.1, we have for instance: 

(af3)ll = 14 - 16.5 - 14 + 16 = -.5 

(af3)12 = 16 - 16.5 - 15.5 + 16 = 0.0 

(aY)ll = 13 - 16.5 - 12 + 16 = .5 

(f3Y)ll = 9 - 14 - 12 + 16 = -1.0 

(f3Yb = 11 - 15.5 - 12 + 16 = -.5 

These parameters are shown in Table 24.1 b. 

(24.6a) 

(24.6b) 

(24.6c) 

The two-factor interactions (af3)ij, (aY)ik> and (f3Y)jk are often called first-order in­
teractions. It can readily be shown that the sums of the first-order interactions over each 
subscript are zerO: 

L(af3)ij = 0 for all j L(af3)ij = 0 for all i (24.7a) 
j 

L(aY)ik = 0 for all k L(aY)ik = 0 for all i (24.7b) 
k 

L(f3Y)jk = 0 for all k L(f3Y)jk = 0 for ail j (24.7c) 
j k 

All two-factor interaction terms not listed in Table 24.1 b can be obtained from the five terms 
listed and the sum-to-zero expressions in (24.7). Since nonzero (af3)ij, (aYh, and (f3Y)jk 

terms are present, we know that all three two-factor interactions, AB, AC, and BC, exist. 
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Three-Factor Interactions 
Just as in a two-factor study, where the interaction between the ith level of factor A and 
jth level of factor B is defined as the difference between the treatment mean fJ-i _ and t~e 
value that would be expected if the factor effects were additive, so in a three-fa~or s~ e 
the three-factor interaction (a{3Y)ijA is defined as the difference between the treatment m Y 
fJ-ijk and the value that would be expected if main effects and first-order interactions ean 

" were 
sufficient to account for all factor effects. The value that would be expected from rna' 
effects and first-order interactions when A is at the ith level, B at the jth level, and C at t~ 
kth level is: 

!J ... + ai + {3j + Yk + (af3)ij + (aY)ik + ({3Y)jk (24.8) 

Hence, the three-factor interaction (a{3Y)ijk, also called the second-order interaction, is 
defined as: 

(24.9a) 

or equivalently: 

(24.9b) 

From the definition of the three-factor interactions, it follows that they sum to zero when 
added over any index: 

z)a{3Y)iik = 0 
k (24.10) 

for all j, k for all i, k for all i, j 

If all three-factor interactions (a{3Y)ijk are zero, we say that there are no three-factor 
interactions among factors A, B, and C. If some (a{3Y)ijk are not zero, we say that three­
factor interactions are present. 

Let us find the three-factor interaction (a{3y) III for the learning time example in 
Table 24.1. From (24.9a), we have for i = j = k = I: 

(a{3Y)111 = /JIll - [M .. · + al + {31 + YI + (af3)11 + (aY)11 + ({3Y)1I1 

Using the ANOVA model parameter values from Table 24.1b, we obtain: 

(a{3Y)111 = 9 - (16 +.5 - 2 - 4 -.5 +.5 - I) = -.5 

Since (a{3y) III is not zero, we know at once that three-factor interactions are present in this 
example. • 

Cell Means Model 
Let Yijklll denote the observation for the m th case or trial (m = I, ... , n) for the treatment 
consisting of the ith level of A (i = I, ... , a), the jth level of B (j = I, ... , b), and the 
kth level of C (k = I, ... , c). Thus, the total number of cases in the study is: 

nT = nabc (24.11) 
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The ANOVA model for a three-factor study in terms of the cell (treatment) means !J.,ijk 
with fixed factor levels is: 

(24.12) 

where: 

!J.,ijk are parameters 

eijkm are independent N (0, 0'2) 

i = 1, ... , a; j = 1, ... , b; k = 1, ... , c; m = 1, ... , n 

Rilctor Effects Model 
An equivalent factor effects model can be developed that incorporates the factorial structure 
by expressing each treatment mean !J.,ijk in terms of the various factor effects. From the 
three-factor interaction definition (24.9a), we have the identity: 

!J.,ijk == !J., ... +ai + {3j + Yk + (a{3)ij + (aY)ik + ({3Y)jk + (a{3Y)ijk (24.13) 

where: 

LLL!J.,ijk 
!J., ... = abc 

ai = !J.,i .. - !J., ... 

{3 j = !J.,. j. - !J., .. . 

Yk = !J.,"k - !J., .. . 

(a{3)ij = !J.,ij. - !J.,i .. - !J.,.j. + !J., .. . 

(aY)ik = !J.,i-k - !J.,i .. - !J.,"k + !J., .. . 

({3Y)jk = !J.,·jk - !J.,.j. - !J.,"k + !J., .. . 

(a{3Y)ijk = !J.,ijk - !J.,ij· - !J.,i-k - !J.,·jk + !J.,i .. + !J.,.j. + !J.,"k - fJ, ... 

Hence, the equivalent factor effects ANOVA model for a three-factor study is: 

Yij/on = !J., ... +ai + {3j + Yk + (a{3)ij + (aYh + ({3Y)jk + (a{3Y)ijk + eijkm (24.14) 

where: 

eijkm are independent N (0, 0'2) 

ai, {3j, Yk> (a{3)ij, (aYh, ({3Y)jk> (a{3Y)ijk are constants subject to the restrictions: 

L ai = L {3j = LYk = 0 
i j k 

L(a{3)ij = L(a{3)ij = L(aY)ik = 0 
i j i 

L(aY)ik = L({3Y)jk = L({3Y)jk = 0 
k j k 

j k 
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. Both the cel.! mean.s model (2~.!2) and the equival.ent factor ~ffects model (24.14) are 
lInear models. Just as In the two-taclor case. We shall I1lustI"ate this for an example later in 
the chapter. 

Interpret at iOll of lntC'ract iOlls III Three-Factor Stlldies 
-------------~------------------------------------------------------~~-------
24.2 

To shed light on the nature of interactions in three-factor studies, we shall examine thre 
variations of the leaming time example by means of tables and graphs. The first exam ~ 
corresponds to learning time example I, in which-as we have already deterlllined-athr~_ 
factor interaction is present. In learning time example 2, there is no three-factorinte!'action 
but two two-factor interactions are present. Finally, inleaming time example 3, there is agai~ 
no th!'ee-factor interaction but there is just one two-facto!' interaction. In each example, We 

present the true treatment means flijk and the true ANOYA model parameters. 

learning Time Example 1: Interpretation of Three-Factor Interactions 

FIGURE 24.1 
Cell Means 
Plot with ABC 
Interaction 
Present-
Learning Time 
Example 1. 

In a three-factor study, the presence of a three-factor interaction indicates tha.t responses 
Illust be explained in terms of the comhined effects o.lall three factors. Thus, no simplified 
explanation, for example in terms of main effects or first-order interactions, is possible. Any 
graphical presentation of cell meanS should display all of the individual cell means ILijk. 

A convenient way to do so is to create separate two-factor treatment means or interaction 
plots for each level of a third factor. For example, the A B treatment means plots for the two 
levels of factor C are displayed in Figure 24.! for the cell means in Table 24.1. Recall that 
the learning time example considers the effects of gender (factor A), age (factor B), and 
intelligence (factor C) on learning time. Specifically, Figure 24.1 shows that for persons 
with normal IQ. gender has no effect on mean learning time, and age has only a small effect 
leading to slightly longer learning times for older persons. For persons with high IQ, on 
the other hand. felllales tend to learn more quickly than males for older persons but not for 
young persons. aI]d older persons tend to require substantially longer learning times than 
young persons. 

Notice that the slopes of the curves in the AB cell means plots are not the same for the 
two levels of C. For the first level of C. the curves for middle-aged and older subjects are 

25 

V> 
<J) 
+-' 
::J 15 c 
~ 

5 

(a) AB Plot for (] (High IQ) 

B3 (Old) 

~ . 
A] 

(Male) 

I 
B] (Young) 

" 

A2 
(Female) 

25 

5 

(b) AB Plot for (2 (NormallQ) 

B3 (Old) B2 (Middle) 

\ I ~ 
t 

B] (Young) 

A] 
(Male) 

A2 
(Female) 
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sloping downward, while these curves both have zero slope for the second level of C. This 
lack of parallelism in the two plots will always be present if a three-factor interaction exists, 
but this is not the only way such slope changes can arise. As we will see in the next example, 
if an AB interaction is present and either A or B also interacts with C, lack of parallelism 
will also be present when the AB interaction is displayed for each level of C. 

If three-factor interactions are difficult to understand, higher-order interactions such as 
four-factor interactions in studies involving more than three factors are yet more abstruse. 
Fortunately, it is often found in practice that these higher-order interactions are quite small 
or nonexistent. When this is the case, they can be disregarded in the analysis of factor 
effects. 

~Learning Time Example 2: Interpretation of Multiple Two-Factor Interactions 
The set up for learning time example 2 is the same as that for learning time example 1-
that is, we consider the same study of the effects of gender, age, and intelligence level on 
learning of a complex task-but the true cell means have changed. Table 24.2 lists the cell 
means and the corresponding ANOVA model parameters for learning time example 2. 

It is easy to see from a review of these parameters that all ABC interaction terms (af3 Y )ijk 

and all BC interaction terms (f3y) jk are zero; however, AB and AC interactions are present, 
since (af3)1I = -.5 and (aY)ll = .5. 

Figures 24.2a and 24.2b display the AB interactions for the two levels of C. The lack 
of parallelism of the AB curves within each panel reflects the presence of AB interactions. 
Notice also that the slopes of the curves in Figure 24.2a for high IQ subjects are negative, 
while those in Figure 24.2b for normal IQ suQiects are all close to zero. The fact that the 
AB curves for a given level of factor B are not parallel for the two levels of factor C reflects 
the presence of AC interactions in this example. The AC treatment means plots are shown 
in Figures 24.2c-e for each of the three levels of factor B. As expected, the AC curves 
in each panel are not parallel. Note finally that the slopes of the AC curves change from 
panel to panel. This lack of parallelism reflects the presence of the AB interaction in this 
example. 

'TABLE 24.2 Mean Learning Times and ANOVA Model Parameters- Learning Time Example 2. 

iador 
(;".' 
~~n(J~ 
';;"l;;(Males) 

(U:.~:2(Females) 

'l;;$r~'16.0 
'0:1'= .5 

/=1 
Young 

10.5 
9.5 

131 = -2:0 
132 = -.5 

(a) Mean Learning Times (in minutes) 

Intelligence (factor C) and Age (factor 8) 

k= 1 High IQ k= 2 NormallQ 

/=2 /=3 1~1 /=2 
Middle Old Young Middle 

12.5 16 17.5 19.5 
lOS 13 18.5 19.5 

(b) ANOVA Model Parameters 

/=3 
Old 

23 
22 

Yl = -4.0 (af3hz =0.0 
(af3)l1 = -.5 (aY)l1 = .5 

(f3Y)l1 = 0.0 
(f3Y)21 = 0.0 

(af3Y)l11 = 0.0 
(af3Y)l21 = 0.0 
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FIGURE 24.2 CelllVIeans Plots with AB and AC Interactions Present-Learning Time Example 2. 
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learning Time Example 3: Interpretation of a Single Two-Factor Interaction 
Cell means and corresponding ANOVA model parameters for learning time example 3 are 
given in Tables 24.3a and 24.3b, respectively. The set up is again the same as that for learning 
time examples I and 2, however the cell means have changed. Note from Table 24.3b, that 

all parameters corresponding to the ABC interaction are zero, as are those con·esponding to 
AC and Be. The two-factor interaction AB is present, since (a,8)11 = -.5. 

Figure 24.3a and 24.3b display the AB treatment means plots for each level of e. The 
slopes of the curves within each panel are not parallel, reflecting the presence of an AB 
interaction. Note also that the A B plots in Figure 24.3a are identical to those in Figure 24.3b, 
except that the cell means plotted in Figure 24.3b have been uniformly shifted up by eight 
minutes. This reflects the absence of the AC, BC, and ABC interactions in this example. 

Since the curves in the two AB plots are identical for the differenl levels of factor C 
except for the vertical displacement (i.e., since no AC, BC, or ABC interactions are present) 
separate panels are not necessary for interpreting the A B interaction. The overall AB cell 
means plot displays the cell means flij. when averaged over the levels of e. This plot 
is shown in Figure 24.3c. Notice that the slopes in the plot are identical to those in Fig­
ures 24.3a and 24.3b. The flij. values plotted are the averages of the corresponding cell 
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fieE 24.3 Mean Learning Times and ANOVA Model Parameters- Learning Time Example 3 • 
. ~_£_;~,---c----~~~~----~-------------------------------------------

. (a) Mean Learning Times (in niinutes) 

'''li 

e;~er ~' 

.. JlY1a!es) 
~(Females} 
-.'ii 

·rl!;~:O 

j=l 
Young 

10 
10 

131 =-2.0 

Irit~lIigence (factor·C) and Age (factor B) 
'." . " ,- -

k = 1 HighJQ k = 2 NormallQ 

j=2 j=3 j=l j=2 j=3 
Middle Old Youn~ . Middle Old 

12 15.5 18 20 23.5 
11 13.5 18 19 21.5 

'(b) ANOVAModel Parameters 

Yl =-4;0 (af3)12 =0.0 (f3y )11= 0.0 (af3Y)111 = 0.0 
132= -.5 (af3)J1 = --:.5 (aY)J1 =0.0 (f3yb =0.0 (af3Y)J21 =0.0 '~ _;5_, ________________________________________________________________ __ 

,FI6URE 24.3 
;eellMeans 
iiiots With AB 
'lieraction 

:.~resent­
lteaming Time 

·'Eiample 3. 
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means /Lijl and /Lij2 in Figures 24.3a and 24.3b. Because factor C is present as a main effect 
and does not interact with either A or B, (YI = -4), its effect can be shown and interpreted 

separately, using a bar graph, a main effects plot, or a line plot. A main effects plot forthe 
factor C effect is shown in Figure 24.3d. 

Comment 

One way to determine whether or not a three-factor interaction exists is to plot differences of treatment 
means in a manner similar to two-factor interaction plots, as proposed in Reference 24.1. It can be 
shown that if a three-factor interaction is not present, then the differences between means with respect 
to anyone of the factors will lead to parallel curves in the interaction plot of the differences. Conversely, 
if a three-factor interaction is present, the difference curves will not be parallel. For instance, in a three­
factor study where the third factor is at two levels (such as in the learning time example) we would 
examine the differences lLij I - lLij2 for all i and j. If the AB-interaction plots for these differences 
show parallel curves, then no three-factor interactions are present. We refer to this plot as a treatment 
means differences plot. (If the third factor has c > 2 levels, c - 1 interaction plots of the differences 
lLijk - lLij.k+1 for k = 1, ... , c - I are constructed, and lack of parallelism in anyone of the plots 
would indicate the presence of a three-factor interaction.) 

Treatment means differences plots are shown for learning time examples 1 and 2 in Figures 24.4a 
and 24.4b, respectively. We see from Figure 24.4a that the difference curves are not parallel, indicating 
the presence of a three-factor interaction. On the other hand, there is no three-factor interaction for 
learning time example 2, and this is reflected by the parallelism of the three curves in Figure 24.4b. 
For this example, these curves happen to be identical. The curves in the plot have been jittered slightly 
so that all three curves can be seen. 

Note that the main purpose of the treatment means differences plot is to diagnose the presence 
or absence of a three-factor interaction, and beyond this it does not contribute substantially to the 
interpretation of results. For this reason we do not advocate routine use of this plot with estimated 
treatment means. We shall employ analysis of variance techniques in Section 24.3 to identify which 
interactions are present, and then display appropriate treatment means plots or main effects plots 1D 

summarize and interpret results. • 

FIGURE 24.4 Treatment Means Differences Plot-Learning TlDle Examples 1 and 2. 

00 ~ 
Three-factor Interaction Three-factor Interaction 

Present-Learning Time Example 1 Absent-Learning Time Example 2 
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c c 
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~ ~ 
0 -8 0 -8 

B2 (Middle) B ( ) 
I Young 

-10 -10 

-12 -12 

~ A2 AI Az 
(Male) (Female) (Male) (Female) 
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24.3 Fitting of ANOVA Model 

Notation 
The notation for sample totals and means is a straightforward extension of that for two­
factor studies. As usual, a dot in the subscript indicates aggregation or averaging over the 
index represented by the dot. We have: 

Yijk. = L Yijkm 
y. _ Yijk-
ijk- - ---;;- (24.15a) 

m 

Yij .. = L L Yijkm 
- Yij .. 

(24.15b) Jij .. =--
en k m 

Yi·k. = LLYijkm 
y. Yi·k. (24.15c) i·k· = bn 

j m 

Y. jk. = L L Yijkm 
- Y. jk. 

(24.15d) Y. jk. =--
an m 

Yi ••• = LLLYijkm 
- Yi ... (24.15e) li ... = ben 

j k m 

Y.j .. = LLLYijkm 
__ Y. j .. 

(24.15f) y.) .. -
aen k m 

Y.·k. = L L L Yijkm 
- Y.·k. 

(24.15g) Y..k. = abn 
j m 

Y. ... = LLLLYijkm 
- Y. ... 

(24.15h) Y. ... = aben 
j k m 

Later in this section we illustrate this notation for a study of the effects of gender, 
body fat, and smoking history on exercise tolerance in stress testing. Each of the three 
factors has two levels, and there are three replications for each treatment. Tables 24.4a 
and b show, respectively, the data and estimated means, together with the corresponding 
notation. 

Fitting of ANOVA Model 
When the normal error cell means model (24.12) is fitted by the method of least squares 
or the method of maximum likelihood, the estimators as usual turn out to be the estimated 
treatment means: 

(24.16) 
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TABLE 24.4 
Sample Data 
and Estimated 
Treatment and 
Factor Level 
Means for 
Three-Factor 
Study-Stress 
'lest Example. 

j = 1 low fat: 
i = 1 Male 

i = 2 Female 

j = 2 High fat 
i = 1 Male 

i = 2Female 

Smokirig History 

k= t 
Light 

24.1 (Ylll11 
292(Yl~1~) 
24.6 eYll'B) 

20.0 (Y2,1l1) 
21.9 (Y2l12) 
17~6(Y211~j 

14,.6 (Ylin~ 
153 (Y1m) 
12.3 (Y12;3) 

16~1 (YwD 
9.3 '(.YZ~i2) 

10;8: (Y2213) 

k=2 
; Heavy 

1 ;7.6 (Y1l21 ) 
18:S( )l112Z) 
232 '(Y1l23) 

14.8 (YZ121) 
10:3 (Y2122) 

11.3 (Y2123) 

14.9 (Yl221 ) 
20.4 (Y1222) 
12.8 (Y1223) 

10.1 (Y2221 ) 
14.4 (YiZZ2) 

6.1 (.Y2223 ) 
:'-

(b) EstirnatedMeans 

k:::::l 

j= 1: 
i = 1 25.97 (Ym .), 
i =2 19.83 (Y21,l') 

All ; 22.90(Y~11') 
j=2: 

; = 1 14.07 (Yl2l .) 

;=2 12.07,(Y 221') 

All i ,l3.07(Y.21 .) 

Allj: 
i = 1 20.02:(Y1.1<) 
;=2 15.95 (YZ'1') 

All i 17.98 (Y..1.) 

k=2 

19.87 (Yi12:) 
. 12; 13,(Yi12~) 

16.00 .fY~12.) 

16.03 (Y12Z') 
10.20 (YZiZ;) 

13;12(Y.22:r 

17.95 (Yi;2.) 
.' 11.17 (Y 2.2.) 

14.56 (f..2.) 

Allk 

22.92(~11':) 
15.98 (Y21 .. ) 

19045 (Y.y •• )' 

15.05 (Y 12") 
1 U3 ~YZ2 •• ) 

18;98 (5"1.'.:) 

13.56 (Yz. .. " 

16.27 (Y .•.. ) 

Thus, the fitted values for the observations are the estimated treatment 

Yijkm = f;jk. 

and the residuals are the deviations of the observed values from the 
means: 
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For the equivalent factor effects model (24.14), the least squares and maximum likelihood 
estimators of the parameters are as follows: 

Parameter 

/L ••• 

exi 

{3; 

Yk 

(ex{3)i; 

(exY)ik 

({3y) ;k 

(ex{3Y)iik 

Estimator 

jl ... = Y .... 
- -

ai=Yi.··+ Y ... . 

~;= Y.; .. + Y ... . 
- -

JIk= Y··k· + Y .... 

(ajjji; = Yi; .. + Yi ••• + Y.; .. + Y ... . 

{aY)ik = vi+ + Vi •.. + Y.oko + y. .. . 

({iY);k = Y. ik· + Y. i .. + Y.+ + Y. .. . 

(24.19a) 

(24. 19b) 

(24.19c) 

(24.19d) 

(24.1ge) 

(24.19f) 

(24.19g) 

The fitted values and residuals for factor effects model (24.14) are the same as those in 
(24.17) and (24.18) for cell means model (24.12), as was the case for two-factor studies. 

Evaluation of Appropriateness of ANOVA Model 

Example 

No new problems arise in examining the appropriateness of the three-factor analysis of 
variance model. The residuals (24.18): 

(24.20) 

may be examined for normality, constancy of error variance, and independence of error 
terms in the same fashion as for single-factor and two-factor studies. 

Weighted least squares as usual is a standard remedial measure when the error variance is 
not constant but the distribution ofthe error terms is normal. A transformation of the response 
variable may be helpful to stabilize the error variance, to make the error distributions more 
normal, and/or to make important interactions unimportant. Our earlier discussions of these 
topics apply completely to the three-factor case. 

Finally, our earlier discussion on the effects of departures from the ANOVA model 
applies fully to the three-factor case. In particular, the employment of equal sample sizes 
for all treatments minimizes the effect of unequal variances. 

The effects of gender of subject (factor A), body fat of subject (measured in percent, 
factor B), and smoking history of subject (factor C) on exercise tolerance (Y) were stud­
ied in a small-scale investigation of persons 25 to 35 years old. Exercise tolerance was 
measured in minutes until fatigue occurs while the subject is performing on a bicycle 
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TABLE 24.5 
General 
ANOVATable 
for Three-
Factor Study 
with Fixed 
Factor Levels. 

MuITi-Focto!" ST"dies 

Source of 
Variation SS df MS E{MS} 

l:a2 
Factor A SSA 0-1 MSA a 2 +bcn-_' 

0-1 

l:f32 
Factor B SSB b-1 MSB a2+oen~ 

-1 

l:y/ 
Factor C sse e-1 MSC a 2+obn--

e-1 

AB interactions SSAB (0-1)(b-1) MSAB 
2:2: (af3)t 

a 2 + en I 
(0-1)(b-1) 

AC interactions SSAC (0-1)(e-1) MSAC 
2 b l:l:(ay)tk 

a + n 
(0 - l)(e - 1) 

BC interactions SSBC (b - 1 )(e - 1) MSBC 
2 l:l:(f3Y)Jk 

a +on 
(b - l)(e -1) 

ABC interactions SSABC ( 0 - 1)( b - 1)( e - 1) MSABC 
2 2:2:2: (af3 Y)f;k 

a +n 
(0 - 1 )(b - 1 )(e -1) 

Error SSE obe(n - 1) MSE a 2 

Total ssm obcn -1 

No,": 11. ... u,. fi,. y,. (a/i)". (ar)". (/ir);,. and (a/ir)", arc dcHncd in (24.13). 

apparatus. Three subjects for each gender-body fat-smoking history group were given the 
exercise tolerance stress test. The results are recorded in Table 24.4a. Note thar each fac­
tor has two levels (a = h = c = 2) and that there are three replications (n = 3) for each 
treatment. 

The estimated treatment and factor level means are presented in Table 24.4b. Figure 24.5a 
contains the BC treatment means plots for each level of factor A, atld Figure 24.5b contains 
the AB treatment means plots for each level of C. It appears that some factors may interact 
in their effect on exercise tolerance and that gender, in particular, may affect the endurance 
in stress testing. 

Residual Analysis. The researcher first prepared aligned residual dot plots for the eight 
treatments. These plots (not shown). though based on only three observations for each 
treatment, did not suggest any gross differences in the elTor variances for the eight treatments. 
The researcher also obtained a normal probabil ity p lot of the residuals. shown in Figure 24.6. 
The points in this plot f0l"l11 a moderately linear pattern. Normality of the elTor terms is 
supported by the high coefficient of correlation between the ordered residuals and their 
expected values under normality, namely, .969. The researcher was therefore satisfied that 
three-factor ANOYA model (24.14) is applicable here. and now wishes to analyze the nature 
of the factor effects in detail. 
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(a) Body Fat and Smoking History Plots 
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24.4 Analysis of Variance 

Partitioning of Total Sum of Squares 
Neglecting the factorial structure of the three-factor study and simply considering it to 
contain abc treatments, we obtain the Llsual breakdown of the total sum of squares: 

where: 

SSTO = SSTR + SSE 

SSTO = ~~~~(Yijkttl - y. ... )2 
; j k ttl 

SSTR = n ~~~(Yijk' - 17. ... )2 
j 

j m 

(24.21) 

(24.21a) 

(24.21b) 

j k ttl 

Consider now the estimated treatment mean deviation Y'jk. - 17. ... , which appears in 
SSTR. This can be decomposed in terms of the estimators in (24.19) of the main effects, 
two-factor interactions, and three-factor interaction: 

Vijk. - v .... = Vi ... - V .... + 17. j .. - 17. ... + V .. k. - 17. ... + Vij .. - Yi ... - V. j .. + V .... 
~ '----v-' '----v-' '----v-' ' v ' 

Estimated A main effect B main effect C main effect AB interaction effeet 
h-eatl11cnt 

mean deviation 

AC interaction effect BC intcmction effect 

+ Vijk. - Vij .. - V"k' - 17. jk. + Yi ... + 17. j .. + V .. k. - V .... 
, J 

v 
ABC intemction effect 

When we square each side and sum over i, j, k, andm, all cross-product terms dropout 
and we obtain: 

SSTR = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC 

where: 

SSA = nbc ~(Vi'" - Y. .. Y 

SSB = nac ~(17.j" _ V .... )2 
j 

SSC = nab ~(Y.'k' - Y.. .. )2 

k 

(24.22) 

(24.22a) 

(24. 22b) 

(24.22c) 
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SSAB = nc L L(Yij" - Yi ... - 1'. j .• + Y .... )2 
j 

SSAC = nb L L(Yi ' k ' - Yi ••• - Yook- + Y .... )2 

k 

SSBC = na L L(Y'jk' - Y. j •• - Yook- + 1'. ... )2 
j k 

(24.22d) 

(24.22e) 

(24.22f) 

SSABC = n L L L (Yijk. - Yij .. - Yi.k. - 1'. jk. + Yi ... + 1'. j .. + Y .. k. - 1'. ... )2 
j k 

(24.22g) 

Combining (24.21) and (24.22), we have thus established the orthogonal decomposition: 

SSTO = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE (24.23) 

SSA, SSB, and SSC are the usual main effects sums of squares. For instance, the larger 
(absolutely) are the estimated main B effects 1'. j .. - 1'. ... , the larger will be SSE. 

SSAB, SSAC, and SSBC are the usual two-factor interactions sums of squares. For in­
stance, the larger (absolutely) are the estimated AB interactions Yij .. - Yi ... - 1'.j .. + 1'. ... , 
the larger will be SSAE. 

Finally, SSABC is the three-factor interactions sum of squares. The larger (absolutely) 
are these estimated three-factor interactions, the larger will be SSABC. 

COegrees of Freedom and Mean Squares 
Table 24.5 contains the general ANOVA table for three-factor ANOVA model (24.14). The 
degrees of freedom for main effects and two-factor interactions sums of squares correspond 
to those for two-factor studies. The number of degrees of freedom associated with SSABC 
is obtained by subtraction and corresponds to the number of independent linear relations 
among all the interaction terms (a{3Y)ijk. 

The expected mean squares are also given in Table 24.5. Note that MSA, MSB, MSC, 
MSAB, MSAC, MSBC, and MSABC all have expectations equal to a 2 if there are no factor 
effects of the type reflected by the mean square. If such effects are present, each mean 
square has an expectation exceeding a 2

• As usual, E {MSE} = a 2 always. Hence, the tests 
for factor effects consist of comparing the appropriate mean square against MSE by means 
of an F* test statistic, with large values of F* indicating the presence of factor effects. 

Tests for Factor Effects 
The various tests for factor effects all follow the same pattern; we illustrate them with the 
test for three-factor interactions. The alternatives are: 

Ho: all (a{3Y)ijk = 0 

Ha: not all (a{3Y)ijk equal zero 

The appropriate test statistic is: 

F* = _M_S_'AB_C_ 
MSE 

(24.24a) 

(24.24b) .. 
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TABLE 24.6 
Test Statistics 
for Three-
Factor Study 
withFixed 
Factor Levels. 

Alternatives Test Statistic Percentile --
Ho: alia; = 0 F* = MSA 

MSE 
F[l - a; 0-1, (n-1)obc] 

Ha: not all a; = 0 

Ho: all 13; = 0 F* = MSB 
MSE 

F [1 - a; b - 1, (n - 1 )obc] 

Ha: not all f3i = 0 

Ho: all Yk = 0 
MSC 

F*=--
MSE 

F [1 - a; c - 1, (n - 1 )obc] 

Ha: not all Yk = 0 

Ho: all (af3);i = 0 F* = MSAB 
MSE 

F[1-a;(0-1)(b-1),(n-1)obc] 

Ha: not all (af3);i = 0 

Ho: all (aY)ik = 0 F* = MSAC 
MSE 

F[1-a;(0-1)(c-1),(n-1)obc] 

Ha: not all (aY);k = 0 

Ho: all (f3Y)ik = 0 
MSBC 

F*---
- MSE 

F[l - a;(b-1)(c-1), (n-1)obc] 

Ha: not aU (f3y) ik = 0 

Ho: all (af3Y);ik = 0 F* = MSABC 
MSE 

F[1-a;(0-1)(b-1)(c-1),(n-1)obc] 

Ha: not all (af3Y);;k = 0 

If Ho holds, F* follows the F distribution with (a - I)(b - I )(c - I) degrees of freedom for 
the numerator and abc(n - I) degrees of freedom for the denominator. Hence, the decision 
rule to control the Type I error at 0' is: 

IfF*::: F[I-O';(a-l)(b-l)(c-I).(n-l)abe],concludeHo 

If F* > F[ 1- 0'; (a - I)(b - I)(e - I). (n - I)abc], conclude H" 
(24.24c) 

Table 24.6 contains the test statistics and percentiles of the F distribution for the various 
tests in a three-factor study. 

Kimball Inequality. The Kimball inequality for the fanlily level of significance ex in a 

three-factor study when the family consists of the combined set of seven tests, including three 
on main effects. three on two-factor interactions, and one on three-factor interactions, is: 

(24.25) 

where 0'; is the level of significance for the ith test. 

Comments 

l. If the three-factor interactions (and also perhaps ~ome sets of two-factor inteructions) equal 
zero. the question sometimes arises whether the corresponding sums of squares should be pooled with 
the error SUm of squares. Our earlier discussion on revising the ANOVA model in Section 19.!O is 
applil:able here also. 
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2. If there is only one case per treatment in a three-factor study with fixed factor levels, analysis 
of variance tests can only be conducted if it is possible to assume that some interactions equal zero. 
Usually, the interadions most likely to equal zero are the three-factor interactions. If it is possible to 
assume that all three-factor interactions equal zero, MSABC has expectation a 2 and plays the role of 
the error mean square MSE. All mean squares are calculated in the usual manner, except that n = 1. 

3. The F* test statistics in Table 24.6 can be obtained by the general linear test approach explained 
in Chapter 2. For example, for testing whether all three-factor interactions are zero, the full model is 
that in (24.14), the alternatives are those in (24.24a), and the reduced model under Ho: (af3 Y) ijk == 0 is: 

Yijkm = /L ••. + ai + f3j + Yk + (af3)ij + (ayb + (f3Y)jk + Cijkm Reduced model (24.26) 

• 
In the stress test example, the researcher first wished to test for the various factor effects. 
Figure 24.7 contains a portion ofthe SYSTAT ANOVA output. The researcher desired to 
conduct the seven potential tests with a family level of significance of a = .10. This will 
ensure that if in fact no factor effects are present, there will be only one chance in 10 for 
one or more of the seven tests to lead to the conclusion of the presence of factor effects. 
Using the Kimball inequality (24.25), the researcher solved the equation: 

a = .10 = 1 - (l - ai) 7 

and found ai = .015. Thus, use of significance level a, = .015 for each test ensures that 
the family level of sigtlificance will not exceed .10. 

The ANOVA table in Figure 24.7 shows the seven test statistics and their P-values. 
Each test statistic has in the numerator the appropriate factor effect mean square, and the 
denominator of each test statistic is MSE. 

Test for Three-Factor Interactions. The first test was conducted for three-factor inter­
actions. The alternatives are: 

The decision rule is: 

Ho: all (a{3Y)ijk = 0 

Ha: not all (a{3Y)ijk equal zero 

If F* .::'S F(.985; 1,16) = 7.42, conclude Ho 

If F* > F(.985; 1, 16) = 7.42, conclude Ha 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATlO 

GENDER 176.584 176.584 18.915 
FAT 242.570 242.570 25.984 
SMOKING 70.384 70.384 7.539 
GENDER*FAT 13.650 13.650 1.462 
GENDER 

*SMOKING 11.070 11.070 1.186 
FAT*SMOKING 72.454 72.454 7.761 
GENDER*FAT 

*SMOKING 1.870 1.870 0.200 

ERROR 149.367 16 9.335 

P 

0.000 
0.000 
0.014 
0.244 

0.292 
0.013 

0.660 
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The F* test statistic obtained from Figure 24.7 is: 

F* = MSABC = 1.870 = .20 
MSE 9.335 

Since F* = .20::: 7.42. the researcher concluded that no ABC interactions are present. Th 
P-value of this test is .66. e 

Tests for Two-Factor Interactions. The researcher next tested for two-factor interacti 
OilS. 

In the test for AB interactions, the decision rule is (the alternatives are given in Table 24.6): 

and the test statistic is: 

If F* ::: F(.985; I, 16) = 7.42, conclude Ho 

If F* > F(.985; I, 16) = 7.42, conclude H" 

* MSAB 13.650 
F =--=--= 1.46 

MSE 9.335 

Since F* = 1.46::: 7.42, the researcher concluded that no AB interactions are present. The 
P-value of this test is .24. 

The tests for AC and BC interactions proceeded similarly. We obtain: 

MSAC 11.070 
I. F* = -- = -- = 1.19 < F(.985; 1, 16) = 7.42 

MSE 9.335 -
P-value = .29 

Conclusion: No AC interactions are present. 

MSBC 72.454 
2. F* = -- = -- = 7.76 > F(.985; 1,16) 

MSE 9.335 
7.42 P-value = .01 

Conclusion: Some BC interactions are present. 

Tests for Main Effects. Since factor A (gender) did not interact with the other two factors, 
attention next turned to testing for factor A main effects. In testing for factor A main effects, 
the decision rule is (the alternatives are given in Table 24.6): 

The test statistic is: 

If F* ::: F(.985; I, l6) = 7.42, conclude Ho 

If F* > F(.985; 1, 16) = 7.42, conclude Ha 

* MSA 176.584 
F· = MSE = 9.335 18.92 

Since F* = 18.92 > 7.42, the conclusion was reached that factor A main effects are present; 
specifically, we conclude that the mean endurance time for males is greater than that for 
females. The P-value of this test is 0+. 

The factor B and factor C main effects were not tested at this point because BC inter­
actions were found to be present. The researcher first wished to study the nature of the Be 
interaction effects before determining whether the factor B and factor C main effects are 
of any practical interest under the circumstances. 
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Family of Conclnsions. The five separate F tests for factor effects led the researcher to 
conclude (with family level of significance :'S .10): 

1. 
2. 

3. 

There are no three-factor interactions. 
There are no two-factor interactions between gender (factor A) and either of the other 
two factors-body fat (factor B) and smoking history (factor C). Body fat and smoking 
history interactions do exist, however. 
Main effects for gender (factor A) are present-mean endurance time for males is larger 
than for females. 

This set of test results was most useful to the researcher. The next step in the analysis was 
to examine the nature of the BC interaction effects. 

; 24.5 Analysis of Factor Effects ;. 
,,~ 

No new problems are encountered in the analysis of factor effects for three-factor studies 
with fixed factor levels. As for two-factor studies, the focus of the analysis is usually on 
factor level means when no important interactions are present, and on various two-factor 
level means (/Lu., /Li.k> or /L·jk) or individual cell means (/Lijk) when there are important 
interactions. We first present a formal strategy for determining which level of analysis is 
appropriate. We then present some selected results for estimating factor effects. 

Strategy for Analysis 
As described in Section 19.7 for two-factor studies, the presence of interacting effects in 
multifactor studies complicates the explanation of the factor effects because they must 
then be described in terms of the combined effects of multiple factors. Of course, some 
phenomena are too complex to be described simply by additive main effects. The desire for 
a simple, parsimonious explanation, when possible, suggests the following basic strategy 
for analyzing factor effects in three-factor studies: 

1. Examine whether or not important three-factor interactions exist. 
2. If no important three-factor interactions exist, determine whether or not important two­

factor interactions are present. 
3. If no important two-factor or higher-order interactions are present, examine the main 

effects. For important A, B, or C main effects, describe the nature of these effects in 
terms ofthe factor level means /Li .. , /L.j. and /L .• k> respectively. 

4. If three-factor interactions are important, consider whether they can be made unimportant 
by a meaningfUl simple transformation of scale. If so, make the transformation and 
proceed as in step 2. 

5. For important three-factor interactions that cannot be made unimportant by a simple 
transformation, which is often the case, analyze the three factors jointly in terms of the 
treatment means /Lijk. 

6. If there is just one important two-factor interaction, analyze the effects jointly in terms 
ofthe appropriate two-factor treatment means /Lij-. /Li.k, or /L.jk. Analyze the effects of 
the third factor separately. For example, if the AB interaction is present and no AC or BC 
interactions exist, analyze the marginal means /Llj •• If a C main effect is present, analyze 
the single-factor level means /L .. k separately. 
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7. If there are two or three important two-factor interactions in a three-factor study I 
h h f· .. I . f· h Th·· ,anaYze t e tree actors Jomt y III terms 0 t e treatment means Mijk· IS pnnciple extends 

multifactor studies having more than three factors in the following way. If any two tw to 
factor interactions are overlapping-that is they each involve a conllnon factor_tho­
the cell means should be analyzed in terms of the joint effects of the three factors Fen 
example, ifin a four-factor study two interactions AB and Be are found to be impo~ or 
(and no higher-order interactions are present), analysis of the three-factor level me:

t 

. d· d S !Jijk. IS in Icate . 

Occasionally, exceptions to the strategy outlined above may arise. For example, on page 826 
we commented on a situation in which an investigator might be interested in inferenCes 
concerning a main factor etfect even though the factor ww, also present in an important 
two-factor interaction. 

We have already discussed the testing for interaction effects, the possible diminution of 
important interaction, by a simple transformation, and how to test for the presence of factor 
main effects. Now we turn to steps 2 through 7 of the strategy for analysis, namely, how 
to compare single-factor level means Mi .. , M.j. and !J.·k when there are unimportant three­
factor and two-factor interactions, how to compare two-factor level means Mij., !Ji.k, and!J.jk 

when there is a single important two-factor interaction, and finally, how to compare treatment 
means !Jijk when there are important overlapping two factor interactions or important three­
factor interactions. 

Analysis of Factor Effects when Factors Do Not Interact 
Estimation of Factor Level Mean. The factor A level mean !Ji .. is estimated by: 

Mi .. = Y i ... 

The estimated variance of this estimator is: 

J - MSE 
r{Y i ••• }=­

nbc 

(24.27) 

(24.28) 

Confidence limits for !Ji .. are obtained by means of the 1 distribution with (/1 - I )abc 

degrees of freedom: 

Vi ... ±1[1 -0'/2; (n -l)abc]s{Vi ••• } (24.29) 

Estimation of factor level means for factors B or C is done in similar fashion. 

Inferences for Contrast of Factor Level Means. Inference procedures for a contrast 
involving the factor A levell11eans !Ji .. : 

L = LCi!Ji .. where LCi:::: O (24.30) 

are easily developed. The I - 0' confidence limits for L are: 

L ± 1[1 - 0'/2; (n - l)abc]s{L} (24.31) 

where L is estimated unbiasedly by: 

(24.31 a) 
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and the estimated variance of Lis: 

2 A MSEz= 2 s {L} = - c· 
nbc I 

(24.31 b) 

Contrasts of factor level means for factors B or C are estimated in similar fashion. 
The test statistic and decision rule for the following alternatives concerning a contrast L 

in (24.30): 

are: 

L 
t* = -A-; If It*1 > t[1 - a/2; (n - l)abc], conclude Ha 

s{L} 

(24.32) 

(24.33) 

where Land s {L} are given by (24.31). Again for conciseness, we present only the portion 
ofthe decision rule leadin~ to conclusion Ha. 

Multiple Coutrasts of Factor Level Meaus. When inferences are to be made concerning 
a number of contrasts of factor A level means Mi •. , the Tukey, Scheffe, and Bonferroni 
procedures are easily adapted. As before, the Tukey procedure applies to the set of all 
pairwise comparisons of the form D = Mi •• - Mi' .•. 

To obtain simultaneous confidence interval estimates, the t multiple in (24.31) is replaced 
by the T, S, or B multiple defined as follows: 

Procedure 

Tukey 

Scheffe 

Bonferroni 

Multiple 

1 
T = .J2q[l - ex; 0, (n - 1 )obc] 

S2 = (o-1)F[l -ex; 0-1, (n-1)obc] 

B = t[l - ex/2g; (n - 1 )obc] 

(24.34a) 

(24.34b) 

(24.34c) 

Test statistics and decision rules for simultaneous testing of a number of contrasts of the 
form (24.30) for the alternatives Ho: L = 0, Ha: L i= 0 are: 

Procedure 

Tukey 

Scheffe 

Bonferroni 

Test Statistic and Dedsion Rule 

* .J2D 
q = s{D) 

If Iq*1 > q[l - exi 0, (n-1)obc], conclude Ha 

[2 
F*= ----=-~ 

. (0-1)s2{L) 

If F* > F [1 - exi 0 - 1, (n - l)obc], conclude Ha 

L 
t*=--

sa) 

If WI > t[l - ex/2g; (n - 1 )obc], conclude Ha 

(24. 35a) 

(24.35b) 

(24.35c) 
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Inferences concerning multiple contrasts based on the factor level means !l.j. or 
d . d' f' h' !l"k are ma e tn cOlTespon tng as Ion. 

Analysis of Factor Effects with Multiple Two-Factor Interactions 
or Three-Factor Interaction 

As explained earlier in the strategy for analysis, when a three-factor interaction is prese 
I · . ., h f nt or over apptng two-factor tnteracttons are present, t e results 0 the study are typicall 

analyzed in terms of the treatment means !lijk. Y 

Estimation of Treatment Mean. The treatment mean !lijk is estimated by: 

The estimated variance of Yijk . is: 

Confidence limits for !liik are: 

) - MSE 
S-{Yijk'} = -­

/1 

Yijk . ± tfl - 0'/2; (n - l)a!Jc]s{Y ijk .} 

(24.36) 

(24.37) 

(24.38) 

Inferences for Contrast of Treatment Means. When important interactions are present, 
contrasts among the treatment means !lijk ar-e ordinarily desir-ed. Let, as usual, L denote 
such a contrast: 

where (24.39) 

Confidence limits for L are: 

L ± t[1 - 0'/2; (n - l)abc]s{L} (24.40) 

where: 

(24.40a) 

(24.'140b) 

The test statistic and decision rule for alternatives Ho: L = 0, Ha: L -=f. 0 ar-e: 

* L * t = -~-; [fit I> t[1 -0'/2; (/1-I)abc],concIude H" 
s{L} 

(24.41) 

Analysis of Factor Effects with Single Two-Factor Interaction 
When a single two-factor interaction is present in a three-factor study, desired contrasts 
may involve means of the !lijk taken over one of the factors. For example, when the 
only interactions pr-esent ar-e the Be interactions, there may be interest in contrasts of the 
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where (24.42) 

Such contrasts are, of course, special cases of contrasts of the treatment means ILijk in 
(24.39). The estimator of the contrast in (24.42) can be obtained from (24.40a) and the 
estimated variance from (24.40b); they are: 

(24.43) 

(24.44) 

Multiple Contrasts of Treatment Means. For simultaneous interval estimates of con­
trasts of treatment means ILijb the t multiple in (24.40) is replaced by the T, S, or B multiple 
defined as follows: 

Procedure 

Tukey 

Scheffe 

Bonferroni 

Multiple 

1 
T = .J2q[l - a; ABC, (n - 1 )abe] 

52 = (abe-1)F [1 - a; abe-1, (n - l)abe] 

B = t[l - aj2g; (n - 1 ) abc] 

(24.45a) 

(24.45b) 

(24.45c) 

Simultaneous testing of a number of alternatives ofthe form Ho: L = 0, Ha: L =I- 0 using 
the Tukey, Scheffe, and Bonferroni procedures can be accomplished with the following test 
statistics and decision rules: 

Procedure 

Tukey 

Scheffe 

Bonferroni 

.J2D 
q* = s{D} 

Test Statistic and Decision Rule 

If Iq*1 > q[l - a; ABC, (n-1)abe], conclude Ha 

[2 
F * = -----=-___=_ 

(abe---:; 1)s2{l) 

If F * > F [1 - a; abc - 1, (n - 1 )abe], conclude Ha 

L 
t*=-

s{L) 

If WI > t[l - aj2g; (n - 1 )abe], conclude Ha 

As before, the Tukey procedure concerns only pairwise comparisons. 

(24.46a) 

(24.46b) 

(24.46c) 

. . 
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Example-Estimation of Contrasts of Treatment Means 
1b study the nature of the Be interaction effects in the stress test example, the rese 
wished to estimate separately, for persons with high and low body fat, the differe:ch~r 
mean fatigue time for light smokers and heavy smokers. The desired contrasts are: e III 

LI = fl·11 - fl·ll 

Ll = fl·ll - fl·n 

In addition, a single comparison between the factor level means for factor A is sufficient to 
analyze the factor A main effects since factor A has only two levels. The contrast of intere 
(here a pairwise comparison of factor level means) is: 8t 

L3 = fll·· - fll·· 

These three contrasts are estimated as follows, using the results in Table 24.4b: 

£1 = Ell. - Ell. = 22.90 - 16.00 = 6.90 

£2 = f. ll • - E22 . = 13.07 - 13.12 = -.05 

£3 = YI ... - Yl ..• = 18.98 - 13.56 = 5.42 

The researcher obtained the estimated variances by using (24.44) and (24.3lb) and the 
Bonferroni multiple for a 95 percent family confidence coefficient: 

o ~ 0 ~ MSE 0 0 9.335 
s-{Ld = s-{L2 } = -[(1)- + (-1)-] = --(2) = 3.112 

/1(1 6 

o ~ MSE 0 0 9.335 
s-{L 3 } = -[(It + (-It] = --(2) = 1.556 

nbc 12 

B = to - .05/6; 16) = 2.673 

The desired confidence intervals using (24.40) therefore are: 

2.2 = 6.90 - 2.673(1.764) .:::: fl'lI - fl.ll .:::: 6.90 + 2.673(1.764) = 1l.6 

':"'4.8 = -.05 - 2.673(1.764) .:::: fl.ll - fl.n .:::: -.05 + 2.673(1.764) = 4.7 

2.1 = 5.42 - 2.673(1.247)':::: fll" - fl2 .. .:::: 5.42 + 2.673(1.247) = 8.8 

The researcher therefore concluded with family confidence coefficient .95: ("J) Among 
people with low body fat, those who have a light smoking history have a mean stress test 
endurance that is 2.2 to 11.6 minutes longer than the mean endurance for people with a heavy 
smoking history. (2) People with high body fat do not differ in mean stress test endurance 
whether they have a light or a heavy smoking history. (3) The mean stress test endurance 
for men is 2.1 to 8.8 minutes longer than the mean endurance for women. 

In view of the important interaction effects between body fat and smoking history on 
stress test endurance noted in the study findings, the researcher concluded that factor B 
and factor C main effects are of no interest, and therefore terminated the analysis at this 
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cti\iI,tE 24.8 Key Findings from Stress Test Endurance Study. 

(a) Effect of, Genders (b) Effects of Body Fat and Smoking History 

Y. jk• 

30 

,'-I - -I 
10 t t20 Yi... Endurance 

Vl 
Q) 

'5 20 ~ c 
(Minutes) 

Females Males ~ 

- -High percent fat 

f24.6 

10 

O~------~----------~--------
Light Heavy 

Smoking History 

point. The principal findings are presented graphically in Figure 24.8. Figure 24.8a shows 
the magnitude of the effect of gender on stress test endurance, and Figure 24.8b shows 
the nature of the interaction effects between body fat and smoking history on stress test 
endurance. 

Unequal Sample Sizes in Multi-Factor Studies 

When the treatment sample sizes in a multi-factor study are not equal, the procedures 
explained in Sections 23.1-23.3 for two-factor studies with unequal treatment sample sizes 
should be followed with routine modifications. We continue to assume that all treatment 
means are of equal importance and that there are no empty cells. 

Tests for Factor Effects 

Example 

Tests for factor effects in multifactor studies with unequal sample sizes can be conducted 
by means ofthe regression approach. Indicator variables taking on the values 1, -1,0, are 
designated for each factor, the number of such variables for each factor being one less than 
the number of factor levels. Interaction effects are represented by cross-product terms, as 
usual. Since the sums of squares are no longer orthogonal when the treatment sample sizes 
are unequal, different reduced models need to be fitted for the tests of interest. 

Suppose that in the stress test example of Table 24.4, observations YIlI3 and Yz21Z were 
missing. To develop a regression model for this example, we note that each of the three 
factors is at two levels. Hence, one indicator variable is required for each factor. The full 
regression model therefore is: 

Yijkm = Ji, ••• + ajXijkml + {3,XijkmZ + y,Xijkm3 + (a{3) "Xijkm,XijkmZ 

+ (aY)llXijkm,Xijkm3 + ({3Y)lI X ijkmZ X ijkm3 

+ (a{3Y)llIXijkm,XijkmZXijkm3 + Cijkm Full model (24.47) 
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TABLE 24.7 
Data for 
Regression 
Model 
(24.47)-Stress 
Test Example 
with Y1ll3 and 
Y2212 Missing. 

Multi-Facio/" Studies 

j k 

1 
1 
2 

2 2 1 
2 2 1 
2 2 2 
2 2 2 
2 2 2 

where: 

XI = { I 
-I 

Xo = { I - -I 

X3 = { I . -1 

(1) (2) (3) (4) 
m Y Xl X2 X3 

1 24.1 1 
2 29.2 1 
1 17.6 -1 

1 16.1 -1 -1 1 
3 10.8 -1 -1 1 
1 10.1 -1 -1 -1 
2 14.4 -1 -1 -1 
3 6.1 -1 -1 -1 

if case from level I for factor A 
if case from level 2 for factor A 

if case from level I for factor B 
if case from level 2 for factor B 

if case from level 1 for factor C 
if case from level 2 for factor C 

(5) (6) (7) --= (8) 
X1X2 X1X3 X2 X3 X1X~Xl" 

1 1 1 
1 1 1 

-1 -1 -1 

-1 -1 
-1 -1 

1 1 -1 
1 1 -1 
1 1 -1 

The regression parameters in model (24.47) are the ANOVA model parameters as defined 
in (24.13). 

Table 24.7 repeats in column I a portion of the Y observations for the stress test example 
in Table 24.4 with observations Yll13 and Y2212 missing. The coded indicator variables X,. 
X 2, and X 3 are shown in columns 2-4 and the cross-product interaction terms are shown in 
columns 5-8. The full model in (24.47) is fitted by regressing Y in column I of Table 24.7 
on the X variables in columns 2-8. To test a particular factor effect. the r-educed model is 
obtained by dropping the appropriate X variable(s). For instance, to test for factor A main 
effects, X I would be dropped to obtain the reduced model and Y would be regressed on the 
X variables in columns 3-8. 

Comment 

The discussion in Section 23.6 on the use of statistical packages for analysis of variance with unequal 
sample sizes and/or empty cells is applicable in its entirety for multifactor studies. # • 

Inferences for Contrasts of Factor level Means 
Estimation and testing of contrasts of factor level means in multi-factor studies with unequal 
sample sizes are conducted in similar fashion as for two-factor studies. The formulas in 
Table 23.5 for the development of interval estimates need simply be extended to three or 
more factors. Testing procedures may be devised from these extensions in the usual fashion. 

To illustrate such an extension, consider pairwise comparisons of factor A level means 
in a three-factor study with unequal samples sizes. Extending formula (23.21), we obtain 
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for the comparison, its estimator, and the estimated variance: 

D = /L; •• - /Le •• (24.48a) 

(24.48b) 

(24.48c) 

The appropriate degrees of freedom associated with MSE are nT - abc. 

24.7 Planning of Sample Sizes 

We considered the planning of sample sizes for single-factor studies with power approach 
and estimation approach in Chapters 16 and 17. Then we considered the planning of sample 
sizes for two-factor studies in Chapter 19. Now we take up the planning of samples sizes 
for multi-factor studies. 

power of F Test for Multi-Factor Studies 
Table B .11 can be used for determining the power of tests for multi-factor studies in the 
same fashion as for single-factor and two-factor studies. The only differences arise in 
the definition of the noncentrality parameter and the degrees of freedom. For three-factor 
fixed effects ANOVA model (24.14) with equal treatment sample sizes, the noncentrality 
parameter ¢ for a given test is defined as follows: 

= ~ [numerator of second term in E{MS} in Table 24.5] 1/2 

¢ a denominator of second term in E{MS} plus 1 
(24.49) 

For example, for testing for three-factor interactions, we have: 

¢ _ ~ [ n'L'LIJa{3Y);jk ]1/2 
" a (a - 1)(b - l)(e - 1) + I 

Use of Table B.12 for Multi-Factor Studies 
When planning sample sizes for three-factor studies with the power approach, one is typi­
cally concerned with the power of detecting factor A main effects, the power of detecting 
factor B main effects, and the power of detecting factor C main effects. One can first specify 
the minimum range of factor A level means for which it is important to detect factor A main 
effects and obtain the needed sample sizes from Table B.12, with r = a. The resulting 
sample size is ben, from which n can be obtained readily. The use of Table B.12 for this 
purpose is appropriate provided the resulting sample sizes are not small, specifically pro­
vided a(ben -1) 2: 20. If this condition is not met, the ANOVA power tables in Table B.ll 
should be used with an Iterative approach. 

In the same way, the values for the minimum range of factor level means for factors B 
and C can be specified for which it is important to detect the factor main effects, and the 
needed sample sizes found. If the sample sizes obtained from the factor A, factor B, and 
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Cited 
Reference 

Problems 

factor C power specifications differ substantially, ajudgment will need to be made as t 
. o the final sample sIzes. 

--24.1. Monlezun. C. J. "Two-Dimensional Plots for Interpreting Interactions in the Three-Fac 
Analysis of Variance Model." Tile America/l S((f{istici{/I/ 33 (1989l. pp. 63-69. tor 

-24.1. Refer to Table 24.1 containing the mean responses fl.ijk for a three-t~lctor study. 

a. Find the main effects of age. 

b. Find the interaction effect of young agc and normallQ. 

c. Find the inten.ction effect of young age. nllrmallQ. and female gender. 

24.2. Prepare AC plots of the mean responses fl.ijk in Table 24.1 in the format of Figures 24.2c--e. 
Do your plots convey the same information as Figure 24.1? Discuss. 

24.3. Prepare Be plots of the mean responses /J.,ijk in Table 24.1. Do your plots bring out any 
information on main effects and interactions not readily seen from Figure 24.1? Discuss. 

24.4. In a three-factor study. the mean responses fl.iJk are as follows: 

j = 1 

i = 1 130 
;=2 126 
i = 3 122 

a. Find 0'1. a~. and 0';. 

b. Find {3~ and YI· 

c. Find (a{3ll~. (ayb. and ({3Yll~. 

d. Find (a{3yllll and (a/1Y)m. 

k=l 

j=2 

138 
130 
125 

j = 1 

140 
134 
122 

j=2 

144 
136 
131 

24.5. Referto Problem 24.4. Prepare A B plots of the mean responses fl.ijk in the format of Figure 24. I. 
What do these plots show about factor main effects and interactions? 

*24.6. Case hardening. An experiment involving the case hardening of lightweight shafts machined 
from bars of an alloy was run to study the effects of the amount of a chemical agent added to 
the alloy in a molten state (factor A). the temperature of the hardening process (factor B), and 
the time duration of the hardening process (factor C) on the outside hardness of the shaft. All 
factors were at two levels (I: low. 2: high), and the number of rods tested for each treatment 
was /I = 3. The data on hardness (in Brinellunits) follow. 

k=l k=2 

j = 1 j=2 j = 1 j=2 

i = 1 39.9 53.5 56.0 70.9 
32.2 50.7 56.9 73.3 
36.3 52.8 56.6 71.6 

i=2 45.2 63.3 69.4 82.9 
48.0 65.5 66.6 85.2 
47.5 63.6 68.8 82.3 
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a. Obtain the residuals for ANOVA model (24.14) and prepare aligned residual dot plots for 
each level of factor A. Do the same for each of the other two factors. What information do 
these plots provide about the appropriateness of ANOVA model (24. 14)? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

Refer to Case hardening Problem 24.6. Assume that fixed ANOVA model (24.14) is 
appropriate. 

a. Prepare AB plots of the estimated treatment means Yijk. in the format of Figure 24.5b. 
Does it appear that any interactions are present? Any main effects? 

b. Obtain the analysis of variance table. 

c. Test for three-factor interactions; use a = .025. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

d. lest for AB, AC, and BC interactions. For each test, use a = .025 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

e. Test for A, 8, and C main effects. For each test, use a = .025 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

f. State the set of conclusions that can be reached from the tests in parts (c), (d), and (e). 
Obtain an upper bound for the family level of significance for the set of tests; use the 
Kimball inequality (24.25). 

g. Do the results in part (f) confirm your graphic analysis in part (a)? 

Refer to Case hardening Problems 24.6 and 24.7. 

a. To study the nature of the main factor effects, estimate the following pairwise comparisons: 

Use the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings. 

b. Estimate tIm' with a 95 percent confidence interval. 

Marketing research contractors. A marketing research consultant evaluated the effects of 
fee schedule (factor A), scope of work (factor B), and type of supervisory control (factor C) 
on the quality of work performed under contract by independent marketing research agencies. 
The factor levels in the study were as follows: 

Factor Factor Levels 

A Fee level i = 1: High 
i =2: Average 
i =3: Low 

B Scope j = 1: All contract work performed in house 
j =2: Some work subcontracted out 

C Supervision k = 1: Local supervisors 
k=2: Traveling supervisors only 

The quality of work performed was measured by an index taking into account several char­
acteristics of quality. Four agencies were chosen for each factor level combination and the 
quality of their work evaluated. The data on quality follow. 
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k=l k=2 

j = 1 j=2 j = 1 j=2 

i = 1 124.3 115.1 112.7 88.2 

122.6 117.3 108.6 90.1 

;=2 119.3 117.2 113.6 92.7 

121.4 120.0 112.3 87.9 

i = 3 90.9 89.9 78.6 58.6 

92.0 82.7 77.1 62.3 

a. Obtain the residuals for ANOYA model (24.14) and plot them against the fitted values. 
What does your plot suggest abom the appl"Opriateness of ANOYA model (24.14)? 

b. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

24.10. Refer to Marketing research contractors Problem 24.9. Assume that fixed ANOVA model 
(24.14) is appropr"iate. 

a. Prepare AB plots of the estimated treatment means Yij'. in the format of Figure 24.5b. 
Does it appear that any interactions are present? Any main effects? 

b. Prepare AC plots of the estimated treatment means Yij" in the format of Figur"e 24.5b. Do 
your plots convey the same information as those in part (a)? Discuss. 

c. Obtain the analysis of var"iance table. 

d. Test for three-factor interactions: use ex = .01. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

e. Test for· AB. AC. and BC interactions. For each test, use ex = .01 and state the alternatives, 
decision rule. and conclusion. What is the P-value of each test? 

f. Tesl for· factor A main effects; use ex = .0 I. State the alternatives. decision rule, and con­
clusion. What is the P-value of the test? 

g. State the set of conclusions that can be reached from the tests in parts (d). (e), imd (f). 
Obtain an upper bound for the family level of significance for the set of tests; use the 
Kimball inequality (24.25). 

h. Do the results in part (g) confirm your graphic analysis in parts (a) and (b)? 

24.1 I. Refer to Marketing research contractors Problems 24.9 and 24.10. 

a. To study the nature of the factor A main effects and the BC inter"actions. it i~ desired to 

estimate the following comparisons: 

D, :=:: fl,·· - fl1·· 

D1 = fJ.1·· - fl,·· 

D3 = /1, .. - /1.1 .• 

D4 = fl·11 - fl·11 

Use the Bonferroni procedure with a 90 percent family confidence coefficient to make the 
desired comparisons. State your findings. 

b. Estimate [) = fl11' - fJ.111 with a 95 percent confidence interval. 
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c. The consultant wishes to identify the type(s) of independent marketing research agencies 
that provide the highest quality of work. Use the Tukey testing procedure with family level 
of significance a = .10 to make the desired identifications. 

Electronics assembly. Assemblers in an electronics firm will attach 12 components to a newly 
developed "board" that will be used in automatic-control equipment in manufacturing plants. 
An operations analyst conducted an experiment to study the effects of three factors on the 
mean time to assemble a board. Factor A was the gender of the assembler (i = 1: male; 
i = 2: female), factor B was the sequence of assembling the components (j = 1,2,3), and 
factor C was the amount of experience by the assembler (k = 1: under 18 months; k = 2: 
18 months,or more). Randomization was used to assign 15 assemblers of each gender with 
a given amount of experience to each of the three assembly sequences, with each sequence 
assigned to five assemblers. After a learning period, the total time (in minutes) to assemble 
50 boards was observed. The data follow. 

k=l k=2 

j=l j=2 j=3 j=l j=2 j=3 

;=1 1,250 1,319 1,217 1,021 1,119 1,033 
1,175 1,251 1,190 1,099 1,110 1,067 

1,193 1,265 1,251 1,070 1,163 1,022 

i=2 1,066 1,105 1,021 864 927 841 
1,076 1,043 1,020 848 944 865 

1,034 1,060 1,026 868 933 868 

d. Obtain the residuals for ANOVA model (24.14) and plot them against the fitted values. 
What does your plot suggest about the appropriateness of ANOVA model (24. 14)? 

e. Prepare a ~ormal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear to be reasonable here? 

Refer to Electronics assembly Problem 24.12. Assume that fixed ANOVA model (24.14) is 
appropriate. 

a. Prepare AB plots of the estimated treatment means Y ijk• in the format of Figure 24.5b. 
Does it appear that any interactions are present? Any main effects? 

b. Obtain the analysis of variance table. 

c. Test for three-factor interactions; use a = .05. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

d. Test for AB~ AC, and BC interactions. For each test, use a = .05 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

e. Test for A, B, and C main effects. For each test, use a = .05 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

f. State the set of conclusions that can be reached from the tests in parts (c), (d), and (e). 
Obtain an upper bound for the family level of significance for the set of tests; use the 
Kimball inequality (24.25). 

g. Do the results in part (f) confirm your graphic analysis in part (a)? 

[I' 
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24.14. Refer to Electronics assembly Problems 24.12 and 24.13. 

,l To study the nature of the lilclOr main clYccts. estim<ue the following pairwise co . 
mparJ.Sons: 

/)1 = p, .. - /1~ .. 

/)2 = P·I· -/1.2' 

/)4 = /1.2' - /1. 1. 

/)5 = P··I - /1'·2 

Use the Bonferroni procedure with a 90 percent Ii.nnily confidence coefficient S •• t 
. . .a e Your 

findll1gs. 

b. Estimate P2.l1 with a 95 percent confidence interval. 

*24.15. Refer to Case hardening Problem 24.6. Suppose that observations YI1I/ = 53.5 and 
YI212 = 50.7 are missing. 

a. State the full regression model equivalent to ANOYA model (24.14); use I. -I. 0 indicator 
variables. 

b. What is the reduced regression model for testing for factor A main ellects? 

c. Test whether or not factor A main effects are present by fitting the full and reduced regres_ 
sion models; use ex = .025. State the alternatives. decision rule. and conclusion. What is 
the P-value of the test7 

d. Estimate D == /12 .. - /11 .. with a 95 percent confidence intervaL 

24.16. Refer to Electronics assembly Problem 24.12. Suppose that observations YI224 = 1,097, 
Y22U = 1.051. and Y2125 = 868 are missing. 

a. Slate the full regres~ion model equivalent to ANOYA model (24.14): use I, -1,0 indicator 
variables. 

b. What is the reduced regression model for testing fOf tllctor C main effects? 

c. Test whether or not tactor C main etTects are present by titting the full and reduced 
regression models: use ex = .05. State the alternatives. decision rule. and conclusion. What 
is the P-value of the test'! 

d. Estimate D = /1.'1 - }.1..2 with a 95 percent confidence II1tervaL 

*24.17. Refer to Case hardening Problem 24.6. Suppose that the sample si7.es have not yet been 
determined but it has been decided to use equal sample sizes for all treatments. The chief 
objective is to identify the treatment thm leads to the highest mean hardness. The probability 
should be at least .99 that the correct treatment is identified when the mean hardness fOI' the 
second best treatment differs by 2.0 or more Brinellunits. Assume that a reasonable planning 
value for the error standard deviation is (J = 1.8. What are the required sample sizes? 

24.18. Refer to Electronics assembly Problem 24.12. Suppose that the sample sizes have not yet 
been determined but it has been decided to use equal sample sizes for all treatment". The chief 
objective is to estimate the following pairwise comparisons: 

LI = PI .. - }1.2·· 

L~ = /1.1' - /1.'2. 

L4 = p.~. - p ... 

L5 =p·.I-/1.·2 

What are the requifed sample sizes if the precision of each of the estimates should not exceed 
±20. using the Bonrerfoni procedlll'e with a 90 percent Ilunily confidence coetlicient [01' the 
jOint set of comparisons? A reasonable planning value for the error standard deviation is 
(J = 29. 
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<~-----------------------------------------------------------------------------

24.19. For fixed ANOVA model (24.14), show that L/(a{3Y)ijk = O. 

24.20. State the fixed ANOVA model for a three-factor study with n = 1 when all three-factor 
interactions are zero. Show the ANOVA table for this case. 

24.21. For fixed ANOVA model (24.14), derive the variance of the estimated contrast 
L = LLc;)'ij ... 

24.22. Refer to the SENIC data set in Appendix c.l. The following hospitals are to be considered 
in a study of the effects of average age of patients (factor A: variable 3), available facilities 
and services (factor B: variable 12), and region (factor C: variable 9) on the mean length of 
hospital stay of patients (variable 2): 

1-14 16-28 31 32 34 35 37-39 41 44 46 50 

52 53 57 58 63 66 76 77 83 111 

For purposes of this ANOVA study, average age is to be classified into two categories (less 
than 53.0 years, 53.0 years or more) and available facilities and services are to be classified 
into two categories Oess than 40.2 percent, 40.2 percent or more). 

a. Assemble the required data and obtain the residuals for ANOVA model (24.14). 

b. Plot the residuals against the fitted values. What does your plot suggest about the appro­
priateness of ANOVA model (24. 14)? 

c. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correla­
tion between the ordered residuals and their expected values under normality. Does the 
normality assumption appear reasonable here? 

24.23. Refer to the SENIC data set in Appendix C.l and Project 24.22. Assume that fixed ANOVA 
model (24.14) is appropriate. 

a. Prepare AB interaction plots of the estimated treatment means Y/1k• in the format of Fig­
ure 24.5b. Does it appear that any factor effects are present? Explain. 

b. Obtain the analysis of variance table. Does anyone source account for most of the total 
variability in the study? Explain. 

c. Test for three-factor interactions; use a = .01. State the alternatives, decision rule, and 
conclusion. What is the P-value ofthe test? 

d. Test for AB, AC, and BC interactions. For each test, use a = .01 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

e. Test for A, B, and C main effects. For each test, use a = .01 and state the alternatives, 
decision rule, and conclusion. What is the P-value of each test? 

f. To study the nature of the available facilities and region main effects, make all pairwise 
comparisons for each of these two factors. Use the Bonferroni procedure with a 90 percent 
family confidence coefficient. State your findings. 

24.24. Refer to the CDI data set in Appendix C.2. The effects of region (factor A: variable 17), percent 
below poverty level (factor B: variable 13), and percent of population 65 or older (factor C: 
variable 7) on the crime rate (variable 10 -;- variable 5) are to be studied. For purposes of this 
ANOVA study, percent below poverty level is to be classified into two categories (less than 
8.0 percent, 8.0 percent or more) and percent of population 65 or older is to be classified into 
two categories (less than 12.0 percent, 12.0 percent or more). 
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Case 
Studies 

<I. Assemble the required data and obtain the residuals for ANOYA model (24 I . 
_ I .. .4) With 

/II - ••.•• 11,.1<. 

b. Plot the residuals against the filted values. What does your plot suggest about the a 
priateness of ANOYA model (24.14)? ppro-

c. Prepare a normal probability plot of the residuals. Also obtain the coefficient of co I' 
.. rre alton 

between the ordered residuals and their expected values under normality. Does thenormar 
assumption appear reasonable here? Ity 

24.25. Refer to the CD.I data set in Appen~lix C2 a~d Project 24.24. Assume that fixed ANOVA 
model (24.14) With III = I, ." .lIij< IS appropnate. 

a. Prepare AB interaction plots of the estimated treatment means Yiik • in the format ofFi _ 
ure 24.5b. Does it appear that any tllctor effects are present? g 

b. State the equivalent regression model for this case; use I, -\. 0 indicator variables, and fi 
this full model. t 

c. Test for three-factor interactions and for AB. AC. and BC interactions. For each test, use 
ex = .025 and state the alternatives, reduced regression model, decision rule, and conclu­
sion. What is the P-value of each test? 

d. Test for A. B. and C main effects. For each test. use ex = .025 and state the alternatives 
reduced regression model, decision rule, and conclusion. What is the P-value of each test? 

e. To study the nature of the region main effects, make all pairwise comparisons between the 
region means. Use the Tukey pl'ocedure with a 95 percent family confidence coefficient. 
State your findings. 

24.26. Refer to the Real estate 1iales data set in Appendix C.7. Assume that the sample sizes do not 
reflect the importance of the treatment means. Cany out an unbalanced three-way analysis 
of variance of this data set, where the response of interest is sales price (variable 2), and the 
three crossed factors are quality (variable 10), style (variable II), and number of bedrooms 
(variable 4). Recode quality into two categories: 1-2. and 3. Recode the number of bedrooms 
into three categories: 0-2. 3. and 4 or more. Recode style as either I or not I. The analysis 
should consider transformations of the response variable. Document the steps taken in your 
analysis and justify your conclusions. 

24.27. Refer to the Real estate sales data set in Appendix C.7 and Case Study 24.26. Assume thatthe 
sample sizes reflect the importance of the treatment means. Carry out an unbalanced three-way 
analysis of variance of this data set, where the response of interest is sales price (variable 2), 
and the three crossed factors are quality (variable 10). style (variable II). and number of 
bedrooms (variable 4). Recode quality into two categories: 1-2, and 3. Recode the number of 
bedrooms into three categories: 0-2, 3, and 4 or more. Recode style as either I or not I. The 
analysis should consider transformations of the response variable. Document the steps taken 
in your analysis and justify your conclusions. 

24.28. Refer to the Ischemic heart disease data set in Appendix C.9. Assume that !<he sample sizes do 
not reflect the importance of the treatment means. Carry out an unbalanced three-way analysis 
of variance of this data set, where the response of interest is total cost (variable 2), and the three 
crossed factors are gender (variable 4). number of interventions (variable 5). and number of 
comorbidities (variable 9). Recode the number of interventions into three categories: 0-1, 2-4, 
and greater than or equal to 5. Recode the number of comorbidities into two categories: 0-1, 
and greater than or equal to 2. The analysis should consider transformations of the response 
variable. Document the steps taken in your analysis and justify your conclusions. 
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24.29. Refer to the Ischemic heart disease data set in Appendix C.9 and Case Study 24.28. Assume 
that the sample sizes reflect the importance of the treatment means. Carry out an unbalanced 
three-way analysis of variance of this data set, where the response of interest is total cost 
(variable 2), and the three crossed factors are gender (variable 4), number of interventions 
(variable 5) and number of comorbidities (variable 9). Recode the number of interventions 
into three categories: 0-1, 2-4, and greater than or equal to 5. Recode the number of Comor­
bidities into two categories: 0-1, and greater than or equal to 2. The analysis should consider 
transformations of the response variable. Document the steps taken in your analysis and justify 
your conclusions. 
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Random and Mixed 
Effects Models 

Until now, we have been concerned exclusively with ANOYA model I in which the factor 
levels are considered fixed. This model is applicable for studies where our interest cen­
ters on the effects of the specific factor levels chosen. There are still othel' studies where 
the factor levels are a sample from a larger population of potential factor levels and in­
ferences are desired about the populations of factor levels. FOI' example, in Section 16.3 
we described a single-factor study by a company that owns several hundred retail stores. 
Seven of these stores were selected at random, and a sample of employees in each stOre 
was asked to evaluate the management of the store. The seven stores chosen for the study 
constitute the seven levels of the random factor, retail stores. In this case, management 
was not just interested in the management of the seven stores chosen; it wanted to gener­
alize the results to the entire population of stores. Because the retail stores were selected 
at random, the factor retail stores in this example is considered a random factor. Random 
factors may also be present in two-factor and multi-factor studies; either all of the fac­
tors may be random or some may be random and some fixed. For instance, suppose in 
the previous example that eight employees were selected at random from each of the five 
departments in each of the stores. Interest now is in the employee evaluations of manage­
ment by depanment and store. Here, stores would be a random factor because the seven 
selected stores are a sample of all stores. On the other hand, departments would be a fixed 
factor because there are only five departments in each store and interest is in these five 
departments. 

Analysis of variance models for studies in which all factors are random are called ANOYA 
models II and those for studies in which some factors are random and some fixed are called 
ANOYA models III. In Sections 25.1 to 25.4 and 25.6, we consider ANOYA model II 
for single-factor studies and ANOYA models II and III for two-factor and three-factor 
studies. Completely randomized block designs with random block effects are taken up 
in Section 25.5. Throughout Sections 25.1 to 25.6, we assume that all treatment sample 
sizes are equal. In Section 25.7 we consider studies where the treatment sample sizes 
are unequal. We begin our discussion with random ANOYA model II for single-factor 
studies. 
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25.1 Single-Factor Studies-ANOVA Model II 
~~~----~--------------------------------------------------------------

As we noted earlier, there are occasions when the factor levels or treatments in a single­
factor study are not of intrinsic interest in themselves but constitute a sample from a larger 
population offactor levels. ANOVA model II is designed for this type of situation. Consider, 
for instance, Apex Enterprises, a company that builds roadside restaurants carrying one of 
several promoted'trade names, leases franchises to individuals to operate the restaurants, 
and provides management services. This company employs a large number of personnel 
officers who interview applicants for jobs in the restaurants. At the end of an interview, the 
personnel officer assigns a rating between 0 and 100 to indicate the applicant's potential 
value on the job. Five personnel officers were selected at random, and each was assigned four 
candidates at random. In this case, the company did not wish to make inferences concerning 
the five personnel officers who happened to be selected but rather about the popUlation of 
all personnel officers. Questions of interest included: How great is the variation in ratings 
among all personnel officers? What is the mean rating by all personnel officers? 

The distinction between this situation, for which ANOVA model II is designed, and one 
where fixed ANOVA modell is appropriate can be seen readily by modifying our example 
slightly. If a smaller company had only five personnel officers who were all included in 
the study and interest is limited to these five officers, ANOVA model I would be relevant 
since the factor lev~ls (the five personnel officers) would then not be considered a sample 
from a larger popul~tion. A repetition of the experiment for the smaller company would 
involve the same five personnel officers, but in the case of Apex Enterprises a repetition 
would involve a newrandom sample of five personnel officers which would probably consist 
of different officers. 

Random Cell Means Model 
The cell means version of ANOVA model II for single-factor studies is as follows when all 
factor level sample sizes are equal, i.e., when ni == n: 

where: 

Ji,i are independent N (Ji,., a~) 

Bij are independent N(O, ( 2 ) 

Ji,i and Bij are independent random variables 

i = 1, ... , r; j = 1, ... , n 

(25.1) 

ANOVA model (25.1) is similar in appearance to fixedANOVA model (16.2). The main 
distinction is that the factor level means Ji,i are constants for ANOVA model I but are random 
variables for ANOVA model 11. Hence, ANOVA model II is often called a random ANOVA 
model. 

Meaning of Model Terms. We shall explain the meaning of the model terms with refer­
ence to the personnel officers in the Apex Enterprises example. The term Ji,i corresponds to 
the mean of all ratings by the ith personnel officer if the officer interviewed all prospective 
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FIGURE 25.1 
Representation 
of AN OVA 
Model II. 

employees. The expected value of fLi is fL.· Thus, fL· represents here the mean ratina for aU 
prospective employees by all personnel officers. The variability of the perSOnnel ~ffic ' 
mean ratings fLi is measured by the variance a;". The more the different personnel Offi:

s 

vary in their mean ratings (for instance, some may rate consistently higher than Others),:: 
greater will be a;". If all personnel officers rate at the same mean level, all fLi will be equal 
to fL. and then a;" = O. 

The term Bij represents the variation associated with the different potential values as 
assessed by the ith personnel officer for the different prospective employees. Note that 
ANOVA model (25.1) assumes that all Bij have the same variance a 2

• This means that the 
distributions of ratings for prospective employees by the different personnel officers ate 
assumed to have the same variability. The distributions for the different perSOnnel officers 
may differ with respect to their means but not with respect to their variability according to 
ANOVA model (25.1). 

Figure 25.1 illustrates ANOVA model II. On the top is shown the distribution of the 
personnel officers' mean ratings fLi' which is normal. Several fLi (two personnel officers' 
mean ratings in the illustration) are selected at random from this distribution. Each in turn 
leads to a distribution of the potential values of prospective employees as evaluated by the i th 
personnel officer, Yij = fLi + Bij' which are all normal distributions with the same variance. 
Several Yij responses are then selected from each of these distributions (two responses for 
each personnel officer in the illustration). 

Mean: IL. 

Variance: u; 

Mean: ILl 
Variance: u 2 
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Important Features of Model 

1. The expected value of a response Y1j is: 

because we have by (25.1): 

E{Yij} = J.1,. 

E{Yij} = E{J.1,;} + E{cij} 

= J.1,. +0 

=J.1,. 

Note that this expectation averages over the selections of both J.1,i and cij. 

2. The variance of Yij , to be denoted by a}, is: 

2{y } 2 2 2 a /j = a y = al-' + a 

(25.2a) 

(25.2b) 

Thus, all observations Yij have the same variance. The result in (25.2b) follows because 
ANOVA model II assumes that J.1,i and Cij are independent random variables, and a 2 {J.1,i} = 
a~ and a 2{cij} = a 2 according to ANOVA model (25.1). Because the variance of Y in 
this model is the sum of two components, a~ and a 2

, this model is sometimes called a 
components o/variance model and a~ is referred to as the total variance. (Reference 25.1 
provides detailed discussions of variance components models.) 

3. The Yij are normally distributed because they are linear combinations of the indepen­
dent normal variables J.1,i and Cij. 

4. Unlike for fixed ANOVA model I where all observations Yij are independent, the Yij 
for random ANOVA model II are only independent if they pertain to different factor levels. 
The covariance of any two observations with random ANOVA model (25.1) can be shown 
to be: 

a{Yij, Yij'} = a~ 

a { Yij, Yi'j'} = 0 i f:. i' 

(25.2c) 

(25.2d) 

Thus, random ANOVA model (25.1) assumes that the covariance between any two responses 
for the same factor level is constant for all factor levels. 

We illustrate the nature of the variance-covariance matrix of the responses Yij for random 
ANOVA model (25.1) for a simple illustration where there are r = 2 factor levels and n = 2 
cases for each level. The observations vector is: 
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and the vadance-covariance matrix of the Y observations is: 

o 
o 

o 
o 

Note that all observations have the same variance a~, as indicated by (25.2b), any two 
observations from the same factor level have covariance a,~ as indicated by (25.2c), and an 
tWo observations from different factor levels are uncorrelated as indicated by (25.2d). y 

The reason why any two responses from the same factor level are con·e1ated is that, in 
advance of the random trials, the responses are expected to be similar because they will both 
have the same random component Ili and will differ only because of the error terms Cij. 

Once the factor levels have been selected, however, random ANOYA model (25.\) as­
sumes that any two responses from the same factor level are independent because the factor 
level mean Ili is then fixed and the two observations differ only because of the error terms 
Eil' which are assumed to be independent. Thus, in the Apex Enterprises example, Once 
the personnel officers have been selected, random ANOYA model (25.1) assumes thatthe 
different ratings Yil' by a given personnel officer are independent. 

Comment 

At rimes, the popUlation of the Ili may be relatively small and should be treated as a finite population. 
This can be done, but we do not discuss this case here. If the popUlation of the Ili is finite bur large, little 
is losr in treating it as an infinite population. We did this, in fact, in our Apex Enterprises illustration. 
The number of personnel officers employed by Apex Enterprises is finite, but since there are many 
we treated the popUlation of the Ili as an infinire one. Thus, there are two basic situations when the 
population of the III is treated as infinite-when the population is finite but large, and when interest 
centers in the underlying pmcess generating the Ili. • 

Questions of Interest 
When ANOYA model II is appropriate, there is usually no interest in inferences about the 
particular Ili included in the study, such as which is the largest or smallest, but rather in 
inferences abo~t the entire population of the Ill. Specifically, interest often centers on Il., 

the mean of the Ili, and on a,;, the variability of the Ili. In the Apex Enterprises example, 
for instance, management would not ordinarily be as interested in the mean ratings of the 
five personnel officers who happened to be included in the study as in the mean rating b~ 
all personnel officers and in the variability of mean ratings among all personnel officers. 

While a,~ is a direct measure of the variability of the Ili, the effect of this variability is 

often measured more meaningfully relative to the total variability a~ in (25.2b): 

(25.3) 

Note that this ratio measures the proportion of the total variability of the Yij that is accounted 
for by the variability of the Ili. It takes on the value 0 when a,~ = 0 and values near 1 when 

7· I I· 7 a,; IS arge re attve to a-. 
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With reference to the Apex Enterprises example, the ratio measures the proportion of 
the total variability of ratings for all candidates by all personnel officers that is accounted 
for by differences in the mean ratings among the personnel officers. If the ratio is near 
zero, differences in the mean ratings among personnel officers are relatively insignificant. 
On the other hand, if th~ ratio is large, say, .8 or more, then much of the total variability 
is accounted for by differences between personnel officers, and management may wish to 
study the advisability of giving the personnel officers more training to obtain improved 
consistency of ratings between officers. 

It can be shown that the coefficient of correlation between any two responses from the 
same factor level with random ANOVA model (25.1) is: 

a 2 a 2 

p{Yij , Yij'} = 1-'2 = I-' 

ay a~ + a 2 
(25.4) 

Thus, the measure in (25.3), which indicates the proportion of the total variability of the 
Yij that is accounted for by the variability ofthe fLi> is actually the coefficient of correla­
tion between any two observations from the same factor level. It is called the intraclass 
correlation coefficient. 

Comment 

The result in (25.4) follows from the definition of the coefficient of correlation in (A.25a): 

{yo y .. ,}_ a{Yij,Yij'} 
p lJ' lJ - a{Yij}a{Y;j'} 

The covariance in the numeratoris given in (25.2c), and a{Yij} = a {Yij' } = ay according to (25.2b) . 

• 
Test whether a~ = 0 

We first consider how to test whether all fLi are equal: 

Ho: a~ = 0 

Ha: a~ > 0 
(25.5) 

Ho implies that all fLi are equal; that is, fLi == fL •• Ha implies that the fLi differ. For the 
personnel officers example, Ho implies that the mean ratings fOT all personnel officers are 
the same, while Ha implies that they differ. 

Despite the fact that ANOVA J;Ilodel II differs from ANOVA model I, the analysis of 
variance for a single-factor study is conducted in identical fashion. (This is not always 
the case in more complex situations.) The difference between the two models appears in 
the expected mean squares. It can be shown, in a manner similar to that employed in our 
derivation for ANOVA model I, that the expected mean squares for ANOVA model II when 
all treatment sample sizes equal n are as follows: 

E{MSE} = a 2 

E {MSTR} = a 2 + na~ 
(25.6) 

(25.7) 

It follows from (25.6) and (25.7) that if a~ = 0, MSE and MSTR have the same expectation 
a 2

• Otherwise, E{MSTR} > E{MSE} since n > 0 always. Hence, large values ofthe test 
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Example 

TABLE 25.1 
Ratings by Five 
Personnel 
Officers-Apex 
Enterprises 
Example. 

FIGURE 25.2 
Dot Plots of 
Ratings by Five 
Personnel 
Officers-
Apex 
Enterprises 
Example. 

statistic: 

* MSTR 
F =-­

MSE (25.8) 

will lead to conclusion Ha in (25.5). Since F* again follows the F distribution when R 
holds, the decision rule for controlling the risk of making a Type I error at ex is the same a~ 
the one for ANOVA model I: 

If F* :s F[1 - ex; r - 1, r(n - 1)], conclude Ho 

If F* > F[l - ex; r - 1, r(n - 1)], conclude Ha (25.9) 

Note that the degrees of freedom associated with MSE here are nT - r = r(n - 1) since 
nT = rn when all factor level sample sizes are equal. 

Table 25.1 contains the results of the study by Apex Enterprises on the evaluation ratings 
of potential employees by its personnel officers. Five personnel officers were selected at 
random, and four prospective employee candidates were assigned at random to each selected 
officer. Figure 25.2 contains dot plots of the ratings for each of the five personnel officers. 
It appears that the locations of the rating distributions for the personnel officers differ, that 
the variability within each of the five distributions is approximately the same, and that the 

Officer 
C~ndidate(j) 

1 '1 3 4 Mean 
A 76 65 85 7'4' R~,=15,QO 
B 59 75 81 67 ri. ==10';50' 
C 49 63 61 46 }'3.=54.75 
D 74 71 85 89 Y.;.= 79:75 

84 80' 79 -:. <":_""'>.: 
E 66 ys. == 77.25 

Mean y,. =71A5 

5 • •• • 

Cii 4 • • •• u 
:E 
0 
Qi 3 • • c • • c 
0 
Vl 

Cii 
Q.. 

2 • • • • 

• • • • 
50 60 70 80 90 

y 



T~BLE 25.2 
~OVA Table 
(QJ;' Single­
"actor ANOVA 
~OdeIII­
:Apex 
&lterprises 
ExamPle. 
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Sou'rce of 
Vari~tiol1 

Bet'Neen , 
personnel ofi'i~ers 

I;rr<;>r(witbin ;" 
personQel officers) 

Total 

SS df 

SSTR = 1,579.7 4 

§~E= 1,099.'3 15 
-

SSTO = 2,678;9 19 

E{MS} 

MS General Example 

MSTR=394.9 0'2 + na2 
I-' 

0'2+40'2 
I-' 

MSE= 73.3 0-2 0'2 

variability within each of the rating distributions may be almost as large as the variability 
between the personnel officers. 

The ANOVA calculations are routine and are shown in Table 25.2, which also shows the 
expected mean squares in general and for the Apex Enterprises example. Using the results 
from Table 25.2, the appropriate test statistic for determining whether a;" = 0 is: 

F* = 394.9 = 5.39 
73.3 

To control the risk of making a Type I error at ex = .05, we require F(.95; 4, 15) = 3.06. 
Hence, the decision rule is: 

If F* ~ 3.06, conclude Ho 

If F* > 3.06, conclude Ha 

Since F* = 5.39 > 3.06, we conclude Ha, that a;" > 0 or that the mean ratings of the 
personnel officers differ. The P-value of the test is .01. 

Comments 
1. We illustrate the derivation of an expected mean square for ANOVA model II by sketching 

the development for deriving E{MSTR} in (25.7) when ni == n. The proof parallels that for ANOVA 
model I. According toANOVA model (25.1), we can write: 

Y;. = Mi +8;. 

Y..=ji.+e .. 

where B;. and e .. are defined in (16.44) and (16.47), respectively, and: 

(Note the use of a different notation for the mean of the Mi here than for ANOVA model I to emphasize 
the random nature of the mean of the r values Mi for ANOVA model II.) Corresponding to (16.49), 
we obtain: 

Y;. - Y.. = (Mi - fl·) + (ei. - e .. ) 

so that: 
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When we take the expectation, th~ cross-prod~ct te(l~ droEs out because of the independence Of the 
fJ-i and theeiJ and because the devIations fJ-i - fJ-. ande,. -e .. all have expectarions zero. From (16.52) 
we know that: 

{'""' _ _?} (r - l)a
1 

E L(e;. - e .. )- = 1/ 

Lastly, since L(fJ-i - ji.)2 is the numerator of an ordinary sample variance for r independent ILl 
values, it follows frol11 the unbiasednes~ of the sample variance that; 

Hence, we obtain: 

E -- (Y;. - Y..)- = -- (r - I)a- + --a- = Ila- + a-{ 
11 2: - -?} 17 [ ? r - I 7] 7 ? 

r - I r - I I' n I' 

which is the result in (25.7). 

2. The F* test statistic in (25.8) and the decision rule in (25.9) are also appropriate when the factor 
level sample sizes are not equal. The degrees of freedom associated wirh MSE are then denoted, as 
usual, by 171' - r, where 111' = L 17i. The expected value of MSTR becomes: 

where: 

, I [(2:) L171] 17 =-- 17i ---
r-I Ll1i 

Estimation of JL. 

(25.10) 

(25. lOa) 

• 
When ANOVA model II is applicable, there is frequent interest in estimating the overall 
mean fl .. We now develop an interval estimate for fl. when all factor level sample sizes are 
equal. We know from (25.2a) that: 

E{Yij } = fl. 

Hence, an unbiased estimator of fl. is: 

fl. = Y.. (25.11) 

It can be shown that the variance of this estimator is: 

(25.12) 

Formula (25. 12) shows that the variance of Y.. is made up of two componerM:s. The first 
corresponds to the variance of a sample mean based on r values when sampling from the 
population of the fli, and it reflects the contribution due to sampling the factor levels. The 
second component corresponds to the variance of a sample mean based on rn observations 
when sampling from the populations of the Yij, given the fli, and it reflects the contribution 
due to variation within factor levels. 

An unbiased estimator of a 2 {Y..} is: 

7 - MSTR 
s-{1~.} =-- (25.13) 

rl7 
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This estimator is unbiased because we know from (25.7) that E{MSTR} = na~ + a 2
• 

Dividing the result in (25.7) by rn yields (25.12). 
It can be shown that: 

Y.. - fL. .. 
--=-- is distnbuted as t(r - 1) for ANOVA model (25.1) 

s{Y.. } 

Hence, we obtain in usual fashion the confidence limits for fL.: 

Y.. ± t(l - a12; r - l)s{Y..} 

(25.14) 

(25.15) 

Management of Apex Enterprises wishes to estimate the mean rating for all prospective 
employees by all personnel officers with a 90 percent confidence interval. We have from 
Tables 25.1 and 25.2: 

Y.. = 71.45 MSTR = 394.9 rn = 20 

We require t(.95; 4) = 2.132 and: 

2 - 394.9 
s {Y..} = 2() = 19.75 

Hence, s{Y..} = 4.44, the confidence limits are 71.45 ± 2.132(4.44), and the desired 
90 percent confidence interval is: 

62 :s fL. :s 81 

Thus, with a 90 percent confidence coefficient, we conclude that the mean rating assigned 
by all personnel officers to all prospective employees is between 62 and 81. The interval 
estimate is not very precise because of the relatively small samples of personnel officers 
and potential employees. 

Comment 
The variance of Y.. in (25.12) can be derived readily. First, we consider: 

Yi.=/-Li+Si' 

where Si' is defined in (16.44). Because of the independence of /-Li and the Bij, we have: 

2 - 2 0"2 
0" {Y;.}=0"f.L+­

n 

Remember that Si. is just an ordinary mean of n independent Bij values. 
For the case ni == n that we are considering here, we have: 

E. = L~~, Y;. 
r 

In view ~ the independence of the /-Li and the Bij among themselves and between each other, it follows 
that the Y;. are independent so that: 

2{-y; } 2 2 2 + 2 
2 - 0" i· 0"f.L 0" nO"f.L 0" 

0" {Y..}=--=-+-=---'--
r r rn rn • 
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Estimation of O'~/ (O'~ + 0'2) 

Example 

As noted earlier, the ratio a,~/(a,~ + ( 2
) reveals meaningfully the effect of the extent of 

variation between the fJ-i. We shall develop an interval estimate for this ratio by first obtainin 
confidence limits for the ratio a,:/a2

• It can be shown that MSTR and MSE al-e indepencte! 
random variables for ANOYA model II, just as for ANOYA model I. When ni == n, the caSe 
considered here, it can be shown further that: 

MSTR MSE 
-=------=- --;- -- ~ F[r - I, r(n - I)] 
na2 + a 2 a 2 

'" 
(25.16) 

Hence, we can write the probability statement: 

MSTR MSE 
P{F[0'/2; r - 1, r(n - I)]:s 2 ? a

2 nat" +a-

:s F[I- a12; r - I, r(n - I)]} = 1 - 0' (25.17) 

Rearranging the inequalities, we obtain the following confidence limits L and U fora,~/a2: 

L-- -- -I I [MSTR ( 1 )] 
n MSE F[1 - a/2; r - I, r(n - I)] 

(25. 18a) 

U-- -- -I I [MSTR ( 1 )] 
n MSE F[0'/2; r - 1, r(n - I)] 

(25.18b) 

where L is the lower confidence limit and U the upper. 
The confidence limits L * and U* for a,:/ (a,~ + ( 2

) can now be obtained and are as 
follows: 

L*=_L_ 
I+L 

U 
U*=--

I +U 
(25.19) 

Management of Apex Enterprises wishes to obtain a 90 percent confidence interval for 
a,~/(a,~ + ( 2

). From previous work, we have: 

MSTR = 394.9 MSE= 73.3 n=4 r=5 

For a 90 percent confidence interval, we require: 

F(.05; 4,15) = .170 F(.95; 4, 15) = 3.06 

Hence, the 90 percent confidence limits for a,~/a2 are by (25.18): 

L = - -- -- - I = 19 I [394.9 ( I) ] 
4 73.3 3.06 . 

U = ~ [394.9 (_1_) _ I] = 7.7 
4 73.3 .170 

and the confidence interval for a,:/a 2 is: 

(J2 

.I9:s '~:s 7.7 
a 
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Finally, the confidence limits for a~/(a~ + ( 2 ) are obtained by (25.19); they are L* 
.19/1.19 = .16 and U* = 7.7/8.7 = .89. Hence, the 90 percent confidence interval is: 

With confidence coefficient .90, we conclude that the variability of the mean ratings for 
the different personnel officers accounts for somewhere between 16 and 89 percent of the 
total variability ofthe ratings. Note that this interval estimate is not precise, partly the result 
of relatively small sample sizes and partly because variance components are much more 
difficult to estimate precisely than means. The confidence interval does indicate, though, 
that the variability among personnel officers is not negligible since it accounts for at least 
16 percent of the total variability. 

Comments 

I. It may happen occasionally that the lower limit of the confidence interval for O'/~/ 0'2 is negative. 
Since this ratio cannot be negative, the usual practice is to consider the lower limit L in (2S.1Sa) to 
be zero in that case. 

2. If one-sided or two-sided tests concerning the relative magniuldes of O'~ and 0'2 are desired, 
such as the following (where C is a specified constant): 

Ho: O'~ :s CO'2 

Ha: O'~ > CO'2 

Ho: O'~ = CO'2 

Ha: O'/~ i= ca2 

a decision rule can be constructed by utilizing (25 .16). Alternatively, one-sided or two-sided confidence 
intervals can be used to draw the appropriate conclusion. 

3. The ratio O'~/O'2 is of relevance in planning investigations. In the Apex Enterprises example 
dealing with the personnel officers, suppose that the mean rating f-L. is to be estimated, and that the 
costs of including in the study a personnel officer and a candidate are Cl and C2, respectively. For a 
given total budget C, the ratio O'~/O'2 is the determining variable for finding the optimum balance 
between the number of personnel officers and the number of candidates to include in the study so as 
to minimize the variance of the estimator. If the populations are not large, the model will need to take 
account of their finite nature. • 

Estimation of (J"2 

At times, it is desired to estimate a 2 and a~ separately. According to (25.6), an unbiased 

estimator of a 2 is MSE. An interval estimate for a 2 is easily constructed. We make use of 
the fact that [r(n -1)MSE]/a2 is distributed as a X2 random variable with r(n -1) degrees 
of freedom: 

r(n -1)MSE 
---2-- ~ x2[r(n - 1)] 

a 

It follows that a 1 - a confidence interval for a 2 is: 

r(n - I)MSE 2 r(n - I)MSE 
~--~--~------- <a < ~-----------
x2[1 - a/2; r(n - 1)] - - X2[a/2; r(n - 1)] 

(25.20) 

(25.21) 
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Example 

Multi-Factor Studies 

To construct a 90 percent confidence interval for 0'2 for the Apex Enterprises example 
. ,We 

l-equlre: 

MSE= 73.3 X2(.05; 15) = 7.26 X2(95; 15) = 25.0 

The desil-ed confidence interval by (25.21) then is: 

15(73.3) ? 15(73.3) 
44.0 = 25.0 :::: 0'-:::: 7.26 = 151.4 

An approximate 90 percent confidence interval for a is obtained by taking the square mots 
of the confidence limits for 0'2: 

6.6:::: a :::: 12.3 

With 90 percent confidence, we conclude that the standard deviation of the ratings of 
prospective employees for each personnel officer is between 6.6 and 12.3 points. 

Comment 

Confidence interval (25.21) is also appropriate when the factor level sample sizes are not equal. The 
degrees offreedom associated with MSE are then denoted by 111' - r. • 

Point Estimation of (J"~ 
An unbiased estimator of a,; is available by noting that we have from (25.6) and (25.7): 

It follows that: 

E{MSE} = 0'2 

E{MSTR} = 0'2 + nO',; 

E{MSTR} - E{MSE} 

17 
(25.22) 

An unbiased estimator of a,~ is obtained by substituting the observed mean squares for the 
corresponding expected mean squares: 

? MSTR-MSE 
s~ =-----­

n 
(25.23) 

Occasionally: this point estimator will turn out to be negative. Since a variance cannot be 
negative, the usual practice is to consider the estimator to be zero in that event. 

Comment 

An unbiased estimator of al~ when the factor level sample sizes are not equal can be obtained by 
slightly modifying the expression in (25.23). The denominator /7 is simply replaced by /7' as defined 
in (25. lOa). • 

Interval Estimation of (J"~ 
It is not possible to construct exact confidence intervals for a,;. However, several approx­
imate confidence intervals have been developed. We shall now describe two approximate 
confidence intervals for a~, assuming as before that the study is balanced; that is, ni == n. 
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Procedures for constructing confidence intervals for a~ when the factor level sample sizes 
are not equal are presented in Section 25.6 and in Reference 25.2. 

Satterthwaite Procedure. The Satterthwaite procedure (Ref. 25.3) is a general procedure 
for constructing approximate confidence intervals for linear combinations of expected mean 
squares. Note that a~ is such a linear combination since we can express (25.22) as follows: 

a; = (~) E{MSTR} + (-~) E{MSE} (25.24) 

In general, we shall state a linear combination of expected mean squares as follows: 

(25.25) 

where the C; are coefficients. 
An unbiased estimator of Lis: 

(25.26) 

Let df; denote the degrees of freedom associated with mean square MS;. Satterthwaite has 
suggested that the distribution of the statistic: 

(df)L 

L 
(25.27) 

can be approximated by a X2 distribution whose degrees of freedom, denoted by df, are 
given by: 

df= 
(c,MS, + ... + ChMSh)2 

(c,MSd2 (Ch MSh)2 
df, + ... + dfh 

(25.28) 

An approximate 1 - a confidence interval for L therefore is: 

(df)L < L < (df)L 
X2(1 - a12; df) - - x2(aI2; df) 

(25.29) 

where dfis given by (25.28). 
For the single-factor random ANOVA model (25.1) for a balanced study (n; == n), we 

have the following correspondences: 

MS, = MSTR 

df,=r-l 

1 
c, =­

n 

MS2 =MSE 

df2 = nT - r = r(n - 1) 

1 
C2 =-­

n 

L = a; = (~) E{MSTR} + ( -~) E{MSE} 

L = s~ = (~)MSTR+ (-~)MSE 

(25.30) 
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Example 

Hence, an approximate I - 0' confidence interval for a/~ by the Satterthwaite pftv>arl 
. ~"'-UUre 

(25.29) IS: 

(df)St~ ? (df)s,; 
--,-------'--,---- < a- < ----::---'---
X2( I - 0'/2: df) - I' - X2(0'/2; df) (25.31) 

(ns~)2 
df = (MSTR)2 (MSE) 2 

----+---
r - I r(n - I) 

(25.31 a) 

Usually, the degrees of freedom will not turn out to be an integer. Interpolation in the X2 
table or rounding to the nearest integer may then be used. 

While the Satterthwaite procedure is general and easy to carry out, the accuracy of the 
approximation can be quite limited when some of the coefficients Ci are negative and some 
are positive. Note that this is the case here in (25.30), since c, = 1/17 and C2 = -lin. More 
detailed guidelines as to when the Satterthwaite approximation is appropriate are given in 
Reference 25.4. 

For the Apex Enterprises example, we shall first obtain a point estimate of a/~ by means of 
(25.23). We require: 

MSE= 73.3 MSTR = 394.9 17=4 

Hence we find: 

? 394.9 - 73.3 
s- = = 80.4 

I" 4 

and the estimated standard deviation of the mean ratings of all personnel officers is -}80.4 = 
9.0 points. 

Next, we obtain a 90 percent confidence interval for a/~ by the Satterthwaite procedure. 
Using the earlier results: 

? 
s~ = 80.4 MSTR = 394.9 MSE= 73.3 17=4 r=5 

we obtain the degrees of freedom dfby means of (25.31a): 

[4(80.4)f 
df- = 2.63 

- (394.9)2 (73.3)2 

5 - I + 5(4 - I) 

which we shall round up to 3.0. Confidence limi ts (25.31) al so require: 

X2(.95; 3) = 7.81 

so that the Satterthwaite approximate 90 percent confidence interval for a/~ is: 

3(80.4) ? 3(80.4) 
30.9 = --- < a- < --- = 685.2 

7.81 - I" - .352 



'TABLE 25.3 
:Computational 
Formulas for 
MLS 
Approximate 
I-a 
Confidence 
Limits in 
(25.34). 
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By taking square roots of the two limits, we obtain an approximate confidence interval 
foral-': 

5.6.:s al-' .:s 26.2 

Hence, with approximate 90 percent confidence coefficient, we conclude that the standard 
deviation ofthe mean ratings of all ofthe personnel officers is between 5.6 and 26.2 points. 

MLS Procedure. An improved procedure for obtaining an approximate confidence inter­
val for a;" is based on the modified large sample (MLS) procedure (Ref. 25.5). It involves 
somewhat greater computational complexity than the Satterthwaite procedure, and is de­
signed to estimate a linear combination of two expected mean squares for balanced studies 
ofthe form: 

L = c,E{MStl +C2E{MS2} c, > 0, C2 < 0 (25.32) 

where c, is positive and C2 is negative. An unbiased estimator of Lis: 

c, > 0, C2 < 0 (25.33) 

If (df,)MSt! E{MSd and (df2)MSz/ E{MS2} are independent X2 random variables with df, 
and df2 degrees of freedom, respectively, an approximate 1 - ex confidence interval for L 
is given by: 

(25.34) 

where i is defined in (25.33) and HL and Hu are defined by the equations in Table 25.3. 

F1 = F(1-aI2;df1,06): 

F2 = F (1' - a12; df2, 00) 

F3 = F (,1, - all; 00, df,) 
.~. 

F4 = F (1- a12; 00, df2 ) 

Fs = F (1 - a12; dflI df2 ) 

F6 = F (l - a12, df2, df1) 

1 
G1 = 1--. F1 

1 
G2 = 1-­

F2 
(Fs _1)2_ (Gl FS)2 - (F4 _1)2 

G3 = . Fs .. ..... 

G4 = F6[(F6F~ly - (F3F~lJ -G~] 
HL = HG1 C1 MS1]2 + [(F4 -1)c2MS2f - G3C1 C2MS1 MS2}1/~ 

Hu == {[(F3 -1)c1 MSif+(G2ciMS2)2 -G4C1 c'i.lVlS1 MSiP/2 

(25.34a) 

(25.34b) 

(25.34c) 

(25.34d) 

(25.34e) 

(25.34f) 

(25.34g) 

(25.34h) 

(25.34i) 

(25.34j) 

(25.34k) 

(25.341) 
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Example 

To obtain an approximate I - ex confidence interval for a~ with the MLS procedure 
simply observe that the correspondences in (25.30) for the Satterthwaite procedure a' ~e 
here also and confidence interval (25.34) becomes: PP Y 

(25.35) 

For the Apex Enterprises example, we shall obtain a 90 percent confidence interval for 0-2 

by means of the MLS procedure. From earlier, we have: p, 

c, = lin = 1/4= .25 

C2 = -lin = -1/4 = -.25 

MS, = MSTR = 394.9 

MS2 = MSE = 73.3 

i = s~ = 80.4 

We first determine the six percentiles (25.34a) to (25.34f): 

df,=r-l=4 

df2 = r(n - 1) === 15 

F, = F(.95;4, 00) = 2.37 

F3 = F(.95; 00, 4) = 5.63 

F5 = F(.95;4, 15) = 3.06 

F2 = F(.95; 15, 00) = 1.67 

F4 = F(.95; 00, 15) = 2.07 

F6 = F(.95; 15,4) = 5.86 

Intermediate calculations required are: 

1 
G, = 1 - - = .5781 

2.37 

1 
G2 = 1 - - = .4012 

1.67 

(3.06 - 1)2 - [(.5781)3.06]2 - (2.07 - 1)2 
G3 = = -.0100 

3.06 

G4 = 5.86 [(5.86 - 1)2 _ (5.63 - 1)2 _ (.4012)2] = -.5708 
5.86 5.86 

HL and Hu are then computed as follows: 

HL = {[(.5781)(.25)394.9]2 + [(2.07 - 1)(-.25)73.3]2 

- (-.0100)(.25)( -.25) (394.9)73.3} '/2 

=60.2 

Hu = {[(5.63 - 1)(.25)394.9]2 + [(.4012)(-.25)73.3]2 

- (-.5708)(.25)( -.25)(394.9)73.3} '/2 

= 456.0 

The approximate 90 percent confidence interval for a~ therefore is: 

20.2 = 80.4 - 60.2 :s a~ :s 80.4 + 456.0 = 536.4 
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Taking the square roots of the confidence limits, we obtain an approximate confidence 
interval for a 1-': 

4.5 :s al-' :s 23.2 

Notice that in this instance the confidence limits obtained by the Satterthwaite procedure (5.6 
and 26.2) are quite similar to the ones just obtained by the more accurate MLS procedure. 
Note also the impreciseness of the MLS confidence interval here, a result of the small 
sample sizes and the difficulty in estimating variance components precisely. 

Random Factor Effects Model 
We can express the sIngle-factor random cell means model (25.1) in an equivalent random 
factor effects fashion, just as we did for fixed factor levels in Chapter 16. We do this by 
expressing each factor level mean fLi as a deviation from its expected value, E {fLi} = fL., 

as follows: 

ri = fLi - fL· (25.36) 

Then we simply replace fLi in ANOVA model (25.1) by its equivalent expression from 
(25.36): 

fLi = fL· + ri 
The random factor effects model therefore is expressed as follows: 

where: 

fL. is a constant component common to all observations 

ri are independent tv (0, a~) 
Bij are independent N (0, ( 2 ) 

ri and Bij are independent 

i = 1, ... , r; j = 1, ... , n 

(25.37) 

(25.38) 

Note that the ri are random variables in ANOVA model (25.38). With reference to 
the personnel officers in the Apex Enterprises example, ri represents the effect of the ith 
personnel officer who is selected at random. Specifically, ri measures by how much the 
mean rating of all potential employees by the ith personnel officer differs from the overall 
mean rating by all personnel officers. 

25.2 Two-Factor Studies-ANOVA Models II and III 

ANOVA Model II-Random Factor Effects 
Consider an investigation of the effects of machine operators (factor A) and machines 
(factor B) on the number of pieces produced in a day. Five operators and three machines are 
used in the study. Yet the inferences are not to be confined to the particular five operators 
and three machines participating in the study, but rather they are to pertain to all operators 
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and all machines available to the company. Here a random factor effects ANOVA 
(model II) wou ld be appropriate for the two-factor study, since each of the two sets of 7ode1 

levels may be considered the result of sampling a population (all operatms. all Inachiactor 

about which inferences are to be drawn. nes) 
[n the random I"actor effects version of ANOVA model II for a two-factor Stud 

assume analogously to a single-factor study that both the factor A main effects 0'; a:d;e 
factor B main effects {3 j are independent random variables. Further, we assume that tlJ. e 
interaction effects (O'{3)ij are independent random variables. Thus, the random factor lev ~ 
effects version of ANOYA model II for a two-factor study with equal sample sizes n is: e 

YOk = 11..· + 0'; + {3 j + (0'{3)0 + COk 

where: 

fl .. is a constant 

0';, {3i' (O'/i);j are independent normal random variables with expectations 

zero and respective variances a;. ai. a;fi 
C;jk are independent N (0. a 2) 

O'i. {3j. (0'{3)/j. and CUk are pairwise independent 

i = I. .... a: j = I. .... b: k = I. .... /1 

(25.39) 

Meaning of Model Terms. We shall explain the meaning of the terms in random ANOVA 
model (25.39) with refel-ence to the production example involving the two f~lctorS, machine 
operators and machines. The main effect of operator i in the study (selected at random 
from the population of operators) is 0';. Similarly. the main effect of machine j in the study 
(selected at random from the population of machines) is {3 j. Further. the interaction effect 
between operator i and machine .i on the number of pieces produced per day is (rxf3)ij. 

ANOYA model (25.39) assumes that the main effects of operators on output per day are 
normally distributed with zero mean and variance a;. Similarly. the main effects of machines 
are normally distributed with zero mean and variance ai. Finally. the operator-machine 

interaction effects are normally distributed with mean zero and variance a;fi' Since random 
factor effects ANOYA model (25.39) assumes these three effects to be independent random 
variables. the mean output for operator i-machine j. namely. fl; i = fl·· + 0'; + {3 i + (rx{3);j, 
ma~ be viewed as the sum of independent selections of 0';. {3j. and (O'{3);j from thl-ee diffel-ent 
normal distributions. 

Comment 

We caution that random faclOr etTects ANOYA model (25.39) should only be used if tl"l.e factorlevels 
of the two faclOrs do indeed represent random samples from populations of interest. Also. when a 
study involves only a few levels of cach random factor. precise estimation of the factor variimce 
components will usually be very difficult because of the ,mall number of factor levels sampled. • 

Important Features of Model 

I. For ANOYA model (25.39). the expected value of response YUk is: 

E{Yijd = I~ .. (25.40a) 
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2. The variance of Yijb denoted by a}, is: 

2{y} 2 2 2 2 2 
a ijk = a y = aa + afJ + aa.fJ + a (25.40b) 

The Yijk thus have constant variance. They are normally distributed because they are linear 
combinations of independent normal random variables. 

3. In advance of the random trials, different responses Yijk are independent except 
for responses from the same factor A level and/or from the same factor B level, which 
are correlated because they contain some common random terms. The covariances are as 
follows: 

a{Yijk. Yi'j'k'} = 0 

, .ANOVA Model III-Mixed Factor Effects 

i f:. i' 

k f:. k' 

if:. t, j f:. j' 

(25.41 a) 

(25.41 b) 

(25.41 c) 

(25.41 d) 

When one of the two factors has fixed factor levels while the other has random factor levels, a 
mixed factor effects ANOVA model (model III) is applicable. An instance where this model 
may be appropriate is an investigation of the effects of four different training methods 
(factor A) and five instructors (factor B) upon learning in a company training program. The 
four levels for training methods may be considered fixed, since interest centers in these 
particular training methods. In contrast, the levels for instructors may be viewed as random, 
since inferences are to be made about a population of instructors of which the five used in 
the study are viewed as a sample. 

Two mixed factor effects ANOVA models are widely used. They are related to each 
other and are called the restricted and unrestricted mixed models. The restricted model is 
somewhat more general, and will be the mixed model that we shall present. When factor A 
has fixed factor levels and factor B has random factor levels, the exi effects are constants 
and the {3j effects are random variables. The interaction effects (ex{3)ij are also random 
variables because the factor B levels are random. As for the fixed effects ANOVA model 
for two-factor studies, the fixed effects exi in the restricted mixed model will be subject to 
the restriction that their sum is zero; i.e., L exi = O. Similarly, the interaction terms (ex{3)ij 

will be subject to a restriction related to the fact that all fixed factor A levels are included 
in the study; the restriction is that Li(ex{3)ij = 0 for each level j of random factor B. Any 
two interaction terms will be independent, as in the random effects model (25.39), except 
if they come from the same level of random factor B in which case they will be correlated. 
The correlation is related to the restriction that Li(exf3)ij = 0 for each level j of random 
factor B. 

The restricted mixed ANOVA model for two-factor studies, where factor A is fixed and 
factor B is random, can now be stated as follows: 

(25.42) 
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where: 

fL. is a constant 

O'i arc constants subject to the restriction La; = 0 

Ii i are independent N (0. a/~) 

(O'lh; are N (0. a ~ I at;l) , subject [0 the restrictions: 

L;(cx/3);j = 0 ror all j 
I , 

a{(O'/i)ij. (ali);,;} = --at;fi 
{/ 

CijA are independent N (0, a~) 

i i= if 

/3j. (O'/3);j, and C;jA are pairwise independent 

i = I .... ,a; j = I ..... b; f.:. = I ..... II 

Comments 

I. Note that a,;" is not the variance of the interaction terms in model (25.42) but is proPOrtional 
to Iheir variance. the proportionality constant being (a - I )/a. The reason why the variance of the 
interaction terms in ANOYA model (25.42) is expressed as (a - I )a,;,,/a rather than simply as a 2 is 
so that the expected mean ~quares will be relatively simple expressions. This facilitates the mak'!ng 
of inferences for this model. Some texts denote the variance of (al-3);; bya,;!I' 

2. The unrestricted mixed ANOYA model for two-factor studies is quite similar to the re~tJieted 
model in (25.42). In the unrestricted model. there are no restrictions on the interaction effects (af3)ij 

and they are pairwise independent. Denote the unrestricted random effects by 1-3; and (afJ);j. Also let 
(al-3)~j denote the mean of the unrestricted interaction term~ (afJ);';. (afJ)~j' - . _. (afJ)~j for the fixed 
factor A levels for any factor level .i of random factor B. Then the terms fJ i and (a{-)),-; in resnieted 
model (25.42) are related to the unrestricted terms as follows: 

1-3 i = fJi' + (aMi (25.43) 

The restrictions on the (afJ)iJ in model (25.42) follow from the relation in (25.43). References 25.6 
and 25.7 contain detailed discussions of the restricted and unrestricted mixed ANOYA models. • 

Important Features of Model. The expected value of response Yijk for mixed ANOVA 

model (25.42) is: 

(25.44) 

The variance of Y;jk follows directly from the pairwise independence of 0';, Ii,!' and 

(O'/3)i( 

(25.45) 

Notice that the Yijk have constant variance. Further, they are normally distributed because 

each is a linear combination of independent normal random variables. 
In advance of the random trials, different responses Y;jk are independent if they are not 

from the same I"andom factor B level. Responses from the same random factor B level are 
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correlated; their covariances are as follows: 

2 a-I 2 
a{Yijk> Yijk'} = afJ + --aufJ a 

2 1 2 
a{Yijk> Yi'jk'} = afJ - -aufJ a 

k f:. k' 

i f:. i' 

jf:.j' 

(25.46a) 

(25.46b) 

(25.46c) 

Covariance Structure of Observations. We shall illustrate the form of the variance­
covariance matrix of the responses Yijk for mixed ANOVA model (25.42) for a simple 
example. Here .. A is a fixed factor with a = 2 levels, B is a random factor with b = 2 levels, 
and n = 2 responses are obtained for each of the six treatments. The variance of response 
Yijk is according to (25.45) for a = 2: 

a
2{yijk } = a't = aJ + a;;fJ/2 + 0'2 

The covariance in (25.46a) will be denoted by akk' to indicate that the two Yijk observations 
only differ for the replication. Similarly, the covariance in (25.46b) will be denoted by aU' to 
indicate that the two observations come from different factor A levels but not from different 
factor B levels. In this notation, the two pairwise covariances are for a = 2: 

akk' = aJ + a;;fJ/2 

aU' = aJ - a;;fJ/2 

The response vector Y for this example is shown in Table 25.4a. Note that the observations 
are listed in the vector with i varying within j. This permits a simple block structure 

.1'-

y= 

,,' "'Ylll" 

, lY;:,z' , 
Y211 

Y212 

Y12J 
;'Y;22 

''Y2~1 
'Y:2~' 

W}Yi!ri~lJ,c';~Qyar.j~r!c~ ~1Y1~\rik 
lj,?BlockFoini 
'.,- .... - ~!:..';;,-:- ~ :<,,,' .. ' 

'. ~~~'f~ 
yJhe~: " 

ih;:';4~'~ '4<l}Iatri~~Qrii~i'nilJ~~;ali'to~· 

q}= f!l~'tf!;;'/?;+'i 2; 

ffiWi:=J;)';+lr'l/3/2 
,ijii';~'di\:id{d2' 
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23.3 

presentation of the variance-covariance matrix in Table 25.4b. In this presentation t 
rows and four columns are represented by a block matrix. Because of the symmetry ~f ~ur 
blocks, only two dillerent block matrices are required. These are shown in Table 25.4~ 
Note the correlations between pairs of observations on the block main diagonal and the 
uncorrelatedness elsewhere. 

Comment 

The reason why the restricted mixed model in (25.42) is somewhat more general than the unrestricted 
model is that two observation~ from the same random factor B level can be positively or negatively 
correlated for the restricted model according to (25.46b) but cannot be negatively correlated for the 
unrestricted model. • 

Two-Fac10r StlLdies-A~OVA Tf'sts for Models II aud III 
For both the mixed and random AN OVA models for two-factor studies, the analysis of 
variance calculations for sums of squares are identical to those for the fixed ANOVA model. 
Thus, formulas (19.37) and (19.39) are entirely applicable for two-factor ANOVA models 
II and III. Similarly, the degrees of freedom and mean squares are exactly the same as 
those shown in Table 19.8 for the fixed two-factor ANOVA model. The random and mixed 
ANOYA models depart from the fixed ANOYA model only in the expected mean squares 
and the consequent choice of the appropriate test statistic. 

Expected Mean Squares 

TABLE 25.5 

Mean 
Square 

MSA 

MSB 

The expected mean squares for the random and mixed ANOYA models for balanced two­
factor studies can be worked out by utilizing the properties of the model and applying 
the usual expectation theorems. They are shown in Table 25.5, together with those for the 
fixed ANOVA model. The derivations are tedious, but simple rules have been developed for 
finding the expected mean squares. These rules are described in Appendix D. 

Expected Mean Squares for Balanced Two-Factor ANOVA Models. 

Fixed AN OVA Model Random ANOVA Model Mixed ANOVA Model 
df (A and B fixed) (A and B random) (A fixed, B random) . 

LIX2 
a 2 + nba; + na;fJ 

2 LIXl 2 
0-1 a 2+nb--; a + nb--

1 
+ naaP 0- 0-

L{3? 
b-1 2 J 

a +no
b

_
1 

a 2 + noaJ + na;fJ a 2 + noaJ 

L L(IX{3)li 
a 2 + na;fJ a 2 + na;fJ MSAB (0-1)(b-1) a 2 +n 

(0-1)(b-1) 

MSE (n-1)ob a 2 a 2 a 2 
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TABLE 25.6 Test Statistics for Balanced Two-Factor ANOVA Models. 
~." 

!I: .. ~lor' Pcresence Fixed ANOVA Model 
(A a~(j' B fixed) 

Random ANOVA Model 
(A and Brandom) 

Mixed ANOVA Model 
(A fixed, B random) &\B.if~,of~ 

Ji~n' 
MSA/MSE 
MSB/MSE 

, MSAQ/MSE 

MSNMSAEJ 
.~MSB/MSAB 
MSAB/MSE 

MSA/MSAB 
MSB/MSE 
MSAB/MSE 

Construction of Test Statistics 

Example 

As usual, each statistic for testing factor effects is constructed by comparing two mean 
squares that have the properties: 

1. Under Ho, both mean squares have the same expectation. 
2. Under Ha , the numerator mean square has a larger expectation than the denominator 

mean square. 

It can be shown that such a test statistic follows the F distribution if Ho holds. The 
decision rule is constructed in the ordinary fashion, with large values of the test statistic 
leading to Ha. 

For instance, to test for the presence of factor A main effects in random ANOVA model 
(25.39), namely: 

Ho: a; = 0 

Ha: a; > 0 
(25.47) 

we see from Table 25.5 that MSA and MSAB both have the same expectation if a; = 0, that 
is, iffactor A has no main effects. If a; > 0, E{MSA} is greater than E{MSAB}. Hence, the 
appropriate test statistic is: 

F* = MSA 
MSAB 

and the decision rule for controlling the Type I error at a is: 

If F* :s F[1 - a;a - 1, (a -1)(b - 1)], conclude Ho 

If F* > F[1 - a;a - 1, (a - l)(b - 1)], conclude Ha 

(25.48) 

(25.49) 

Note that the denominator for testing for factor A main effects in the random ANOVA model 
is MSAB, whereas it is MSE in the fixed ANOVA model. 

We summarize the appropriate test statistics for mixed and random ANOVA models in 
Table 25.6. For comparison purposes, we also present the test statistics for the fixed ANOVA 
model there. As may be seen from Table 25.6, the denominator ofthe test statistic for mixed 
and random ANOVA models in a number of instances differs from that for the fixed ANOVA 
model. Hence, it is important that the expected mean squares be known when random or 
mixed models are utilized so that the appropriate test statistics can be determined. 

We return to our earlier mixed ANOVA model example of four different training methods 
(factor A, fixed) and five instructors (factor B, random). Four classes were assigned to each 
training method-instructor combination. The response variable of interest was the mean 



1054 Part Five Mtl/li-flU'lor Sllldi"s 

TABLE 25.7 ANOVA Table for Mixed ANOVA Model-Training Example (A fixed, B random, a == 4 
b =5,n =4). ' 

Source of ----= 
Variation SS df MS f* 
Factor A (training methods, fixed) 42.1 3 14.0 14.0/3.9:::: 3.59£ 
Factor B (instructors, random) 53.9 4 13.5 13.5/2.1:::: 6.43' 
AB interactions 
Error 

Total 

46.7 12 3.9 3.9/2.1 :::: 1.g6~ 
126.4 60 2.1 

269.1 79 

F (.95; 3, 12) = 3.49 F (.95; 4, 60) = 2.53 

F (.95; 12, 60) = 1.92 

improvement per student in the class at the end of the training program. The data are not 
shown, but the ANOYA table is presented in Table 25.7. To test whether or not training 
methods and instructors interact: 

Hu: a7;fi = 0 

H,,: a';fi > 0 

we utilize according to Table 25.6 the test statistic: 

* MSAB 
F =-­

MSE 

Using the results from Table 25.7, we obtain: 

* 3.9 
F = - = 1.86 

2.1 

For level of significance 0' = .05. we requil-e F(.95: 12.60) = 1.92. Since F~ = 1.86:'S 
1.92, we conclude that training methods and instructors do not interact. The P-value of this 
test is .06. 

The test statistics for testing training method main eflects and instructor main effects are 
shown in Table 25.7. By comparing the test statistics with the appropriate percentiles of the 
F distribution shown at the bottom of Table 25.7 for level of significance 0' = .05 each, we 
find that both training methods and instructors differ in effectiveness. 

Comment 

When there is only one case per treatment (/I I) with the fixed two-factor ANOYA model, we 
know from Section 20.1 thai no exact tests are possible unless the model can be modified. The 
reason is that MSE = 0 always in that case sO that no estimate of a~ can be obtained. In contrast, 
Table 25.5 indicates that exact tests for both factor A and factor B main ellects a .. e possible with 
the random two-factor ANOYA model when II = I without any restrictive assumptions about the 
interactions. This is because MSAB is the approp .. iate denominato .. of the test statistic here. and MSAB 

can bc detcrmined regardless of samplc si7.e. With the mixed ANOYA model where factor A is the 
fixed factor. the p .. esence of factor A main eHects can also be tested when II = I without the need 
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for restrictive assumptions about the interactions. However, an exact test for factor B main effects 
would require the assumption that all interactions are zero or some other modification of the ANOVA 
model. • 

Two-Factor Studies-Estimation of Factor Effects 
for Models II and III ";.,0.------------------------------------

'$ti.mation of Variance Components 

Example 

When a random factor has significant main effects, we often wish to estimate the magnitude 
of the variance component. Unbiased estimators can readily be derived from appropriate 
linear combinations ofthe expected mean squares in Table 25.5. For instance, the variance 
component aJ in mixed ANOVA model (25.42) can be estimated by noting that: 

E{MSB} - E{MSE} = a 2 + naaJ - a 2 = naaJ 

Hence, we have: 

2 E{MSB} - E{MSE} 
afJ = 

na 
(25.50) 

and an unbiased estimator of aJ is: 

2 MSB-MSE 
sfJ = 

na 
(25.50a) 

Approximate confidence intervals for the variance components in balanced two-factor 
studies can be obtained by either the Satterthwaite procedure in (25.29) or the MLS pro­
cedure in (25.34). For example, the MLS procedure can be used to estimate the variance 
component aJ in mixed ANOVA model (25.42) by noting from (25.50a) that s~ can be 
expressed in the form (25.33): 

t = s~ = (~a) MSB + ( - n~) MSE 

The correspondences are MS1 = MSB, MS2 == MSE, CI = Ilna, and C2 = -llna. The 
approximate 1 - a MLS confidence limits therefore are: 

(25.51) 

where HL and Hu are determined using the formulas in Table 25.3, with dfl = b - 1 and 
df2 = (n - 1)ab. 

In the training example of Table 25.7 with one fixed and one random factor, random factor B 
(instructors) had significant effects. To estimate aJ, we utilize the estimator in (25.50a). 
Substituting, we obtain: 

2 13.5 - 2.1 
sfJ = 16 =.71 
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To construct an approximate 95 percentconfide~ce interval foraJ by the MLS procedur 
we first note that the correspondences to the form m (25.33) are: e, 

I I 
c, = - = - = .0625 

na 4(4) 
MS 1 = MSB = 13.5 

I I 
c? = -- = --- = -.0625 
- na 4(4) 

MS2 = MSE = 2.1 

df. = b - I = 4 df2 = (17 - I)ab = 60 

Carrying out the calculations indicated in Table 25.3, we first obtain the percentiles: 

and then: 

FI = F(.975;4, 00) = 2.79 

F.1 = F(.975; 00,4) = 8.26 

F5 = F(.975;4, 60) = 3.01 

G, = .6416 

G2 = .2806 

G3 = .0266 

F2 = (.975; 60,00) = 1.39 

F4 = (.975; 00,60) = 1.48 

F6 = F(.975; 60,4) = 8.36 

G4 = -.4834 

HL = .55 

Hu = 6.12 

The desired confidence interval is obtained from (25.51): 

.16= .71 - .55..::;. aJ :s .71 + 6.12 = 6.83 

Hence, an approximate 95 percent confidence interval for atl, the standard deviation mea­
suring the variability among instructors, is: 

.4 :s afJ :s 2.6 

Estimation of Fixed Effects in Mixed Model 
Point Estimators. We now consider point and interval estimation of fixed effect param­
eters for balanced mixed model (25.42), where factor A is fixed and factor B is random. 
The situation is more complicated than for fixed ANOVA model I because certain pairs 
of observations are correlated for the mixed model, as we have seen in (15.46). When the 
responses Yare correlated, the method of generalized least squares must be used to obtain 
minimum variance unbiased estimators. Weighted least squares, discussed in Chapter 11, is 
a special case of generalized least squares. It turns out, however, that the generalized lema 
squares estimators of the fixed effects O'i for the balanced case are the same as the ones 
obtained by the method of ordinary least squares: 

(25.52) 

Frequently, the marginal mean ILi. is also of interest. Since fli' = IL .. + ai, it follows 
from (25.52) that a best linear unbiased estimator of ILi. for balanced studies is: 

fli. = Y. .. + (~ .. - Y..,) = ~ .. (25.53) 
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Often a contrast of th e fixed effects Cii is also of interest: 

L = LCiCi; where (25.54) 

An unbiased estimator of Lis: 

i = Lc;ai = LCi(f; .. - Y. .. ) = Lc;f; .. (25.55) 

Variances of Estimators. For mixed ANOVA model (25.42) for balanced studies, it can 
be shown that the variance of ai is as follows: 

2 ~ a 2 + na,/;fJ E {MSAB} 
a {Cid= =----

bn bn 
(25.56) 

It can also be shown that the variance of a contrast i ofthe estimated fixed factor A effects 
ab defined in (25.55), is as follows: 

(25.57) 

where a 2 {ad is given in (25.56). 
Since a 2 {ad is a constant multiple of an expected mean square, it can be estimated 

unbiasedly and exact confidence intervals for Cii and for contrasts ofthe Cii can be obtained. 
An unbiased estimator ofthe variance of ai is: 

and of a contrast of the ai is: 

Comment 

2 MSAB 
s {ad =-­

bn 

2{~} MSAB L 2 s L =-- c· 
bn I 

(25.58) 

(25.59) 

The variances in (25.56) and (25.57) are obtained by recognizing that a; and L are linear combinations 
of the responses Y;jk. For instance, consider an experiment with a = b = n = 2. Then ex, in (25.52) 
is as follows: 

Let the coefficients of the responses Y be denoted by c and define the row vector of the coefficients 
as follows: 

c = (c, C2 cllT ) 

and let Y as always denote the vector of the responses. We can then represent the estimator (ex; or L) 
as c'Y. 

We know the variances and covariances of the responses Yi1k from (25.45) and (25.46). Let (J2{y), 
as usual, denote the variance-covariance matrix containing these variances and covariances. We then 
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Example 

utilize (5.46) to obtain the variance of the estimator, namely c'(J~IY}c. The resulting va i . 
. .. ", I anCe will 

be expressed III terms 01 the variance components a-, aii, and a;;f." We then use the expected 
squares in Table 25.5 for the mixed model to express the variance, if possible, in term~ of ex;: 
mean squares. • 

Confidence Intervals for Fixed Effects Contrasts. It is not always possible to obt . 
exact confidence intervals for the fixed effects in mixed models. Exact confidence interv: 
are available only when the variance of the estimated parameter or contrast of interest i 
proportional to an expected mean square from the analysis of variance table. In ca~es wher: 
the variance is not directly propol1ional to an expected mean square, Sattel1hwaite's method 
can sometimes be used to construct approximate confidence intervals. For mixed ANOVA 
model (25.42), it is possible to obtain exact confidence intervals for contrasts of the fixed 
effects O'i because a~{&d in (25.56) is a constant multiple of E{MSAB}. It can be shown 
that: 

L-L 
--A - is distributed as t[(a - I)(b - I)] 
s{L} 

As a result, the I - 0' confidence limits for L are: 

L ± t[1 - 0'/2; (a - I)(b - 1)ls{L} 

where L is given by (25.55) and s2{L} is given by (25.59). 

(25.60) 

(25.61) 

Notice that confidence limits (25.61) are identical to those in (19.65) for the fixed ANOVA 
model, except that: 

l. MSAB replaces MSE in the estimated variance of the contrast. 
2. The degrees of freedom now are (a - I)(b - I) instead of (17 - I )ab since a different 

mean square is utilized. 

In the training example of Table 25.7, no interaction effects were found to be present. 
We now wish to estimate the difference L = 0'1 - O'~ in the mean improvements between 
training methods I and 2, using a 95 percent confidence interval. The relevant sample results 
are: 

F~ .. = 40.8 

Hence, our point estimate of L = 0'1 - O'~ = Ill. - 1l2' is: 

L = Fl .. - F~ .. = 43.1 - 40.8 = 2.3 

From (25.59). the estimated variance is: 

, A MSAB 2(3.9) 
s-{Lf = --(I + I) = -- = .39 

bn 20 

or s{L} = .62. There are 12 degrees of freedom associated with MSAB; hence, we require 
t(.975: 12) = 2.179. The confidence limits (25.61) therefore are 2.3 ± 2.179(.62) and the 
desired confidence interval is: 

.9:::: Ill. - 1l2. :::: 3.7 

Thus, we conclude with confidence coefficient .95 that training method I is more eftective 
than training method 2, its mean improvement being somewhere between .9 and 3.7 units 
larger. 
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Multiple Comparison Procedures. Multiple comparison procedures can be utilized for 
the main effects of the fixed factor in a mixed two-factor ANOVA model in the same 
way as for the fixed ANOVA model. For example, suppose we wish to obtain all pairwise 
comparisons between the different training methods in the training example in Table 25.7 
by means ofthe Tukey procedure. We would calculate s2{i} as in the previous example. 
The t multiple in (25.61) now would be: 

1 
T = ,J2q[1 - a;a, (a - 1)(b - 1)] (25.62) 

With specific reference to the training example in Table 25.7, we would require for con­
structing 95 percent family confidence coefficient intervals for all pairwise comparisons 
between training methods: 

q(.95;4, 12) = 4.20 
1 

T = ,J2(4.20) = 2.97 

Confidence Intervals for Marginal Means. An exact confidence interval for a marginal 
mean Ji,i. in mixed ANOVA model (25.42) cannot be obtained because the variance ofthe 
marginal mean ili. in (25.53) is not a mUltiple of a single expected mean square. Rather, 
the variance is a linear combination of two expected mean squares, as follows: 

where: 

An unbiased estimator of a 2{ild is: 

a-I 
c,=-­

nab 

1 
C2=­

nab 

s2{ili.} = c,MSAB + C2MSB 

(25.63) 

(25.63a) 

(25.63b) 

(25.64) 

Since the form of the variance of estimated marginal mean ili. is that in (25.25), the 
Satterthwaite approximation can be employed, where the degrees of freedom associated 
with the estimated variance s2{ili.} are according to (25.28): 

(
a_-_l MSAB + _1_MSB)

2 

nab nab 
df = --'-----:----'----:-

(
a - 1 MSAB) 2 (_I_MSB) 2 

nab nab 
(a - 1) (b - 1) + --'---b---l--'---

Approximate 1 - a confidence limits for Ji,i. therefore are: 

ill. ± t(1 - a12; df)s{ild 

where s2{ili.} is given in (25.64) and df is given in (25.65). 

(25.65) 

(25.66) 
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Example 

Multi-FaCIO{ Studies 

Referring again to the training example of Table 25.7, a 95 percent confidence inter I 
. d . dAd . I I . d . va fOfll IS eSlre. s note prevIous y, t 1e estlmate mean Improvement for traininn h ""1-' 

b met od 1 is: 
f1,. = rl .. =43.1 

Using (25.64) and noting that /lab = 4(4)5 = 80, we obtain: 

, 3 I 
r{PI.} = 80(3.9) + 80(13.5) = .315 

ors{tll.1 = .561. From (25.65) we find: 

[~~ (3.9) + 8
1
0 (13.5) r 

df = ---.:c--_____ -"--_ = 11.1 

[~(3.9)r [~(l3.5)r 
3(4) + 4 

Using df = II, the required t percentile is ((.975; II) = 2.20 I. The confidence limits are 
therefore 43.1 ± 2.20 I (.561) and the desired confidence interval is: 

41.9 ~ Ill. ~ 44.3 

We conclude with approximate confidence coefficient .95 that the mean improvement for 
training method I averaged over all instructors is between 41.9 and 44.3. 

25.5 Rand 01111 zed COl11pletc Block Design: RandOl11 Block Effects 

In our discussion of randomized complete block designs in Chapter 21. we assumed that 
block effects were fixed. However, when blocks are a random s<lmple from a population, 
the block effects in the randomized complete block design model should be considered to 
be random variables. as in the following two examples. 

I. A cesearcher investigated the improvement in learning in third-grade classes byaug­
menting the teacher with one or two teaching assistants. Ten schools were selected at random, 
and three third-grade classes in each school were utilized in the study. In each school, one 
class was randomly chosen to have no teaching assistant, one class was randomly chosen 
to have one teaching assistant, and the third class was assigned two teaching assistants. The 
amount of learning by the class at the end of the school year, suitably measured, was the 
response variable. Here the blocks are schools, which may be viewed as a random sample 
from the population of all schools eligible for the study. 

2. In a study of the effectiveness of four different dosages of a drug, 20 litters of mice, 
each consisting of four mice, were utilized. The 20 litters (blocks) here may be viewed as 
a random sample from the population of all litters that could have been used for the study. 

When blocks are considered to be a random sample from a population of blocks, either 
an additive (i.e., no-interaction) or a nonadditive (i.e., interaction) model can be employed. 
The choice can be assisted by the diagnostics discussed in Section 21.4. In particular, plot" 
of the responses Yij for each block. snch as in Figure 21.2, can be helpflll in examining 
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whether blocks and treatments interact. A severe lack of parallelism in such a plot would 
be a clear indication that the interaction model may be preferable. The Tukey test statistic 
for interactions in (20.11) may also be utilized, with the interpretation here that the test 
applies to the given blocks that have been selected. Finally, the nature of the correlations 
between the experimental units within a block may be examined because the two models 
make different assumptions about these correlations. 

When the primary emphasis of the analysis is on testing and estimating treatment effects, 
which is the usual case, the choice between the two models actually is not critical because 
the inference procedures for fixed treatment effects, as we shall see, are exactly the same 
for the two models. 

We first explain the additive, no-interaction model for randomized block designs with 
fixed treatment effects and random block effects, and then we will take up the interaction 
model. Both of these models are special cases of two-factor mixed model (25.42). We 
shall repeat the principal results here because the notation for randomized block designs is 
slightly different. 

Comment 

A special case of random blocks occurs when the blocks are experimental units such as persons, 
stores, or cities, where each receives all of the treatments over time or where the effect of a given 
treatment (e.g., advertising) is evaluated at different points of time. These repeated measures designs 
are discussed in Chapter 27. • 

!4dditive Model 
The additive model for random block effects and fixed treatment effects is a special case 
of mixed two-factor model (25.42), with n = 1, the interaction term dropped, and fixed 
factor A effects now being the treatment effects denoted by OJ and random factor B effects 
now being the block effects denoted by Pi: 

where: 

Ji, •• is a constant 

Pi are independent N(O, a;) 

OJ are constants subject to the restriction .L OJ = 0 

Bij are independent N(O, ( 2
), and independent ofthe Pi 

i = 1, ... , nb; j = 1, ... , r 

(25.67) 

Properties of Model. The important properties of mixed two-factor model (25.42) were 
given in (25.44)-(25.46). These properties for randomized complete block design model 
(25.67) are: 

E{Yij} = Ji, •• + OJ 

2{V} 2 2 2 a Lij = a y = a p + a 

a{Yij, Yij'} = a; 

a{Yij, Yi'p} = 0 i i:.i' 

(25.68a) 

(25.68b) 

(25.68c) 

(25.68d) 
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Thus, the variance of Yij' again denoted by a~. is a constant for all observations' a 
observations from different blocks are independent; and any two observations 'fr~~ t;o 
same block are correlated for this model. Note that the covariance for any two observati e 
from the same block must be positive in advance of the random trials and that the covar' ons 
is the same for all blocks. A positive covariance is reasonable for many apPlication:~~ce 
example, class learning in different classes in the same school will tend to be mOre Similor 
than for classes in different schools because of similar facilities, similar quality of teacher~ 
and the like. ' 

The coefficient of correlation between any two observations from the same block for 
model (25.67) is constant for all blocks and will be denoted by w: 

? ? a- a-
,,,- --"- - ~ 
LV - - ') 

ayay a y (25.69) 

This follows from the definition of a coefficient of correlation in (2.76) and the fact that 
a{Yij} = a{Yij'} = ay. Note also that the covariance in (25.68c) can be expressed as follows 
using (25.69): ' 

j#/ (25.70) 

Covariance Structure of Observations. Since any two Yij observations within a given 
block in advance of the random trials are correlated in the same fashion, the variance­
covariance matrix of the observations in a given block is of a particular form. We illustrate 
this variance-covariance matrix for the observations in a block for a randomized block study 
with r = 3 treatments, using the covariance expression in (25.70): 

where: 

1 way 
? a­y 

? 
way 

y= Yi } 

[
Yill 
Yi3 

(25.71) 

Note that the main diagonal of the matrix contains the constant variance of the Yij , a~, and 
the entries off the main diagonal are the constant covariances, war The particular pattern • 
of the variance-covariance matrix in (25.71) is called compound symmetry. 

While any two observations in a given block are correlated in advance of the random 
trials, once a block has been selected, additive model (25.67) assumes that the observations 
in that block are independent. The only remaining random variation in an observation Yij 

then is the etTOt· term Ci i, and additive model (25.67) assumes that these are independent. 
Thus, in the teacher assi'stant study, model (25.67) assumes that once the schools have been 
selected, anyone class performance is independent of that of another class in each selected 
school, given all of the common conditions for the classes in that school as reflected in the 
block effect Pi. 
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Comments 
1. The variance of Yij in (25.68b) can be expressed as follows using (25.69): 

Hence, we obtain: 

0- 2 

o-~=-­
J-w 

(25.72) 

2. The assumption of compound symmetry in additive model (25.67) is restrictive. While this 
assumption is sufficient so that the F* statistic for testing treatment effects will follow the F distribution 
when Ho holds (i.e., when no treatment effects are present), the assumption is not necessary. For this 
purpose, it suffices that the condition of sphericity be met. This condition requires that the variance 
of the difference between any two estimated treatment means be constant; that is: 

j=j::j' (25.73) 

This condition can be met without the compound symmetry requirement. For example, consider 
the following variance-covariance matrix for the Yi} observations in any block for a randomized 
complete block study with r = 3 treatments: 

[
2 2 4] 

(J2{y) = 2 4 5 
4 5 8 

This matrix does not exhibit compound symmetry. Yet the requirement for sphericity in (25.73) is 

met because 0-2{Ej - Ej' } = 2/ nb always. For example, we have: 

• 
Analysis of Variance. Table 25.8 contains the analysis of variance for additive model 

(25.67). The sums of squares are the same as in (21.6) for the fixed effects model. 

Table 25.8 also contains the expected mean squares for model (25.67). The expected mean 

TABLE 25.8 ANOVA for Randomized Complete Block Design-Block Effects Random, 
Treatment Effects Fixed. 

~~prce of 
~~riation 

fBIOCkS 

"~rror 
iiZt6tai 

SS 

SSBL 

SSTR 

SSBL. TR 

ssto 

df 

r-1 

(nb-1)(r-1) 

nbr -1 

MS 

MSBL 

MSTR 

MSBL.TR 

E{MS} 

Additive Model Interaction Model 
(25.67) (25.74) 

0-2 +ro-; 0-2 +r0-2 p 

L:r? L:r2 
2 J 2 2 j 

0- +nb--
1 

0- +o-pr+nb--1 
r- r-

0- 2 0-2 +0-2 
pr 
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squares correspond to those in Table 255 for the mixed two-factor model, with _ 
no interaction effects, and change of notation associated with fixed factor A be' n - 1, 
ments and random factor B being blocks. The statistic for testing for treatlIlent: trea~_ 
F'" = MSTR/ MSBL.TR, as may be seen from the E {MS} column in Table 25.8. Th ects Is 

test statistic is the same as when block effects are fixed. Confidence intervals for tr lIS, the 
contrasts also present no new issues. Again, MSBL.TR will be used as the mean s:me~ 
the estimated variance of the contrast. are In 

Interaction Model 
When blocks are a l'andom sample from a population of blocks, the pl'esence ofinteracti 
between blocks and treatments can be accommodated by a model including these interact~ 
effects: lOll 

where: 

fl .. is a constant 

Pi are independent N(O, a};) 

Tj are constants subject to the restriction L Tj = ° 
( 

r - I ) (pT)ij are N 0, -,-. -a;, ,subject to the restrictions: 

L/pT)ij = ° for all i 

I 1 
a{(pT)ij, (pT)ij'} = --a;;, 

r " 
(pT )ij are independent of the P, 

for l' =/= j' 

Cij are independent N (0, a 2
) and independent of the Pi and of the (pT)ij 

i= 1, ... ,n,,;1'= 1 .... ,1' 

(25.74) 

This model is a special case of mixed two-factor model (25.42), with n = l and with some 
changes in notation to recognize that fixed factor A now is treatments and random factor B 
now is blocks. 

Properties of Model. The properties of interaction model (25.74) are obtained directly 
from those in (25.44)-(25.46) for the mixed two-factor model: 

E{Y/j} = fl .. + rj 

1 I 1 
a{Y· Y:"}=a---a-

I)' I} P r pT 1'=/=j' 

; =/= ;' 

(25. 75 a) 

(25.75b) 

(25.75c) 

(25.75d) 

Note again that the Yij have constant variance, that observations from different blocks are 
assumed to be independent, and that any two obsel'Vations Yo and Yi{ from the same block 
are con'elated, the covariance being the same fO!' all blocks. Unlike for additive model 
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(25.67), the covariance between any two observations from the same block can be negative 
or positive for interaction model (25.74). 

The coefficient of correlation between any two observations in the same block, denoted 
by 0*, is: 

(25.76) 

Interaction model (25.74) assumes, just like additive model (25.67), that, once the blocks 
have been selected, any two observations from a given block are uncorrelated. 

Analysis of Variance. The sums of squares and degrees of freedom for interaction model 
(25.74) are the same as those for additive model (25.67). The principal difference in the 
use of the two models occurs because of the difference in the expected mean squares, as 
shown in Table 25.8. No exact test for block effects is possible with the interaction model, 
whereas an exact test is possible with the additive model. This distinction is unimportant 
whenever blocks are used primarily to reduce the experimental error variability and are not 
of intrinsic interest themselves. 

The F* test statistic for treatment effects is the same for the two models, namely 
F* = MSTR/MSBL.TR, which is exactly the same as test statistic (21.7b) for random­
ized block model (21.1) with fixed block effects. Similarly, estimation of fixed treatment 
effects for both models with random block effects is carried out in the manner described in 
Section 21.3 for fixed block effects. 

Comments 
1. Table 25.8 indicates that when the block effects are random, MSBL.TR estimates a 2 for additive 

model (25.67). For interaction model (25.74), however, MSBL.TR estimates the sum of the error term 
variance a2 and the interaction variance ai; •. Separate estimation of these two components is not 
possible for this latter model, and the two components are said to be confounded. This problem can 
be avoided by utilizing replication within blocks described in Section 21.7. 

2. When the assumption of compound symmetry, which underlies both additive model (25.67) 
and interaction model (25.74), and the less restrictive requirement of sphericity are not met, the usual 
F test becomes biased. Some computer packages provide the user with the option of formally testing 
for compound symmetry or sphericity. 

When these conditions are violated, an approximate conservative test procedure is as follows: 
a. Conduct the usual F test; if it leads to conclusion Ho, accept this conclusion. 
b. If the usual F test leads to conclusion H,,, replace F[I - a; r - I, (nb - l)(r - 1)] in de­

cision rule (21.7c) by F(l - a; I, nb - I). If this modified decision rule leads to Ha , accept this 
conclusion. 

c. If the modified decision rule leads to Ho, revise the degrees of freedom in the modified decision 
rule by one of the epsilon adjustment procedures, as described in References 25.8 and 25.9. 

Alternatively, multivariate analysis of variance techniques may be employed provided that nb > r. 
See Reference 25.10 for further discussions of these issues. 

3. Mixed models based on less restrictive assumptions regarding the variance-covariance matrix 
and the parameters in the ANOVA model have also been proposed. See Reference 25.7 for a discussion 
of these models. • 
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25.6 Three-Factor StlHlies-;\NOVA .vlodel~ II aBd III -­Just as few single-factor and two-factor studies, the analysis of vadance Sums of 
and degrees of freedom for random and mixed multi-factor models are the same ~q~ares 
for the corresponding fixed ANOYA model. The principal issue with I'andom and .Ose 

multi-factor models, as we saw for two-factor models, is the determination of the expeItUxed 
O I k I 

. . cted 
mean squares. nee t lese are nown, t le proper test statistics and confidence intervals can 
be constructed. Rules for finding expected mean squares for random and mixed models 
are given in Appendix D for balanced studies with any number of factors We now pre . sent 
model II (random factor levels) and model III (mixed factor levels) for three-factor studies 
and show how appropriate tests are conducted. We consider again the balanced case where 
all treatment sample sizes are equal. 

ANOVA Model II-Random Factor Effects 
In a study of the effects of operators, machines, and batches of raw material On daily output, 
all three factors may be considered to have random factor levels. The random ANOVA 
model for such a three-factor study is: 

Yijklll = fl··· + O'i + f3j + YA + (O'f3)ij + (O'Y)ik + (f3y) jk + (O'f3Y)Uk + Cijk", (25.77) 

where: 

fl- •.• is a constant 

ai, f3j, Yk, (0'f3)i], (O'Y)u, (f3y) jk. (O'f3Y)ijk. cijklll are independent normal random 
. bl . h . d . . 0 0 0 1 1 vana es Wit expectations zero an respective vanances a;;, a~, a;, a;;(3' a;;y, 
00" 

a~y' a;;fiy, a-

i = I ..... a; j = I ..... b: k = I ..... c; m = I .... , /1 

Just as for two-factor random ANOYA model (25.39), the responses Yijklll for three­
factor random ANOYA model (25.77) are normally distributed with constant variance. The 
expected value and variance of response Yijklll are: 

E{Yijklll ) = fl... (25.78a) 

'? '), J J ') J ) ') 2. (25 78b) 
a-{Yiiklll } = a y = a;; + a; + a)~ + a;;fi + a;;y + aj;y + a;;f!y + a . 

Any two responses are independent except when they have one or more commOn factor 
levels; these latter are correlated because they contain some common random terms .• 

Table 25.9 contains the degrees of freedom and the expected mean squares for all com­
ponents of the ANOYA table for random ANOYA model (25.77). 

ANOVA Model III-Mixed Factor Effects 
Consider a three-factor study where factors Band C have random factor levels while factor A 
has fixed factor levels. The restricted mixed ANOYA model for such a three-factor balanced 
study is: 

Yijklll = fl··· + 0'; + f3i + Yk + (O'f3);j + (O'y b + (f3y) jk + (O'f3Y)ijA + ci/klll (25.79) 
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JkdMean 
rtesfor 
inced 
dOIll 

:~e-Factor 

. ~~VAModel 
,j}l7)· 

Mean Square 

MSA 

MSB 

MSC 

MSAB 

MSAC 

MSBC 

MSABC 

MSE 

where: 

J1, ••• is a constant 

aj are constants 

df 

0-1 

b-1 

c-1 

(o-l)(b-l) 

(0 -1)(c-1) 

(b-1)(c-1) 

(0 -1 )(b - 1 )(c - 1) 

(n -l)obc 
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Expected Mean Square 
2 + b 2 2 "-_2 + 2 a n caq + ncaqfJ + nuuay m qfJy 

2+ 2+ 2 2 + 2 a nocafJ ncaqfJ + noafJy m afJy 
2 "-_2 "-_2 2 + 2 a + nouuy + nuuay + noafJy naqfJy 
2· 2 2 

a + ncaqfJ + m qfJy 

a 2 + nlJa,;y + m~fJY 
2 2 2 a + noafJy + naqfJy 

a 2 + na2 
afJy 

{3j, Yk> (a{3)ij, (aY)ik> ({3Y)jk> (a{3Y)ijk are pairwise independent normal random 
variables with expectations zero and constant variances 

Cjjkm are independent N (0, a 2
), and are independent of the other random components 

Li aj = Lj(a{3)ij = Lj(aY)ik = Li(a{3Y)ijk = 0 
i = 1, ... , a; j = 1, .. _, b; k = 1, ... , c; m = 1, ... , n 

Note that all interaction terms in this model are random, since at least one of the factors 
contained in each has random factor levels. Note also that all sums of effects over the fixed 
factor levels are zero. Various correlations exist between the random effects terms, which 
we shall not detail. 

The responses Yijkm for three-factor mixed ANOVA model (25.79) are normally dis­
tributed with constant variance. The expected value of observation Yijkm is: 

(25.80) 

In advance of the random trials, any two responses are independent except for those that 
contain common and/or correlated random effects terms; these observations are correlated. 

Table 25.10 contains all the expected mean squares for mixed ANOVA model (25.79). 
Other mixed ANOVA models can be developed in similar fashion. The expected mean 

squares for these mixed models can be found by employing the rules presented in Appendix D 

Appropriate Test Statistics 
From the expected mean squares, we seek to determine the appropriate F* statistic for a 
given test. An exact test statistic can often be found for random and mixed multi-factor 
models, but not always. 

Exact F Test. Suppose we wish to determine whether or notBC interactions are present in 
random ANOVA model (25.77). We see from Table 25.9 that the appropriate test statistic is 
MSBCjMSABC. IT we wish to study the same question for mixed ANOVA model (25.79), 
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TABLE 25.10 
Expected Mean 
Squares for 
Balanced 
Mixed 
Three-Factor 
ANOVAModel 
(25.79) 
(A fixed, Band 
C random). 

Multi-Factor Stlldie.' 

Mean Square df Expected Mean Squ~ 
L!X2 

MSA 0-1 2 b i 2 '. a + n c--1 + nca"p + nba2 + ;)/ 0- ay nuaJfY: 
MSB b-1 0'2 + noca2 + noa2 . /J py 

MSC c-1 0'2 + nobo- 2 + noa2 
y fJy 

MSAB (0-1)(b-1) 0'2 + nca;p + na;py 

MSAC (0-1)(c-1) 2 bo-2 + 2 a + n ay naa/Jy 

MSBC (b-1)(c-1) 0'2 + noajy 

MSABC (0 -l)(b- l)(c -1) 0'2 + m;py 

MSE (n-1)obc u 2 

we see from Table 25.10 that an appropriate test statistic is available, but this time it is 
MSBCjMSE. We thus note that the two test statistics are not the same, even though the 
same factor effects are being studied, because of the differences between the two models. 

It is not always possible to find an exact F test for mixed and random multi-factor 
ANOYA models. For instance, we cannot directly test for the presence of factor A main 
effect~ in random ANOYA model (25.77). Note from Table 25.9 that there is no expected 
mean square that consists of the components of E {MSA} except for the nbc-a; term. 

Sometimes it is possible to assume that certain interactions are zero, and then proceed in 
the usu<11 way with an exact F test. For example, to test for factor A main effects in random 
ANOYA model (25.77) (see Table 25.9), it may be possible to assume that a;;y = 0 (indeed, 
this can be tested with MSACjMSABC). If this assumption is appropriate, we can use the 
test statistic MSA/ MSAB to test for factor A main effects. 

~ 

Satterthwaite Approximate F Test. Often, it is not known whether certain interactions 
are zero. In that case, an approximate F test may be employed that utilizes a pseudo 
F or quasi F test statistic. This approximate test, called the Satterthll'aite test, involves 
developing a linear combination of mean squares that has the same expectation when Ho 
holds as the factor effects mean square. As noted in our discussion of the Satterthwaite 
procedure for constructing approximate confidence limits for variance components, this 
linear combination is expressed in the form: 

where the Ci are constants. The approximate number of degrees of freedom associated with 
this linear combination of mean squares is given by (25.28). The test statistic is then set up 
in the usual way and follows approximately the F distribution when Ho holds. 

We illustrate this procedure for testing factor A main effects in random ANOYA model 
(25.77): 

Ho: aJ = 0 
(25.81) 
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Source of 
Vii:riation 55 df MS 

Factor A (operators) 17.3 2 .8.65 
Factor B (m·achines) 4.2 1 4.20 
Factor C (batches) 24.8 4 6.20 
AB,interactions 4.8 2 2.40 
At inter~ctions 3L7 8 3.96 
BC interactions 12.5 4 3.13 
~"BC interactions 11.9 8 1.49 
Error· 137.7 60 2.30 

--
Total 244.9 89 

Note from Table 25.9 that: 

E {MSAB} + E {MSAC} - E {MSABC} = a 2 + nca;fJ + nba;y + na;fJy (25.82) 

This equals precisely E{MSA} when a;; = O. Hence, the suggested test statistic is: 

MSA 
F**= --------------------

MSAB + MSAC - MSABC 
(25.83) 

where we denote the test statistic as F** as a reminder that a pseudo F test is involved. 

Table 25.11 contains the analysis of variance for a study ofthe effects of operators, machines, 
and batches on the daily output of a highly automated process. Each factor is assumed to 
be a random factor. To test whether operators (factor A) have a main effect on output, we 
use test statistic (25.83): 

F** - 8.65 _ 8.65 - 1 78 
- 2.40 + 3.96 - 1.49 - 4.87 - . 

The approximate number of degrees of freedom associated with the denominator is, from 
(25.28): 

df = (4.87)2 = 4.63 
(2.40)2 (3.96)2 (-1.49)2 
-2-+-8-+ 8 

which we round to 5. For level of significance 0' = .05, we require F(.95; 2, 5) = 5.79. 
Since F** = 1.78 ::=: 5.79, we conclude Ro, that operators do not have a main effect on daily 
output. 

Comment 

Since the Satterthwaite pseudo F test is an approximate one, it must be employed with caution. Some 
alternative procedures are provided in References 25.2 and 25.11. • 

Estimation of Effects 
No new problems arise in the estimation of variance components for random factors or in 
the estimation of contrasts for fixed factors in mixed models, when three or more factors 
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25.7 

Example 

are studied at one time. Confidence limits for contrasts of the factor level means of. _ 
t~\Ctor are obtained by using the mean square utilized in the denominator of the test a ~~d 
. . - h . . f'" f' h f' h d statIstic for exanumng t e presence of mall1 elects or t at actor. T e egrees of freedom ar th 
associated with the mean square utilized. e Ose 

ANOVA Models 1I alld I ([ with [Tne 'ual SaIn ')le Sizes 

We noted in Chapter 23 for the fixed two-factor ANOYA model that unequal treat 
sample sizes make the analysis of variance more complicated because the sums of sqm

ent 
uares 

no longer are orthogonal. Tests of hypotheses must then be based on the general linear te 
approach. When sample sizes are unequal for studies involving random etfects, the lev: 
of complexity increases in a similar fashion. Most of the methods described thus far for 
two-factor and multi-factor ANOYA models II and III do not apply to unbalanced studies. 
For example, in unbalanced studies typically neither exact nor Satterthwaite appIDximate 
F tests exist. 

A number of alternative approaches have been developed for making inferences for 
ANOYA models II and III in the presence of unequal sample sizes. We shall discuss an 
approach based on the method of maximum likelihood. This approach has the advantage 
of conceptual simplicity and is a general procedure that possesses a number of optimality 
properties. Detailed discussions of this and alternative approaches can be found in Refer­
ences 25.2, 25.7, and 25.12. 

We shall illustrate the maximumlikeIihood applDach using an example involving a two­
factor experiment where one factor has fixed factor levels and the second factor has random 
factor levels. 

The Sheffield Foods Company markets a variety of dairy products, including milk, ice cream, 
and yogurt. Recently, the company received a complaint from a government agency that the 
actual levels of milkfat in its yogurt exceeded the labeled amount. Company personnel were 
concerned that the government's laboratory method for measuring fat content in yogurt 
might be unreliable because it is primarily designed for use with milk and ice cream. 
To study the reliability of Sheffield's and the government's laboratory methods, a small 
interlaboratory study was carried out. Four testing laboratories were randomly selected from 
the population of laboratories in the United States. Each laboratory was sent 12 samples 
of yogurt, with instructions to evaluate six of the samples using the government's method 
and six by the company's method. The yogurt had been mixed under carefully controlled 
conditions and the fat content of each sample was known to be 3.0 percent. 

In this study, measurement method is a fixed factor with a = 2 levels (i = I: Govern­
ment method; i = 2: Sheffield method) and laboratories is a random factor with b = -4 
levels. Because of technical difficulties with the Government method, none of the labo­
ratories was able to obtain fat content determinations for all of the six samples assigned 
to that method in the time available. The results of the study are given in Table 25.12. 
Figure 25.3 contains dot plots of the data. The variability of the sample fat determina­
tions appears to be reasonably constant for all measurement method-laboratory combi­
nations. Figure 25.4 contains a MINITAB estimated treatment means plot. For the four 
laboratories included in the study, no major interaction effects between laboratory and 
measurement method on fat content determination appear to be present. The plot suggests 
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a definite measurement method effect and possibly also some differences between 1, 
ratories. We shall now analyze the data formally by means of the maximum likeli:~ 
approach. 

Maximum Likelihood Approach 
The maximum likelihood approach that we will utilize for the Sheffield Foods Com 
example makes somewhat stronger assumptions than mixed ANOVA model (25.42), :~~ 
we would use if the study were balanced. We first review mixed ANOVA model (25.42) c 
it applies to the Sheffield Foods Company example. as 

Mixed ANOVA Model (25.42). This model for the Sheffield Foods Company exam Ie 
is as follows: p 

(25.84) 

a2 {{3j} = aJ 
? 2 - I ? 

a-I (O'{3)ij} = -2-a ;;fJ 
2 

a 2
{Cijd = a 2 

i = 1,2; j = I, ... , 4;k = 1, ... , 17ij 

For this model, the expected value and variance of Yijk are according to (25.44) and (25.45): 

E {Yijk } = fL·· + O'i (25.85) 
? 

2 2 2 a;;fJ 2 
a {Yijd = a y = a" + 2 + a (25.86) 

Also, the responses Yiik are correlated as follows according to (25.46): 

(25.87a) 

i # it (25.87b) 

a {Yij", Yi'j'k'l = 0 j # j' (25.87C) 

We also know that the responses Yijk for mixed ANOVA model (25.42) are normally 
distributed. 

Since the expected value of ~jk depends only on the fixed effects fl .. and O'i (the random 
effects have expectations zero), we can represent the vector of expected values, E{Y}, in the 
matrix form X~. We illustrate this in Table 25.13 for the Sheffield Foods Company example. 
This table contains the vector of responses Y, the vector of parameters ~, and the X matrix 
containing the usual column of I s associated with fL .. and an indicator variable taking on 
the values I and -I associated with 0',. Recall that 0'2 = -a' since L O'i = O. 

The variance-covariance matrix of the responses Yijb (J2 {Y}, ha'i on the main diago­
nal the constant variance from (25.86) and off the main diagonal the covariances from 
(25.87). We illustrated such a variance-covariance matrix in Table 25.4 for a study in which 
(/ = b = n = 2. 



", 

r~BLE25.13 
'~t,rix 

EorylUlation-
'sheffield Foods 
c~any 
~,.,"" pie. 
~ 

Chapter 25 Random and Mixed Effects Models 1073 

Y111 5.19 1 
Y112 5:09 1 
Yl2l 4.09' 1 

' Y1i2 ·3.99 1 

)1144 3.63 1 1 ~ = [~~.] y= 
Y211 3.26 X= 1-1' 
Y212 3.48 1 -1 
Y213 3.24' 1 -1 
Y214 3.41 1 -1 

,Y246 3.2Q 1 -1 

Density Function. To employ the method of maximum likelihood, we make a somewhat 
stronger assumption than with ANOVA model (25.42). We assume all of the properties 
of model (25.42) and in addition assume that the Yijk are jointly normally distributed. 
The density function of the multivariate normal distribution is given in (5.50). The mean 
vector ~ in (5.50) corresponds here to x~, and the variance-covariance matrix E in (5.50) 
corresponds to (J2{y}. We shall continue to use E to represent the variance-covariance 
matrix ofthe responses Yijk . The number of Y variables p in (5.50) corresponds here to nT. 

We can then express the joint density function of the responses Yijk as follows: 

Y - ex --Y-X E V-X 1 [1 ~ I -I ] 
f( ) - (2JT)nr/2IEII/2 p 2 ( ) ( ~) (25.88) 

Viewing the joint density as a function of the unknown parameters (for the Sheffield Foods 
Company example, Ji, •• and 0'1 in ~ and a2

, ai, and a;fJ in E), given the observations Yijb 

the function in (25.88) is called the likelihood function and denoted by L. 

Maximum Likelihood Estimates. To obtain the maximum likelihood estimates of the 
unknown parameters, it is easiest to work with the logarithm of the likelihood function: 

(25.89) 

The maximum likelihood estimates of Ji, •• , 0'" a2
, ai, and a;fJ for the Sheffield Foods 

Company example are those values ofthese parameters that maximize the log-likelihood 
function in (25.89), subject to the constraints that the variance components are nonnegative. 
For unbalanced studies, numerical search procedures are generally required to obtain the 
maximum likelihood estimates. We shall rely on standard statistical software programs to 
carry out the numerical search procedures. 

Inference Procedures. Inference procedures are analogous to those explained in Chap­
ter 14 for maximum likelihood estimation of the regression parameters in logistic regres­
sion. The estimated approximate variance-covariance matrix of the estimated parameters 
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is obtained through the Hessian matrix in (14,50), which contains the second-order 
tial derivatives of the logarithm of the likelihood function with respect to the parameie~­
This estimated variance-covariance matrix is usually provided by a statistical package t 
conjunction with the numeric~11 search for maximum likelihood estimates. n 

Large-sample inference procedures are described in Chapter 14. In the Sheffield Foods 
Company example, for instance, the following approximate result for estimating the fixed 
laboratory method effect 0', is obtained from (14.52): 

(25.90) 

An approximate confidence interval for 0'1 or a test concerning 0'1 can then be developed 
readily. Simultaneous estimation of several parameters can be done as usual by means of the 
Bonferroni procedure. Tests whether several parameters equal zero (e.g., afi = aJ = 0) 
are carried out by fitting the full and reduced models and obtaining the likelihood rttio test 
statistic (14.60). This test should not be used if any of the estimated variance components 
equals zero, 

Often. there is interest in a linear combination of the parameters. For instance, the 
marginal mean ILl. may be of interest in the Sheffield Foods Company example. Since 
fll. = fl .. + 0'" the maximum likelihood estimator of this quantity is the following linear 
combination of the estimated parameters: 

{L .. 
0-, 

[;..,. = [;.. .. + 0- 1 = (I 0 0 0) 
~1 a- (25.91) 
~1 a-

fJ 
~1 

a;;fJ 

Denoting the row vector of coefficients by c', we use (5.46) to obtain the estimated variance 
of {LI.: 

(25.92) 

where s2{b} is the estimated approximate variance-covariance matrix of the parmneter 
estimates. Large-sample inferences are lhen conducted in the usual manner, utilizing the 
standard normal distribution. 

We caution again that the inference procedures discussed here require large sample sizes. 
In studies with random factor levels, the number of factor levels frequently is not large. For 
instance, in the Sheffield Foods Company example only four laboratories were employed 
in the study. Use of a much larger number of laboratories would have been much t(,)o costly. 
An estimate of interlaboratory variability based on four randomly selected laboratories is 
likely not to be precise and use of a large-sample approximation for obtaining an interval 
estimate may not be appropriate. 

Bootstrapping, as ex plained in Chapter I I, may be used to examine the appropriateness of 
large-sample inference procedures for maximum likelihood estimates in unbalanced studies. 
However, in some cases bootstrapping for variance components may not perform properly, 
which could be an indication that large-sample inference procedures are not appropriate. 
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In the Sheffield Foods Company example, the investigators were primarily interested in 
determining whether the two different measurement methods yield systematic differences 
in the determination of fat content. The BMDP3V computer package was used, together 
with transformations (25.43) to go from the unrestricted to the restricted model, to obtain 
the maximum likelihood estimates ofthe parameters in the log-likelihood function (25.89) 
for the mixed ANOVA model. Table 25.14a contains the maximum likelihood estimates 
of the parameters and the estimated approximate standard deviations of these estimates. 
Table 25 .14b contains the estimated approximate variance-covariance matrix of the maxi­
mum likelihood estimates obtained through the Hessian matrix in (14.50). 

Since the sample sizes are not large here, bootstrapping was employed to examine 
whether the large-sample inference procedures for maximum likelihood estimates described 
in Chapter 14 are appropriate. Five hundred bootstrap samples were generated, the maxi­
mum likelihood estimates were obtained for each using SAS PROC MIXED, and a boot­
strap distribution of the parameter estimates was created for each parameter. Table 25.15 
contains the means and standard deviations of these bootstrap distributions, together with 
the maximum likelihood estimates and the approximate standard deviations repeated from 
Table 25.14a 

Before examining whether the two measurement methods differ in their fat content 
determinations, we need to consider whether measurement method-laboratory interactions 
are present. The large-sample test statistic (14.52) for testing Ho: u;fJ = 0 is, using the 
results in Table 25. 14a, z* = .086;'064 = 1.34. This small value of the test statistic supports 
Ho, that there are no interaction effects. However, the bootstrap distribution of 8;fJ is highly 

(a)' Estimated Parameters and Standard Deviations 

Estimated 
Estimated Standard 

Parameter Parameter Deviation 

M·· 3.694 .158 
(X1 .633 .107 
u 2 .023 .006 
u 2 

f3 .097 .on 
2 u ctf3 .086 .064 

(b) Estimated Approximate Variance-Covariance Matrix 

fL .. &1 8 2 A2 
uf3 

A2 
Uct{J 

fL·· .0250 .0902 .0000 .0000 .0000 

&1 .0002 .0114 .0000 .0000 .0000 

s2{b) = 8 2 .0000 .0000 .0000 .0000 -.0000 

A2 
uf3 .0000 .0000 .0000 .0050 -.0001 

"'2 u ctf3 .0000 .0000 -.0000 -.0001 .0041 
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FIGURE 25.5 
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TABLE 25.15 Means and Standard Deviations of Bootstrap Distributions and 
Maximum Likelihood Estimates-Sheffield Foods Company Example. 

Parameter 

c 
C 
QJ 

::J 

M·· 

al 
(52 

f3 

(5;f3 

(52 

0.20 

0.15 

~ 0.10 
L.L. 

0.05 

r---ff 
0.30 

-

Maximum 
Bootstrap likelihood 

,-

Mean Estimate 

3.69 

-

.637 

.092 

.078 

.023 

'-

-

I-

~ 
0.75 

Bootstrap 0,1 

3.69 

.633 

.097 

.086 

.023 

1.20 

Standard Deviation 

Maximum 
Bootstrap likelihood 

.157 .158 

.110 .107 

.128 .071 

.190 .064 

.006 .006 

skewed, with a large concentration at zero. Furthermore, the bootstrap standard deviation 
according to Table 25.15, s*{a;fJ} = .190, is much larger than the large-sample estimate. 
Thus, use of large-sample inference procedures may not be appropriate here. Nevertheless, 
the boo.tstrap results are consistent with the large-sample results, suggesting even more 
strongly that there are no interaction effects between measurement methods and laboratories. 

We therefore examine next the measurement method main effects. The bootstrap distri­
bution for &1 is shown in Figure 25.5. It is approximately normal. Also, Table 25.15 shows 
that the bootstrap standard deviation for &1 and the large-sample standard deviation.are very 
similar. These findings support the use oflarge-sample inference procedures for 0'1. Hence, 
we use the large-sample confidence interval in (14.54) to estimate 0'1 - 0'2 = 2al. For a 
95 percent confidence interval, we require: 

z(.975) = 1.960 2&1 = 2(.633) = 1.266 2s{&d = 2(.107) = .214 

The confidence limits therefore are 1.266 ± 1.960(.214) and the approximate 95 percent 
confidence interval is: 

.85 .::: 0'1 - 0'2 .::: 1.69 
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We conclude, with approximate confidence coefficient .95, that the mean government 
method fat determination is between .85 and 1.69 percent points higher than that for the 

Sheffield method. Since the true fat content in the samples was 3 percent, Figure 25.4 indi­

cates that the government method is biased upward and that the Sheffield method is more 
accurate. 

Comment 
Mixed effects models are sometimes estimated by means of restricted 11UlXimum likelihood (REML). 
Using this approach, the variance-covariance components are estimated via maximum likelihood 
(ML) averaging over all possible values of the fixed effects. The fixed effects are estimated using 
generalized least squares given their variance-covariance estimates. Under full maximum likelihood, 
the variance-covariance parameters and the fixed effects are estimated by maximizing their joint 
likelihood. The fixed effect estimates using REML generally exhibit less bias than ML estimates 
whereas both REML and ML variance component estimates are identical. See Reference 25.7 for 
further details of these estimation methods. • 
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25.1. A student asks why Bij is shown as a separate term in random cell means model (25.1) in view 
of /-Li being a random variable in this model. Respond. 

25.2. Refer to Figure 25.1. Here, the situation portrayed is one where the variance (52 is larger than 
the variance (5~. Is this always the case? Explain. 
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25.3. In each of the following ca~e~. indicate whether ANOVA model I or modellJ is more a 
priate and state your reasons: Ppro-

25.4. 

*25.5. 

a. In a study of absenteeism at a plant. the treatments are the three 8-hour shifts. 

b. In a study of employee productivity. the treatments are 10 production employees sel 
<It random from all production employees in a large company. ceted 

c. In a study of anticipated annual income at retirement. the treatments are the four ty 
. I '1 bl I pes of retIrement pans aval a e to emp oyees. 

d. In a study of tire wear in IS-wheel trucks. the treatments are four tire lOCations selected at 
random. 

Refer to the Apex Enterprises personnel officers example on page 1036. Explain with referen 
to this example over what the expectation in (25.2a) is taken. Over what is the vmiance : 
(25.2b) taken? Over what is the covariance in (25.2c) taken? 

Refer to Filling machines Problem 16. I I. Suppose that the tompany uses a large number of 
filling machines and the six machines studied were selected randomly. Assume that ANOVA 
model (25.1) is applicable. 

a. Interpret the following with reference to thi~ example: (I) fl·. (2) a/~, (3) a 1 , (4) a 2 {Y;j}. 

b. Test whether or not all machines in the population have the same mean fill; use a = .05. 
State the alternatives. decision rule. and conclusion. What is the P-value of the test? 

c. Estimate the mean fill for all machines in the population with a 95 percent confidence 
interval. 

*25.6. Refer to Filling machines Problems 16.1 I and 25.5. 

a. Estimate the proportion of the total variability in calton fills that reflects the differences in 
mean fills between machines; use a 95 percent confidence interval. 

b. Estimate a 1 with a 95 percent conlidence interval. Interpret your interval estimate. 

c. Obtain a point estimate of (J/~, 

d. Obtain separate approximate 95 percent confidence intervals for a/~ using the Sattelthwaite 
procedure and the MLS procedure. Are these intervals simi lor? Comment. 

25.7. Sodium content. A researcher studied the ~odium content in lager beer by selecting at 
random six brands from the large number of brands of U.S. and Canadian beers sold in a 
metropolitan area. The researcher then chose eight 12-ounce cans or bottles of each seleoed 
brand at random from retail outlets in the area and measured the sodium content (in milligrams) 
of each con or bottle. The observations follow. 

j 

2 3 4 5 6 7 8 

24.4 22.6 23.8 22.0 24.5 22.3 25.0 24.5 
2 10.2 12.1 10.3 10.2 9.9 11.2 12.0 9.5 

6 21.3 20.2 20.7 20.8 20.1 18.8 21.1 20.3 

Assume that ANOVA model (25.1) i~ applicable. 

a. Test whether or not the mean sodium content is the same in all brands sold in the metro­
politan area: use a = .0 I. State the alternatives. decision rule. and conclusion. What is the 
P-value of the test? 

b. Estimate the mean sodium contel1l for all brands: use a 99 percent confidence interval. 
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25.8. Refer to Sodium content Problem 25.7. 

a. Estimate a/~/(a~ + a 2
) with a 99 percent confidence interval. Interpret your interval 

estimate. 

b. Obtain point estimates of a 2 and a~. 

c. Estimate a 2 with a 99 percent confidence interval. 

d. It has been conjectured that the variance of sodium content between brands is more than 
twice as great as that within brands. Conduct an appropriate test using a = .01. State the 
alternatives, decision rule, and conclusion. 

e. Obtain an approximate 99 percent confidence interval for a~ using the MLS procedure. 
Interpret your confidence interval. 

25.9. Coil winding machines. A plant contains a large number of coil winding machines. A pro­
duction analyst studied a certain characteristic of the wound coils produced by these machines 
by selecting four machines at random and then choosing 10 coils at random from the day's 
output of each selected machine. The results follow. 

2 3 4 5 6 7 8 9 10 

1 205 204 207 202 208 206 209 205 207 206 
2 201 204 198 203 209 207 199 206 205 204 
3 198 204 196 201 199 203 202 198 202 197 
4 210 209 214 215 211 208 210 209 211 210 

Assume that ANOVA model (25.1) is appropriate. 

a. Test whether or not the mean coil characteristic is the same for all machines in the plant; 
use a = .10. State the alternatives, decision rule, and conclusion. What is the P -value of 
the test? 

b. Estimate the mean coil characteristic for all coil winding machines in the plant; use a 
90 percent confidence interval. 

25.10. Refer to Coil winding machines Problem 25.9. 

a. Estimate a/~/(a~ + a 2
) with a 90 percent confidence interval. Interpret your interval 

estimate. 

b. Test whether or not a~ and a 2 are equal; use a = .10. State the alternatives, decision rule, 
and conclusion. 

c. Estimate a 2 with a 90 percent confidence interval. Interpret your interval estimate. 

d. Obtain a point estimate of a~. 

e. Obtain separate approximate 90 percent confidence intervals for a~ using the Satterthwaite 
procedure and the MLS procedure. Are these intervals similar? Comment. 

25.11. For mixed effects model (25.42), why is L;(a{3);j = 0 While usually L}a{3);j # O? 

25.12. A marketing consultant is designing several experiments involving a newly developed low­
cost food processor. The initial experiment has the objectives (1) to compare the effects on 
unit sales of three possible prices recommended by the sales department ($23.99, $25.49, 
$25.95) and (2) to determine whether the color scheme used for the appliance affects unit 
sales. A great many color schemes are feasible; three (white, green, pink) have been selected 
for the initial experiment to represent the range of possible colors. If the experiment suggests 
that color scheme does have an effect, this aspect of the product design will be investigated in 
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25.13. 

detHil in a follow-up study. Which ANOVA model would you employ for analyzing the' '. 
experiment? Discuss. mItral 

In a two-factor ANOVA study with 1I = 3, h = 2, and 11 = 5. the two factor effect 
random with a~ = 5.0, a,; = 8.0, aft = 10.0, and a';fl = 6.0. Assume tbat ANO~:e both 
(25..19) is applicable. model 

a. Obtain £{MSA}, £{MSB}, and £{MSAB}. 

b. What, would be the expected mean squares if a';fl = O. all other parameters remaining the 
same? 

25.14. A survey statistician has commented: "1 am rather suspicious of uses of random effects and 
mixed effects ANOVA models. Seldom are the factor levels chosen by a random mechanis 
from a known population." Discuss. m 

25.15. Miles per gallon. An automobile manufacturer wished to study the etfects of difference 
between drivers (factor A) and differences between cars (factor B) on gasoline consumption~ 
Four drivers were selected at random; also live cars of the same model with manual transmis­
sion were randomly selected from the assembly line. Each driver drove each car twice over a 
40-mile test course and the miles per gallon were recorded. The data follow. 

Factor A 
Factor B (car) 

(driver) / = 1 /=2 /=3 j=4 j=5 

i = 1 25.3 28.9 24.8 28.4 27.1 
25.2 30.0 25.1 27.9 26.6 

i =2 33.6 36.7 31.7 35.6 33.7 
32.9 36.5 31.9 35.0 33.9 

; = 3 27.7 30.7 26.9 29.7 29.2 
28.5 30.4 26.3 30.2 28,9 

;=4 29.2 32.4 27.7 31.8 30.3 
29.3 32.4 28.9 30.7 29.9 

Assume that random ANOVA model (25.39) is applicable. 

a. Test whether or not the two factors interact; use a = .05, State the alternatives, decision 
rule. and conclusion. What is the P-value of the test? 

b. Test separately whether or not factor A and factor B main effects are present. For each test, 
use a = ,05 and state the alternatives, decision rule. and conclusion. What is the P-value 
for each test? 

c. Obtain point estimates of a;; and aft. Which factor appears to have the greater effect on 
gasoline consumption? 

d, Use the MLS procedure to obtain an approximate 95 percent confidence interval for a~, 
Interpret your interval estimate. -

e, Use the Sattelthwaite procedure to obtain an approximate 95 percent confidence interval 
for aft. Is your interval estimate reasonably precise? Comment 

*25,16. Refer to Disk drive service Problem 19,16. Suppose that the service center employs a large 
numberoftechnicians and thatthe three included in the study were selected at random. Assume 
that the conditions of mixed ANOVA model (25.42) are applicable. except that here tactor A 
effects are random and factor B etfects are fixed. Under current conditions. all technicians 
service each of the three makes with approximately equal frequency. 
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a. Test whether or not the two factors interact; use a = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

b. Obtain a point estimate of a~fJ" Does a~f3 appear to be large relative to a 2 ? Explain. 

c. Test whether or not factor A main effects are present; use a = .01. State the alternatives, 
decision rule, and conclusion. Why is it meaningful here to test for factor A main effects? 

d. Test whether or not factor B main effects are present; use a = .01. State the alternatives, 
decision rule, and conclusion. Why is it meaningful here to test for factor B main effects? 

e. It is desired to obtain all pairwise comparisons between the means for the three disk drive 
makes. Use the Tukey procedure and a 95 percent family confidence coefficient to make 
these comparisons. State your findings. 

f. Use the Satterthwaite procedure to obtain an approximate 99 percent confidence interval 
for /-L.t. Interpret your interval estimate. 

g. Obtain an approximate 99 percent confidence interval for a; using the MLS procedure. 
Does the variability between technicians appear to be large? Explain. 

Imitation pearls. Preliminary research on the production of imitation pearls entailed study­
ing the effect of the number of coats of a special lacquer (factor A) applied to an opalescent 
plastic bead used as the base of the pearl on the market value of the pearl. Four batches of 
12 beads (factor B) were used in the study, and it is desired to also consider their effect on the 
market value. The three levels of factor A (6, 8, and 10 coats) were fixed in advance, while 
the four batches can be regarded as a random sample of batches from the bead production 
process. The market value of each pearl was determined by a panel of experts. The market 
value data (coded) follow. 

Factor A 
Factor B (batch) 

(number of coats) j = 1 j=2 j=3 j=4 

i = 1 6 72.0 72.1 75.2 7004 

72.8 73.3 77.8 72.4 

i = 2 8 76.9 80.3 80.2 74.3 

74.2 77.2 79.9 72.9 

i = 3 10 76.3 80.9 79.2 71.6 

75.0 80.2 81.2 7404 

Assume that mixed ANOVA model (25.42) is applicable. 

a. Test for interaction effects; use a = .05. State the alternatives, decision rule, and conclu­
sion. What is the P -value of the test? 

b. Test for factor A and factor B main effects. For each test, use a = .05 and state the 
alternatives, decision rule, and conclusion. What is the P -value for each test? 

c. Estimate D t = /-L2' - /-Lt. and D2 = /-L3· - /-L2' by means of the Bonferroni procedure with 
a 90 percent family confidence coefficient State your findings. 

d. Use the Satterthwaite procedure to obtain an approximate 95 percent confidence interval 
for /-L2.' Interpret your confidence interval. 

e. Use the MLS procedure to obtain an approximate 90 percent confidence interval for a'J. 

Does a'J appear to be large compared to a 2? 

'j 
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25.18. Refer to Coin-operated terminals Problem 20.2. Suppose that the weeks (factor B) ru 
selected intentionally but the locations (factor A) had been selected at random from ad been 
number of possible locations. Assume that the conditions for additive random block e~1Iar~e 
ANOVA model (25.67) are appropriate, except that here factor A ctTects (blocks) ar eets iIl 
and factor B etl'cct~ arc fixed. . , e random 

a. Test for factor B main effects; use a = .05. State the alternatives, decision rule nd 
clusion. What is the P-value of the test'? ' a coo-

b. Why can you not test for factor A main effects here? 

*25. 19 ~oad pa~nt wea~. A stat~ hig~lway department studied the wear characteristics of five dif­
ferent pall1ts at eIght locatrons 111 the state. The standard, currently used paint (paint 1) and 
four experimental painl.~ (paints 2, 3, 4, 5) were included in the study. The eight locations Were 
randomly selected. thus re!lecting variations in traffic densities throughout the state. At each 
location, a random ordering of the paints to the chosen road surface was employed. After a 
suitable period of exposure to weather and traflic, a combined measure of wear, eonsiderin 
both durability and visibility. was obtained. The data on wear follow (the higher the score, th: 
better the wearing characteristics). 

location 
Paint (j) 

location Paint (j) 

2 3 4 5 2 3 4 5 

11 13 10 18 15 5 14 16 13 22 16 
2 20 28 15 30 18 6 25 27 26 33 25 
3 8 10 8 16 12 7 43 46 41 55 42 
4 30 35 27 41 28 8 13 14 12 20 13 

a. Obtain the residuals for additive randomized block model (25.67) and plot them against 
the titted values. Also prepare a normal probability plot of the residuals. Summarize your 
findings about the appropriateness of model (25.67). 

b. Plot the responses by location in the format of Figure 21.2 on page 896. What does this 
plot suggest about the appropriateness of the no-interaction assumption here? 

c. Conduct the Tukey test for additivity of location and treatment effects. conditional on the 
locations selected; use a = .005. State the alternatives, decision rule. and conclusion. 

*25.20 Refer to Road paint wear Problem 25.19. Assume that additive randomized block model 
(25.67) is appropriate. 

a. Obtain the analysis of variance table. 

b. Test whether or not the mean wear differs for the five paints; use a = .05. State the 
alternatives. decision rule, and conclusion. What is the P-value of the test? 

c. Compare the mean wear of each experimental paint against that of the standard paint; 
use the most etlicient multiple comparison procedure with a 90 percent family confidence 
coefficient. Summarize your findings. 

d. Paints I, 3. and 5 are white. whereas paints 2 and 4 are yellow. Estimate the ditference in 
the mean wear for the two groups of paints with a 95 percent confidence interval. Interpret 
your findings. 

25.21. Muscle tissue. A physiologist studied the etfects of three reagents on muscle tissue in dogs. 
Ten litters of three dogs each were randomly selected and the three reagents were randomly 
assigned to the three dogs in each litter. The data on the effects of the reagents follow (the 



" 
Chapter 25 Random and Mixed Effects Models 1083 

higher the value, the higher the activity level): 

litter Reagent (j) litter Reagent (j) 

2 3 2 3 

10 15 14 6 7 9 10 
2 8 12 13 7 24 30 27 
3 21 27 25 8 16 18 20 
4 14 17 17 9 23 29 32 
5 12 18 16 10 18 22 21 

a. Obtain the residuals for additive randomized block model (25.67) and plot them against 
the fitted values. Also prepare a normal probability plot of the residuals. Summarize your 
findings. 

b. Plot the responses by litter in the format of Figure 21.2 on page 896. What does this plot 
suggest about the appropriateness of the no-interaction assumption here? 

c. Conduct the Tukey test for additivity of litter and reagent effects, conditional on the litters 
selected; use a = .025. State the alternatives, decision rule, and conclusion. 

d. Based on parts (b) and (c), would interaction randomized block model (25.74) be more 
appropriate here? What practical differences exist in using models (25.67) and (25.74)? 

25.22. Refer to Muscle tissue Problem 25.21. Assume that additive randomized block model (25.67) 
is applicable. 

a. Obtai.n the analysis of variance table. 

b. Test whether or not the mean activity level differs for the three reagents; use significance 
level a = .025. State the alternatives, decision rule, and conclusion. What is the P-value 
of the test? 

c. Reagents 2 and 3 were expected to be similar to each other but to differ from reagent 1. 
Use the most efficient mUltiple comparison procedure with a 95 percent family confidence 
coefficient to estimate: 

Summarize your findings. 

L, = f-L'2 - f-L·3 

f-L'2 + f-L'3 
L2 = 2 - f-L·t 

*25.23. Refer to Table 25.11 on page 1069. All three factors in this study have random effects. 

a. Test whether or not a~fJY equals zero; use a = .025. State the alternatives, decision rule, 
and conclusion. What is the P -value of the test? 

b. Test whether or not AB interactions are present. Use significance level a = .01. State the 
alternatives, decision rule, and conclusion. 

c. Test whether machines (factor B) have main effects. Use significance level a = .01. State 
the alternatives, decision rule, and conclusion. 

d. Use the Satterthwaite procedure to obtain an approximate 95 percent confidence interval 
for a~. Interpret your interval estimate. 

25.24. Refer to Electronics assembly Problem 24.12. Suppose that the number of feasible sequences 
in which the components can be attached to the board is very large and that the three sequences 
studied were selected randomly from the set of operationally feasible sequences. Assume that 
a normal error ANOVA model is applicable where factors A and C have fixed effects and 
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factor B has random effects. Some relevant expected mean squares for this model are: 

~ ~ L al ~ 
E{MSA} = (r + bCII~~ + clla,;{> 

(I-I 
E{MSB) = a~ + (l("llaft 

'\' '\'(exy)~ 
E{MSAC} = a 2 + bll L- L- " + na;;{>y 

«(I-I)(c-I) 

E{MSABC} = a 2 + nu2 
aPr 

E{MSE} = a 2 

a. What is the appropriate test statistic for testing for AC interactions? For testing for fnctor B 
main effects? 

b. Test whether or not AC interactions nre present; use ex = .05. Stnte the nltemative 
decision rule. and conclusion. S, 

c. Test whether or not factor B main effects are present; use ex = .05. Stnte the nltemntives, 
decision rule. and conclusion. 

d. Estinmte aft using the MLS procedUre with a 95 percent confidence coetIicient. Interpret 
your interval estimate. 

25.25. Consider mixed ANOVA model (25.79) where factor A has fixed effects and tbe other two 
fnctors hnve random effects. Find the Satterthwnite test stmistic F'" for testing for tactor A 
main etlects. What is the approximnte number of degrees of freedom associnted with the 
denominator of this test stntistic? 

*25 .26. Refer to Disk drive service Problems 19.16 nnd 25.16. Suppose thnt observntions YI 14 = 57, 
Y2~1 = 61. and Y22~ = 66 nre missing becnuse the time recording instrument mnlfunctioned. 
Assume thnt the conditions of mixed ANOVA model (25.42) nre npplicable (except thm here 
fnctor A effects nre mndom. fnctor B effect~ nre fixed. and lU1equnl snmple sizes exist) and that 
the observntions Yij' nre jointly normnlly distributed. Use the maximum likelihood nppronch 
to nnswer the following. 

n. Obtnin maximum likelihood estimntes of nil unknown pnmmeters. Are nny ofthe estimated 
vnriances of the mndom eftects equnl to zero? If so, what would this imply nbout the 
applicnbility of the likelihood mtio stntistic (14.60)? 

b. Revise the model by dropping the nmin fnctor A effect nnd obtnin maximum likelihood 
estimntes of the unknown pnmmeters in the revised model. Do these estimntes differ from 
the ones obtained in pat1 (a)? 

c. Use the ~ .. test statistic to test whether or not the two bctm's intemct; use ex = .01. State 
the nlternatives. decision rule. nnd conclusion. What is the P-vnlue ofthe test? 

d. Use the likelihood ratio test stntistic (14.60) to test whether or not factor B mnin effects 
are present; control the risk of Type I error nt ex = .0). Stnte the nlternatives. decision rule, 
and conclusion. 

e. Obwin an npproximate 99 percent confidence intervnl for a!;fl" Interpret your confi~ence 
interval. 

25.27. Refer to Imitation pearls Problem 25.17. Suppose that observations YII' = 67.4 nnd Ym = 
73.7 are missing because of flaws in the beads. Assume that the conditions of mixed ANOVA 
model <25.42) are applicable (except that unequal snmple sizes are present here) and that the 
observations Yiik are jointly normally distributed. Use the maximum likelihood approncb to 
nnswer the following. 

n. Obtnin maximum likelihood estimates of all unknown pammeters. Are any oftbe estimnted 
variances of the random effects equnl to zero? If so, whnt would this imply nbout the 
applicability of the likelihood ratio stntistic (14.60)'1 
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b. Revise the model by dropping the interaction term and obtain maximum likelihood esti­
mates of the unknown parameters in the revised model. Do these estimates differ from the 
ones obtained in part (a)? 

c. Use the likelihood ratio test statistic (14.60) to test for factor B main effects; use a = .05. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

d. Use the likelihood ratio test statistic (14.60) to test whether factor A main effects are 
present; control the risk of Type I error at a = .05. State the alternatives, decision rule, 
and conclusion. What is the P-value of the test? 

e. Obtain an approximate 95 percent confidence interval for a:. Interpret your interval 
estimate. 

25.28. Show that n' defined in (25.1Oa) equals n when nj == n. 

25.29. What are the values rand n that minimize a 2 {y'.} in (25.12) for a given total sample 
size nT? 

25.30. Derive the confidence limits in (25.19) from those in (25.18). 

25.31. For random ANOVA model (25.39), derive a 2 {Y; .. }. 
25.32. Consider randomized block model (21.1), but with random treatment effects. Derive a 2 {Yij} 

and a 2 {Y.j }. 

25.33. Refer to Dental pain Problem 21.9. Suppose that the subjects in the study had been randomly 
selected from eight towns (blocks), and that the towns were randomly selected from a popu­
lation of towns. Assume that additive randomized block model (25.67) is applicable, except 
that the factorial structure of the fixed treatment effects needs to be recognized. 

a State the randomized block model for this case. 

b. What is the appropriate test statistic for testing whether or not the two factors interact? 
What are the appropriate test statistics for testing for main effects? [Hint: Consider the test 
for treatment effects in model (25.67).] 

25.34. Derive (25.68c). 

25.35. For random ANOVA model (25.77), find the variance of the estimated mean Y; .... 

25.36. Consider a two-factor study with a = 3, b = 2, and n = 5. Random ANOVA model (25.39) 
is applicable with M .. = 92, a~ = 24, a: = 11, a~ = .1, and a 2 = 8. 

a. Using a normal random number generator, obtain a value for each of the main effects 
aj (i = 1,2,3) and {3j (j = 1,2) and for each interaction effect (a{3)ij' 

b. Generate five error terms for each treatment. 

c. Combine the parameter values obtained in part (a), the error terms obtained in part (b), and 
M .. = 92 to yield five observations Yijk for each treatment. 

d. For the observations obtained in part (c), calculate the F* test statistic for testing whether 
or not factor A main effects are present. What is your conclusion using a = .05? 

e. Repeat the steps in parts (a)-(d) 100 times. Calculate the mean of the 100 numerator mean 
squares and the mean of the 100 denominator mean squares. Are these means close to 
theoretical expectations? 

f. In what proportion of the 100 trials did the test lead to the conclusion of the presence of 
factor A main effects? Does the test have good power for the case considered here? 
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25.37. Refer to Road paint wear Problem 25.19. 

a. Estimate the variance-covmiance matrix ofthe treatment observations in a block; use (278) 
on page 1135 to obtain the entries in the matrix. . 

b. Does the compound symmetry property of (25.71) appear to be reasonable here? Explain. 

c. Does the sphericity property of (25.73) appear to be reasonable here? Explain. 

25.38. Refer to Muscle tissue Problem 25.2l. 

a. Estimate the variance-covariance matrix of the treatment observations in a block; use (27.8) 
on page 1135 to obtain the entries in the matrix. 

b. Does the compound symmeuy property of (25.71) appear to be reasonable here? Explain. 

c. Does the sphericity property of (25.73) appear to be reasonable here? Explain. 

25.39. Refer to Miles per gallon Problem 25.15. Suppose that observation Ym = 31.9 is missing 
because the record was lost for this experimental trial. Assume that random AN OVA model 
(25.39) is applicable (except that the sample sizes are unequal here) and that the oberservations 
Y;jk are jointly normally distributed. 

a. Use the method of maximum likelihood to estimate M.' and the variance components a2 

aJ, a~fJ' and a 2 
• Which variance component appears to be largest? Also obtain the estima;d 

standard deviation for each of the estimated variance components. 

b. Obtain a bootstrap sample by using a normal random number generator to provide norma) 
values with means zero and variances equal to the e~timates of the variance components in 
part (a) for (1) the (Xi (i = 1, ... ,4), (2) the!3j (j = I, ... ,5), (3) the (a!3)ij. and (4) the 
nij error terms Sijk for each treatment. Combine these with fl .. obtained in part (a) to create 
the nij bootstrap outcomes Yijk for each treatment. 

c. Use the method of maximum likelihood to estimate a~, aJ, and a;fJ for the bootstrap sample 
obtained in part (b). 

d. Repeat parts (b) and (c) 250 times. 

e. Obtain histograms of the bootstrap distributions for the 250 bootstrap estimates of a;, a~, 
and a~fJ' Also obtain the mean and standard deviation for each of the bootstrap distributions. 
Based on these results and the results in part (a), does it appear that large-sample inference 
procedures are appropriate here? Explain. 
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Chapter 

---
Nested Designs, 
Subsarnpling, and 
Partially Nested Designs 

In this chapter, we take up the basic elements of nested designs, including the Use of 
subsampling. We begin by considering the general concept of nested designs and describe 
how these designs differ froln crossed designs. We then take up in detail two-factor nested 
designs and their analysis. We conclude by considering subsampling designs and partially 
nested designs. 

26.1 Distinction between Nested and Crossed Factors 

Example 1 

1088 

In the factorial studies considered so far, where every level of one factor appears with each 
level of every other factor, the factors are said to be crossed. A different situation occurs 
when factors are nested. The distinction between nested and crossed factors will now be 
illustrated by some examples involving two-factor studies. 

A large manufacturing company operates three regional training schools for mechanics, one 
in each of its operating districts. The schools have two instructors each, who teach classes 
of about 15 mechanics in three-week sessions. The company was concerned about the effect 
of school (factor A) and instructor (factor B) on the learning achieved. To investigate these 
effects, classes in each district were formed in the usual way and then randomly assigned 
to one of the two instructorf> in the school. This was done for two sessions, and at the end 
of each session a suitable summary measure of learning for the class was obtained. The 
results are presented in Table 26.1. 

The layout of Table 26.1 appears identical to an ordinary two-factor investigation, with 
two observations per cell (see, e.g., Table 19.7). In fact, however, the study is not an 
ordinary two-factor study. The reason is that the instructors in the Atlanta school did not 
also teach in the other two schools, and similarly for the other instructors. Thus, six different 
instructors were involved. An ordinary two-factor investigation with six different instructors 
would have consisted of 18 treatments, as shown in Figure 26.1 a. In the training school 
example, however, only six treatments were included, as shown in Figure 26.1 b, where 
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~actor B' (inStructor) ( ',' 

1 2 

2~ 14 
29 11 

Y,1' = 27 Y,2. = 12.5' 

11 22 
Is ~, .18 

Y21' = 8.5 Y22. =20 

17 5, 
20 2 

)131' = 18;5 ~2.=3;5 

AVerage 

(a) Crossed Factors 

Instructor (factor 8) 

1 2 3 4 5 6 

(b) Nested Factors 

Instructor (factor 8) 

2 3 4 5 6 

Average 

)12" =14.25 

Yj .. = 11.00 

Y." •• =,15 

the crossed-out cells represent treatments not studied. Figure 26.2 contains an alternative 
graphic representation of the nested design for the training school example, including the 
two replications ofthe study. 

It is clear from Figure 26.1 b that the experimental design for the training school example 
involves an incomplete factorial arrangement of a special type, where each level of factor B 
(instructor) occurs with only one level offactor A (school). Specifically here, each instructor 
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FIGURE 26.2 
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teaches in only one school. Factor B is therefore said to be nested within factor A. As noted 
earlier, in an ordinary factorial study where every factor level of A appears with every factor 
level of B, factors A and B are said to be cmssed. 

There is another way to look at the distinction between nested and c!"Ossed designs. Let 
flij denote the mean response when factor A is at the ith level and factor B is at the jth level. 
If the factors are cmssed. the jth level of B is the ~ame for all levels of A. If, On the other 
hand, factor B is nested within factor A. the jth level of B when A is at level I has nothing 

in common with the jth level of B when A is at level 2. and so on. For instance, in a crossed 
factorial study of the effects of price ($1.99, $2.49) and advertising level (high, low), a 
particular advertising level is the saine no matter with which price it appears, and similarly 
for the price levels. On the other hand, in the nested design for the training school example, 
the first instructor in school I is not the saine as the first instructor in school 2, and so On. 

An analyst was interested in the effects of community (factor A) and neighborhood (factor B) 

on the spread of information about new pmducts. Information was obtained f!"Om samples 
offamilies in various neighborhoods within selected communities. Since the neighborhood 
designated I in a given community is not the same as the neighborhoods designated I in 
the other communitie~. and similarly for the other neighborhoods. neighborhoods here are 
nested within COllllnUnities. 

Comments 

I. The distinction between crossed and nested factors is often a fine one. In Example 2, if the 
neighborhoods of each tommunity represented specilied average income levels so that, say, the firsl 
neighborhood~ in each community had an average income of $5,000-$9.999. the second neighbor­
hoods an average income of$1 0,000-$19.999, and so on for the other neighborhoods. one could view 
the design as a crossed one. The factors would be community and economic level of neighborhood, 
Hnd these would be crossed since a given economic level is the same for all communities, and vice . 
versa. 

2. Nested factors are frequently encountered in observational studies where the researcher cannot 
manipUlate the factors under study. or in experiments where only some factors can be manipulated. 
Factors that cannot be manipulated. it will be recalled. arc designated observational ti.lctorS, in dis­
tinction to experimental factors that can be assigned at will to the experimental units. Example 2 is an 
observational study wbere both community and neighborhood arc observational factors since f,unilies 
(the study units) were not randomly assigned to either community or neighborhood. [n Example I, 
school is an observational factor because the classes of a school (the experimentHI units) are made 
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up of mechanics from the district in which the school is located. Instructors in this example are an 
experimental factor since they are assigned randomly to a class, but a nested design results because 
the randomization of instructors is restricted to within a school. • 

,&:2::....-_T_w_o_-_F_a_c_to_r_N_es_t_e_d_D_e_s--'ig ...... n_s ____________ _ 
~ 

We now consider nested designs involving two factors, one of which is nested inside the 
other. For consistency, we always consider the case where factor B is nested within factor A. 
We initially assume that both factor effects are fixed, but later we also consider the case of 
random effects. We assume throughout that all treatment means are of equal importance. 

mevelopment of Model Elements 
-.-. We shall use the customary notation for a two-factor study, and let /Lij denote the mean 

response when factor A is at the ith level (i = 1, ... , a) and factor B is at the jth level 
(j = 1, ... , b). As usual, when all mean responses are of equal importance we define: 

Lj /Lij 
/Li· = --b- (26.1) 

For the training school example of Table 26.1, /Ll' represents the mean learning score for 
the Atlanta school, averaged over the instructors of that school, and /L2. and /L3' are inter­
preted similarly. Note once more that the /Li' here represent mean learning scores that have 
been averaged over different instructors. 

We define the main effect ofthe ith level of factor A as usual: 

a .. = /Li· - /L .. (26.2) 

where: 

/L .. = L .. LJ /Lij = Li /Li· 
ab a 

(26.2a) 

is the overall mean response. It follows from (26.2a) that: 

(26.3) 

In a nested design, it is not meaningful to employ a model component for the main effect 
of the jth level of factor B. To see why, consider again the training school example. Since 
each school employs different instructors and the jth instructors in the various schools are 
not the same, it would be meaningless to consider the effect of the jth instructor, averaged 
over all schools. Instead, the individual effects of each instructor in each school need to be 
considered. We denote these individual effects by f3j(i), where the sUbscript j (i) indicates 
that the jth factor level of B is nested within the ith factor level of A. f3j(o is defined as 
follows: 

f3j(O = /Lij - /Li· 

which can be rewritten, utilizing (26.2): 

f3j(i) = /Lij - ai - /L .. 

(26.4) 

(26.4a) 
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It follows from (26.4) and (26.1) that: 

L!Jj(i) =0 

j 

1=1. ... ,a 
(26.5) 

The meaning of (3 jlil can be seen 1110st clearly from (26.4). With reference to the tl" . 
h I I R . . I h d'ff' . hi' allllllg sc 00 exatnp e, f' j(il IS sllnp y tel erence 111 t e mean earning score forthe jth inst 

of school i and the average of the mean learning scores for all instructors in that scr:tor 

Thus. the effect of the jth instructor in the ith school is measured with respect to the 001 
I · . h hi' h' h h . h overall mean earnll1g score for t esc 00 In W IC t e Instructor teac es. We shall call f3_. h 

.Ipec(fic efFect of the jth level of factor B nested within the ith level of factor A. J(I) t e 
We have now expressed the mean respon,;e fJ-iJ in term~ of the overall mean, the mai 

effect of the ith level of factor A, and the specific effect of the jth level offactor B neste: 
within the ith level of factor A, as can be seen from (26.4a): 

fJ-;j == fJ- •. + ai + {3jlil == fJ- .. + (fJ-i· - fJ- .. ) + (fJ-lj - fJ-i.) (26.6) 

For the training school example. the mean learning score for the jth instructor in school i 
has been expressed in terms of the overall mean, the main effect of school i, and the specific 
effect of instructor j within school i. 

To complete the model, we need only add a random error term C;Jk. 

Nested Design Model 
Let Y;jk denote the response for the kth trial when factor A is at the ith level and factor B is at 
the jth level. We assume that there are n replications for each factor level combination, i.e., 
k = L ... , /7, and that i = I, ... , a and j = I, ... , h. Such a study is said to be balanced 
because the same number of factor B levels is nested within each factor A level and the 
number of replications is the same throughout. 

When both factors A and B have fixed effects, an appropriate nested design model is: 

where: 

fJ- .. is a constant 

a; are constants subject to the restriction La; = 0 

{3j(i1 are constants subject to the restrictions Lj (3j(i) = 0 for all i 

Cijk are independent N (0. a 2
) 

i= I, ... ,a;j= I, ... ,b;k= 1,,, .. /7 

(26.7) 

The expected value and variance of observation Yijk for nested design model (26.7) with 
fixed factor effects are: 

E {Yi.id = fJ- .. + ai + (3j(i) 

a
2 {Y;jd = a

2 

(26.8a) 

(26.8b) 

Thus, all observations have a constant variance. Further, the observations YiJk are indepen­
dent and norl11all y distributed for this model. 
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Comments 
1. It is not necessary, as in model (26.7), that the study be balanced, that is, that the number of 

replications be,equal for all factor combinations and that the number of levels of nested factor B 
(number of instructors in the training school example) be the same for each level of factor A (school 
in this example). We shall discuss the removal of some of these restrictions in Section 26.6. We only 
point out now that the computations become more complex when the study is unbalanced. 

2. There is no interaction term in nested design model (26.7). There is no need for it since factor B 
is nested within factor A, not crossed with it. To put this somewhat differently, with reference to the 
training school example, it is not possible to estimate a school-instructor interaction when each 
instructor teaches in only one school. The teacher effect {3J(i), since it is specific to a given school i, 
in a sense incorporates the interaction effect between the particular teacher j (in the ith school) and 
the ith school, but it is not possible in a nested design to disentangle this interaction effect. 

3. The factor level means Mi. in a nested design are not generally the same as the corresponding 
means in a crossed design. Remember that in a nested design, the Mi' are obtained by averaging over 
only some of the distinctive levels of factor B. With reference to the training school example, the Mi. 
are obtained by averaging over only those teachers who instruct in the ith school. In a crossed design, 
on the other hand, the Mi' would be obtained by averaging over all instructors included in the study . 

• 
JSandom Factor Effects 

If both factors A and B have random factor levels, nested design model (26.7) is modified 

with ai, fJj(i), and Cijk being independent normal random variables with expectations 0 
and variances a~, ai, and 0'2, respectively. Thus, it is assumed that all fJj(i) have the same 
variance al- The assumption that all fJj(i) have the same variance also is made if only 
factor B is random. It is important to check whether this assumption is appropriate, since it 
may well be that the mean responses Mil, Mi2, ... , in one factor A level (plant, school, city, 

etc.) differ in variability from those in other factor A levels (other plants, schools, cities, 

etc.). Tests for equality of variances are discussed in Section 18.2. 

26.3 Analysis of Variance for Two-Factor Nested Designs 

;Fitting of Model 
The least squares and maximum likelihood estimators of the parameters in nested design 

model (26.7) are obtained in the usual fashion. Employing our customary notation for 

sample data in factorial studies, the estimators are: 

Parameter Estimator 

M·· fL .. = Y. .. 

D!; a; = Y; .. - Y. .. 

{3j(i) ~j(i) = Y;j. - Y; .. 

The fitted values therefore are: 

Yjjk = Y .. + (li·. -'Y .. ) + (f;j. - li .. ) = lij· 
and the residuals are: 

(26.9a) 
(26.9b) 
(26.9c) 

(26.10) 

(26.11) 
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Sums of Squares 
The analysis of variance for nested design model (26.7) is obtained by decom ' 

tal d .. v -Y. 'Ii II " POSIng the' to eVIauon 1 ijk - ... as 0 ows. 

Yijk - Y. .. = Y; .. - P. .. + Y;j. - Y; .. + Yijk - Y; .. 
'--v--' '--v---" '--v--' ~ 
Total deviation A main ctTccl Specific B 

effect when A 
al ilh level 

Residual 

(26.12) 

When we square (26.12) and slim over all cases, all cross-product terms drop out and w 
obtain: e 

where: 

SSTO = SSA + SSB(A) + SSE 

SSTO = LLL(Y;jk - y' .. )2 
j 

" - - 2 SSA = bn LUi .. - Y...) 

SSB(A) = n L L(Y;]' - Y; .. )2 
j 

j k 

(26.13) 

(26.13a) 

(26.13b) 

(26.13c) 

(26.13d) 
j 

SSTO is the usual total slim of squares, and SSA is the ordinary factor A sum of squares, 
reflecting the variability of the estimated factor level means Y; .. , 

SSB(A) is the factor B sum of squares, with the notation reflecting that factor B is nested 
within factor A. SSB(A) is made up of terms such as: 

n L(Y;j' - Y; .. )2 
j 

(26.14) 

The tenp. in (26.14) is simply the ordinary factor B sum of squares when factor A is at 
level i. These terms are then summed over all levels of factor A. 

Finally, the error sum of squares SSE is, as lIsual, the slim of the squared residuals 
and reflects the variability of each observation Yijk around the corresponding estimated 
treatment mean Y;j .. Alternatively, we can view SSE as being made up of terms such a<;: 

L L(Y(ik - Y;j.)2 

j 

(26.15) 

The term in (26.15) is simply the ordinary error sum of squares within the ith level of 
factor A. These terms are then slimmed over all levels of factor A. 

Thus, a nested two-factor design can be viewed as a seties of single-factor investigations 
at the successive levels of the other factor. In terms of the training school example, a study 
of the effects of instructors (B) within any given school (Ai) leads to the usual sums of 
squares for instructors and errors in a single-factor analysis of variance within school A, 
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. .sSIlE 26.2 
iawple. 

Relation between Nested Two-Factor ANOVA and Single-Factor ANOVAs-Training School 

--------------------------------------------------------------------:if4~(!( 

~! 
;_1 

~ ~~iJ:JStr;uctors 

, ~jQf~"ools) 

Slngle-Factor.ANOVAs 

Sclw.oll School 2 

SS df SS df 

SSB(Al) 2-1 SS8(A;z) 2-1 

+ + 
SSE(Al} 2(2 -1) SSE(A2) 2(2-1) 

SSTO(Al) 2(2) -1 SSTO(A;z) 2(2) -1 

denoted by SSB(A;) and SSE(Ad: 

,,- - 2 
SSB(Ad = n L.,9ij' - Y; .. ) 

Nested Two-Factor 
·School3 

ANOVA 

SS df SS df 

SSB(A3) 2-1 SSB(A) 3(2 -1) 

= 

SSE(A3) 2(2 -1) SSE 3(2)(2 - 1) 

SSTO(A3) 2(2) -1 

SSA 3-1 

SSTO 3(2X2)-1 

SSE(A;) = L L(Yijk - ~j.)2 
j k 

These are then aggregated to yield SSB(A) and SSE, respectively. It is only the between­
schools sum of squares SSA that introduces explicitly the other factor. Table 26.2 demon­
strates this relation between the single-factor analyses of variance for each school and the 
two-factor analysis of variance for the nested design. 

pegrees of Freedom 

Example 

The degrees of freedom associated with the various sums of squares can be deduced directly 
from the known relationships already studied. Since there is a total of abn cases, the degrees 
of freedom associated with SSTO are abn - L For any level offactor A, there are ben - 1) 
degrees of freedom associated with the error sum of squares. Aggregating over all levels of 
factor A, there are ab(n - 1) degrees of freedom associated with SSE. Similarly, for any 
level of factor A, there are b - 1 degrees of freedom associated with the factor B sum of 
squares. Hence, by aggregating over all levels of factor A, we find that there are a(b - 1) 
degrees of freedom associated with SSB(A). Finally, since there are a levels of factor A, 
there are a-I degrees of freedom associated with SSA. 

Table 26.2 shows this aggregation of the degrees of freedom for the training school 
example, and Table 26.3 presents the general analysis of variance table for two-factor 
nested design model (26.7) where factor B is nested within factor A. 

In the training school example of Table 26.1, both schools and instructors were regarded as 
fixed factors; hence, model (26.7) was deemed appropriate. Figure 26.3 presents aligned dot 
plots ofthe class learning scores Yijk for each schooL Note that different symbols are used 
for the two instructors within each schooL Figure 26.3 suggests strongly that differences 
between instructors within a school are present and that there may be differences in the 
mean learning for the three schools. Note also from the dot plots that the variability of the 
class learning scores for the two classes taught by each of the six instructors appears to be 
reasonably constant, as required by model (26.7). 
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TABLE 26.3 ANOVA Table for Nested Balanced Two-Factor Fixed Effects Model (26.7) (B nested within A). 

Source of Variation 55 elf M5 ~ 

Factor A SSA = bnL(Y;-- - y' __ )2 0-1 MSA 2 La? 
a +bn~_ 

0-1 

Factor B (within A) SSB(A) = nLL(Y;j- - Y;-Y 0(b-1) MSB(A) 
LL{32.\ 

2 j(b~' a + n----:-:-------.' 

Error 

Total 

FIGURE 26.3 
Dot Plots of 
Class Learning 
Scores­
Training 
School 
Example. 

SSE = LLL(Yjjk - Y;iY 

ssm = LLL (Yijk - y' __ )2 

San Francisco (i = 3) o 0 

o 
~ Chicago (i = 2) 
u 
Vl 

o o 

Atlanta (i = 1) 

ob(n-1) 

obn-1 

o 0 

o 10 20 30 
Learning Score 

MSE 

o Instructor j = 1 

.. Instructor i = 2 

a(b-l~ 

a 2 

To analyze the instructor and school effects formally, we begin by obtaining the analysis 
of variance_ The sums of squares were obtained as follows using formulas (26_13): 

SSTO = (25 - 15)2 + (29 - 15)2 + ---+ (2 - 15f = 766 

SSA = 2(2)[(19-75 - 15)2 + (14_25 - 15)2 + (11.00 - 15)2] = 156_5 

SSB(A) = 2[(27 - 19_75)2 + (12-5 - 19_75)2 + ---+ (3_5 - 11.00)2] = 567_5 

SSE = (25 - 27)2 + (29 - 27)2 + ---+ (2 - 3_5)2 = 42 

Table 26.4a contains the analysis of variance_ 

Comment 

Most analysis of vru-iance computer packages provide an option for obtaining the ANOVA.rfor nested 
designs_ Should this option be unavailable, the ordinary ANOVA for crossed factors can be used 
with only slight inconvenience when the nested study is balanced_ SSTO, SSA, and SSE with the 
crossed-factor analysis will be the same, and SSB(A) is obtained fi-om the relation: 

SSB(A) = SSB + SSAB 
'--v---' '---,....-' 

Nested Crossed 

The same relation holds for the associated degrees of freedom_ 

(26.16) 

• 
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(a) ANOVA Table 

Source of Variation 

Schools (A) 
Instructors, within schools [B(A)] 
Error (E) 

Total 

SS 

SSA = 156.5 
SSB(A),= 567.5 

SSE= 42.0 

SSTO= 766.0 

(b) Decomposition of SSB(A) 

Source of Variation 

Instructors, Atlanta 
Instructors, Chicago 
Instructors, Scm Francisco 

Total 

210.25 
132.25 
225.00 

567.5 

df MS 

2 78.25 
3 189.17 
6 7.00 

11 

df MSB(AJ) 

1 210.25 
1 132.25 
1 225.00 

3 

: Tests for Factor Effects , .. 

Tests for factor effects in a nested two-factor study are straightforward. The appropriate test 
statistics are determined, as for a crossed two-factor study, by comparing the expected values 
of the ANOVA mean squares. The expected mean squares for nested fixed effects model 
(26.7) are shown in Table 26.3. They can be obtained by somewhat tedious derivations. We 
do not illustrate these derivations because Appendix D describes a relatively simple method 
of finding expected mean squares for any balanced nested design. Also, many computer 
packages provide the expected mean squares for nested models. 

The E{MS} column in Table 26.3 indicates that for fixed effects model (26.7), the test 
for factor A main effects: 

is based on the test statistic: 

Ho: all exi = 0 

Ha: not all exi equal zero 

F* = MSA 
MSE 

and the decision rule to control the level of significance at ex is: 

If F* .:::: F[1 - ex; a - 1, (n -1)ab], conclude Ho 

If F* > F[1 - ex;a - 1, (n - l)ab], conclude Ha 

Similarly, to test for factor B specific effects: 

the appropriate test statistic is: 

Ho: all {3j(i) = 0 

Ha: not all {3 j(i) equal zero 

F* = _M_SB_(_A_) 
MSE 

(26.17a) 

(26.17b) 

(26.17c) 

(26.18a) 

(26. 18b) 
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Example 

and the appropriate decision rule is: 

If F* < F[I - ex;a(b - I), (11 - I)ab], conclude Ho 

If F* > F[ I - ex: a(b - I), (Jl - I)abl, conclude HlI (26. 18c) 

For the analysis of variance in Table 26.4a for the training school example, we conduct th 
first test to determine whether or not main school effects exist. The alternatives are give e 
in (26.17a), and test statistic (26.17b) here is: n 

* 78.25 
F = -- = 11.2 

7.00 

For level of significance ex = .05, we require F(.95; 2, 6) = 5.14. Since F* = 11.2> 5.14 
we conclude that the three schools differ in mean learning effects. The P -value of the te~ 
is .0094. 

Next is a test for differences in mean learning effects between instructors within each 
school. The alternatives are given in (26.18a), and test statistic (26. I 8b) here is: 

* 189.17 
F = -- =27.0 

7.00 

For ex = .05, we require F(.95; 3, 6) = 4.76. Since F* = 27.0 > 4.76, we conclude that 
instructors within at least one school differ in terms of mean learning effects. The P-value 
of this test is .0007. 

Comments 
I. The alternative Ho in (26.18a) can also be expressed in telms of the treatment means /J-ij: 

(26.19) 

In terms of the training school example. Ho states that the mean learning scores for all instructors 
in Atlanta ar"e the same, and similarly for the other schools. It does not state that the mean learning 
scores for all instructors in the different schools are the same. 

2. If it is concluded that factor B effects are present, it is often desired to ascertain whether they 
are present in all levels of factor A or only in some. (In some cases, indeed, one may wish to proceed 
immediately to this analysis.) With reference to the training school example, the question would be 
whether the instru€tor" effects differ in all schools or only in some schools. As noted earlier, SSB(A) 

in Table 26.4a is made up of the instructor sums of squares within the individual schools. These 
component sums of .;quares can be used for testing instructor effects within each school. Table 26.4b 
contains the relevant component sums of squares. To test for instructor differences within the Atlanta 
school, for instance. we use test statistic F* = MSB(Ar)IMSE = 210.25/7.00 = 30.0. For level of 
significance IX = .05, we need F(.95; 1,6) = 5.99. Since P = 30.0 > 5.99, we conclude that the two " 
instructors in Atlanta have different mean leaming effects. Using the same level of significance each 
time, similar" conclusions are reached fOr" the other two schools. The family level of significance for 
the three tests according to the Bonferroni inequality is at most .15. 

3. Ifthe assumption of constant elTor" variance were violated in the training school example through 
unequal variances fOr" the different schools, it would still be possible to study instructor effects within 
each school by separate analyses of variance for each school. 

4. The power" of the tests for fixed factor A and factor B effects can be ascertained by using (24.49) 
together with the expected mean squa("es in Table 26.3. • 
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Expected Mean Square 

A Fixed, B Random 

2:)x? 
(52 +bn--' + na2 

0-1 , fJ 

(52 + nai 
fJ 

A Random, B Random 

Appropriate Test Statistic 

A Fixed, B Random 

MSA/MSB(A) 
MSB(A)/MSE 

A Random, B Random 

MSA/MSB(A) 
MSB(A)/MSE 

Random Factor Effects 
Test statistic (26.17b) for factor A main effects is not appropriate if either or both factor 
effects are random. Table 26.5 gives the expected mean squares for these cases and also the 
appropriate test statistics. 

26.4 Evaluation of Appropriateness of Nested Design Model 

Example 

The diagnostic procedures described earlier are entirely applicable for examining whether 
nested design model (26.7) is appropriate. The residuals in (26.11): 

(26.20) 

may be examined as usual for normality, constancy of the error variance, and independence 
of the error terms. In particular, aligned dot pi ots of the residuals for each factor A level may 
be helpful in examining whether the variance of the error terms is constant for the different 
factor A levels within which factor B is nested. 

Figure 26.4a contains MINITAB aligned dot plots of the residuals for each school for the 
training school example. These plots are affected by the rounded nature of the data, but 
they support the appropriateness of the assumption of constancy of the error variance. Fig­
ure 26.4b presents a normal probability plot of the residuals. This plot is also affected by 
the rounded nature of the observations, but does not indicate any gross departure from nor­
mality. This conclusion is supported by the coefficient of correlation between the ordered 
residuals and their expected values under normality, which is .927. These and other diag­
nostics (not shown here) support the appropriateness of nested design model (26.7) for the 
training school example. 

Comment 

Since there are numerous ties among the residuals in the training school example, the normal 
probability plot in Figure 26.4b is obtained by plotting each of the tied residuals against the ex­
pected value for the mean of the tied order positions and showing the number of tied residuals at that 
position. • 
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FIGURE 26.4 
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26.5 Analysis of Factor Effects in Two-Factor Nested Designs 

When factor effects are present in a nested design, estimates and/or comparisons of these 
effects are usually desired. 

Estimation of Factor Level Means Mi. 
When factor A (fixed effects factor) has significant main effects, there is frequent interest 
in estimating the factor level means !Li .. The estimated factor level mean f; .. is an unbiased 
estimator of !Li .. As usual for a fixed effects factor, the estimated variance of f; .. is based 
on the mean square in the denominator of the statistic used for testing for factor A main 
effects, and on the number of cases on which f; .. is based. Confidence limits for p+ are of 
the customary form: 

f; .. ± t(l - a12; df)s{f; .. } (26.21) 

where: 

2 - MSE 
s {Yi .. } = -- df = ab(n - 1) A and B fixed 

bn 
(26.21 a) 

2 - MSB(A) 
s {l/ .. } = df = a(b - 1) A fixed, B random 

bn 
(26.21 b) 

Confidence limits for contrasts L = LCi!Li., where LCI = 0, are set up in the usual 
way, utilizing the estimator i = LCi F; .. and the t distribution with degrees of freedom 
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those associated with the appropriate mean square: 

£ ± t(1- ex/2;df)s{£} (26.22) 

where: 

2A ",22-
s {L} = Leis Oi .. } as given by (26.21a) or (26.21b) (26.22a) 

The Tukey and Bonferroni simultaneous comparison procedures can be utilized in the usual 
way for making pairwise comparisons with family confidence coefficient 1 - ex, and the 
Scheffe and Bonferroni simultaneous comparison procedures can be employed for a family 
of contrasts. 

For the training school example in Table 26.1, it was desired to estimate the mean learning 
score for the Atlanta school with a 95 percent confidence coefficient. Using our earlier 
results in Tables 26.1 and 26.4a, we obtain for the fixed effects model: 

i't .. = 19.75 

2 - MSE 7.00 
s {f, .. } = - = - = 1.75 

bn 4 

s{Y, .. } = 1.32 

t(.975;6) = 2.447 

16.5 = 19.75 - 2.447(1.32) ~ /L,. :::: 19.75 + 2.447(1.32) = 23.0 

In addition, pairwise comparisons of the three schools were to be made with family 
confidence coefficient .90. We shall utilize the Tukey procedure and require: 

1 1 1 
T = .j2q[1 - ex; a, ab(n - 1)] = .j2q(.90; 3,6) = .j2(3.56) = 2.52 

The estimated variance is the same for all pairwise comparisons: 

S2{£} = MSE + MSE = 2(7.00) = 3.5 
bn bn 4 

so that the estimated standard deviation is s{£} = 1.87 and Ts{£} = 2.52(1.87) = 4.71. 
Using the results in Table 26.1, we have: 

f, .. = 19.75 Y2 •• = 14.25 Y3 •• = 11.00 

Hence, the 90 percent family of confidence intervals is: 

.8 = (19.75 - 14.25) - 4.71 :::: /L,. - /L2. :::: (19.75 - 14.25) + 4.71 = 10.2 

4.0 = (19.75 -11.00) - 4.71:::: /L'. - /L3. :::: (19.75 - 11.00) +4.71 = 13.5 

-1.5 = (14.25 -11.00) - 4.71:::: /L2. - /L3. :::: (14.25 -11.00) +4.71 = 8.0 

We conclude with 90 percent family confidence coefficient that the mean learning score 
is highest in Atlanta and that the difference in the observed mean scores for Chicago and 
San Francisco is not statistically significant. We summarize these results by the following 
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line plot: 
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20 

Estimation of Treatment Means {tij 

Example 

Confidence limits for Ji,ij are set up in the usual fashion using the t distribution when both 
factors A and B have fixed effects: 

1;;. ± tll - a/2; (/1 - l)abls{Y;j.} (26.23) 

where: 

(26.23a) 

To make a comparison within any factor A level, we estimate the contrast L = '" C .11 .. 
" _ 6 jrlJ' 

where Lei = 0, with the estimator L = LcjYij . and employ the confidence limits: 

i ± t[l - a/2; (11 - l)ab]s{i} (26.24) 

where: 

7 ~ MSE
L 

7 
s-{L} = -- C~ 

n J 
(26.24a) 

The Bonferroni procedure may be used when several comparisons are to be made and 
the family confidence level is to be controlled. The Tukey procedure is also applicable for 
paired comparisons and the Schetfe procedure for contrasts, but these procedures often will 
not be efficient since ordinarily only comparisons within each factor level are of interest, 
whereas the Tukey and Schetfe families are based on compatisons among all ab treatments. 

[n the training school example, we are to compare the mean scores for the two instructors in 
each school, using the Bonferroni procedure with a 90 percent family confidence coefficient. 
For g = 3 comparisons, we require B = t[ I - .10/2(3); 6] = t (.983; 6) = 2.748. The 
estimated variance in each case is: 

7 ~ 7.00 
s-{L} = -2-(2) = 7.0 

Hence, Bs{i} = 2.748.J7.Q = 7.27. Obtaining the estimated treatment means Y;j. from . 
Table 26.1, we find: 

7.2 = (27 - 12.5) - 7.27 .::: Ji,11 - Ji,12 .::: (27 - 12.5) + 7.27 = 21.8 

-18.8 = (8.5 - 20) - 7.27 .::: fJ.21 - fJ.22 .::: (8.5 - 20) + 7.27 = -4.2 

7.7 = (18.5 - 3.5) -7.27 .::: Ji,31 - Ji,n .::: (18.5 - 3.5) + 7.27 = 22.3 

It is evident that substantial differences between the two instructors exist at each school. 
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~imation of Overall Mean M .. 
, Sometimes there is interest in estimating the overall mean Ji, •• , For the training school 
" example, Ji, •• is the overall mean learning score for all training schools and all instructors 

in these schools. The point estimator is Y. ... The confidence limits are constructed utilizing 
,1 the t distribution as follows: 

Y. .. ± t(l - a12; df)s{Y. .. } (26.25) 

where: 

..,. MSE 
s2{y. .. } =--

abn 
df = ab(n -1) A and B fixed (26.25a) 

, 
MSA 

s2{y. .. } 
abn 

df=a-l A and B random (26.25b) 

s2{y. .. } 
MSB(A) 

df = a(b -1) A fixed, B random (26.25c) 
abn 

~~xample 
~ ". 

For the training school example, we wish to estimate the overall mean Ji, .. with a 95 percent 
confidence interval. The estimated variance (26.25a) is appropriate here since the model 
involves fixed factor effects. Hence, we obtain: 

2 - 7.00 
s {f. .. } = U = .583 s{Y. .. } = .764 

For confidence coefficient .95, we require t(.975; 6) = 2.447. From Table 26.1, we find 
y. .. = 15. The desired confidence interval therefore is: 

13.1 = 15 - 2.447(.764) S Ji, .• S 15 + 2.447(.764) = L6.9 

Estimation of Variance Components 
With random factor effects, estimates of the variance components may be of interest. No 
new problems arise for balanced nested designs. For instance, we see from Table 26.5 that 
when both factors A and B are random factors, the variance component a; can be expressed 
as follows: 

2 E{MSA} - E{MSB(A)} 
a = ---------

ex bn 
(26.26) 

Hence, an unbiased estimator of a; is: 
2 MSA - MSB(A) 

s =------
CI bn 

(26.27) 

Approximate confidence intervals for variance components a; or a# can be obtained 
using the MLS interval (25.34). For example, to estimate a; when both A and B are 
random factors, we see from (26.26) that the correspondences to (25.32) are: 

1 
c,=­

bn 
1 

C2=-­
bn 

MS, =MSA 

MS2 = MSB(A) 
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Example 

Hence, the MLS confidence interval for a; is: 

2 H 2 2 H 
Sa - L::::: aa ::::: Sa + U (26.28) 

where HL and Hu are given by the formulas in Table 25.3, d]; = a - I, df2 = a(b -1) 
and s~ is given by (26.27). ' 

Unbalanced Nested Two-Factor Designs 

Up to this point. we have assumed that the nested study is balanced; that is, the same number 
of levels of factor B is nested within each of the levels of factor A, and the same number of 
replications is made for each factor level combination. There are occasions, however, when 
a study is unbalanced. For instance, in our earlier example dealing with the effects of school 
(factor A) and instructor (factor B) on the learning achieved by classes of mechanics, there 
might have been h; instructors in the ith school and nij classes taught by the jth instructor 
in school i. 

The ANOVA sums of squares formulas given earlier are not appropriate for unbalanced 
studies. Ordinarily, it is best to use the regression approach for unbalanced studies when 
the factor effects are fixed. Since nO new plinciples are involved, we proceed directly to an 
example. 

The manufacturing company that conducted the training school study subsequently made 
a follow-up study involving only Atlanta and Chicago. At that time, three instructors were 
used in Atlanta and two in Chicago. All instructors were to train two classes, but one class 
for one of the instructors in Atlanta had to be canceled. The data for this follow-up study 
are presented in Table 26.6a. We shall again assume that a fixed effects nested design model 
is appropriate: 

Y;jk = Ji, •. + ai + /3j(i) + Cijk (26.29) 

i = 1,2; j = 1, ... , hi; k = 1, ... , nij 

hi = 3, b2 = 2 nil = nl3 = 2, nl2 = 1, n21 = n22 = 2 
2 3 2 

La; = 0 L/3j(l) = 0 L/3j(2) = 0 
;=1 j=1 j=l 

Proceeding as usual, we shall incorporate the parameters a" /31 (I), /32(1)' and /31(2) into the 
regression model. The other parameters are not required since according to the constraints 
in (26.29) we have: 

(26.30) 

Thus, we require four indicator variables for our example, each taking on values 1, --I, orO. 
The equivalent regression model therefore is: 

Yijk = Ji, •. + alXijkl + /31(I)Xijk2 + /32(I)Xijk3 + /31(2)Xijk4 + Cijk Full model 
'--v--"' ' v ' 

School main Specific instructor within 
eftect school effect 

(26.31) 
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(a) Data 

Atlanta Chicago 

Study Replication (A1 ) (A2) 

1 
1 
1 
1 
1 
2 
2 
2 
2 

where: 

k 81 82 83 81 

1 20 8 ;9 4 
2 22 13 8 

(b) Y and X Variables for Regression Approach 

j k 

1 1 
1 2 
2 1 
3 1 
3 2 
1 1 
1 2 
2 , 1 
2 2 

(1) (2) 

Y Xl 

20 1 
22 1 

8 1 
9 1 

13 1 
4 -1 
8 -1 

16 -1 
20 .,....1 

if class from school 1 
if class from school 2 

(3) (4) 

X2 X3 

1 0 
1 0 
0 1 

-1 -1 
-1 -1 

0 0 
0 0 
6 0 
0 0 

if class for instructor 1 in school 1 
if class for instructor 3 in school 1 
otherwise 

if class for instructor 2 in school 1 
if class for instructor 3 in school I 
otherwise 

if class for instructor 1 in school 2 
if class for instructor 2 in school 2 
otherwise 

82 

16 
20 

(5) 

X4 

0 
0 
() 

0 
0 
1 
1 

-1 
-1 

1105 

The Y observations and X indicator variables for this example are shown in Table 26.6b. 
To test for school main effects, we first fit full model (26.31) by regressing Y in 

Table 26.6b, column 1, on Xl, X2, X 3 , X4 in columns 2-5, and obtain SSE(F). We then fit 
the reduced model for Ho: al = 0: 

Yijk = Ji, •. + f3t(l}Xijk2 + {32(I)Xijk3 + {31(2)Xijk4 + Cijk Reduced model (26.32) 

by regressing Y in column 1 on X2, X 3 , X4 in columns 3-5, and obtain SSE(R). The 
difference SSE(R) - SSE(F) equals SSA. Test statistic (2.70) is then obtained in the usual 
fashion. 
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26.7 

TABLE 26.7 ANOVA Table for Nested Unbalanced Two-Factor 
Study-Follow-up Training School Study. 

Source of 
Variation 5S df MS F* 

Schools (A) 3.76 1 3.76 3.76/6.5 = .58 
Instructors [8(A)] 295.20 3 98.4 98.4/6.5 == 15.1 
Error (E) 26.00 4 6.5 

To test for specific instructor effects, we employ the reduced model for u. f3 
110· 1(1) == 

fh(l) = {31(2) = 0: 

Reduced model (26.33) 

We therefore regress Y in column I on X I in column 2, and obtain SSE(R). The difference 
SSE(R) - SSE(F) equals SSB(A). 

Table 26.7 contains the ANOVA table for the follow-up training school study. No tota] 
sum of squares is shown because the component sums of squares are not orthogonal. 

The tests for school and instructor effects are carried out as before. Estimation of factor 
effect~ is done by means of the regression parameters. For instance, a comparison of the 
mean scores for the two schools involves: 

MI· - J.12· = 0'1 - 0'2 

Since 0'2 = -0'1 by (26.30), we need to estimate: 

MI. - M2· = 0'1 - (-ad = 20'1 

An unbiased estimator is 2&1. Other desired estimates are obtained in a similar fashion. 

Subsarnpling in Single-Factor Study with COlnpletely 
RandOlnized Design 

Up to this point in our discussion of experimental designs, we have considered only designs 
in which one observation of the response variable is made on an experimental unit. There are 
occasions, however, when more than one observation is desirable. Consider an experiment 
to study the effect of oven temperature on crustiness of bread. Three temperatures were 
utilized, and two experimental units (batches of flour mix) were randomly assigned to each 
treatment. It was not economical to use the entire batch to bake breads, nor was it technically 
feasible to use a batch as a block. Hence, three subsamples were selected from eac;h batch to 
make three loaves, which were baked at a given temperature. Here, then, three obselvutions 
(subsamples) were made on each experimental unit (batch). 

Another instance of several observations on the response vatiable being made for each 
experimental unit occurred in an experiment on the effectiveness of three different training 
methods. The experimental units here were persons, and the experiment sought to mea­
sure the length of time required to perform a certain engine assembly operation after the 
given training program was completed. Ten consecutive assemblies were timed, and these 
constituted the subsamples of the experimental unit (person). 
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Formally, subsampling (i.e., repeated observations on the same experimental unit) is 
completely analogous to nested factors. We shall demonstrate this for a completely ran­
domized design. 

Consider again the experiment to study the effect of oven temperature on the crustiness of 
bread. The model for this study can be written as follows: 

Yijk = Ji, •• + Li + Cj(i) + TJijk 

The meaning of the symbols is as follows: 

1. Ji, •• is an overall constant. 
2. Li is the temperature (i.e., treatment) effect (fixed effect, here). 

(26.34) 

3. C j(i) is the experimental error associated with the particular batch (random effect, here). 
The experimental error is nested within the treatment, since the jth batch for treatment 
i was not used with any other treatment. 

4. TJijk is the error associated with the kth subsample or observation on the jth experimental 
unit for the ith treatment (random effect, here). 

Note that subsampling model (26.34) appears the same as nested design model (26.7) 
for a nested two-factor design, except for changes in notation to reflect the fact that subsam­
pIing model (26.34) is a single-factor model and contains both experimental and observation 
errors. Specifically, the treatment effect Li here corresponds to (Xi in the nested two-factor 
model, the batch effect C j(i) corresponds to {3j(i), and the observation error term TJijk cor­
responds to Cijk. Consequently, the analysis of variance for the case of subsampling in a 
single-factor study with a completely randomized design parallels that for a nested two­
factor study. 

In general, the model for subsampling in a balanced single-factor study with a completely 
randomized design where the treatment effects are fixed is: 

Yijk = Ji, •• + Li + Cj(i) + TJijk 

where: 

Ji, •. is a constant 

Ll are constants subject to the restriction .L Li = ° 
C j(i) are independent N(O, 0- 2

) 

TJijk are independent N (0,0-;) 

C j(i) and TJijk are independent 

i = 1, ... , r; j = 1, ... , n; k = 1, ... , m 

The mean and variance of observation Yijk for this model are: 

E{Yijd = Ji, •• + Li 

2{v} 2 2 2 
0- Lijk = o-y = 0- + 0-1/ 

(26.35) 

(26.36a) 

(26.36b) 

Further, the observations Yijk are normally distributed for this model. Observations from 
different replications (i.e., from different subsamples) are independent, but any two 
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observations from the same replication are cOlTelated in advance ofthe random ttials because 
they contain the same random term Cjri): 

a {Yijk, Yijk.} = a 1 

a {Yijb Yi'j'k'} = 0 

k i= k' 

i i= i' and/or j i= j' 
(26.36c) 

(26.36d) 

Analysis of Variance and Tests of Effects 
The appropriate sums of squares for the analysis of variance for balanced subsampling 
model (26.35) are as follows: 

SSTO = LL2)Yijk - y"')1 (26.37a) 
j k 

SSTR = nm L(Y; .. - E .. )1 (26.37b) 

(26.37c) 

(26. 37d) 

Here, SSEE stands for the experimental error sum of squares, and SSOE stands for the 
observation error sum of squares. Note the correspondence of formulas (26.37) to formulas 
(26.13) for nested two-factor designs. The only difference is that we now have i = I, ... , r, 
j = I, .... n, and k = I, ... , m, whereas before i, j, and k ran to a, b, and n, respectively. 

Table 26.8 contains the ANOYA for a single-factor completely randomized balanced 
experiment with subsampling. Also shown there are the expected mean squares for beth 
fixed and random treatment effects. Note that regardless of whether treatment effects are 
fixed or random, the appropriate statistic for testing treatment effects is: 

* MSTR 
F =--

MSEE 
(26.38a) 

TABLE 26.8 ANOVA for Single-Factor Completely Randomized Balanced Experiment with Subsampling. 

Source of 
Variation 

Treatments 

Experimental error 

Observation error 

Total 

SS 

SSTR 

SSEE 

SSOE 

ssm 

df MS 

r-1 MSTR 

r(n-1 ) MSEE 

m(m-1) MSOE 

mm-1 

E{MS} 
• 

T; Fixed 71 Random 

I>l 
a: + ma2 + nma: a 2 + ma2 + nm--

~ r-1 

a~ + ma 2 a 2 + ma2 
~ 

a,~ (52 
~ 
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A test for the presence of experimental error effects, i.e., Ho: (j2 = 0, Ha: (j2 > 0, also uses 
the same test statistic for both fixed and random treatment effects: 

F* = MSEE 
MSOE 

(26.38b) 

The data for the study of the effects of baking temperature on the crustiness of bread are 
contained in Table 26.9. The data are scores on a scale from 1 to 20. Figure 26.5 presents 
SYSTAT aligned dot plots of the data. These plots suggest the presence of temperature 
effects and possibly also batch effects. Note that crustiness increases steadily with the level 
of temperature. 

The appropriate analysis of variance was obtained from a computer run and is presented 
in Table 26.10. To test for temperature effects: 

we use test statistic (26.38a): 

Ho: " = '2 = '3 = 0 

Ha: not all 'i equal zero 

* 117.72 
F =--=7.21 

16.33 

TABLE 26.9 Data for Single-Factor Completely Randomized Balanced Experiment with 
Snbsampling-Bread Crustiness Example. 

~Dstirvation 
Unit. 
.k 

1 
2 
3 

FIGURE 26.5 
SYSTATDot 
Plots for 
Snbsampling 
Experiment­
Bread 
Crustiness 
Example. 

l!: 
::J .... 
'" 

Low(i === 1) 

Biltch 1 
j='l 

4 
7 
5 

Batch Z 
r='2: 

12 
.8 

,10 

High (i = 3) 

~ Medium (i = 2) 
E 
~ 

J\i1e~ium (;=== 2) . , 

Batch.3 
1=1 
't4 
13 
'11 

'Batch4 
j;~'~ 

~' 

iO 
12 

00.0 •• 

•• 0.00 

low(;=l) (X) o ••• 

o 5 10 
Crustiness 

15 20 

B;~~i5 
14 ' 
1'7 
1'5 

o Batch index (j) = 1 

• Batch index (j) = 2 

Batch 6, 
j=2 

l6 
19 
18 
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TABLE 26.10 
ANOVA-
Bread 
Crustiness 
Example. 

Specill/i:ed Study Des;!!.Il.\' 

Source of 
Variation SS df MS 

Temperatures (TR) 235.44 2 117.72 
Mix batches (EE) 49.00 3 16.33 
Observation units (OE) 31.33 12 2.61 

Total 315.78 17 

For level of significance a = .10, we need F (.90; 2, 3) = 5.46. Since F* = 7.21 > 5.46 
we conclude HlI , that baking temperature does have an effect on the crustiness of the bread' 
The P-value of the test is .07. . 

To test for batch differences: 

we employ test statistic (26.38b): 

Ho: a 2 = 0 

Ha: a 2 > 0 

16.33 
F* = -- =6.26 

2.61 

For level of significance a = .10, we need F(.90; 3,12) = 2.61. Since r = 6.26 > 2.61, 
we conclude H,1 , that there are batch effects on the crustiness of bread. The P-value of this 
test is .0 I. Thus. both the particular batch of flour mix and the temperature at which the 
bread is baked affect the crustiness of the loaf. 

Estimation of Treatment Effects 
When the treatment effects are fixed, there is usually interest in obtaining confidence in­
tervals for treatment means Ili' = Ji, .. + Ti and for pairwise comparisons and contrasts of 
the treatment means. These can be obtained in the usual manner, using MSEE as the error 
variance since this is the quantity in the denominator of the test statistic for fixed treatment 
effects. The degrees of freedom are those associated with MSEE, namely, (/1 - I)r. For 
instance. the confidence limits for treatment mean Ili. are: 

~ .. ± r[1 - a12; (/1 - I)rls{~ .. } (26.39) 

where: 

o - MSEE 
s-Pi .. } =-- (26.39a) 

11111 

Similarly, confidence limits for a contrast oftreatment means. L = Lei Ji,i" where Lei = 0, 
are obtained as follows: 

where: 

i ± r[1 - a12; (/1 - I)r]s{i} 

o ~ MSEE" 0 

s-(L}=--L c 
/1/11 I 

(26.40) 

(26.40a) 

(26.40b) 
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The Bonferroni, Tukey, and Scheffe simultaneous inference procedures can be utilized in 
the usual manner. 

In the bread crustiness example, we wish to estimate the mean crustiness of bread baked at 
a low temperature with a 95 percent confidence coefficient. We require, using the results in 
Tables 26.9 and 26.10: 

i\ .. = 7.67 

2 - 16.33 -
s {YI •• } = -6- = 2.722 s{YI ··} = 1.65 

t(.975: 3) = 3.182 

Hence, the 95 percent confidence interval is: 

2.4 = 7.67 - 3.182(1.65) ::s /LI. S 7.67 + 3.182(1.65) = 12.9 

It was also desired to estimate the difference in mean crustiness of bread baked at high 
and low temperatures with a 95 percent confidence interval. Utilizing (26.40) and the results 
in Tables 26.9 and 26.10, we obtain: 

fl .. = 7.67 

L = f3 .. - fl .. = 16.5 - 7.67 = 8.83 

s2{L} = 2(16.33) = 5.443 s{L} = 2.33 
6 

Hence, the desired confidence interval is: 

1.4 = 8.83 - 3.182(2.33) S /L3. - /LI. S 8.83 + 3.182(2.33) = 16.2 

Estimation of Variances 
At times, there is interest in estimating a2 , the experimental error variance, and a;, the 
observation error variance. It is evident from either of the E{MS} columns in Table 26.8 
that the following are unbiased estimators: 

Parameter Unbiased Estimator 

52 = MSEE - MSOE 
m 

~ = MSOE 

(26.41 a) 

(26.41 b) 

An approximate confidence interval for the experimental error variance a 2 is easily 
obtained by the modified large sample procedure in (25.34). From Table 26.8, we have: 

a 2 = E{MSEE} - E{MSOE} 

m 
Thus a 2 takes the form (25.32) with correspondences: 

1 
CI =­

m 

1 
C2 =-­

m 

MSI = MSEE 

MS2 = MSOE 
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The MLS approximate I - ex confidence interval for a 2 is therefore: 

(26.42) 

where Hi. and Hu are given by the fornlllias in Table 25.3. dfi = 1'(/1 - I) and df _ 
rn(m - I), and s~ is given in (26.41 a). 2 -

An exact confidence interval for the observation error variance a l7 can be obtained b 
(25.21), with MSOE now being the mean square and l'Il(m - I) now being the degrees ~ 
freedom. 

For the bread crustiness example, we wish to estimate a~, the variability between batches 
with a 95 percent confidence interval. From Table 26.10, we obtain the point estimate: ' 

o 16.33 - 2.61 
s- = ----- = 4.57 

3 

To obtain an approximate 95 percent confidence interval for a~ using (26.42), we need the 
following calculational results for the formulas in Table 25.3: 

FI = 3.12 F~ = 1.95 F3 = 13.92 F4 = 2.73 F5 = 4.47 F6 = 14.34 

G I = .6795 G~ = .4872 G J = -.0397 G4 = -2.6347 

HL = 3.97 Hu = 70.24 

The desired confidence 1l1terval for a 2 is therefore: 

.60 = 4.57 - 3.97 .:::: a 2 
.:::: 4.57 + 70.24 = 74.81 

and for a, the experimental error standard deviation, the confidence interval is: 

.77 .:::: a .:::: R.65 

Comments 
I. Frequently. the units for subsampling are called ObSelWltioll Illlits. to distinguish them from 

the experimental units. For instance. in the bread crustiness example. the batches of flour mix are 
the experimental units and the portions selected from a batch for making loaves of bread are the 

, observation units. 

2. Observation units may be ditferent physical entities. as in the bread crustiness example where 
they are portions of a batch of flour mix. Observation units also may refer to repeated observations 
on the entire experimental unit. An example of the latter is the earlier illustration where an employee 
is timed for 10 consecutive assembly operations after receiving a given type of training. 

3. Note that subsampling model (26.35) contains no interaction terms. This is because the exper­
imental error terms Cjli) are nested within treatments. When one variable is nested within another, we 
saw earlier that interaction terms are inapplicable. 

4. We have considered only the balanced case for subsampling. where an equal number of ex­
perimental units (/1) are applied to each treatment and a constant number of observations (m) are 
made on each experimental unit. Serious complications are encountered in the unbalanced case, and 
no exact te~t for treatment effects can be made. See an advanced text. such as Reference 26.1, for a 
discussion. • 
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126.8 Pure Subsampling in Three Stages 
,~ 

'Model 

Sometimes an investigation does not involve a comparison of treatments, but only subsam­
pIing at several levels. Consider, for instance, a quality control engineer who wishes to 
investigate a certain quality characteristic of a computer assembly. These assemblies are 
produced in lots of 2,000. The engineer will select a random sample of r lots; from each lot 
n assemblies will be selected, and m observations will be made on the quality characteristic 
for each assembly. 

Assuming that all random variables are normally distributed and that equal sample sizes 
are employed at each stage, the model for subsampling in three stages is: 

Yijk = Ji, •• + ri + Cj(i) + T}ijk (26.43) 

where: 

Ji, •• is a constant 

ri, Cj(i), and T}ijk are independent normal random variables with expectations 0 and 
variances a;, a 2 , and a;, respectively 

i = 1, ... ,r; j = 1, ... , n; k = 1, ... , m 

For our quality control illustration, ri represents the lot effect. C j (i) represents the assembly 
effect that is nested within the lot, and T}ijk represents the observation effect. 

The observations Yijk for subsampling model (26.43) are normally distributed. with mean 
and variance: 

E{Yijd = Ji, •• 

2{v} 2 2 2 2 a Lijk = cry = a, + a + aTJ 

Various correlations exist between two observations from the same lot. 

(26.44a) 

(26.44b) 

Subsampling model (26.43) corresponds to subsampling model (26.35) for a single-factor 
study except that we assume here that the ri are independent N(O, a;) and are independent 
of the Cj(i) and T}ijk. Formally, then, the only difference between models (26.35) and (26.43) 
is that the ri are fixed in one case and random in the other. Subsampling model (26.43) also 
corresponds to nested model (26.7) with both factor A and factor B effects random. 

Analysis of Variance 
The analysis of variance for pure subsampling model (26.43) uses the same sums of squares 
as before, namely, those in (26.37). The ANOVA table is the same as that in Table 26.8. 
The applicable expected mean squares are those for random ri effects. 

Estimation of /L .. 
In the case of pure subsampling, there is often interest in estimating the overall mean Ji, •• 

(the process mean for the computer assembly quality characteristic in our earlier quality 
control example). A point estimator of Ji, •• in model (26.43) is Y. .. , and it can be shown that 



1114 Part Six S{}(!Cillli::.ed Stll(/y /)esigll.l" 

26.9 

Example 

its variance is: 

o _ a 2 a 2 a,2 nma; + ma2 + a 2 
a-p:, .. } = -'- + - + -'- = " 

I" 1"11 /"n /1l nUll 

An unbiased estilnator of this variance is: 

o - MSTR 
·\·-P:'··} = -­

mill 

and the I - a confidence lim irs for fl .. are: 

Y. .. ±t(l-a/2;r-l)s(Y. .. } 

Three-Factor Partially Nested Designs 

(26.45) 

(26.46) 

(26.47) 

Our discussion of nested designs and subsampling so far has been confined to hierarchical 
designs where no factors are crossed. In this section, we consider three-factor experiments 
where some but not all of the factors are nested. Such designs are called partially nested, 
partially hierarchical, or cross-nested designs. We shall utilize the following example to 
explain three-factor partially nested designs. 

The effect of cultural background on group decision making was studied by an experiment 
Sixteen teams of students were fonned and assigned a task. One of the response variables 
was the number of group interactions prior to the final group decision. Eight teams consisted 
of foreign students, eight of U.S. students. Half of the reams consisred of eight members, 
the other half of four members. Two foreign observers were used for the foreign teams, and 
two U.S. observers for the U.S. teams. Thus, the design may be represented as follows: 

U.S. Teams (A1) Foreign Teams (A2) 

Observer 1 (C,) Observer 2 (C2) Observer 3 (C1) Observer 4 (C2) 

Small team Replication 1 Replication 1 Replication 1 Replication 1 
(81) Replication 2 Replication 2 Replication 2 Replication 2 

Large team Replication 1 Replication 1 Replication 1 Replication 1 
(82) Replication 2 Replication 2 Replication 2 Replication 2 

Note that there are two replications (teams) in each cell. 

Development of Model 
Ler nationality of team be factor A, size of team factor B, and observer factor C. Note that 
factor C is nested within factor A since the two observers for the U.S. teams were different 
from the two observers for the foreign tealns. Also note that factors A and B are crossed, 
since each level of factor A appears with every level offactor B, and vice versa. Similarly, 
factors Band C are crossed. Factors A (nationality) and B (team size) were considered to 
have fixed effects, while the factor C (observer) effects were considered to be random. 

In order to develop an appropriate model. we need to recognize that factor C is nested 
within factor A; hence the factor C effect is denoted by YW). We also need to recognize that 
the AC and ABC interactions are to be excluded because factor C is nested within factor A. 
Finally. the BC interaction is nested within hlctor A since factor C is nesred within factor A; 
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thus, the Be interaction is denoted by (f3y) jk(i). Hence, the appropriate model is: 

where: 

Ji, .•• is an overall constant 

al are the fixed nationality effects 

f3 j are the fixed team size effects 

Yk(i) are the random observer (within nationality) effects 

(af3)ij are the fixed nationality-team size interaction effects 

(26.48) 

(f3y) jk(i) are the random team size-observer interaction (within nationality) effects 

Cijkm are random error terms 

Li ai = 0 Lj f3 j = 0 
L/af3)ij = 0 for all i 

Li(af3)ij = 0 

Lj(f3Y)jk(i) =0 

for all j 

for all k(i) 

i = 1, ... , aU = 1, ... , b;k = 1, ... , c;m = 1, ... , n 

Appendix D contains a simple rule for constructing ANOVA models for complex designs, 
such as the one here. 

We assume as usual that Yk(i)' (f3y) jk(i)' and Cijkm are normally distributed with expec­
tations zero and with constant variances 0';, aiy, and a 2, respectively, and that the three 
groups of random variables are pairwise independent. The interaction effects (f3y) jk(i) for 
any given observer are correlated as a result of the restrictions in model (26.48). 

Analysis of Variance 

~ample 

Table 26.11 contains the ANOVA table for model (26.48). The sums of squares, degrees 
of freedom, and expected mean squares shown in this table can be developed by using the 
rules in Appendix D. The expected mean squares also can be obtained from some computer 
packages with analysis of variance capabilities. The expected mean squares column in 
Table 26.11 indicates directly how to form test statistics for a variety of tests. 

Table 26.12 contains the results of the group decision-making experiment described earlier, 
and Figure 26.6 presents SYSTAT aligned dot plots of the data. The dot plots suggest a 
strong effect of nationality on the number of group interactions before the group decision 
is reached. Figure 26.7 contains the MINITAB printout of the ANOVA results, including 
the expected mean squares and the appropriate F tests. The correspondences between the 
symbols used in MINITAB in its expected mean square column and the model terms in 
Table 26.11 are as follows: Each term in an expected mean square is represented in the 
MINITAB output by (l) the numeric code, in parentheses, for the variance of the model 
term, and (2) the preceding number which is the numerical multiple. When the model effect 
is fixed, the letter Q is used in the printout to show that the variance of the model term is 
replaced by the sum of squared effects divided by degrees of freedom. For example: 

La2 

E{MSA} = (6) + 4(3) + 8Q[1] = a 2 + 4a; + 8
2 

_ il 

E{MSBC(A)} = (6) + 2(5) = a 2 + 2aJy 
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TABLE 26.11 ANOVA Table for Crossed-Nested Model (26.48). 

Source of 
Variation SS df MS Expected Mean Squares 

SSA = benI:(Y; ... - Y. ... )2 
I:a~ 

A a-1 MSA a2 + ben--'l + bnai 
a-

B SSB = aenI:(Y.j .. - Y. ... )2 b-1 MSB 
2 I:f37 2 

a + aen b _ 1 + na{Jy 

C(A) SSC(A) = bnI:I:(Y;+ - Y; ... )2 a(e - 1) MSC(A) a2 + bna2 
y 

I:I:(af3)?' 
AB SSAB"" enI:I:(Y;j .. - Y; ... - Y.j .. + Y. ... )2 (a-1)(b-1) MSAB 2 0 2 

a + en (a _ 1 )(b _ 1) + na{Jy 

BC(A) SSBC(A) = nI:I:I:(Y;jk. - Y;j .. - Yi.!i. + Y; ... )2 a(b-1)(e-1) MSBC(A) a2 + na2 
(Jy 

Error SSE = I:I:I:I:(Y'jkm - Y;jk.)2 abe(n -1) MSE a2 

Total ssm = I:I:I:I:(Y;jkm - Y. ... )2 aben-1 
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Size ofTe~m 

4 members 
(j = 1) 

8 members 
(j =:= 2) 

Observer 1 
(k,::::;l) 

1,~ 
20 

21 
.25 

E 8 .... 00 0 0 

'" ~ 
o 
:!l 
Vi 4 

o 

.... DO CD 

10 20 
Number of Group Interactions 

30 

. F()rei911.Teanls;li = 2) , '",' 0_- ' _ 

Observer 2. Ol?servf;lr3. Observer 4 
(k=2) (k='l) (k= 2) 

'1'4 ) 4 
1')' '5 9 

2& II J2 
1.9 T7 15 

o U.S. Teams (i = 1), Observer 1 (k = 1) 

o U.S. Teams (i = 1), Observer 2 (k = 2) 
• Foreign Teams (i = 2), Observer 3 (k = 1) 
• Foreign Teams (i = 2), Observer 4 (k = 2) 

Analysis of Variance 

Source OF SS MS F P 

A 420.25 420.25 1681.00 0.001 
B 182.25 182.25 145.80 0.007 
C(A) 2 0.50 0.25 0.02 0.981 
A*B 2.25 2.25 1.80 0.312 
B*C(A) 2 2.50 1.25 0.09 0.911 
Error 8 106.00 13.25 

Total 15 713.75 

Variance Error Expected Mean Square 
Source component term (using restricted model) 

1 A 3 (6) + 4(3) + 8Q[1] 
2B 5 (6) + 2(5) + 8Q[2] 
3 C(A) -3.250 6 (6) + 4(3) 
4A*B 5 (6) + 2(5) + 4Q[4] 
5 B*C(A) -6.000 6 (6) + 2(5) 
6 Error 13.250 (6) 
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To test for nationality effects, the alternatives are: 

Ho: 0'1 = 0'2 = 0 

Hll : not both O'i equal zero (26.49a) 

Table 26.1 I indicates that the appropriate test statistic is: 

MSA 
F*=---

MSC(A) (26.49b) 

We have for our example, using the results in Figure 26.7: 

F* = 420.25 = 1,681 
.25 

ForievelofsignificanceO' = .05,werequireF(.95; 1,2) = 18.5.SinceF* = 1,681 > 18.5 
we conclude Hll , that nationality has an effect on the group behavior. The P-value of th~ 
test is .00 I. Other tests are conducted in a similar fashion. Results are sUlnmarized in 
Figure 26.7. 

Next, we wish to estimate the difference between U.S. and foreign teams in the mean 
number of group interactions prior to a decision. Confidence intervals for contrasts of main 
factor effects are set up in the usual way when the factor effects are fixed. Hence, we 
require MSC(A), as this is the mean square used in the denominator of the test statistic for 
examining nationality effects. Specifically, the confidence limits for L = Ill .. - Ill .. are: 

where: 

i±t[I-0'/2;(c-l)als{i} 

0" 2MSC(A) 
s-{L}=--­

nbc 

For our example, we obtain from Table 26.12 and Figure 26.7: 

VI ... = 20.25 h .. = 10.00 i = 20.25 - 10.00 = 10.25 

)" 2(.25) " 
s-{L} = -8- = .063 s{L} = .25 

(26.50) 

(26.50a) 

For confidence coefficient .95, we require t (.975; 2) = 4.303. The confidence limits then 
are 10.25 ± 4.303(.25), and the desired 95 percent confidence interval is: 

9.2.:S1l1 .. -1l2".:S 11.3 

With confidence coefficient .95, we conclude that U.S. teams engage in 9.2 to 11.3 more 
interactions. on average. than foreign teams before a group decision is reached. 

Comments 
I. The sums of squares SSA. SSB. and SS'AB in Table 26.11 for the analysis of the crossed-nested 

experimental design are the usual sums of squares for factor A main effects. factor B main effects, 
and AB interactions. SSC(A) simply measures the variability of the factor C level estimated means 
for any giveh level of factor A. and then aggregates these sums of squares ove!" factor A. Similarly, 
SSBC(A) contains the usual BC interaction sum of squa!"es for a given level of factor A. and then 
aggregates thesc sums of squares ove!" factor A. 
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2. If important AB interactions are present, analysis should usually focus on the means Mlj. when 
the factors have fixed effects, rather than on the factor level means MI" and M.j •. It can be shown that 
the estimated variance for comparing the two team sizes for any given nationality is: 

2 - - 2MSBC(A) 
S {YII ·• - Y;2 •. } = ---­

en 
(26.51) 

This variance has associated with ita(b-l)(c-l) degrees offreedom, as is evident from Table 26.11. 
No exact confidence interval exists for comparing the two nationalities for any given team size. 

An unbiased variance estimator that can be utilized is: 

2 - - 2 [ MSC(A)-MSE] 
S {Ylj" - Y2j .. } = - MSBC(A) + ---'---'----

en b 
(26.52) 

The approximate number of degrees of freedom associated with this variance is obtained from (25.28). 
The reason for the different variances in (26.51) and (26.52) is that the observers are the same 

when the two team sizes for a given nationality are compared, while the observers differ when the 
two nationalities for a given team size are compared. • 

26.1. Searle, S. R. Linear Modelsfor Unbalanced Data. New YOlk: John Wiley & Sons, 1987. 

26.1. A student asked: "Since the mean squares in the analysis of variance table for a two-factor 
nested design are the same whether the factor effects are assumed to be random or fixed, 
what difference does it make whether we assume the factors to have fixed effects or random 
effects?" Comment. 

26.2. A researcher declared: "I prefer analyzing a nested two-factor study as a study with crossed 
factors because I can isolate more sources of variation." Comment on the researcher's strategy. 

26.3. Consider a three-factor study where factor C is nested within factor B, and fac1:or B in turn 
is nested within factor A, and a = b = c = 2. lliustrate in the format of Figure 26.1 the 
distinction between this nested design and the corresponding crossed design. 

26.4. BottHng plant production. A production engineer studied the effects of machine model 
(factor A) and operator (factor B) on the output in a bottling plant. Three bottling machines 
were used, each a different modeL Twelve operators were employed. Four operators were 
assigned to a machine and worl<ed six-hour shifts each. Data on the number of cases produced 
by each machine and operator were collected for a week. The data that follow represent the 
number of cases produced per hour for each day during the week. 

Machine i: 1 2 3 

Operator j: 1 2 3 4 1 2 3 4 1 2 3 4 

Dayk=l: 65 68 56 45 74 69 52 73 69 63 81 67 
k=2: 58 62 65 56 81 76 56 78 83 70 72 79 
k= 3: 63 75 58 54 76 80 62 83 74 72 73 73 
k=4: 57 64 70 48 80 78 58 75 78 68 76 77 
k=5: 66 70 64 60 68 73 51 76 80 75 70 71 

a. Obtain the residuals for nested design model (26.7) with fixed factor effects and plot them 
against the fitted values. Also prepare a normal probability plot of the residuals. What are 
your findings about the appropriateness of model (26.7)? 
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b. Prepare alig~cd residual dot plots .by mach inc. Do these plot, support the aSsum ti 
constancy of the error vanance"? OI~CUSS. p on of 

26.5. Refer to Bottling plant production Problem 26.4. Assutne that nested design model 
. h Ii I t' f'f" . (26.7) Wit xel actor e ccb IS appropnatc. 

a. Can the operator effects be distinguished from the effects of shift~ in this study? O. 
, . ISCliSS. 

b. Plot the data in the format of Fi£ure 26.3. Does it appear that any factor ""'" 
~ '-Hects are 

prescnt? 

c. Obtain the analysis of variance table. 

d. Test whether or ~ot the n~eall output~ differ for .the three I.llachine models; use CI == .01. 
State the alternatIVes. deCision l'ule. and conclusIOn. Whm IS the P-value of the test? 

e. Test whether or not the mean output~ differ for the operators assigned to each machine' 
use CI = .0 I. State the alternatives. decision rule. and conclusion, What is the P-value of 
the test? What doe~ your conclusion imply about the mean outputs for the four operators 
assigned to machine 3? Explain. 

f. Test for each machine separately whether or not the mean outputs for the four operators 
differ. For each test. use CI = .0 I and state the alternatives. decision rule, and conclusion. 

g. What is the family level of significance for the combined tests in parts (d). (e), and (f) 
using the Bonferroni inequality? Summarize the set of conclusions reached in your tests. 

26.6. Refer to Bottling plant production Problems 26.4 and 26.5. 

a. Make all pairwise comparisons among the mean outputs for the three machines. Use the 
Tukey procedure with a 95 percent family confidence coefficient. State your findings. 

b. Make all pairwise comparisons among the mean outputs for the four operators a~signed to 
machine I. Use the Bonferroni procedure with a 95 percent family confidence coefficient 
State your findings. 

c. Operator 4 assigned to machine I has relatively little experience compared to the other 
three operators. Estimate the contrast: 

flll + 1~12 + flu 
L = -/~1.j 

3 

using a 99 percent confidence interval. Interpret your interval estimate. 

26.7. Refer to Bottling plant production Pwblem 26.4. Assutne that the four opecators assigned 
to each machine were selected at random fwm a large nUlnber of operators. 

a. How is nested design model (26.7) modified to fit this case? 

b. Obtain a point estimate of the operator variance aft. 
c. Test whether or not aft equals zero; use CI = . 10. State the alternatives. decision rule, and 

conclusion. What is the P-value of the test? 
. • I ~ 2 

d. Use the MLS procedure to obtain an approximate 90 percent confidence mterva 10rufJ' 
Interpret your confidence interval. 

e. Test whether or not the mean outputs differ for the three machine models; use ex = .10. 
State the alternatives. decision rule. and conclusion. What is the P-value of the test? 

f. Make all pairwise comparisons among the mean outputs for the three machines. Use rhe 
Tukey procedure with a 90 percent family confidence coefficient. State your findings. 

g. Test the assumption that ~he {3j(iJ to~ all machines have the sam~ varianc.e.aj. use:: 
Brown-Forsythe test (Section 18.2) with ex = .0 I. State the altematlves. deciSiOn rule, 
conclusion. 
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26.8. Refer to Bottling plant production Problem 26.4. Assume that the four operators assigned 
to each machine were selected at random from a large number of operators and that the three 
machines were chosen at random from a large number of machines. 

a. How is nested design model (26.7) modified to fit this case? 

b. Obtain point estimates of the operator and machine variances aJ and a~, respectively. 

c. Test whether or not a~ equals zero; use a = .05. State the alternatives, decision rule, and 
conclusion. What is the P -value of the test? 

d. Use the MLS procedure to obtain an approximate 95 percent confidence interval for aJ. 
Interpret your confidence interval. 

e. The production engineer is interested in estimating the overall mean M .. with a 95 percent 
confidence interval. Obtain the desired confidence interval and interpret your interval 
estimate. 

*26.9. Health awareness. Three states (factor A) participated in a health awareness study. Each state 
independently devised a health awareness program. Three cities (factor B) within each state 
were selected for participation and five households within each city were randomly selected 
to evaluate the effectiveness of the program. All members of the selected households were 
interviewed before and after participation in the program and a composite index was formed 
for each household measuring the impact of the health awareness program. The data on health 
awareness follow (the larger the index, the greater the awareness). 

State i: 1 2 3 

City j: 1 2 3 1 2 3 1 2 3 

Household k = 1: 42 26 34 47 56 68 19 18 16 
k=2: 56 38 51 58 43 51 36 40 28 
k=3: 35 42 60 39 65 49 24 27 45 
k=4: 40 35 29 62 70 71 12 31 30 
k=5: 28 53 44 65 59 57 33 23 21 

a. Obtain the residuals for nested design model (26.7) with fixed factor effects and plot them 
against the fitted values. Also prepare a normal probability plot of the residuals. What are 
your findings about the appropriateness of model (26.7)? 

b. Prepare aligned residual dot plots by state. Do these plots support the assumption of 
constancy of the error variance? Discuss. 

c. Plot the data in the format of Figure 26.3. Does it appear that any factor effects are 
present? 

*26.10. Referto Health awareness Problem 26.9. Assume that nested design model (26.7) with fixed 
factor effects is appropriate. 

a. Obtain the analysis of variance table. 

b. Test whether or not the mean awareness differs for the three states; use a = .05. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

c. Test whether or not the mean awareness differs for the three cities within each state; use 
a = .05. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? What does your conclusion imply about the awareness means for the three cities in 
state I? Explain. 

d. What is the family level of significance for the combined tests in parts (b) and (c) using 
the Bonferroni inequality? Summarize the set of conclusions reached in your tests. 
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*26.11. Refer to Health awareness Problem 26.9 and 26.10. 

a. Estinmte flll with a 95 percent confidence interval. Interpret your interval estimate. 

b. Obtain separate confidence intervals for fll .• ll! .. and Il.;·. each with a 99 percent confide 
'/0' I . I' nee coetllclent. nterpret your mterva estmmtes. 

c, Obtain confidence intervals for all pairwise comparisons among the state mealls. Use the 
Tukey procedure and a 90 percent family confidence coefficient. Summarize YOUr findi ngs. 

d. It is desired to obtain a 95 percent confidence interval for L = 1111 - /lJ2. since these two 
cities are of comparable size. Interpret your interval estimate. 

*26.12. Refer to Health awareness Problem 26.9, Assume that the three cities in each state Were 
chosen at random from all the cities in the !itate, 

a. How is nested design model (26.7) modified to fit this case? 

b, Obtain a point estimate of the city variance aft. Is there anything peculiar about the estimate 
here? 

c, Test whether or not a/~ equals zero; use ex = ,10. State the alternatives. decision rule, and 
conclusion. What is the P-value of the test? 

d. Test whether or not the mean awareness differs for the three states; use CI = ,10. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

e. Obtain confidetlce intervals for all pairwise comparisons between the state means. Use the 
Tukey procedure and a 90 percent family confidence coefficient. Summarize your findings. 

[ Test the assumption that the {Jj(il for all states have the same variance aft. Use the Hartley 
lest (Section 18.2) with significance level ex = ,OS, State the alternatives, decision rule, 
and conclusion. 

*26.13. Refer to Health awareness Pl"Oblem 26,9, Assume that the three citie~ within each state and 
the three states were selected at ratldom. 

a. How is nested design model (26,7) modified to fit this case? 

b. Obtain point estimates of the city and state variances atf and a;, respectively. 

c. Test whether or not a; equals zero: use CI = ,0 I, State the alternatives. decision rule, and 
conc lusion. What is the P -value of the test? 

d, Use the MLS procedure to obtain an approximate 99 percent confidence intervalfbr a;, 
Interpret your confidence interval. 

e. Estimate the overall mean health awareness index fl .. using a 99 percent confidence interval. 
Interpret your interval estimate. 

26.14. Internal control. A large retailer operate~ three regional accounting centers (factor A). Cen­
ter I employs three audit teams, while the other two centers employ two audit teams each 
One function of each center is to review whether a certain internal control operates properly 
in the processing of payroll. Data on the percent of transactions where the internal control was 
found to be operating properly we I'e requested fOI' each team in each region for the previous 
two months, Three months' data were received in one case. and data for only one Pllonth in 
another. The arcsine transformation Y' = 2 arcsin JP wa~ employed to stabilize the error 
variances, The transformed data follow. 

Region i: 2 3 

Team j: 2 3 2 2 

Month k = 1: 151.6 143,2 131.4 163.8 151.6 157,0 160.0 

k= 2: 141.2 139.4 136.0 154.2 147.2 151,6 

k = 3: 149.4 
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a. Set up the full regression model for this case, analogous to the illustrative full model 
(26.31), using 1, -1, 0 indicator variables. 

b. Fit this model and obtain the residuals. Plot the residuals against the fitted values. Also 
prepare a normal probability plot of the residuals. What are your findings about the appro­
priateness of the model? 

Refer to Internal control Problem 26.14. Assume that nested design model (26.7) with fixed 
factor effects, modified for unequal nestings and replications, is appropriate. 

a. Test forregion main effects using test statistic (7.27) and significance level a = .025. State 
the alternatives, reduced model, decision rule, and conclusion. What is the P-value of the 
test? 

b. Test for effects of audit teams within region using test statistic (7.27) and significance level 
a = .025. State the alternatives, reduced model, decision rule, and conclusion. 

c. Estimate L = /1-1. - /1-2. (in transformed units) with a 98 percent confidence interval. 

A student asked in class why all experiments do not make use of repeated observations since 
all measurement procedures are inexact to some degree. Comment. 

Refer to Questionnaire color Problem 16.8. Suppose that the experiment was conducted 
by distributing the fliers to the assigned parking lots in two different weeks and noting the 
response rates for each week. The complete data on response rates foilow. 

CI o or : 1 (BI ) ue 2 (G ) reen 3(0 ) range 

lot j: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Week k = 1: 28 26 31 27 35 34 29 25 31 29 31 25 27 29 28 
k=2: 32 23 29 24 37 33 27 22 34 25 35 28 25 25 31 

a. Obtain the residuals for subsampling model (26.35) with fixed treatment effects and plot 
them against the fitted values. Also prepare a normal probability plot of the residuals. What 
are your findings about the appropriateness of model (26.35)? 

b. Test the assumption that the Bj(i) have the same variance (52 for all colors. Use the Brown­
Forsythe test (Section 18.2) with significance level a = .01. State the alternatives, decision 
rule, and conclusion. 

Refer to Questionnaire color Problem 26.17. Assume that subsampling model (26.35) with 
fixed treatment effects is appropriate. 

a. Obtain the analysis of variance table. 

b. Test whether or not questionnaire color effects are present; use a = .05. State the alterna­
tives, decision rule, and conclusion. What is the P-value of the test? 

c. Test whether or not lot differences within colors are present; use a = .05. State the alter­
natives, decision rule, and conclusion. What is the P-value of the test? 

d. Estimate the mean response rate for blue questionnaires with a 95 percent confidence 
interval. 

e. Obtain point estimates of (52 and (5;. Which variance appears to be larger here? 

f. Use the MLS procedure to obtain an approximate 95 percent confidence interval for (52. 

Also obtain a 95 percent confidence interval for (5;. Interpret your interval estimates. 

Plant acid levels. Four plants of the same variety were randomly selected in an experiment 
to investigate the concentration of a particular acid. Three leaves per plant were randomly 
selected and three separate determinations of the acid concentration were obtained per leaf. 
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The data follow. 

P ant I: 1 2 3 4 
leaf j: 1 2 3 1 2 3 1 2 3 1 2 3 
Determination 
k= J: 11.2 16.5 18.3 14.1 19.0 11.9 15.3 19.5 16.5 7.3 8.9 11.3 
k = 2: 11.6 16.8 18.7 13.8 18.5 12.4 15.9 20.1 17.2 7.8 9.4 10.9 
k = 3: 12.0 16.1 19.0 14.2 18.2 12.0 16.0 19.3 16.9 7.0 9 .3 10.5 

Obtain the residuab for three-stage subsampling model (26.43) and plot them aaainst the 
fitted values. Also prepare a normal probability plot of the residuals. What are yoU; findin 
about the appropriateness of model (26.43)"} gs 

*26.20. ~efer to P~ant acid levels Problem 26. 19. Assume that three-stage subsampling model (26.43) 
IS appropnate. 

a. Obtain the analysis of variance table. 

b. Test whether or not there are variations in mean concentration levels between plants; USe 
ex = .05. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 

c. Test whether or not there m'e variations in mean concentration levels between leaves of the 
same plant; use ex = .05. State the altenmtives, decision rule, and conclusion. What is the 
P-value of the test? 

d. Estimate the overall mean concentration in all plants of the variety; use a 95 percent 
confidence interval. 

e. Obtain point estimates of a;. a2• and a,~, Which component of variance appears to be most 
important in the total variance a~? 

f. Use the MLS procedure to obtain an approximate 90 percent confidence interval for a;. 
Does the experiment provide a precise estimate of this variance component? 

26.21. Chemical consistency. A chemical company wished to study the consistency of the strength 
of one of its liquid chemical products. The product is made in batches in large vats and then is 
barTeled. The barrels are sUbsequently stored for a period of time in a warehouse. To examine 
the consistency of the strength of the chemical. an analyst randomly selected five different 
batches of the product from the warehouse and then selected four barrels per batch at random. 
Three determinations per barrel were made. The data on strength follow. 

Batch i: 2 5 

Barrel j: 2 3 4 2 3 4 2 3 4 

Determination 
k = 1: 2.3 2.5 2.6 2.4 2.8 2.7 2.6 2.4 3.6 3.8 3.7 3.9 

k= 2: 2.1 2.3 2.4 2.6 2.9 2.5 2.6 2.8 3.7 3.8 3.5 3.5 
k = 3: 2.0 2.5 2.7 2.3 2.6 2.8 2.8 2.6 3.4 3.5 3.~ 3.7 

a. Obtain the residuals for three-stage subsampling model (26.43) and plot them against the 
fitted values. Also prepare a normal probability plot of the residuals. What are your findings 
about the appropriateness of model (26.43)"} 

b. Test the assumption that the F. j(iJ have the same variance a 2 for all batches. Use the Hartley 
test (Section 18.2) with significance level ex = .0 I. State the alternatives, decision rule, and 
conclusion. 
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26.22. Refer to Chemical consistency Problem 26.21. Assume that three-stage subsampling model 
(26.43) is appropriate. 

a. Obtain the analysis of variance table. 

b. Test whether or not there are variations in mean strength between batches; use a = .01. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

c. Test whether or not there are variations in mean strength between barrels within batches; 
use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

d. Estimate the overall mean strength of the chemical using a 99 percent confidence interval. 

e. Obtain point estimates of a;, a2, and a;. Which component of variance appears to be most 
important in the total variance a~? 

f. Use the MLS procedure to obtain an approximate 95 percent confidence interval for a; . 
Does the experiment provide a precise estimate of this variance component? 

26.23. Derive (26.13) by squaring (26.12) and summing over all observations. 

26.24. Derive (26.16) for a balanced nested two-factor design. 

26.25. Consider a balanced nested two-factor design with factor A having fixed effects and factor B 

26.26. 

26.27. 

26.28. 

(nested within factor A) having random effects. 

a Derive a 2 {Y; .. } anda2{y' .. }. 

b. Find an unbiased point estimator of aJ. 
Show that a 2 {Y; .. } = (a; + m(2)jnm for subsampling model (26.35) with fixed treatment 
effects. 

Derive variance (26.45) for three-stage subsampling model (26.43). Using the expected mean 
squares in Table 26.8, show that the estimated variance (26.46) is an unbiased estimator of 
variance (26.45). 

Use (26.52) and the fact that this estimated variance is unbiased to find a 2 {Ytj •• - ~j"} for 
ANOVA model (26.48). What is the approximate number of degrees of freedom associated 
with the estimated variance? 

, .. :-. -------------------------------------

, iProjects 26.29. Refer to the Drug effect experiment data set in Appendix C.12. Consider only Part I of the 
study and dosage level 4; i.e., include only observations for which variable 2 equals 1 and 
variable 5 equals 4. Assume that initial lever press rate (factor A) has fixed effects and that 
rats are a second factor (factor D) with random effects. 

a. State the appropriate model for this nested two-factor study. 

b. Obtain the residuals and plot them against the fitted values. Also prepare a normal prob­
ability plot of the residuals. What are your findings about the appropriateness of your 
model? 

26.30. Refer to the Drug effect experiment data set in Appendix C.12 and Project 26.29. Assume 
that nested design model (26.7), with (3j(i) and Bijk random, is appropriate. 

a Obtain the analysis of variance table. 

b. Test whether or not the mean lever press rate differs for the three initial rate groups; use 
a = .05. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 
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c. Test whether or not the mean lever press rate differs for the rats within the . " 
S h I . d' . I Imba] rate £roups; use ex = .05. tate tea ternatlve~, eClslon ru e, and conclusion Wha . 

~ '" '. ttsthe 
P-value of thc tcst"] What does your conclusion IInply about the four rats in the sl . 
rate group? 

. OWmitial 

d. Make all pairwise compnrisons between the mean lever press rates for the three inif a] 
groups. Use thc Tukey procedurc with a 90 percent family confidence coefficient. I rate 

e. Obtain an approximate 90 percent confidence intefval for the between-rats variance . 
the MLS procedure. Interpret your interval estimate. ' USing 

26.31. Refef to the Drug effect exp~rim~nt data set in Appen?ix C: 12. C.onsider only Part IT of 
the study and dosage level 3; I.e., mclude only observations fOf which variable 2 equals 2 
and variable 5 equals 3. Assume that the initial lever pfess rate groups afe the treatments 
with fixed effects, and that the rats are the experimental units with two obsefvations for each 
experimental unit. 

a. State the appropriate model for this single-factor study with subsampling. 

b. Obtain the fesiduals and plot them against the fitted values. Also pfepafe a normal prob­
ability plot of the residuals. What afe your findings about the appropriateness of your 
model? 

c. Test the assumption that the Cj(d have the same vadance a 2 fOf allievef pfess rates. Use 
the Brown-Fofsythe test (Section 18.2) with ex = .0 I. State the altefllatives, decision rule, 
and conclusion. 

26.32. Refer to the Drug effect experiment data set in Appendix CI2 and Pfoject 26.31. Assume 
that single-factor subsampling model (26.35) with fixed tt"eatment effects is appropriate. 

a. Obtain the analysis of vafiance table. 

b. Test whethef Of not the mean levef pfess rate differs fOf the three initial rate groups; use 
ex = .0 I. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 

c. Test whether or not diffefences in the mean levef pfess rate between l<ltS are present; use 
CI = .01. State the altefnatives, decision rule, and conclusion. What is the P-valueofthe 
test? 

d. Make all pairwise compafisons between the mean levef pfess rates fOf the three initial 
rate groups. Use the Tukey procedufe with a 95 percent family confidence coefficient 
Summarize your findings. 

e. Obtain interval estimates for a 2 and a,~, with confidence coefficient .90 fOf each. Interpret 
your confidence intervals. Which variance component appears to be lafgef? 



~'hapter { 
Repeated Measures 
and Related Designs 

In this chapter we take up repeated measures designs-designs that are widely used in the 
behavioral and life sciences. We begin by considering some basic elements of repeated 
measures designs. We then take up single-factor repeated measures designs, after which 
we consider two-factor experiments with repeated measures on both one factor and on two 
factors. We conclude this chapter with an introduction to split-plot designs, which include 
two-factor repeated measures designs with repeated measures on one factor. 

~:7.1 Elements of Repeated Measures Designs 

:bescription of Designs 
Repeated measures designs utilize the same subject (person, store, plant, test market, etc.) 
for each of the treatments under study. The subject therefore serves as a block, and the 
experimental units within a block may be viewed as the different occasions when a treatment 
is applied to the subject. A repeated measures study may involve several treatments or only 
a single treatment that is evaluated at different points in time. Subjects used in repeated 
measures studies in the behavioral and life sciences include persons, households, observers, 
and experimental animals. At other times the subjects in repeated measures designs are 
stores, test markets, cities, and plants. We shall refer to all of these study units used in 
repeated measures designs as subjects. 

Three examples of repeated measures designs follow. 

1. Fifteen test markets are to be used to study each of two different advertising campaigns. 
In each test market, the order of the two campaigns will be randomized, with a sufficient 
time lapse between the two campaigns so that the effects of the initial campaign will not 
carry over into the second campaign. The subjects in this study are the test markets. 

2. Tho hundred persons who have persistent migraine headaches are each to be given two 
different drugs and a placebo, for two weeks each, with the order of the drugs randomized 
for each person. The subjects in the study are the persons with migraine headaches. 

3. In a weight loss study, 100 overweight persons are to be given the same diet and their 
weights measured at the end of each week for 12 weeks to assess the weight loss over 

1127 
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time. Here the subjects are the overweight persons, who are observed repeatedly to Ii . 
., . bit" t" I ' P oVIde information a out t le e ,ects 0 a sing e treatmenr over tIme. 

Each of these studies involves a repeated mel/SUres design because the same sub' 
is measured repeatedly. This key characteristic distinguishes this type of design from~: 
designs considered earlier. e 

Advantages and Disadvantages 
A principal advantage of repeated measures designs is that they provide good precisio 
for comparing treatments because all sources of variability between subjects are eXclud~ 
from the experimental error. Only variation within subjects enters the experimental error 
since any two treatments can be compared directly for each subject. Thus, one may view th~ 
subjects as serving as their own controls. Another advantage of a repeated measures design 
is that it economizes on subjects. This is pm'ticularly important when only a few subjects 
(e.g., stores, plants, test markets) can be utilized for the experilnent. Also, when interest is in 
the effects of a treatment over time, as when the shape of the learning curve for a new process 

operation is to be studied, it is usually desirable to observe the same subject at different 
points in time rather than observing different subjects at the specified points in time. 

Repeated measures designs have a serious potential disadvantage, however, namely, that 
there may be several types of interference. One type ofinterference is an OIderiflect. whichis 
connected with the position in the treatment order. For instance, in evaluating five different 
advertisements, subjects may tend to give higher (or lower) ratings for advertisements 
shown toward the end of the sequence than at the beginning. Another type of interference 
is connected with the preceding treatment or treatments. For instance, in evaluating five 
different soup recipes, a bland recipe may get a higher (or lower) rating when preceded by 
a highly spiced recipe than when preceded by a blander recipe. This type of interference is 
called a cl/nyover effect. 

Various steps can be taken to minimize the danger of interference effects. Randomization 
of the treatment orders for each subject independently will make it more reasonable to 
analyze the data as if the elTor terms are independent. Allowing sufficient time between 
treatments is often an effective means of reducing calTyover effects. It may be desirable at 
times to balance the order of treatment presentations and sometimes even the number of 
times each treatlnent is preceded by any other treatment. Latin square designs and crOSsover 
designs (discussed in Chapter 28) are helpful to this end. 

How to Randomize 
The randomization of the order of the treatments assigned to a subject is straightfOlward. For 
each subject, a random permutation is used to define the treatment order, and indept!ndent 
permutations are selected for the different subjects. 

Comment 

Designs with repeated measures, discussed here, need to be distinguished from designs with repeated 
observations, discussed in Section 26.7. In repeated measures designs. several or all of the treatments 
are applied to the same sUbject. Designs with repeated observations, on the other hand, are designs 
where several observations on the response variable are made for a given treatment applied to an 
experimental unit. It is possible to develop a repeated measures design with repeated observation~, as 
when a given subject is exposed to each of the treatments under study and a number of observatlons 
are made at the end of each treatment application, • 
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~7.2 Single-Factor Experiments with Repeated Measures 
on All Treatments 

Model 

FIGURE 27.1 
Layootfor 
Single-Factor 
Repeated 
Measures 
Design 
(s = 5, r = 4). 

We first consider repeated measures designs where the treatments are based on a single 
factor, as in the examples in Section 27.1. Almost always. the subjects in repeated measures 
designs (persons, stores, test markets, experimental animals) are viewed as a random sample 
from a population. Hence, in all of the models for repeated measures designs to be presented 
in this chapter, the effects of subjects will be viewed as random. 

Figure 27.1 contains the layout for a single-factor experiment with repeated measures on 
all treatments. Here, there are five subjects and four treatments, with the order oftreatments 
independently randomized for each subject. Notice that this layout corresponds to the one 
in Figure 21.1 for a randomized complete block design. Indeed, as we shall see next, the 
models for single-factor repeated measures designs are formally the same as the ones for 
randomized block designs, with blocks now considered to be subjects. 

When treatment effects are fixed, a model often appropriate for a single-factor repeated 
measures design is the following additive model: 

where: 

Ji, •. is a constant 

Pi areindependentlV(O,a;) 

Lj are constants subject to 2:::Lj = ° 
cij are independent lV (0, a 2) 

Pi and Cij are independent 

i = 1, .... s; j = 1, ... , r 

Treatment Order 

2 3 4 

Subject 1 T4 T3 T2 T1 

2 T3 T4 T1 T21 

3 T4 T3 T1 T21 

4 T2 T1 T4 T31 

5 T1 T2 T4 T3 I 

(27.1) 
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Note that repeated measures model (27.1) is identical to randomized block model (25 
with random block effects, except that nt> = s. .67) 

Hence. we know from Section 25.5 that repeated measures model (27 I) ass . urnes the 
following ahout the observations Yi ( 

E{Yi ;} = Ji, .. + Tj 

a{Yii' Yrj'} = 0 

j#-j' 

i #- if 

(27.2a) 

(27.2b) 

(27.2c) 

(27.2d) 

where w is the coefficient of correlation between any two observations for the same subject: 

(27.2e) 

Thus, repeated measures model (27.1) assumes that in advance of the random trials, any 
two treatment observations Yij and Yij , for a given subject are correlated in the same fashion 
for all subjects. This key assumption implies, as we saw in (25.71), that the variance­
covariance matrix of the observations Yii for any given subject has compound symmetry. 
Any two observations from different subjects in advance of the random trials are independent 
according to model (27.1). 

Equally important, we know from Chapter 25 that repeated measures model (27.1) 
assumes that, once the subjects have been selected, any two observations for a given subject 
are independent. Thus. model (27.1) assumes that there are no interference effects in the 
repeated measures study, such as order effects or carryover effects from one treatment to 
the next. 

Comment 

If interaction effects between subjects and tr'earments are present, interaction model (25.74) can be 
employed. As we noted in Chapter 25, both the additive and interaction models lead to the same 
procedures for making inferences about the treatment effects. • 

Analysis of Variance and Tests 
Since repeated measures model (27.1) is the same as randomized complete block model 
(25.67), the analysis of variance and the test for treatment effects will be the same (fS before. 

Analysis of Variance. The ANOVA sums of squares for repeated measures model (27.1) 
are the same as in (21.6). but the names of two of the sums of squares are usually changed 
for repeated measures applications. The sum of squares for blocks in (21.6a) will now 
be called the sum of squares for subjecTs, and the interaction sum of squares between 
blocks and treatments in (21.6c) will now be called the interaction sum of squares between 
treaTments lind subjecTs. These two sums of squares will be denoted, respectively, by SSSand 
SSTR.S. Thus, the analysis of variance decomposition for single-factor repeated measures 
model (27.1) is: 

SSTO = SSS + SSTR + SSTR.S (27.3) 
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TABLE 27.1 ANOVA Table for Single-Factor Repeated Measures Design-ANOVA 
Model (27.1) with Subject Effects Random and Treatment Effects Fixed. 

Source of 
Variation 

Subjects 

Treatments 

Error 

Total 

where: 

55 df 

SSS 5-1 

SSTR r-1 

SSTR.S (r -1)(5 -1) 

SSTO 5r-1 

SSS = r L(~. - y'.)2 

SSTR = s L(Y.j - y'.)2 
j 

M5 

MSS 

MSTR 

MSTR.S 

SSTR.S = LL(Yij -~. - y.j + y'.)2 
j 

E{M5} 

(52 + r(52 
p 

I)"? 
(52+5 __ 1 

r-1 
(52 

(27.3a) 

(27.3b) 

(27.3c) 

(27.3d) 

Note that no error sum of squares is present because there are no replications here. 
Table 27.1 contains the analysis of variance table for repeated measures model (27.1). It 

is the same as the ANOVA table in Table 25.8 for additive randomized block model (25.67), 
except for the change in notation. Note again that in the absence of interactions between 
treatments and subjects, the interaction mean square MSTR.S is an unbiased estimator of 
the error variance (52. 

Comment 

In repeated measures studies, SSTR and SSTR.S are sometimes combined into a within-subjects sum 
of squares ssw: 

SSw = SSTR + SSTR.S (27.4) 

which can be shown to equal: 

(27.4a) 

Hence, the ANOVA decomposition in (27.3) can also be expressed as follows: 

SSTO= SSS + SSW (27.5) 
""-v-" ""-v-" 

Between- Within-
subjects subjects 

variability variability • 
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Example 

TABLE 27.2 
Data-Wine-
Judging 
Example 
(ratings on a 
scale of 0 to 40). 

Test for Treatment Effects. A s the E {M SI col umn in Table 27. I indicates the ap' . 
. . . " PlOpnate 

statIstIc for the test on treatment effects: 

Ho: all Tj = 0 

HlI : not all TJ equal zero (27.6a) 

is: 

MSTR 
F* = ---

MSTR.S (27.6b) 

When Ho holds, F* follows the F distribution, and the decision mle for controlling the 
Type [ error at a is: 

If F* :s F[I - a;r - I, (r - I)(s - 1)1, conclude Ho 

If F* > F[I - a;r - I, (r - I)(s - I)], conclude HlI 
(27.6c) 

In a wine-judging competition, four Chardonnay wines of the same vintage were judged 
by six experienced jUdges. Each judge tasted the wines in a blind fashion, i.e., without 
knowing their identities. The order of the wine presentation was randomized independently 
for each judge. To reduce carryover and other interference effects, the judges did not drink 
the wines and rinsed their mouths thoroughly between tastings. Each wine was scored on 
a 40-point scale; the higher the score, the greater is the excellence of the wine. The data 
for this competition are presented in Table 27.2. A plor of {he wine scores for each judge 
is shown in Figure 27.2. We see that there are some distinct differences in ratings between 
judges but that the ratings for wines 3 and 4 are consistently best and for wine I generally 
worst. We also see that the rating curves for the judges do not appear to exhibit substantial 
departures from being parallel. Hence, an additive model appears to be appropriate. 

The six judges are considered to be a random sample from the population of possible 
judges, while the four wines tasted are of interest in themselves. Hence, single-factor re­
peated measures model (27.1) was expected to be appropriate, with the effects of subjects 
(judges) considered random and the effects of treatments (wines) considered fixed. As 

Judge 
Wine (j) 

2 3 4 Yi· 

20 24 28 28 25 
2 15 18 23 24 20 
3 18 19 24 23 21 
4 26 26 30 30 28 
5 22 24 28 26 25 
6 19 21 27 25 23 

Y. j 20.00 22.00 26.67 26.00 23.67 = Y.. 
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~ FI~URE 27.2 Yq 
Judge PiOtofWine 

Scores fur Each 30 
trtdge-Wine­
jUdging 

jj!;xarople. 

~~iGURE 27.3 
~AB 
~ANOVA Table 
'tor Single-
'Factor 
\Repeated 

_:' Measures 
;Design-Wine-
ij"udging 
(EXample. 

25 

20 

15 

OL-----~-----L----~------~-----
234 

Wine 

Factor Type levels Values 

Judge random 6 1 2 3 4 5 6 
Wine fixed 4 2 3 4 

Analysis of Variance for Rating 

Source OF SS MS F P 

Judge 5 173.333 34.667 32.50 0.000 
Wine 3 184.000 61.333 57.50 0.000 
Error 15 16.000 1.067 
Total 23 373.333 

we shall see later, additional diagnostic analysis supports the appropriateness of ANOVA 
model (27.1). 

Figure 27.3 contains MINITAB ANOVA output for the wine-judging data in Table 27.2. 
To test for treatment effects: 

Ho:"i, ="i2 ="i3 ="i4 = 0 

Ha: not all "ij equal zero 

we use the results of Table 27.3: 

F* = MSTR = 61.333 = 57.5 
MSTR.S 1.067 

For level of significance ex = .01, we require F(.99;3, 15) = 5.42. Since F* = 57.5 > 
5.42, we conclude Ha> that the mean wine ratings for the four wines differ. The P-value for 
this test is 0+. 
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TABLE 27.3 Estimated Within-Subjects 
Variance-Covariance Matrix between Treatment 
Observations-Wine-Judging Example. 

j' 

2 3 4 

f14000 11.000 9.200 8.200] 
2 10.000 8.200 7.600 

j 
3 7.067 6.200 

4 6.800 

Comments 

I. As we noted in Chapter 25 (in Comment 2 on p. 1065), a conservative test for treatment effects 
should be used if the a~sul11ptions of compound symmetry in repeated measures model (27.1) are not 
met (i.e., if either the variances of the observations for different treatments for a given subject are not 
the same for all subjects or if the correlations between any two treatment observations for a given 
subject are not the same for all treatment pairs and for all SUbjects). In repeated measures studies, the 
compound symmetry assumption will be violated, for instance, if repeated responses over time are 
more highly cOITelated for observations closer together than for observations further apart in time. 

2. When the treatment effects are random, test statistic (27.6b) and decision rule (27.6c) are still 
appropriate for testing treatment effects. 

3. The efficiency of the repeated measures design in the wine-judging example, relative to a 
completely randomized design where each judge is used to assess a single wine, can be measured by 
means of (21.14). Using the results in Figure 27.3 with lib =.1", we obtain: 

A (s - I )MSS + .\·(r - I)MSTR.S 5(34.667) + 6(3)( 1.067) 
E = = = 7.85 

(sr - I )MSTR.S 23( 1.067) 

Thus. almost eight times as many replications per tfeatment would have been required with a com­
pletely randomized design in which each judge rates a single wine as in the repeated mea~ures design 
to achieve the same precision for any estimated contrast. 

4. When a single-factor repeated measures design involves,. = 2 treatments, the F* statistic in 
(27.6b) is equivalent to the two-sided t test for paired observations based on test statistic (A.69). 

5. Occa~i·onally. a formal test for subject effect~ is desired: 

Hu: a~ = 0 

H,,: a~ > 0 

Table 27.1 indicate~ that the appropriate test statistic for repeated measures model (27.1) is f* = 
MSS/ MSTR.S. • 

Evaluation of Appropriateness of Repeated Measures Model 
Since r'epeated measures model (27.1) is equivalent to randomized block model (25.67), the 

eadier discussion on diagnostics for randomized block models is entirely applicable here. 

In par'ticular, a plot of the responses Yij by subject, as in Figure 27.2, can be examined for 

indications of ser'ious lack of par'allelism, which would suggest that additive model (27.1) 

may not be apPr'Opr'iate. 
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Residual sequence plots by subject can be helpful for studying constancy of the error 
variance and presence of interference effects. The residuals for repeated measures models 
(27.1) are the same as in (21.5): 

(27.7) 

A normal probability plot of the estimated residuals in (27.7) can be helpful for evaluating 
whether the residuals are normally distributed. 

In addition £0 these graphic diagnostics, the estimated within-subjects variance­
covariance and correlation matrices for the treatment observations Yij can be examined for 
appropriateness of the repeated measures model. A typical entry in the variance-covariance 
matrix is the estimated within-subjects covariance between observations for treatments j 
and j': 

L;=, (Yij - Yj )(Yij' - Yj ,) 

s - 1 
(27.8) 

The estimated within-subjects variance-covariance matrix should show variances of the 
same order of magnitude, and all of the covariances should be of similar magnitude. Of 
course, estimated variances and covariances tend to be subject to large sampling errors unless 
the sample sizes are very large. Hence, moderate differences in variances and covariances 
should be viewed as likely to be the result of sampling errors. 

The estimated correlation matrix should show approximately similar coefficients of 
correlation between pairs of treatment observations within a subject. 

Finally, the Tukey test described in Section 20.2 can be conducted to examine the ap­
propriateness of the additive model. This test will need to be interpreted here as conditional 
on the subjects actually used in the repeated measures study. 

For the wine-judging example, the residuals were obtained from (27.7), and are presented in 
Figure 27.4a in SAS/GRAPH aligned dot plots by wine. These plots support the assumption 
of constant error variance. Figure 27.4b presents residual sequence plots for each judge, 
where the residuals are plotted in the order in which the wines were tasted by the judge. 
These plots do not indicate any correlations of the error terms within a judge, and thus 
suggest that no interference effects are present. Finally, a normal probability plot of the 
residuals is presented in Figure 27.4c. This plot shows evidence of the effects of the rounded 
nature of the data, but does not suggest any major departure from normality. The correlation 
between the ordered residuals and their expected values under normality is .993, which also 
suggests that lack of normality is not a problem here. 

Table 27.3 presents the estimated within-subjects variance-covariance matrix for the 
treatment observations. The differences found there could easily arise from sampling errors. 

As we noted earlier, the plot of the responses by subject in Figure 27.2 also supports 
the appropriateness of model (27.1), since the plots for the judges are reasonably parallel. 
Thus, there is no indication of interactions between subjects and treatments. 

On the basis of these and other diagnostics, it was concluded that repeated measures 
model (27.1) is reasonably appropriate for the data in the wine-judging example. 
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i: 
L FIGURE 27.4 SASIGRAPH Diagnostic Residual Plots-Wine-Judging Example. j:' 
p (a) Residual Dot Plots 
1\ 

(c) Normal Probability Plot 
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Analysis of Treatment Effects 

Example 

The analysis of treatment effects for single-factor repeated measures model (27.1) proceeds 
in exactly the same fashion as described in Section 21.5 for randomized block designs 
with fixed treatment effects. The multiples in (21.9) for setting up confidence intervals 
are applicable here as they stand. The mean square used in estimating the variance of the 
estimated contrast is still the interaction mean square, which is now denoted by MSTR.S. 
We shall illustrate the estimation procedures by an example. 

In the wine-judging example. it was desired to compare all treatment means /L.j pairwise. 
with a 95 percent family confidence coefficient. Here /L.j is the mean rating of wine j 
averaged over judges. The Tukey procedure was utilized for this purpose. Using (17.30) 
with MSE replaced by MSTR.S and the estimated pairwise difference denoted by t, we 
obtain using the results in Figure 27.3: 

S2{t} = MSTR.S(~ + ~) = 1.067(~) = .3557 

Using (21.9b), we find for a 95 percent family confidence coefficient: 

1 1 
T = .J2q (.95;4, 15) = .J2(4.08) = 2.885 

Hence: 

Ts{t} = 2.885.J.3557 = 1.72 

Thus we obtain for the pairwise comparisons (see Table 27.2 for the Y.j ): 

-2.39 = (26.00 - 26.67) - 1.72 :':: /L.4 - /L.3 :':: (26.00 - 26.67) + 1.72 = 1.05 

2.28 = (26.00 - 22.00) - 1.72 ::::; /L.4 - /L.2 :s (26.00 - 22.00) + 1.72 = 5.72 

4.28 = (26.00 - 20.00) - 1.72::::; /L.4 - /L., :':: (26.00 - 20.00) + 1.72 = 7.72 

2.95 = (26.67 - 22.00) - 1.72 :':: /L.3 - /L.2 :':: (26.67 - 22.00) + 1.72 = 6.39 

4.95 = (26.67 - 20.00) - 1.72 ::::; /L.3 - /L., :':: (26.67 - 20.00) + 1.72 = 8.39 

.28 = (22.00 - 20.00) - 1.72:':: /L.2 - /L., :':: (22.00 - 20.00) + 1.72 = 3.72 

We display these results graphically as follows: 

Wine 
1 

• 20 

Wine 
2 
• 

Taste Score 
25 

Wine Wine 
4 3 

! j 

We conclude from these pairwise comparisons that wines 3 and 4 are judged best, and do 
not differ significantly from each other. Wines 1 and 2 are judged to be inferior to wines 3 
and 4, with wine 1 receiving a mean rating significantly lower than that for wine 2. The 
family confidence coefficient of .95 applies to the entire set of comparisons. 



1138 Part Six Speci(lli~.ed Study iJesil',1l.1 

TABLE 27.4 
RankooData 
for Coffee 
Sweeteners in 
a Repeated 
Measures 
Design-Coffee 
Sweeteners 
Example. 

Ranked Data 

Example 

Subject 
Sweetener (j) 

A B C 0 E 

5 1 2 4 3 
2 4 2 1 5 3 
3 3 2 1 4 5 
4 5 2 3 4 1 
5 4 1 2 3 5 
6 4 1 3 5 2 

R. j 4.17 1.50 2.00 4.17 3.17 

Comment 

When the treatments are time order positions, as when process rework is observed for a new manu­
facturing process at periodic intervals. the nature of the time effect may be analyzed by developing 
an appropriate regression model. • 

In repeated measures studies, the observations are frequently ranks, as when a number of 
tasters are each asked to rank recipes or when several university admissions officers are 
each asked to rank applicarUs for admission. When the data in a repeated measures study 
are ranks, the nonparametric rank F test described in Comment 3 on page 900 may be used 
for testing whether the treatment means are equal. No new principles are involved, so we 
shall proceed directly to an example. 

Six subjects were each asked to rank five coffee sweeteners according to their taste pref­
erences, with rank 5 assigned to the most preferred sweetener. The data are presented in 
Table 27.4 and suggest that a sweetener effect may be present. For example, no judge ranked 
sweetener B higher than 2 (not prefelTed). 

Test statistic (21.7b) for the ranked data here is: 

. 9.00 
F~ = - =7.5 

R 1.20 

For level of significance ex = .05, we need F(.95; 4,20) = 2.87. Since F~ = 7.5 > 2.87, 
we conclude that the five sweeteners are not equally liked. The P-value of the test is .0007. 

Multiple Pairwise Testing Procedure 
Just as in the case of the rank F test for single-factor studies (Section 18.7), we can use 
a large-sample testing analog of the Bonferroni pairwise comparison procedure to obtain 
information about the comparative magnitudes ofthe treatment means for repeated measures 
designs when the rank F test (orthe Friedman test) indicates that the treatment mean~diff'et: 
Testing limits for all g = 1'(1' - 1)/2 pairwise comparisons using the mean ranks R.j are 
set up as follows for family level of significance ex: 

_ _ [r(r + I)] 1/1 
R.; - R./ ± B 

6s 
(27.9) 
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where: 

B = z(1 - a/2g) 

r(r - 1) 
g=---

2 

(27.9a) 

(27.9~) 

If the testing limits include zero, we conclude that the corresponding treatment means J.1,.j 

and J.1,.j' do not differ. If the testing limits do not include zero, we conclude that the two 
corresponding treatment means differ. We can then set up groups of treatments whose means 
do not differ according to this simultaneous testing procedure. 

We now wish to make all pairwise tests by means of (27.9) with family level of significance 
a = .20 for the coffee sweeteners example. Forr = 5, wehaveg = 5(4)/2 = lOandobtain: 

B = z[1 - .20/2(10)] = z(.99) = 2.326 

Thus, the right term in (27.9) for s = 6 and r = 5 is: 

[
r(r + 1)] 1/2 _ [5(6)] 1/2 _ 

B - 2.326 - - 2.12 
6s 6(6) 

We note from Table 27.4 that the pairs of mean ranks whose difference does not exceed 
2.12 are (B, C), (B, E), (C, E), (A, E), (D, E), and (A, D). Hence, we can set up two groups, 
within which the treatment means do not differ: 

Group 1 

Sweetener B 

SweetenerC 

Sweetener E 

R.2 = 1.50 

R.3 = 2.00 

R.s = 3.17 

Group 2 

Sweetener E 

Sweetener A 

Sweetener D 

R·s=3.17 
R., =4.17 

R·4=4.17 

Thus, we conclude with family level of significance of .20 that sweeteners A and D are 
preferred to sweeteners Band C, and that it is not clear whether sweetener E belongs in the 
preferred group or in the other group. 

Comments 

1. The rank F test can also be used for repeated measures designs where the observations are not 
ranked, in case the distribution of the error terms departs far from normality. Ranks of the observations 
~j are then assigned within each subject, and the rank F test is carried out in the usual manner. 

2. The test statistic F~ is related to Kendall's coefficient of concordance W in the following way: 

F* 
W= R 

F~+n-l 
(27.10) 

The coefficient of concordance W is a measure of the agreement of the rankings of the s SUbjects. It 
equals 1 if there is perfect agreement, and equals 0 if there is no agreement, that is, if all treatments 
receive the same mean ranking. For the coffee sweeteners example in Table 27.4, the coefficient of 
concordance W is: 

7.5 
W= =.60 

7.5 + 6 - I 

This measure indicates that a fair amount of agreement exists between the subjects. • 
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27.3 Two-Factor Experiments with Repeated Measures 
on One Factor 

Description of Design 

FIGURE 27.5 
Layout for 
Two-Factor 
Design with 
Random 
Assignments of 
Factor A Level 
to Subjects and 
Repeated 
Measures on 
Factor B. 

In many two-factor studies, repeated measures can only be made on one of the two factors 
Consider, for instance, an experimenter who wished to study the effects of two types of 
incentives (factor A) on a person's ability to solve problems. The researcher also wanted to 
study two types of problems (factor B)-abstract and concrete problems. Each experimental 
subject could be asked to do each type of problem, but could not be exposed to more than 
one type of incentive stimulus because of potential interference effects. Thus, the design 
the experimenter utilized may be represented schematically as shown in Figure 27.5. 

In a two-factor experiment with repeated measures on one factor, two randomizations 
generally need to be employed. First, the level of the nonrepeated factor (A, in Figure 27.5) 
needs to be randomly assigned to the subjects. Second, the order of the levels of the repeated 
factor (B, in Figure 27.5) needs to be randomized independently for all subjects. 

Since s subjects are randomly assigned incentive stimulus A 1 and s subjects are randomly 
assigned incentive stimulus A2 , as far as factor A is concerned the experiment is a completely 
randomized one. On the other hand, as far as factor B (type of problem) is concerned, each 
subject is a block. Thus, for factor B, the experiment is a randomized complete block design, 
with block effects random. We call this experimental design a two-factor experiment with 
repeated measures on factor B. 

In the experiment depicted in Figure 27.5, comparisons between factor A level means 
involve differences between groups of subjects as well as differences associated with the 
two factor A levels. On the other hand, comparisons between factor B level means at the 
same level of factor A are based on the same subject, and hence only involve differences 
associated with the two factor B levels. Thus, for these latter comparisons, each subject 
serves as its own control. The main effects of factor A are therefore said to be confounded 

Treatment 
Order 

Incentive Stimulus Subject 2 

AlBl AlB2 

Al 

5 Al~ AlB2 

5 + 1 A2B2 A2~ 

A2 

25 A2Bl A2B2 



Model 
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with differences between groups of subjects, whereas the main effects of factor B are free 
of such confounding. It is for this reason that tests on factor B main effects will generally 
be more sensitive than tests on the main effects for factor A. 

Comments 
1. A two-factor experiment with repeated measures on one factor may be viewed as an incomplete 

block design. With reference to the repeated measures design in Figure 27.5, there are four treatments 
(AI B" AI B2, A2BI, and A2B2) and one-half of the blocks (subjects) contain treatments AI BI and 
A I B2 while the other half of the blocks contain treatments A2BI and A2B2. 

2. When the factor on which repeated measures are taken is time, randomization of the levels of the 
repeated factor is impossible. Consider, for instance, a study of two different advertising campaigns 
in which the effect on sales is to be measured in 10 test markets during four consecutive months. 
Here, the only randomization required is for assigning the advertising campaigns to the test markets. 
Similarly, when the nonrepeated factor is a characteristic of the subject, such as age of subject, no 
randomization is involved for that factor. • 

The development of a model for a two-factor experiment with repeated measures on one 
factor is only a little more complex than for earlier cases. As before, we shall develop the 
model for random subject effects and fixed factor A and factor B effects. Let, as usual, 
aj and fJk denote the factor A and factor B main effects, respectively, (afJ)jk the AB 
interaction effect, and p the subject (block) main effect. We do need to recognize, however, 
that the subject effect in this design is nested within factor A. Therefore, we will denote this 
effect by PiW. As before, we assume that there are no interactions between treatments and 
subjects, although this condition is not essential here. A model that incorporates the above 
specifications is as follows for a balanced study, where the number of subjects receiving 
each level of factor A is the same: 

where: 

fJ., ••• is a constant 

pi(j) are independent N (0, u;) 

a j are constants subject to La j = ° 
fJk are constants subject to LfJk = ° 

(27.11) 

(afJ)jk are constants subject to Lj(afJ)jk = ° for all k andLk(afJ)jk = ° for all j 

Cljk are independent N(O, ( 2
) 

Pi(j) and Cijk are independent 

i = 1, ... , s; j = 1, ... , a;k = 1, ... , b 

The observations Yijk forrepeated measures model (27.11) have the following properties: 

E{Yijd = fJ., ••• +aj + fJk + (afJ)jk 

2{y} 2 2 2 
U ijk = uy = Up + u 

u{Y1jk. Yijkl} = u; 

u{Yijk. Yi, j'k'l = ° 
k =1= k' 

i =1= i' and/or j =1= j' 

(27.12a) 

(27.12b) 

(27.12c) 

(27.12d) 
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Note that the observations Yijk have constant variance. In addition, in advance of the r d 
an om 

tlials any two observations for different levels of factor B for the same subject have COns 
covariance, for all subjects, while observations for different subjecIS are independent. A~nt 
all observations are assumed to be normally distributed. so, 

Once the subjects have been selected, repeated measures model (27.11) aSSumes that 
two observations for the same subject are independent, that is, that there are no interfere~:~ 
effects. 

Analysis of Variance and Tests 
Analysis of. Variance. The ANaYA s.ums of sql~ares for repeated measures model (27.11) 
can be obtawed by means of the rules w Appendix D. The sum of squares that is used for 
estimating the error variance turns out to be the interaction sum of squares SSB.S(A). The 
ANaYA sums of squares are shown in Table 27.5. Also shown there are the degrees of 
freedom for each sum of squares. 

Tests for Factor Effects. The expected mean squares for the analysis of variance in 
Table 27.5 are given in Table 27.6. These expected mean squares can be obtained by means 
of the rules in Appendix D. 

It is clear from the expected mean squares in Table 27.6 that the test for AB interaction 
effects: 

uses the test statistic: 

Ho: all (afJ) jk = 0 

Ha: not all (afJ)jk equal zero 

F* = _M_S_A_B_ 
MSB.S(A) 

(27.13a) 

(27. 13 b) 

TABLE 27.5 Analysis of Variance for Two-Factor Experiment with Repeated Measures on 
Factor B-Model (27.11). 

Source of Variation SS df 

Factor A SSA = bs L(Y.,. - y' •• )2 0-1 

Factor B SSB = as L(Y..k - Y..Y b-1 
k 

AB interactions SSAB = S L L(Y.jk - Y.j. - Y..k + y"')2 (0-1)(b-1) 
k 

Subjects (within factor A) O(s - 1) 

Error SSB.S(A) = L L L(Y;jk - Y.jk - Y;j- + y.j-)2 O(s -1)(b-1) 

k 

Total obs-1 



TABLE 27.6 
~pected Mean 
squares for 
:-o-Factor 
" xP~riment 
~th Repeated 
,,~on 

iactorB-
'Model (27.11) 

'(it, B fixed, 
;;mjects 
rlqldom). 
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MS' li:fMS} " 

<i·>¥l.ij*1i<~ti; 
r~~'+H~~~' 

AB;'iDi~radfl()'1~ M$~~: . "'.;4c~&~~~3i) 
'$ul?jec~ '(With frt~f~.Cl:9~:A) M$~(~)' 

fi:1S({~(:7±); 

'el!/tbp:; 
'Err,or 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1 - a; (a - l)(b - 1), a(s - l)(b - 1)], conclude Ho 

If F* > F[1 - a; (a - l)(b - 1), a(s - l)(b - 1)], conclude Ha 

The test for factor A main effects: 

uses the test statistic: 

Ho: allaj = 0 

Ha: not all a j equal zero 

F* = _M---:-:-SA_ 
MSS(A) 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1- a;a - 1, a(s - 1)], conclude Ho 

If F* > F[1- a;a - 1, a(s - 1)], conclude Ha 

Finally, the test for factor B main effects: 

uses the test statistic: 

Ho: all fJk = 0 

Ha: not all fJk equal zero 

F* = ----,-M_S-,-'B_ 
MSB.S(A) 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1 - a; b - 1, a(s - l)(b - 1)], conclude Ho 

If F* > F[1 - a; b - 1, a(s - l)(b - 1)], conclude Ha 

(27.13c) 

(27.14a) 

(27.14b) 

(27.14c) 

(27.15a) 

(27.15b) 

(27.15c) 
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Comments 

I. When the assumption of compound symmeIrY in repeated measures model en II) is -. . not met 
the conservative tcst discussed in Comment 2 on page 1065 should be employed. ' 

2. When the study is not balanced (i.e., when the number of subjects within each level of fact A' . , or \s 
not the same), the tests described here are no longer appropriate. Instcad, the methods forunbalan 
mixed and random effect~ models discussed in Section 25.7 can he employed. ~ 

Evaluation of Appropriateness of Repeated Measures Model 
Our earlier discussion on evaluating the appropriateness of a repeated mea~ures model 
applies here also. The residuals for repeated measures model (27.11) are: 

(27.16) 

A special feature of repeated measures model (27.11) also warrants attention. This model 
requires that the variance between subjects, (5f~' be constant for all levels of factor A. This 
assumption can be examined by dot plots of the estimated subject effects Y;j. - Y. i. for each 
level of factor A. 

We can also conduct a formal test of the equality of the between-subjects variances by 
noting that the variation between subjects within factor A, SSS(A), can be decomposed into 
components for each factor A level: 

SSS(A) = SSS(Ar) + SSS(A~) + '" + SSS(A lI ) (27.17) 

where: 

(27.17a) 

Each component sum of squares has il - I degrees of freedom associated with it. We can 
therefore test the equality of the between-subjects variances by means of the Hattley teSt 
statistic (18.8) or the Brown-Forsythe test statistic (18.12). For the latter test, d i ; in (18.11) 

is defined as the absolute difference between the estimated mean, YiJ ., and the median of 

the estimated means YIJ .. ... , Y,tj .. 
Similarly, the error variation, SSB.S(A), can be decomposed into components for each 

factor A level: 

SSB.S(A) = SSB.S(Ar) + SSB.S(A~) + .. , + SSB.S(A lI ) (27.18) 

where: 

(27.18a) 

Each component has (s - I) (b - I) degrees of freedom a~sociated with it. The Hattley or 
Brown-Forsythe tests can be conducted here also, this time to test for the equality of the 
error variance (52 for the different factor A levels. 

The Hartley test assumes normality and is sensitive to this assumption. Hence, the 
appropriateness of the normality assumption should be established first before the Hartley 
test is employed. Unlike the Hartley test, the Brown-Forsythe test is robust and relatively 
insensitive to departures from normality. 
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':Analysis of Factor Effects: Without Interaction 
.. When the two factors do not interact or the interactions are not important, the main effects 

may be analyzed in a straightforward fashion. The relevant mean square to be used in the 
estimated variance of an estimated contrast of factor A level means for repeated measures 
model (27.11) is MSS(A) because this mean square is the denominator of the appropriate 
F* statistic for testing factor A main effects. Similarly, the mean square for estimating 
contrasts of factor B level meanS is MSB.S(A). 

Example 1 

The multiples for the estimated standard deviation of an estimated contrast of factor A 
or factor B level means are as follows: 

Main A Effect Main B Effect 

Single comparison 

t[l - aj2; o(s - 1)] t[l -aj2;0(s-1)(b-1)] (27.19a) 

Tukey procedure (for pairwise comparisons) 
1 1 

T = .J2q[l - a; 0, o(s - 1)] T = .J2q[l - a; b, o(s - l)(b - 1)] (27.19b) 

Scheffe procedure 

52 = (o-l)F[l - a;o-l, o(s -1)] 

52 =(b-1)F[1-a;b-1,o(s-1)(b-1)] (27.19c) 

Bonferroni procedure 

B = t[l - aj2g; o(s - 1)] B = t[l - aj2g; o(s -l)(b - 1)] (27.19d) 

Note from Table 27.6 that the analysis of factor B effects can be carried out more precisely 
than that for factor A effects. The reason is that comparisons among factor A levels utilize 
MSS(A), which involves the variability among the subjects as well as the experimental 
error, while comparisons among factor B levels utilize MSB.S(A), which involves only 
experimental error. 

A national retail chain wanted to study the effects oftwo advertising campaigns (factor A) 
on the volume of sales of athletic shoes over time (factor B). Ten similar test markets (sub­
jects, S) were chosen at random to participate in this study. The two advertising campaigns 
(A I and A2 ) were similar in all respects except that a different national sports personality 
was used in each. Sales data were collected for three two-week periods (B\: two weeks 
prior to campaign; B2: two weeks during which campaign occurred; B3: two weeks after 
campaign was concluded). The experiment was conducted during a six-week period when 
sales of athletic shoes are usually quite stable. 

The data on sales (coded) are presented in Table 27.7, and are plotted in Figure 27.6 
by test market for each advertising campaign. There is no evidence in Figure 27.6 of any 
interactions between the test markets and the treatments. In general, sales tended to increase 
during each advertising campaign, and then tended to decline to previous or lower levels 
than just before the campaign. 
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TABLE 27.7 
Data-Athletic 
Shoes Sales 
Example. 

FIGURE 27.6 
Plots of Sales 
Data by Test 
Market and 
Campaign-
Athletic Shoes 
Sales Example. 

Specialized Stll((V Desigl1.~ 

Advertising Test 
Time Period 

Campaign Market k=l k=2 k=3 

i = 1 958 1,047 933 
i = 2 1,005 1,122 986 

j=l i=3 351 436 339 
i = 4 549 632 512 
i = 5 730 784 707 

i = 1 780 897 718 
;'=2 229 275 202 

j=2 'i = 3 883 964 817 
i=4 624 695 599 
i=5 375 436 351 

(a) Campaign 1 (b) Campaign 2 

!ilk Yi2k 

~ 
~ 900 900 

----------. 700 700 ----------. ~ 500 500 

~ -----------. 
300 300 ----------0 0 

2 3 2 3 
Period Period 

From Figure 27.6 and other diagnostic analyses (not shown), it was concluded that 
repeated measures model (27.11) is appropriate here. Figure 27.7 contains the MINITAB 
output for the fit of this model. 

First we wish to test for campaign-time interaction effects: 

Ho: all (afJ) it = 0 

Ha: not all (afJ) jk equal zero 

We use the results from Figure 27.7 in test statistic (27.13b): 

* MSAB 196 
F"= = - = 55 

MSB.S(A) 358 . 



) 

jtURE27.7 
'mAD 

ootputfor 
\'~oVA­

AtbIetic Shoes 
Si!Ies Example. 

Factor Type Levels 
A fixed 2 
S(A) random 5 
B fixed 3 

Analysis of Variance for Y 

Source DF 

A 1 
S(A) 8 
B 2 

SS 
168151 

1833681 
67073 

A*B 2 391 
Error 16 5727 

Total 29 2075023 

Chapter 27 Repeated Measures and Related Designs 1147 

Values 
2 
2 3 
2 3 

MS 
168151 
229210 

33537 
196 
358 

71553 

4 5 

F P 

0.73 0.417 
640.31 0.000 

93.69 0.000 
0.55 0.589 

Source Variance Error Expected Mean Square 

1 A 
2 S(A) 
3B 
4A*B 
5 Error 

MEANS 

A N 
1 15 
2 15 

B N 

1 10 
2 10 
3 10 

Component 

76284.0 

358.0 

Y 
739.40 
589.67 

Y 
648.40 
728.80 
616.40 

Term 
2 
5 
5 
5 

(using restricted model) 
(5) + 3(2) + 15Q[1] 
(5) + 3(2) 
(5) + 10Q[3] 
(5) + 5Q[4] 
(5) 

Forlevel of significance a = .05, we require F(.95; 2, 16) = 3.63. Since F* = .55 ~ 3.63, 
we conclude Ho, that no significant interaction effects are present. The P-value for the test 
is .59. 

Next we wish to test for advertising campaign main effects: 

Ho: all aj = 0 

Ha: not all a j equal zero 

We use the results from Figure 27.7 in test statistic (27. 14b): 

* MSA 168,151 3 
F = MSS(A) = 229,210 = .7 

Forlevel of significance a = .05, we require F(.95; 1,8) = 5.32. Since F* = .73 ~ 5.32, 
we conclude Ho, that no advertising campaign main effects exist. The P-value for the test is 
.42. Thus, either of the two national sports personalities is equally effective in the advertising 
campaign. 
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Finally, we wish (() test for time period effects: 

H{f: alllh = 0 

H,,: not all f:3k equal zero 

Using the results from Figure 27.7 in (est statistic (27 .15b), we obtain: 

MSB 33,537 
F* = = -- =93.7 

MSB.S(A) 358 

Forlevelofsignificancea = .05, we require F(.95; 2, 16) = 3.63. Since F* = 93.7> 3.63 
we conclude H", that period main effects exist. The P-value for the test is 0+. ' 

To examine the nature of the time period effects, we shall conduct pairwise comparisons 
of mean sales for the three time periods: 

L = fl··k - fl··k' 

The Tukey procedure will be employed, with a 99 percent family confidence coefficient 
We require: 

I I 
T = J2 q (.99; 3, 16) = .)2(4.78) = 3.38 

o A 2MSB.S(A) 2(358) 
s-{L} = -- -- = -- = 71.60 

as 2(5) 

Hence, Ts{L} = 3.38)71.60 = 28.6. 
The point estimates of the changes in mean sales, based on the estimated factor B level 

means Y..k in Figure 27.7, are: 

LI = Y..2 - Y..I = 728.8 - 648.4 = 80.4 

L2 = Y..3 - VI = 616.4 - 648.4 = -32.0 

L3 = V3 - Y..2 = 616.4 - 728.8 = -112.4 

and the desired oonfidence intelvais therefore are: 

52 ::: fl .. 2 - fl·· I ::: 109 

-61 ::: fl··3 - fl .. 1 :::-3 

-141 ::: fl .. 3 - fl .. 2 ::: -84 

We conclude with family confidence coefficient. 99 that the two advertising campaigns lead 
to an immediate increase in mean sales of between 52 and 109 (8 to 17 percent), but that 
mean sales in the following period fall below those for the period preceding the campaign 
by somewhere between 3 and 61 (.5 to 9 percent). 

Analysis of Factor Effects: With Interaction 
When interactions exist between the two factors, the analysis of factor effects becomes con­
siderably more complex. As we saw in Chapter 19, page 848, when interaction effects are 
important, attention usually focuses on simple effects. To compare simple main effects of 
the repeated measure factor B, the appropriate error term for these pairwise comparis?ns 
remains MSB.S(A), the same as when there is no interaction. However, the appropnate 
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error term used for the pairwise comparisons of the simple main effects for factor A needs 
to be modified from that used without interaction in comparing main effects of factor A. For 
each level of factor B considered individually, the analysis reduces to a single-factor exper­
iment in which there are no repeated measures. Hence, the mean square within treatments 
is the appropriate error term to make pairwise comparisons among the treatment effects 
within each level of factor B. This mean square is a weighted average of MSB.S(A) and 
MSS(A) where the weights are the corresponding degrees of freedom: 

S( th
o a(b - 1)(s - I)MSB.S(A) + a(s - I)MSS(A) 

M Wi III Treatments) = --'------'-'---'------'---'----'------'--'­
ab(s - 1) 

Note that MS(Within Treatments) is a linear combination of mean squares whose expecta­
tions are not necessarily the same. Stated differently, MS(Within Treatments) represents a 
pooling of what will often be heterogeneous sources of variability. 

To employ this error term as a basis for pairwise comparisons among the simple main 
effects, we employ the Satterthwaite procedure. The correspondences to (25.26) for L = 
MS(Within Treatments) are: 

MSI = MSB.S(A) 
a(b - 1)(s - 1) 

C I = 
a(s - 1) 

C2= ----
ab(s - 1) 

MS2 = MSS(A) 
ab(s - 1) 

Substitution of these values into (25.28) leads to the Satterthwaite adjusted degrees of 
freedom: 

[SSB.S(A) + SSS(A)]2 
dfadj = -----------

[SSB.S(A)]2 [SSS(A)]2 ------ + ----
a(b - 1)(s - 1) a(s - 1) 

(27.20) 

We will now illustrate the analysis of factor effects in the presence of interactions with an 
example. 

During exercise, blood flow increases in some parts of the body in response to metabolic 
demand. Using radioactive micro spheres, an experiment was conducted to determine in 
which of five parts of the body (factor B) this occurs. Microspheres distribute in tissue 
as a function of blood flow; i.e., the greater the blood flow to a part of the body, the 
more microspheres (and radioactivity) it will contain. The experiment was designed to 
compare blood flow in five different parts of the body (factor B) between the resting control 
condition (factor A \) and during exercise (factor A2)' Tissues were examined in the following 
parts of the body: bone, brain, skin, muscle, and heart. The experiment was conducted by 
injecting a total of eight rats (subjects) intravenously with radioactive microspheres. After 
the micro spheres were injected, four rats were exercised on a treadmill for 15 minutes (factor 
A2) and the other four rats were placed on the treadmill, but the treadmill was not turned 
on (factor AI)' At the end of the IS-minute period, the rats were sacrificed and tissues in 
the five parts were harvested and the radioactivity in the tissues was measured. The data for 
this blood flow experiment are presented in Table 27.8 and plotted in Figure 27.8 by body 
part for each exercise condition. 

On the basis of Figure 27.8 and other diagnostic analyses (not shown), it was decided 
that repeated measure model (27.11) is appropriate here. Table 27.9 contains the analysis 
of variance table based on repeated measures model (27.11). 
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TABLE 27.8 
Data-Blood 
Flow during 
Exercise 
Example.* 

TABLE 27.9 
Analysis of 
Variance 
Table-Blood 
Flow during 
Exercise 
Example. 

Body Part 

Exercise k=l k=2 k=3 k=4 k=5 
Condition (Bone) (Brain) (Skin) (Muscle) (Heart) 

(No Exercise) i = 1 4 3 5 5 4 
i=2 1 3 6 3 8 

j = 1 i= 3 3 1 4 4 7 
i=4 1 4 3 2 7 

(Exercise) i = 1 3 6 12 22 11 
j = 2 3 5 8 18 12 

j=2 "!'= 3 4 7 10 20 14 
i=4 2 4 7 16 8 

>I< Adupted from FJ. Gordon. Alllliy,\'i,'i qrVmlallce: Deslglls. COIII;JUIClIioIlS. (lila Multiple COl1tpllri,mus. Department ofPharmaco\ogy. 
Emory University School of Medicine, 2003. 

Source of 
Variation SS df MS F* P-value 

A 324.9000 324.9000 44.104 .0006 
S(A) 44.2000 6 7.3667 
B 389.5000 4 97.3750 49.936 .0000 
AB 262.1000 4 65.5250 33.603 .0000 
B.S(A) 46.8000 24 1.9500 

Total 1067.5000 39 

FIGURE 27.8 Plot of Exercise Condition by Body Part for Each Rat-Blood Flow during Exercise Example. 

(a) No Exercise (A,) (b) Exercise (A2) 

25 25 

20 20 

~ 15 
~ 15 0 0 
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5 5 

0 0 

Bone Brain Skin Muscle Heart Bone Brain Skin Muscle Heart 
Body Part (B) Body Part (B) 
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First we wish to test for exercise by body part interaction effects: 

Ho: all (afJ)jk = 0 

Ha: not all (afJ)jk equal zero 

We use the results from Table 27.9 as the test statistic (27. 18a): 

* _ MSAB _ 65.5250 _ 33 03 F - - -.6 
MSB.S(A) 1.9500 

For level of significance a = .05, we require F(.95; 4,24) = 2.776. Since F* = 33.6 > 
2.776, we conclude Ha, suggesting that interaction effects are present. The P-value for the 
test is 0+. 

Next, because of the presence of a strong interaction effect, we wish to compare simple 
main effects of the repeated measures factor B (body part). We shall conduct pairwise 
comparisons of mean blood flows among body parts separately within the exercise and no 
exercise conditions; namely, 

No Exercise 

Dl = p.,.ll - p.,.12 

D2 = p.,.11 - p.,.13 

D3 = p.,.11 - p.,·14 

D4 = p.,·11 - p.,.15 

D5 = p.,.12 - p.,·13 

D6 = p.,.12 - p.,.14 

D7 = p.,.12 - p.,.15 

D8 = p.,·13 - p.,·14 

D9 = p.,·13 - p.,.15 

DlO = p.,.14 - p.,.15 

Exercise 

D11 = p.,.2l - p.,.22 

D12 = p.,·2l - p.,.23 

D 13 = p.,.2l - p.,.24 

D14 = p.,.2l - p.,·25 

D 15 = p.,·22 - p.,,z3 

D 16 = p.,.22 - p.,.24 

D17 = p.,.22 - p.,.25 

D 18 = p.,.23 - p.,·24 

D19 = p.,.23 - p.,.25 

D 20 = p.,.24 - p.,.25 

The Tukey procedure will be employed, with a 90 percent confidence coefficient, for each 
exercise condition. Then to combine these two Tukey procedures, a Bonferroni adjustment 
will be made for each exercise condition. Thus, we require 

1 4.17 
T = -j2q(.95;5,24) = -j2 = 2.95 

2{ A } _ 2MSB.S(A) _ 2(1.95) _ 9 5 
sD- - -.7 

s 4 

where .95 is used in the T argument instead of .90 to incorporate the Bonferroni adjustment 
for the two conditions. Hence, Ts{D} = 2.95,J.975 = 2.91. Table 27.10 lists the cell 
means by exercise group and body part. 

Any means within an exercise group that differ by more than 2.91 units are concluded 
to be significantly different from one another at the .10 level of significance. Therefore, 
for the no exercise group, heart is significantly different from bone, brain, and muscle. For 
the exercise group: heart is significantly different from bone, brain, and muscle; muscle is 
significantly different from bone, brain, skin, and heart; and skin is significantly different 
from bone, brain, and muscle. 
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TABLE 27.10 Treatment Means by Exercise Group and Body Part-Blood Flow dUri 
Exercise Example. ng 

k=l k=2 k=3 k=4 -k=5 
(Bone) (Brain) (Skin) (Musde) (Heart) 

i = 1 (No exercise) 2.25 2.75 4.50 3.50 6.50 
i = 2 (Exercise) 3.00 5.50 9.25 19.00 11.25 

To examine simple main effects of the nonrepeated measure factor A (exercise) for each 
level of B (body pm'l). we shall conduct the five pairwise comparisons of mean blood flows 
between the two exercise gfOups within each body part; namely, 

DI = fl·11 - fl·~1 

D~ = fl·1 ~ - fl·~~ 

D3 = fl.13 - IL~3 

D4 = fl·l~ - fl·24 

D5 = fl·15 - fl·25 

The Tukey procedure will be employed using a 95 percent confidence coefficient for each 
body pal'l with a BonferfOni adjustment for the five body pm'ls. The within-treatment sum 
of squares is 

SS(Within Treatments) = SSB.S(A) + SSS(A) = 46.8000 + 44.2000 = 91.0000 

The approximate Satterthwaite adjusted degrees offreedom from (27.20) are: 

df"d,; = 
146.8000 + 44.2000J2 

(46.80oo)~ (44.2oo0)~ 

8281.0000 = = 19.86 
416.8667 

2(4)(3) + 2(3) 

Being conservative, we use df"",; = 19 associated with MS(Within TI'eatments), where 

91.0000 
MS(Within Treatments) = = 3.033 

30 

Thus, we require 

I 4.05 
T = J2CJ(.99;2. 19) = J2 = 2.86 

s~{D} = 2MS(Within Treatments) = 2(3.033) = 1.52 
s 4 

Hence. Ts{D} = 2.86~ = 3.53. Any means within body parts that differ by more than 
3.53 units are significantly different from one another at the .10 level of significance. There­
fOI'e, we conclude that average blood flow for skin, muscle, and hem'l diffeI' significantly 
between exeI'cise gcoups. 
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FIGURE 27.9 Treatment Order 

Layout for 2 
mocked 
Repeated Subject 1 A2B, A2B2 

l\1easures Block 1 

Design with 
Subject 2 A,B2 A,B, 

Random 
Assignments of 

Subject 3 A,B2 A,B, 
Factor A Level Block 2 
to Subjects and Subject 4 A2B2 A2B, 
Repeated 
l\1easures on 
Factor B. 

Subject 2nb - 1 A,B, A,B2 
Block nb 

Subject 2nb A2B2 A2B, 

Blocking of Subjects in Repeated Measures Designs 
As already noted, comparisons among factor B effects can usually be carried out with 
greater precision than those for factor A effects because the latter involve between-subject 
variability as well as experimental error. To improve the preciSion of factor A comparisons, 
it is often helpful to block the subjects by some appropriate characteristic(s) so that the 
subjects within a block are homogeneous. Figure 27.9 illustrates the blocking of subjects 
in connection with the repeated measures design of Figure 27.5. Altogether, nb blocks 
are used, each consisting of two similar subjects. One subject in each block is assigned at 
random to factor level AI> the other is assigned to factor level A 2• In the second stage of 
randomization, each subject is randomly assigned the order of the two levels of factor B, 
namely, type of problem. Thus, the only difference between the repeated measures designs 
in Figures 27.9 and 27.5 is the blocking of the subjects for purposes of studying factor A 
effects more precisely. Note that for this layout, the number of subjects is s = 2nb. 

When there is a choice between which of the two factors should be the one on which 
repeated measures are taken (factor B), it should be the one for which more precise estimates 
are required. The reason is that even with blocking, the variability between subjects within 
a block will usually be greater than the variability within a subject. 

27.4 Two-Factor Experiments with Repeated Measures 
on Both Factors 

In Section 27.2 we considered single-factor repeated measures studies. The model for these 
designs can be extended when the treatments follow a factorial structure. For example, 
consider a study where four treatments are employed that represent two levels of each of 
two factors. Figure 27.10 depicts the layout for such a design when four subjects are utilized 
in the study. Note that the order of the treatments is randomized within each subject. When 
the treatments represent a factorial structure, we can explore as usual interaction effects as 
well as the main effects for the two factors. The design in Figure 27.10 is said to represent 



1154 Part Six 

FIGURE 27.10 
Layout for 
Two-Factor 
Repeated 
Measures 
Design with 
Repeated 
Measures on 
Both Factors 
(s =4,a =2, 
b=2). 

Model 

Speciali:ed SlIIdr /)('siK"s 

Treatment Order 

2 3 4 

Subject 1 A,B2 A2B2 A,B, A2B, 

2 A2B, A,B2 A2B2 A,B, 

3 A2B2 A,B, A2B, A,B2 

4 A,B, A2B, A,B2 A2B2 

repeated meOSllres 011 both factors because each subject receives all treatments defined by 
the factorial structure. 

When both fuclOr effects are fixed. the subjects constitute a fandom sample, and there are 
repeated measures on both factors. a model frequently appropriate is given by: 

YUk = fl··· + Pi + a j + !3~ + (a{3) ik + (pa)ij + (P{3)ik + Cijk (27.21) 

where: 

fl ... is a constant 

Pi are independent N (0, af~) 

a j are constants subject to ~a j = 0 

I->~ are constants subject to L!3k = 0 

(a{3) ik are constants subject to L/af:!) i~ = 0 for all k and Lk (a{3)jk = 0 for all j 

(p!3h afe N (0. b: I af~fl) subject to the restfictions Lk(P!3h = 0 for all i 

a{(p{3h. (p!-»id = - ~a;fl fOf k of- k' 

( a-I,) . '" " II' (pa);; are N O. --ap-a subject to the restnctions L- . (pa)ij = 0 lor a I 
a j 

a{(pa)ij. (pa);!') = -~af~a for.i of- / 
a 

Pi, (pa)i; and (P!3)ik are pairwise indepelldent 

Cijk are independent N(O, ( 2
) and independent of Pi, (pa)ij and (pf:!h 

i= l. ... ,s;j= l •... ,a:k= l. .... b 

Note that two of the interaction terms in the model are fandom since the factor Pi is a 
random effect and that all sums of effects over the fixed factor levels ure zero. 

The observations Yi;k for repeated meaSUfes model (27.21) have the following properties: 

E{Yijd = fl ... + aj + f:!~ + (a{3)jk (27.22a) 

(27.22b) 
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Model (27.21) is an extension of the single-factorrepeated measures model (27.1), where 
the treatment effect Lj is now decomposed into factor A and factor B main effects and an 
AB interaction effect. However, separate first-order treatment-by-subject interaction terms 
are assumed to exist. 

Once the subjects have been selected, repeated measures model (27.21), like the earlier 
repeated measures model (27.1), assumes that all of the treatment observations for a given 
subject are independent-that is, that there are no interference effects. 

Analysis of Variance and Tests 
~,' Analysis of Variance. The ANOVA sums of squares for model (27.21) and the expected 

mean squares can be obtained readily by following the rules in Appendix D. The sum of 
squares for estimating the error variance terms reflects the interactions between treatments 
and subjects. Table 27.11 presents the ANOVA decomposition, degrees of freedom, and 
expected mean squares for two-factor repeated measures model (27.21). 

Tests for Factor Effects. It is clear from the expected mean squares column in 
Table 27.11 a that the test for AB interaction effects: 

uses the test statistic: 

Ho: all (afJ)jk = 0 

Ha: not all (afJ)jk equal zero 

F* = MSAB 
MSABS 

and the decision rule for controlling the Type I error at a is: 

If F* ::s F[I - a; (a - I)(b - 1), (a - I)(b - I)(s - 1)], conclude Ho 

If F* > F[1 - a; (a - I)(b - 1), (a - I)(b - I)(s - 1)], conclude Ha 

The test for factor A main effects: 

uses the test statistic: 

Ho: all aj = 0 

Ha: not all aj equal zero 

F* = MSA 
MSAS 

and the decision rule for controlling the Type I error at a is: 

If F* ::s F[1 - a; a - 1, (a - I)(s - 1)], conclude Ho 

If F* > F[1- a;a - 1, (a - I)(s - 1)], conclude Ha 

Similarly, the test for factor B main effects: 

uses the test statistic: 

Ho: all fJk = 0 

Ha: not all fJk equal zero 

* MSB 
F =-­

MSBS 

(27.23a) 

(27.23b) 

(27.23c) 

(27.24a) 

(27.24b) 

(27.24c) 

(27.25a) 

(27.25b) 
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TABLE 27.11 
ANOVA Table 
and Sums of 
Squares for 
Two-Factor 
Repeated 
Measures 
Design with 
Repeated 
Measures on 
Both Factors­
Subjects 
Random, 
Factors A and 
B Fixed. 

(a) ANOVA Table 

Source of 
Variation SS df 

Subjects(S) SSS s-l 

Factor A SSA 0-1 

Factor B SSB b-1 

AB interactions SSAB (a -1)(b-1) 

AS interactions SSAS (a - 1 )(s - 1) 

BS interactions SSBS (b - 1 )(s - 1) 

Error 

Total 

SSABS (a -1)(b-1)(s -1) 

ssm abs -1 

(b) Sums of Squares 

SSS = ab L(Y;" - y' .. )2 
j 

SSA = sb L(Y.;, - y' .. )2 

I 

SSB = so L(Y.'k - y' .. )2 
k 

SSAB = s L L(Y.;k - Y.;. - Y.'k + Y...i 
j k 

SSAS = b L L(}\' - Yj •• - Y.;. + y' .. )2 
; 

SSBS = a LL(Yi•k - Yj •• - Y" k + y ... )2 
i k 

MS 

MSS 

MSA 

MSB 

MSAB 

MSAS 

MSBS 

MSABS 

La2 

a 
2 + bu;, + bs----.!.-

0-1 

a
2 + aa2 + asb!!l 

f'fJ b-1 

2 LL(afJ)}k 
a +s~-_~_ 

(a -1)(b-1) 

a 2 + bu2 

"" 
a 2 + aa;{J 

a 2 

SSAB: = L LL(Yj;k - Y,i· - Yj'k - Y';k + Y, .. + Y.;. + Y..k - y' .. )2 
k 

and the decision rule for controlling the Type L eI"roI" at a is: 

Comments 

If F' :::: F[ I - a: b - I, (b - I)(s - I )]. conclude Ho 

If F* > FII - a;b - I, (b - I)(s - 1)1, conclude H" 
(27.2Sc) 

I. When the effects of either factor A or factor B are random, the expected mean squares can be 
found by employing the rules in Appendix D. In tum. thelie expected mean ~quares will identify the 
appropriate test statistics. 

2. Conservative F tests described in Section 25.5 should be used when the a~sumption of com­
pound symmetry in repeated measures model (27.21) is not met. 
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3. Repeated measures model (27.21) assumes that treatments and subjects interact. If treatments 
and subjects do not interact, it can be shown that the treatment by subject interaction sum of squares 
is made up of three components: 

SSFR.S = SSAS + SSBS + SSABS 

Thus, it is possible to pool the first-order interactions in the model (the factor A by subject interactions 
and the factor B by sUbject interactions) with the second-order interactions (the factor A by factor B 
by subject interactions). When the repeated measures model does not allow for interactions between 
treatments and subjects, the analysis of factor effects becomes somewhat easier. However, in many 
cases, MSABS tends to be considerably smaller than either MSAS or MSBS, justifying the use of 
separate error terms. • 

Evaluation of Appropriateness of Repeated Measures Model 
Our earlier discussion on the evaluation of the appropriateness of repeated measures model 
(27.1) applies here as well. In particular, residual sequence plots by subject should be 
constructed to examine whether interference effects are present and whether the error vari­
ance is constant. Plots of the observations by subject should be utilized to see whether the 
assumption of no treatment by subject interactions is appropriate. 

Analysis of Factor Effects 
If factors A and B do not interact or interact only in an unimportant fashion, the analysis 
of factor A and factor B main effects proceeds as usual. For the analysis of either factor A 
or factor B main effects, either MSAS or MSBS, respectively, will be used in the estimated 
variance of the estimated contrast since this mean square is the denominator of the F* test 
statistic for testing factor A or factor B main effects. 

The multiples for the estimated standard deviation of an estimated contrast of factor A 
or factor B level means are as follows: 

Main A Effect Main B Effect 

Single comparison 

t[1-aj2;(0-1)(s-1)] t[1 - aj2; (b-1)(s -1)] (27.26a) 

Tukey procedure (for pairwise comparisons) 
1 1 

T= .J2q[l-a;o,(o-l)(S-l)] T= .J2q[1-a;b,(b-1)(s-1)] (27.26b) 

Scheffe procedure 

52 = (o-l)F[l - a; 0 - 1, (o-l)(s -1)] 

52 = (b-1)F[1 - a; b-1, (b-1)(s -1)] (27.26c) 

Bonferroni procedure 

B = t[1 - aj2g; (0 - l)(s -1)] B = t[l - aj2g; (b-1)(s - 1)] (27.26d) 

If strong interactions between factors A and B exist that cannot be made unimportant by 
some simple transformation, the analysis of the factor effects should be performed in terms 
of the treatment means f.L.jk. which are averaged over subjects. This analysis is similar 
to that in Section 27.3 for a two-factor study with interaction. The pooled mean square 
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Example 

TABLE 27.12 
Data-Blood 
Flow Example. 

MSTR.S will be used in estimating the variance of any estimated Contrast of the tre 
means. The degI"ees offreedom associated with MSTR.S will need to be estimated us~~me~ 
SarreI"thwaite pI"ocedure discussed befoI"e in ChapteI" 25, page 1043. g t 

A clinician studied the effects of two drugs used either alone OI" togetheI" on the blood fl 
in human subject.~. Twelve healthy middle-aged males participated in the study and th

OW 

aJ"e viewed as a random sample fmm a I"elevant population of middle-aged males. The fo:' 
treatments used in the study aI"e defined as follows: 

A, B, placebo (neither drug) 

A, B2 drug B alone 

A2 B, drug A alone 

A2 B2 both drugs A and B 

The 12 subjects received each of the four treatments in independently I"andomized orders. 
The I"esponse vaI"iable is the increase in blood flow from before to shortly after the ad­
ministration of the treatment. The treatments were administered on successive days. This 
wash-out period prevented any caI"I"yover effects because the effect of each drug is short­
lived. The experiment was conducted in a double-blind fashion so that neither the physician 
nOI" the subject knew which treatment was administered when the change in blood flow was 
measured. 

Table 27.12 contains the data fOI" this study. A negative entry denotes a decrease in 
blood flow. Figure 27.11 contains the MINITAB output for the fit of repeated measures 
model (27.21). Included in the output aI"e the expected mean squares for the specified 
ANOYA model. As explained in Chapter 25, each term in an expected mean square is 
represented in the MINITAB output by (1) the numeric code, in parentheses. for the variance 
of the model term and (2) the preceding number, which is the numeI"ical multiple. When the 
model term is fixed, the letter Q is used in (he printout to show that the variance is replaced 
by the sum of squared effects divided by degrees of freedom. For example, the expected 
value of MSA as shown in Figure 27.1 I is: 

(7) + 2(5) + 24Q[2] = a 2 + 2a;a + 24 f~t 
which corresponds, 'of COUI"se, to the factor A expected mean squaJ"e shown in Table 27.1 la 

Subject 
Treatment 

A,B, A,B2 A2B, A2B2 

1 2 10 9 25 
2 -1 8 6 21 
3 0 11 8 24 

10 -2 10 10 28 
11 2 8 10 25 
12 -1 8 6 23 
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fiGURE 27.11 (a) MlNlTAB Output 

M1NI'D\B Analysis of VarIance for Flow 
f)utputfor 

ANOVA­
Blood flow 
Example. 

Source 
Subject 
A 
B 
A*B 
Subject*A 
Subject*B 
Error 
Total 

Source 

1 Subject 
2A 
3B 
4A*B 
5 Subject*A 
6 Subject*B 
7 Error 

Source 

a 

Error(a) 

Source 

b 

Error(b) 

Source 

a*b 

Error(a*b) 

a1b1 
a1b2 
a2b1 
a2b2 

OF 

1 

11 

OF 

1 

11 

OF 

1 

11 

N 

12 
12 
12 
12 

OF SS MS F P 
11 258.50 23.50 20.68 0.000 

1 1587.00 1587.00 775.87 0.000 
1 2028.00 2028.00 524.89 0.000 
1 147.00 147.00 129.36 0.000 

11 22.50 2.05 1.80 0.172 
11 42.50 3.86 3.40 0.027 
11 12.50 1.14 
47 4098.00 

Variance Error Expected Mean Square for Each Term 
Component Term (using restricted model) 

5.5909 7 (7) + 4(1) 
5 (7) + 2(5) + 24Q[2] 
6 (7) + 2(6) + 24Q[3] 
7 (7) + 12Q[4] 

0.4545 7 (7) + 2(5) 
1.3636 7 (7) + 2(6) 
1.1364 (7) 

(b) SAS Output 

Type III SS Mean Square F Value Pr> F 

1587.000000 1587.000000 775.87 <.0001 

22.500000 2.045455 

Type III SS Mean Square F Value Pr> F 

2028.000000 2028.000000 524.89 <.0001 

42.500000 3.863636 

Type III SS Mean Square F Value Pr> F 

147.0000000 147.0000000 129.36 <.0001 

12.5000000 1.1363636 

Mean Std Oev Minimum Maximum 

0.5000000 2.1105794 -2.0000000 4.0000000 
10.0000000 3.1908961 5.0000000 16.0000000 
8.5000000 2.0225996 6.0000000 12.0000000 

25.0000000 3.4377583 20.0000000 31.0000000 
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FIGURE 27.12 
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Vafi ous diagnostics were uti lized to see if repeated measures model (27.21) is appropriate 
for the data in Table 27.12. The fesults (not shown here) supported the appropriateness of 
this model. The clinician expected the two drugs to interact in increasing the blood flow. 
To test fOf interaction effects: 

Ho: all (afJ) jk = 0 

Ha: not all (afJ) jk equal zero 

we use test statistic (27.23b) and the results from Figure 27.11: 

MSAB 147.000 
F* = -- = = 129.36 

MSABS 1.1364 

FOI" level of significance a = .01, we require F(.99; 1, 11) = 9.65. Since F* = 129.36 > 
9.65, we conclude Ha, that intemction effects exist. The P-value for this test is O+. 

Figure 27.12 contains an interaction plot of the estimated treatment means, with the 
responses superimposed. Substantial interaction effects are evident. To study the nature of 
the interaction effects, the clinician wished to compare the joint use of the two drugs with 
the use of each drug alone, drug A with drug B, and each drug with no drug. Thus, the 
following pairwise comparisons are to be made: 

L, = /l·n - /l·21 

L2 = /l'22 - /l'12 

L3 = /l'21 - /l"2 

L4 = /l·21 - /l." 

Ls = /l'12 - /l'1I 

Point estimates of these pairwise comparisons are (Y.;k values are in Figufe 27.llb): 

[, = 25.0 - 8.5 = 16.5 

[2 = 25.0 - 10.0 = 15.0 

[3 = 8.5 - 10.0 = -1.5 

[4 = 8.5 - .5 = 8.0 

[5 = 10.0 - .5 = 9.5 
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The estimated variance of each estimate L is given in (17.22), with the relevant mean square 
here being MSABS. Hence, we have: 

and s{L} .435. Using the Bonferroni procedure with a 95 percent family confidence 
coefficient, we require B = t[1 - (.05)/2(5); 11] = t(.995; 11) = 3.106. Hence, 
t(.995; l1)s{L} = 3.106(.435) = 1.35 and the desired confidence intervals with a 95 per­
cent family confidence coefficient are: 

15.15:::: f-L.22 - f-L.21 :::: 17.85 

13.65 :::: f-L.22 - f-L.12 :::: 16.35 

-2.85 :::: f-L.21 - f-L'I2 :::: -.15 

6.65 :::: f-L·21 - f-L." :::: 9.35 

8.15 :::: f-L.12 - f-L'II :::: 10.85 

It is clear from these results thaI either drug A alone or drug B alone Leads to an increase 
in blood flow, and that the combination of the two drugs leads to a substantial additional 
increase in blood flow as compared to when either drug is used alone. Finally, a significant 
difference exists in the mean effects of the two drugs used alone. 

Comments 

1. Repeated measllres designs are discussed in more detail in References 27.1 and 27.2. 
2. In economics and econometrics, repeated measurement data over time are commonly referred 

to as panel data. The process of combining cross-sectional data and data over time to form a panel is 
called pooling. See References 27.3 and 27.4 for a discussion of these models and their analyses. 

3. Another area of application for repeated measurement data is referred to as growth curve model 
analyses. Here separate regression models are fit to each subject over time. See Reference 27.5 for a 
discussion of these models and their analyses. • 

27.5 Regression Approach to Repeated Measures Designs 

When the repeated measures study is balanced and the treatment effects are fixed, the 
analysis of variance model can be expressed in the form of a regression model with indicator 
variables for purposes of obtaining the various sums of squares and conducting tests for 
treatment effects. Repeated measures models (27.1) and (27.21) can be stated in the form 
of a regression model as explained in Section 23.4 for randomized block designs. Repeated 
measures model (27.11), which also involves nested effects, can be expressed in the form 
of a regression model by including suitable indicator variables as explained in Section 26.6 
on page 1105. 

When the repeated measures study is not balanced, as, for instance, when there are 
missing observations, the tests based on the expected mean squares in Tables 27.1, 27.6, 
and 27 .11 are no longer appropriate. Methods for analyzing unbalanced mixed and random 
effects models are discussed in Section 25.7. 
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27.6 Split- Plot D(~sjglls 

Split-~lot designs are frequently used i~ fi~ld, .laboratory, .industfIal, and social science 
expenments. The repeated measures desIgn In FlgllI'e 27.5 tor a study with repeated m _ 
sures on one fa~tor is a type of s~lit-Plot design. We shall discuss split-plot designs only ~r 
two-factor studIes, but these desIgn,; can be extended to apply when three or more factors 
are under investigation. 

Split-plot designs were originally developed for agricultural experiments. Consider an 
investigation to study the effects of two irrigation methods (factor A) and two fertilizers 
(factol B) on yield ofacrop, using four available fields asexperimenral units. In acompletel 
randomized design, four treatments (A, B" A, B2 , A 2 B" A 2 8 2 ) would then be assigned ~ 
random to the four fields. Since thele are four treatments and just four expelimental units 
there will be no degrees of freedom for estimation of eITOI, as shown in the followin~ 
abbreviated ANOYA table, listing source of valiation and degrees of freedom only: 

Source of Variation 

Factor A (irrigation methods) 
Factor B (fertilizer types) 
AB interactions 
Error 

Total 

Degrees 
of Freedom 

o 
3 

If the fields could be subdivided into smaller experimental units, replicates of each 
factor-level combination could be obtained and the error variance could then be estimated. 
Unfortunately, in this investigation it is not possible to apply different irrigation methods 
(factor A) in areas smaller than a field, although different fertilizer types (factor B) could 
be applied in relatively small areas. A split-plot design can accommodate this situation. 

In a split-plot design, each of the two irrigation methods is landomly assigned to two 
of the four fields, which ale usually called whole plots. In turn, each whole plot is then 
subdivided into two or more smaller aleas called split plots. and the two fertilizers are 
then mndomly. assigned to the split plots within each whole plot. The key feature of split­
plot designs is the use of two (or more) distillCt levels of randomization. At the first level 
of randomization, the whole-plot treatments are randomly assigned to whole plots; at the 
second level, the split-plot treatments are randomly assigned to split plots. 

The layout for the agricultural experiment example is shown in Figure 27.13. Note tha~ 
this layout is conceptually identical to the layout for the two-factor repeated measures design 
in Figure 27.5. The fields in Figure 27.13 correspond to the subjects in Figure 27.5, and 
the split plots correspond to the occasions on which treatments can be applied to a subject 
Consequently. the split-plot model hele is the same as in (27.11): 

Yijk = fl··· + Pilj) + ai + {3k + (a{3)ik + Cijk (27.27) 

For the split-plot agricultural experiment example, a i denores the main effect of the jth 
irrigation method (jth whole-plot tIeatment) and 13k denotes the main effect of the kth 
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ANOVA Table 
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'Experiment. 
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FIG URE 27.13 Layout for Two-Factor Split-Plot Experiment-Agricultural Experiment 
Example (factor A is whole-plot treatment and factor B is split-plot treatment). 

Fields (Whole Plots) 
I 

~ i i i 

Split Plots { 
A2B2 A,B, A,B2 A2B, 

A2B, A,B2 A,B, A2B2 

t t t t 
A2 A, A, A2 

Whole-Plot Treatments 

Source of Variation 55 df M5 

Whole plots 
Factor A SSA a-l MSA 
Whole-plot error SSW(A) a(s -1) MSW(A) 

Split plots 
Factor B SSB b-l MSB 
AB interactions SSAB (a-,--l)(b-l) MSAB 
Split-plot error SSB.W(A) a(s-l)(b-l) MSB.W(A) 

Total ssm abs -'-1 

fertilizer type (kth split-plot treatment). Also, PiU) denotes the effect of the ith whole plot, 
nested within the jth level of factor A (irrigation method). 

Some computer packages produce special ANOVA tables that list the whole-plot effects 
and split-plot effects separately. Table 27.13 illustrates such a table. These tables serve as 
a reminder that the denominator of the F test for the whole-plot treatments is given by the 
error mean square for whole plots and that the denominator of the F test for the split-plot 
treatments and for the interactions between the whole-plot and split-plot treatments is given 
by the split-plot error mean square, as shown in Table 27.13. Note that this table is simply 
a rearrangement of the ANOVA table in Table 27.5 for a two-factor study with repeated 
measures on one factor. SSS(A) is now denoted by SSW(A) and SSB.S(A) is now denoted 
by SSE. W(A). The expected mean squares are the same as in Table 27.6. 

Comments 

1. Whenever subjects can receive all treatments in a two-factor study without interference effects, 
a repeated measures design with repeated measures on both factors might be preferable, because the 
factor effects for both factors may be estimated more precisely than in a split-plot design. 

2. Split-plot designs are useful in industrial experiments when one factor requires larger experi­
mental units than another. Consider, for instance, a study of the effects of two additives (factor A) and 
two different containers (factor B) for prolonging the shelf life of a milk product. Here, it is easier to 
make larger batches of the milk product with a given additive, whereas the different containers can 
be used with smaller batches. 
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Cited 
References 

Problems 

3. SpliI-plot designs may be viewed as a type of incomplete block design where the whole I 
considered to be the blocks, with each whole plot being given only some of the full set of t pOls are 

reatments 
Incomplete block designs are discussed in Chapter 28. . 

4. A wide variety of split-plot designs has been developed. For instance, split-plot desi 
I f· d . . I I' I' I gns Can involve more t lan two stages 0 ran omIZi\tIon. n a sp It-Sp It-p ot experiment, three staues of 

d?~izat~on are ~ene~ally involved. Whole plots are divid~d into split plot~ and split plots ~e furt: 
dl~Ided ~nto splIt s~lI~ plots. Three treatme~lts ~re the~ assIgned to the varIOUs levels of experimental 
umts, usmg three dIstmct stages of randomIzatIon. References 27.2 and 27.6 provide further' " mlorma_ 
tion about these designs. • 
27.1. Winer. B. J., D. R. Brown, and K. M. Michels. Statistical Pril1(:ipies in EXpedmel1Tal Design. 

3rd ed. New York: McGraw-Hill Book Co., 1991. 
27.2. 

27.3. 

27.4. 
27.5. 
27.6. 

Koch, G. G., J. D. Elashoff, and L A. Amara. "Repeated Measurements-Design and Analysi " 
in Encyclopedia (?lStatistical Sciences, voL 8, eds. S. Kotz and N. L Johnson. New York: Jo~ 
Wiley & Sons, 1988, pp. 46-73. 

Pindyck, R. S., and D. L Rubinfeld. ECOllOl11etric Models alld Economic Forecasts. 4th ed. 
Boston: Irwin/McGraw-HilL 1998. 

Hsiao. C. Analysis (if Panel Data. Cambridge: Cambridge University Press, 1986. 
Graybill, F. A., TheOlY and Applicotion of the Lineal' Model. Boston: Duxbury Press, 1976. 
Dean, A., and D. Voss. Design ond Analysis ofExperimel1ts. New York: Springer-Verlag, 1999. 

27.1. A serious potential problem with repeated mea~ures designs is associated with carryover 
effects. Describe some steps that can be taken to minimize this problem. 

27.2. In designing a two-factor repeated measures study with repeated measures on one factor, does 
it matter which of the two factors is included as the repeated measures factor? Explain fully. 

27.3. Blood pressure. The relationship between the dose of a drug that increases blood pressure and 
the actual amount of increase in mean diastolic blood pressure was investigated in a laboratory 
experiment. Twelve rabbits received in random order six different dose levels ofthe drug, with 
a suitable interval between each drug administration. The increase in blood presslu'e was used 
as the response variable. The data on blood pressure increase follow. 

Rabbit 
Dose (j) 

Rabbit 
Dose (j) 

.1 .3 .5 1.0 1.5 3.0 .1 .3 .5 1.0 1.5 3.0 

21 21 23 35 36 48 7 9 12 17 22 33 40 
2 19 24 27 36 36 46 8 20 20 30 30 38 41 

3 12 25 27 26 33 40 9 18 18 27 31 42 49 

4 9 17 18 27 34 39 10 8 12 II 24 26 31 

5 7 10 19 25 31 38 II 18 22 25 32 38 38 

6 18 26 26 29 39 44 12 17 23 26 28 34 35 

a. Obtain the residuals for repeated measures model (27.1) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.1)? 

b. Prepare aligned residual dot plots by dose leveL Do these plots support the assumption of 
constancy of the error variance? Discuss. 

c. Plot the observations Yij for each rabbit in the format of Figure 27.2. Does the assumption 
of no interactions between subjects (rabbits) and treatments appear to be reasonable here? 
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d. Conduct the Thkey test for additivity, conditional on the rabbits actually selected; use 
a = .005. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 

27.4. Refer to Blood pressure Problem 27.3. Assume that repeated measures model (27.1) is 
appropriate. 

a. Obtain the analysis of variance table. 

b. Test whether or not the mean increase in blood pressure differs for the various dose levels; 
use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

c. Analyze the effects of the six dose levels by comparing the means for successive dose levels 
using the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings and summarize them by a suitable line plot. 

d. According to the estimated efficiency measure (21.14), how effective was the repeated 
measures design here as compared to a completely randomized design? 

27.5. Refer to Blood pressure Problems 27.3 and 27.4-

a. Develop a regression model in which the subject effects are represented by 1, -1, 0 
indicator variables and the dose effect is represented by linear, quadratic, and cubic terms 

in x = X - X, where X is the dose leveL For instance, the x value for the first dose level 
(X = .1) is x = .1 - 1.07 = -.97. 

b. Fit the regression model to the data. 

c. Obtain the residuals and plot them against the fitted values. Does the model utilized appear 
to provide a reasonable fit? 

d. Test whether or not the cubic effect is required in the model; use a = .05. State the 
alternatives, decision rule, and conclusion. What is the P-value of the test? 

27.6. Grapefruit sales. A supermarket chain studied the relationship between grapefruit sales and 
the price at which grapefruits are offered. Three price levels were studied; (1) the chief 
competitor's price, (2) a price slightly higher than the chief competitor's price, and (3) a price 
moderately higher than the chief competitor's price. Eight stores of comparable size were 
randomly selected for the study. Sales data were collected for three one-week periods, with 
the order of the three price levels randomly assigned for each store. The experiment was 
conducted during a time period when sales of grapefruits are usually quite stable, and no 
carryover effects were anticipated for this product. Data on store sales of grapefruits during 
the study period follow (data coded). 

Store Price level (j) 

2 3 

1 62.1 61.3 60.8 
2 58.2 57.9 55.1 

7 46.8 43.2 41.5 
8 51.2 49.8 47.9 

a. Obtain the residuals for repeated measures model (27.1) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
aboutthe appropriateness of model (27.1)? 

b. Prepare aligned residual dot plots by price leveL Do these plots support the assumption of 
constancy of the error variance? Discuss. 
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c. Plot the observations Yij for each store in the format of Figure 27.2. Does the assum . 
t·· . b b' (d b ption o no mteractIOns etween su ~ect~ stores) an treatments appear to e rea.;onable hete? 

d. Conduct the Tukey test for additivity, conditional on the stores actually selected' 
a = .0 I. State the alternatives. decision rule, and conclusion. What is the P-value ~:: 
test? 

*27.7. Refer t~ Grapefruit sales Problem 27.6. Assume that repeated measures model (27.1) is 
approprIate. 

a. Obtain the analysis of variance table. 

b. Test whether or not the mean sales of grapefruits differ for the three price levels; u 
a = .05. State the altematives. decision rule. and conclusion. What is the P-value of~ 
test? 

c. Analyze the effects of the three price levels by estimating all pairwise comparisons of 
the price level means. Use the mOst efficient multiple comparison procedLU'e with a 95 
percent family confidence coefficient. State your findings and summarize them by a suitable 
line plot. 

d. According to the estimated efficiency measure (21.14), how effective was the repeated 
mea~ures design compared to a completely randomized design? 

27.8. Refer to Blood pressure Problem 27.3. A consultant is concerned about the validity of the 
model assumptions and suggests that the study should be analyzed by means of the nonpara­
metric rank F test. Rank the data within each rabbit and perform the rank F test~ use a = .01. 
State the alternatives. decision rule. and conclusion. Comment on the consultant's concern 
here. 

*27.9. Refer to Grapefruit sales Problem 27.6. It has been suggested that the nonparametric rank 
F test should be used here. Rank the data within each store and perform the rank F test; use 
a = .05. State the alternatives, decision rule, and conclusion. Is your conclusion the same as 
that obtained in Problem 27.7b? 

27.10. Truth in advertising. A consumer research organization showed five different advertisements 
to 10 subjects and asked each to rank them in order of truthfulness. A rank of I denotes the 
most truthfuL The results were: 

Subject 
Advertisement (j) 

Subject 
Advertisement (j) 

A B C D E A B C D E 

3 2 5 4 6 4 2 1 3 5 
2 4 2 1 3 5 7 4 1 2 3 5 
3 4 2 3 1 5 8 5 1 3 2 4 
4 3 2 5 4 9 4 2 3 1 5 
5 4 2 5 3 10 5 1 2 3 4 

a. Do the subjects perceive the five advertisements as having equal truthfulness? Conduct 
the non parametric rank F test using level of significance a = .05. State the altematives, 
decision rule. and conclusion. What is the P-value of the test? 

b. Use the multiple pairwise testing procedure (27.9) to group the five different advertisements 
according to mean perceived truthfulness: employ family significance level a = .10. 
Summarize your findings. 

c. Obtain the coefficient of concordance (27.10) and interpret this measure. 

27.1 L Incentive stimulus. Refer to the example in Section 27.3 about the effects of twO types 
of incentives (factor A) on a person's ability to solve two types of problems (factor B); 
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the repeated measures design is illustrated in Figure 27.5. Twelve persons were randomly 
selected and assigned in equal numbers to the two incentive groups. The order of the two 
types of problems was then randomized independently for each person. The problem-solving 
ability scores follow (the higher the score, the greater the ability to solve problems). 

Incentive 
Stimulus 

j = 1 

j=2 

Subject 

1=1 
i=2 
1=3 
i=4 
i=5 
i=6 

1=1 
i=2 
1=3 
i=4 
i=5 
i=6 

Problem Type 

Abstract Concrete 
(k = 1) (k= 2) 

10 18 
14 19 
17 18 
8 12 

12 14 
15 20 

16 35 
19 32 
22 37 
20 33 
24 39 
21 32 

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.ll)? 

b. Plot the problem-solving ability scores by incentive stimulus and problem type, in the 
format of Figure 27.6. What do you conclude about the appropriateness of model (27.11)? 
Discuss. 

12. Refer to Incentive stimulus Problem 27.11. Assume that repeated measures model (27.11) 
is appropriate. 

a Obtain the analysis of variance table. 

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 
appear that interaction effects are present? That main effects are present? 

c. Test whether or not the two factors interact; use a = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

d. The following comparisons between problem types are of interest: 

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure 
with a 90 percent family confidence coefficient for each problem type. Then combine these 
two Tukey procedures with a Bonferroni adjustment for each problem type. State your 
findings. 

e. The following comparisons between incentive stimuli are of interest 

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure 
with a 90 percent family confidence coefficient for each incentive stimulus. Then combine 
these two Tukey procedures with a Bonferroni adjustment for each incentive stimulus. 
State your findings. 
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*27.13. S~~.re displays •. A repe~ted measures study was ~onducted to examine the effects of tw 
dIfferent store dIsplays for a household product (factor A) on sales in four succes' . 0 
.. . . ' Stve tIme 

penods (factor B). EIght stores were randomly selected, and four were assiuned at ra d 
each display. The sales data (coded) follow. 

Type of 
Display 

i = 1 

i=2 

Store 

i=l 
i =2 
i = 3 
i=4 

i = 1 
i=2 
i=3 
i=4 

k=l 

956 
1,008 

350 
412 

769 
880 
176 
209 

• b n omto 

Time Period 

k=2 k=3 k=4 
953 938 1,049 

1,032 1,025 1,123 
352 338 438 
449 385 532 
766 739 859 
875 860 915 
185 168 280 
223 217 301 

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.11)? 

b. Plot the sales data by type of display and time period, in the format of Figure 27.6. What 
do you conclude about the appropriateness of model (27.1 I)? Discuss. 

*27.14. Refer to Store displays Problem 27.13. The experimenter wished to explore further the 
appropriateness of repeated measures model (27.1 I). 

a. Conduct a formal test of the constancy of the between-subjects variances. Use (27.17) and 
perform the Hmtley test. with a = .0 I. State the alternatives, decision rule, and conclusion. 

b. Decompose the en-or variation SSB.S(A) into components using (27.18), and perform the 
Hartley test for the constancy of the error variance a 2 for the different factor A levels; use 
a = .01. State the alternatives, decision rule, and conclusion. 

*27.15. Refer to Store displays Problem 27.13. Assume that repeated mea~ures model (27.11) is 
appropriate. 

a. Obtain the analysis of variance table. 

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 
appear that interaction effects are present? That main effects are present? 

c. Test whether or not the two factors interact; use a = .025. State the altematives, decision 
rule, and conclusion. What is the P-value for the test? 

d. Test separately whether or not display and time main effects are present; use a = .025 
for each test. State the alternatives, decision rule, and conclusion for each test. What is the 
P-value for each test? 

e. To study the nature of the factor A and factor B main effects, estimate the follow.lng 
pairwise comparisons: 

LI = fl·l. - fl·2· 

L2 = fl"1 - fl .. 2 

L3 = fl--2 - fl .. 3 

L4 = fl··] - fl"4 

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 
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27.16. Calculator efficiency. To test the efficiency of its new programmable calculator, a computer 
company selected at random six engineers who were proficient in the use of both this calculator 
and an earlier model and asked them to work out two problems on both calculators. One of 
the problems was statistical in nature, the other was an engineering problem. The order of 
the four calculations was randomized independently for each engineer. The length of time (in 
minutes) required to solve each problem was observed. The results follow (type of problem 
is factor A and calculator model is factor B): 

j=l j=2 
Statistical Engineering 
Problem Problem 

k=l k=2 k=l k=2 
Engineer New Earlier New Earlier 

Model Model Model Model 

1 Jones 3.1 7.5 2.5 5.1 
2 Williams 3.8 8.1 2.8 5.3 
3 Adams 3.0 7.6 2.0 4.9 
4 Dixon 3.4 7.8 2.7 5.5 
5 Erickson 3.3 6.9 2.5 5.4 
6 Maynes 3.6 7.8 2.4 4.8 

a Obtain the residuals for repeated measures model (27.21) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.21)? 

b. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the treat­
ments. Do these plots support the assumption of constancy of the error variance? Discuss. 

27.17. Refer to Calculator efficiency Problem 27.16. Assume that repeated measures model (27.21) 
is appropriate. 

a. Obtain the analysis of variance table. 

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 
appear that treatment interaction effects are present? 

c. Test whether or not the two treatment factors interact; use a = .01. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

d. It is desired to study the nature of the interaction effects by considering the three compar­
isons: 

LI = p.,·I2 - p.,'I1 

L2 = p.,·22 - p.,'2I 

Obtain confidence intervals for these comparisons; use the Bonferroni procedure with a 
95 percent family confidence coefficient. State your findings. 

*27.18. Migraine headaches. Two experimental pain killer drugs for relief of migraine headaches 
were studied at a major medical center. Ten persistent migraine sufferers were randomly 
selected for a pilot study and received in random order each of the four treatment combina­
tions, with a suitable interval between drug administrations. The decrease in pain intensity 
was used as the response variable. The four treatments used in the study are defined as fol­
lows: AI BI = low dose of both drugs; AI B2 = low dose of drug A, high dose of drug B; 
A2BI = high dose of drug A, low dose of drug B; A2B2 = high dose of both drugs. The data 
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on reduction in pain intensity follow (the higher the score, the greater the reduction in 
pain). 

Person A, (j = 1) A2 (j = 2) 

B,(k = 1) B2 (k= 2) B,(k=l) B2 (k = 2) 

1.6 3.4 2.7 4.3 
2 2.3 5.1 4.2 6.5 
3 4.2 5.3 4.6 6.0 

8 6.0 7.2 6.3 7.3 
9 1.2 1.4 1.3 1.7 

10 2.7 3.0 3.0 3.1 

a. Obtain the residuals for repeated measures model (27.21) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.21)? 

b. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the 
treatment~. Do these plots support the a~sumption of constancy of the error varianCe? 
Discuss. 

*27.19. Refer to Migraine headaches Problem 27.18. Assume that repeated measures model (27.21) 
is appropriate. 

a. Obtain the analysis of variance table. 

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 
appear that treatment interaction effects are present? That main effects are present? 

c. Test whether or not the two treatment factors interact; use a = .005. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

d. Test separately whether or not factor A and factor B main effects are present; use a = .05 
for each test. State the alternatives, decision rule, and conclusion for each test. What is the 
P-value for each test? 

e. Estimate the following comparisons by means of confidence intervals: 

LI = fl·21 - fl·11 

L2 = fl·12 - fl·11 

L3 = fl·21 - fl·12 

L4 = fl·22 - fl·11 

Use the BonfelToni procedure and family confidence coefficient .95. Summarize your 
findings. 

27.20. Wheat yield. Refer to the split-plot agricultural experiment of Section 27.6, for which the 
layout is shown in Figure 27.13. The results of this experiment to investigate the effects of 
two irrigation methods (factor A) and two fertilizers (factor B) on wheat yield follow for the 
10 fields used in the study. 

Irrigation Method j: 

Field i: 

Fertilizer k = 1: 
k= 2: 

2 

43 40 
48 43 

3 4 

31 27 
36 30 

5 

36 
39 

2 

2 3 4 5 

63 52 45 47 54 
70 53 48 51 57 



Exercise 
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a. Obtain the residuals for split-plot model (27.27) and plot them against the fitted values. 
Also prepare a normal probability plot of the residuals. What do you conclude about the 
appropriateness of model (27.27)? 

b. Plot the wheat yield data by irrigation method and type of fertilizer in the format of 
Figure 27.6. What do you conclude about the appropriateness of model (27.27)? Discuss. 

27.21. Refer to Wheat yield Problem 27.20. Assume that split-plot model (27.27) is appropriate. 

a. Obtain the analysis of variance table. 

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 
appear that interaction effects are present? That main effects are present? 

c. Test whether or not the two factors interact; use a = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value for the test? 

d. Test separately whether or not factor A and factor B main effects are present; use a = .05. 
State the alternatives, decision rule, and conclusion for each test. What is the P-value for 
each test? 

e. To study the nature of the factor A and factor B main effects, estimate the following 
pairwise comparisons: 

L2 = !J""I - f-I.,··2 

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 

27.22. Derive the total sum of squares breakdown in (27.5). 

27.23. Refer to Blood pressure Problem 27.3. Obtain the estimated within-subjects variance­
covariance matrix using (27.8). Are the estimated variances and covariances of the same 
orders of magnitude? Is the compound symmetry assumption reasonable here? 

27.24. Refer to Grapefruit sales Problem 27.6. Obtain the estimated within-subjects variance­
covariance matrix using (27.8). Are the variances and covariances roughly of the same order 
of magnitude? Is the compound symmetry assumption reasonably satisfied here? 

27.25. Refer to the Drug effect experiment data set in Appendix C.12. Consider only Part I of the 
study and observation unit 1 for each drug dosage level; Le., include only observations for 
which variable 2 equals I and variable 6 equals 1. Treat the 12 rats as subjects and ignore the 
classification of the rats into the three initial lever press rate groups. Assume that the subjects 
(rats) have random effects and that the treatments (dosage levels) have fixed effects. 

a. State the additive repeated measures model for this study. 

b. Obtain the residuals and plot them against the fitted values. Also prepare a normal proba­
bility plot of the residuals. What do you conclude about the appropriateness of the model 
employed? 

c. Plot the responses for each rat in the format of Figure 27.2. Does the assumption of no 
interactions between subjects (rats) and treatments appear to be appropriate? 

27.26. Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.25. 

a. Obtain the analysis of variance table. 

b. Test whether or not the drug dosage level affects the mean lever press rate; use a = .05. 
State the alternatives, decision rule, and conclusion. What is the P-value of the test? 
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c. Analyze the effects of the four dosage levels by comparing the mean responses for ea 
pair of successive dosage levels: use the BonfeIToni procedure with a 90 percent fami~h 
confidence coefficient. State your findings. y 

d. Fit a regression model in which the subject effects are represented by I -I 0 indo . , (cator 
variables and the dosage effect is represented by linear and quadratic terms in x == X _ X 
where X is the dosage leveL Assume that there are no interactions between subjects and 
treatments. 

e. Obtain the residuals and plot them against the fitted values. Does the regression model 
appear to provide a good fit? Discuss. 

f. Test whether or not the quadratic term can be dropped from the regression model; use 
a = .0 I. State the alternatives, decision rule, and conclusion. 

27.27. Refer to the Drug effect experiment data set in Appendix C.12. Consider the combined 
study. Assume that subjects (rats) and observation units have random effects, and that factor 
A (initial lever press rate), factor B (dosage level), and factor C (reinforcement schedule) have 
fixed effects. Also assume that there are no interactions between subjects and treatments. 

a. Use rules (0.1) and (0.6) in Appendix 0 to develop the model for this experiment 

b. Fit the model in patt (a), obtain the residuals, and plot them against the fitted values. 
Also prepare a normal probability plot of the residuals. What do you conclude about the 
appropriateness of your model? 

27.28. Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.27. Assume 
that the model in Project 27.27a is appropriate. 

a. Use an appropriate statistical package to obtain the analysis of variance table and the 
expected mean squares. 

b. Test whether or not ABC interactions are present; use a = .01. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

c. For each reinforcement schedule, plot the estimated treatment means against dosage level 
with different curves for the three initial lever press rate groups, in the format of Figure 24.5. 
Examine your plots for the nature of the interaction effects and report your findings. 

27.29. Consider a repeated mea~ures design study with s = 3 and r = 3, where each subject ranks 
all treatments (with no ties allowed). 

a. Develop the exact sampling distribution of F'R when Ho holds. [Hillt: All ranking per­
mutations for a subject are equally likely under Hu and all subjects are assumed to act 
independently. ] 

b. How does the 90th percentile of the exact sampling distribution obtained in part (a) compare 
with FC90; 2. 4)? What is the implication of this? 



28.1 

Balanced IncoIllplete Block, 
Latin Square, and 
Related Designs 

In this chapter we introduce balanced incomplete block and latin square designs. Incomplete 
block designs are block designs where the number of experimental units in each block 
is less than the number of treatment combinations. This is in contrast with randomized 
complete block designs, where each block contains a complete replicate of the experiment. 
A latin square design is a particular form of incomplete block design, where two blocking 
variables are employed to reduce experimental errors while requiring only a small number 
of experimental trials. 

Balanced Incomplete Block Designs 

In Chapter 15, we described the use of an incomplete block design in the context of a food 
product taste-testing experiment. In that example, the food manufacturer wished to assess 
consumer acceptance of five breakfast cere31 formulations. The formulations differed in 
terms of the amount of sweetener to be used in the formulation. Products were to be rated 
on a 1O-point hedonic scale, and 12 consumers were available to rate the products. We noted 
that consumers differ considerably in their sensory perception of food products, and so it 
would be desirable to have each consumer rate all of the products. A randomized complete 
block (and repeated measures) design would result if each consumer were to rate all five 
of the formulations. However, consumers are generally unable to evaluate effectively more 
than three food products in a single session. With this restriction, the three tastings by any 
given consumer represent a single, incomplete block. 

In situations such as that just described for the taste-testing example, an effective ex­
perimental arrangement can often be achieved using a balanced incomplete block design. 
or BIBD. An incomplete block design is balanced if every treatment appears with every 
other treatment in the same block the same number of times. For example, a candidate 
BIBD for the food product taste-testing experiment is shown in Figure 28.1. Note that there 
are nb = 10 blocks, and that every treatment occurs together with every other treatment 

1173 
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FIGURE 28.1 
Balanced 
Incomplete 
Block Design 
for Five 
Treatments 
and Block Size 
Three-Food 
Product 
Taste-Testing 
Example. 

Consumer Product Formulation 

(Block) 1 2 3 4 5 

1 X X X 

2 X X X 

3 X X X 

4 X X X 

5 X X X 

6 X X X 

7 X X X 

8 X X X 

9 X X X 

10 X X X 

exactly three times. FOf example, fOfmulations I and 2 appear together in blocks 1,2, and 3. 
Formulations I and 3 appeaf rogethef in blocks 1,4, and 5-and so on. We shall use rb to 
denote the number of treatments in each block (or block size), 11" to denote the number of 
times that pairs of treatments occur together in the same block, and II to denote the number 
of replicates of each tfeatment. Use of this design fOf the food product taste-testing example 
would mean that only 10 of the 12 available consumefS could be used as subjects, because 
no balanced incomplete block design exists fOf r = 5 tfeatments. block size rb = 3, and 
numbef of blocks lib = 12. 

If thefe is no restriction on the number of blocks, a BIBD can be constfucted for any 
incomplete block size i"i> (2 ~ i"1> < r) by listing all of the possible subsets of size rb from 
the set of r tfeatments. The numbef of such subsets is: 

r! 
I1b = . I· . I 

Ip.(1 -Ip). 
(28.1) 

For example, the food pfoduct taste-testing example BIBD was constructed in this fashion. 
In this example, r = 5, /'1> = 3. and the number of fequired blocks ffom (28.1) is nb = 
5/13!(5 - 3)!] = 10. A limitation of this simple approach is that the number of blocks 
I-equifed can be quite large. and there may be alternative BIBDs with the same number of 
treatments and block size fequiring fewer blocks. FOf example. with i" = 8 and i"b = 4, the 
numbefofblocks fequifed is ill> = 8!/(4!4!) = 70. butan alternative BlBD existsforr = 8 
and /'p = 4 that fequifes just nb = 7 blocks. 

A useful set of BIBDs is provided in Appendix B.15 for the combinations oftreatmeftts, 
block sizes, and numbers of blocks shown in Table 28. I. For example, the BlBD for the 
food product taste-testing example shown in Figure 28.1 corresponds to design number 4 
in Table 28.1. For this design, we have: 

r=5 11=6 

A more extensive listing of BIBDs is provided in Refefence 28.1. 



, .. 

• , 

~LE28.1 
~ced 
;"WJIlplete 
lOCk Designs 

}?ffivided in 
'(ipendix 13.15. 

Design 
NUll,1ber 

1 
2' 
3 
4 
5 
6 
7 
'8 
9 

10 
11 
l2 
13 
1:4 
1'5 
16 
17 
18 

Chapter 28 

N'umber of 
Treatmer;lts 

" 
4 

5 

6 

7 

8 

9 

Balanced Incomplete Block, Latin Square, and Related Designs 1175 

" 

BJtick N.uniberof NUmber of Trei'ltment 
Si~e~ Blocks 'Replicates Pairing$ ,. 

fJp fb niJ fI 
2 6 3 ct', 
3 -1 3 2 
2 lP 4 J 
3 10 6 3 
4 os :4 3 
'1- f5 5 l' 
3 10 ,5 '2 
3 20, 10 4 
4. lS' ':)0 6 
5 (5 5 .4 
2 21 6 1 
3 7 3 1 
:4 7, ,4 '2 
(), 7 6 5 
.2 ~;~, j 1 
4, ''] 3 
7 8' 7 6 
3 l2 4 '1 

Advantages and Disadvantages of BIBDs 
Advantages of balanced incomplete block designs include: 

1. A BIBD layout enables an investigator to run an experiment when the size of the 
available blocks of experimental units is smaller than the number of treatments. This is 
particularly helpful when a large number of treatments are under study. 

2. Estimates of treatment effects have equal precision, and, as we shall see, the expres­
sions for the variances of the estimated cell means and of contrasts of treatment means 
or effects are relatively simple. This simplifies the analysis and can facilitate sample size 
planning. 

3. The presence of balance permits the use of the Scheffe and Tukey procedures for 
the analysis of treatment effects. These procedures cannot be used if an incomplete block 
design is not balanced. 

Disadvantages of balanced incomplete block designs include: 

1. As we have noted, balanced incomplete block designs exist only for certain combi­
nations of numbers of treatments, block sizes, and numbers of blocks. Investigators may 
be compelled to adjust one or more of these parameters-i.e., by eliminating treatments, 
available blocks, or available experimental units-so that the available BIBD can be imple­
mented. This may lead to a design that is balanced and relatively easy to analyze, but does 
not achieve fully the objectives of the study. 

2. The assumption that there are no interactions between the blocking variable and the 
treatments is restrictive. 
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FIGURE 28.2 MINITAB Regression Results-Food Product Taste-Testing Example. 

(a) Model (28.3) (b) Regression Results for Model (28.4) 

Predictor Coef SE Coef T P Predictor Coef SE Coef T 
Constant 6.1667 0.1639 37.63 0.000 Constant 6.1667 0.3249 

P 
18.98 0.000 zl 0.1222 0.5130 0.24 0.815 zl 0.5000 0.9747 0.51 0.614 z2 -0.5667 0.5130 -1.10 0.286 z2 -0.5000 0.9747 -0.51 

z3 1.2556 0.5130 2.45 0.026 z3 0.5000 0.9747 
0.614 

0.51 0.614 z4 -1.7222 0.5130 -3.36 0.004 z4 -1.5000 0.9747 -1.54 0.139 z5 1.4333 0.5130 2.79 0.013 z5 0.8333 0.9747 0.85 0.403 z6 -0.9222 0.5130 -1.80 0.091 z6 -1.8333 0.9747 -1.88 0.G75 z7 0.3667 0.5130 0.71 0.485 z7 1.5000 0.9747 1.54 0.139 z8 -0.8111 0.5130 -1.58 0.133 z8 -0.5000 0.9747 -0.51 0.614 
z9 -1.1667 0.5130 -2.27 0.037 z9 -1.1667 0.9747 -1.20 0.245 
xl -1.6000 0.3590 -4.46, 0.000 
x2 1.1333 0.3590 3.16 0.006 Analysis of Variance 

x3 1.6000 0.3590 4.46 0.000 Source OF SS MS F P x4 0.6667 0.3590 1.86 0.082 Regression 9 46.833 5.204 1.64 0.170 
Residual Error 20 63.333 3.167 

Analysis of Variance Total 29 110.167 

Source OF 

Regression 13 
Residual Error 16 
Total 29 

SS MS F P 
97.2778 7.4829 9.29 0.000 
12.8889 0.8056 

110.1667 

(c) Regression Results for Model (28.5) 

Predictor Coef SE Coef T P 
Constant 6.1667 0.2662 23.16 0.000 
xl -1.6667 0.5325 -3.13 0.004 
x2 1.0000 0.5325 1.88 0.072 
x3 1.8333 0.5325 3.44 0.002 
x4 0.3333 0.5325 0.63 0.537 

Analysis of Variance 

Source OF SS MS F P 
Regression 4 57.000 14.250 6.70 0.001 
Residual Error 25 53.167 2.127 
Total 29 110.167 

3. The analysis of a balanced incomplete block design is more complex than the analysis 
of a randomized complete block design. As we will see in Section 28.2, treatmeI).t and block 
effects are not orthogonal in BIEDs, and so the analysis is carried out using the regression 
approach. 

We now tum to the statistical analysis of BIEDs, including the development of tests 
for treatment and block effects, and the analysis of factor-level effects. The analysis of a 
balanced incomplete block design is similar to the analysis of a randomized complete block 
design with missing cells, which was discussed earlier in Chapter 23. 

,-
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Comment 

When no BIDD exists for the desired number of treatments, number of blocks, and block size, some 
statisticians recommend the use of designs that are nearly balanced. Computer-based methods for 
constructing nearly-balanced incomplete block designs, available in statistical software packages 
such as JMp, are discussed in Reference 28.2. Related designs, called partially balanced incomplete 
block designs, have also been developed, a number of which are listed in Reference 28.1. The use 
of unbalanced incomplete block designs leads to a more complex analysis. For example, as already 
noted, the Scheffe and Tukey multiple comparisons procedures cannot be used with these designs for 
the analysis of treatment means. • 

Analysis of Balanced Incomplete Block Designs 

The model for a balanced incomplete block design is the same as that for a randomized 
complete block design. Thus either model (21.1) for fixed block effects, or model (25.67) 
for random block effects may be employed. The analysis of variance is the same for these 
two models, and all tests and estimates of treatment effects are conducted as for fixed block 
effects. For this reason we shall present only the fixed block effects case. Model (21.1) is: 

where: 

fJ., •• is a constant 

Pi are constants for the block (row) effects, subject to the restriction ""£Pi = ° 
ij are constants for the treatment effects, subject to the restriction ""£ij = ° 
Cij are independent N(O, a 2) 

i = 1, ... ,nb;j = 1, .. . ,r 

Note that model (28.2) assumes that no block-treatment interactions are present. 

(28.2) 

In Section 23.4, we discussed the analysis of randomized complete block designs when 
one or several observations are missing. This discussion is relevant to the analysis ofBIBDs, 
because there are r - rb missing cells in each block. We noted there that missing cells destroy 
the orthogonality of the complete block design and make the usual ANOVA calculations 
inappropriate. However, the regression approach, as described on page 967, is still appro­
priate for additive model (28.2). Since no new principles are involved, we tum now to the 
use of the regression approach for the food product taste-testing example. 

~> .... Regression Approach to Analysis of Balanced Incomplete Block Designs 
: " For the food product taste-testing example, the regression model equivalent to block design 

model (28.2) is as follows, where we use X s to denote the 1, 0, -1, indicator variable 
predictors corresponding to treatment effects if through i4 and Zs to denote analogous 
predictors corresponding to block effects PI through P9: 

Full model (28.3) 
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TABLE 28.2 Responses and Predictors-Food Product Taste-Testing Example. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) ~ 

j Yi/ Zljl ZI/2 Zi/3 Zii4 Zii5 Zi/6 Zlj7 ZI/8 Zli9 X,i1 X1/2 

(13) (14Y" 
Xi/3 x.{ 

1 1 6 1 0 0 0 0 0 0 0 0 1 0 
I~ 

0 :0 : 1 2 6 1 0 0 0 0 0 0 0 0 0 1 0, 

~! 1 3 8 1 0 0 0 0 0 0 0 0 0 0 1 
2 1 3 0 1 0 0 0 0 0 0 0 1 0 0 6; 
2 2 7 0 1 0 0 0 0 0 0 0 0 1 0 Q j 2 4 7 0 1 0 0 0 0 0 0 0 0 0 0 1 \ 
3 1 6 0 0 1 0 0 0 0 0 0 1 0 0 0' " 3 2 8 0 i%fg 1 0 0 0 0 0 0 0 1 0 P'1 3 5 6 0 1 0 0 0 0 0 0 -1 -1 -1 -1 

.;-. 

10 10 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 Oil 
10 4, 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 
10 5 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

--i 

FIGURE 28.3 Residual Plots-Food Product Taste-Testing Example. 

• 
ro • ::l 
-0 0 
'Vi • <IJ cr: 

'to 

-1 

3 

(a) Residuals vs. Predicted (b) Normal Probability Plot 

• 

.. 

4 

.. • • .. .. • • • 
\ .. .. 

.. 
• • 

• • • 
5 6 7 8 
Predicted Value 

where: 

.. 
.. • .. 

• • , . ."". . • "" • ::l 
-0 0 

• 'Vi • <IJ cr: • 
• •• 

-1 • • • • 
9 10 -2 -1 0 2 

Expected Value 

if response from product k (i.e., if j = k), for k = 1, 2, 3, 4 
if response from product 5 
otherwise 

if response from subject k (i.e., if i = k), for k = 1, ... ,9 
if response from subject 10 
otherwise 

A portion of the data for the food product taste-testing BIBD is shown in Table 28.2. 
The response vector Y is displayed in column 1, Zij I through Zij9 are shown in columns 2 
through 10, and Xij ! through Xij4 are shown in columns 11 through 14. MINITAB regression 
output for the initial fit of model (28.3) is shown in Figure 28.2a. These results were obtained 
by regressing column 1 in Table 28.2 on columns 2 through 14. Residuals obtained from 
this fit are plotted against predicted values in Figure 28.3a and a normal probability plot 
of these residuals is shown in Figure 28.3b. No violations in assumptions are suggested 
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by the residual plots. The correlation between the residuals and the expected values under 
normality in Figure 28.3b is .988, which supports the assumption of approximate normality 
of the residuals. 

Testing for the presence of treatment effects and block effects is carried out in the usual 
manner by first fitting full model (28.3) and then fitting each of the following reduced 
models: 

Test for Treatment Effects 

Y1j = fJ., •• + PI ZijI + ... + P9 Z ij9 + eij 

Test for Block Effects 

Yij = fJ., •• + iIXijI + ... + i4Xij4 + eij 

Reduced model (28.4) 

Reduced model (28.5) 

Regression results for these two reduced models are shown in Figures 28.2b and 28.2c, 
respectively. We first consider the test for treatment effects. 

The alternatives in the test for treatment effects implied by full model (28.3) and reduced 
model (28.4) are: 

Ho: il = i2 = i3 = i4 = 0 

Ha: not all ii = 0 
(28.6) 

Using general linear test statistic (2.70) and results from Figures 28.2a and 28.2b, we have: 

F* = SSE(R) - SSE(F) -:- MSE(F) 
dfR -d/F 

= 63.333 - 12.8889 -:- .8056 
20-16 

= 15.65 

For a = .05, we require F(.95;4, 16) = 3.01. Since 15.65 > 3.01, we conclude Ha that 
treatment effects are present. The P-value of the test is O+. 

In similar fashion, a test for block effects is obtained using full model (28.3) and reduced 
model (28.5). In this case, the alternatives are: 

Ho: PI = P2 = ... = P9 = 0 

Ha: not all Pi = 0 

and test statistic (2.70) is, using results from Figures 28.2a and 28.2c: 

F* = SSE(R) - SSE(F) -:- MSE(F) 
dfR -d/F 

= 53.167-12.8889 -:-.8056 
25 -16 

= 5.56 

(28.7) 

For a = .05, we require F(.95; 9, 16) = 2.54. Since 5.56 > 2.54, we conclude Ha, that 
block effects are present. The P-value of the test is .0015. 

At this point we have demonstrated that there are significant differences among the 
treatment means and that the use of blocking was effective. We now tum to the analysis of 
treatment effects for balanced incomplete block designs. 
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Analysis of Treatment Effects 

Example 

Once the presence of treatment effects has been established using the regression appro 
the analysis of these effects proceeds as described in Section 21.5 for randomized com ~h, 
block designs. with the following modifications: pete 

I. The least squares estimate of the jth treatment mean !l'i is given by: 

fl'i = fl .. + Tj (28.8) 

where fl .. and Tj are the least squares estimates of the regression coefficients fl .. and T. 

in (~8.3). Note that the least squares estimate of the ith treatment mean is Ilot given her~ 
by Y. j . 

2. ltcan be shown that the variance of a contrast of estimated treatment means (oreffects)is: 

{ 
r} r ') " ') " ') I~b ., 

a-{L} = a- ~ c;!l.j = a--~ c 
~ . rn ~ J 
';=1 I' j=1 

(28.9) 

3. The estimared variance of a contrast of treatment means or effects is obtained by substi­
tuting the estimated variance MSE(F) for full model (28.2) for a 2 in (28.9): 

r 

s2{L} = MSE(F)~ ~ c2 

rn ~ .I 

" j=1 

(28.10) 

4. The error degrees of freedom are now I1T - (HI> - I) - (r - I) - 1= !1bi"b -!1b - r + 1. 

The multiples for the estimated standard deviation of an estimated treatment mean or treat­
ment contrast are then as follows: 

Tukey procedme (for 
pairwise comparisons) 

Scheffe procedure 

BonfelToni procedure 

S2 = (r - 1) F[ I - a; r - I, !1br" - !11> - r + Il 

(28.11a) 

(2B.11b) 

(2B.11c) 

We illustrate the use of the Tukey procedure for the food product taste-testing example. 

The least squares estimates of the five treatment means listed below were obtained using 
(28.8) and the regression results in Figure 28.2a: 

j: 2 3 4 5 
4.57 7.30 7.77 6.83 4.37 

For example. the first estimated cell mean is fl .. + TI = 6.17 + (-1.60) = 4.57. These 
estimated treatment means are plotted against treatment number (j) in Figure 28.4. Note that 
the treatments 2, 3, and 4 lead to the largest estimated mean responses. and that treatments 
I and 5 appear to be substantially smaller. The investigators utilized the Tukey procedure 
to obtain all pairwise comparisons, employing a 95 percent family confidence coefficient. 

For the food product taste-testing example, we have r = 5,111> = 10, Il" = 3, and, from 
Figure 28.2a, MSE(F) = .8056. The estimated variance of the estimated difference between 
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2 3 
Treatment 

4 5 

cell means 1 and 2, D = fl.l - fl.2' using (28.10) is: 
r 

s2{D} = MSE(F)~ ~ c~ 
rn L J 

P j=1 

3 
= .8056-(12 + (_1)2 +02 +02 +02) = .3222 

5(3) 

Using (28.11 a), we find for a 95 percent family confidence coefficient: 

1 1 
T = -j2q(.95; 5, 16) = -j2(4.33) = 3.06 

Hence: 

Ts{D} = 3.06.J.3222 = 1.74. 

We now obtain all pairwise comparisons using (17.30) with fl.) =4.57, fl.2=7.30, 

fl·3 = 7.77, fl·4 = 6.83, and fl.s = 4.37: 

-4.47 = (4.57 - 7.30) - 1.74 :::: f-L.) - f-L.2 :::: (4.57 - 7.30) + 1.74 = -0.99 

-4.94 = (4.57 -7.77) - 1.74:::: f-L.) - f-L.3 :::: (4.57 -7.77) + 1.74 = -1.46 

-4.00 = (4.57 - 6.83) - 1.74:::: f-L.I - f-L.4 :::: (4.57 - 6.83) + 1.74 = -0.52 

-1.54 = (4.57 - 4.37) - 1.74 :::: f-L.) - f-L.s :::: (4.57 - 4.37) + 1.74 = 1.94 

-2.21 = (7.30 - 7.77) - 1.74.::; f-L.2 - f-L.3 .::; (7.30 - 7.77) + 1.74 = 1.27 

-1.27 = (7.30 - 6.83) - 1.74 .::; f-L.2 - f-L.4 .::; (7.30 - 6.83) + 1.74 = 2.21 

1.19 = (7.30 - 4.37) - 1.74.::; f-L.2 - f-L.S :::: (7.30 - 4.37) + 1.74 = 4.67 

-0.80 = (7.77 - 6.83) - 1.74.::; f-L.3 - f-L.4 .::; (7.77 - 6.83) + 1.74 = 2.68 

1.66 = (7.77 - 4.37) - 1.74:::: f-L.3 - f-L.s .::; (7.77 - 4.37) + 1.74 = 5.14 

0.72 = (6.83 - 4.37) - 1.74.::; f-L.4 - f-L.s .::; (6.83 - 4.37) + 1.74 = 4.20 
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We conclude that the five treatment means clustef into two distinct groups. The three 
laI'gest estimated means corresponding to treatments 2. 3. and 4 me significantly different 
from treatment means I and 5, but not significantly different from each other, and the two 
smalb;t estimated tJ'eatment means (for treatments I and 5) Me not significantly different 
from each other. A line plot of the estimated treatment means summarizes the results: 

5 1 4 2 3 
I I 

GI III 

I 
\ 

III 
\ 

Ill> \ 
III 

4.5 5.5 6.5 7.5 

Consumer Acceptance Score 

Planning of Sample Sizes with Estimation Approach 

Example 

The essence of this approach is to specify the majoI' comparisons of interest and to determine 
the expected widths of the confidence intervals for vaI'ious sample sizes, given an advance 
planning value of the standaId deviation. For a given numbef of treatments r and block size 
!"/J. we need to determine the number of blocks Ilb required to achieve confidence intervals 
of a specified width. We then determine if a BIBD exists for number of rreatments r and 
block size i'b that has approximately the required number of blocks. In doing so, we will 
utilize the following two relations that hold for any balanced incomplete block design: 

11,,(r - I) = l1(rb - I) 

From these relations we have: I1b = tl1l!"/J and 11" = n(rb - 1)/(1" - I). 
We illustrate the estimation approach to the planning of sample sizes based on Tukey's 

pairwise comparison procedure and the taste-testing example. 

Suppose that Tukey's method for all paiIwise comparisons will be used to analyze the BIBD 
for the food producr taste-testing example with r = 5 and !"b = 3. Assume that a will be 
no laI'ger than 1.0 and the widths of the simultaneous 95 percent confidence inteI'vals are 
not to exceed 2.0. In a BIBD the widths of all such intervals are the same, since the Tukey 
multiple T is the same for all paiIs and since, from (28.10), s1{DI = 2MSE(F)rl,/(rnp)' 

Using the fact ~hat 11 /J = r!1 I r/J = 51l 13. the effor degrees of freedom aIe: 

dfe = I1brb - r - I1b + I 
511 1011 

= 51l - 5 - - + I = - - 4 
3 3 

The Tukey multiple compafison confidence limits for all paiIwise compmisons D.I = fJ.,.j-'­

fJ.,.j' afe: 

0; ± Ta{D;1 

where a 1 {Djl=2a1 (3)/(5I1p) from (28.9) and T=(l/.J2)Q[.95;5,101l13-4]. 
FurtheI'more, since 11" = nCr/> - 1)/(1" - I) = 11(3 - 1)/(5 - I) = 1112. we obtain: 

, A 6a 14 12a2 

a-{D;l = -- = --
. 5(2)11 511 
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Therefore, the confidence interval halfwidth is: 

A 1 V12a2 
Ta{D j } = ""q[.95; 5, IOn/3 - 4] --

v 2 5n 

With a 2 = 1, the only unknown is n. We need to determine n so that Ta{D j } ::s 1.0 or 
n 2:: 1.20q2[.95; 5, IOn/3 - 4]). Using Table B.9, we find by trial and error that n must be 
greater than or equal to 24. For r = 5 and rb = 3, note that the number of replicates for 
design 4 in Table 28.1 is n = 6. Therefore, the required number of replicates is achieved 
by repeating this particular BIED four times, for which n = 24 and nb = 40. 

Comment 
It is also possible to use the power approach or to use the selection of the "best" treatment approach 
to plan sample sizes. See Reference 28.3 for a discussion of sample size planning using the power 
approach. • 

28.3 Latin Square Designs 

Basic Ideas 

We saw in Section 21.6 that two blocking variables can be used simultaneously in random­
ized complete block designs to eliminate from experimental error the variation associated 
with each of the blocking variables. For instance, the blocking variables might be age and 
income of subject, with a block containing subjects in a given age and income group. 

However, the full use of two blocking variables in a complete block design often requires 
too many experimental units. For instance, if the age and income variables in the illustration 
have six classes each, 36 blocks would be required. If six treatments were to be studied, 
216 subjects would be needed for the experiment. Cost considerations may not permit the 
use of216 experimental units, yet precision and range of validity considerations may require 
the simultaneous use of two blocking variables, each with six classes, in order to reduce the 
experimental error variance sufficiently and to have a reasonable variety of experimental 
subjects. In this type of situation, a latin square design may be helpful. 

Taking incomplete block designs to the extreme in our example, given the employment of 
36 blocks, the number of experimental units is minimized if only one treatment is run in 
each block. This extreme case, where each block contains only one treatment, is the type of 
situation for which a latin square design is appropriate. Table 28.3 provides an illustration 
of the difference between complete and incomplete block designs for the example con­
sidered. Column 1 shows the complete block design for this case, while columns 2 and 3 
illustrate incomplete block designs, with three treatments and one treatment in each block, 
respectively. 

There is another reason, besides economy, why a latin square design with only one 
treatment per block is used, namely, that blocks sometimes cannot contain more than one 
treatment. Consider the repeated measures design discussed in Section 27.2 where each 
subject receives every treatment. The repeated measures model in (27.1) assumes that no 
interference effects due to order position are present. If, indeed, such effects are possible, 
it may be desirable to use the order position as another blocking variable. Thus, "subject" 
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TABLE 28.3 
Complete and 
Incomplete 
Block Designs. 

Sj}ecillli~l'd Study Dl'siKUS 

(1) (2) --(3) 
Incomplete Block Incomplete BlOCk 

Design (three Design (one 
Complete Block treatments treatment 

Block Description Design per block) per block) 
Age under 25, income T" T2, T3, T" T3, Ts T2 

under $10,000 T4 , Ts, T6 

Age under 25, income T" T2, T3, T2, T4 , T6 Ts 
$10,000-$19,999 T4 , Ts, T6 

Age 25-34, income T" T2, T3, T2, T4 , Ts T3 
under $10,000 T4 , Ts, T6 

Age 35-44, income T" T2, T3, T3, T4 , T6 T2 
under $10,000 T4 , Ts, T6 

etc. etc. etc. etc. 

would be one blocking variable and "order position of tI"eatment" a second blocking variable 
Blocks would then be defined as follows for a study involving six u"eatments: 

Block I: Subject I, position I 

Block 2: Subject I, position 2 

Block 6: Subject I, position 6 

Block 7: Subject 2, position I 

etc. etc. 

Notice that the blocks so defined can contain only one treatment, since the order position 
refers ro the place of a single treatment in the sequence of tI"eatments for a subject. 

Description of Latin Square Designs 
Let A, B, C represent tlu"ee treatments: it is conventional with latin square designs to use 
Latin letters for the treatments. Suppose that day of week (Monday, Tuesday, Wednesday) 
and operator (1,2,3) moe to be used as blocking vaI"iables. A latin square design might then 
be shown as 'follows: 

Operator 

Day 2 3 

Monday B A C 
Tuesday A C B 
Wednesday C B A 

Operator I would run treatment B on Monday, treatment A on Tuesday, and treatment C on 
Wednesday, and so on for the other operators" Note that each operator runs each treatment, 
and that all treatments are run on each day. 



Chapter 28 Balanced Incomplete Block, Latin Square, and Related Designs 1185 

A latin square design thus has the following features: 

1. There are r treatments. 
2. There are two blocking variables, each containing r classes. 
3. Each row and each column in the design square contains all treatments; that is, each 

class of each blocking variable constitutes a replication. 

Advantages and Disadvantages of Latin Square Designs 
Advantages of a latin square design include: 

1. The use of two blocking variables often permits greater reductions in the variability of 
experimental errors than can be obtained with either blocking variable alone. 

2. Treatment effects can be studied from a small-scale experiment. This is particularly 
helpful in preliminary or pilot studies. 

3. It is often helpful in repeated measures experiments to take into account the order 
position effect of treatments by means of a latin square design. 

Disadvantages of a latin square design are: 

1. The number of classes of each blocking variable must equal the number of treatments. 
This restriction is often difficult to meet in practice. 

2. The assumptions of the model are restrictive (e.g., that there are no interactions be­
tween either blocking variable and treatments, and also none between the two blocking 
variables). 

3. The use of a latin square design will lead to a very small number of degrees of freedom 
for experimental error when only a few treatments are studied. On the other hand, when 
many treatments are studied, the degrees of freedom for experimental error may be larger 
than necessary. 

4. The randomization required is somewhat more complex than that for earlier designs 
considered. 

Because of the limitations on the degrees of freedom for experimental error just described, 
latin squares are rarely used when more than eight treatments are being investigated. For the 
same reason, when there are only a few treatments, say, four or less, additional replications 
are usually required when a latin square design is employed. 

Randomization of Latin Square Design 
There exist many latin squares for a given number of treatments. For example, for r = 3, 
there are altogether 12 different possible arrangements. Four of the 12 possible arrangements 
are (we omit the row and column blocking variable labels): 

A 
B 
C 

1 

B 
C 
A 

C 
A 
B 

A 
B 
C 

2 

C 
A 
B 

B 
C 
A 

B 
C 
A 

3 

A 
B 
C 

C 
A 
B 

C 
A 
B 

4 

B 
C 
A 

A 
B 
C 
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Example 

The number of possible latin square designs increases rapidly as the number of treat 
ments 

gets larger; for r = 5, there are 161.280 possible arrangements. 
The objective of randomization is to select one of all possible latin squares for the g' 

Iven 
number of treatments r, such that each square has an equal probability of being selected 
Clearly, it is not generally feasible to list all pos,;ible latin squares so that one can be selected 
at random. Instead, we utilize standard latill squares, which are latin squares in which the 
elements of the firsr fOW and the first column are arranged alphabetically. The earlier latin 
sqUafe I is a standard latin square. Table B.14 contains all the stalldard squares for r = 3 
and 4, and a single selected standard square for r = 5. 6, 7. 8. and 9. 

The randomization pfOcedure usually employed with Table B.14 is as follows: 

I. For r = 3, independently arrange the rows and columns of the standard square at 
random. 

2. For r = 4, select one of the standard squares at random. Then, independently arrange 
its fOws and columns at random. 

3. For r = 5 and higher, independently arrange the rows, columns, and treatments of the 
given standard square at random. 

It can be shown that this procedure selects one latin square at random from all possible 
squares for /' = 3 and 4. For /' = 5 or higher, the randomization procedure is not based on 
all possible latin squares, but rather on very large and suitable subsets thereof. 

An experiment was conducted to study the effects of different types of background music 
on the productivity of bank tellers. The treatments were defined as various combinations of 
tempo mllsic (slow, medium, fast) and style of music (instrumental and vocal, instmmental 
only), The treatments and Latin letter designarions were a~ follows: 

Treatment 

1 
2 
3 
4· 
5 

Latin Letter 
Designation 

A 
B 
C 
o 
E 

Tempo and Style of Music 

Slow, instrumental and vocal 
Medium, instrumental and vocal 
Fast, instrumental and vocal 
Medium, instrumental only 
Fast, instrumental only 

Table 28.4 contains the results of this experiment. The treatment in each cell is shown 
in parentheses. The experimental unit in this study is a working day for the crew of bank 
tellers: the productivity data pertain to the performance of the entire crew. Let Yiik denote 
the ohservation in the cell defined by the ith class of the row blocking variable and the 
jth class of the column blocking variable. The subscript k indicates the treatment assigned 
to this cell by the particular latin squafe design employed. For instance. YI23 = 17 is the 
productivity on Tuesday of the first week, and Table 28.4 indicates that the type of music 
on that day was C. 



Chapter 28 Balanced Incomplete Block, Latin Square, and Related Designs 1187 

fABLE 28.4 Latin Square Design and Experimental Results-Background Music Example (productivity of 
'crew-data coded). 

""',-r"Y'" 
-'i '.§ 

~E 
> oil! 
~ ! 

! t 
~ 

18 (D) 

B(C) 
7(A} 

17 (E) 

, 21 (8) rl; = 15.2 

T 

17 (C) 
34(8) 

29 (D) 
13:(A) 

26 (£) 

Day 
VIi 

14C:4) 
2'1 (E) 

32:(8) 
24"(6 

,26:<D} 
r.} = 23)4 

Y.'·l=.J 1.:4 
Y..2 = 26.6 

Y.'3'= 19:6 

;'E6, 
2.1 CB) 
16(A)' 

~fS9, 
3'1 (fJ): 
11 (q 

[4:::;,?3~~ 
y..5, = 21.6 

1:{(E) 
1:5('0) 
13,(C} 
2'~j(S)\ 
7(~1 

Y,s.:= ;1'5:4' 

Mean 

\'1 .. = 1;7.4 
Y~ •• = 19.8 

V~.:='2'2.~ 
~ .. =22.2 
Y. •. = 20.6 

The subscript k in Yijk is actually redundant for a latin square design because the row and 
cell designation (i, j) determines the treatment for the particular latin square employed. 
However, we continue to use all three subscripts for ease of identification. 

We shall analyze the results of this study in Section 28.5. 

28.4 Latin Square Model 

A latin square design model involves the main effect of the row blocking variable, denoted 
by Pi> the main effect of the column blocking variable, denoted by Kj' and the treatment 
main effect, denoted by Tk' It is assumed that no interactions exist between these three 
variables. Thus, the model employed is an additive one. For the case of fixed treatment and 
block effects, the model is: 

where: 

f.1, ••• is a constant 

Pi, Kj' Tk are constants subject to the restrictions LPi = LKj = LTk = ° 
Cijk are independent N(O, ( 2) 

i = 1, ... , r; j = 1, ... , r; k = 1, ... , r 

(28.12) 

Note again that the number of classes for each of the two blocking variables is the same as 
the number of treatments, and that the total number of experimental trials is r2. 

Comment 

If the treatment effects are random, the only change in model (28.12) is that the Tk now are independent 
N (0, u;) and are independent of the Cijk. • 
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28.5 Analysis of Latin Square Experiments 

Notation -
We shall employ the usual notation for row, column, and treatment totals and means: 

Y. j . = LYijk 

Y·.k = LYijk 

i,j 

- Yi ·· Y; .. =-
r 

The overall £Otal and mean are denoted as usual by: 

Y ... = LLY;jk - f. .. 
f. .. =­

r2 

(28.13a) 

(28.13b) 

(28.13c) 

(28.13d) 

Note the redundancy of anyone of the three subscripts, arising from the fact that the 
treatment is uniquely determined by the row and column specifications for the latin square 
utilized. The various means for the background music example are shown in Table 28.4. 
The estimated treatment means are calculated by first collecting the data for each u'eatment 
and then averaging these values. For instance, we have: 

- 7 + 13 + 14 + 16 + 7 
f.. I = 5 = 1 L4 

Fitting of Model 
The least squares and maximum likelihood estimators of the parameters in latin square 
model (28.12) are: 

Parameter Estimator 

fl .. · 11 .•. = Y... 

Pi Pi = Y; .. - Y. .• 
- -

KJ Y. i · - Y. .. 

Tk = Y..k - Y. .. 

The fitted values therefore are: 

Yijk = ri .• + Y. j • + Y.'k - 2Y... 

and the residuals are: 

eijk = Yijk - Yijk = Yijk - Y; .. - Y.j . - Y.'k + 2Y. .. 

Analysis of Variance 

(28.14a) 

(28.14b) 

(28.14c) 

(28.14d) 

(28.15) 

(28.16) 

Table 28.5 presents the ANaYA table for latin squm'e model (28.12). The sums of squares 
can be obtained by the rules in Appendix D, remembering that one subscript is I"edundant. 
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:\fABLE 28.5 ANOVA Table for Latin Square Design Model (28.12) with Fixed Effects. 
,. . 

.i~~".) 

farCe of Variation 
ai:'"':·. 

55 df M5 E{M5} . 

SSROW r-1 MSROW = SSROW 
r-1 

@r1n;Olockingvariable SSCOL r-1 MSCOL = SSCOL 
r-1 

SSTR r-1 MSTR= SSTR 
r-1 

SSRem (r -1)(; - 2) MSRem = SSRem 
(r - l)(r - 2) 

ssm r2 -1 

The definitional forms of the sums of squares are as follows: 

SSTO = L L(Yijk - y' .. )2 
j 

SSROW = r L(Yi " - L)2 

,,- - 2 SSCOL = r L.,..(l~j. - Y. .. ) 

,,- - 2 
SSTR = r L.,..(Y.'k - Y. .. ) 

k 

SSRem = L L(Yijk - Yi .. - Y. j . - Y.'k + 2y' .. )2 
j 

2 LPt 
a +r--

r-1 

LKf 
a2 +r--

r-1 

Lit 
a2 +r--

r-1 

a2 

(28.17a) 

(28.17b) 

(28.17c) 

(28.17d) 

(28.17e) 

SSROW is the row sum of squares. The more the row means ¥; .. differ, the larger is 
SSROW. Similarly, SSCOL is the column sum of squares and measures the variability of the 
column means Y. j .. SSTR denotes, as usual, the treatment sum of squares. Finally, SSRem 
stands for the remainder sum of squares reflecting the error variability. We use this notation 
here since this sum of squares is made up of several different interaction components. 

The degrees of freedom in Table 28.5 can be understood as follows. There are r2 obser­
vations, and hence SSTO has r2 - 1 degrees of freedom associated with it. Since there 
are r classes for the row and column blocking variables each, and also r treatments, 
each of the corresponding sums of squares has r - 1 degrees of freedom associated with 
it. The number of degrees of freedom associated with SSRem is the remainder, namely, 
(r2 - 1) - 3(r - 1) = (r - l)(r - 2). Note that the addition of a second blocking variable 
has reduced the number of degrees of freedom for the error sum of squares from (r - 1)2 for 
a randomized complete block design based on r blocks and r treatments to (r - l)(r - 2), 
a reduction of r - 1 degrees of freedom. 

The E {MS} column in Table 28.5 for latin square model (28.12) can be obtained by using 
the rules in Appendix D, remembering that one subscript is redundant, or by a computer 
package that provides expected mean squares. 



1190 Part Six Specialized St/ldv Desiglls 

Test for Treatment Effects 
To test for treatment effects in latin squm'e model (28.12) with fixed effects: 

Ho: all Tk = 0 

H,,: not all Tk equal zero (28.18a) 

we see from the E{MS} column in Table 28.5 that the appropriate test statistic is: 

F* = MSTR 
MSRem 

The appropriate decision rule to control the risk of a Type I en'or at a is: 

Comments 

If F* ::::: F[l - a; r - I, (,. - I )(r - 2)], conclude Ho 

If P > F[l - a; I" - I, (,. - l)(r - 2)1, conclude H" 

(28.18b) 

(28.18c) 

I, If the presence of blocking variable effects is to be tested, we see from the E {MS} column in 
Table 28.5 that the appropriate test statistics are: 

> MSROW 
P"= --­

MSRem 

. MSCOL 
P' = --­

MSRem 

(28. 19a) 

(28. 19b) 

2, If the treatment effects are random, the alternatives to be considered are: 

Hu: a T

2 = 0 

HlI : a
T

2 > 0 
(28.20) 

but the test statistic and decision rule are the same as in (28,18) for the fixed treatment effects 
~~ . 

Analysis of Treatment Effects 
When differential U'eatment effects are found by the analysis of variance and the treatments 
have fixed effects, estimates of conu'asts involving the u'eatment effects moe usually desired, 
ofte~ utilizing multiple comparison procedures, The appropliate mean squm'e to be used in 
the estimated valiance of the contrast is MSRem obtained from (28,17e), and the multiples 

for the estimated standm'd deviation of the contrast are as follows: 

Single comparison t[l - 0'./2; (r - I)(r - 2)] (28.21 a) 

1 • 
Tukey procedure (for T = J2 q [l - a; r, (r - I)(r - 2)] 

pairwise compm'isons) 

(28.21b) 

Scheffe procedure 

Bonferroni procedure 
(g comparisons) 

S2 = (r - I)F[I - O'.;r - I, (r - l)(r - 2)] (28.21 c) 

B = t[l - O'./2g; (I" - I)(r - 2)] (28.21 d) 
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(Residual Analysis 

~ample 
~ 

TABLE 28.6 
ANOVA 
Table-
Background 
Mnsic 
Example. 

The use of the residuals in (28.16) for examining the aptness of a latin square model presents 
no new issues; the basic points made earlier for other designs apply also to latin square 
designs. The Tukey test for additivity in a randomized complete block design, discussed in 
Section 21.4, can be extended to latin square designs. Reference 28.3 describes the extension. 

The analysis of variance calculations for the background music data in Table 28.4 were 
made by using a computer package and the results are shown in Table 28.6. The residuals 
were also obtained and analyzed. Figure 28.5a contains a plot of the residuals against the 
fitted values, and Figure 28.5b contains a normal probability plot of the residuals. These 
plots do not reveal any serious departures from the model assumptions, though they show 
one case that appears to be outlying. The Bonferroni outlier test, explained on page 396, 
was employed to test whether this case is an outlier but did not identify it as such. Based 
on these and other diagnostics, including the Tukey test for additivity, it was concluded that 
model (28.12) is appropriate for the data. 

To test for treatment effects: 

Source ·of Variation 

Weeks' 
Dayswithin week 
typ~ofmusic 
Error 

Total 

Ho: <) = <2 = <3 = <4 = <s = 0 

Ha: not all <k equal zero 

55 df M5 

82.0 4 20.5 
477.2 4 119.3 
664.4 4 166.1 
188.4 12 15.7 

1,412,0 24 

FIGURE 28.5 Diagnostic Residual Plots-Background Music Example. 

(a) Plot against Y (b) Normal Probability Plot 

10 10 

5 • • 5 • • 
• • • • • • 

"iij • • .' "" .... ;1' :J • ::J 
"0 0 • • • • -0 0 . ;;; • • .;;; 
OJ • <IJ .. 
a: • • 0:: • ••• \ .. • •• 

-5 -5 

• • 
-10 -10 

0 10 20 30 40 -10 -5 0 5 10 
Fitted Value Expected Value 
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we find from Table 28.6: 

F* = MSTR = 166.1 = 10.6 
MSRem 15.7 

To control the risk of making a Type I error at a = .01, we require F(.99; 4, 12) = 5.41. 
Since F* = 10.6 > 5.41, we conclude Ha, that the various types of background music have 
differential effects on the productivity of the bank tellers. The P-value of this test is .0007. 

Pairwise comparisons between the different kinds of music were desired with a family 
confidence coefficient of .90, using the Tukey procedure. Substituting into (17.14) with 
ni = ni' = r and using MSRem from Table 28.6 as the mean square, we obtain: 

2 ~ 2MSRem 2(15.7) 8 
s {L} = = -- = 6.2 

r 5 
s{L} = 2.51 

Remember that each estimated treatment mean Y.'k is based on five observations here. Next, 
we require the T multiple in (28.21b): 

1 1 
T = -}2q(.90; 5, L2) = -}2(3.92) = 2.77 

so that: 

Ts{L} = 2.77(2.51) = 6.95 

Conducting pairwise tests based on the confidence intervals, the treatments can be placed 
into three groups: 

Group 1 Group 2 Group 3 

Music 2 Y.'2 = 26.6 Music 4 Y.'4 = 23.8 Music 1 Y.., = 11.4 
Music 4 Y.'4 = 23.8 Music 5 Y..5 = 21.6 
Music 5 Y.'5 = 21.6 Music 3 Y..3 = 19.6 

The most promising treatment appears to be mixed instrumental-vocal music in medium 
tempo (k = 2). There is clear evidence that it is better than instrumental-vocal music in 
slow tempo (k = 1) or instrumental-vocal music in fast tempo (k = 3). The point estimates 
suggest it also is better than solely instrumental music in medium (k = 4) or fast (k = 5) 
tempo, but the experimental evidence on these latter two comparisons is inconclusive. 

Factorial Treatments 
If the treatments in a latin square design are factorial in nature, the treatment sum of squares 
SSTR is decomposed in the usual manner. For a two-factot'experiment involving factors A 
and B, we have: 

SSTR = SSA + SSB + SSAB (28.22) 

Estimates of fixed factor effects can be made readily since they are simply contrasts of 
the treatment means. 
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Random Blocking Variable Effects 
If the rowand/or column blocking variable(s) in a latin square design have classes that 
should be viewed as random selections from a population, the fixed effects Latin square 
model (28.12) needs to be modified in the usual fashion. The analysis of variance is the 
same as for the fixed blocking variable effects model and all tests and estimates of treatment 
effects are conducted as for fixed blocking variable effects. 

Missing Observations 
While missing observations destroy the symmetry (orthogonality) ofthe latin square design 
and make the usual ANOVA calculations inappropriate, the regression approach ordinarily 
remains appropriate when observations in a latin square design are missing. We just set up 
the regression model for the available observations and then fit the model to the data. The 
procedure is analogous to that discussed in Section 23.4 for complete block designs. Tests 
are conducted by fitting the full and appropriate reduced regression models. Estimation of 
fixed treatment effects is done in terms of the regression coefficients for the full model in 
the usual manner. 

28.6 Planning Latin Square Experiments 

Power of F Test 
The power of the F test for treatment effects in latin square model (28.12) involves the 
noncentrality parameter: 

(28.23) 

with degrees of freedom r - 1 for the numerator and (r - l)(r - 2) for the denominator. 
Other than these modifications, no new issues are encountered in obtaining the power of 
the test for treatment effects in a latin square design. 

Necessary Number of Replications 
A latin square design provides r replications for each treatment. Power and/or estimation 
considerations similar to those for randomized complete block designs may indicate that 
r replications are too few, particularly when r is small, say, 3, 4, or 5. Two methods of 
increasing the number of replications with a latin square design are discussed in Section 28.7. 
With either method, it is necessary to assess in advance the magnitude of the experimental 
error variance a 2 in order to plan the necessary number of replications. 

Efficiency of Blocking Variables 
The efficiency of a latin square design can be assessed relative to a completely randomized 
design or relative to a randomized complete block design. The efficiency relative to a 
completely randomized design is defined by: 

a,~ 
E\ = 2" (28.24a) 

aL 

where a; and at are the experimental error variances with a completely randomized design 
and a latin square design, respectively. The efficiency relative to a randomized complete 



1194 . Part Six Specillli~ed Study De."iglls 

Example 

block design can be measured in two ways, depending on whether the row or the column 
blocking vafiable is used in the randomized block design: 

(28.24b) 

(28.24c) 

where al~r and all" are the experimental error variances with a randomized block design if 
the row blocking variable or the column blocking variable is utilized, respectively. 

We can estimate a}, al~'" and a/~c from the results for a latin square design as follows: 

MSROW + MSCOL + (r - l)MSRem s; = -------------,-.-+--1------------

MSCOL + (I" - I)MSRem 

r 

MSROW + (r - I )MSRem 

r 

Thus, the estimated measures of efficiency are: 

~ MSROW + MSCOL + (r - I)MSRem 
E, = -----------------------------

(r + I)MSRem 

~ MSCOL + (r - I )MSRem 
Eo = --------------------

- I" MSRem 

~ MSROW + (r - I)MSRem 
E J = -------------------

. rMSRem 

(28.2Sa) 

(28.2Sb) 

(28.25c) 

(28.26a) 

(28.26b) 

(28.26c) 

When r is small, the efficiency measures may be modified by means of(21.15) to account 
for differences in the number of degrees of freedom associated with the mean squares used 
for estimating the experimental error variances for the two designs being compared. 

For {he background music example, we obtain the following efficiency measures from the 
results in Table 28.6: 

~ 20.5 + 119.3 + 4(15.7) 
E, = 6(15.7) = 2.2 

£2 = 119.3 + 4(15.7) = 2.3 
5(15.7) 

~ 20.5 + 4( 15.7) 
E = = 1.1 

3 5(15.7) . 
We see that the latin square design was efficient relative to a completely randomized design. 
The latter would have required over twice as many replications for each treatment as the 
latin square design so that the variance for any specified estimated treatment contrast would 
be the same with both designs. Most of this efficiency was gained by the column blocking 
variable (days within week), because the efficiency of the latin square design relative to a 
complete block design with the column blocking variable is poor, being close to 1. Hence, 
little was achieved by also blocking by the row blocking variable (week). 
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28.7 Additional Replications with Latin Square Designs 

A latin square design, as noted earlier, provides r replications for each treatment. If power 
and/or estimation considerations indicate that these are too few replications, two basic 
methods are available for increasing the number of replications-replications within cells 
and additional latin squares. We consider each in tum. 

Replications within Cells 
This method of increasing the replications per treatment is feasible when two or more 
experimental units can be obtained for each cell defined by the row and column blocking 
variables. Consider, for instance, an experiment in which IQ (low, normal, high) and age 
(young, middle, old) are the blocking variables. In this type of situation, it is possible to 
obtain two or more experimental subjects for each cell, and each of the subjects in a cell 
will then receive the treatment assigned to that cell by the latin square employed. 

Let n denote the number of experimental units available for each cell, and let Yijkm denote 
the observation for the mth unit (m = 1, ... , n) in the (i, j) cell for which the assigned 
treatment is k. The additive fixed effects model (28.12) is modified for the n replications in 
each cell as follows: 

Yijkm = fJ., ••• + Pi + Kj + Lk + Cijkm 

where: 

fJ., ••• is a constant 

Pi, Kj, Lk are constants subject to the restrictions EPi = EKj = ELk = 0 

C;jkm are independent N(O, a 2) 

i = 1, ... , r; j = 1, ... , r;k = 1, ... , r;m = 1, ... , n 

(28.27) 

The ANOVA sums of squares and degrees of freedom for model (28.27) can be obtained 
by the rules in Appendix D, remembering that one subscript is redundant. The treatment, 
row, and column sums of squares are, respectively: 

SSTR = rn 2)F..k . - F. ... )2 (28.28a) 
k 

" - - 2 SSROW = rn L...,.(Yi ... - Y. ... ) (28.28b) 

" - - 2 SSCOL = rn L...,.(Y.j .. - Y. ... ) (28.28c) 
j 

The total sum of squares as usual is: 

SSTO = LLL(Yijkm - F. ... )2 (28.28d) 
j m 

while SSRem is obtained as a remainder: 

SSRem = SSTO - SSROW - SSCOL - SSTR (28.28e) 

The degrees of freedom for row, column, and treatment sums of squares are unchanged, 
while those associated with SSRem are increased from (r - 1)(r - 2) to nr2 - 3r + 2, an 
increase of (n - l)r2 degrees of freedom. 
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TABLE 28.7 
ANOVA Table 
for Latin 
Square Design 
Model (28.27) 
withn 
Replications 
perCell. 

Example 

Specialized Study Designs 

Source of Variation SS df MS 

Row blocking variable SSROW r-1 MSROW 
Column blocking variable SSCOL r -1 MSCOL 
Treatments SSTR r-1 MSTR 
Error SSRem nr2 - 3r + 2 MSRem 

Total ssm nr2 -1 

The analysis of variance is shown in Table 28.7. The expected mean squares can be 
obtained by the rules in Appendix D, remembering that one subscript is redundant, or 
from a suitable computer package. The test statistic for testing treatment effects is again 
F* = MSTR/ MSRem. 

When n replications are present within a cell for a latin square, it is possible to obtain a 
pure error measure and conduct a test for lack of fit of model (28.27) in the usual manner. 

A state university, while developing a retraining program to teach general computer repair 
skills to persons displaced from their previous occupations, conducted an experiment to 
evaluate the effects of three differeD{ incentive methods on achievement during the program. 
The blocking variables were IQ and age of subject. Two replications per cell were utilized. 
Table 28.8a contains the achievement scores for the participants in the experiment, while 
Table 28.8b contains the analysis of variable table obtained from a computer package. 

To test the appropriateness of additive model (28.27), we use the usual test statistic for 
lack of fit: 

MSLF 8.2 
F* = -- = - = 2.05 

MSPE 4.0 

For level of significance a = .05, we need F(.95; 2,9) = 4.26. Since F* = 2.05 :s 4.26, 
we conclude that additive model (28.27) is appropriate here. The P-value of the test is .18. 
The comparison of the three incentive methods was then carried out in the usual fashion. 

Additional Latin Squares 
At times, it'is not possible to obtain additional experimental units within a cell. This is the 
case, for instance, in the background music example of Table 28.4, where only one type 
of music can be played in one day in a bank. When it is nO{ possible to replicate within 
cells, additional replications for each treatment frequently can be obtained by adding one 
or more latin squares to one of the blocking variables. In the background music example 
of Table 28.4, for instance, the experiment could be run for another five weeks. In an 
experiment using plant crews as experimental units and emp],pying as blocking variables 
plant shift (morning, afternoon, evening) and production department (1, 2, 3), additional 
replications can be obtained by running the experiment in other production departments. 

The layout for the background music example of Table 28.4, when run over another five 
weeks, is shown in Table 28.9. The second latin square, and additional ones when required, 
is selected independently of the firs£. 



TABLE 28.8 
Example of 
Latin Square 
Design with 
Two 
Replications 
perCell­
Retraining 
Program 
Experiment. 

TABLE 28.9 
lWo-Latin-
Squares 
Design-
Background 
Music Example 
of Table 28.4. 
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(a) Data 

IQ ,Age (j) 

Young Middle Old 

(B) (A) (C) 
High 19 20 25 

16. 24 21 

(C) (B) (A) 
Normal 24 14 14 

22 15 1'4 

(A) (C) (B) 
Low 10 12 7 

14 13 4 

(b) Analysis of Variance 

Soi.i~ctrOf 
vluiidion SS df MS 

IQ 364.3 2 182.2 
Age 34.3 2 17.2 
Treatments 147.0 2 73.5 
Errgr 52.4 11 4.76 

Lack of fit 1.'6.4 2 8.2 
P~reerror 36:0 9 4.0 

'-,-
,Total 598.0 17 

Day 

Square Week M T W Th F 

D C A B E 
2 C B E A D 
3 A D B E C 
4 E A C D B 
5 B E D C A 

6 E 0 C A B 
7 B A E D C 

2 8 D C A B E 
9 A E B C D 

10 C B D E A 
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28.8 

Frequently, the additional squares may be viewed as classes of a third blocking variable 
For instance, in the background music example of Table 28_ 9, the two latin squares may ~ 
considered to be two levels of the blocking variable "time period_" The first five weeks rna 
be viewed as time period I, and the second five weeks as time period 2_ As another exampl: 
in the experiment with plant crews mentioned previously, the production departments fo; 
the first latin square may be on an hom-Iy rate, while the depmtments for the second latin 
square may be on incentive pay_ Thus, with additional latin squm-es, one can, in effect 
introduce a third blocking vm-iable_ As a consequence, the vm-iation associated with ~ 
third blocking vm-iable can be removed from the experimental error variability_ In addition 
the interactions between the third blocking vm-iable and the other variables can be studied: 

Replications in Repeated Measures Studies 

We noted earlier that a latin square design is highly suitable for repeated measures studies 
when there are r treatments and r subjects_ If additional replications are needed, however, 
replications within cells cannot be used since a cell pertains to an individual subject. Instead, 
latin square crossover designs or independent latin squares may be used_ 

Latin Square Crossover Designs 
These designs, also called latill sqU{lJ"f! challgeover desiglls, moe often useful when a latin 
square is to be used in a repeated measures study to balance the order positions of treatments, 
yet more subjects are required than called for by a single latin square_ With this type of 
design, the subjects are randomly assigned to the different treatment order patterns given by 
a latin squm-e (several latin squares may be used at times)_ Consider an experiment in which 
treatments A, B, and C are to be administered to each subject, and the three treatment order 
patterns are given by the latin square: 

Order Position 

Pattern 2 3 

1 A B C 
2 B C A 
3 C A B 

Suppose that 3n subjects are available for the study_ Then Il suhjects will be assigned at 
random to each of the three order patterns in a latin square crossover design_ Note that this 
design is a mixture of repeated measures (within subjects) and latin squm-e (order patterns 
form a latin square)_ 

Assuming that all effects moe additive and fixed except that the effects for subjects are 
random, a relatively simple model for latin squm-e crossover designs can be developed for 
r treatments and Il subjects per order pattern_ In the following model, Pi denotes the effect 
of the i th treatment order pattern, K j denotes the effect of the jth order position, Tk denotes 
the effect of the kth treatment, and 1]",U) denotes the effect of subject In which is nested 



TABLE 28.10 
ANOVA Table 
forLatin 
Square 
Crossover 
Design Model 
(28.29). 
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within the ith treatment order pattern: 

Yijkm = fJ., ••• + Pi + K j + Lk + T}m(i) + Cijkm (28.29) 

where: 

fJ., ••• is a constant 

Pi, Kj, Lk are constants subject to the restrictions EPi = EKj = ELk = 0 

T}m(i) are independent N(O, a;) 

Cijkm are independent N(O, ( 2 ) and independent ofthe T}m(;) 

i = 1, ... , r;j = 1, ... , r; k = 1, ... , r;m = 1, ... , n 

The analysis of variance sums of squares, degrees of freedom, and expected mean squares 
for this model can be obtained by the rules in Appendix D, remembering that one subscript 
is redundant. The formulas for the sums of squares follow the usual pattern: 

SSTO = LLL(Y;jkm - y. ... )2 (28.30a) 
j m 

" - - 2 SSP = nr L..,.(Y; ... - Y. ... ) (28.30b) 

" - - 2 SSO = nr L..,.(Y.j .. - Y. ... ) (28.30e) 
j 

SSTR = nr L(Y.,k , - y. ... )2 (28.30d) 

""- - 2 SSS = r L..,. L..,.(li .. m - Y; ... ) (28.30e) 
m 

SSRem = SSTO - SSP - SSO - SSTR - SSS (28.3ot) 

Here, SSP is the (treatment) pattern sum of squares, SSOis the order position sum of squares, 
SSS is the subject sum of squares, and the other sums of squares have their usual meanings. 
Table 28.10 contains the ANOVA table. 

, 
. Source of·Variation SS df MS E{MS} 

c 
Ep2 

Patterns '( P) SSP [-1 MSP a 2 + ra2 + nr--i 
n r-1 

EK2 
Order positions (0) SSO r-1 MSO a 2+nr--i 

r-1 

EL2 
Trei;\tments(TR) SSTR r-1 MSTR a 2+nr __ k 

r-1 

Subjects (S) SSS r(n-1) MSS a 2 + ra; 
(within patterns) 

Error SSRem '(r-1)(nr -2) MSRem a~ 

Total ssm nr2 -1 
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TABLE 28.11 
Latin Square 
Crossover 
Design-Apple 
Sales Example. 

Example 

(a) Data (coded) '. 

Pattern 

2. 

3 

Store 

m= 1 
ril= 2' 

m=l 
m=2 
m:;= 1 
m=2 

"'T\Alo-Week P~~lod (j) 

123 

9 (8) l2(C)' 15 (A) 
4 (8f 12 (C), 9 (A) 

12 (A)' 14(8) 3(C) 
13.(A); T4;~B)" 3 (C) 

7(C)'. t8 (A). 6(lD 
5 (C) 20 (A) 4 (8) 

.' (b) Analysis 6f y~riance' 

Source of Variation 55 'df' M5 

Patterns .33 2 .17 
Order positions 2~3.33 ,2 116.67 
Displays ci' 1~,9;00 2 94 . .50 
Stor~ 21.00 3 7.00 

(within patterns) 
Error 20:33 8' 2.54 

Total 464.0 17 

Table 28.11a contains data for a study of the effects of three different displays On the sale 
of apples, using a latin square crossover design. Six stores were used, with two assigned at 
random to each of the three treatment order patterns shown. Each display was kept for two 
weeks, and the observed variable was sales per 100 customers. Table 28.11b contains the 
analysis of variance. The sums of squares were obtained from a computer run. 

To test for treatment (display) effects, we use: 

F* = MSTR = 94.5 = 37.2 
MSRem 2.54 

For a = .05, we require F(.95; 2, 8) = 4.46. Since F* = 37.2 > 4.46, we conclude that 
there are'differential sales effects for the three displays. The P-value of the test is 0+. 
Tests for pattern effects, order position effects, and store effects were also carried out. They 
indicated that order position effects were present, but no pattern or store effects. Order 
position effects here are associated with the three time periods in which the displays were 
studied, and may reflect seasonal effects as well as the results of special events, such as 
unusually hot weather in one period. The comparison of the three treatment effects was then 
carried out in the usual fashion. • 

Use of Independent Latin Squares 
If the order position effects are not approximately constant for all subjects (stores, etc.), a 
crossover design is not fully effective. It may then be preferable to place the subjects into 
homogeneous groups with respect to the order position effects and use independent latin 
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squares for each group. Suppose that four treatments are to be administered to eight subjects 
each, four males and four females, and that the experimenter expects the fatigue effect to 
be stronger for females than for males. The use of two independent latin squares, one for 
male subjects and the other for female subjects, may then be advisable. 

Carryover Effects 

TABLE 28.12 
Dlustration of a 
Latin Square 
Double 
Crossover 
Design. 

If carryover effects from one treatment to another are anticipated, that is, if not only the 
order position but also the preceding treatment has an effect, these carryover effects may 
be balanced out by choosing a latin square in which every treatment follows every other 
treatment an equal number of times. For r = 4, an example of such a latin square is: 

Period 

Subject 2 3 4 

1 A B D C 
2 B C A D 
3 C D B A 
4 D A C B 

Note th!l-t treatment A follows each of the other treatments once, and similarly for the other 
treatments. This design is appropriate when the carryover effects do not persist for more 
than one period. 

When r is odd, the sequence balance can be obtained by using a pair of latin squares with 
the property that the treatment sequences in one square are reversed in the other square. 
Indeed, even when r is even, it is usually desirable to use a pair of such squares so that the 
degrees of freedom associated with MSRem are reasonably large. Such a design is sometimes 
called a latin square double crossover design. This type of design retains the advantages of 
employing two blocking variables in a latin square, while enabling the experimenter also 
to balance and measure the carryover effects. 

For the earlier apple display illustration in which three displays were studied in six stores, 
the two latin squares might be as shown in Table 28.12. The stores should first be placed 
into two homogeneous groups and these should then be assigned to the two latin squares. 

Two-Week Period 

Square Store 1 2 3 

1 A B· C 
2 B C A 
3 C A B 

4 A C "8 
2 5 B A C 

6 '0' B A 
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References 1957. ' 

Problems 

28.2. Cook, R. D., and C. J. Nachtsheim. "Computer-Aided Blocking of Factorial and Response 
Surface Designs," Technometrics 31 (1989), pp. 339--346. 

28.3. Dean, A., and D. Voss. Design and Analysis oJExperiments. New York: Springer-Verlag, 1999. 
28.4. Snedecor, G. W., and W. G. Cochran. Statistical Methods. 8th ed. Ames, Iowa: The Iowa State 

University Press, 1989. 

28.1. Discuss the advantages and disadvantages of balanced incomplete block designs in compari­
son to randomized complete block designs. 

28.2. What is meant by balance in a balanced incomplete block design? What are the advantages of 
balance? Under what circumstances might the use of an unbalanced incomplete block design 
be justified? 

28.3. Construct a balanced incomplete block design for three treatments in blocks of size two. How 
many blocks nb are required? What are nand np for your design? 

28.4. Construct a balanced incomplete block design for seven treatments in blocks of size five. How 
many blocks nl) are required? What are n and np for your design? 

28.5. Construct a balanced incomplete block design for eight treatments in blocks of size three. 
How many blocks nb are required? What are nand np for your design? 

28.6. Detergent effectiveness. A chemical engineer wished to evaluate the effectiveness of nine 
alternative formulations of a dish washing detergent in terms of the extent to which each 
would maintain foam or suds while in use. Three sinks were available, and three people were 
instructed to use the sinks to wash plates at a constant rate. Each block consisted of three 
experimental units, where the experimental unit was a sink with a fixed amount of clean water 
and a fixed amount of soil added. Three detergent formulations were randomly assigned to 
the three sinks in each block. The response Y was foam duration, which was measured by the 
number of plates washed before the suds disappeared. BlBD number 18 from Table 28.1 was 
utilized for this experiment. Data for the randomized BmD follow: 

Treatments Responses 

Block Sink 1 Sink 2 Sink 3 Sink 1 Sink 2 Sink 3 

3 8 4 13 20 7 
2 4 9 2 6 29 17 
3 3 6 9 15 23 31 
4 9 5 1 31 26 20 
5 2 7 6 16 21 23 
6 6 5 4 23 26 6 
7 9 8 7 28 19 21 
8 7 1 4 20 20 7 
9 6 8 1 • 24 19 20 

10 5 8 2 26 19 17 
11 5 3 7 24 14 19 
12 3 2 11 17 19 

John, P. W. M. "An Application of a Balanced Incomplete Block Design," Technometrics 3 (1961), pp. 51-54. 

Obtain the residuals for balanced incomplete block design model (28.2) and plot them against 
the fitted values. Also prepare a normal probability plot of the residuals and calculate the 
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coefficient of correlation between the ordered residuals and their expected values under nor­
mality. Summarize your findings about the appropriateness of model (28.2) here. 

28.7. Refer to Detergent Effectiveness Problem 28.6. Assume that balanced incomplete block 
design model (28.2) is appropriate. 

a. Obtain the least squares estimates of the treatment means and plot them against treatment 
number in the form of Figure 28.4. Does your plot suggest the presence of treatment 
effects? 

b. Test whether or not treatment affects foam duration; use ex = .05. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

c. Test whether or not block effects are present; use ex = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

d. Give a 95 percent confidence interval for the fifth treatment mean. 

e. Analyze the nature of the treatment effects by making all pairwise comparisons among the 
treatment means. Use the Tukey procedure and a 90 percent family confidence coefficient. 
Summarize your findings using a line plot of the least squares treatment means. 

*28.8. Automobile tire wear. An automotive engineer wished to evaluate the effects of four rubber 
compounds on the life of automobile tires. The manufacturing process permitted the use of up 
to three different compounds in a given tire. To do this, the tire is divided into three sections, 
and a different compound is used in each section. Because each segment of a tire would be 
subjeL1: to nearly identical road conditions, the investigator decided to use tires as blocks, 
with three of the four treatments (compounds) being applied to the three experimental units 
(tire segments) in each block. Four tires were tested. The response Y is a coded measure 
of wear. Design 2 from Table 28.1 was utilized; the experimental layout and response data 
follow: 

Compound 

Tire A B C D 

1 238 238 279 
2 196 213 308 
3 254 334 367 
4 312 421 412 

Davies, O. L., ed. The Design and Analysis of Industriai 
Experiments, London: Oliver and Boyd (1961) 

Obtain the residuals for balanced incomplete block design model (28.2) and plot them against 
the fitted values. Also prepare a normal probability plot of the residuals and calculate the coef­
ficient of correlation between the ordered residuals and their expected values under normality. 
Summarize your findings about the appropriateness of model (28.2) here. 

*28.9. Refer to Automobile tire wear Problem 28.8. Assume that balanced incomplete block design 
model (28.2) is appropriate. 

a. Obtain the least squares estimates of the treatment means and plot them against treatment 
number in the form of Figure 28.4. Does your plot suggest the presence of treatment effects? 

b. Test whether or not the type of compound affects tire wear, use ex = .05. State the alterna­
tives, decision rule, and conclusion. What is the P-value of the test? 

c. Test whether or not block effects are present; use ex = .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

.. 
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d. Give a 95 percent confidence interval for the mean wear for compound A. 

e. Analyze the nature of the treatment effects by making all pairwise comparisons amonu the 
treatment means. Use the Tukey procedure and a 95 percent family confidence coefficie 
Summarize your findings using a line plot of the least squares treatment means. nt. 

*28.10. Suppose that Tukey's method for all pairwise comparisons will be made using balanced 
incomplete block design number 2 in Table 28.1. Assume that a" will be no larger than 2.0 
and the widths of the simultaneous 95 percent confidence intervals are not to exceed 3.0. 
Determine 11, the number of replicates. and 11,,, the number of blocks, necessary to satisfy 
these requirements. How many repeats of design number 2 m'e required? 

28.11. Suppose that Tukey's method for all pairwise comparisons will be made using balanced 
incomplete block design number 5 in Table 28.1. Assume that a 2 will be no Im'ger than 1.5 
and the widths of the simultaneous 90 percent confidence intervals m'e not to exceed 2.5. 
Determine 11, the number of replicates, and IIh, the number of blocks, necessary to satisfy 
these requirements. How many repeats of design number 5 are required? 

28.12. A behavioral scientist explained why latin square designs are used so frequently: "Many times 
in behavioral science, we require the use of repeated measures designs because variability 
between human subjects is so great. Since an order effect may be present in this situation, we 
employ latin square designs to eliminate any bias due to order effects." Comment. 

28.13. a. Using random permutations, select randomly a 3 by 3 latin square. Show all steps. 

b. Using random permutations, select randomly a 6 by 6 latin square. Show all steps. 

*28.14. Hardware sales. A manufacturer conducted a small pilot study of the effect of the price of 
one of its products on sales of this product in hardware stores. Since it might be confusing 
to customers if prices were switched repeatedly within a store, only one price was used for 
anyone store during the six-month study period. Sixteen stores were employed in the study. 
To reduce experimental error variability, stores were chosen so that there would be one store 
for each sales volume-geographic location class. The four price levels (A: $1.79; B: $1.69; 

C: $1.59; D: $1.49) were assigned to the stores according to the latin square design shown 
below. Data on sales during the six-month period (in thousand dollars) follow. 

Sales Volume Class 
Geographic Location Class (i) 

Northeast Northwest Southeast Southwest 

1 (smallest) l.2 (B) 1.5 (e) 1.0 (A) 1.7 (D) 
2 1A (A) 1.9 (D) 1.6 (B) 1.5 (e) 
3 2.8 (e) 2.1 (B) 2.7 (D) 2.0 (A) 
4 (largest) 3A (D) 2.5 (A) 2.9 (e) 2.7 (B) 

Obtain the residuals for latin square model (28.12) and plot them against the fitted values. Also 
prepare a normal probability plot of the resitluals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Summarize your 
findings about the appropriateness of model (28.12) here. 

*2815 Refer to Hardware sales Problem 28.14. Assume that latin square model (28.12) is 
appropriate. 

<\. Prepare a main effects plot of the estimated treatment means. What does the plot suggest 
abollt the effects of the four price levels on sales? 

b. Test whether or not price level affects mean sales; use a = .05. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 
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c. Analyze the nature of the price effeL1: on sales by making all pairwise comparisons among 
the treatment means. Use the Thkey procedure and a 90 percent family confidence coeffi­
cient Summarize your findings. 

d. Does there appear to be a linear relationship between price level and mean sales? Could 
you formally test for linearity? Explain. 

*28.16. Refer to Hardware sales Problems 28.14 and 28.15. 

a Calculate the three estimated efficiency measures in (28.26). 

b. Would a randomized complete block design have been adequate here? If so, which blocking 
variable would have been best? 

28.17. Summary reports. A management information systems consultant conducted a small-scale 
study of five different daily summary reports (A: greatest amount of detail; B; C; D; E: least 
amount of detail). Five sales executives were used in the study. Each was given one type of 
daily report for a month and then was asked to rate its helpfulness on a 25-point scale (0: no 
help; 25: extremely helpful). Over a five-month period, each executive received each type 
of report for one month according to the latin square design shown below. The helpfulness 
ratings follow. 

Executive 
Month (j) 

March April May June July 

Harrison 21 (D) 8 (A) 17 (C) 9 (8) 16 (E) 
Smith 5 (A) 10 (E) 3 (8) 12 (C) 15 (D) 
Carmichael 20 (C) 10(8) 15 (E) 22 (D) 12 (A) 
Loeb 4 (8) 17 (D) 3 (A) 9 (E) 10 (C) 
Munch 17 (E) 16 (C) 20 (D) 7 (A) 11 (8) 

Obtain the residuals for latin square model (28.12) and plot them against the fitted values. Also 
prepare a normal probability plot of the residuals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Summarize your 
findings about the appropriateness of model (28.12) here. 

28.18. Refer to Summary reports Problem 28.17. Assume that latin square model (28.12) is 
appropriate. 

a Prepare a main effects plot of the estimated treatment means. What does the plot suggest 
about the effects of the five types of reports? 

b. Test whether or not the five types of reports differ in mean helpfulness; use significance 
level ex = .01. State the alternatives, decision rule, and conclusion. What is the P -value of 
the test? 

c. Analyze the effectiveness of the five types of reports by making all pairwise comparisons 
among the treatment means. Use the Tukey procedure and a 95 percent family confidence 
coefficient. Summarize your findings. 

28.19. Refer to Summary reports Problems 28.17 and 28.18. 

a. Calculate the three estimated efficiency measures in (28.26). 

b. How effective was the use of the latin square design here? 

*28.20. Refer to Hardware sales Problems 28.14 and 28.15. Assume that a = .15. What is the power 
of the test for treatment effects in Problem 28.I5b if TJ = -.4, T2 = 0, T3 = .1, and 
T4 =.3? 

-I 

,-

11 , 

[I ,. 

l 
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28.21. Refer to Summary reports Problems 28.17 and 28.18. Assume that a I A. What is the 
power of the test for treatment effects in Problem 28.18b if TI = -2, T2 = -I, T3 == 0, 
T4 = 1.5, T, = 1.5? 

28.22. Drugs interaction. A pilot study was undertaken on the interaction effect, of two drugs to 
stimulate growth in girls who are of short stature because of a particular syndrome. Each drug 
was known to be modestly effective singly, but the combination of the two drugs had never 
been investigated. Blocking by both subject and time period was desired whereby repeated 
measures for different treatments applied to the same subject are obtained. A 4 by 4 latin square 
design, shown below, was utilized for four subjects, four time periods, and four treatments. 
The four time periods consisted of one month each, separated by an intervening month during 
which no treatment was given. The four treatments were A: no treatment (placebo); B: drug 
X alone; C: drug Y alone; D: both drugs X and Y. The response variable was the difference 
in the growth rates (in centimeters per month) during the treatment period and the base period 
before the experiment began. The results of the study follow. 

Subject 
Period (j) 

2 3 4 

.02 (A) .15 (B) .45 (D) .18 (e) 
2 .27 (B) .24 (e) -.01 (A) .58 (D) 
3 .11 (e) .35 (D) .14 (B) -.03 (A) 
4 .48 (D) .04 (A) .18 (e) .22 (B) 

Obtain the residuals in (28.16) for latin squafe model (28.12) and plot them against the fitted 
values. Also prepare a normal probability plot of the fesiduals and calculate the coefficient of 
correlation between the ordered residuals and their expected values under normality. Summa­
rize your findings. 

28.23. Refer to Drugs interaction Problem 28.22. Assume that an appropriate model is latin square 
model (28.12), modified so that subjects have random effects and a factorial structure for the 
treatments is incorporated (factor A: drug X; factor B: drug Y). 

a. State the model to be employed. 

b. Test for interaction effects between the two drugs; use a = .10. State the alternatives, 
decision rule, and conclusion. What is the P-value of the test? 

c. Estimate the interaction contrast: 

( 
fl"2 + fl··, ) ( fl"2 + fl .. ,) 

L = 2 - fl·'1 - fl·'-1 - 2 = fl"2 - fl"1 - fl"4 + fl"3 

using a 90 percent confidence interval. Interpret your result. 

*28.24. Refer to Hardware sales Problem 28.14. 

a. Set up the regression model equivalent to latin square model (28.12) using 1, -1,0 indicator 
variables. 

• b. Test by means of the regression appmach whether or not price level affects mean sales; 
use a = .05. State the alternatives, decision rule, and conclusion. 

c. Obtain a 95 percent confidence interval by the regression approach for L = T3 - T4· 

Interpret your interval estimate. 

d. Suppose that observation Y232 = 1.6 were missing. 

I. Use the regression approach to test whether price level affects mean sales; contml the 
a risk at .05. State the alternatives, decision rule, and conclusion. 
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u. Use the regression approach to estimate L = <I - <2 by means of a 95 percent confidence 
interval. 

28.25. Refer to Summary reports Problem 28.17. Suppose that observations Y1I4 = 21 and Y453 = 
10 were missing. 

a. Use the regression approach to test whether the five types of reports differ in mean 
effectiveness; employ significance level ex = .01. State the alternatives, decision rule, 
and conclusion. 

b. Use the regression approach to estimate L = <4 - <I by means of a 99 percent confidence 
interval. 

28.26. TV commercials. A study was undertaken to determine whether the volume of sound of a tele­
vision commercial affects recall and whether this effect varies by product. Thirty-two subjects 
were chosen, two each for 16 groups defined according to age (class 1: youngest; 2; 3; 4: old­
est) and amount of education (class 1: lowest education level; 2; 3; 4: highest education level). 
Each subject was exposed to one of four television commercial showings (A: high volume, 
product X; B: low volume, produc1: X; C: high volume, product Y; D: low volume, product Y) 
according to the latin square design shown below. Two different commercials were in­
volved, one for each product. During the following week, the subjects were asked to mention 
everything they could remember about the advertisement. Scores were based on the number 
of learning points mentioned, suitably standardized. The results follow. 

Age Class i: 1 2 3 4 

Education Level 
j = 1 : 83 86 (D) 70 76 (8) 67 74 (C) 56 60 (A) 
j = 2: 64 69 (A) 81 75 (C) 67 61 (8) 72 67 (D) 
j = 3: 78 75 (C) 64 60 (A) 76 81 (D) 63 67 (8) 
j=4: 76 74 (8) 87 81 (D) 64 57 (A) 64 66 (C) 

Obtain the residuals for latin square model (28.27) and plot them against the fitted values. Also 
prepare a normal probability plot of the residuals and calculate the coefficient of correlation 
between the ordered residuals and their expected values under normality. Summarize your 
findings about the appropriateness of the model utilized here. 

28.27. Refer to TV commercials Problem 28.26. Assume that latin square model (28.27), modified 
to allow for factorial treatments (factor A: volume; factor B: product), is appropriate. 

a. State the model to be employed. 

b. Test for volume-product interaction effects; use ex = .01. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 

c. Test for volume main effects and product main effects. For each test, use ex = .01 and state 
the alternatives, decision rule, and conclusion. What is the P-value of each test? 

d. To study the nature of the volume and product main effects, estimate the difference between 
the two factor level means for each factor. Use the Bonferroni procedure and a 95 percent 
family confidence coefficient. State your findings. 

28.28. Recall decay. In an experiment to study recall decay with three different questionnaires 
(A, B, C), nine subjects were questioned at three different times three months apart about the 
number of trips to a shopping center during the preceding three months. Each time a different 
questionnaire was used. The latin square design shown on the following page used to determine 
the questionnaire order for each subject, with three subjects assigned randomly to each of the 
three treatment order patterns. The data on number of shopping trips reported follow. ,'! 
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Pattern 
Time Period (j) 

Subject 2 3 

m= 1 40 (C) 18 (A) 30 (8) 
m=2 35 (C) 25 (A) 37 (8) 
m=3 31 (C) 22 (A) 28 (8) 

m=l 10(8) 43 (C) 33 (A) 
2 m=2 18 (8) 49(C) 37 (A) 

m=3 15 (8) 48 (C) 29 (A) 

m= 1 7 (A) 19 (8) 59 (C) 
3 m=2 11 (A) 24 (8) 51 (C) 

m=3 19 (A) 21 (8) 62 (C) 

Obtain the residUals for latin square crossover model (28.29) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals and calculate the coefficient of 
correlation between the ordered residuals and their expected values under normality. Summa­
rize your findings about the appropriateness of model (28.29) here. 

28.29. Refer to Recall decay Problem 28.28. Assume that latin square crossover model (28.29) is 
appropriate. 

a. Test for the presence of treatment order pattern, time period, and questionnaire effects. For 
each test, use level of significance a = .05 and state the alternatives, decision rule, and 
conclusion. What is the P-value of each test? 

b. Analyze the questionnaire main effects by estimating all pairwise comparisons of treat­
ment means. Use the Tukey procedure and a 90 percent family confidence coefficient 
Summarize your findings. 

• 



Chapter 

Exploratory ExperiIllents: 
Two-Level Factorial and 
Fractional Factorial Designs 

Up to this point, much of our discussion of the design of experiments has focused on 
the planning of confirmatory experiments. Generally, confirmatory experiments employ a 
relatively small number of explanatory factors. The factors under investigation usually are 
suggested by existing theory or by previous experimental findings. Exploratory experimental 
studies are typically encountered during the early stages of a new research study, when little 
is known about the set of important or active explanatory factors. At this stage of the 
investigation, the experimenter often needs to consider a large number of factors in order 
to identify the factors that are the most important. One means of including a large number 
of factors in an experiment while keeping the total number of treatment combinations at a 
manageable level is to study each factor at only two levels. For example, in a four-factor 
experiment, one replication of a two-level factorial experiment consists of just 24 = 16 
treatment trials. In contrast, if each factor were studied at three levels, a single replication 
would require 34 = 81 treatment trials-over five times that required by the two-level 
experiment. 

Even when only two levels are employed for each factor, the size of the experiment can 
still become prohibitively large when a large number of factors are to be studied. In such 
cases, a carefully selected subset, or fraction. of the treatments can be used with little or 
no loss of information about the main effects and key low-order interactions. Fractional 
factorial designs permit the study of a large number of factors with relatively few 
experimental trials. 

Another means of keeping the number of trials small in exploratory experiments is to 
use a single replication or to employ replications for only one or a few of the treatments. 

In this chapter, we first discuss the use of two-level factorial experiments and then con­
sider two-level experiments with only one replication. We then take up fractional factorial 
designs and their analysis, including designs for screening a large number of factors. In 
Section 29.5 we discuss briefly the use of blocking in two-level experiments. We conclude 
the chapter by introducing robust product and process design experiments and illustrate 
their use with a case study from the automotive industry. Unless explicitly stated otherwise, 

1209 
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we assume throughout the chapter that all treatment sample sizes are equal alld all factor 
effects are fixed. 

29.1 Two- Level Ful1 F aclorial Experirnents 

Design of Two-Level Studies 

Notation 

Experimental studies involving k factors, each at two levels, are often referred to as 2k facto­
rial studies. The choice of the two levels for each factor in a two-level factorial experiment at 
times is automatic. Some factors exist naturally at two levels. For instance, in a marketing 
research study of the effects of including or excluding special features, such as antilock 
brakes and automatic headlight dimmers in an automobile, the factors automatically have 
two levels. At other times, a deliberate choice of the two levels must be made. For instance, 
in a study of a rubber extrusion process, cliling time was one of the factors of interest. 
Economic and engineering considerations dictated that curing time be at least 30 minutes 
and not longer than 45 minutes. The two levels selected here were 30 and 45 minutes to 
provide information at the limits of the range of the factor. 

An example of a two-level factorial study involving three factors with three replications 
is the stress test study in Table 24.4. There, the gender levels were male and female, and 
subjects were classified as having low or high body fat and being light or heavy smokers. 

Since two-level factorial studies are a special case of the factorial studies discussed in 
earlier chapters, we already know how to analyze such studies. For our purposes here, 
however, we need to modify our earlier notation because it becomes awkward when there 
are many factors. Also, we shall see that some simplifications arise in the calculational 
formulas when all factors have two levels. 

Consider our usual formulation of the regression version of a three-factor ANOVA model 
for a balanced study where each factor has two levels: 

YiikW = fl··· + a,Xijklll , + fJ,Xijklll2 + y,XiiklllJ 

+ (afJ)"Xijkm,Xijkw2 + (ay)"Xijkw,Xijkm3 (29.1) 

+ (fJy)" Xijklll2XiikwJ + (afJy) " , Xijl;:m' X i ;kw2 X ijkW3 + Cijkw 

where X" X2 , X1 take on the values I and -I fOr the two factor levels. Even though in a 
two-level factorial study there is only one main effect term for each factor, one two-factor 
interaction for each pair of factors, and so on, it is evident that with more factors the notation 
used in model (29.1) will become very cumbersome. 

We therefore will change the notation as follo~, using the conventions for polynomial 
regression in Section 8.1: 

I. The main effects will be represented by fJ" fJ2, etc. The overall constant will be repre­
sented by fJo. 

2. The two-factor interaction effects will be represented by fJI2, fJ'3, etc. 
3. Three-factor and higher-order interaction effects will be represented correspondingly; 

for instance, by fJm and fJ'234. 
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4. The index i will be used to denote the observation number, running from 1 to nr. 

5. Cross-product terms will be represented by a single X. For instance, X1X2 will be 
represented by X 12; XlX2X3 will be represented by X123; and so on. The value of XlX2 
for the ith observation will be represented by Xil2 . 

6. When the factor is quantitative, the low level will be the first level and will be coded 
-1, and the high level will be the second level and will be coded 1. This coding for 
quantitative factors is equivalent to standardizing the levels by subtracting the mean and 
dividing by half of the range. For a qualitative factor, the first level correspondingly will 
be coded -1 and the second level coded 1. Note that the -1, 1 coding here is the opposite 
of the convention followed earlier. 

With these conventions, model (29.1) is now stated as follows, using Xo == 1 as the 
dummy variable associated with fJo: 

Y; = fJOXiO + fJ1Xil + fJ2Xi2 + fJ3Xi3 + fJl2Xi12 + fJ13Xm + fJ23Xi23 + fJ123Xi123 + Ci 

(29.2) 

where: 

Cj are independent N(O, (J2) 

Xo== 1 

{
-I if case from first level of factor 1 

Xl = 1 if case from second level of factor 1 

{
-I 

X 2 = 1 
if case from first level of factor 2 
if case from second level of factor 2 

if case from first level of factor 3 
if case from second level of factor 3 {

-I 
X3 = 1 

fJo in model (29.2) corresponds to fL ... in model (29.1). Because the codes -1, 1 are now 
reversed from our earlier convention, fJl corresponds to -al = a2. Similarly, fJ2 corresponds 
to -fJl = fJ2, and fJ3 corresponds to - Yl = Y2· The parameter fJ12 corresponds to 
(afJ)ll = (afJh2 because of two reversals in the signs of the indicator variables. 

For k factors, model (29.2) is extended as follows: 

(29.2a) 

where: 

{
-I 

Xij = 1 
if case i from first level of factor j 
if case i from second level of factor j 

and Xo and Ci are defined as in (29.2). 
It is often helpful to list the treatments in a two-level factorial experiment in a standard 

order. We shall use as the standard order a listing of the treatments such that the level 
of factor 1, Xl> changes most frequently, the level of factor 2, X2, changes with second 
greatest frequency, and so on. In a three-factor study, for instance, the standard order of the 
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treatments is obtained by listing factor levels in the following sequence: 

Treatment Xl X2 X3 

1 -1 -1 -1 
2 1 -1 -1 
3 -1 1 -1 
4 1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 -1 1 1 
8 1 1 1 

Note that treatment I consists of all three factors at their first levels, treatment 2 consists of 
factor A at its second level and factors Band C at their first levels, and so on. The matrix 
consisting of the X" X 2 , and X3 columns is called the design matrix because it identifies 
the treatments in the experimental study. 

A standard order for treatments is simply a convention for listing treatments in two-level 
factorial experiments; the actual ordering of the treatment trials in the experiment and the 
assignment of the treatments to experimental units are determined by randomization. 

Estimation of Factor Effects 
When a balanced factorial experiment is carried out at two levels for each factor and a-I, 1 
coding is employed, the X'X matrix is greatly simplified. Consider a two-factor study with 
n = 1 replication. The X matrix, using the coding in (29.2), is as follows (treatments are in 
standard order): 

XI 

-1 
1 

-1 
1 

X 2 

-1 
-1 -~j -1 

I 

, The simplifications in the X'X matrix arise because: 

1. Any two columns of the X matrix are orthogonal; that is, X~Xq, = O. In our simple 
example, for instance: 

X~X2 = [-I 

2. The sum of squares of the elements in each column, X~Xq, is always nr. In our simple 
example, for instance: 
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f 

Yll11 

Ylll2 

'Yll13 

Y211l 

Y2l12 

,¥::::: Y2113 

Y1211 

Y222l 

Y2222 

YU23 
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Consequently, the elements on the main diagonal of the X'X matrix are all nr and the 
elements off the main diagonal are all zero so that X'X is a diagonal matrix: 

X'X =nrI (29.3) 

The inverse of X'X therefore is a diagonal matrix with the diagonal elements being the 
reciprocals of the elements in (29.3): 

(29.4) 

The least squares and maximum likelihood estimators in (6.25) therefore become simple 
in form: 

b = (X/X)-IX'y = ~X/Y (29.5) 
nr 

Letting Xq denote the column vector containing the qth column of the X matrix, the estimated 
regression coefficient bq therefore is: 

(29.6) 

Since each column vector Xq contains only Is and -Is, the estimated coefficients bq are 
very simple linear combinations of the observations. 

We illustrate this in Thble 29.1, which contains the Y vector and the X matrix for the 
stress test example of Table 24.4, with the observations listed in standard order. The Y 
observations are shown both in the earlier notation and the current notation to facilitate 
recognition of the treatments involved. (Note that the coding of the factor levels in the X 
matrix is the opposite of that in Table 24.7 and that the ordering of the observations also 

Y and X Data Matrices in Standard Order-Stress Test Example of Table 24.4. 
, / 

Xc, Xl X2 X3 ,X,12 X" X23 X123 ,13 

Yl 24.1, 1 ....,,1 -1 -1 1 1 1 -:-1 
Y2 29.2 1 -1 -1 ,---'1 1 1 1 -1 
Y3 ·.24.6 1 -1 -1 -1 1 1 1 -"1 
Y4 20.0 1 1 -J -1 -1 -i' .1, 1 
Y$ '2J.9 1 1 -1 -i -J -1, 1 1 
Y6 17.6 X= 1 '1 -1 -1 .".,.1 -T 1 1 
Y7 14.6 1 -1 1 -1 -1 1 -1 1 

Y22 10.1 1 1 1 1 :1 1 1 1 
)123 14.4 1 J 1 f 1 J 1 1 , 
Y24 6:1 1 1 1; l' 1 1 
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differs.) We see that the estimated coefficient b 12 , for instance, is simply: 

24.1 
29.2 

I I I 
bJ2 = -XpY = -[1 

liT - 24 

24.6 
-I 1] 20.0 = .754 (29.7) 

6.1 

The variance-covariance matrix ofb in (6.46) is also greatly simplified: 

(29.8) 

Note from this matrix that the estimated regression coefficients here are uncorrelated and 
have constant variance: 

The estimated variance-covariance matrix in (6.48) becomes: 

? MSE 
s-{b} =-1 

liT 

so that the estimated variance of bq is simply: 

Comments 

2 MSE 
s {bq } =-­

nT 

(29.9) 

(29.10) 

(29.11) 

I. Some texts and software packages define the effect of a factor as an observed difference between 
responses when that factor changes from its first level to its second level. For example, the estimated 
main effect of factor I (factor A) is defined as: 

= (AVerage response for all) _ (AVerage response for all) 
A trials in which X I = I trials in which X I = -I (29.12) 

A is an estimate of 0'2 - 0'1 = 20'2; recall that 0'1 = -0'2 when the factors are at two levels. Conse­
quently, the relation between A and our estimate hi (which now estimates 0'2 = -0'1) is: 

(29.13) 

The relations for the other main effects and interaction effe~ts are similar. 

2. The -I, I coding used for the predictor variables in (29.2) is sometimes referred to as 
an orthogonal coding because it leads for balanced two-level factorial designs to a diagonal X'X 
matI1x. • 

Inferences about Factor Effects 
As noted earlier, a main objective in two-level exploratory studies is usually the identification 
of active effects. An effect is considered active if the con·esponding factor effect coefficient 
is nonzero. Since all estimated factor effects have the same variance for balanced studies, as 



Example 

FIGURE 29.1 
MINITAB 
FFactoriai 
Ontpnt-Stress 
Thst Example 
of Table 24.4. 

Chapter 29 Exploratory Experiments: Two-Level Factorial and Fractional Factorial Designs 1215 

noted in (29.9), a normal probability plot can be made of all estimated main and interaction 
effec1:S to identify those that appear to be active. We shall illustrate this plot shortly. 

Formal tests for a regression coefficient, with the alternatives Ho: {Jq = 0, Ha: {Jq =1= 0, 
are carried out in the usual manner, based on either the t* statistic in (7.25) or the F* 
statistic in (7.24). In many instances, the testing procedure will be used for each of the 
factor effects. The family level of significance then can be controlled at a by either the 
Bonferroni inequality (4.4) or the Kimball inequality (19.53). 

Figure 29.1 contains the MINITAB FFactorial output for the stress test example of 
Table 24.4. In this study, the effects of gender of subject (factor A), body fat of subjeC1: 
(factor B), and smoking history of subject (factor C) on exercise tolerance were studied. 
The MINITAB ANOVA output is based on the coding of the factor levels in Table 29.1. The 
estimated factor effect coefficients bq are shown in the column marked "Coef." The column 
marked "Effect" contains the alternative definition of effects in (29.12). Notice that when 
each entry in this column is divided by 2, as shown in (29.13), the estimated coefficients bq 

are obtained. Also note that the estimated standard deviations in the column labeled "Std 
Coef" are all the same, as required by (29.11): 

_ (MSE)I/2 _ (9.335 )1/2 _ 
s{bq } - - - -- - .6237 

nr 24 

Using a significance level of .015 for each of the seven tests on the estimated factor effect 
coefficients so as to assure a faInily level of significance of .10 by the Kimball inequality, 
we see from the P-values in Figure 29.1 that the set of active factor effects consists of the 
gender, body fat, and smoking main effects, and the body fat-smoking interaction. 

Estimated Effects and Coefficients for TOLERANCE 

Term Effect Coef Std Coef t-value P 

Constant 16.271 0.6237 26.09 0.000 
GENDER -5.425 -2.713 0.6237 -4.35 0.000 
BODYFAT -6.358 -3.179 0.6237 -5.10 0.000 
SMOKING -3.425 -1.713 0.6237 -2.75 0.014 
GENDER*BODYFAT 1.508 0.754 0.6237 1.21 0.244 
GENDER*SMOKING -1.358 -0.679 0.6237 -1.09 0.292 
BODYFAT*SMOKING 3.475 1.737 0.6237 2.79 0.013 
GENDER*BODYFAT*SMOKING -0.558 -0.279 0.6237 -0.45 0.660 

Analysis of Variance for TOLERA,NCE 

Source OF Seq SS Adj SS AdjMS F P 

Main Effects 3 489.538 489.538 163.179 17.48 0.000 
2-Way Interactions 3 97.175 97.175 32.392 3.47 0.041 
3-Way Interactions 1.870 1.870 1.870 0.20 0.660 
Residual Error 16 149.367 149.367 9.335 
Pure Error 16 149.367 149.367 9.335 
Total 23 737.950 
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29.2 

Example 

Analysis of LJnreplicated Two-Level Studies -In many applications of two-level factorial experiments, particularly when many facto 
. I d d I . I 1·· . . rs are mc u e , on y a smg e rep lCatlOn can be run because of tlme, budgetary, Or other resou 
limitations. As discussed in Chapter 20, no degrees offreedom are available for obtainin fee 

. fl· ~ I I ... gan estlmate 0 t le error vanance (r w len on y one replication IS employed. Special procedur 
instead must be used for statistical analysis. es 

We shall now describe three approaches for analyzing unreplicated experiments: 

I. The pooling of higher-order interactions to obtain an estimate of the variance. 
2. The use of graphical procedures for identifying active effects. 
3. The use of replications at the center point to obtain a pure error estimate of the error 

. ~ vanance u-. 

First, however, we shall describe an unreplicated 24 factorial experiment that will be 
used as an illustration. 

The Pecos Foods Corporation initiated an experimental study to characterize the effects 
of process temperature (factor I or A), an antimicrobial agent or preservative (factor 2 or 
B), moisture level (factor 3 or C), and acidity (factor 4 or D) on the microbial growth in 
a fruit bar. Microbial growth is measured by counting microbes in a sample of the product 
following three months in storage. The four factors were studied at the following low and 
high levels: 

Factor Low Level High Level 

Process temperature 152 178 
Preservative 0.0 .1 
Moisture .65 .85 
Acidity 4.8 6.8 

One replication cif a 24 factorial experiment was run. The X matrix for the standard 24 
factorial ANOVA model and the response vector are shown in Table 29.2, in standard 
order. Note that the columns X I, X 1, X 3, and X4 constitute the design matrix, identifying 
each of the treatments. The response, denoted for simplicity by Y, is the natural logarithm 
of the microbial count. This transformation was chosen pmtly because the actual countS 
ranged from 87 to 104,41 O-i.e., over several orders of magnitude. In addition, the Box-Cox 
procedure (3.36) supported the use of the logarithmic transformatiolJ. 

The regression model version of the four-factor ANOVA model was fitted, using the 
X variables in Table 29.2. The MINITAB regression results for the full ANOVA model 
(p = I1r = 16) are presented in Figure 29.2. Because there are no degrees of freedom 
available for error, no estimate of the error variance and no t statistics and P-values for 
the estimated regression coefficients are shown. Note that three estimated factor effect 
coefficients, b1 = -1.25, b) = 1.40, and b13 = -1.40 are substantially larger in absolute 
value than the next largest coefficient, b l34 = -.24. Consequently, the preservative and 
moisture factors (2 and 3) may be active. We shall now consider the use of pooling, Pareto 
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TABLE 29.2 Y Vector and X Matrix-Pecos Foods Corporation Example. 

tm.ent y Xo Xl X2 X3 X4 X12 Xu X14 X23 Xu 'X34 X'123' Xl 24 XU4 X234 Xl 234 

'J 5.55 -1 -1 -1 ,-1 1 1 1 1 1 l -1 -1 -1 -1 1 
:2 4.47 1 -1 -::-1 -1 -J -1 -1 '1 i 1 r '1' 1 :....;1 ,,-,1 

H; 5.19", 1 -1 1 -1"~1 -'-1 1 ,1 ..:..1'. -::-1 ,1: 1 1 -1 1 -1 
'4;, 5.32 1 1. 1 -'{' -'-1 '; -J ,-1 -1 .,...,1 ;1 '-1 -1, 1 1 1 
5 10.54 1 -1 "':'1 1 -1: 1 -.1 T ""C'1 1~ -1 r -'J 1 1 -1 
6 1') .56: 1 1. -1 1 -1 -'1 1 -1 -1 1 '-1 ---'J> 1 ,-1 1 '1 
"7 5.08: 1 -1 1 1 -1 -1 ~j 1 1 -j -1 -.1' 1 1 -1 1 
;8': 5:45 1 1 1 1 -1 1 1 ~1 1 -1 -1 ' 1 -1 -1 -1 -1 
9 5.12 i -1 :-1 -1 1 1 J -1 1 -1 -J -1 i 1 1 -1 

,10 5.63 1 1 -1 -1 1 '-1 -1 1 1 -1 -1 1 -0,1 -1 1 1 
;1J 6,1'8 1 -1 1 -,- 1 -1 1 -1 -.-1 i .::..:i 1 ~l 1 -1 1/ 
12 5.24 1 1 1 -1 1 1 ,-1 1 -l 1 -1 -1 1 -1 -1 ,-1 

n~ 10.73 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 
'l4 10.33 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 .,-1 1 -1 -1 
'15 6.53 1 -l 1 1 1 '~1 -1 -1 1 1 l' -1 -1 -:1 -1 
'16 4.93 1 1 1 1 1 1 1, 1 i 1 1 1 1 1 i 

• e..'" 

FIGURE 29.2 The regression equation is 

MINITAB Inmicrob = 6.74 - 0.124 xl - 1.25 x2 + lAO x3 + 0.0956 x4 - 0.1 31 x12 

Regression + 0.0481 x13 - 0.179 x14 - lAO x23 + 0.134 x24 - 0.109 x34 

Resnlts for Fnll 
- 0.101 x123 - 0.201 x124 - 0.244 x134 + 0.112 x234 + 0.132 x1234 

ANOVA Predictor Coef Stdev t-ratio p 

Model-Pecos Constant 6.74062 0.00000 " * 
Foods xl -0.124375 0.000000 " " 
Corporation x2 -1.25063 0.00000 " " 
Example. x3 1.40313 0.00000 " " 

x4 0.0956249 0.0000000 " " 
x12 -0.130625 0.000000 " " 
x13 0.0481250 0.0000000 " " 
x14 -0.179375 0.000000 " " 
x23 -1.39562 0.00000 " * 
x24 0.134375 0.000000 " " 
x34 -0.109375 0.000000 " " 
x123 -0.100625 0.000000 * " 
x124 -0.200625 0.000000 " " 
x134 -0.244375 0.000000 " " 
x234 0.111875 0.000000 " " 
x1234 0.131875 0.000000 " " 

s=* 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 15 91.62849 6.10857 " " 
Error 0 " * 
Total 15 91.62849 
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plots, dot plots, and normal probability plots in an effort to identify more definitively the 
set of active effects. 

Pooling of Interactions 

Example 

A common approach to analyzing unreplicated experiments is to assume that some higher­
order interactions are inactive. The extra sums of squares corresponding to these interaction 
terms are then used to form an estimate of the error variance (52. For example, in a 24 
factorial experiment, it may be reasonable to assume that all three-factor and four-factor 
interactions are small or negligible in relation to main effects and two-factor interactions. 
This implies that f3123 = f3124 = f31}4 = f32.14 = fJI234 = O. By dropping the corresponding 
terms from the model, five degrees of freedom will be available for an estimate of (52. For 
balanced two-level experiments, it can be shown that the extra sum of squares for Xq is: 

(29.14) 

Since for balanced two-level factorial studies, the columns of the X matrix are orthogonal, 
any extra sum of squares does not depend on the order of the variables and the extra Sums 
of squares are additive. Hence, the pooled estimator of (52 is as follows: 

MSE = liT --'-,-------------(
Lb; for pooled estimated coefficients) 

Number of pooled coefficients 
(29.15) 

Inferences can then be made in customary fashion. 

In the Pecos Foods Corporation example. it was decided that all three-factor and four-factor 
interactions are unimportant. Using (29.15) and the results in Figure 29.2, an estimate of 
the error variance based on five degrees of freedom is: 

MINITAB regression results for the model based on main effects and two-factor inter­
actions are presented in Figure 29.3. Notice that MSE = .448, a~ just calculated. Residual 
analysis (not shown) did not reveal any violations in assumptions. 

The P-values in Figure 29.3 indicate that the main effects for preservative and moisture 
(factors 2 and 3) and the preservative-moisture interaction effect are statistically significant; 
each of the associated P-values is .00 I or less. The active factors in the Pecos Foods Cor­
poration example are therefore preservative and moisture. Figure 29.4 presents a MINITAB 
interaction plot of the estimated means Y. it. for the two active factors. We see that increas­
ing preservative at high levels of moisture decreases microbial growth. At low moisture 
levels, however, preservative has little effect. Correspondingly, at low preservative levels, 
decreasing moisture decreases microbial growth while at high preservative levels, changing 
the moisture level has little effect on microbial growth. 



FIGURE 29.3 
MlNITAB 
Regression 
ResUlts for 
ANOVAModel 
without 
Higher-Order 
Interactions-­
Pecos Foods 
Corporation 
Example. 

FIGURE 29.4 
MINITAB 
Interaction 
Plot-Pecos 
Foods 
Corporation 
Example. 

Pareto Plot 
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The regression equation is 
Inmicrob = 6.74 - 0.124 xl - 1.25 x2 + 1.40 x3 + 0.096 x4 - 0.131 x12 

+ 0.048 xl 3 - 0.179 x14 - 1.40 x23 + 0.1 34 x24 - 0.109 x34 

Predictor Coef Stdev t-ratio 
Constant 6.7406 0.1673 40.28 
xl -0.1244 0.1673 -0.74 
x2 -1.2506 0.1673 -7.47 
x3 1.4031 0.1673 8.39 
x4 0.0956 0.1673 0.57 
x12 -0.1306 0.1673 -0.78 
x13 0.0481 0.1673 0.29 
x14 -0.1794 0.1673 -1.07 
x23 -1.3956 0.1673 -8.34 
x24 0.1344 0.1673 0.80 
x34 -0.1094 0.1673 -0.65 

s = 0.6693 R-sq = 97.6% R-sq(adj) = 92.7% 

Analysis of Variance 

SOURCE DF 
Regression 1 0 
Error 5 
Total 15 

I-z 
~ 
0 
u z 
--' 

11 

10 

9 

8 

7 

6 

5 • 
-1 

SS MS 
89.3885 8.9388 

2.2400 0.4480 
91.6285 

c-

B 
(Preservative) 

F 

19.95 

C 
(MOisture) 
• -1 

• 1 --1 
-- 1 

p 
0.000 
0.491 
0.001 
0.000 
0.592 
0.470 
0.785 
0.333 
0.000 
0.458 
0.542 

P 
0.002 

The Pareto plot is a qualitative tool for visually identifying important effects in unreplicated 
two-level studies. It shows the percentage of the total sum of squares SSTO that is associated 
with each estimated effect in the full factorial model. (Remember that for an unreplicated 
full factorial model, SSTO = SSR.) From (29.14), this percentage is: 

n b2 

S;T~(100) (29.16) 
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FIGURE 29.5 
JMPPareto 
Plot-Pecos 
Foods 
Corporation 
Example. 

Example 

Dot Plot 

Specialized Studl' Designs 

Pareto Analysis 
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Large percentage contributions correspond to large (absolute) estimated coefficients, and 
therefore to active factor effects. Pareto plots present the percent contributions to SSTO in 
decreasing order, either as a bar plot, a cumulative line plot, or both. 

To calculate the percent contribution to the total sum of squares for each factor effect in the 
Pecos Foods Corporation example, we use (29.16) and the regression results in Figure 29.2 
for the full factorial model. For example, the percent contribution associated with X3 is: 

I1Th2 16( 1.40)2 
__ 3 (100) = (100) = 34.2% 
SSTO 91.63 

A JMP Pareto plot shown in Figure 29.5 contains both a bar plot and a cumulative line plot. 
Notice that the effects X2 , X 3 . and X2 X 3 account for nearly all of the total variation in the 
data. Thus, the Pareto plot identifies the same factor effects as active as does pooling of 
higher-order interactions. 

Comments 

I. Other forms of Paceto plots are also LL~ed. For example, some statistics packages pcovide a 
Pareto plot of estimated effects. In these plot~, the bars correspond to the absolute magnitudes of the 
estimated effect coefficients. Such plots are sometimes referred to as scree plots. 

2. While Pareto plots are useful for identifying active effects, they can be misused. For example, a 
Pareto plot is sometimes used to identify the smallest effects for pooling to estimate 0-

2
• This approach 

often will lead to an estimate of the error variance that is too small, making the Type I en"Or rates for 
tests for active effect~ larger th<1I1 desired. • • 

Another graphic plot often used in the analysis of unreplicated factorial studies to help 
identify active effects is a simple dot plot of estimated factor effect coefficients. This plot 
will show whether any estimated coefficients are far outlying. We know from (29.9) that 
the variances for all estimated effect coefficients are the same for unreplicated 2k factorial 
studies so that the estimated effect coefficients will follow the same normal distribution if nO 
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FIGURE 29.6 Dot Plot of Estimated Factor Effect Coefficients--Pecos Foods Corporation 
Example. 

.. .. ott : C .... .. .. .... .. .... BC B 

I I I I 
-2 -1 0 2 

Coeff 

effects are present. Inactive factors will tend to be clustered in the middle of the distribution. 
A large departure from the middle of the distribution suggests that the factor may be active. 

A dot plot of the estimated factor effect coefficients for the Pecos Foods Corporation example 
is presented in Figure 29.6. Note that most factor effects fall near zero; these presumably are 
the inactive factor effects. The three outlying coefficients, for factors Band C, correspond 
to the three factor effects identified already by the other techniques as the active effects. 

Normal Probability Plot 

Example 

FIGURE 29.7 
Nonnal 
Probability 
Plot of 
Estimated 
Effect 
Coefficients-­
Pecos Foods 
Corporation 
Example. 

A normal probability plot of the estimated factor effect coefficients in an unreplicated 2k 
factorial study can be constructed in the same fashion as a normal probability plot of residu­
als, as described on page 110. This is possible because the estimated fac1:or effect coefficients 
are independent with constant variance (52/nr< Since no estimate of (52 is available, we set 
MSE = 1 in (3.6). If no effects are present, all estimated coefficients follow the same normal 
distribution N(O, (52/nr ) and should fall along a straight line in the plot. Strong deviations 
from a straight line are indicative of active effeC1:s, in which case all estimated coefficients do 
not come from the same normal distribution. TYpically, the middle points represent inactive 
effects and fall along a straight line. If they do not, it may be an indication that the error 
terms are not normally distributed. 

Figure 29.7 shows a normal probability plot of the estimated effect coefficients for the 
Pecos Foods Corporation example. A line has been fittedjudgmentally to the center points 
that appear to represent inactive effec1:s. Notice that the estimated effect coefficients for the 
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factor B and factor C main effects and for the BC interaction effect fall away from the r 
fitted to the inactive effects. llle 

Comments 

I. When many factor effects m·e active and only a few are inactive, it may be difficult to fit a r 
to the few inactive effects at the center. Consequently, a normal probability plot with many act~ne 
factor etfects is often difficult to interpret. lYe 

2. Half-nOl:~al proba~ility plot~. as described in Section 14.8, are often ~lsed in place of (full) 
normal probabilIty plots discussed here. One advantage of half-normal pmbabIlity plots is that iden­
tification of active effects is sometimes facilitated. This is because the active effects in a half-normal 
plot all fall at the right upper end of the pial whereas in a (full) noemal plot active effects may be at 
both ends of the plot. 

3. A normal pmbability plot containing all factor effect~ is also appropriate for 2k factorial ex­
periments with replications provided that there ace equal numbel:~ of replications foe each treatment 

• 
Center Point Replications 

When all factors are quantitative, two-level experiments can be augmented by replications 
at the center point. A center point is a new treatment in which each of the factors is set at 
the midpoint of its range. For example, in the Pecos Foods Corporation example, the center 
point treatment levels are: 

152 + 178 
Temperature = = 165 

2 

0+.1 
Preservative = --2- = .05 

.65 + .85 
Moisture = = .75 

2 

4.8 + 6.8 
Acidity = 2 = 5.8 

We shall use 110 to denote the number of center point replicates. Two important advantages 
stem from the inclusion of two or more such replicates: 

I. A pure error estimate of (51 based on 110 - I degrees of freedom can be obtained, 
avoiding any bias that otherwise might be associated with inferential procedures based 
on the pooling of what appear to be small higher-order effects. 

2. With replications at the center point, it is possible to test whether or not the model is a 
good fit. 

Pure Error Estimate of (52. Let Yo; denote the response associat€d with the ith replicate 
at the center point, and let Yo. denote the mean of the no responses at the center point A 
pure error estimate of (52 is given by the sample variance of the center point replicates: 

MSPE = i]Yr); - Yo.)2 
110 - I 

(29.17) 

Test for Lack of Fit. Once a pure error mean square has been obtained, the test for lack 
of fit in (6.68) proceeds as usual. For a two-level factorial study with no replications that is 
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augmented by no observations at the center point, one degree of freedom is associated with 
SSLF and no - 1 degrees of freedom with SSPE. 

A conclusion of lack of fit indicates that curvature is present in one or more of the factor 
effects, but it is not possible to attribute the curvature effect to a specific factor without further 
experimentation. Methods for augmenting two-level factorial experiments for assessment 
of curvature effects are discussed in Chapter 30. 

Suppose that four center point replicates had been included in the Pecos Foods Corporation 
study and that these responses are; 

YOl = 7.23 Y02 = 7.89 Y03 = 7.80 Y04 = 7.39 

We then find Yo. = 7.578, SSPE = .303, and MSPE = .101. From the regression analysis 
of the augmented data set (output not shown), we find that SSE = 2.544. Hence, using 
(3.24), we obtain: 

SSLF = SSE - SSPE = 2.544 - .303 = 2.241 

Hence, test statistic (6.68b) here is: 

F* = 2.241 -'- .303 = 22 2 
1 . 3 . 

For a = .05, we require F(.95; 1, 3) = 10.1. Since F* = 22.2 > 10.1 we conclude Ha, 
that curvature is present. The P-value of the test is .018. 

We can obtain some information about the nature of the curvature by comparing the 
average of the responses at the center point, Yo. = 7.578, with the average of the responses 
at the comer points, which is 6.74. Since the mean response is higher at the center point 
than would be expected from a linear interpolation of the comer points, a mound-shaped 
surface may be required to model the response adequately in the interior of the experimental 
region. 

Comment 

When a lack of fit test is conducted after the ANOVA model has been revised by dropping effects 
that appear to be unimportant, a conclusion of lack of fit does not necessarily imply the presence 
of curvature effects. Lack of fit could then also be due, for instance. to the absence of important 
interaction effects. • 

Two-Level Fractional Factorial Designs 

Even when each factor is studied at only two levels, the number of treatments grows rapidly 
with the number of factors, as the following table demonstrates: 

Number of Number of 
Factors Treatments 

2 4 
4 16 
6 64 
8 256 

10 1,024 
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The use of 1,024 experimental trials for just one replication to study 10 factors will be 
prohibitive in most instances. In this situation, a subset of all factorial treatments can often 
be used with little loss of information. The use of fractional factorial designs is the subject 
of this section . 

. A bas~c l~otion t~at u~d~rlies the use o~ fractional factorial designs is the sparsity of 
effects. p~mclple. Tlus prmc~ple states that III most sys~ems, ~sponses are driven largely 
by a hmlted number of mam effects and lower-order mteractlons, and that higher-order 
interactions usually are relatively unimportant. For example, information concerning three­
factor and higher-order interactions is often not important compared to main effects and 
two-factor interactions. Under these conditions, a full factorial design can be very wasteful 
when many factors are of interest. For instance, in the analysis of a full six-factor, two-level 
factorial experiment, the degrees of freedom associated with the various factor effects are 
as follows: 

Model Terms 

Intercept term 
Main effect coefficients 
Two-factor interaction coefficients 
Three-factor interaction coefficients 
Four-factor interaction coefficients 
Five-factor interaction coefficients 
Six-factor interaction coefficients 

Degrees of 
Freedom 

6 
15 
20 
15 

6 
1 

Note that 42 degrees of freedom will be devoted to the study of three-factor and higher­
order interactions. Thus, about 2/3 (42/64) of the degrees of freedom for the study of 
factor effects in this experiment will be used to estimate factor effects that are ordinarily 
of little interest. In contrast, in a fractional factorial design, a subset of the treatments is 
selected in such a way that most of the degrees of freedom for the study of factor effects 
are devoted to main effects and low-order interactions, with only some loss of information 
about higher-order interactions. 

Confounding 
A fractional factorial design achieves the efficiency of providing full information about 
main effects and low-order interactions with fewer experimental trials by confounding 
these effects with unimportant higher-order interactions. To understand the concept of 
confounding, consider again the X matrix of the Pecos Foods Corporation example in 
Table 29.2. A single replication of a 24 full factorial design was employed here, requiring 
16 experimental trials. Suppose that in advance of the experiment, it had been determined 
that only half of the 16 treatments could be used due to budgetary constraints. Which eight of 
the 16 treatments should be eliminated? Suppose that the experimenter considered dropping 
treatments 2,3,6,7, 10, 11, 14, 15. The X matrix for the remaining eight treatments is 
given in Table 29.3a. 

This choice of treatments to be dropped involves a number of potentially serious prob­
lems. Notice first that column vectors Xl and X2 are identical in the eight-run design of 
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TABLE 29.3 X Matrices for Two Half-Fraction Designs of the 24 Full Factorial Design in Table 29.2-Pecos 
Foods Corporation Example. 
~-".,-, 

; ...... ~',-

~t~ent Xo 

1 1 
4 1 ' 
,5 1 
8 1 

,9 1 
'12 1 
13 1 
16 '1 ' 

It~t!n~nt' (So 

1 1 
4 1 
6 1 
7 1 

10 1 
1,1 1 
1,3 1 
16 1 

) .. ~~" ,'" 

(a) Treatments 2, 3,'6, 7,:'10, 11, 14, 15 deleted 

Xl Xi X3 X4 X12 Xu X14' X23 X24 X3" XI23 Xl24 X 134 X234 Xl 234 

'--1 -1 -1 -1 1 ,1 1 1 1 1 -1 -1 -1 -1 1 
1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 

-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 
1 1 r -1 1 1 -1 1 -1 -1 ,1 -1 -1 -1 -1 

-1 -1 -1 '1 1 1 -1 1 -1 -1 -1 1 1 1 -1 
1 -1 1 J -1 1 -1 1 -1 -1 1 -1 -1 -1 

-1 -1 1 " 1 -1 -1 -1 -1 1 1 1 -1 -1 1 
l' 1 1 1 1 1 1 1 1 1 1 

(b),Treatments 2,3,5,8,9, 12, 14, 15 deleted 

Xl X2 X3 X4 Xl2 X13 Xl4 X23 X24 X34 Xl23 XI24 XI34 X234 X1234 

-1 -1 -1 -1 1 1 :1, 1 J 1 -1 -,1 -1 -1 1 
1 1 -1 ~1 l' ~l -1 -1 -1 1 -1 -1 1 1 1 
1 ....':.1 1 -1' -1 1 -1 -1 1 -1 -1 1 -1 1 1 

-1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 
1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 

-1 1 -1 1 -1 1 -1 -1 1 ..,.,1 1 -1 1 -1 1 
-1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 .1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 29.3a; i.e., Xl = X2 . Because the columns of this X matrix are linearly dependent, 
the matrix X'X is singular and does not have an inverse. To be able to obtain least squares 
and maximum likelihood estimates, we must remove the redundancy resulting from the 
equality of the Xl and X2 column vectors. We do this by retaining only one of the two 
column vectors. Suppose that we drop the X2 column vector. In our original model, the 
main effects for factors 1 and 2 were represented by: 

(29.18) 

When Xl = X2 , the model terms become: 

when Xl =X2 (29.18a) 

Thus, with the experimental design in Table 29.3a, we will not be able to estimate the 
factor 1 and factor 2 main effects separately but only their combined main effects. If the 
experimental results indicate that the effec't associated with Xl is active, we will not know 
whether the result is due to the effect of factor 1, the effec't of factor 2, or to a combination 
of the effects of these two factors. Factors 1 and 2 are said to be confounded or aliased in 
this experiment. 
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Upon further inspection of Table 29.3a, we find seven more pairs of identical columns 
resulting in the following correspondences among the columns of X: ' 

X3 = XI23 

X234 = X I34 

X4 = X'24 

X I234 = X 34 
(29.19) 

Consequently, the two effects in each of the following pairs will be confounded with each 
other: 

fh + fJI23 

fJ234 + fJ \34 
(29.20) 

Since fJl2 is confounded with fJo, the overall mean, fJ'2 is sometimes said to be unmeasurable. 
The relations in either (29.19) or (29.20) define the complete confounding scheme for 

this fractional factorial design. We shall generally describe a confounding scheme in the 
form of(29.19) and, for simplicity, shall show the column correspondences by means of the 
subscripts of the column vectors. For our example in Table 29.3a, the confounding scheme 
is represented in this fashion as follows: 

1=2 

14 = 24 

3 = 123 

234 = 134 

4= 124 

1234 = 34 

13 = 23 

12 = 0 

The subscript numbers are nOw shown in italics as a reminder that the equality sign applies 
not to the numbers shown but to the column vectors for which the numbers are the subscripts. 

The proposed eight-treatment design in Table 29.3a is clearly undesirable since main 
effects are confounded with each other. Suppose instead that the investigator chose to 
eliminate treatments 2, 3, 5, 8, 9, 12, 14, 15. The resulting X matrix is given in Table 29.3b. 
Notice that the correspondences among the columns of the X matrix now are: 

1 = 234 

12 = 34 

2 = 134 

13 = 24 

3 = 124 

14 = 23 

4 = 123 

0=1234 
(29.21) 

We see that main effects are now confounded only with three-factor interactions and that two­
factor interactions are confounded with other two-factor interactions, while the four-factor 
interaction is c~nfounded with the overall mean. If three-factor and four-factor interactions 
are negligible, this design could be quite useful. In that case, if fJ, + fJ'l34 were found to be 
statistically significant, we could safely conclude that the observed effect is due to factor 1 
and not to the three-factor interaction among factors 2,3, and 4. 

A potential drawback of the design in Table 29.3b is that the two-factor interactions 
are confounded with other two-factor interactions. If any effects associated with two-factor 
interactions turn out to be active, additional experimental trials wil1 be required to separate 
these effects. 

An abbreviated ANOVA table for the fractional factorial design in Table 29.3b showing 
onl y source of variation and degrees of freedom is given in Table 29.4. Notice that only eight 
factor effect coefficients can be estimated, corresponding to the eight confounded pairs of 
effects. Since no degrees of freedom are available for estimation of (52, the tools described 
in Section 29.2 for the analysis of unreplicated factorial studies need to be employed for 
the analysis of factor effects. 
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Abbreviated 
ANOVA Table 
for Fractional 
Factorial 
Design in 
Table 29.3b. 
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Sour.c~ pf V~riatio~ 
XO.=XJ234 
Xl = }(234 
X2 = X134 

X3 = Xl 24 

.X4 :::;: 0123 
XI2 :::;:'X3-<i 
,Xu =X24 

'X 14 :;= X23 

Error· 

Total 

df 

1 
i 
1 
1 
1 
i 
1. 
1 
o 

8 

Defining Relation 
In our explanation of confounding, we began with a full factorial design, arbitrarily dropped 
some treatments from the experiment, and then examined whether the choice of the dropped 
treatments was a good one by considering the confounding scheme of the resulting fractional 
factorial design. Finding an appropriate fractional factorial design is actually done in reverse 
order by first specifying an acceptable confounding scheme. In order to proceed from this 
specification to find the corresponding fractional factorial design, we need to utilize the 
defining relation of the confounding scheme. 

Consider again the fractional factorial design in Table 29.3b. The defining relation for 
this design is the correspondence in (29.21) involving the Xo column: 

0= 1234 (29.22) 

Recall that (29.22) is a shorthand stating that the Xo column equals the X1234 column. 
Hence, XiO = Xil234 for all column entries. The confounding scheme for the design can 
be determined from this defining relation by multiplying the column on each side of the 
defining relation by successive columns of the X matrix, the multiplication being carried 
out term by term. 

Since all column entries for a two-level factorial design are either 1 or -1, some general 
column multiplication results are useful. 

1. When multiplying the Xo column by the Xo column (the resulting column entries 
being XiOXiO), all entries remain 1 since XiO == 1 and (1)2 = 1. We state this in the following 
fashion: 

Ox 0= 02 = 0 (29.23) 

2. Multiplying any column Xq by Xo (the resulting column entries being XiOXiq) leaves 
the column entries unchanged because XiO == 1: 

Oxq=q (29.24) 

3. Multiplying any column by itself (the resulting column entries being XiqXiq ) yields 
the Xo column since (1)2 = (_1)2 = 1: 

q x q = q2 = 0 (29.25) 
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Returning now to the defining relation in (29.22), let us multiply the columns On both 
sides of the defining relation by the X I column. On the left side we obtain by (29.24): 

1xO=1 (29.26) 

and On the right side we find: 

1 x 1234 = 12234 = 0234 = 234 (29.27) 

The result in (29.27) follows because we obtain for each column entry: 

XilXiI234 = Xii (XilXi2Xi3Xi4) = xiI Xi2Xi3Xi4 = X;2X;3X;4 

Combining the results in (29.26) and (29.27), we have found: 

1 x 0 = 1 = 1 x 1234 = 234 (1 = 234) (29.28a) 

Continuing the process of multiplying both sides of (29.22) by successive columns of 
the X matrix we find: 

2xO= 2 x 1234 = 12234 = 134 (2 = 134) 
3xO= 3 x 1234 = 12324 = 124 (3 = 124) 
4xO= 4 x 1234 = 12342 = 123 (4 = 123) 

(29.28b) 12 x 0 = 12 x 1234 = 122234 = 34 (12 = 34) 
13 x 0 = 13 x 1234 = 122324 = 24 (13 = 24) 
14 x 0 = 14 x 1234 = 122342 = 23 (14 = 23) 

We stop at this point because multiplication by succeeding columns will yield no new 
confounding relations. 

Notice that the operations in (29.28a) and (29.28b) have reproduced the complete con­
founding scheme in (29.21). The relation On which these operations were based, 0 = 1234, 
is called the defining relation. The defining relation is always the one that shows the equality 
with the Xo column. 

Half-Fraction Designs 
Once the desired defining relation (and hence, the confounding scheme) is specified, the 
fractional factorial design corresponding to the desired confounding scheme can be con­
structed in the following manner: 

Step 1. Construct the X matrix for the full factorial design. 

Step 2. Choose those rows (treatments) for which the defining relation holds. 

To illustrate the use of this procedure, consider again the Pecos" Foods Corporation 
example in Table 29.2. The desired defining relation is that in (29.22), namely, 0 = 1234. 
Hence, we need to select those treatments for which Xil234 = X;o. We see from Table 29.2 
that XiI234 = 1 for treatments 1,4,6, 7, 10, 11, 13, 16. This is the design in Table 29.3b. 
It is called a 24

-
1 fractional factorial design. As noted before, the 4 in the exponent refers 

to the number of factors. The 1 indicates the level of fractionation; here the full factorial 
design was fractionated one time. In general, we shall refer to a 2k- f fractional factorial 
design, where k denotes the number of factors and f the fraction. 
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An equally useful half-fraction design can be constructed from the eight treatments that 
were omitted (2, 3, 5, 8, 9, 12, 14, 15). Notice from Table 29.2 that XiO = -Xil234 for these 
treatments. The defining relation for this alternate half-fraction design is therefore: 

0=-1234 

It is easy to verify that the complete confounding scheme for this design is: 

1 = -234 

12 = -34 

2 = -134 

13 = -24 

3 = -124 

14 = -23 

4 = -123 

0=-1234 

(29.29) 

(29.30) 

We see that confounding scheme (29.30) for the omitted treatments is the same as that 
of the retained treatments in (29.28) except that the sign of the second term has changed. 
Statistically. both of these half-fractions provide similar information, and either one can be 
used. The choice is sometimes based on the investigator's desire to include one or more 
specific treatments in the experiment. For example, when the treatment consisting of all runs 
at the first level (-1) is the control treatment, the investigator who wishes to include this 
treatment would select the half-fraction corresponding to the defining relation 0 = 1234. 

Comment 
The identification of the treatments to be included in a 2k- f fractional factorial design can be carried 
out without first constructing the X matrix for the full 2k factorial study. The use of design generators 
permits the construction of a 2k- f fractional factorial design by constructing the X matrix for a 
full factorial study in only k - f factors and then augmenting this matrix. Details are provided in 
Reference 29.1. • 

Quarter-Fraction and Smaller-Fraction Designs 
When the number of factors is large, the number of treatments in even a one-half fraction 
design may still be prohibitively large. In such cases, smaller fractions may be obtained 
by continuing the process of fractionation. For example, in the Pecos Foods Corporation 
example, a single replication of a full factorial study involves 24 = 16 experimental trials 
and a half-fraction design involves 24- 1 = 8 trials. A single replication of a quarter-fraction 
design will involve only 24- 2 = 4 trials and an eighth-fraction design will consist of24- 3 = 2 
trials. We shall now describe the construction and analysis of 2k

- f fractional factorial 
designs. The number of treatments in such a design is 2k-f. 

We shall illustrate how to obtain the confounding scheme for a quarter-fraction design by 
returning to the Pecos Foods Corporation example in Table 29.3b, where the half-fraction 
design is based on the defining relation 0 = 1234. Let us fractionate this design in half 
by using the defining relation 0 = 12. From Table 29.3b, we see that Xil2 = XiO = 1 
for treatments 1, 4, 13, 16. The X matrix for this new quarter-fraction design is given 
in Table 29.5. Notice that the confounding of effects has become quite severe. From an 
inspection of the columns of the X matrix, we find that the complete confounding scheme is: 

o = 1234 = 12 = 34 

1 = 234 = 2 = 134 

3 = 124 = 123 = 4 

13 = 24 = 23 = 14 

(defining relation) 
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TABLE 29.5 Quarter-Fraction Design of 24 Full Factorial Design in Table 29.2, Based on Defining Relation: 
o = 1234 = 12 = 34-Pecos Foods Corporation Example. 

Treatment Xo 

1 
4 

13 
16 

Example 

Xl X2 X3 X4 Xl2 X13 Xl4 X23 X24 X34 Xl23 Xl24 XI34 X234 X1234 
-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 

1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 
-1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Since main effects are confounded with each other (1 with 2, and 3 with 4) this design is 
clearly undesirable. 

As in the case of a half-fraction design, the confounding scheme for a quarter-fraction 
design can be determined directly without constructing the X matrix. We begin with the 
half-fraction defining relation: 

0=1234 (29.31 a) 

We then augment this with the defining relation for the second fractionation: 

0= 1234 = 12 (29.31b) 

Finally, we need to add a term to recognize that the X34 column is also equal to the XI234 

and X 12 columns: 

o = 1234 = 12 = 34 (29.31c) 

34 is called the generalized interaction. It can be automatically identified by multiplying 
the two interaction columns X 1234 and X 12 in the augmented defining relation in (29.31b): 

1234 x 12 = 122234 = 34 

In general, for a 2k
- 1 fractional factorial design, there are 21 terms in the defining relation. 

These consist of: 

l. The consta~t term, O. 
2. The f interaction terms used to define the f successive fractionations. 
3. The 21 - f - I generalized interactions, cOnstructed from the cross products involving 

pairs, triples, and so on, of the f interaction terms used to define the f successive 
fractionations. Since there are 21 terms in the defining relation for a 2k- 1 fractional 
factorial design, we see that each factor effect is confounded with 21 - 1 other factor 
~~. . 
Once the defining relation has been obtained for a 2k- 1 design, the complete confounding 

scheme can be found by multiplying all terms in the defining relation successively by the 
main effect and interaction columns in the X matrix. 

A two-level, five-factor experiment is to be fractionated, first on the basis of the relation: 

0= 124 (29.32a) 
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and a second time using: 

0=-135 (29.32b) 

We shall now determine the complete confounding scheme for the experiment. Combining 
(29.32a) and (29.32b), we obtain: 

0= 124 = -135 

The generalized interaction is therefore: 

124 x -135 = -122345 = -2345 

The defining relation consequently is: 

0= 124 = -135 = -2345 (29.33) 

The complete confounding scheme is determined by mUltiplying the terms in (29.33) 
successively by each of the 25 - 1 = 31 main effect and interaction columns. For example: 

1 x 0 = 1 x 124 = 1 x -135 = 1 x -2345 or 1 = 24 = -35 = -12345 

In summary we find (omitting any redundant entries): 

0= 124 = -135 = -2345 

1 = 24 = -35 = -12345 

2 = 14 = -1235 = -345 

3 = 1234 = -15 = -245 

4 = 12 = -1345 = -235 

5 = 1245 = -13 = -234 

23 = 134 = -125 = -45 

34 = 123 = -145 = -25 

The eight treatments to be included in this fractional factorial design are those for which 
X il24 = 1, Xil35 = -1, and Xi2345 = -1 simultaneously. 

The resolution of a two-level fractional factorial design, denoted by R, is the number of 
factors involved in the lowest-order effect in the defining relation, excluding the constant 
term (0). This is a critical characteristic of a design because it indicates the severity of the 
confounding scheme. For instance, recall that the defining relation of the 24

-
1 fractional 

factorial design of Table 29.3b is: 

0= 1234 

The resolution of this half-fraction design is R = 4 because there are four factors involved 
in the term 1234. The resolution R = 4 tells us that the most severe cases of confounding 
will involve: 

1. A main effect and a three-factor interaction (e.g., 1 = 234) 
2. A two-factor interaction and another two-factor interaction (e.g., 12 = 34) 
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Roman numerals are commonly used to denote the resolution to avoid confusion with the 
number of factors. We characterize the design in Thble 29.3b as a 2iv-1 fractional factorial 
design to indicate that it has resolution R = IV. 

In general, the higher is the resolution of a design, the less severe is the degree of 
confounding. The resolution should never be less than III. In a resolution II design, at 

least one pair of main effects will be confounded together. For example, consider the 2~-2 
quarter-fraction design with defining relation: 

0= 123 = 45 = 12345 (29.34) 

Since the lowest-order effect in this defining relation is 45, the design has resolution II. 
Here the factor 4 main effect is confounded with the factor 5 main effect (4 = 5), which is 
clearly most undesirable. Fractional factorial designs of resolution III, IV, and V are most 
commonly used. The relationship between resolution and degree of confounding for these 
three classes of designs can be summarized as follows: 

Design 
Resolution 

III 

IV 

Worst-Case Degree of Confounding 

Some main effects are confounded with two-factor interactions. 

Some main effects are confounded with three-factor interactions. 
Some two-factor interactions are confounded with other two-factor 
interactions. 

V Some main effects are confounded with four-factor interactions. 
Some two-factor interactions are confounded with three-factor 
interactions. 

Projection Property. A useful property of fractional factorial designs is that any design of 
resolution R contains complete factorial designs in any subset of R - I factors. For example, 
consider the resolution IV half-fraction design in Table 29.3b. Note that if we were to drop 
the fourth factor, for instance, a full factorial eight-nm design would result for the first three 
factors. This has' important design implications. Suppose that an experimenter expects that 
at most three of the five factors in a study will tum out to be active. By choosing a fractional 
design with resolution IV, the experimenter will be assured that Once the inactive factors are 
identified and dropped from the analysis, the experimental design for the remaining active 
factors will be a full factorial design with nO confounding. 

Selecting a Fraction of Highest Resolution • 
Clearly, it is desirable that a defining relation be chosen so that the resolution of the design 
is as large as possible. For half-fraction designs, this is easy: equate the highest-order 
interaction column with the Xo column. For example, to provide the maximum resolution 
(V) in a five-factor study, set the defining relation as follows: 

0= 12345 

In general, the resulting resolution is equal to the number of factors in the study. 
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For quarter replicates, eighth replicates, and so on, identifying the defining relation that 
yields the maximum resolution is not so simple. For example, consider the choice of a 
defining relation for a 26- 2 design. If we fractionate first on the basis of: 

0=123456 

the highest resolution possible will be III: 

o = 123456 = 123 = 456 

However, an alternative defining relation leads to a resolution IV design: 

0= 1235 = 2346 = 1456 

This is, in fact, the highest possible resolution in a 26- 2 fractional factorial design. 
The 2k

- f fractional factorial designs that have highest resolution have been identified 
and catalogued for choices of k and f that are of general interest (Ref. 29.1). Table 29.6 
lists the defining relations for these designs for 3 :::: k :::: 9; the generalized interactions 
have been omitted in this listing for the sake of brevity. A number of software packages 
also will construct fractional factorial designs with highest possible resolution for specified 
numbers of factors and experimental trials. Most of these packages construct fractional 
factorial designs employing the defining relations in Table 29.6. 

The Iowa Aluminum Corporation manufac'tures sheet aluminum from recycled aluminum 
beverage containers. The manufacturing process first casts molten aluminum onto a con­
veyor belt in a continuous strip. The strip is then sprayed with a coolant comprised of a 
mixture of water and oil as it enters each of three mills. After the processing in the third mill, 
the strip is automatically coiled and packaged for shipping. The surface of the aluminum 
sheets must be sufficiently clean and free of defects or the product will not be shipped. 
Historically, the rejection rate was about 25 percent. 

In an effort to reduce the percentage of rejected coils, an experimental study was under­
taken. Management committed two days of production to the experiment, which permitted 
about 20 experimental trials. Six factors that might affect the quality of the aluminum were 
identified: (1) temperature of the coolant; (2) percentage of oil in coolant; (3, 4, 5) volume 
of coolant applied to the strip at each of the three mills (as a percentage of full volume); and 
(6) strip speed. Low and high limits for each of the factors were identified for the two-level 
six-factor experiment. Since a 26 experiment involves 64 factor level combinations or treat­
ments and since only about 20 experimental trials were feasible, a one-quarter fractional 
factorial design was needed. 

Figure 29.8 contains a summary of the quarter-fraction design for the two-level six­
factor experiment provided by the MINITAB Fractional Factorial procedure. We see that a 
resolution IV design is the highest-resolution design that can be attained in a 16-run, six­
factor fractional factorial study. For this resolution, we know that all main effec'ts are clear of 
other main effects and two-factor interactions and that some main effects will be confounded 
with three-factor interactions. Also, some two-fac'tor interactions will be confounded with 
other two-factor interactions. The complete confounding scheme is shown in Figure 29.8, 
where the factors are denoted A through F (instead of 1 through 6) and the symbol I 
is used (instead of 0) to denote the constant term. Also, MINITAB uses the format in 
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TABLE 29.6 
Two-Level 
Fractional 
Factorial 
Designs with 
Maximum 
Resolution 
for Three to 
Nine Factors. 

Specialized Study Desiglls 

Number of Number of Defining Relation 
Factors Fraction Runs (omitting generalized interactions) 

3 23- 1 
11\ 4 0= 723 

4 24-1 
IV 8 0= 7234 

5 25- 1 
V 16 0= 72345 

25- 2 
11\ 8 0= 724 = 735 

6 26- 1 
VI 32 0= 723456 

26- 2 
IV 16 0= 7235 = 2346 

26- 3 
11\ 8 0= 724 = 735 = 236 

7 27- 1 
VII 64 0= 7234567 

27- 2 
IV 32 o = 72346 = 72457 

27- 3 
IV 16 0= 7235=2346= 7347 

27- 4 
\II 8 0= 724= 735=236= 7237 

8 28- 2 
V 64 0= 72347= 72568 

28- 3 
IV 32 0= 7236 = 7247 = 23458 

28- 4 
IV 16 0=2345= 7346= 7237= 7248 

9 29- 2 
VI 128 0= 734678 = 235679 

29- 3 
IV 64 0= 72347 = 73568 = 34569 

29- 4 
IV 32 0=23456= 73457= 72458= 72359 

29- 5 
11\ 16 0= 7235=2346= 7347~ 7248= 72349 

(29.20) to represent the confounding scheme. For example, the defining relation is listed by 
MINITAB as: 

I + ABCE + ADEF + BCDF 

In our representation, the defining relation is expressed as follows: 

0= 1235 = 1456 = 2346 

Management was willing to assume that all three-factor interactions would be quite small • 
in relation to main effects and two-factor interactions. It also recognized that if important 
two-factor interactions are found to be present, it may be necessary to conduct additional 
experimental trials to separate confounded interaction effects. Management therefore de­
cided to use the fractional factorial design in Figure 29.8, with four replications added at 
the center point to provide a rough estimate of the enor variance and a test of the fit of the 
model. 



FIGURE 29.8 
MINITAB 
Fractional 
Factorial 
Design 
Summary­
Iowa 
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Corporation 
Example. 
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Fractional Factorial Design 

Factors: 6 Design: 
Runs: 16 Replicates: 
Blocks: none Center points: 

6,16 
1 
o 

Design Generators: E = ABC F = BCD 

Alias Structure 

I + ABCE + ADEF + BCDF 

A + BCE + DEF + ABCDF 
B + ACE + CDF + ABDEF 
C + ABE + BDF + ACDEF 
o + AEF + BCF + ABCDE 
E + ABC + ADF + BCDEF 
F + ADE + BCD + ABCEF 
AB + CE + ACDF + BDEF 
AC + BE + ABDF + CDEF 
AD + EF + ABCF + BCDE 
AE + BC + OF + ABCDEF 
AF + DE + ABCD + BCEF 
BD + CF + ABEF + ACDE 
BF + CD + ABDE + ACEF 
ABO + ACF + BEF + CDE 
ABF + ACD + BDE + CEF 

Resolution: 
Fraction: 

IV 
1/4 

Table 29.7 contains the design matrix listed in standard order for the MINITAB fractional 
fac1:orial design augmented by four replications at the center point. In the right column are 
shown the results of the experiment. The response of interest is the surface impurity score, 
where surface impurities are rated on a 0-10 scale (0 = no impurity, 10 = high impurity). 
The MINITAB output for an initial factorial ANOVA fit is shown in Figure 29.9. Because 
four replications at the center point were made, an estimate of (52 is available. From an initial 
inspection of the absolute size of the factor effect coefficients and their associated P -values, 
it appears that the active effects are main effects for oil percentage, coolant volume 3, 
and strip speed, and the two-factor interaction between coolant temperature and coolant 
volume 1 (which is confounded with the two-factor interaction between oil percentage and 
coolant volume 3). 

Since this study was exploratory in nature, a new model was developed in which only the 
factor effects identified as active (X2, Xs, X6, X13 = X2S) are retained. An ANOVA model 
containing the three main effects and one interaction effect was fitted. Residual analysis 
(not shown) did not reveal any serious departures from the model assumptions. Figure 29.10 
contains the MINITAB output for a regression fit of the revised ANOVA model. Note that 
the lack of fit statistic is shown, F* = MSLF /MSPE = .04, for which the P-value is .9958. 
Hence, the fit of the revised model appears to be good. We see from the ANOVA output that 
the statistical significance of the estimated factor effec1: coefficients b2, bs, b6 , and b l3 + b25 
is confirmed. 

We tum now to the interpretation of the experimental results. Because the f313 and f3zs 
interaction terms are confounded, the source of this effect cannot be determined On the basis 
of the experimental results. Notice, however, that both the factor 2 and factor 5 main effects 
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TABLE 29.7 

Treatment 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Specialized Study Designs 

Experimental Design Matrix and Y Observations-Iowa Aluminum Corporation Example. 

Design Matrix 

Coolant Oil Coolant Coolant Coolant Strip Impurity 
Temperature Percentage Volume 1 Volume 2 Volume 3 Speed Score 

Xl X2 X3 X4 Xs X6 Y 

-1 -1 -1 -1 -1 -1 4 
1 -1 -1 -1 1 -1 6 

-1 1 -1 -1 1 1 7 
1 1 -1 -1 -1 1 2 

,," "",1 -1 1 -1 1 1 3 
1 ~··-1 1 -1 -1 1 1 

-1 1 1 -1 -1 -1 5 
1 1 1 -1 1 -1 9 

-1 ....,~'iY! -1 1 -1 1 3 
1 -1 -1 1 1 1 2 

-1 1 -1 1 1 -1 8 
1 1 -1 1 -1 -1 5 

-1 -1 1 1 1 -1 4 
1 -1 1 . 1 -1 -1 4 

-1 1 1 1 -1 1 4 
1 1 1 1 1 1 6 
0 0 0 0 0 0 3 
0 0 0 0 0 0 5 
0 0 0 0 0 0 4 
0 0 0 0 0 0 6 

were identified as active and that neither the factor I nor the factor 3 main effects were 
statistically significant. These results suggest (but do not prove) that the observed effect is 
likely due to the fh.5 interaction. To investigate this further, a small follow-up 2 x 2 factorial 
experiment was run involving only factors 1 and 3. No f313 interaction effect was found, and 
it was therefore concluded that the f313 + fh.s confounded interaction effect in the original 
experiment is due to the fh.s interaction effect. 

The results of the experiment are summarized in Figure 29.11 by a main effects plot for 
factor 6 (strip speed) and an interactions plot for factors 2 (oil percentage) and 5 (coolant 
volume 3). The results can be qualitatively summarized as follows: 

1. Figure 29.11 a shows that increasing strip speed decreases observed surface impurities. 
Strip speed should therefore be set at its high level (X6 = 1). 

2. Figure 29.11b shows that when oil percentage is at its high level, increasing coolant 
volume 3 increases surface impurities. When oil percentage is at its low level, increasing 
coolant volume 3 has relatively little effect on surface impurities. We also see that increasing 
the oil percentage increases surface impurities; the effect is particularly strong when coolant 
volume 3 is at its high level. Thus, both oil percentage and coolant volume 3 should be set 
at their low levels (X2 = -1 and Xs = -1). 
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Estimated Effects and Coefficients for Defects 

Term Effect Coef Std Coef t-value P 

Constant 4.550 0.2503 18.18 0.000 
Cooltemp -0.375 -0.187 0.2799 -0.67 0.540 
Oilpct 2.375 1.187 0.2799 4.24 0.013 
Coolvol1 -0.125 -0.062 0.2799 -0.22 0.834 

Coolvol2 -0.125 -0.062 0.2799 -0.22 0.834 

Coolvol3 2.125 1.062 0.2799 3.80 0.019 

Stripspd -2.125 -1.062 0.2799 -3.80 0.019 
Cooltemp *Oilpct -0.125 -0.062 0.2799 -0.22 0.834 

Cooltemp*Coolvol1 1.375 0.687 0.2799 2.46 0.070 
Cooltemp*Coolvol2 -0.125 -0.062 0.2799 -0.22 0.834 
Cooltemp*Coolvo13 0.625 0.312 0.2799 1.12 0.327 
Cooltemp * Stripspd -1.125 -0.563 0.2799 -2.01 0.115 
Oilpct*Coolvol2 0.125 0.062 0.2799 0.22 0.834 

Oilpct* Stripspd 0.125 0.062 0.2799 0.22 0.834 
Cooltemp *Oilpct* Coolvol2 0.125 0.062 0.2799 0.22 0.834 
Cooltemp * Oilpct * Stripspd 0.125 0.062 0.2799 0.22 0.834 

Analysis of Variance for Defects 

Source DF Seq SS Adj SS AdjMS F P 

Main Effects 6 59.3750 59.3750 9.89583 7.90 0.033 
2-Way Interactions 7 14.4375 14.4375 2.06250 1.65 0.330 
3-Way Interactions 2 0.1250 0.1250 0.06250 0.05 0.952 
Residual Error 4 5.0125 5.0125 1.25312 
Curvature 0.0125 0.0125 0.01250 0.01 0.936 
Pure Error 3 5.0000 5.0000 1.66667 
Total 19 78.9500 

We can predict the mean impurity level produced by the process at the optimum (coded) 
settings of the control variables: 

X 2 = Oil percentage =-1 

Xs = Coolant volume 3 = -1 

X6 = Strip speed = 1 

(29.35) 

by using the fitted regression model equivalent to the final ANOVA model in Figure 29.10: 

Y = 4.5500 + 1.1875X2 + 1.0625Xs - 1.0625X6 + .6875X2S (29.36) 

The estimated impurity response for process setting (29.35) is: 

Yh = 4.5500+ 1.1875(-1) + 1.0625(-1) - 1.0625(1) + .6875(-1)(-1) = 1.925 

A confirmation run at the optimum setting can be carried out to assess the validity of the 
estimated regression function. The validity is supported if the new response falls inside the 
1 - a prediction limits (6.63). The 95 percent limits tum out to be (see Figure 29.10): 

-.312:s Yh(new) :s 4.162 
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FIGURE 29.10 The regression equation is 
MINITAB Defects = 4.55 + 1.1 9 Oilpct + 1.06 Coolvo13 - 1.06 Stripspd + 0.687 Tmp*vol1 

Fractional 
Factorial 
Regression 
Output for 
Revised 
Model-Iowa 
Aluminum 
Corporation 
Example. 

Predictor Coef Stdev t-ratio p 
constant 4.5500 0.2058 22.11 0.000 
Oilpct 1.1875 0.2300 5.16 0.000 
Coolvol3 1.0625 0.2300 4.62 0.000 
Stripspd -1.0625 0.2300 -4.62 0.000 
Tmp*vol1 0.6875 0.2300 2.99 0.009 

s = 0.9201 R-sq = 83.9% R-sq(adj) = 79.6% 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

SOURCE 
Oilpct 
Coolvol3 
Stripspd 
Tmp'vol1 

Fit 
1.925 

DF SS MS 
4 66.250 16.562 

15 12.700 0.847 
19 78.950 

DF SEQ SS 

1 22.562 

Stdev. Fit 
0.504 

18.062 
18.062 

7.563 

95.0% c.1. 
(0.851,2.999) 

Pure error test - F = 0.04 P = 0.9958 

F P 
19.56 0.000 

95.0% P.1. 
(-0.312,4.162) 

DF (pure error) = 11 

FIGURE 29.11 Main Effect and Interaction Plots-Iowa Aluminum Corporation Example. 
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Since the impurity response cannot be negative, the prediction limits should be modified as 
follows: 

o :s Yh(new) :s 4.162 

A new response at the optimum levels less than 4.162 will be consistent with the model's 
prediction. 

Screening Experiments 

In the early stages of an investigation, it is not uncommon for investigators to identify a 
large number of potential explanatory variables. Unfortunately, the number of model terms 
required for a large number of factors becomes enormous. For example, in a manufacturing 
process optimization study, a brainstorming session involving manufacturing engineers, 
product development scientists, and line operators resulted in the identification of 28 po­
tentially important factors. In addition to 28 parameters for main effects, there would be 
28(27)/2 = 378 parameters for two-factor interactions, [28(27)(26)]/[2(3)] = 3,276 pa­
rameters for three-factor interactions, and there would be many additional parameters for 
higher-order interactions. Even an investigation of just the main effects and two-factor inter­
actions for 28 factors by use of a resolution IV or a resolution V fractional factorial design 
would be impossible here. 

For these circumstances, screening designs are useful. With these designs, the objective 
is simply to identify the set of active factors. No information about interactions or curvature 
is typically obtained. In this section, we shall discuss the use of resolution III fractional 
factorial designs and Plackett-Burman designs for the purpose of screening large numbers 
of factors. 

2~lf Fractional Factorial Designs 
Recall that in a resolution III fractional factorial design, main effects are confounded with 
two-factor interactions. If it can be assumed that first-order interactions are small relative 
to the main effects, then a resolution III design can be used to identify the active factors. 

As a simple example, consider a study of three factors, each at two levels, to be con­
ducted with four experimental trials. A half-fraction of highest resolution is obtained by 
fractionating the 23 factorial on the basis of the defining relation: 

The confounding scheme is therefore: 

0= 123 

1 =23 

2= 13 

3 = 12 

If it can be safely assumed that the two-factor interactions f312, f313, and f323 are small in 
relation to the main effec1:s f3r. f32, and f33, then this half-fraction design can be used for 
identifying the set of active factors. 

The use of resolution III designs for initial screening is typically followed by one or 
more experiments involving those factors that are identified as important. For example, a 
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10-factor, resolution III experiment (2iI~-6) involving 16 experimental trials was used to 

study the effects of six process variables and four ingredient variables on the extent of 
crystallization in ice cream. Three factors were identified as important. The interactions 
among these three factors were then studied in a follow-up 23 factorial experiment. 

Comment 

Any resolution III fractional factorial design can be augmented by a second fraction of the same size 
to yield a new design of resolution IV or higher. The design matrix for the second fraction is obtained 
from that for the first fraction by simply reversing all signs. This process is sometimes called folding 
over the first fraction, and the resulting, combined design is sometimes referred to as a foldover 

~~ . 
Plackett-Burman Designs 

29.5 

One limitation of resolution III fractional factorial designs is the requirement that the number 
of treatment combinations be a power of 2. The total experimental trials must therefore be 
4, 8, 16,32,64, and so on. Plackett-Burman designs are two-level, resolution III designs 
that can be used for studying up to nr - 1 factors in nr experimental trials, where nr is 
a multiple of 4. Valid run sizes for Plackett-Burman designs are therefore 4,8, 12, 16,20, 
and so on. Plackett-Burman designs for nr :s 100 are given (with the exception nr = 92) 
in Reference 29.2. When nr is a power of 2, the Plackett-Burman designs correspond to 
the resolution III fractional factorial designs already discussed. When nr is not a power of 
2, the confounding structure of the Plackett-Burman designs is very complicated. Plackett­
Burman designs are available in many statistical software packages that provide capabilities 
for the design of experiments. 

The analysis of Plackett-Burman designs is carried out in the same manner as for frac­
tional factorial designs. Since these designs are usually run in a single replication, the various 
graphical procedures discussed in Section 29.2 can be used to identify active effects. Center 
point replications can also be added to provide an estimate of the error variance (52 and a 
test for lack of fit. 

Incomplete Block Designs for Two-Level 
Factorial Experiments 

When we considered randomized complete block designs in Chapter 21 and incomplete 
block designs in Chapter 28, we noted that blocks are chosen so that the experimental units 
within a block are homogeneous while they differ from block to block. When the number 
of treatments is large, it may be difficult to find blocks of sufficient size to permit the use 
of a complete block design. For example, if a block is a .mold of four plastic parts, an 
experiment with eight treatments cannot be run using a mold as a complete block. However, 
an incomplete block design can be used here, with one-half of the treatments placed in 
one mold and the other four treatments in a second mold. Incomplete block designs are 
frequently required in factorial studies with a large number of factors. In this section, we 
discuss the use of incomplete block designs in two-level factorial experiments. The only 
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restriction is that the incomplete block size must be a power of 2. We shall start with an 
example for purposes of illustration. 

Steichen Bakeries was developing a partially baked French bread for national distribution. 
A study was undertaken to investigate the effects of proofing time, proofing temperature, 
baking time, and baking temperature on the volume and texture of the final product. A 
two-level, four-factor experiment was under consideration, involving 16 treatments. The 
production facility could produce from 8 to 10 batches of bread in a given day. Since 
ambient temperature and humidity in the plant can change significantly from day to day, 
blocking by day was considered to be important. Hence, an incomplete block design was 
required such that the 16 treatments are placed into two blocks of size eight. We will now 
consider how to place the 16 treatments into two blocks. 

Assignment of Treatments to Blocks 
The design matrix for the 24 full factorial study in the Steichen Bakeries example is shown in 
Table 29.8a. Suppose that the treatments are allocated to blocks in accordance with the level 
of the 1234 interaction column (X1234)' That is, all treatments for which X1234 = -1 are 
allocated to block I (day 1), and all treatments for which X1234 = 1 are assigned to block 2 
(day 2). With this arrangement, it can be seen that the block effect (i.e., the day effect) will 
be completely confounded with the four-factor interaction effect. We thus forfeit the ability 
to obtain an estimate of the four-factor interaction effect f31234 that is free of block (day) 
effects. However, estimates of all main effects, two-factor interactions, and three-factor 
interactions will be independent of the block effect. 

The blocking arrangement chosen by confounding the block effect with the 1234 inter­
action effect is displayed in Table 29.8a. Notice that each of the four factors appears four 
times at its low level and four times at its high level within each block. Thus, if ambient 
temperature is exceptionally high on day 1, causing the loaves of bread baked on that day 
to have volumes that are larger than usual, this effect will not bias the estimates of any 
of the main effects. It can be verified that the same balance of high and low levels (Is 
and -Is) within each block is also present for all interaction columns except for the XI234 

column. 
The analysis of the experiment is identical to that of a full 24 factorial study. The only 

difference concerns the interpretation of results, where it must be remembered that the 
four-factor interaction effect is confounded with the block (day) effect. 

In general, blocking of factorial and fractional factorial designs is accomplished by 
confounding block effects with carefully chosen, high-order interaction effects. The division 
of treatments into blocks is performed in three steps: 

1. Identify the high-order interaction effects to be confounded with the block effects. If the 
number of desired blocks is b = 2v, v interaction effects need to be identified. 

2. Construct the v columns of the X matrix that correspond to the interaction effects chosen. 
The patterns of Is and -Is in these columns are used to identify the blocks. 

3. The v interaction effects chosen, along with their generalized interactions, are con­
founded with the block effects. In all, b - I effects are so confounded. 
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;i ~l 
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1> -i-I TABLE 29.8 Blocking Arrangements-Steichen Bakeries Example. , 
L ! (a) 24 Experiment in Two Blocks 

~ I 
;1 i Proofing ,Proofing Baking Qaking ,-

i Block Treatment Time Temperature Time Temperature .! 
q 

(Day) Xl X2 
.: .. X3 X4 'I 

c[ 1 1 1 -1 -1 -1 
, 'I 1 2 -1 1 -1 -1 

'I 1 3 -1 -1 1 -'1 

>1 1 4 1 1 1 -1 
t 1 5 -1 -1 -1 1 ,d 

. 1 1 6 1 1 -1 1 

"\' 1 7 1 -1 1 1 

1 II 1 8 -1 1 1 1 

J 2 9 -1 -1 -1 -1 
I' ., 2 10 1 1 -1 -1 

2 11 1 -1 1 -1 
2 12 -1 1 1 -1 
2 13 1 -1 -1 1 
2 14 -1 1 -1 1 
2 15 -1 -1 1 1 
2 16 1 1 1 1 

(b) 24 Experiment in Four Blocks 

l Proofing Proofing Baking Baking 

f Block Treatment Time Temperature Time Temperature 

I 
(Day) Xl X2 X3 X4 

1 1 1 1 -1 ':'1 
, 1 2 -1 -1 1 -1 
r 1 3 -1 1 -1 

1 4 1 -1 1 

2 5 -1 -1 -1 -1 
2 6 1 1 1 -1 
2 7 1 -1 -1 1 
2 8 -1 1 1 

3 9 -1 -1 -1 

1, 
3 10 1 -1 '1 -1 

( 

3 11 1 1 -1 1 
3 12 -1 -1 1 

• 
4 13 1 -1 -1 -1 
4 14 -1 1 1 -1 
4 15 -1 -1 -1 1 
4 16 1 I) 1 1 1 
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In effect, this procedure fractionates the chosen design v times, and the 2v resulting 
fractions define the divisions of treatments into blocks. This will result in 2V blocks of size 
2k

-
v in the case of a full factorial study, or 2v blocks of size 2k - f - v in the case of a 2k

- f 

fractional factorial study. 
As when constructing fractional factorial designs, the v interactions selected to define the 

blocks must be carefully chosen so that, to the greatest extent possible, low-order effects re­
main clear of block effects. Useful blocking arrangements have been catalogued (Ref. 29.1). 
They are also usually provided by statistical software packages that have capabilities for 
the design of experiments. 

In the Steichen Bakeries example, the investigator wished to run the 24 factorial study in 
four blocks. Here, the number of blocks is b = 4 = 2v, so that v = 2. Thus, two higher­
order interaction effects that are to be confounded with block effects need to be chosen for 
identifying the treatments assigned to the blocks. The investigator chose interactions 23 and 
124. The treatments were then assigned to blocks in the following fashion: 

Value value Treatment 
of X23 of Xl 24 Assigned to 

-1 -1 Block 1 
1 -1 Block 2 

-1 1 Block 3 
Block 4 

Since there are b = 4 blocks. b - I = 3 factor effects are confounded with block effects. 
These are the 23 interaction, the 124 interaction, and their generalized interaction: 

23 x ]24 = ]2234 = 134 

The resulting design is shown in Table 29.8b. Notice again the balance of levels within 
each block: each factor appears twice at its high level and twice at its low level. This will 
also be true for all interaction columns except X23 , X124, and X134; these columns will be 
constant within each block. An abbreviated ANOVA table is shown in Table 29.9. Note 
that this table shows the confounding of the three interaction effects, 23, 124, and 134, 
with blocks. 

Use of Center Point Replications 
We noted earlier that two or more replications are often added at the center point when the 
factors are quantitative to provide an estimate of the error variance (52 and a test for lack of 
fit. When blocking is used, center point replications must be placed within the same block 
to obtain a valid measure of pure error. Otherwise, differences in responses will be due to 
both experimental error and block-to-block differences. Use of an equal number of center 
point replications in each block leads to all estimated factor (and block) effect coefficients 
being uncorrelated. 
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TABLE 29.9 
Source of Variation df 

Abbreviated 
ANOVA Xo 1 
Table- X; 1 
Steichen X ,2 1 
Bakeries X3 1 
Example. X 4 - 1 

X12 1 
)(13 1 
X 14 1 
X 24 1 
X34 1 
X 123 1 
X234 1 
X1234 1 
Blo!=ks (confounded 3 

with X 231 X 1241 X 134) ~ 
Error Q 

Total 16 

29.6 Robust Product and Process Design 

In recent years, the importance of reducing variation in products and processes has been 
widely recognized. Uncontrolled variation leads to waste, disruption, duplication of ef­
fort, decreased consumer satisfaction, and/or the need for inspection and rework Thus, 
experimental studies are often designed to identify process or product designs that exhibit 
low levels of variation. Such product designs are called robust, because they produce a 
desired result in a consistent, repeatable fashion. The basic framework for using designed 
experimentation to develop robust products and processes was popularized by Dr. Genichi 
Taguchi, a Japanese quality consultant. in the 1980s. It is sometimes referred to generally 
as the "Taguchi Method" (Ref, 29.3). 

For instance, in the manufacture of color television sets, an important performance 
characteristic or outcome measurement is the color density. We will assume that there is a 
best, or target, color density T. Ideally, all televisions would be produced with color density 
T. However, due to natural variations in materials, equipment, operators, or other aspects of 
the manufacturing process, the actual color densities Y will deviate from the target While 
any television with a color density within ±5 units of T was considered acceptable, the 
manufacturer found that any deviation from target decreased customer satisfaction. For this 
reason the manufacturer concluded that manufacturing televisions within specification was 
not sufficient Customer satisfaction would be maximized if the absolute deviations from 
actual color density to target, Dev = IY - TI, or the squared deviations DeV = IY - TIl, 
were consistently small. 

Taguchi observed that the average squared deviation from target is given by the mean 
squared error: 

E {DeV} = E {(Y - T)2} (29.37) 



FIGURE 29.12 
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We encountered the mean squared error in Chapter 9 in connection with Mallow's C p and 
again in Chapter 10 in connection with ridge regression. It can be shown [as we did earlier 
in (9.6)] that the mean squared error can be written as a sum of the variance of Y and the 
square of the off-target distance or bias, (fJ., - T)2: 

E{Y - Tf = u 2{Y} + (E{Y} - T)2 = u 2 + (fJ., - T)2 

= Variance + (Off-Target Distancei 
(29.38) 

Figure 29.12 shows two process distributions for television color density. The distribution 
on the right is the process distribution of color density before a robust product design 
experiment was performed. In this case, color density, Y, follows a normal distribution with 
mean fJ., = T + 2 and variance u 2 = 1. The distribution on the left shows the process 
distribution following the experiment. Here, color density follows a normal distribution 
with mean fJ., = T and variance u 2 = 1/9. Note that both distributions fall largely within 
the product specification limits T ± 5~ however, prior to experimentation, the mean squared 
error was: 

Mter the product design experiment, the mean squared error was reduced to: 

Thus on average, the color densities of television sets for the robust design are much closer 
to target than those based on the previous design. 
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The implication of (29.38) for designed experimentation is as follows. In any test of al­
ternative process or product designs, a "best" treatment combination will lead to a treatment 
mean that is close to target with minimal variance. Experiments are therefore conducted in 
such a way that two linear statistical models-one for the mean and one for the variance of 
the response-can be estimated. These estimated models are then used to identify robust 
factor-level settings-those that lead to a process mean fL that is close to target, with small 
process variance u 2

• 

In this section, we first introduce a strategy for developing models for both the mean 
and the variance of the response. We then consider the use of special nuisance factors 
called noise factors, in the construction of robust product design experiments. Noise factor~ 
are used to develop products and processes that are robust to specific, known sources of 
variation. 

Location and Dispersion Modeling 
As already noted, in robust product design experiment, a "best" factor-level combination 
leads to a response distribution with a small variance and a mean that is close to target. We 
shall assume that k-factor model (29.2a) is applicable, except that we will no longer assume 
that the error variance is constant. In addition, because one of our objectives is to model 
the variance response, we will assume that n > I complete replicates of the experiment 
have been conducted. Let Yij denote the response of the jth replicate for the ith treatment 
combination, for i = 1, ... , rand j = 1, ... , n. Our model is now: 

Yij = f3oX io + f31 Xii + ... + f3kXik + f312Xi\2 + ... + f312. •. kXiI2 .•• k + eij 

where: 

{
-I 

Xii = 1 
if case i from first level of factor I 
if case i from second level of factor I 

and eij are independent N (0, u?). 
Denote the sample variance obtained for the ith treatment combination by Sf: 

2 I z=" - 2 s· = -- (Yij - Y i .) , n-l 
j=1 

(29.39) 

(29.40) 

The sample variance is the response to be modeled in the dispersion model. The raw 
responses, Yij are modeled directly using (29.39). We refer here to (29.39) as the location 
model because it provides for estimates of the mean response as a function of the control­
factor-level settings. We now consider the development of these models, beginning with the 
dispersion model. 

Dispersion Model. The dispersion model is based on (29.39), where the response Yi is 
replaced by the logarithm of the ith sample variance. We also attach the superscript D to 
the regression parameters and to the error terms as a reminder that these quantities pertain 
only to the dispersion model: 

loge s; = f3(/ Xia + f3~ Xi 1 + ... + f3f Xik + f3g X i 12 + ... + f3g ••. kX i 12··.k + eF 
(29.41) 
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The regression parameters f3f.k are referred to as the dispersion effects. The reason that 
we use the loge sl as the response rather than s~ is that the latter do not follow normal 
distribution with constant variance. Since the e/j are normally distributed with zero mean 
and variance ul it follows from (A.70) that (n - l)sf lu? is distributed as X2 with (n - 1) 
degrees offreedom. It can be shown that loge sf is approximately normally distributed with 
mean loge u? and constant variance 2/(n - 1) (see, e.g., Reference 29.4). Thus, the ef are 
approximately independent and normally distributed with constant variance. Model (29.41) 
can then be estimated using ordinary least squares and the methods discussed in Section 29.2 
for the analysis of unreplicated two-level studies. 

Location Model. The location model is given by (29.39). However, because the variance 
is not constant, the parameters are most efficiently estimated using weighted least squares 
as described in Section 11.1. Specifically, we obtain an estimate of the variance for each 
factor-level combination using: 

v, = exp(lvl) (29.42) 

where loges~ is obtained from the estimated dispersion model (29.41). Then the weights 
are given by (11.16b) on page 425: 

w,=-;::­
Vi 

(29.43) 

Alternatively, an approximate analysis can be conducted based on ordinary least squares. 

Strategy for Analysis. We suggest the following strategy for analyzing the location and 
dispersion models: 

1. Fit dispersion model (29.41) and determine whether or not dispersion effects are present. 
This can be done Ilsing methods discussed in Section 29.2 for the analysis of unreplicated 
two-level factorials, or the Breusch-Pagan test (3.11) for constancy of error variance. 

2. If the variance is constant, there is no need to fit the dispersion model (29.41). The 
location model (29.39) can then be analyzed using ordinary least squares and the methods 
described in previous sections. 

3. If dispersion effects are present, fit location model (29.39) using weighted least squares, 
or conduct an approximate unweighted analysis. 

4. Use the resulting models based on the active location and dispersion effects to identify 
factor-level combinations that move the predicted mean close to target while minimizing 
the predicted variance. If no dispersion effects are present, only the location model is 
employed. Similarly, if no location effects are present, only the dispersion model is 
employed. 

In Step 4, if a factor is active-either through its main effect or through interactions 
involving the factor-in only one of the two models, the selection of optimal level setting 
can be conducted according to the model in which the factor is active. If a factor is active in 
both models, it might not be possible to find a factor-level combination that simultaneously 
produces an optimal mean and an optimal variance. In this case, a compromise setting is 
identified that leads to "good" (but not necessarily optimal) results for both the mean and 
the variance. 
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Example 

TABLE 29.10 

(1) (2) 

Xl X2 

1 -1 -1 
2 1 -1 
3 -1 1 
4 1 1 
5 -1 -1 
6 1 -1 
7' 

~, 

-1 1 
8 1 

We illustrate the use of the modeling strategy with an adaptation of an example due to 
Taguchi. 

A food company investigated alternative recipes for a type of caramel. The performance 
characteristic of interest was the plasticity of the caramel. When subjected to suffiCient 
shearing stress, any given caramel will be deformed. If, after the stress is removed, there is 
no recovery, the caramel is completely plastic. On the other hand, if recovery is complete 
and instantaneous, the caramel is completely elastic. A proper balance between these two 
factors is required. In the experiment, the plasticity was measured on a scale of 1 to 100 
where 100 implies the complete plasticity. The target value of the caramel was 70. ' 

Three ingredients were thought to be potentially important: brown sugar (X I)' sweetened 
condensed milk (X2 ), and light corn syrup (X3). The first three columns in Table 29.10 list 
the coded treatment combinations for the 23 full factorial design in standard order, and 
columns 4 through 7 provide the the levels of the interaction columns X12 , X13 , X23 , and 
X \23. Four replicates of the experiment were obtained, and the four Yij responses for each 
treatment combination are listed in columns 8-11. Also listed in Table 29.10 in columns 12 
and 13 are the sample variances sl and their logarithms log" s;. 

The first step in the analysis was to fit dispersion model (29.41). Results obtained from 
a regression of column 13 in Table 29.10 on columns 1-7 are shown in Figure 29.13a 
Since there are no replicates for dispersion model (29.41), t-values and P-values cannot 
be obtained. Figures 29.13b provides a normal probability plot of the estimated dispersion 
effect coefficients. The plot clearly suggests the presence of one nonzero dispersion effect, 
namely {3g. Ignoring inactive effects, the estimated dispersion model is: 

-loge sl = 4.0098 + .5748Xi13 (29.44) 

Since dispersion effects are present, we move to Step 3 of the strategy for analysis, which 
calls for the use of weighted least squares (or an approximate analysis using ordinary least 
squares) to estimate the parameters in the location effects model. We will illustrate the use 
of weighted least squares using an estimated variance function, as described in Section 11.1. 

A model-based estimate of the variance for the i th treatment combination is, from (29.44): 

Vi = exp(l~n 
= exp(4.0098 + .5748Xi\3) 

Experimental Design Matrix and Y Observations-Caramel Example. 

(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
Design Matrix Replicates 

X3 X12 Xn X23 X 123 Yil Yi2 Yi3 Yi4 S2 
1 loges? Wi 

-1 1 1 1 -1 42 65 70 73 197.67 5.287 .0102 
-1 -1 -1 1 1 50 52 55 63 • 32.67 3.486 .0322 
-1 -1 1 -1 1 61 70 78 79 70.00 4.248 .0102 
-1 1 -1 -1 -1 48 51 55 60 27.00 3.296 .0322 

1 1 -1 -1 1 65 74 74 77 27.00 3.296 .0322 
1 -1 1 -1 -1 40 59 63 66 136.67 4.918 .0102 
1 -1 -1 1 -1 70 72 77 84 38.92 3.662 .0322 
1 1 1 1 1 48 49 56 63 48.67 3.885 .0102 
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FIGU RE 29.13 MINITAB Regression Output and Normal Probability Plot of Estimated 
Effect Coefficients for Dispersion Model-Caramel Example. 

(a) Regression Coefficients (b) Normal Probability Plot 
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FIGURE 29.14 MlNITAB Regression Output and Normal Probability Plot of Estimated Effect Coefficients for 
Location Model-Caramel Example. 

(a) Regression Output 

Predictor Coef SE Coef T P 
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From (11.16b), the ith estimated weight is Wi = l/Vi. For example, for the first treatment 
combination in Table 29.10, we obtain: 

Vi = exp(4.0098 + .5748Xll3) = exp(4.0098 + .5748(1)) = 97.96 

from which we obtain the first weight: WI = 1/97.96 = .0102. 
Use of the estimated weights listed in column 14 of Table 29.10 in a regression of the 

Yij responses in columns 8-10 on the predictors in columns 1-7 led to the weighted least 
squares location effects estimates summarized in the regression output in Figure 29.14a. 
Note thatthe P -value for hi is 0+, while the P-values for the remaining effects are all greater 
than 0.1. The normal probability plot ofthe estimated location effects in Figure 29.14b also 
suggests that fh is nonzero. Using weighted least squares to estimate the reduced location 
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model, we obtain (output not shown): 

Yi = 63.511 - 8.960XiI (29.45) 

With the estimated dispersion and location models in hand, we now turn to Step 4 in the 
strategy for analysis-the identification of robust factor-level combinations. From (29.44) 
two possible optimal settings that minimize the dispersion effect are (X I, X3) = (+ 1, -1) 
and (Xf, X3 ) = (-1, + I). However, the result from the location model in (29.45) shows 
that, in order to move the estimated mean response to T = 70, the optimal setting for X I 
is -I. Thus, the optimal setting in the caramel example is: (X I, X3) = (-1, + 1). These 
settings lead to the following estimated mean and variance of caramel plasticity: 

Y; = 63.511- 8.960(-1) = 72.5 

-loge S2 = 4.0098 + .5748(-1)(+1) = 3.435 

Thus the estimated mean has been moved to within 2.5 of the target T = 70. The estimated 
variance for this setting is exp(3.435)= 31.03. 

Comments 

1. In some cases, there are factors that are active only in the location model and not in the dispersion 
model. These factors are called adjustment factors. A common strategy is to select optimal settings 
according to the dispersion model, and then use the adjustment factors to bring the location to the 
target. Of course, there is no guarantee that adjustment factors exist. 

2. The location model can be classified into three groups with respect to the target value: the­
smaller-the-better, the-larger-the-better, and the-nominal-the-better. For instance, an automotive com­
pany conducted an experiment to study the effect of four factors on the braking distance in different 
driving conditions. Since the braking distance should be minimized, it is an example of the-smaller­
the-better case. In another study, the response was the pull strength of truck seat belts following a 
crimping operation. The pull strength needs to be maximized to ensure that the seat belt does not 
break in an accident. Thus, it is an example of the-larger-the-better case. The procedures of the anal­
ysis in these two cases are the same as those shown in the caramel example, which is the-nominal­
the-better. 

3. The approach to weighted least squares described here for fitting the location model used a 
model-based estimate of the variance, VI' to obtain weights. A simple alternative is to use the sample 
variances s?, in which case the weights are Wi = 1/ s? This approach is discussed in Section 11.1. 

• 
Incorporating Noise Factors 

As we have seen, dual-response modeling can be a powerful tool for identifying product or 
process designs that have low levels of variation. Recall from our discussion of blocking 
that variation is often caused by changes in background nuisance factors that cannot be 
controlled. In the caramel example, plasticity is affected by the ambient temperature. If 
the temperature changes during the course of the experiment, this would likely contribute 
to the variation in pla<;ticity observed for each factor-level combination. In a manufactur­
ing process control experiment, if different operators are responsible for different parts of 
the experiment, they may contribute to variation in the quality of the parts or products 
produced. In robust product design experiments, the investigator often is interested in re­
ducing variation attributable to one or more specific nuisance factors. In simple terms, this is 
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accomplished by deliberately changing the levels of the nuisance factors during the course 
of the experiment, and then identifying settings of the experimental factors for which the 
response is relatively unaffected by changes to the nuisance factors. 

In robust product design terminology, a nuisance factor that is deliberately varied during 
the experiment is called a noise factor. The standard (non-nuisance) experimental factors are 
termed controlfactors. Generally, control factors are variables that are easy or inexpensive 
to control in the design of the product or process. Noise factors are variables that are hard 
or expensive to control during manufacturing or during product use. 

Consider again the caramel example. Suppose that the investigator was concerned specif­
ically with the effect of temperature on the plasticity of the product when used by the con­
sumer. Suppose also that the investigator was interested in four temperature levels, namely, 
6Oo P, 70oP, 80oP, and 90°F. In this case, temperature would simply be added as a fourth 
(four-level) factor (X4 ) in the experiment. The three control factors would be brown sugar 
(XI)' sweetened condensed milk (X2 ), and light com syrup (X3). In the experiment, each 
factor-level combination of the control factors (X I, X2 , X3) is tested at the four levels of 
temperature. This is accomplished by crossing the levels ofthe control factors with the lev­
els of the noise factors, leading here to the use of a 23 x 4 full factorial design. Por purposes 
of analysis, the four responses obtained for each combination of the control factors are 
treated simply as replicates, and a dual-response analysis, as already described, is carried 
out. Control factor settings that lead to a small variance s; are unaffected by-and therefore 
robust to-the changes to levels of the noise factor. 

Noise factors can arise during the manufacturing process or when the product is in 
use. Internal noise refers to variations that occur during the production process. Examples 
include raw material variation, manufacturing variation, unit-to-unit variation, and so on. 
Making product performance insensi tive to these variations can improve the quality of the 
product while lowering the cost of production. 

External noise refers to variations that occur when the product is used by the cus­
tomer. Examples include the environment in which a product works, the load to which it 
is subjected, and natural deterioration. Por instance, a reliable automobile should perform 
consistently whether it is used in Florida in the summer or Minnesota in the winter. A good 
washer should be robust to the laundry load. Making product performance insensitive to 
external variations will improve the reliability of the product and increase the customer 
satisfaction. 

In summary, the basic procedure for incorporating noise factors into a robust product 
design experiment is as follows. 

1. Identify the experimental layout for the control factors. This may be a full factorial or a 
fractional factorial, blocked or unblocked, depending on the experimenter's objectives, 
as discussed in Sections 29.1-29.6. 

2. Identify the noise factors and associated noise-factor levels to be included in the exper­
iment. If there is more than one noise factor, identify the factor-level combinations of 
the noise factors to be included. Generally these are obtained from a full factorial layout 
among the noise factors. However, fractional factorial arrangements ofthe noise factors 
are sometimes employed if many noise factors are present. 

3. The full experimental design is obtained by crossing the control-factor-Ievel combi­
nations with the noise-factor-Ievel combinations. As always, the resulting treatment 
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TABLE 29.11 
Layout of the 
Experimental 
Design with 
Noise Factor-
Caramel 
Example. 

Specialized Study Designs 

Noise Factor 

Run Xl X2 X3 60°F 70°F 800F 90°F sf I0ge sf 
1 -1 -1 -1 42 65 70 73 197.67 5.287 
2 1 -1 -1 50 52 55 63 32.67 3.486 
3 -1 1 -1 61 70 78 79 70.00 4.248 
4 1 1 -1 48 51 55 60 27.00 3.296 
5 -1 -1 1 65 74 74 77 27.00 3.296 
6 1 -1 1 40 59 63 66 136.67 4.918 
7 -1 1 1 70 72 77 84 38.92 3.662 
8 1 1 1 48 49 56 63 48.67 3.885 

combinations are randomly assigned to the experimental units. Note that if there are 
nc control-factor-level combinations and there are n" noise-factor-level combinations, 
there will be ncn" treatment combinations in all. 

4. The analysis is conducted using the dual-response-optimization strategy outlined on page 
1247. The nil responses obtained for each control-factor-level combination are treated 
as replicates. 

We illustrate the use of a single noise factor by continuing our discussion of the caramel 
example. We then move on to a more extensive case study from the automotive industry, 
which employed five control factors and two noise factors. 

Caramel Example. In the caramel example, the four responses at a given control-factor­
level combination were actually obtained at the four temperatures: 6Oo P, 70o P, 8Oo P, and 
90°F. Note that we cannot control the temperature in the field, but by controlling it during 
the experiment, we can identify the settings of the control factors that lead to the desired 
plasticity across all levels of temperature-that is, with small variance. 

The layout of the experimental design matrix is shown in Table 29.11. This is essentially 
the same design layout as the one shown in Table 29.10. The only difference is that the 
replications of each control-factor-level combination are conducted deliberately at different 
levels of the temperature. The steps in the analysis are identical to those shown previously, 
leading to (29.44) for the dispersion model, and (29.45) for the location model. Thus the 
setting,with brown sugar at the low level (X I = -1) and light corn syrup at the high level 
(X3 = I) leads to a product that has the desired mean plasticity and is relatively unaffected 
by or robust to changes in temperature. 

We now turn to a discussion of a robust product design experiment from the automotive 
industry. 

Case Study-Clutch Slave Cylinder Experiment • 
A research project in a major automotive company was conducted to develop a design for a 
clutch slave cylinder that would minimize fluid leakage. Pive two-level control factors and 
two two-level noise factors were identified. The five control factors are body inner diameter 
(X I), body outer diameter (X2 ), seal inner diameter (X3 ), seal outer diameter (X4 ), and seal 
design (Xs = -1: lip seal; Xs = 1: quads seal). Two noise factors are: temperature (X6 ) and 
load (X 7 = -1: light; X 7 = 1: heavy). The response is leakage, which is to be minimized 



Chapter 29 Exploratory Experiments: Two-Level Factorial and Fractinnal Factorial Designs 1253 

TABLE 29.12 Experimental Design and Responses--Outch Slave Cylinder Example. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Control' Factors Noise Factors (X6, X7) 

Xl X2 

J -1 -1 
2 1 -1 
3 -1 1 
4 1 1 
5 -1 -1 
6 1 -1 
7 -1 1 
8 1 1 
:9 -1 -1 

: 10 1 -1 
,11 -1 1 
12 J 1 

'13 -1 -1 
:14 1 -1 
15 -1 1 
'16 1 1 

X3 X4 Xs (-1,-1) (+1,-1) (-1,+1) (+1, + 1) I0ge sf WI 

-1 -1 -1 .8 .4 0 0 -1.920 1.245 
-1 1 -1 3.2 0 0 0 .940 .195 
-1 1 -1 0 0 0 2.4 .365 1.245 
-'-1 -1 -1 5.8 0 0 2.8 2.036 .195 

1 1 -1 0 3.0 0 2.4 .912 1.245 
1 -1 -1 0 1.2 0 4.0 1.270 .195 
1 ~1 -1 0 2.6 0 1.2 .425 1.245 
1 1 -1 1.0 2.3 5.2 0 1.627 .195, 

-1 -1 1 9.8 2.5 13.8 2.0 3.500 .009 
-1 1 1 6.4 3.0 13.0 0 3.440 .058 
-1 1 1 8.8 2.0 31.0 .4 5.294 .009 
-1 -1 1 1.8 3.4 6.9 0 2.152 .058 

1 1 1 6.8 2.4 26.4 0 4.970 .009 
1 -1 1 4.0 2.2 12.6 3.4 3.120 .058 
1 -1 1 10.2 1.8 38.8 3.2 5.697 .009 
1 1 1 7.8 1.4 6.4 5.6 2.026 .058 

The experimental plan is shown in Table 29.12. For the five control factors, a resolution IV 
design was used, in which the defining relation is 0 = 1234. For each control factor setting, 
four responses were obtained, corresponding to the 22 = 4 noise-factor-level settings. When 
the control-factor-level combinations are crossed with the noise-factor-level combinations 
we obtain a 25- 1 x 22 robust product design experiment. 

Again following the dual-response modeling strategy on page 1247, we first estimate 
the dispersion model. Because the design in the control factors is a resolution IV fractional 
factorial design based on the defining relation 0 = 1234, the following dispersion effects 
are confounded: 

fJf/ + fJ[i34 fJP + fJf34 fJf + fJP34 fJ!/ + fJ[i4 

fJf/ + fJ[i3 fJ!l + fJ[i345 fJ[i + fJ:e fJ~ + fJg 
(29.46) 

fJe. + fJg fJfs + fJf345 fJfs + fJP345 fJfs + fJ[i45 

fJfs + fJP235 fJ~ + fJ:e5 fJ~5 + fJg5 fJe.5 + fJg5 

We will form dispersion model (29.41) here by choosing the first dispersion effect from 
each of the 16 pairs in (29.46): 

(29.47) 

Regressing the 10& s; values in column 10 of Table 29.12 on the predictors indicated 
by (29.47), we obtain i:he estimated dispersion effects shown in Figure 29.15a. A normal 
probability plot of the estimated dispersion effects is shown in Figure 29.15b. It can be 
seen that the main dispersion effect of factor X 5 and two-factor interaction X 15 appear to 
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FIGURE 29.15 MINITAB Regression Output and Normal Probability Plot of Estimated Effect Coefficients for 
Dispersion Model-Gutch Slave Cylinder Example. 

(a) Regression Output (b) Normal Probability Plot of the Effects 
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be active. Eliminating the inactive effects leads to the estimated subset dispersion model: 

-loge sl = 2.241 + 1.534XiS - .926Xils (29.48) 

-from which we obtain the model-based variance estimates: Vi = exp(lo& sl). 
Since significant dispersion effects are present, we turn now to the estimation of the 

location model using weighted least squares. The estimated weights, which as before are 
the inverses of the estimated variances in (29.43), are shown in column 11 of Table 29.12. 
Use of these estimated weights in a regression of the Yij responses in columns 6-9 on the 
predictors indicated in (29.47) leads to the weighted least squares location effects estimates 
summarized in the regression output in Figure 29.16a The output indicates that only one 
estimated location effect, bs is significant at the a = .05 level of significance. The normal 
probability plot of the estimated location effects in Figure 29.16b also clearly suggests that 
fJs is the only active location effect. Using weighted least squares to estimate the reduced 
lo~ation model, we obtain: 

t = 3.232 + 2.235X;s (29.49) 

We now turn to Step 4 in the analysis strategy-the identification of robust control­
factor-level combinations. Note that factor Xs enters both the dispersion model (29.48) and 
location model (29.49) as a main effect with a positive coefficient. The predicted dispersion 
and location are both to be minimized in this example; we therefore set Xs = -1. For 
dispersion model (29.48), Xs also enters through the interaction term X I Xs. Since the 
estimated dispersion interaction effect is b ls = -.926, minimization is accomplished by 
setting XIXS = 1. With Xs = -I from the location model, we have XI (-1) = 1, implying 
X I = -1. These settings lead to predicted mean fluid leakage: 

Y = 3.232 + 2.235( -1) = .997 
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FIGURE 29.16 MINITAB Regression Output and Normal Probability Plot of Estimated Effect Coefficients for 
Location Model-Clutch Slave Cylinder Example. 
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Constant 
Xl 
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(a) Regression Results (b) Normal Probability Plot 
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with predicted variance: 

v = exp[2.241 + 1.534(-1) - .926(-1)(-1)] = .803 

Note that prediction intervals for these quantities can be obtained in the usual way. Often, a 
confirmation test is carried out at the suggested factor-level combination as a check on the 
validity of the model. The model is said to be confirmed if the results of the confirmation 
run fall within the calculated prediction limits. 

Comments 

1. An alternative approach to the dual-response optimization approach discussed here, called 
the response modeling approach, was proposed by Welch et al. (Ref. 29.5) and Shoemaker et al. 
(Ref. 29.6). This approach advocates, as a first step, the usual analysis of the experiment, making no 
distinction between noise and control factors. If significant interaction s exist that involve both noise and 
control factors, these interactions are analyzed through graphical or other means to determine which 
control-factor-Ievel combinations lead to the desired mean responses and are relatively unaffected by 
changes to the noise factors. 

2. In the framework proposed by Taguchi, the analysis of a robust design model involves the 
signal-to-noise ratio, which is a transformation based on ft. and sf (Ref. 29.3). Since then, many 
other analysis methods have been proposed, but the location-dispersion modeling and the response­
modeling approaches are often preferred by statisticians. For a more detailed discussion, see Refer­
ence 29.4. 

3. The control factor layout chosen by the engineer in the clutch slave cylinder example was a 
resolution IV design. Table 29.6 indicates that a design with higher resolution was available, namely 
the 2~-I design based on the defining relation 0 = 12345. • 
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29.1. A plant manager used a 24 factorial design with two replicates for each treatment to study 
the effects of four process variables (XI, ... , X4 ) on product quality (Y). State the response 
model in the form of (29.2a). How many two-factor interaction terms are there? How many 
three-factor interaction terms? How many four-factor interaction terms? 

29.2. A scientist observed: "Two-level factorial designs are useful if the number of factors is small. 
But I am concerned when there are 10 or more factors; the number of trials required for a 2\0 
experiment is simply too large." Discuss. 

*29.3. Reaction yield. A chemical engineer decided to employ a single locplicate of a 26 factorial 
design to study the effects of the process variables on the yield of a chemical reaction. 

a. How may factors are involved? How many levels are there for each factor? How many 
experimental trials will be locquired for the single replicate of the experiment? 

b. Can a test for lack of fit be obtained here? 

29.4. A biologist considered studying the effects of various environmental pollutants on the health 
of mice by using a 27- 4 fractional factorial design. 

a. How many factors are involved? How many levels are there for each factor? How many 
trials will be locquired for a single locplicate of the experiment? Can a test for lack of fit be 
obtained? 

b. The biologist decided to augment the design with six center-point locplicates. Can a test 
for lack of fit now be obtained? If so, can the biologist determine which factors caused a 
curvature effect? 

29.5. State the X matrix (including all main effects and interaction columns) for a single replicate 
of a 23 factorial design, with the rows listed in standard order. Show numerically that (29.3) 
holds for your X matrix. 

*29.6. Refer to Reaction yield Problem 29.3. Past experience indicates that the standard deviation 
of reaction yield is a = 5. 

a. Find the variance of the estimated main effectcoefficiootb I . Is the variance of the interaction 
effect coefficient bI2 the same? Should it be? 

b. How many locplicates of the experiment are required in order to estimate factor effect 
coefficent b I within ±.5 with 95 percent confidence? 

*29.7. Pilot training. An unreplicated 25 full factorial design was used to investigate the effects of 
five factors on the learning rates of flight trainees when using flight simulators. The factors 
welOC display type (XI = -1: symbolic; XI = I: pictorial), display orientation (X2 = -1: 
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outside in; X2 = 1: inside out), crosswind (X3 = -I: no wind present; X3 = 1: crosswind 
present), command guidance (X4 = -1: constant guidance; X4 = 1: guidance only when 
trainee strays far from best flight path), and flight path prediction (X5 = -1: no prediction; 
X5 = I: COnstant prediction). The response Y is the average squared distance from the op.timal 
flight path for 12 landing attempts by the trainee. The smaller is Y, the better is the trainee's 
performance. Thirty-two sUbjects (trainees) wel"e selected at random from a large group of 
trainees with no prior flying experience. The design matrix for the experiment and the observed 
trainee flight scores (Y) follow. 

y Xl X2 X3 X4 Xs 

8.69 -1 -1 -1 -1 -1 
7.71 -1 -1 -1 -1 
9.03 -1 1 -1 -1 -1 

6.67 1 -1 
2.78 -1 
7.45 

Adapted in part from l. Lintem et al., 'oDlsplay principles, Control 
Dynamics, and Environmental Factors in Pilot Training and Transfer," 
Human Factors 32 (1990), pp. 64-69. 

a. State the regression model in the form (29.2a). Fit this model and obtain the estimated 
factor effect coefficients. Does it appear from the magnitudes of the estimated coefficients 
that some factors may be active here? 

b. Prepare a dot plot of the estimated factor effect coefficients. Which effects appear to be 
active? 

c. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? Do the estimated factor effects appear to be normally distributed? How 
do your results compare with those in parts (a) and (b)? 

*29.8. Refer to Pilot Training Problem 29.7. The regression model was revised by dropping all 
three-factor and higher-order interactions. 

a. State the revised regression model. Fit the revised regression model and prepare a plot of 
the residuals against the fitted values. Do the standard regression assumptions appear to be 
satisfied? 

b. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .05. Does the assumption of normality appear to be reasonable here? 

c. Using the P-values for the estimated factor effect coefficients, test for the significance of 
each factor effect. Control the family level of significance at a = .05 using the Kimball 
inequality. Which effects appear to be active? 

d. Summarize the results of the experiment with an appropriate set of plots of main effects 
and interactions. Interpret the results. 

29.9. Computer monitors. A single replicate of a 24 full factorial design, augmented by three 
replicates at the center point, was used to determine the most reliable design of a computer 
monitor base. Factors of interest were clearance under the base (X I), interface board height 
(X2 ), side vent size (X3 ), and interface board angle (X4 ). All factors are quantitative and 
are coded with Xi = -I for the low level of the factor and Xi = I for the high level. The 
response (Y) is the failure rate of the interface board, with lower failure rates representing 
higher product quality. The design matrix for the experiment and the observed design failure 
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rates (Y) follow. 

y Xl X2 X3 X4 

3.88 -1 -1 -1 -1 
3.17 -1 -1 -1 
4.07 -1 1 -1 -1 

3.80 0 0 0 0 
3.99 0 0 0 0 
4.16 0 0 0 0 

a. State the regression model in the form (29.2a). Fit this model and obtain the estimated 
factor effect coefficients. Does it appear from the magnitudes of the estimated coefficients 
that some factors may be active here? 

b. Prepare a dot plot of the estimated factor effect coefficients. Which effects appear to be 
active? 

c. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? Do the estimated factor effects appear to be normally distributed? How 
do your results compare with those in parts (a) and (b)? 

d. Obtain MSPE using the three center-point replicates and (29.17). Use this estimate to 
determine the P-value for each estimated factor effect coefficient. Determine which effects 
are active; use a = .05 for each test. 

29.10. Refer to Computer monitors Problem 29.9. The regl"Cssion model was revised by including 
only the main effects of factors l, 3, and 4 and the 34 interaction. 

a Fit the l"Cvised model and prepare a plot of the l"Csiduais against the fitted values. Do the 
standard regl"Cssion assumptions appear to be satisfied? 

b. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .05. Does the assumption of normality appear to be a reasonable one 
hel"C? 

c. Using the P-values for the estimated factor effect coeffidents, test for the significance of 
each effect; use a = .01 for each test. Which effects are active? 

d. Conduct a test for lack of fit; use a = .05. State the decision rule and conclusion. 

e. Summarize the results of the experiment with an appropriate set of plots of main effects 
and interactions. Interpl"Ct the results. How should the monitor base be designed to achieve 
a minimum failure rate? 

29.11. Refer to the X matrix for a 24 fun factorial design in Thble 29.2. 

a. Identify the defining relation for the fractional design obtained by dropping treatments 3 
to 6,9, 10, IS, and 16. What is the resolution of the fractional design so obtained? 

b. Give the complete confounding scheme for the fractional design obtained in part (a). 

29.12. a. Construct a design for four two-level factors with eight experimental trials that has the 
highest possible resolution. What is the resolution of this design? 

b. Verify the projection property for the design constructet:l in part (a) that any subset of three 
(or fewer) factors yields a full factorial design in those factors. 

29.13. Is it possible to construct a resolution III design for four two-level factors with four experi­
mental trials? If so, construct such a design. If not, indicate why this is not possible. 

29.14. Construct a lilt I design using the defining relation 0 = 123. Is there an alternative eight-run 
design of higher resolution? 
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*29.15. Obtain the complete defining relation and the confounding scheme for the eight-run, five­
factor design that is fractionated on the basis of the relation 0 = 123 = 245. What is the 
resolution of this design? Is there an alternative design with higher resolution? 

29.16. The following design matrix was used in an eight-run, five-factor experiment: 

Xl X2 X3 X4 Xs 
-1 -1 -1 -1 -1 

1 -1 -1 -1 1 
-1 1 -1 1 

1 1 -1 -1 
-1 -1 1 1 

1 -1 -1 
-1 -1 -1 

-1 1 

Obtain the defining relation and the complete confounding scheme for this design. What is the 
resolution of this design? Can an alternative five-factor, eight-run design with higher resolution 
be constructed? 

29.17. Construct a 26- 3 fractional factorial design of highest resolution using Table 29.6. What is the 
defining relation for this design? What is its resolution? 

*29.18. Peanut solids. A food scientist conducted a single replicate of a 27-
3 fractional factorial 

design in an effort to identify factors that affect the extraction of food solids from peanuts 
using water. Factors of interest were the pH level ofthe water (X I = -1: 6.95; XI = 1: 8.00), 
water temperature (X2 = -1: 20°C; X2 = 1: 60°C), extraction time (X3 = -1: 15 minutes; 
X3 = 1: 40 minutes), water-to-peanuts ratio (X4 = -1: 5; X4 = 1: 9), agitation speed 
(X5 = -1: 5,000 rpm; X5 = 1: 10,000 rpm), hydrolysis (X6 = -1: unhydrolyzed; X6 = 1: 
hydrolyzed), and presoaking level (X7 = -1: dry; X7 = 1: soaked). The experimental units 
were 16 randomly selected batches of peanuts. The response (Y) is the percentage of the total 
solids removed from each batch. The defining relation used to construct the 27

- 3 fractional 
design (excluding generalized interactions) is 0 = 1235 = 2346 = 1247. The design matrix 
for the experiment and the observed percentage extractions (Y) follow. 

y Xl X2 X3 X4 Xs X6 X7 
10.82 -1 -1 -1 -1 -1 -1 -1 
10.59 1 -1 -1 -1 1 -1 
8.19 -1 -1 -1 

5.12 1 -1 -1 -1 -1 
5.60 -1 -1 -1 
5.73 1 

Adapted from I. Y. s. Rustom et aI., "A Study of Factors Affecting 
Extraction of Peanut (Arachis hypogaea L.) Solids with Water," Food 
Chemistry 42 (1991), pp. 153-65. 

a Obtain the generalized interactions and the complete defining relation. What is the resolu­
tion of the design? Could a design of higher resolution have been used here? 

b. Using the defining relation in part (a), determine the confounding pattern for all main 
effects and two-factor interactions. 
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c. State the regression model in the form (29.2a). Remember that confounded effects must not 
be included in your model. Fit this model and obtain the estimated factor effect coefficients. 
Prepare a dot plot of the estimated factor effect coefficients. Which effects appear to be 
active? 

d. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? Do the estimated effects appear to be normally distributed? How do 
your results compare with those in part (c)? 

e. Test whether all two-factor interaction effects can be dropped from the model; use a == .01. 
State the alternatives, decision rule, and conclusion. 

*29.19. Refer to Peanut Solids Problem 29.18. The regression model was revised by dropping all 
interaction effects. 

a. Fit the revised model and prepare a plot of the residuals against the fitted values. Do the 
standard regression assumptions appear to be satisfied? 

b. Cases 3 and 14 have fairly large absolute residuals. Conduct the Bonferroni outlier test for 
each of these cases; use a = .05 for each test. What do you conclude? 

c. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .025. Does the assumption of normality appear to be l-easonable hel-e? 

d. Using the P-values of the estimated factor effect coefficients, test for the significance of 
each effect; use a = .02 for each test. Which effects are active? 

e. Summarize the results of the experiment with an appropriate set of plots of main effects. 
Interpl-et the results. How should maximum food solids extraction be achieved? 

29.20. Fiber optics. A chemist conducted a sCI-eening experiment to identify factors that affect the 
viscosity of a gel used in the manufactUl-e of fiber optic cabling. To minimize the loss of 
telephone signal, the inner glass fibers must be allowed to move freely within the cabling for 
a range oftemperatUl-es. A lubricant (gel) is used to promote this movement. The viscosity of 
the gel must be sufficiently low to allow such movement; yet it must not be so low as to lead 
to dripping (leakage) from the ends. A single l-eplicate of a 29- 5 fractional factorial design 
was conducted. The factors of intel-est wel-e silica particle size (X I = -I: 200; X I = I: 380), 
silica weight (X2 = -I: low; X2 = I: high), oil ratio (X3 = -I: low; X3 = I: high), oil 
temperature(X4 == -I: low;X4 = I: high),stabilizerleveI(X5 = -I: low;X5 = I: high), 
pl-emix time (X6 = -I: short; X6 = l: long), postmix time (X7 = -I: short; X7 = I: 
long), postmix vacuum (X8 = -I: no; X8 = I: yes), and filter mesh size (X9 = -I: 
small; X9 = I: large). The response of interest is gel viscosity (Y); management feels that an 
optimal (target) gel viscosity is 74.5. The design matrix for the experiment and the observed 
viscositie& (Y) follow. 

y Xl X2 X3 X4 Xs X6 X7 Xs X9 
101.2 1 1 -1 1 -1 -1 1 

92.9 -1 -1 -1 -1 -1 -1 -1 -1 1 
129.9 1 1 -1 -1 -1 -1 

73.4 -1 -1 -1 -1 1 .-1 -1 -1 
31.6 1 -1 -1 -1 -1 1 -1 -1 

121.6 -1 1 -1 1 -1 -1 1 

Adapted from T. L Reed, "Quality Improvement of Silica-Based Polysiloxane Gel Used in Fiber Optic 
Cabling by Process Optimization via Taguchi Methods," Fifth Symposium on Taguchi Methods, Detroit: 
ASI Press (1987), pp. 555-71. 
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a State the regression model containing only factor main effects in the form (29.2a). 
Fit this model and obtain the estimated factor effect coefficients. Does it appear 
from the magnitudes of the estimated coefficients that some factors may be active 
here? 

b. Prepare a Pareto plot of the estimated factor effect coefficients. Which effects appear to be 
active? 

c. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? Do the estimated factor effects appear to be normally distributed? How 
do your results compare with those in part (b)? 

d. Using the P-values of the estimated factor effect coefficients, test for the significance of 
each effect term; use a = .10 for each test. Which effects are active? 

29.21. Refer to Fiber optics Problem 29.20. The regression model was l"evised to include only the 
main effects for factors 1,5, and 7. 

a. Fit the revised regression model and prepare a plot of the residuals against the fitted values. 
Do the standard regression assumptions appear to be satisfied? 

b. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .05. Does the assumption of normality appear to be reasonable 
here? 

c. Conduct a lack of fit test for the revised regression model; use a = .05. State the alterna­
tives, decision rule, and conclusion. What does your conclusion suggest about the possible 
pl"esence of interactions? 

29.22. Refer to Fiber optics Problems 29.20 and 29.21. Since the experimental design consists of 
two complete replicates of a 23 factorial in the three active factors 1,5, and 7, consider now 
a revised model containing the main effects of factors I, 5, and 7 and all interactions among 
these three factors. 

a State the revised regression model and fit it. Using the P-values of the estimated factor 
effect coefficients, test for the signficance of each factor effect; use a = .01 for each test. 
Which effects are active? 

b. Obtain a normal probability plot of the residuals. Compare this plot to that obtained in 
Problem 29.21b. What do you conclude? 

c. Summarize the experimental results with an appropriate set of plots of the main effects 
and interactions. Interpret the results. 

d. How might you proceed to determine the levels of factors 1, 5, and 7 so that the expected 
viscosity of the resulting gel would be on target at 74.5? 

29.23. Windshield molding manufacture. An experimental study was undertaken in an effort to 
reduce the occurrence of dents in a windshield molding manufacturing process. The dents 
are caused by pieces of metal or plastic that are carried into the dies during stc'lmping and 
forming operations. Four factors were identified for use in an eight-run experiment: poly-film 
thickness-used to protect the metal strip during manufacturing to reduce surface blemishes 
(Xl = -1: .00175; XI = 1: .0025), oil mixture ratio for surface lubrication (X2 = -I: 
.05; X2 = 1: .10), operator glove type (X3 = -I: cotton; X3 = I: nylon), underside oil 
coating (X4-.= -I: no coating; X4 = I: coating). During each run of the experiment, 1,000 
moldings were fabricated; the response (Y) is the number of defect-free moldings produced. 
The design matrix for the experiment and the observed numbers of defect-free moldings 
produced (Y) follow. 
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338 
826 
350 
647 1 
917 -1 
977 -1 
953 -1 
972 -1 

X2 

-1 
-1 

-1 
-1 

X3 X4 

-1 -1 
1 1 

-1 -1 
1 

-1 
-1 

-1 1 
-1 

Adapted from G. Adel, "Minimize Slugging by Optimizing 
Controllable Factors on Topaz Windshield Molding," fifth 
Symposium on Taguchi Methods, Detroit: ASI Press (1987), 
pp.519-26. 

a. Determine the defining relation and the complete confounding scheme used in the experi­
ment. Could a design of higher resolution have been used? 

b. State the regression model in the form (29.2a). Remember that confounded factor effects 
must not be included in your model. Fit this model and obtain the estimated factor effect 
coefficients. 

c. Prepare a dot plot of the estimated factor effect coefficients. Which effects appear to be 
active? 

d. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? How do your results compare with those in part (c)? Do the estimated 
factor effects appear to be normally distributed? 

29.24. Refer to Wmdshield molding manufacture Problem 29.23. The regression model was revised 
to include only the main effects for the four factors. 

a. Fit the revised regression model. Using the P-values for the estimated factor effect coeffi­
cients, test for the significance of each effect; use a = .05 in each case. Which effects are 
active? 

b. Summarize the results of the experiment with an appropriate set of plots of main effects. 
Interpret the results. Identify the settings of the experimental factors within the operating 
range that lead to the maximum number of defect-free moldings. 

29.25. Construct a 2~i12 design in two blocks of size four such that main effects are not confounded 
with the block effect 

*29.26. Team t:ffectiveness. A researcher employed a single replicate of a 26 full factorial design, with 
eight blocks containing eight treatments each, to study the effects of team member's ability 
level and motivation level on the performance of three-person military teams consisting of an 
operator, a loader, and a mover. The factors studied were operator's ability (XI)' operator's 
motivation (X2), loader's ability (X3), loader's motivation (X4 ), mover's ability (X5), and 
mover's motivation (X6). All factors are quantitative and are coded with Xi = -I referring 
to the low level of the factor and Xi = I referring to its high level. The 64 teams were formed 
by assigning persons to teams in accordance with the 26 full factoorial design. 

The team ratings (Y) were assigned by unit commanders following two months of military 
activity. Because unit commanders could observe at most 10 teams. and because it was expected 
that some scoring biases might result, the teams were assigned to commanders in blocks 
of size eight. Levels of the interaction terms XI35, X'46, and X 245 were used to determine 
the blocks. The observed team ratings, the design matrix, and the blocking arrangement 
follow. 
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y Block Xl X2 X3 X4 Xs X6 
43 -1 -1 -1 -1 -1 -1 
61 1 1 1 -1 -1 
60 -1 -1 1 -1 

66 8 1 -1 -1 1 -1 
64 8 -1 -1 -1 -1 
91 8 

Adapted in part from A. E. Tziner, "Effects of Team Composition on Ranked Team Effectiveness," 
Small Group Behavior 19 (1988), pp. 363-78. 

a. Obtain a scatter plot of team ratings against block number. Does it appear that blocking 
was effective here? 

b. Identify the complete confounding scheme for blocks. Are any main effects confounded 
with blocks? Any two-factor interactions? 

c. State the regression model in the form (29.2a). Fit this model and obtain the estimated 
factor effect coefficients. Prepare a dot plot of the estimated factor effect coefficients. 
Which effects appear to be active? 

d. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? How do your findings compare with those in part (c)? Do the estimated 
factor effects appear to be normally distributed? 

*29.27. Refer to Team effectiveness Problem 29.26. The regression model was revised to include 
only the factor main effects, two-factor interactions, and block main effects. 

a. Fit the revised model and prepare a plot of the residuals against the fitted values. Do the 
standard regression assumptions appear to be satisfied? 

b. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .05. Does the assumption of normality appear to be reasonable here? 

c. Using the P-values for the estimated factor effect coefficients, test for the significance of 
each factor effect; use a = .01 for each test. Which effects are active? 

*29.28. Refer to Team effectiveness Problems 29.26 and 29.27. The finally revised regression model 
consists of all blOCk main effects and all factor main effects only. 

a. Fit the finally revised regression model. 

b. Summarize the results ofthe experiment with an appropriate set of plots of the factor main 
effects. Interpret the results. How is maximum team effectiveness achieved? 

c. Obtain a 95 percent prediction interval for the teaIll performance for a single new team 
formed as described in part (b); assume that the rater (block) effect is zero in making your 
prediction. 

29.29. Whipped topping. Food scientists had developed a prototype soybean-based whipped top­
ping, but the product suffered in that the volume of the whipped product did not meet expecta­
tions. In an effort to maximize the topping volume, a 25- 1 fractional factorial design of highest 
resolution was used in an experiment in two blocks of size eight each, with three center-point 
replicates in each block The design confounded the block effect with the 45 interaction. The 
factors studied were soybean solids level (XI)' fat level (X2), emulsifier level (X3)' and the 
levels of two stabilizers: methocel (X4)' and avicel (X5). All factors are quantitative and 
are coded with Xi = -1 referring to the low level of the factor and Xi = I referring to its 
high level. The response (Y) is the percent increase in volume of the product due to whipping; 
large increases are desirable. The observed responses, the design matrix, and the blocking 
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arrangement follow. 

y 

124 
144 
144 

121 
127 
115 

Block 

2 
2 
2 

Xl 

-1 
1 
1 

0 
0 
0 

X2 X3 

-1 -1 
1 -1 

-1 1 

0 0 
0 0 
0 0 

X4 

-1 
-1 
-1 

0 
0 
0 

Xs 

o 
o 
o 

a. What is the defining relation for this design? What is the resolution, ignoring blocks? 

b. State the regression model in the form (29.2a). Remember that confounded factor effects 
must not be included in your model. Fit this regression model and obtain the estimated 
factor effect coefficients. Prepare a dot plot of the estimated factor effect coefficients. 
Which effects appear to be active? 

c. Obtain a normal probability plot of the estimated factor effect coefficients. Which effects 
appear to be active? How do your results compare with those in part (b)? Do the estimated 
factor effects appear to be normally distributed? 

d. Test for the presence of block effects; use a = .05. State the alternatives, decision rule, 
and conclusion. 

e. Fit a revised regression model, omitting the block effect term. Obtain a pure error estimate 
of the error variance using the six center-point replicates and (29.17) and conduct a test 
for lack of fit; use a = .05. State the decision rule and conclusion. Does your test indicate 
the presence of curvature? 

f. Using the P-values for the estimated factor effect coefficients obtained in part (e) based on 
the pure error estimate MSPE, test for the significance of the factor effects; use a = .025 
for each test. Which factors are active? 

29.30. Refer to Whipped topping Problem 29.29. The model has been finally revised to include 
only the main effects for factors 1,2, and 5 and the 12 interaction term. 

a. Fit the revised model and prepare a plot of the residuals against the fitted values. Do the 
standard regression assumptions appear to be satisfied? 

b. Obtain a normal probability plot of the residuals. Also conduct the correlation test for 
normality; use a = .05. Does the assumption of normality appear to be reasonable here? 

c. Summarize the results of the experiment with an appropriate set of plots of the main effects 
and interactions. Interpret the results. How is maximum whippability achieved? 

d. Obtain a 95 percent confidence interval for the expected percent volume increase for the 
whipped topping product when formulated as recommended in part (c). 

29.31. Refer to Computer monitors Problem 29.9. Suppose two more replicates were conducted 
for the 24 full factorial design. Ignoring the center points, the design matrix for the new 
experiment with three replicate responses YiI , Yi2 , and YB follow;;. Assume that the target 
failure rate is T = O. 

1 
2 

16 

-1 -1 
-1 

-1 -1 
-1 -1 

3.88 
3.17 

3.11 

3.10 
2.75 

1.82 

5.30 
4.90 

3.95 
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a. Obtain the sample variances and the logarithms of the sample variances for each of the 
comrol-factor-Ievel combinations. Does the variance appear to be constant? 

b. Fit the dispersion model (29.41) using the logarithm of the sample variances obtained in 
part (a). Prepare a Pareto plot of the estimated factor effect coefficients. Which dispersion 
effects appear to be active? 

c. Using the subset dispersion model based on the estimates of the active dispersion effects, 
provide estimates of the variance of the response for each control-factor-Ievel combination. 
Are your estimates consistent with the sample variances obtained in part (a)? 

d. Fit the location model (29.39) using weighted least squares. Obtain a normal probability 
plot of the estimated control-factor-effect coefficients. Which effects appear to be active? 
Use a = .05. 

e. Using the subset dispersion and location models based on the active dispersion and location 
effects identified in parts (b) and (d), determine the control factor settings that minimize 
failure rate with minimum variance. 

f. Give 95 percent confidence limits for the predicted variance for the optimal settings iden­
tified in part (e). How would these limits be used in a confirmation run? 

g. Estimate the mean squared error in (29.38) for the optimal control-factor-Ievel settings 
determined in part (e). 

*29.32. Leaf springs. An engineer conducted an experiment to identify factors that affect the height 
of an unloaded spring to improve a heat treatment process on truck leaf springs. The target 
value of the height (Y) is T = 8 inches. The heat treatment forms the camber (curvature) in 
leaf springs, and was conducted by heating in a high temperature furnace, processing by a 
forming machine, and quenching in an oil bath. The factors of interest were furnace tem­
perature (XI =-1: 1840°F; XI = 1: 1880°F), heating time (X2 =-I: 23 minutes; X 2 = 1: 
25 minutes), transfer time (X3 = -1: short; X3 = 1: long), and hold-down time (X4 = -1: 
short; X4 = 1: long). The defining relation used to construct the 24- 1 design is 0 = 1234. 
The design matrix for the experiment and the observed heights with 6 replicates (Y) follow. 

Xl X2 X3 X4 YI1 Yi2 Yi6 

1 -1 -1 -1 -1 7.56 7.62 7.25 
2 1 -1 -1 1 7.56 7.81 7.59 
3 -1 1 -1 1 7.84 7.70 7.20 
4 1 1 -1 -1 7.69 8.09 7.20 
5 -1 -1 1 1 7.50 7.56 7.50 
6 1 -1 1 -1 7.59 7.56 7.56 
7 -1 1 1 -1 7.78 7.83 7.12 
8 1 1 1 1 8.15 8.10 7.25 

Adapted in part from I. I. Pignatielio and I. S. Ramburg, "Discussion of 'Off-Line Quality Control, 
Parameter Design, and the Taguchi Method' by Kackar, R. N.,u Journal of Quality Technoiogy, 1 7, 
pp. 198-206. 

a. Obtain the sample variances and the logarithms of the sample variances for each of the 
control-factor-Ievel combinations. Does the variance appear to be constant? 

b. Fit the dispersion model (29.41) using the logarithms of the sample variances obtained in 
part (a). Prepare a Pareto plot of the estimated factor effect coefficients. Which dispersion 
effects appear to be active? 

c. Using the subset dispersion model based on the estimates of the active dispersion effects, 
provide estimates of the variance of the response for each control-factor-level combination. 
Are your estimates consistent with the sample variances obtained in part (a)? 
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Exercises 

d. Fit the location model (29.39) using weighted least squares. Obtain a normal probability 
plot of the estimated control-factor-effect coefficients. Which effects appear to be active? 
Use a = .05. 

e. Using the subset dispersion and location models based on the active dispersion and location 
effects identified in parts (b) and (d), determine the control factor settings that lead to a 
predicted mean height near T = 8 with minimal variance. 

f. Give simultaneous 95 percent confidence limits for the predicted variance for the optimal 
settings identified in part (e). How would these limits be used in a confirmation run? 

g. Estimate the mean squared error in (29.38) for the optimal control-factor-Ievel settings 
determined in part (e). 

29.33. Show that (29.14) holds for balanced two-level experiments; use (2.51) and the additivity of 
the extra sums of squares in this situation. 

29.34. Suppose that the true (full) regression model in matrix form is: 

Y = XI B, + X2B2 + 8 

However, the analyst assumes that the (reduced) model: 

Y=X,B, +8 

is correct and uses it for purposes of estimation. For example, the X matrix for the reduced 
model (XI) might include only an intercept column and columns for first-order terms, while 
the true model involves first-order terms (Xd and some two-factor interaction terms (X2). 

a. Show that: 

where A = (X'IXd-IX'IX2 is called the alias matrix. 

b. Let XI be the X matrix (based on the intercept and first-order terms only) for the 2~Il 
design constructed from the defining relation 0 = 123. Let X2 consist ofthe columns X12, 
XI3, and X 23 , corresponding to the omitted two-factor interaction effects fJ12, fJl3, and fJ23. 

Use the result in part (a) and b = (X;Xd-'X; Y = X; Y /8 to show that E{bd = fJl + f323, 
E {b2 } = fJ2 + fJl3, and E {b3 } = fJ3 + fJl2. Thus, for this design we have: 1 = 23, 2 = 13, 
and3 = 12. 

,. 



Chapter 

30.1 

Response Surface 
Methodology 

Chapter 29 was devoted to a discussion of the design of two-level factorial experiments. With 
these designs, main effects and two-factor interactions can often be studied with relatively 
few experimental trials. One limitation of two-level designs for factorial studies where 
the factors are quantitative is that they cannot identify curvatures in the response surface. 
Modeling curvature effects can be very important when the objective of the experiment is 
to identify the combination of levels of the quantitative factors that leads to an optimum 
response. Response surface experiments can be used for this purpose. In this chapter, we 
discuss the design and analysis of response surface experiments for studies where the 
factors are quantitative. Response surface designs are generally used in the latter stages of 
an investigation, when five or fewer factors are under investigation. 

Response Surface Experiments 

When a factorial study involves quantitative factors and the shape of the response surface 
is of interest, the response surface is usually approximated by a second-order regression 
model. The rationale is that the main effects and second-order effects will generally cap­
ture the essence of the response function since third-order and higher effects are usually 
unimportant. 

The second-order response function for three quantitative factors was given in (8.10). 
We shall generalize it now for k quantitative factors. We continue to use the special coding 
employed in 'Chapter 29 for the level X j of the jth quantitative factor: 

E {Y} = f30 + f31 Xl + ... + f3k X k + f3l1 x i + ... + f3kkX~ + f312 Xl X 2 + ... + f3k-I,k Xk-I Xk 

(30.1) 

where the level Xj of the jth factor is coded as follows: 

High Level + Low Level 
Actual Level - 2 

X j = --~=-=---:---c:----:---=----::---::----
High Level Low Level 

(30.2) 

2 

1267 
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30.2 

This coding scheme results in a coded value of -I for the low level of factor . a ded . j, co 
value of I for the high level: a cod~~ value of 0 for t~e midlevel, and so on. For instance, 
if the temperature levels of factor] 111 a study range from 75" to 8Y, the following coded 

values X j will be used: 

Temperature 
level 

75 
78 
80 
85 

Coded Value 
Xj 

-1 
-.4 
o 
1 

Occasionally, the experim.e~tal design wi~l b~ supplemented with treatments consisting of 
factor levels outside the oog1l1al range. ThIS WIll result in coded values below - I or above 1. 
FOi instance, if a supplemental treatment in Ouf example involves factor j at temperature 
level7fJ', the coded value will be Xj = (70 - 80)/5 = -2. 

As before, the coefficients 131, ... , 13k in regression model (30.1) are the linear main effect 
coefficients, the coefficients 1311, ... , f3H are the quadratic main effect coefficients, and the 
coefficients 1312, f3l'!o, ... , f3k-l.k are the interaction effect coefficients. Notice that model 
(30.1) involves p = I + k + k + k(k - 1) /2 = (k + l)(k + 2) /2 regression parameters. 

When designing a response surface study, a minimal requirement is that the design must 
be capable of providing estimates of the p = (k + l)(k + 2) /2 parameters in model (30.1). 
Any design of resolution V or higher for a two-level factorial study will provide estimates 
of linear main effects and all two-factor interaction effects that are confounded only with 
higher-order effects. However, at least three levels of each factor must be present to obtain 
estimates of the k quadratic main effects. 

One type of design that provides estimates of all parameters in regtession model (30.1) 
is the full factorial design with each factor at three levels. Full factorial designs with each 
factor at three levels are referred to as 3k designs, where k denotes the number of factors 
in the study. A number of practical limitations are associated with 3k designs. The first is 
expense. The number of treatments required by a 3k design grows rapidly with the number of 
factors. For four factors, for instance, a three-level full factorial design consists of 34 = 81 
treatments. A second disadvantage is that each factor appears at exactly three levels so that 
it will not be possible to test for the presence of cubic or higher-order main effects. 

In Sections 30.2 and 30.3, we shall discuss a variety of response surface designs that have 
been developed for estimation of response surfaces based on second-order model (30.1) that 
overcome the limitations of 3k designs. Central composite designs, discussed in the next 
section, are general purpose designs that are widely used in practice. Optimal response 
surface designs, discussed in Section 30.3, are designs that meet an optimality criterion 

specified by the experimenter. 

Central COHlposite Response Surface Designs 

Structure of Central Composite Designs 
Central composite designs are two-level full or fractional factorial designs that have been 
augmented with a small number of carefully chosen treatments to permit estimation ofthe 
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FIGURE 30.1 Two Central Composite Designs for Two Factors. 
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second-order response surface model (30.1). Consider first the 22 factorial design pictured 
in terms of its coded factor levels in Figure 30.1 a. If we add a single center point and four star 
points (also called axial points), as shown in Figure 30.Ib, the resulting design is a central 
composite design. A star point is one in which all factors but one are set at their mid-levels. 
In terms of the coded values, the coordinates of the four star points in Figure 30.1 b are 
(-1,0), (1, 0), (0, -1), and (0, I). As shown in Figure 30.Ib, the four star points are located 
at the centers of each of the four edges of the experimental region. Notice that the central 
composite design in Figure 30.Ib is in fact a 32 factorial design, where both factors are at 
three levels and all factor level combinations are included. 

The distance from a star point to the center point in coded units is typically denoted by 
ex. In Figure 30.1 b, the star points are One coded unit from the center; hence for this design 
ex = 1. It is sometimes possible to place the star points beyond the experimental region 
defined by the original upper and lower limits of the factors. Figure 30.Ic presents a central 
composite design where the star points are located at a distance ex = ,J2 = 1.414 from the 
center. As may be seen from Figure 30.Ic, each factor is run at five distinct levels when ex 
is larger than 1.0, whereas use of ex = 1.0 yields just three distinct levels for each factor, as 
shown in Figure 30.Ib. One advantage of setting ex greater than LO, therefore, is that tests 
for cubic and quadratic curvature effects can then be conducted. 

To summarize, central composite designs consist of three components: 

L 2k
- f corner points. At the base of any central composite design is a two-level full 

factorial design or a fractional factorial design of resolution V or higher. This component 
provides for the estimation of linear main effects and all two-factor interaction effects. 
Comer points have coded coordinates of the form (±I, ±I, ... , ±I). 

2. 2k star points. These factor level combinations permit the estimation of all quadratic 
main effects. In addition, when ex > 1.0, significance tests for higher-order curvature effects 
can be conducted. Star points have coordinates (±ex, 0, ... ,0), (0, ±ex, 0, ... ,0), etc. 

3. no center points. If no > 1, a pure error estimate of a 2 is available and a lack of fit 
test is possible. The coded coordinates of the center point replicates are (0,0, ... , 0). 
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TABLE 30.1 
Three-Factor 
Central 
Composite 
Designs with 
no =4 
Replications at 
Center Point. 

Specialized Study Designs 

Experimental 
Factor level Settings 

Trial Xl X2 X3 

1 -1 -1 -1 
2 1 -1 -1 
3 -1 1 -1 
4 1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 -1 1 1 
8 1 1 1 
9 -a 0 0 

]0 a 0 0 
''''~J. s~~ 11 0 -a 0 

12 0 a 0 
13 0-; 0 -a 
14 0 0 a 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 

Table 30.1 presents the coded factor level settings for central composite designs for three 
factors, with no = 4 replications at the center point. 

Commonly Used Central Composite Designs 
As we have seen, the term "central composite design" refers to a family of experimental 
designs. Within that family, numerous designs exist, depending on the choice of the base 
corner points, ex, and the extent of replications. Not only may there be no replications at the 
center point but there may also be replications at the corner and star points. We shall let ne 
and no> denote, respectively, the number of replications at each corner point and star point. 
The number of experimental trials at the corner points then is: 

2k - f ne (30.3a) 

where k is the number of factors and f is the level of fractionation in the two-level factorial 
design selected. Similarly, the number of replications at the star points is: 

2kns (30.3b) 

Thus, the total number of experimental trials planned, denoted by nT as usual, is: 

(30.3c) 

The characteristics of any particular central composite design therefore depend on the 
choices of k, f, ex, no, n.I-, and ne. 

A list of widely used central composite designs is given in Table 30.2 for studies involving 
two to eight factors. (The meaning of the term "rotatability" in Table 30.2 will be explained 
shortly.) The base fractional factorial designs for five to eight factors are the smallest such 
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TABLE 30.2 Some Useful Central Composite Designs. 

NurnberofF~~~~S . 

~~!i9n Characteristic 

~l;t~jfCict(jrial design 

~tarRQint~ 

t~.~nj~rpqint 
ca:}orJOtatabi!ity 
=fUtt~~'ns =i, 1 ) 

2 

22 

4 

r 
1.4142 

3 

23 

,6 

1 

1.6818' 

4 5 

24 25":1 
Y, 

'If )9 
1 r 

2:.o0QO 2;0066 

.6 ::-7 8 
It,-i 2~:,l 2fi- 2 

·Y 

1:-2 1.4 16 
,1 '1 1 

'2:~784 ;?;82~4 3:3636 

"T~~tnun1ber of trials 
:(hl= ns =1, T1o= 4) 

l4 "8 28, 3Q 48' 82 '84 

b':· 

designs that will provide resolution R = V. Table 30.2 also shows the total number of 
experimental trials required when a single replication at the comer and star points of the 
design (i.e., nc = ns = 1) and no = 4 replications at the center point are sufficient. When 
the error variance a 2 is large relative to the factor effects, larger numbers of replications at 
each treatment will be needed. 

Rotatable Central Composite Designs 
When choosing a particular central composite design, a criterion that is often considered is 
that of rotatability. The rotatability criterion is concerned with the precision of the estimator 
Yh since a main purpose of response surface designs is to estimate the response surface, 
i.e., to estimate the mean response E{Yh } in (30.1) at different locations X h , the vector 
of the given levels of the k factors. Rotatable designs have the property that the variance 
of the fitted value at Xh, a 2 {yh}, is the same for any point Xh that is a given distance from 
the center point, regardless of the direction. The property of equal precision at any given 
distance from the center point is desirable because it is not usually known in advance which 
direction from the center point will be oflater interest. A rotatable design provides assurance 
that the precision of the fitted values is not affected by the direction, only by the distance 
from the center point. 

We can examine whether a central composite design is rotatable by considering the 
variance of Yh as a function ofXh • The variance was given in (6.57): 

a 2 {Yh} = a2X~(X/X)-lXh = a 2 Vh (30.4) 

where: 

(30.4a) 

Vh is sometimes called the variance function. Note that Vh is a function solely of the coded 
values of the factor levels for the treatments in the design and of the point X h where the 
mean response is to be estimated. Also note that the variance of Yh is a constant multiple of 
Vh , the Constant being the error variance a 2

• Hence, the variance function provides complete 
information of how the variance a 2 {Yh } behaves for different points Xh • Figure 30.2 presents 
contour plots of the variance functions for the two central composite designs in Figure 30.1. 
For both of these designs, nc = ns = no = 1, and both use a 22 factorial design as the 
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FIGURE 30.2 Contours of Variance Functions for Tho-Factor Central Composite Designs. 
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base design. They differ only with respect to ex. Notice in Figure 30.2b that the contours of 
the variance function for the central composite design with ex = .J2 are circular, indicating 
equal precision at a given distance from the center point. Hence, this is a rotatable design. 
On the other hand, the contours of the variance function in Figure 30.2a are not circular, 
indicating that the design with ex = I is not rotatable. 

It can be shown that a central composite design is rotatable if: 

ex = [2k-~;nc) ]'/4 (30.5) 

For the example in Figure 30.2b, we have nc = ns = 1, k = 2, and f = O. Hence, the 
choice of: 

leads to a rotatable design. Values of ex that lead to rotatable designs when nc = ns = 1 are 
provided in Table 30.2. 

While rotatability is a desirable property of a central composite design, it should not 
be the sole basis for making the choice of ex. For example, in many instances, it may be 
physically difficult or impossible to extend the star points beyond the experimental region 
defined by the upper and lower limits of each factor. In such c~ses, ex must not exceed 
1.0. Also, a design with ex = I is sometimes easy to implement because only three levels 
are involved for each factor. In these cases, the resulting lack of rotatability may not be 
considered a serious disadvantage. 

The levels of four ingredients of a prototype solid chocolate bar developed by food scientists 
at Fisher Company were to be fine-tuned prior to national distribution. The factors and 



associated ranges were as follows: 

Factor 

Cocoa butter 
Added milk solids 
Flavoring 
Sugar 
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Low Level 

8.0 
2.0 
2.5 

12.5 

High Level 

10.0 
3.0 
3.5 

18.5 

The response of interest was the overall consumer acceptability as measured on a 10-
point scale. The objective of the experiment was to determine the levels of cocoa butter, 
added milk solids, flavoring, and sugar that lead to highest acceptability. To carry out the 
experiment, chocolate bars were to be made with different factor level combinations for the 
ingredients, and each type of chocolate bar was then to be subjected to a small Consumer 
test. The firm's marketing research department determined that each conSumer test would 
cost about $2,500. Because the total cost of the study was not to exceed $75,000, 30 or 
fewer consumer tests could be performed. From Table 30.2, we see that the total number of 
trials for a central composite four-factor design with no = 4 replications at the center point 
is 28, and that this design is rotatable when a = 2. The selected design in coded units is 
shown in Table 30.3. 

Comments 

1. A central composite design with a = 1 is often called aface-centered design. For k = 3 factors, 
for instance, this design locates the star points at the center of each of the six faces of the base design 
cube. 

2. When it is not possible to extend the star points beyond the factorial region defined by the 
original ranges of the factors, a rotatable inscribed central composite design can often be used. In 
such an inscribed design, the coded factor level settings are rescaled by the factor l/a so that all 
coded factor levels fall between -1 and 1. To illustrate the rescaling, we know from Table 30.2 that a 
two-factor central composite rotatable design requires the Choice of a = 1.414 when nc = ns = 1. To 
obtain an inscribed two-factor, rotatable central composite design, each coded factor level is multiplied 
by 1/1.414. The original rotatable design, with no = nc = ns = 1, and the corresponding inscribed 
design are shown in Table 30.4. The inscribed design has the appropriate value of a (1.0), and no 
factor levels are outside the original ranges for each factor. Note that the actual factor levels now need 
to be rescaled as well. Consequently, the comer points of the design will no longer be at the limits of 
the ranges for the factor levels. When this is undesirable, an inscribed design will not be appropriate . 

• 
Other Criteria for Choosing a Central Composite Design 

Other criteria for the choice of a central composite response surface design, besides ro­
tatability, have been proposed. Two of these are orthogonality and uniform precision. An 
unblocked central composite design is orthogonal if the estimated factor effect coefficients 
are all uncorrelated. A proper choice of no, the number of center point replicates, will lead 
to an orthogonal central composite design. For example, some orthogonal central composite 
designs for two to five factors are as follows for ns = nc = 1 replicate at each star and 
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TABLE 30.3 ~: n 
Factor Level settings "1l·i Three-Factor Experimental 

Central Trial Xl X2 X3 X4 

U Composite 1 -1 -1 -1 -1 
Design with 2 1 -1 -1 -1 
IX = 2.0 3 -1 1 -1 -1 
-Fisher 4 1 1 ...:1 -1 
Company 5 -1 -1 1 -1 
Example. 6 1 -1 1 -1 

[I 7 -1 1 1 -1 f --

1 -1 8 1 1 
9 -1 -1 -1 1 \i 

10 1 -1 -1 . 1 , 
11< -1 1 -1 1 tL 
121 ~, 1 1 -1 1 { 

; , 

13 -1 -1 1 1 ~. 
14 {i1 -1 1 1 
15 -·1 1 1 1 ,~ 

16 1 1 1 1 , , 
17 -2.0 0 0 0 iJ 
18 2.0 0 0 0 

I 19 0 -2.0 0 0 , 
: i 

20 0 2.0 0 0 
21 0 0 -2.0 0 
22 0 0 2.0 0 
23 0 O~ 0 -2.0 
24 0 0 0 2.0 

1 25 0 0 0 0 
26 0 0 0 0 
27 0 0 0 0 
28 0 0 0 0 

TABLE 30.4 Central Composite Inscribed Central 
Tho-Factor Design Composite Design 
Inscribed Experimental 
Central Trial Xl X2 Xl X2 

Composite 1 -1 -1 -.707 -.707 
Design with 2 1 .,..1 .707 -.707 
no =nc =ns = 3 -1 1 -.707 .~07 
1, IX = 1.414. 4 1 1 .707 . .707 

5 -1.414 0 -1 0 
6 1.414 0 1 0 
7 0 -1.414 0 -1 
8 0 1.414 0 1 
9 0 0 0 0 
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comer point: 

Design Characteristic 

Base factorial design 
no 

2 

Number of Factors 

3 4 5 

Notice that for each of these designs, the required number of replications at the center 
point is quite large. While orthogonality is desirable because it simplifies the analysis of 
the results, at times it will be difficult to justify large expenditures for replications at the 
center point. Lack of orthogonality is not a serious disadvantage in practice today because 
the analysis of the experimental results is easily handled by using a computer regression 
package. 

A uniform precision central composite design is a rotatable design for which the precision 
of the estimated mean response is the same at the center point as it is one unit from the center 
point (in any direction). Uniform precision designs are obtained by appropriate choices of 
ex and no. The following are the required values of ex and no for studies with two to five 
factors: 

Number of Factors 

Design Characteristic 2 3 4 5 

Base factorial design 22 23 24 25 

a for rotatability 1.414 1.682 2.000 2.378 
no 5 6 7 10 

Like for the orthogonal designs above, the number of center point replications required for 
uniform precision may be too large. Uniform precision is therefore often used only as a 
secondary criterion for determining the number of replications at the center point. 

Blocking Central Composite Designs 
One useful characteristic of central composite response surface designs is that they can 
be blocked easily. The comer points of the central composite design, which constitute a 
2k- f factorial design, can be blocked by the methods described in Section 29.5. As noted 
there, one or more center point replications can be allocated to each of these blocks. Any 
remaining center point replications and all star points will constitute a final, separate block. 
Thus, if the base 2k - f factorial design is run in b blocks, the central composite design is 
run in b + 1 blocks. The resulting blocking arrangement is then as follows: 

Blocks 1 to b: 2k- f base factorial design in b blocks, with n~ 
center point replications in each block 

Block b + 1: 2k star points, with no - bn~ center point 
replications added 

(30.6) 
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Augmenting Two-Level Studies. The blocking arrangement just described can also be 
used to facilitate the implementation of a central composite design in two stages, which is 
often desirable. In the first stage, a two-level study with some center point replications is 
conducted in one or more blocks. If the test for lack of fit suggests the presence of curvature 
or if a better approximation of the response surface is desired, the initial two-level stud; 
is augmented with star points and additional center point replications. These additional 
experimental trials constitute an additional block. 

Comment 

Blocking arrangement (30.6) ensures that estimated block effects will be uncorrelated with estimated 
linear main effects and two-factor interactions, but the estimated block effects may be correlated 
with the estimated quadratic main effects. A central composite design that is orthogonally blocked 
will also provide that the estimated block effects are uncorrelated with the estimated quadratic main 
effects. It is not always possible to achieve both rotatability and orthogonal blocking. Often, however, 
orthogonal blocking and approximate rotatability can be achieved by suitable choices of the locations 
of the star points and by the allocation of the center point replications to the blocks. Reference 30.1 
provides further information on orthogonally blocked central composite designs. • 

Additional General-Purpose Response Surface Designs 

30.3 

While central composite designs are the most widely used general-purpose response surface 
designs, other general-purpose designs are available. One important class of alternative 
designs is the Box-Behnken family of designs. Box-Behnken designs differ from central 
composite designs in two ways. First, only three levels for each factor are employed. Second, 
Box -Behnken designs have no corner points. Box-Behnken designs are sometimes preferred 
to central composite designs when physical or economic constraints prevent the use of the 
corner points-where all factor levels are at an extreme. A listing of Box-Behnken designs 
and their blocking arrangements is provided in Reference 30.2. 

Optimal Response Surface Designs 

Purpose of Optimal Designs 
Central composite response surface designs have been developed for fairly standard exper­
imental situations where the response surface of interest can be reasonably approximated 
by the second-order polynomial response function (30.1) and the experimental region is 
defined by the upper and lower limits of the factor levels. Also, since central composite 
designs are general purpose designs, they are not oriented to provide either optimum preci­
sion of the regression parameters or optimum precision for estimating mean responses for 
particular circumstances. 

Optimal designs are useful when optimization of the precision is Q.fkey importance and/or 
when nonstandard experimental situations are encountered. We consider now three main 
types of nonstandard experimental conditions where central composite designs may not 
be feasible-irregular experimental regions, nonstandard models, and nonstandard sample 
SIzes. 

Irregular Experimental Regions. Irregular experimental regions are quite common 
in industrial studies. One simple example, described in Reference 30.3, involved the 
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FIGURE 30.3 Operating Region and Three Alternative DeSigns with nT = ll-Rutgers Experimental Station 
Example. 
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application of two fertilizers at the Rutgers Experimental Station to determine the lev­
els of the fertilizers that would optimize the yield of a particular crop. It was known in 
advance of the experiment that a toxic level of the chemicals would result if both of the 
fertilizers were applied simultaneously at their high levels. The investigators determined 
that the sum of the two fertilizers (in coded units) should not exceed 1.0: 

(30.7) 

This constraint leads to the irregular experimental region shown in Figure 30.3a. Also shown 
in Figure 30.3a is a face-centered central composite design with three replications at the 
center point. Notice that the ranges of the two factors must be considerably reduced to 
accommodate the standard central composite design here. Figure 30.3 also contains two 
other designs for this experimental study that we shall discuss shortly. 

Nonstandard Models. Nonstandard models can arise for a variety of reasons. For exam­
ple, the investigator may know that the response function for a two-factor study is approx­
imately linear in XI for constant X2 and approximately quadratic in X 2• An appropriate 
regression function then would be: 

Nonstandard models also arise in response surface experiments when both qualitative and 
quantitative factors are present. In the above example, if the first factor were a qualitative 
factor with two levels, a response function of the following form would be appropriate: 

where: 

{
-I 

Ir = I 
if factor 1 at level 1 
if factor 1 at level 2 
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Nonstandard Sample Sizes. In the chocolate bar optimization study of Section 30.2 
budgetary considerations required that the number of runs in the experiment not exceed 30: 
From Table 30.2, we found that a four-factor central composite design with four replications 
at the center point was feasible since it would require nT = 28 experimental trials. Suppose 
now that the budget for the experiment were only $50,000. At $2,500 per market test, the 
maximum number of trials now would be 20, and the selected central composite design 
would no longer be feasible, even with no replications at the center point. 

It is possible, nonetheless, to construct experimental designs that will provide estimates 
of all of the parameters in the full second-order response function (30.1) in fewer than 
20 runs since there are only 15 parameters in this model when k = 4. Optimal design 
techniques can be used here to construct a potentially useful second-order design for any 
feasible experimental size between 15 and 20 trials. 

Optimal Design Approach 

Example 

FIGURE 30.4 
Candidate Set 
of 
Treatments-
Rutgers 
Experimental 
Station 
Example. 

In order to construct an optimal experimental design, the investigator must first specify the 
following: 

1. The number of experimental trials, nT. 

2. The response function of interest. 
3. A candidate list, C, offeasible treatments. 
4. A statistical design criterion for the selection of the treatments from the candidate list 

C and for the allocation of the nT trials to the selected treatments. 

Once these specifications have been made, numerical computer search procedures are usu­
ally employed to find the experimental design that meets optimally the design criterion. 

To illustrate the optimal design approach, consider again the Rutgers Experimental Station 
example. The feasible experimental region is shown in Figure 30.4a. Suppose that no 
more than nT = 11 experimental trials can be made, and that the response function is the 
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second-order one in (30.1): 

(30.8) 

To obtain an optimal design, it is still necessary to specify a candidate list of treatments 
and a criterion for design selection. Often, the candidate list of treatments is obtained from 
a grid of regularly spaced points in the feasible experimental region. Figure 30.4a shows a 
5 x 5 grid of treatment points over the unconstrained region. Of the 25 grid points, three 
fall in the infeasible region because the sum XI + X2 for these points exceeds the constraint 
in (30.7). These three infeasible grid points therefore need to be deleted, resulting in the 
22-point candidate set shown in Figure 30.4b. 

Finally, a statistical criterion for the selection of the experimental design with nT trials 
must be provided. We shall now discuss two such criteria that are widely employed. 

Design Criteria for Optimal Design Selection 

Example 

D Criterion. When precise estimation of model parameters is of primary interest, the D 
(determinant) criterion provides a useful measure of the precision of an experiment. This 
criterion is based on the joint confidence region for the parameters in the normal error 
regression model. This joint confidence region is given by the set of coefficient vectors ~ 
that satisfy the inequality: 

(b - ~)'X'X(b - ~) ------ :s F(l - a; p, n - p) 
pMSE 

(30.9) 

For simple linear regression, where the unknown parameters are f30 and f3r. the boundary 
of this region is an ellipse. For models with three or more parameters, the boundary of the 
confidence region is an ellipsoid. One measure of the precision of the parameter estimates 
is the area or volume (for three or more parameters) of the confidence regi On. A small confi­
dence region area or volume implies high precision. When the objective of the experiment is 
to estimate the vector ~ precisely, the confidence ellipse or ellipsoid for ~ should therefore 
be small. It can be shown that minimizing the volume of the confidence region (30.9) is 
equivalent to minimizing: 

(30.10) 

where I (X'Xr 11 denotes the determinant of (X'X) -I. Hence, the smaller is the determinant 
I(X'X)-II, the smaller is the volume of the confidence region. A design that minimizes 
I (X'X)-II is said to be D-optimal. 

We illustrate the use of the D criterion for the Rutgers Experimental Station example by 
considering the three experimental designs in Figure 30.3. The design in Figure 30.3a, as 
we noted earlier, is a scaled central composite design with three replications at the center 
point, requiring nT = 11 trials. The designs in Figures 30.3b and 30.3c also require nT = 11 
trials but involve a different set of treatments than the scaled central composite design. The 
designs in Figures 30.3b and 30.3c utilize the same set of treatments but differ as to which 
treatments receive more than one replication. Calculation of the determinant I (X'X) -11 will 
be done ordinarily by use of a computer or a programmable calculator. We find that the 
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values of the detenninant criterion for the three designs under consideration are: 

Design 1: D = I (X'X)-lI = .009117 

Design 2: D = I (X'X)-II = .000161 

Design 3: D = I (X'X)-II = .000347 

Since design 2 yields the smallest value of D among the three proposed designs, design 2 
is preferred to designs 1 and 3 On the basis of the determinant criterion. 

Relative Efficiency of Two Designs. A measure of the relative efficiency of design 1 
relative to design 2 according to the D criterion is the following, where XI and X2 are the 
X matrices for the two designs: 

E = (I~X2)-II)IIP 
D I(X;XI)-II 

(30.11) 

For the Rutgers Experimental Station example, the relative efficiency of design 1 compared 
to design 2 is: 

(
.000161)1 /

6 
ED = = .51 

.009117 

The relative efficiency measure states that design 1 is only 51 percent as efficient as design 
2. This means that design 1 would need to be replicated 1/.51 = 1.96 times in order to 
achieve as small a confidence region for the regression parameters as design 2. 

V Criterion. The objective of response surface experiments often is the estimation of the 
mean response E {Yh} at different combinations of factor level settings, denoted by Xh. The 
estimation of these mean responses often is used to identify the factor settings Xh for which 
the mean response E {Yh } is either maximized or minimized. The V criterion considers the 
variances a 2 {Yh } at factor level combinations Xh ofinterest and employs the average of these 
variances as the criterion. Let P denote the set of np factor level combinations (Xh vectors) 
at which the experimenter wishes to estimate the mean response. Often, the estimation set 
P is the same as the candidate set C. At other times, the two sets do not coincide, as when 
P contains points outside of the experimental region because the investigator anticipates 
the need for estimating mean responses in a region where experimentation is costly. Using 
(30.4) to express the variance a 2 {i\} in terms of the variance function Vh, we can state the 
average of the variances of Yh for the estimation set P as follows: 

where: 

- L\'J, 
V=-­

np 

A design that minimizes V in (30.12a) is called a V -optimal design. 

(30.12) 

" (30.12a) 

In the Rutgers Experimental Station example, the estimation set P is to consist of the 
22 candidate treatments in Figure 30.4b. The variance function Vh was evaluated first for 
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design 2 for the 22 treatments in the estimation set. The results are shown in Figure 30.5. 
Note that the treatments at (1, 0) and (0, 1), the two vertices of the operating region with 
no replications, have large Vh values. Consequently, with design 2 the mean responses for 
these two treatments will not be estimated as precisely as for the other treatments. The mean 
of the 22 Vh values for design 2 is V = .500. In the same fashion, we find V for the other 
two designs. The comparative results for the three designs are: 

Design 

1 
2 
3 

v 
1.192 

.500 

.486 

Hence, according to the V criterion design 3 is slightly preferred over design 2, and both 
of these designs are substantially better than design 1. 

Relative Efficiency of Two Designs. A measure of the relative efficiency of design 1 
relative to design 2 according to the V criterion is the following, where V I and V 2 denote 
the averages of the Vh values for the two designs: 

V 2 
Ev = =­

VI 
(30.13) 

For the Rutgers Experimental Station example, the relative efficiency of design 1 relative 
to design 3 is: 

.486 
Ev = -- = .408 

1.192 

Design 1 is only 41 percent as efficient as design 3 according to the V criterion, implying 
that it would require 1/.408 = 2.45 replications of design 1 to achieve the same average 
precision as with design 3. 
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Other criteria that have been proposed for identifying a design as optimal involve minimizing the 
average variance of the estimated regression coefficients (A-optimality) and minimizing the maximum 
variance of Yh over the estimation set (G-optimality when the estimation set P is the same as the 
candidate set C). • 

Construction of Optimal Response Surface Designs 

Example 

On occasion, the optimal design for a given criterion is known or can be found analytically. 
Usually, however, a computer search is required to find the optimal design. Many statistical 
software packages provide capabilities for finding optimal designs. To reduce the amount 
of computing required, these packages do not evaluate all possible designs. Instead, fast, 
special-purpose computer search procedures, called exchange algorithms, are used to find 
designs that are either optimal or nearly optimal. These algorithms begin the search with a 
starting design, sometimes randomly chosen. They then alternately add new points to the 
design and subtract points from the design in ways that lead to improvements in the design 
criterion. Since these algorithms do not evaluate every possible design, they cannot guarantee 
that an optimal design has been found. To increase the likelihood that a best or near­
best design is found, some software packages provide capabilities for repeated attempts, 
beginning the search from different, randomly selected starting designs. A discussion of 
these search procedures is given in Reference 30.4. 

Ie Technologies is a manufacturer of dashboard displays used in the automotive industry. 
An important component of the manufacturing process involves the bonding of a computer 
chip to a glass surface with adhesive. Management wished to determine which of two 
types of adhesive, provided by two different suppliers, was superior. Identification of the 
optimum processing temperature was also of interest. The response of interest was bonding 
strength-the amount of force required to break the chip free of the surface. The factors 
and associated levels were as follows: 

Factors 

Adhesive 
Process temperature 

Type 1 
210 

Levels 

Type 2 
240 270 

Notice that adhesive is a qUalitative factor that can assume only two levels. Process tem­
perature is a quantitative factor that has a range from 210 to 270. The process engineers 
wished to limit the number of temperature levels to the limits of the range (210,270) and to 
the middle (240). The candidate set of treatments is therefore given by the six factor-level 
combinations shown in Figure 30.6a. 

Since adhesive type is a qualitative factor with two levels and a qmtdratic (second-order) 
temperature effect was expected, the response function chosen was the following: 

where: 

{
-I 

II = 1 

E{Y} = f30 + f3I11 + f32 X2 + f322X~ + f3dl X2 

if adhesive is type I 
if adhesive is type 2 

X2 = coded temperature 
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Adhesive 
Type 1 

Adhesive 
Type 2 

(b) Optimal Design 

• • 

• • 

210 240 270 
Process Temperature 

Management determined that at most eight experimental trials could be handled and speci­
fied that the V criterion be employed. The estimation set of interest consisted of 21 equally 
spaced points spanning the process temperature range for each of the two types of adhesive. 
Note that the 42-point estimation set P here is not the same as the candidate set C. The 
JMP Custom Design option was used to obtain the V-optimal design for nT = 8 shown in 
Figure 30.6b. Notice that the medium level of temperature (240) is replicated twice for each 
adhesive type. Thus, two degrees of freedom will be available for a pure error estimate of 
the error variance and a lack of fit test will be possible. 

Some Final Cautions 
Caution in using optimal designs is important because these designs are best for particular 
choices of sample size, design space, response function, and design criterion. For example, 
designs that are optimal according to one criterion may be far from optimal according to an­
other criterion. Also, optimal designs are highly sensitive to the choice of response function. 
A design that is optimal for a second-order response function is generally not optimal if a 
first-order response function is the true function. Consequently, the experimenter needs to 
consider whether the optimal design will be far from being optimal if the assumed response 
function is incorrect, and whether the optimal design will provide sufficient information 
about the true response function if the assumed one is incorrect. 

Another reason for caution in choosing optimal designs is that they are constructed on the 
basis of a single design criterion. Frequently, an experimenter has a number of potentially 
conflicting objectives. It is therefore important that any candidate design be evaluated for its 
ability to satisfy each of these goals. Small modifications to computer-generated designs­
such as the addition of replications at the center point--can be useful for increasing the 
overall utility of a design even if it is then no longer an optimal design according to a given 
criterion. It is often useful to construct optimal designs for a range of sample sizes and a 
variety of response functions and criteria. A final design can then be chosen on the basis of 
its ability to reasonably meet the different objectives over the range of response functions 
and criteria. 

A thorough discussion of optimal designs is presented in Reference 30.5. 
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30.4 Analysis of Response Surface Experiments 

The analysis of second-order response surface designs frequently involves three phases: 

1. Estimation of response function 
2. Model interpretation and visualization 
3. Identification of optimum operating conditions 

In phase 1, standard regression tools are used to estimate the response function and obtain 
a good regression fit. The fitted surface is then explored graphically in phase 2. Finally, in 
phase 3, factor level combinations that lead to an optimum response are identified. Fitting of 
polynomial regression models was already discussed in Chapter 8. Here, we shall focus on 
the visualization of the fitted model and the identification of optimum operating conditions. 

Model Interpretation and Visualization 
Three-dimensional plots of the response surface, contour plots, and conditional effects plots 
are the primary visual tools for interpreting and communicating the results of response 
surface experiments. Generally, three kinds of fitted surfaces arise in practice. 

1. A mound-shaped surface, which is characterized by contours that are ellipses or 
circles. Figure 30.7 presents a three-dimensional response surface plot and a contour plot 
of the fitted response function: 

The contour plot in Figure 30.7b shows that the estimated mean response increases from a 
minimum of Y = 34 in the lower right comer (Xl = 1, X2 = -1) to a maximum in the 
center of the region bounded by the Y = 66 contour. 

FIGURE 30.7 Two-Factor Response Surface and Contour Plot-Mound-Shaped Surface. 
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FIGURE 30.8 Two-Factor Response Surface and Contour Plot-Bowl-Shaped Surface. 
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2. A bowl-shaped surface, which also has elliptical or circular contours; however, the 
response function decreases in the direction of the smallest ellipse. Figure 30.8 presents the 
response surface and a contour plot of the fitted response function: 

From the contour plot in Figure 30.8b, we see that the surface decreases from a maximum in 
the upper right comer (X 1 = 1, X 2 = 1) to a minimum in the center of the region bounded 
by the Y = 6 contour. 

3. A response surface with a saddle or a minimax. Figure 30.9 presents the response 
surface and a contour plot of the fitted response function: 

From the contour plot in Figure 30.9b, notice that the mean response increases from the 
upper left comer to a maximum in the center of the region and then decreases as we approach 
the lower right comer. The opposite occurs when moving from the upper right corner to the 
lower left corner. 

Conditional effects plots, or interaction plots, can also provide useful insights. Fig­
ure 30.10 presents a conditional effects plot for the saddle-shaped surface in Figure 30.9 at 
X2 = -1,0, 1: 

X2 = -1: Y =46- 32X1 -lOxi 
X2 = 0: Y = 65 + 3X I - IOxi 
X2 = 1: Y = 54+ 38X l -lOxi 
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FIGURE 30.9 Two-Factor Response Surface and Contour P1ot-Saddle-Shaped Surface. 
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Notice that at low X2 the mean response is decreasing in Xl> whereas at high X2 the mean 
response is increasing in X I. Thus, the presence of interaction effects is clearly indicated 
by the plot. Absence of interaction effects would be indicated, as usual, by parallel curves. 

Response Surface Optimum Conditions " 
Response surfaces are frequently fitted for the purpose of finding the combination of factor 
levels that leads to an optimum response. Usually, either a maximum response (e.g., maxi­
mum yield) or a minimum response (e.g., minimum waste) is sought. Mound-shaped re­
sponse surfaces, such as in Figure 30.7, have a unique maximum, while bowl-shaped 
response surfaces, such as in Figure 30.8, have a unique minimum. Occasionally, more 
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complex response surfaces are encountered that have saddle points, such as in Figure 30.9, 
or a number of local maximum or minimum points. 

For a second-order fitted response surface, the point where a maximum, a minimum, or 
a saddle point occurs, denoted by the vector X s , is: 

Xs = _~B-lb* (30.14) 
2 

where: 

(30.14a) 

To determine whether the point Xs corresponds to a maximum, a minimum, or a saddle point, 
the nature of the response surface must be known. If a contour plotting capability is available 
and there are just two or three factors, the nature of the surface can usually be determined by 
examining the contours in the vicinity ofXs • Otherwise, characteristics of the matrix B called 
eigenvalues can be used to determine whether the point at Xs is a maximum, a minimum, 
or a saddle point. Many computer packages for response surface analysis provide these 
eigenvalues. If the eigenValues are all positive, the point is a minimum. If the eigenValues 
are all negative, the point is a maximum. Finally, if some eigenValues are positive and some 
negative, the point is a saddle point. 

Consider again the mound-shaped response surface in Figure 30.7: 

A 2 2 
Y = 65 + 3X1 + 4X2 - IOX1 - 15X2 + 15X1X2 

We know that this surface has a maximum and wish to locate it. We require the matrix B 
and the vector b*. Using (30. 14a), we obtain: 

[
-10 

B = 15/2 
15/2] 
-15 b* = [!] 

Using (30.14), we find the point where the response surface is at the maximum: 

1[-10 
Xs = -2 15/2 

= _~ [-.1600 
2 -.0800 

15/2] -1 [3] 
-15 4 

-.0800] [3] [.40] 
-.1067 4 - .25 

The maximum response on the fitted surface, at Xl = .40 and X2 = .25, is: 

Y = 65 + 3(.40) + 4(.25) - 10(.40)2 - 15(.25)2 + 15(.40)(.25) = 66.16 

Comments 
1. When the maximum or minimum point for the response surface falls well outside the operating 

region, it may not be feasible to operate at this point and the investigator must then search for the 
factor level combination that optimizes the mean response within the operating region. For problems 
involving just two or three predictors, this point can usually be pinpointed using contour plots and 
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conditional effects plots. For problems involving four or more factors, constrained nonlinear program­
ming methods can be used to identify the optimum factor level combination. Many statistical software 
packages that provide capabilities for the design of experiments include this feature. Alternatively, a 
grid of points (such as those used to identify candidate points for optimal design construction) can 
be constructed and the estimated mean response for each gridpoint is then obtained. If the grid is 
sufficiently dense, the gridpoint that leads to the maximum (minimum) estimated mean response will 
closely approximate the optimum point. 

When it is feasible to operate outside the experimental region and the optimum point falls well 
outside this region, it is often necessary to extend the experiment because of uncertainty about the 
shape of the response surface outside the region of experimentation. 

2. In most experiments, more than a single response variable is of interest. For example, in food 
processing experiments, response variables such as taste, texture, aftertaste, mouthfeel, shelf life, 
and cost are all frequently of interest. As discussed in Section 29.6, another variable of interest in 
many studies is the variance of the response variable. In the Ie Technologies example, for instance, 
the manufacturer is concerned not only that the mean bonding strength be adequately high but also 
that the process variability be small so that almost all components will be bonded with sufficient 
strength. To analyze experiments with multiple responses, a response surface must be fitted to each 
response variable. Unfortunately, it is rare that a single factor level combination can be found that 
simultaneously optimizes all fitted response surfaces. In fact, often the conditions that lead to an 
optimum value of one response variable (such as texture) lead to a poor response for another variable 
(such as taste). The investigator must then search for conditions that lead to acceptable responses for 
all response variables. • 

Dode Exterior Trim manufactures polyurethane bumpers for automobiles and light trucks. 
During the initial production stages of a new model, blemishes appeared on the surface of 
the bumpers. These blemishes, resulting from a high degree of surface porosity, were so 
extensive that none of the bumpers could be shipped. A response surface experiment was 
quickly conducted to investigate the effects of three key process variables on porosity and 
to identify the optimum operating levels for the active process variables: The three factors 
were chemical temperature, mold temperature, and curing time. The operating ranges for 
these factors were: 

Factor 

Chemical temperature 
Mold temperature 
Curing time 

Low Level 

405 
100 
20 

High Level 

425 
240 
40 

A three-factor central composite response surface design with ex = 1 and no = 3 replications 
at the center point was chosen. Porosity counts were obtained from visual inspections of 
the surface of the bumpers. " 

The analyst first obtained an initial fit of the three-factor second-order response func­
tion (30.1). Residual analysis did not reveal any departures from the standard regression 
assumptions. The fit suggested that the third factor, curing time, was unrelated to porosity. 
All P-values for terms involving curing time were greater than or equal to .600. A test of 
Ho: f33 = f333 = f313 = f323 = 0 by the general linear test statistic (2.70) resulted in the test 
statistic F* = .179 and the P-value .943. The analyst therefore concluded Ho, that curing 
time is unrelated to porosity. 
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Regression 

Linear 
Quadratic 
Crossproduct 
Total Regress 

Degrees of Type I Sum 
Freedom of Squares 

2 5075.300000 
2 1854.363485 

112.500000 

5 7042.163485 

Degrees of 

R-Square F-Ratio 

0.6894 87.308 
0.2519 31.900 
0.0153 3.871 

0.9566 48.457 

Sum of 
Residual Freedom Squares Mean Square 

Total Error 11 319.718868 29.065352 

Parameter 

INTERCEPT 
Xl 
X2 
Xl *Xl 
X2*Xl 
X2*X2 

Degrees of 
Freedom 

Factor 
Xl 
X2 

Parameter Standard T for HO: 
Estimate Error Parameter=O 

16.301887 2.221627 7.338 
-22.300000 1.704856 -13.080 

3.200000 1.704856 1.877 
12.443396 3.097911 4.017 

3.750000 1.906087 1.967 
11.943396 3.097911 3.855 

Critical Value 
Coded Uncoded 

0.938443 0.938443 
-0.281292 

Predicted value at stationary point 

-0.281292 

5.388176 

Eigenvalues 

14.084989 
10.301803 

Eigenvectors 

Xl X2 

0.752384 
-0.658725 

0.658725 
0.752384 

Prob> F 

0.0000 
0.0000 
0.0749 

0.0000 

Prob > ITI 

0.0000 
0.0000 
0.0873 
0.0020 
0.0749 
0.0027 
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The SAS PROC RSREG output for the fit of the second-order response surface model 
with only chemical temperature and mold temperature as the explanatory variables is shown 
in Figure 30.11. The fitted response surface is: 

A 2 2 
Y = 16.30 - 22.30XI + 3.20X2 + 12.44XI + 11.94X2 + 3.75X,X2 

Notice that the P-values for all estimated coefficients are less than .1, and that R2 is .957. 
A lack of fit test was conducted with ex = .01. The results (F* = 3.10; P-value = .089) 
supported the appropriateness of the model fitted. 

A response surface plot and a contour plot for the fitted response function are shown 
in Figure 30.12. The Xl scale has been reversed in these plots to provide a better view of 
the response surface. Notice that the surface is bowl-shaped. Since a main objective of the 
experiment was to find the levels of the process variables that minimize the porosity on the 
bumper surface, the analyst next determined the optimum levels of Xl and X2 by means of 
(30.14). Substituting into this formula, the analyst obtained: 

1.875] -1 [-22.30] = [ .94] 
11.94 3.20 -.28 
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where f; (8) is a known function of the parameter 8 and the Ci are random variables, usually 
assumed to have expectation E {c;} = O. 

With the method ofleast squares, for the given sample observations, the sum of squares: 

n 

Q = 2)Y; - f; (8)]2 (A.S7) 
;=1 

is considered as a function of 8. The least squares estimator of 8 is obtained by minimizing 
Q with respect to 8. In many instances, least squares estimators are unbiased and consistent. 

A.6 Inferences about Population Mean-Normal Population 

We have a random sample of n observations Y\, ... , Y" from a normal population with 
mean JL and standard deviation a. The sample mean and sample standard deviation are: 

(A.SBa) 

s = [L;(Y; - Y)2] 1/2 
n-l 

(A.S8b) 

and the estimated standard deviation of the sampling distribution of Y, denoted by s {Y}, is: 

We then have: 

_ s 
sty} = .Jri 

Y -::. JL is distributed as t with n - 1 degrees of freedom 
sty} 

when the random sample is from a normal population. 

(A.S8c) 

(A.59) 

Interval Estimation 

Example 1 

The confidence limits for JL with confidence coefficient 1 - ex are obtained by means of 
(A.59): 

Y ± t(1 - ex/2; n - l)s{Y} 

Obtain a 95 percent confidence interval for JL when: 

We require: 

n = 10 Y = 20 s=4 

- 4 
slY} = f1j\ = 1.265 

",10 
tC975; 9) == 2~262 • 

(A.60) 

The 95 percent confidence limits therefore are 20 ± 2.262(1.265) and the 95 percent con­
fidence interval for JL is: 

17.1:::: JL:::: 22.9 



TABLE A.l 
Decision Rules 
for Tests 
Concerning 
Mean/L of 
Normal 
Population. 

Tests 

Example 2 

Appendix A Some Basic Results in Probability and Statistics 1307 
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Np:: P/;:::;'W: 
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~'Hd:'ii ;:>.jJ,'p: 

}~~~S~~~'~~~le: " 
, \~~~ 

'If'J:*''i';J~l,~:i;i;;h+,~,)~;(:Pr1~I~d~'H~''' " 
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One-sided and two-sided tests concerning the population mean JL are constructed by means 
of (A.59), based on the test statistic: 

* Y-JLO t = --_-
sty} 

(A.61) 

Table A.l contains the decision rules for three possible cases, with the risk of making a 
Type I error controlled at a. 

Choose between the alternatives: 

when a is to be controlled at .05 and: 

n = 15 

We require: 

Ho: JL::: 20 

Ha: JL > 20 

s=6 

_ 6 
sty} = ~ = 1.549 

v15 

t(.95; 14) = 1.761 

The decision rule is: 

Ift*::: 1.761,concludeHo 

If t* > 1.761, conclude Ha 

Since t* = (24 - 20)/1.549 = 2.58> 1.761"we conclude Ha. 
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Example 3 

Example 4 

Example 5 

Choose between the alternatives: 

Ho: fL = 10 

Ha: fL =I- 10 

when ex is to be controlled at .02 and: 

We require: 

The decision rule is: 

n = 25 Y =5.7 s=8 

- 8 
slY} = ,J25 = 1.6 

t(.99; 24) = 2.492 

If It*1 :s 2.492, conclude Ho 

If It*1 > 2.492, conclude He, 

where the symbol 1 1 stands for the absolute value. Since It* 1 
1 - 2.691 = 2.69 > 2.492, we conclude Ha. 

1(5.7 - 10)/1.61 

P -Value for Sample Outcome. The P -value for a sample outcome is the probability that 
the sample outcome could have been more extreme than the observed one when fL = fLo. 
Large P-values support Ho while small P-values support Ha. A test can be carried out by 
comparing the P-value with the specified ex risk. If the P-value equals or is greater than the 
specified ex, Ho is concluded. If the P-value is less than ex, Ha is concluded. 

In Example 2, t* = 2.58. The P-value forthis sample outcome is theprobabiIity P{t(14) > 

2.58}. From Table B.2, we find t(.985; 14) = 2.415 and t(.990; 14) = 2.624. Hence, the 
P-value is between .010 and .015. The exact P-value can be found from many statistical 
calculators or statistical computer packages; it is .0109. Thus, for ex = .05, Ha is concluded. 

In Example 3, t* = -2.69. We find from Table B.2 that the one-sided P-value, P{t(24) < 
-2.69}, is between .005 and .0075. The exact one-sided P-value is .0064. Because the 
test is two-sided and the t distribution is symmetrical, the two-sided P-value is twice the 
one-sided value, or,2(.0064) = .013. Hence, for ex = .02, we conclude Ha. 

Relation between Tests and Confidence Intervals. There is a direct relation between 
tests and confidence intervals. For example, the two-sided confidence limits (A.60) can be 
used for testing: 

Ho: fL = fLo 

Ha: fL =I- fLo 

If fLo is contained within the 1 - ex confidence interval, then the two-sided decision rule in 
Table A.l a, with level of significance ex, will lead to conclusion Ho, and vice versa. If fLo is 
not contained within the confidence interval, the decision rule will lead to Ha , and vice versa. 

There are similar correspondences between one-sided confidence intervals and one-sided 
decision rules. 
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A.7 Comparisons of Two Population Means-Normal Populations 

Independent Samples 

Example 6 

There are two normal populations, with means ILl and IL2, respectively, and with the same 
standard deviation a. The means ILl and IL2 are to be compared on the basis of independent 
samples for each of the two populations: 

Sample 1: Yr. ... , Yn , 

Sample 2: Z1> ... , Zn2 

Estimators of the two population means are the sample means: 

(A.62a) 

(A.62b) 

and an estimator of ILl - IL2 is Y - z. 
An estimator of the common variance a 2 is: 

(A.63) 

and an estimator of a 2{y - Z}, the variance of the sampling distribution of Y - Z, is: 

2 - - 2( 1 1 ) s {Y - Z} = s - + -
nl n2 

(A.64) 

We have: 

(Y - Z) - (ILl - IL2) 
---=-~-,---- is distributed as t with n I + n2 - 2 degrees of 

sty - Z} (A.65) 
freedom when the two independent samples come from normal populations 
with the same standard deviation. 

Interval Estimation. The confidence limits for ILl - IL2 with confidence coefficient 1 - a 
are obtained by means of (A.65): 

(Y - Z) ± t(1 - a12; nl + n2 - 2)s{Y - Z} (A.66) 

Obtain a 95 percent confidence interval for ILl - IL2 when: 

nl = 10 
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TABlEA.2 
Decision Rules 
for Tests 
Concerning 
Means ILl and 
IL2ofTwo 
Normal 
Populations 
(Ul=U2=U)­
Independent 
Samples. 

Example 7 

Alternati~es> 

Ho:.lLl = ttz 

.Ha::J!-l.~J!-Z 

Ho: J.tl 2:. J.tz 

Ha:J.tl. <J.tz 

Ho: J.tl ::; Wi 

Ha: J.tl.> J.tz 

We require: 

Decision Rlde 

(a) 

If WI::; t(l -aI2; n, + nz c- 2), condude. Ho 

Iflt*I>,t(1,'-a/2; nl + nz -2), conclud~'Ha: 

where: 
Y-z 

t*-'slY -Z} 

(b) 

·'f r·2: t(~j nl + ~ ~ 2), ~onclljde H~ 
Ift* < t(a; nl + nz - 2), conclude Ao 

(c) 

If t* ::; t(l -'- a; n, + nz '- 2), conclude Ho 

If i:* > t(l - a; nl + nz -"- 2), con<?lude Ha 

105 + 224 
S2 = 10+20-2 = 11.75 sty - Z} = 1.328 

S2{y - Z} = 11.75(~ +~) = 1.7625 
10 20 

t(.975;28) = 2.048 

Hence, the 95 percent confidence interval for ILl - IL2 is: 

3.3 = (14 - 8) - 2.048(1.328) :S ILl - IL2 :S (14 - 8) + 2.048(1.328) = 8.7 

Tests. One-sided and two-sided tests concerning ILl - IL2 are constructed by means of 
(A.65). Table A.2 contains the decision rules for three possible cases, based on the test 
statistic: 

Y-Z 
t* = ~~--=--

sty - Z} 

with the risk of making a Type I error controlled at a. 

Choose between the alternatives: 

Ho: ILl = IL2 

Ha: IL I =f. IL2 

(A.67) 

when a is to be controlled at .1 0 and the data are those of Example 6. We require 
t(.95; 28) = 1.701, so that the decision rule is: 

If It*1 :S 1.701, conclude Ho 

If It*1 > 1.701, conclude Ha 

Since It*1 = 1(14 - 8)/1.3281 = 14.521 = 4.52 > 1.701, we conclude Ha· 
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The one-sided P-value here is the probability P{t(28) > 4.52}. We see from Table B.2 
that this P-value is less than .0005; the exact one-sided P-value is .00005. Hence, the 
two-sided P-value is .0001. For a = .10, the appropriate conclusion therefore is Ha. 

Paired Observations 
When the observations in the two samples are paired (e.g., attitude scores Yi and Zi for the 
ith sample employee before and after a year's experience on the job), we use the differences: 

i = 1, ... ,n (A.68) 

in the fashion of a sample from a single population. Thus, when the Wi can be treated as 
observations from a normal population, we have: 

W - (ILl - IL2) • d· ·b ted ·th 1 d f f d h 
----:0---- IS Istn u as t WI n - egrees 0 ree om w en 

s{W} 
the differences Wi can be considered to be observations from a normal 
population and: (A.69) 

A.8 Inferences about Population Variance-Normal Population 

When sampling from a normal population, the following holds for the sample variance S2, 

where s is defined in (A.58b): 

(n - 1)s2 
--- is distributed as X2 with n - 1 degrees of freedom when the 

a 2 

random sample is from a normal popUlation. 
(A. 70) 

Interval Estimation 

Example 8 

Tests 

The lower confidence limit L and the upper confidence limit U in a confidence interval for the 
population variance a 2 with confidence coefficient 1 - a are obtained by means of (A.70): 

(n - l)s2 
L = ---::-----'--~--

X2(1 - a12; n - 1) 
U = (n -1)s2 

x2 (aI2; n - 1) 
(A.71) 

Obtain a 98 percentconfidencein~erval fora 2
, using the data of Example 1 (n = 10, s = 4). 

We require: 

X2 (.99; 9) = 21.67 

The 98 percent confidence interval for a 2 therefore is: 

6.6 = 9(16) < a 2 < 9(16) = 68.9 
21.67 - - 2.09 

One-sided and two-sided tests concerning the population variance a 2 are constructed by 
meanS of (A.70). Table A.3 contains the decision rules for three possible cases, with the 
risk of making a Type I error controlled at a. 
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TABLE A.3 
Decision Rules 
for Tests 
Concerning 
Varianceu2 

of Normal 
Populations. 

Alternatives 

Ho: u2 =ul 
Ha: a2 t= al 

Comment 

Decision Rule 

(a) 

(n- 1)s2 
If x2 (aI2; n - 1) ::; 2 .:s x2 (1 - a12; n - 1), 

ao 
conclude Ho 
Otherwise conclude Ha 

(b) 

(n-1)s2 
If . a.2 2: x2 (a; n - 1), conclude Ho 

o 
(n-1)s2 

If 2 < x2 (a; n - 1), conclude Ha 
ao 

(c) 

(n - 1)s2 
If 2 ::; x2 (1 - a; n -1), conclude Ho 

ao ' 
(n-1)s2 

If 2 > x2 (1 - ai n - 1), conclude Ha 
ao 

The inference procedures about the population variance described here are very sensitive to 
the assumption of a normal population, and the procedures are not robust to departures from 
normality. • 

A.9 Comparisons of Two Population Variances-Normal 
Populations 

Independent samples are selected from two normal populations, with means and vari­
ances ILl and a~ and IL2 and ai, respectively. Using the notation of Section A.7, the two 
sample variances are: 

'\' - 2 
2 L.; (l'i - Y) 

s, = 
nr -1 

(A.72a) 

'\' - 2 
2 L.;(Z; - Z) 

S2 = 
n2 - 1 

(A.72b) 

We have: 

S2 S2 

~ -7- ~ is distributed as F(nl - 1, n2 - 1) when the two independent 
a 1 G2 

(A.73) 

samples come from normal populations. 
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Interval Estimation 

Example 9 

Tests 

TABlEA.4 
Decision Rules 
for Tests 
Concerning 
Variances u: 
andu; of Two 
Normal 
Populations­
Independent 
Samples. 

The lower and upper confidence limits Land U for al / a:} with confidence coefficient 1 - ex 
are obtained by means of (A.73): 

L=si[ 1 ] 
si F(1 - a/2; nl - 1, n2 - 1) 

U = s~ [ 1 ] 
S2 F(ex/2; nl - 1, n2 - 1) 

Obtain a 90 percent confidence interval for al/a:} when the data are: 

We require: 

nl=16 n2=21 s;=54.2 si=17.8 

F(.05; 15, 20) = 1/ F(.95; 20,15) = 1/2.33 = .429 

F(.95; 15, 20) = 2.20 

The 90 percent confidence interval for al/a:} therefore is: 

14--- -- <-<-- -- -71 54.2 ( 1) a~ 54.2 ( 1 ) 
. - 17.8 2.20 - a:} - 17.8 .429 - . 

(A. 74) 

One-sided and two-sided tests concerning al/a:} are constructed by means of (A.73). 
Table A.4 contains the decision rules for three possible cases, with the risk of making 
a Type I error controlled at ex. 

Alternatives D~cisionRule 

(a) 
. ..... '. . ..... '~t 

If F(a/2; nl ;,-1, nz -,-.1) s· ~ 
..' :S2: 

:s F(1-a12;nl-1/nl~1)/cbridtide:Ho 

2' ................ '" .. ' ....... . 

If!12: F (Ii; n, . ",""·l/ .. nz:-l)~ condodcDio 
2 
2 

If '551.< F(a; i11-1~ nz "-'l')"cohdiJdeHa 
. 2. 

2 ... . ,.'. . 

If~.::; FC'°L.,-a;n, - l,r1z- l),:cohcliideiHo 
~ . ..... '.' .. 

If'51 > F{L-- a;. Til, -,. 1,m2 ,"-l),yconclude Ha 
52' 'i .. •. 
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Example 10 Choose between the alternatives: 

Ho: al = a] Ha: al =I- a] 
when ex is to be controlled at .02 and the data are those of Example 9. 

We require: 

F(.Ol; 15, 20) = 1/ F(.99; 20, 15) = 1/3.37 = .297 

F(.99; 15, 20) = 3.09 

The decision rule is: 
S2 

If .297 :::: ~ :::: 3.09, conclude Ho 
S2 

Otherwise conclude Ha 

Since sUs] = 54.2/17.8 = 3.04, we conclude Ho. 

Comment "r 
The inference procedures about the ratio of two population variances described here are very sensi­
tive to the assumption of normal populations, and the procedures are not robust to departures from 
normality. • 
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TABLE B.l Cumulative ProbabiHties of the Standard Normal Distribution. 

Entry is area A under the standard normal curve from -00 to z(A) 

A 
z(A) 

z .00 .01 .02 .03 .04 .OS .06 .07 .08 .09 
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 
.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 
.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 
.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 
.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 
:8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 
.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 . .9767 
2.0 .9772 . 9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 , .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .999.6 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

Selected Percentiles 

Cumulative probability A: .90 .95 .975 .98 .99 .995 .999 
z(A): 1.282 1.645 1.960 2.054 2.326 2.576 3.090 
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TABLE B.2 
Entry is t(Ai v) where P{t(v) ~ t(Ai v)} = A 

Percentiles 
of the t A Distribution. 

t(A; v) 

A 

v .60 .70 .80 .85 .90 .95 .975 

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706 
2 0.289 0.617 1.061 1.386 1.886 2.920 4.303 
'3 0.277 0.584 0.978 1.250 1.638 2.353 3.182 
4 0.271 0.569 0.941 1.190 1.533 2.132 2.776 
5 0.267 0.559 0.920 1.156 1.476 2.015 2.571 

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447 
7 0.263 0.549 0.896 1.119 1.415 1.895 2.365 
8 0.262 0.546 0.889 1.108 1.397 1.860 2.306 
9 0.261 0.543 0.883 1.100 1.383 1.833 2.262 

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228 

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201 
12 0.259 0.539 0.873 1.083 1.356 1.782 2.179 
13 0.259' 0.537 0.870 1.079 1.350 1.771 2.160 
14 0.258 0.537 0.868 1.076 1.345 1.761 2.145 
15 0.258 0.536 0.866 1.074 1.341 1.753 2.131 

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120 
17 0.257 0.534 0.863 1.069 1.333 1.740 2.110' 
18 0.257 0.534 0.862 1.067 1.330 1.734 2.101 
19 0.257 0.533 0.861 1.066 1.328 1.729 2.093 
20 0.257 0.533 0.860 1.064 1.325 1.725 2.086 

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080 
22 0:256 0.532 0.858 1.061 . 1.321 1.717 2.074 
23 0.256 0.532 0.858 1.060 1.319 1.714 2.069 
24 0.256 0.531 0.857 1.059 1.318 1.711 2.064 
25 0.256 0.531 0.856 1.058 1.316 1.708 2.060 

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056 
27 0.256 0.531 0.855 1.057 1.314 1.703 2.052 
28 0.256 0.530 0.855 1.056 1.313 1.701 2.048 
29, 0.256 0.530 0.854 1.055 1.311 1.699 2.045 

~. ! 

30 0.256 0.530 0.854 1.055 1.310 1.697 2.042 

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021 
60 0.254 0.527 0.848 1.045 1.296 1.671 2.000 

120 :0.254 0.526 0.845 1.041 1.289 1.658 1.980 
00 0.253 0.524 0.842 1.036 1.282 1.645 1.960 
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TABLE B.2 
(concluded) 
Percentiles 
ofthet 
Distribution. 

v 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
00 

.98 

15.895 
4.849 
3.482 
2.999 
2.757 

2.612 
2.517 
2.449 
2.398 
2.359 

2.328 
2.303 
2.282 
2.264 
2.249 

2.235 
2.224 
2.214 
2.205 
2.197 

2.189 
2.183 
2.177 
2.172 
2.167 

2.162 
2.158 
2.154 
2.150 
2.147 

2.123 
2.099 
2.076 
2.054 

.985 .99 

21.205 31.821 
5.643 6.965 

~ 3.896 4.541 '"" 
3.298 3.747 
3.003 3.365 

2.829 3.143 
2.715 2.998 
2.634 2.896 
2.574 2.821 
2.527 2.764 

2.491 2.718 
2.461 2.681 
2.436 2.650 
2.415 2.624 
2.397 2.602 

2.382 2.583 
2.368 2.567 
2.356 2.552 
2.346 2.539 
2.336 2.528 

2.328 2.518 
2.320 2.508 
2.313 2.500 
2~307 2.492 
2.301 2.485 

2.296 2.479 
2.291 2.473 
2.286 2.467 
2.282 2.462 
2.278 2.457 

2.250 2.423 
2.223 2.390 
2.196 2.358 
2.170 2.326 

A 

.9925 .995 .9975 .9995 

42.434 63.657 127.322 636.590 
8.073 9.925 . 14.089 31.598 
5.047 5.841 7.453 12.924 
4.088 4.604 5.598 8.610 
3.634 4.032 4.773 6.869 

3.372 3.707 4.317 5.959 
3.203 3.499 4.029 5.408 
3.085 3.355 3.833 5.041 
2.998 3.250 3.690 4.781 
2.932 3.169 3.581 4.587 

2.879 3.106 3.497 4.437 
2.836 3.055 3.428 4.318 
2.801 3.012 3.372 4.221 
2.771 2.977 3.326 4.140 
2.746 2.947 3.286 4.073 

2.724 2.921 3.252 4.015 
2.706 2.898 3.222 3.965 
2.689 2.878 3.197 3.922 
2.674 2.861 3.174 3.883 
2.661 2.845 3.153 3.849 

2.649 2.831 3.135 3.819 
2.639 2.819 3.119 3.792 
2.629 2.807 3.104 3.768 
2.620 2.797 3.091 3.745 
2.612 2.787 3.078 3.725 

2.605 2.779 3.067 3.707 
2.598 2.771 3.057 3.690 
2.592 2.763 3.047 3.674 
2.586 2.756 3.038 3.659 
2.581 2.750 3.030 3.646 . ' 
2.542 2.704 2.971 3.551 
2.504 2.660 2.915 3.460 
2.468 2.617 2.860 3.373 
2.432 2.576 2.807 3.291 



TABLE B.3 Percentiles of the X2 Distribution. 

v 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

.005 

0.04393 
0.0100 
0.072 
0.207 

0.412 
0.676 
0.989 
1.34 
1.73 

2:16 
2.60 
3.07 
3.57 
4.07 

4.60 
5.14 
5.70 
6.26 
6.84 

7.43 
8.03 
8.64 
9.26 
9.89 

25 10.52 
26 11.16 
27 11.81 
28 12.46 
29 13.12 

.010 

0.03157 
0.0201 
0.115 
0.297 

0.554 
0.872 
1 .. 24 
1.65 
2.09 

2.56 
3.05 
3.57 
4.11 
4,66 

5.23 
5.81 
6.41 
7.01 
7.63 

8.26 
8.90 
9;54 

10;20 
10.86 

11.52 
12.20 
12.88 
13.56 
14.26 

30 
40 
50 
60 

13.79 14.95 
20.71 22.16 
27.99 \ 29.71 
35.53'-' 37.48 

70 43.28. 45.44 
80 51.17 53.54 
90 59.20 61.75 

100 67.33 70.06 

.025 .050 

0.03982 0.02 393 
0.0506 0.103 
0.216 0.352 
0.484 0.711 

0.831 1.145 
1 . .24 1.64 
1.69 2.17 
2.18 2.73 
2.70 3.33 

3.25 3.94 
3.82 4.57 
4.40 5.23 

.5.01 5.89 
5.63 6.57 

6.26 7.26 
,6.91 7,96 
7.56 8:67 
8.23 9.39 
8.91 10.12 

9.59 10.85 
10.28 11.59 
10.98 12.34 
11.69 13.09 
12.40 13.85 

13.12 14.61 
13.84 15.38 
14.57 16.15 
15.31 16.93 
16.05 17.71 

16.79 18.49 
24.43 26.51 
32.36 34.76 
40.48 43.19 

48.16 51.74 
57.15 60.39 
65.65 69.13 
74.22 77.93 

A 

.100 

0.0158 
0.211 
0.584 
1.064 

1.61 
2.20 
2.83 
3.49 
4.17 

4.87 
5.58 
6.30 
7.04 
7.79 

8.55 
9.31 

10.09 
10.86 
11.65 

12.44 
13.24 
14.04 
14.85 
15.66 

16.47 
17.29 
18.11 
18.94 
19.77 

20.60 
29.05 
37.69 
46.46 

55.33 
64.28 
7.3.29 
82.36 

.900 .950 

2.71 3.84 
4.61 5.99 
6.25 7.81 
7.78 9.49 

9.24 11.07 
10.64 12.59 
12.02 14.07 
13.36 15.51 
14.68 16.92 

15.99 18.31 
17.28 19.68 
18.55 21.03 
19.81 22.36 
21.06 23.68 

22.31 25.00 
23.54 26.30 
24.77 27.59 
25.99 28.87 
27.20 30.14 

28.41 31.41 
29.62 32.67 
30.81 33.92 
32,01 35.17 
33.20 36.42 

.975 

5.02 
7.38 
9.35 

11,14 

12 .. 83 
14.45 
16.01 
17.53 
19.02 

20.48 
21.92 
23.34 
24.74 
26.12 

27.49 
28.85 
30.19 
31.53 
32.85 

34.17 
35.48 
36.78 
38.08 
39.36 

.990 

6.63 
9.21 

11.34 
13.28 

15.09 
16.81 
18.48 
20.09 
21.67 

23.21 
24.73 
26.22 
27.69 
29.14 

30.58 
32.00 
33.41 
34.81 
36.19 

37.57 
38.93 
40.29 
41.64 
42.98 

.995 

7.88 
10.60 
12.84 
14.86 

16.75 
18.55 
20.28 
21.96 
23:59 

25.19 
26.76 
28.30 
29.82 
31.32 

32.80 
34.27 
35.72 
37.16 
38.58 

40.00 
41.40 
42.8() 
44.18 
45.56 

34.38 37.65 40.65 44.31 46.93 
35.56 38.89 41 .92 45.64 48.29 
36.74 40.11 43.19 46.96 49.64 
37.92 41.34 44.46 48.28 50.99 
39.09 42.56 45.72 49.59 52.34 

40.26 43.77 46.98 50.89 53.67 
51.81 55.76 59.34 63.69 66.77 
63.17 67.50 71.42 76.15 79.49 
74.40 79.08 83.30 88.38 91.95 

85.53 90.53 95.02 100.4 104.2 
96.58 101.9 106.6 112.3 116.3 

107.6 113.1 118.1 124.1 128.3 
118:5 124.3 129.6 135.8 140.2 

SOl/rce: Reprinted, with permission, from C. M. Thompson, "Table of Percentage Points of the Chi-Square Distribution:' Biometrika 32 (1941), pp. 188--89. 
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1320 Appendices 

TABLE B.4 Percentiles ofthe F Distribution. 

Entry is F (A; Vl, V2) where P{ F (Vlt V2) ~ F (A; Vl, V2)} = A 

F(A~ v" Vz} < 

1 ' 
F(A; v" vz} = F(l' • )< , ,- A, Vz, Vl , 
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TABLE B.4 (continued) Percentiles of the F Distribution. 

Den. Numerator df 

df A 1 2 3 4 5 6 7 8 9 
1 .50 1.00 1.50 1.71 1.82 1.89 1.94 1.98 2.00 2.03 

.90 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 

.95 161 200 216 225 230 234 237 239 241 

.975 648 800 864 900 922 937 948 957 963 

.99 4,052 5,000 5,403 5,625 5,764 5,859 5,928 5,981 6,022 

.995 16,211 20,000 21,615 22,500 23,056 23,437 23,715 23,925 24,091 

.999 405,280 500,000 540,380 562,500 576,400 585,940 592,870 598,140 602,280 
2 .50 0.667 1.00 1.13 1.21 1.25 1.28 1.30 1.32 1.33 

.90 8.53 9.00 9.16 9.24 9;29 9.33 9.35 9.37 9.38 

.95 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 

.975 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 

.99 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 

.995 199 199 199 199 199 199 199 199 199 

.999 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.4 
3 .50 0.585 0.881 1.00 1.06 1.10 1.13 1.15 1.16 1.17 

.90 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 

.95 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 

.975 17.4 16.0 15.4 15.1 14.9 14.7 14,6 14.5 14.5 

.99 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 

.995 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.f} 

.999 167.0 148.5 141.1 137.1 134.6 132.8 131.6 130.6 129.9 
4 .50 0.549 0.828 0.941 1.00 1.04 1.06 1.08 1.09 1.10 

.90 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 

.95 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 

.975 12.2" 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 

.99 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 

.995 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1 

.999 74.1 61.2 56.2 53.4 51] 50.5 49.7 49.0 48'.5 
5 .50 0.528 0.799 0.907 0.965 1.00 1.02 1.04 1.05 1.06 

.90 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 

.95 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

.975 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 

.99 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 

.995 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8 

.999 47'.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 
6 .50 0.515 0.780 0.886 0.942 0.977 1.00 1.02 1.03 1.04 

.90 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 

.95 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 

.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 

.99 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 
;995 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 
.999 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 

7 .50 0.506 0.767 0.8'71 0.926 0.960 0.983 1.00 1.01 1.02 
.90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 
.95 5.5~ 4.74 4.35 4.12 3.97 3.87 3.79 3;73 3.68 
.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 
.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 
.995 16.2

c 
12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 

.999 ;) 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 
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TABLE B.4 (continued) Percentiles of the F Distribution. 

Den. Numerator df 

df A 10 12 lS 20 24 30 60 120 00 

.50 2.04 2.07 2.09 2.12 2.13 2.15 2.17 2.18 2.20 

.90 60.2 60.7 61.2 61.7 62.0 62.3 62.8 63.1 63.3 

.95 242 244 246 248 249 250 252 253 254 

.975 969 977 985 993 997 1,001 1,010 1,014 1,018 

.99 6,056 6,106 6,157 6,209 6,235 6,261 6,313 6,339 6,366 

.995 24,224 24,426 24,630 24,836 24,940 25,044 25,253 25,359 25,464 

.999 605,620 .610,670 615,760 620,910 623,500 626,100 631,340 633,970 636,620 
2 .50 1.34 1.36 1.38 1.39 1.40 1.41 1.43 1.43 1.44 

.90 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.48 9.49 

.95 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 

.975 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5 

.99 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 995 

.995 199 199 199 199 199 199 199 199 200 

.999 999.4 999.4 999.4 999.4 999.5 999.5 999.5 999.5 999.5 
3 .50 1.18 1.20 1.21 1.23 1.23 1.24 1.25 1.26 1.27 

.90 5.23 5.22 5.20 5.18 5.18 5.17 5.15 5.14 5.13 

.95 8.79 8.74 8.70 8.66 8.64 8.62 8.57 8.55 8.53 

.975 14.4 14.3 14.3 14.2 14.1 14.1 14.0 13.9 13.9 

.99 27.2 27.1 26.9 26.7 26.6 26.5 26.3 26.2 26.1 

.995 43.7 43.4 43.1 42.8 42.6 42.5 42.1 42.0 41.8 

.999 129.2 128.3 127.4 126.4 125.9 125.4 J24.5 124.0 123.5 
4 .50 1.11 1.13 1.14 1.15 1.16 1.16 1.18 1.18 1.19 

.90 3.92 3.90 3.87 3.84 3.83 3.82 3.79 3.78 3~76 

.95 5.96 5.91 5.86 5.80 5.77 5.75 5.69 5.66 5.63 

.975 8.84 8.75 8.66 8.56 8.51 8.46 8.36 8.31 8.26 

.99 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.6 13.5 

.995 21.0 20.7 20.4 20.2 20.0 19.9 19.6 19.5 19.3 

.999 48.1 47.4 46.8 46.1 45.8 45.4 44.7 44.4 44.1 

5 .50 1.07 1.09 1.10 1.11 1.12 1.12 1.14 1.14 1.15 
.90 3.30 3.27 3.24 3.21 3.19 3.17 3.14 3.12 3.11 
.95 4.74 4.68 4.62 4.56 4.53 4.50 4.43 4.40 4.37 
.975 6.62 6.52 6.43 6.33 6.28 6.23 6.12 6.07 6.02 
.99 10.1 9.89 9.72 9.55 9.47 9.38 9.20 9.11 9.02 
.995 13.6 13.4 , 13.1 12.9 12.8 12.7 12.4 12.3 12.1 
.999 26.9 26.4 25.9 25.4 25.1 24.9 24.3 24.1 23.8 

6 .50 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.12 
.90 2.94 2.90 2.87 2.84 2.82 2.80 2.76 2.74 2.72 
.95 4.06 4.00 3.94 3.87 3.84 3.81 3.74 3.70 3.67 
.975 5.46 5.37 5.27 5.17 5.12 5.07 4.96 4.90 4.85 
.99 7.87 7.72, 7.56 7.40 7.31 7.23 7.06 6.97 6.88 
.995 10.2 10.0 9.81 9.59 9.47 9.36 9.12 • 9.00 8.~ 
.999 18.4 18.0 17.6 17.1 16.9 16.7 16.2 16.0 15.7 

7 .50 1.03 1.04 1.05 1.07 1.07 1.08 1.09 1.10 1.10 
.90 2.70 2.67 2.63 2.59 2.58 2.56 2.51 2.49 2.47 
.95 3.64 3.57 3.51 3.44 3.41 3.38 3.30 3.27 3.23 
.975 4.76 4.67 4:57 4.47 4.42 4.36 4.25 4.20 4.14 
.99 6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 5.65 
.995 8.38 8.18 7.97 7.75 7.65 7.53 7.31 7.19 7.08 
.999 14.1 13.7 13.3 12.9 12.7 12.5 12.1 11.9 11.7 
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TABLE B.4 (continued) Percentiles ofthe F Distribution. 

Den. Numerator df 

df A 1 2 3 4 5 6 7 8 9 
8 .50. 0..499 0..757 o..86Q 0.915 0.,948 0..971 0..988 1.0.0. 1.0.1 

.90. 3.46 3.11 2:92 2.81 2.73 2.67 2.62 2:59 2.56 

.95 5.32 4.46 4.0.7 3~84 3.69 3:58 3.50. 3.44 3.39 

.975 7.57 6.0.6 5.,42 5.0.5 4.82 4.65 4.53 4.43 4.36 

.99 11.3 8.65 7.59 7.0.1 6.63 6.37 6.18 6.0.3 5.91 

.995 14.7 11:0. 9~6o. 8.81 8.30. 7.95 7.69 7.50. 7.34 

.999 25.4 18.5 15 .. 8 14.4 13.5 12.9 12.4 12.0. 11.8 
9 .50. 0..494 0..749 0..852 0..90.6 0..939 0..962 0..978 0..990. l.o.o. 

.90. 3.36 3.0.1 2.81 2.69 2.61 2.55 2~51 2.47 2.44 

.9,5 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

.975 7.21 5.71 5.0.8 4.72 4.48 4.32 4.20. 4.10. 4.0.3 

.99 10..6 8,0.2 6.99 6.42 6.0.6 5.80. 5.61 5.47 5.35 

.995 13:li 10..1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 

.999 22.9 16.4 13.9 12.6 11.7 11.1 10..7 10..4 10..1 
10. .50. 0..490. 0..743 0..845 0..899 0..932 0..954 0..971 0..983 0..992 

.90. 3;29 2.92 2.73 2.61 2:52 2.46 2.41 2.38 2.35 

.95 4.96 4.10. 3.71 3.48 3.33 3.22 3.14 3.0.7 3.0.2 

.975 6:94 5.46 4.83 4.47 4.24 4.0.7 3.95 3.85 3.78 

.99 10..0. 7:56 6.55 5.99 5.64 5.39 5.20. 5.0.6 4.94 

.995 12.8 9.43 8.0.8 7.34 6.87 6.54 q.30 6.12 5.97 

.999 21.0. 14:9 12.6 11.3 10..5 9.93 9.52 9:20. 8.96 
12 .50. 0..484 0..735 0.:835 0..888 0..921 0..943 0..959' 0..972 0..981 

.90. 3.18 2.81 2;61 2.48 2.39 2.33 2.28 2.24 2.21 

.95 4.75 3.1~9 3.49. 3.26 3:11 3.0.0. 2.91 2.85 2.80. 

.975 6.55 5.10. 4.47 4.12 3.89 3.73 3.61 3.51 3.44 

.99 9.33 6.93 5.95 5.41 5;0.6 4.82 4.64 4~5o. 4.39 

.995. 11.8 851 7.23 '6.52 6.0.7 5.76 5.52 5.35 5.20. 

.999 18.6 13:0. 10..8 9.63 8;89 8.38 8.0.0. 7.71 7.48 
15 .50. 0..478 0..726 0..826 0.;878 0..911 0..933 0..949 0..960. 0..970. 

.90. 3.0.7 2.70. 2.49 2.36 2.27 2.21 2.16 .2.12 2.0.9 

.95 4.54 3.68 3.29 3.0.6 2.90. 2.79 2.71 2.64 2.59 

.975 6.20. 4.77 4.15. 3.80. 3.58 3.41 3.29 3.20. 3.12 

.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.0.0. 3.89 

.995 10..8 7.70. 6.48 5:80. 5.37 5.0.7 4.85 4.67 4.54 

.999 16.6 11.3 9:34 8:25 7.57 7.0.9 6.74 6.47 6.26' 

20. .50. 0..472 0.:718. 0..816 0..868 0..90.0.' 0..922 0..938 0..950. 0..959 
.90. 2.97 2.59 2.38 2.25 2.16 2.0.9 2.0.4 2.0.0. 1.96 
.95 4.35 3.49 3.10. 2.87 2.71 2.60. 2.51 2.45 2.39 
.975 5.87 4.46 3.86 3.51 3.29 3.13 3.0.1 2.91 2.84 
.99 8.10. 5;85 4.94 4.43 4.10. 3.87 3.70. 3.56 3.46 
.995 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.0.9 3.96 
.999, 14.8 9.95 8.10. 7.10. 6.46 6.0.2 5.69 5.44 5.24 

24 .50. 0..469 0..714 0..812 0..863 0..895 0..9,17 0..932 0..944 0..953 
.90. 2.93 2.54' 2.33 2:19 2.10. 2.0.4 1.98 1.94 1:91 
.95 4.26 3.40. 3.0.1 2.78 2.62 2.51 2.42 2.36 2.30. 
.975 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70. 
.99 7.82 5.61 4.72 4.22 3.90. 3.67 3.50. 3.36 3.26 

r-i .995 9.55 6.66 5.52 4.89 4.49' 4.20. 3.99 3.83. 3,69 
O""._f .999 14.0. 9.34 7.55 6.59 5.98 5.55 5:23 4.99. 4.80. 
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TABLE B.4 (continued) Percentiles of the F Distribution. 

Den. Numerator df 

df A 10 12 lS 20 24 30 60 120 00 

8 .50 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.08 1.09 
.90 2.54. 2.50 2.46 2.42 2.40 2.38 2.34 2.32 2.29 
.95 3.35 3.28 3.22 3.15 3.12 3.08 3.01 2.97 2.93 
.975 4.30 4.20 4.10 4.00 3.95 3.89 3.78 3.73 3.67 
.99 5.81 5.67 5.52 5.36 5.28 5.20 5.03 4.95 4.86 
.995 7.21 7.01 6.81 6.61 6.50 6.40 6.18 6.06 5.95 
.999 .11.5 11.2 10.8 10.5 10.3 10.1 9.73 9.53 9.33 

9 .50 1.01 1.02 1.03 1.04 1.05 1.05 1.07 1.07 1.08 
.90 2.42 2.38 2.34 2.30 2.28 2.25 2.21 2.18 2.16 
.95 3.14 3.07 3.01 2.94 2.90 2.86 .2.79 2.75 2.71 
.975 3.96 3.87 3.77 3.67 3.61 3.56 3.45 3.39 3.33 
.99 5.26 5.11 4.96 4.81 4.73 4.65 4.48 4.40 4.31 
.995 6.42 6.23 6.03 5.83 5.73 5.62 5.41 5.30 5.19 
.999 9.89 9.57 9.24 8.90 8.72 8.55 8.19. 8.00 7.81 

10 .50 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.06 1.07 
.90 2.32 2.28 2.24 2.20 2.18 2.16 2.11 2.08 2.06 
.95 2.98 2.~1 2.84 2.77 2.74 2.70 2.62 2.58 2.54 
.975 3.72 3.62 3.52 3.42 3.37 3.31 3.20 3.14 3.08 
.99 4.85 4.71 4.56 ' 4.41 4.33 4.25 4.08 4.00 3.91 
.995 5.85 5.66 5.47 .5.27 5.17 5.07 4.86 4.75 4.64 
.999 8.75 8.45 8.13 7.80 7.64 7.47 7.12 6.94 6.76 

12 .50 0.989 1.00 1.01 1.02 1.03 1.03 1.05 1.05 1.06 
.90 2.19 2.15 2.10 2.06 2.04 2.01 lc:96 1.93 1.90 
.95 2.75 2.69 2.62 2.54 2.51 2.47 2.38 2.34 2.30 
.975 3.37 3.28 3.18 3.07 3.02 2.96 2.85 2.79 2.72 
.99 4.30 4.16 4.01 3.86 3.78 3.70 3.54 3.45 3.36 
.995 5.09 4.91 4.72 4.53 4.43 4.33 4.12 4.01 3.90 
.999 7.29 7.00 6.71 6.40 6.25 6.09 5.76 5.59 5.42 

15 .50 0.977 0.989 1.00 1.01 1.02 1.02 1.03 1.04 1.05 
.90 2.06 2.02 1.97 1.92 1.90 1.87 1.82 1.79 1.76 
.95 2.54 2.48 2.40 2.33 2.29 2.25 2.16 2.11 2.07 
.975 3.06 2.96 2.86 2.76 2.70 2.64 2.52 2.46 2.40 
.99 3.80 3.67 3.52 3.37 3.29 3.21 3.05 2.96 2.87 
.995 4.42 4.25 4.07 3.88 3.79 3.69 3.48 3.37 3.26 
.999 6.08 5.81 5.54 5.25 5.10 4.95 4.64 4.48 4.31 

20 .50 0.966 0.977 0.989 1.00 1.01 1.01 1.02 1.03 1.03 
.90 1.94 1.89 1.84 1.79 1.77 1.74 1.68 1.64 1.61 
.95 2.35 2.28 2.20 2.12 2.08 2.04 1.95 1.90 1.84 
.975 2.77 2.68 2.57 2.46 2.41 2.35 2.22 2.16 2.09 
.99 3.37 3.23 3.09 2.94 2.86 2.78 2.61 2.52 2.42 
.995 3.85 3.68 3.50 3.32 3.22 3.12 2.92 2.81 2.69 
.999 5.08 4.82 4.56 4.29 4.15 4.00 3.70 3.54 3.38 

24 .50 0.961 0.972 0.983 0.994 1.00 1.01 1.02 l.02 1.03 
.90 1.88 1.83 1.78 1.73 1.70 1.67 1.61 1.57 1.53 
.95 2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73 
.975 2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94 
.99 3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 2.21 
.995 3.59 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43 
.999 4.64 4.39 4.14 3.87 3.74 3.59 3.29 3.14 2.97 
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TABLE B.4 (continued) Percentiles of the F Distribution. 

Den. 
Numerator df 

df A 1 ·2 3 4 5 6 7 8 9 

30 .50 0.466 0.709 0.807 0.858 0.890 0.912 0.927 0.939 0.948 
.90 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 
.95 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
.975 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 
.99 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 
.995 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 
.999 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 

60 .50 0.461 0.701 0.798 0.849 0.880 0.901 0.917 0.928 0.937 
.90 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 
.95 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 
.975 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 
.99 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 
.995 8.49 5.80 4.73 4.14 3.76 3.49 3.29 3.13 3.01 
.999 12.0 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 

120 .50 0.458 0.697 0.793 0.844 0.875 0.896 0.912 0.923 0.932 
.90 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 
.95 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 
.975 5.15 3.80 3.23 2,89 2.67 2.52 2.39 2.30 2.22 
.99 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 
.995 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 
.999 11.4 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 

00 .50 0.455 0.693 0.789 0.839 0.870 0.891 0.907 0.918 0.927 
.90 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 
.95 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 
.975 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 
.99 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 
.995 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 
.999 10.8 6.91 5.42 4.62 4.10 3.74 3.47 3;27 3.10 
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TABLE B.4 (concluded) Percentiles of the F Distribution. 

Den. 
Numerator df 

df A 10 12 lS 20 24 30 60 120 00 

30 .50 0.955 0.966 0.978 0.989 0.994 1.00 1.01 1.02 1.02 
.90 1.82 1.77 1.72 1.67 1.64 1.61 1.54 1.50 1.46 
.95 2.16 2.09 2.01 1.93 1.89 1.84 1.74 1.68 1.62 
.975 2.51 2.41 2.31 2.20 2.14 2.07 1.94 1.87 1.79 
.99 2.98 2.84 2.70 2.55 2.47 2.39 2.21 2.11 2.01 
.995 3.34 3.18 3.01 2.82 2.73 2.63 . 2.42 2.30 2.18 
.999 4.24 4.00 3.75 3.49 3.36 3.22 2.92 2.76 2.59 

60 .50 0.945 0.956 0.967 0.978 0.983 0.989 1.00 1.01 1.01 
.90 1.71 1.66 1.60 1.54 1.51 1.48 1.40 1.35 1.29 
.95 1.99 1.92 1.84 1.75 1.70 1.65 1.53 1.47 1.39 
.975 2.27 2.17 2.06 1.94 1.88 1.82 1.67 1.58 1.48 
.99 2.63 2.50 2.35 2.20 2.12 2.03 1.84 1.73 1.60 
.995 2.90 2.74 2.57 2.39 2.29 2.19 1.96 1.83 1.69 
.999 3.54 3.32 3.08 2.83 2.69 2.55 2.25 2.08 1.89 

120 .50 0.939 0.950 0.961 0.972 0.978 0.983 0.994 1.00 1.01 
.90 1.65 1.60 1.55 1.48 1.45 1.41 1.32 1.26 1.19 
.95 1.91 1.83 1.75 1.66 1.61 1.55 1.43 1.35 1.25 
.975 2.16 2.05 1.95 1.82 1.76 1.69 ,1.53 1.43 1.31 
.99 2.47 2.34 2.19 2.03 1.95 1.86 1.66 1.53 1.38 
.995 2.71 2.54 2.37 2.19 2.09 1.98 1.75 1.61 1.43 
.999 3.24 3.02 2.78 2.53 2.40 2.26 1.95 1.77 1.54 

00 .50 0.934 0.945 0.956 0.967 0.972 0.978 0.989 0.994 1.00 
.90 1.60 1.55 1.49 1.42 1.38 1.34 1.24 1.17 1.00 
.95 1.83 1.75 1.67 1.57 1.52 1.46 1.32 1.22 1.00 
.975 2.05 1.94 1.83 1.71 1.64 1.57 1.39 1.27 1.00 
.99 2.32 2.18 2.04 1.88 1.79 1.70 1.47 1.32 1.00 
.995 2.52 2.36 2.19 2.00 1.90 1.79 1.53 1.36 1.00 
.999 2.96 2.74 2.51 2.27 2.13 1.99 1.66 1.45 1.00 

SOl/rce: Reprinted from Table 5 of Pearson and Hartley. Biomel1"ika Tables for Stazisticialls. Volume 2. 1972. published by the Cambridge University Press. on behalf 
of The Biometrika Society. by permission of the authors and publishers. 

" 
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TABLE B.5 a=.OS 
Power Values 
for Two-Sided -6 ~ 

t Test. 
df 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

1 .07 .13 .19 .25 .31 .36 .42 .47 .52 
2 .10 .22 .39 .56 .72 .84 .91 .96 .98 
3 .11 .29 .53 .75 .90 .97 .99 1.00 1.00 
4 .12 .34 .62 .84 .95 .99 1.00 1.00 1.00 
5 .13 .37 .67 .89 .98 1.00 1.00 1.00 1.00 

6 .14 .39 .71 .91 ,~ .98 1.00 1.00 1.00 1.00 
7 .14 .41 .7~ .93 .99 1.00 1.00 1.00 1.00 
8 .14 .42 .75 .94 .99 1.00 1.00 1.00 - 1.00 
9 .15 .43 .76 .94 .99 1.00 1.00 1.00 1.00 

10 .15 .44 .77 .95 .99 1.00 -1.00 1.00 1.00 

11 .15 .45 .78 .95 .99 1.00 1.00 1.00 1.00 
12 .15 .45 .79 ;96 1.00 1.00 1.00 1.00 1.00 
13 .15 .46 -- .79 .96 1.00 1.00 1.00 1.00 1.00 
14 .15 .46 .80 .96 1.00 1.00 1.00 1.00 1.00 
15 .16 .46 .80 .96 1.00 1.00 1.00 1.00 1.00 

16 .16 .47 .80 .96 1.00 1.00 1.00 1.00 1.00 
17 .16 .47 .81 .96 1.00 1.00 1.00 1.00 1.00 
18 .16 .47 .81 .97 1.00 1.00 1.00 1.00 1.00 
19 .16 .48 .81 .97 1.00 1.00 1.00 1.00 1.00 
20 .16 .48 .81 .97 1.00 1.00 1.00 1.00 1.00 

21 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1,00 
22 .16 .48 .82 '.97 1.00_ 1.00 1.00 1.00 1.00 
23 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00 
24 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00 
25 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00 

26 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00 
27 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00 
28 .16 .49 .83 ,97 1.00 1.00 1.00 1.00 1.00 
29 .16 .49 .83 .97 1.00 1.00 1.00 1.00 1.00 
30 .16 .49 .83 .97 1.00 1.00 1.00 1.00 1.00 

40 .16 .50 .83 .97 1.00 1.00 1.00 1.00 1.00 
50 .17 .50 .84 .98 1.00 1.00 1.00 1.00 1.00 
60 .17 .50 .84 .98 1.00 1.00 1.00 1.00 1.00 

100 .17 .51 .84 .98 1.00 1.00 1.00 1.00 1.00 
120 .17 .51 .85 .98 1.00 1.00 1.00 1.00 1.00 

00 .17 .52 .85 .98 1.00 1.00 1.00 1.00 1.00 
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TABLE B.5 
a= .01 

(concluded) 
Power Values 0 
for Two-Sided 

df 1.0 2.0 3.0 4.0 S.O 6.0 7.0 8.0 9.0 t Test. 
1 .01 .03 .04 .05 .06 .08 .09 .10 .11 
2 .02 .05 .09 .16 .23 .31 .39 .48 .56 
3 .02 .08 .17 .31 .47 .62 .75 .85 .92 
4 .03 .10 .25 .45 .65 .82 .92 .97 .99 
5 .03 .12 .31 .55 .77 .91 .97 .99 1.00 

6 .04 .14 .36 .63 .84 .95 .99 1.00 1.00 
7 .04 .16 .40 .68 .88 .97 1.00 1.00 1.00 
8 .04 .17 .43 .72 .91 .98 1.00 1.00 1.00 
9 .04 .18 .45 .75 .93 .99 1.00 1.00 1.00 

10 .04 .19 .47 .77 .94 .99 1.00 1.00 1.00 

11 ~4 .19 .49 .79 .95 .99 1.00 1.00 1.00 
12 .04 .20 .50 .80 .96 .99 1.00 1.00 1.00 
13 .O~< .21 .52 .82 .96 1.00 1.00 1.00 1.00 
14 .05 .21 .53 .83 .96 1.00 1.00 1.00 1.00 
15 .05 .21 .54 .83 .97 1.00 1.00 1.00 1.00 

16 .05 .22 .55 .84 .97 1.00 ~1.00 1.00 1.00 
17 .05 .22 .55 .85 .97 1.00 1.00 1.00 1.00 
18 .05 .22 .56 .85 .97 1.00 1.00 1.00 1.00 
19 .05 .23 .56 .86 .98 1.00 1.00 1.00 1.00 
20 .05 .23 .57 .86 .98 1.00 1.00 1.00 1.00 

21 .05 .23 .57 .86 .98 1.00 1.00 1.00 1.00 
22 .05 .23 .58 .87 .98 1.00 1.00 1.00 1.00 
23 .05 .24 .58 .87 .98 1.00 1.00 1.00 1.00 
24 .05 .24 .59 .87 .98 1.00 1.00 1.00 1.00 
25 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00 

26 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00 
27 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00 
28 .05 .24 .60 .88 .98 1.00 1.00 1.00 1.00 
29 .05 .25 .60 .88 .98 1.00 1.00 1.00 1.00 
30 .05 .25 .60 .88 .98 1.00 1.00 1.00 1.00 

40 .05 .26 .62 .90 .99 1.00 1.00 1.00 1.00 
50 .05 .26 .63 .90 .99 1.00 1.00 1.00 1.00 
60 .05 .26 .63 .91 .99 1.00 1.00 1.00 1.00 

100 .06 .27 .65 .91 .99 1.00 1.00 1.00 1.00 
120 .06 .27 .65 .91 .99 1.00 1.00 1.00 1.00 

00 .06 .28 .66 .92 .99 1.00 1.01') 1.00 1.00 
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TABLE B.6 
Level of Significance ex 

Critical Values 
for Coefficient n .10 .05 .025 .01 .005 
of Correlation 5 .903 .880 .865 .82(> .807 
between 6 .910 .888 .866 .838 .820 
Ordered 7 .918 .898 .877 .850 .828 
Residuals and 8 .924 .906 .887 .861 .840 
Expected 9 .930 .912 .894 .871 .854 
Values under 
Normality 10 .93~ .918 .901 .879 .862 

when 12 .942 .928 .912 .892 .876 

Distribution of 14 .948 .935 .923 .905 .890 

Error Terms 16 .953 ~ ('~ .941;--· . .929 .913 .899 
fir ~ -,.~ -- - .--,. -.- .957· - .. - ·-"""'~946 

Is Normal. .935 .920 .908 

20 .960 .951 .940 .926 .916 
22 .963 .954 .945 .933 .923 
24 .965 .957 .949 .937 .927 
26 .967 .960 .952 .941 .932 
28 .969 .962 .955 .944 .936 

30 .971 .964 .957 .947 .939 
40 .977 .972 .966 .959 .953 
50 .981 .977 .972 .966 .961 
60 .984 .980 .976 .971 .967 
70 .986 .983 .979 .975 .971 

80 .987 .985 .982 .978 .975 
90 .988- .986 .984 .980 .977 

100 .989 .987 .985 .982 .979 

So",.ce: Reprinted, with permission, from S. W. Looney and T. R. Gulledge, Jr., "Use of the Correlation Coefficient with Normal 
Probability Plots." The Ame"clUl Statistici"" 39 (1985). pp. 75-79. 
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TABLE B.7 
Level of Significance ex = .05 

Durbin-Watson 
Test Bounds. p-l=l p-l=2 p-l=3 p-l=4 P-l=S 

n dL du dL du dL du dL du dL du 
15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21 
16 1.10 1.37 0.98 1.54 0.86 1.7-3 0.74 1.93 0.62 2.15 
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10 
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06 
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02 
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99 
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 
26 1.30 1.46"'- 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88 
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 . 1.86 
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12-, 1.74 1.05 1.84 
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81 
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80 
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80 
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79 
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79 
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77 
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 
65 1.57 ,1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77 
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77 
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77 
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78 

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 .1.76 1.57 1.78 



Appendix B Tables 1331 

TABLE B.7 
Level of Significance ex = .01 

(concluded) 
Durbin-Watson p-1=1 p-1 = 2' p-1=3 p-1=4 p-1=S 
Test Bounds. 

n dL du dL du dL du dl du dL du 

15 0.81 1.07 0.70 1:25 0.59 1.46 0.49 1.70 0.39 1.96 
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90 
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85 
18 0.90 1.12 0.80 1.26 0.71 '1.42 0.61 1.60 0.52 1.80 
19 Q.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77 
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74 
21 '0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71 
22 1.00 1.17 0.91 '1.28 ,0.83 1.40 0.75 1.54 0.66 1.69 
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1·67 
24 1.04 1.20 0.96 '1.30 0.88 1.41 0.80 1.53 0.72 1.66 
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65 
26 1.07 1.22 1.00 1.31 0.93 1041 0.85 1.52 0.78 1.64 
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63 
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62 
29 1.12 1:25·, 1.05 1.33 0.99 1.42 ·0.92 1.51 0.85 1.61 
30 1.13 1.26 1.07 1.34 1 ;01 1.42 0.94 1.51 0.88 1.61 
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60 
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60 
33 1.17 L29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59 
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59 
35 1.i9 lAl 1.14 1.37 L08 1.44 1.03 1.51 0.97 1.59 
36 1.21 1.32 1:15 1.38 1.10 1.44 1.04 1.51 0.99 1.59 
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59 
38 1.23 1.33 1:18 1.39 1.12 1.45 1.07 1.52 1.02 1.58 
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1".52 1.03 1.58 
40 1.25 r'1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58 
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58 
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59 
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59 
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60 
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61 
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61 
75 l.4S 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62 
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62 
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63 
90 1.50 1.54 1.47 1.56 1.45 159 1.43 1.61 1.41 1.64 
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64 

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65 

So"rce: Reprinted. with permission. from J. Durbin and G. S. Watson, "Testing for Serial Correlation in Least Squares Regression. 11;' 
Biometrika 38 (1951), pp. 159-78. 
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TABLE B.B z' z' z' 
Table ofz' 

r r r r z' 
Transforma-

p , p , p , p , 
tion of .00 .0000 .25 .2554 .50 .5493 .75 .973 
Correlation .01 .0100 .26 .2661 .51 .5627 .76 .996 
Coefficient. .02 .0200 .27 .2769 .52 .5763 .77 1.020 

.03 .0300 .28 ;2877 .53 .5901 .78 1.045 

.04 .0400 .29 .2986 .54 .6042 .79 1.071 

.05 .0500 .30 .3095 ,55 .6184 .80 1.099 

.06 ;0601 .31 .3205 .56 .6328 .81 1.127 

.07 .0701 32 .3316 .57 .647~ .82 1.157 

.08 .0802 .33 .3428 .58 .6625 .83 1.188 

.09 .0902 .34 .3541 .59 :6,777 .84 1.221 

.10 .1003 .35 .3654 .60 .6931 .85 1.256 

.11 .1104 .36 .3769 .61 .7089 .86 1.293 

.12 .1206 .37 .3884, .62 .7250 .87 1.333 

.13 .1307 .}8' .4001 .63 .7414 .88 1.376 
• .14 .1409 fi~~', .4118 .64 .7582 .89 1.422 

.15 .1511 f .;'~O .4236 .65 .7753 .90 1.472 

.16 .1614 .41 .4356 .66 .7928 .91 1.528 

.17 .1717 .42 .4477 .67 .8107 .92 1.589 

.18 .1820 .43 .4599 .68 .8291 .93 1.658 

.19 .1913 .44 .4722 .69 .8480 .94 1.738 

.20 .2027 .45 .4847 .70 .8673 .95 1.832 

.21 .2132 .46 .4973 .71 .8872 .96 1.946 

.22 .2237 .47 .5101 .72 .9076 .97 2.092 

.23 .2342 .48 .5230 ,.73 .9287 .98 2.298 

.24 .2448 .49 .5361 .74 .9505 .99 2.647 

SOl/rce: Abridged from Table 14 of Pearson and Hartley, Biometrika Tables/or StatisticiLlIlS, Volume I, 1966, pubtished by the Cambridge 
University Press, on behalf of The Biometrika Society, by permission of the authors and publishers. 

" 
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TABLE B.9 Percentiles of the Studentized Range Distribution. 

Entryisq(1 -a;r:, v) where P{q(r,.v) ::::,q(1-a; r, v)}.= l-a 
l-a::::i:.90 

r 

v -.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 '17 18 19 20 

1 8.93 13.4 1.6.4 1~.5 20.2 21.5 2.2.6 .23~6 24.5 25.2 25.9 26.5 27.1 27:6 28.1 28.5 29.0 29.3 29.7 
2 4,13 5:73 6.77 7.54 8.14 8.63 9.05. 9.41 9.72 10.0 10 .. 3 10.5. 10~7 10.9 11.1' 11.2 11.4 11.5. 11.7 
3 3.33 4.47 5.20' 5,.74 6.16 6.51 6.817:06, 7.29 7.49 7.67 7.837 . .98 8.128.25 837 8.48 8.58 8.68 
4 3.01 3.98 4.59 5.03 5.395.68 5.93 6.14 6.33 6.49 6.65 6.78 6;91 7~02 7:13 7.23 .7.33 '7.41 7.50 

5 2.853.72 4.26 4;66 4;98 5.24 5.46 5.65 5.82 5.976.10 6:22 ,6.34 6:M 6,.54 6.63 6.71 6i79 6.86 
6 2.75, 3;56 4.07 4.,44 4.734:97 5.17 534 ,5.50 5.64 ,,5.765:87 5.9~ 6:076.16 6.25 6.n ,~.4q<6.47 
7 2~68 3,45 3.93 4.28 4;55 4~78 4.?7 5.14 5.285.415 .. 53 5:64 5.745.83 5.91 5,.99 ,6.06 ~.q ,6.19 
8 2.63 337 3;~B 4.1.7 4.43 4:65 4.83 I 4';995,13 5:2.5 5.36$,46 5.56: 5.64 5 .. ?2S~80 5.87· 5 .. 93 ,~.OO 
9 2(59?;}2 3.764;08 4344:54 4.72 4:87 5.01 5,13 5.23 5;?? 5.4:2' 5~5) 5.5,.8 .5.66 '5;72 5;79 5,85 

10: 2.56 t27 3.7Q. 4.02 4.26" 4.47 4.64 4.7~4i91 S.0?5.103 5' .. 23 5..32. 5:405.47 5545,61 5~675.73 
n 205'4 3.23 3.66 3.96 4.20. 4.4'0 405'7 4:71 4;844.95 5:055;155 .. 23 5:.31 538 5.455.51 5.575;63 
12 2;52 3.20 3.62. 3:92 4.16 4,.35 4.51 4;,654.784,89 4.99 2:08.5.165;24 ,5.31 S,}7 5;44 5.49 5.55 
13 2.5Q?:18 ,3.59 ~.8~ 4.12 .4.30 4.46 ;4:60 A.??: 4;83 04.9.3,5,025.1.0 5 .. 1,:85.?S 5 .. ?1. 5.?7, 5.4} 5.48 
14 2,49 3.1.6 3.56 3',85 4;08 4.27 4.42, 4i564);84:7:94;88 4.97 5:05 5;125,.1. 9 5:26 5,.32 '5:375.43 

15 2.48 3.14 3.54 3;83 4.05 4.23 4..39 4;524,64. ,4:75 4.84 4:93 5.01 5.08 5.15 5;21 5.27 5;32 5:38 
1'6 2.47 3:12 3.5.2' 3,80 4.034.21 4.36 4,49 4.61 4~714'.81 :4.89 4:97 5.04 5.11 5.17 5'.23, S;.2'8 5.33 
1,7 i463j,1 3~56 3.78 4.00 4.'18 4:33 4.46 4.58 4.68 04.7'74.86 '4.93 ,5;01: ,5.07 5.,13 5.19 5.24 530 
18 2.45 '3:10 3.49 3.77 3.93 4.16 4.3,1 4.44 4.5.5 4:65 4.754;83 4.90 4,9~ 5.:04 5,10 .5 • .1.6 5.215.26 
19,2,45 3;09 3.473.75 3:97 4.14 4.294.42 4.53 4.63 ,4,72 4.80 ;4.88' 4.95 5',01 5.07 5.13 5.18 5.23 

20 2.44 3.08 3.46 3.74 ?9S:'H2 4;?7 04.40 4~?1 14;61 4.79 4;78 4;.~q4.924.99 5)05 5,.1,0 5~ 165.20 
24 2.42 3.95 3.42 3.69 3.90 4~07 4.21 4;34 4.44'4:54 4,63 4.714.78 4:85 .,4..914:97 s,;92 5.07 5.12 
30 2.40 3 .. 02 3.39 3:65 3.85 4.02 4.1 6 4..28 4.38 4.47 '4.5,6 4.64 4.71 4~77 4.83 4.89 :4.:~4 4.995:03 
40 2.38 2.99 3.?5 3;60 3.80, 3;96 4.1 0 4.21 4.32 4~41 4.49 4.56 4.63 4~69 4.75 4'.81 4.864:~0 4.95 

60 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.16 4.25 4.34 4.42 4.49 4.56 4.62 4.67 4.73 -4.78 4.82 4.86 
120 2.34 2;93 3.28 3.52 3.71 3.86 3.99 4.10 4.194.28 4.35 4.42 4.48 4.54 4.60 4.65 4.69 4.74 4.78 
00 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 4.21 4.28 4.35 4.41 4.47 4.52 4.57 4.61 '4.65 4.69 
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TABLE B.9 (continued) Percentiles of the Studentized Range Distribution. 

1 -a = .95 

r 

v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6 52.0 53.2 54.3 55.4 56.3 57.2 58.0 58.8 59.6 
2 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.7 15.1 15.4 15.7 15.9 16.1 16.4 16.6 16.8 
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.2 10.3 10d!~, 10.7 10.8 11.0 11.1 11.2 
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8:66';'~8.79 8.91 9.03 9.13 9.23 

5 3.64 4.60 5.22 5.67 6..03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 "". 7.14 7.24 7.34 7.43 7.51 7.59 
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 '16.76 6.85 6.94 7.02 7.10 7.17 
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47 
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5:35 5.49 5.61 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33 
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03 

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96 
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84 
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4:96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75 

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59 
30 2.89 3.49 3.85 4.10 • 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36 

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24 
120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13 
00 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 
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TABLE B.9 (concluded) Percentiles of the Studentized Range Distribution. 

r-,a~.99 

r 
~ " ' 

v 2 
l,90.0 
214.0 
3.8.26 
4 6:51 

:3 
13~.: 
19:0 
10.6, 
8;12 

45 6 78~ 9,- '10 "11 '12 "13" 'n'" 15'16' 1718' '1.9' 20 

5 5.(Q 
6' 5;24 
7 4.95 
8' 4;74 
9 4;60 

1.0 '4.48 
11 439 
12 432 
134.26 
14> 4;2-1· 
151 .. 4.17 
1 P: ,4 .• '13 
17 Ail0 
iSi1~9? 
19 4"05 

20 .4.02 
24, ~,:96 
3Q 3.:89 
40 3;132 
60 3.~76 

1::20 3:;16 
00 3;64 

6.97 
.6.33 
5·,92 
5;43 
5',43 

5.27 

~;'b: 
4:96 
4;89' 

4.133 
4.78' 
4~i4 
4.70' 
4(67' 

4.:64 
4:54: 
4AS.:, 
'4,37' 
4:28, 

:;~g: 

:164 
22.3 
-12.:2 

9;17 
,;> ' 

,7.80 
7.03 
6;54 
6.2.0 

.'5'.96 

·5 .. 77 
'5,.62. 
5:50 
'5:40 
.5:32 
5;25 
5;J9 
s;14 
5:69 
5;65 
5;02 

,4:91. 
4:80 
4.]0 

4.60 
4.50 

.,4.40 

186 2~22\q 
24:7 26.6 28,2 
13;3.14:2 J 5~O' 
9!961,q:~ 11 .1 
8A28;91 9;3.2 
7.567:97 '8:32. 
7;01 7:.P7;68: 
6;63' 6.96 7.24" 
6.35' .. 6;66 6.91 

6;1~ 6,,4J p:67 
5'97:6;25 6A8 
5;846.106.32 
5;;73 ·5:98 6::1.9 
5;63.5;l~? .6:08. 
5:5:6 . 5:80 S;99 , 
5A9 5/72$;92 
5.43' '5:66 5;85· 
538 5.6b 5.79' 
5;3{5;,5~ :5:t3' 
5.2g:, 5,~51 .5;P9: 
5;17" .5:375:54' 

~f~~'!~;Il~;~~, 
4;132 A~?9 
4;7~: :4;87 
4:60 A.76 

5 :13. 
5:01 
4;88 

,2.2i 
:29,5 
"15:6 
,.':.5 

9;67 
8:'6" 

',7;94 

... 7:17 
,7.13 

6:87 
6.67 
A:sJ' 
6.37 
6;26 

'6:16, 
6:08 
6;01 
5;94 
,5;~9 
5;84 
5.69 

.,5':54 
5:~9 

i~7 
30i7 
16;2 
11.9 

246' 
3.L7 
16;7 
J2~3 

9.9710:2 
8.8'7'9;10 
8·J7,8i~7 

<.68 l:?7 
732.,7.49 

7~057:i:l 
~.8~ :6.99 
6,.67' <6;Sr 
'6:53' 6;67 
:t)Al <9.;54 
'6316A4 
6~22~ 6;35 
6:156:27 
6;08,6;20 
6;()26i14 
~:9l'6;q,9 
5:8.1 .. 5;'92 

~'~~~if~~ 

253,260 
32;6 '3i4 
17:1Y7i5 
12.6 1'2;8 
10.51.0:7 
9.309:49 
8.55 8;71 
8:03 '8;18 
7:65.7)8 

7,36 '7;4& 
7;1'3 7.25 
6,94 7.06 
6;79 ~6:90 
6 .. 6,6.Pc/i.? 
'I),~.§ '. 9;~96 
646 6.56 
i3S: .6:48 
6;'~16Al 
6:256.34 
,.'.' 

6~}:g· 
6;02 

~:~~'i 
:6:# 
.,6.n 
jl93 
~)77 

5::25 :536' 5:45 5,53.,5:60 

f~~ :~;g~~:~~~~~~~;~;i~ 

266 2'72 .217 
, 34,13.4';13' . 35.4 

1 i~9 1.8.2 1 8.$ 
13.1 .,:3;3: li5 

i&2 . ' 28~ ~90294 

1 0;9i:l1:~1. 
9;65 :g;81 
8~86\9.00 
S:}lS:+t 
7,91 ,8.03 

7:607;71 
736 J,46 

'~:&r~:T~ 
6:~7 ,,6iJ(~ 
,6. '1..6 ,p)8.4 
6;6'6,6;'74 
tH7 '~{66 
6;50'.6;58 

~1tl~i 
,6'Pl:/),9~ 
5:840: 5 ..• 90 
5~67 5.73 
5'.51,:S.';5,6 
5;355.40 

J6;0: 36~5 ~7,0 37,5 
J8.~, 19 .. .1. '19;~, 19;$ 
,13:7 13;9 .14.1'14:2 

lQl.J.4 1,1.61;lJ 11,;~ 
9;9$10.:1 10'4. :Hq' 1'();4, 
9,l2 '.9;~49j$" ,?~46 9.i$~ 
8::5},8,66 8.7f8:85 8:94 
8:138.;238328::41 M9. 
7.817.91'·1;99:8:07. 8:15· 
(:5,67·65 7'.73: 7:~1 l;8~ 
7,36" ,,7.44h52:7:.S9 7;66 
,;7:1$:7.t ~ it3~7:4,i7;4?, 
7.05, 7;) 27:29 ,7.;277:33 

,?n;?;OO?,g7; ?~14 7:~20: 
'p~S2,6~9fJ6;Q? 7003 7;.09, 
6;736;130' K8.7 6;94 7:00 
6:6.$,6:'7i 6;79:'. 6;sA ~:~} 
~;58. ,6;6$ 6/726,78 6;84 

,~:,~~"f~:~ :~:~n~;~~1 !:~r~ 
9,::1,~: ;~.;k9 ~ .. ,~6',.p;.n .();~~' 
5:;96 >:6.026:07, .6;,126:17 ... '. . "'~,;8~' ,r;~~~9it 5::'79 .5.84 
5'.6" 5;66 
5.45 ,5:49 ~~'~4 ~:~~~~~f 

Source: Reprinted, with permission, from Henry Scheff", The Analysis of Variance (New York: John Wiley & Sons, 1959), pp. 434-36, 

298 
37;9 
19,8 
14:4' 

lJ;g 
1 O~S 
'9:~5 
9.03 
.8;57 

:S;22 
'].95 
7;73 
7,;55 
]3~ 

7.26 
'7.:1s. 
7,05 

;1).9(> 
6.89 
6'82 
6:61 
6:41 
6;21 

6;02 
5;'83 
5 .. 65 
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TABLE B.l0 Percentiles of H Statistic Distribution. 

Entry is H(l - a; r, df) where P{H :::: H(l - a; r, df)} = 1 - a 
1 -a = .95 

r 

df 2 3 4 5 6 7 8 9 10 11 12 

2 39.0 87.5 142 202 266 333 403 475 550 626 704 
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124 
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2}0 2.33 2.36 
00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 -a = .99 

r 

df 2 3 4 5 6 7 8 9 10 11 12 

2 199 448 729 1,036 1,362 1,705 2,063 2,432 2,813 3,204 3,605 
3 47.5 85 120 151 184 216 249 281 310 337 361 
4 23.2 37 49 59 69 79 89 97 106 113 120 
5 14.9 22 28 33 38 42 46 50 54 57 60 

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37 
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27 
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21 
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10 5.85 7.4 8.6 9:6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 
00 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 " 1.0 1.0 

Source: Reprinted, with permission, from H. A. David, "Upper 5 and I % Points of the Maximum F-Ratio," Biometrika 39 (1952), pp. 422-24. 



TABLE B.ll vl,=2al1d'oi':"': .05 
Power Values 

'",,', '. ,c/J for Analysis of , .. 
Variance (fixed 1.0 f;5 2.0' 

.. .. 
;3~0 ~;~ 4.0 V2 .. :2;1 4.5 5.0 

effects). 
1 .08. :11 .,14 :18' .21 ;24 .27 .31 .34 
2 .12 .2p ,30 ~:~ .52, :62 .71 .79 .85 
3 .15 .28 .44, .'75 ;86 .93 .97 .99 
4 .18, 54 .54 :73 .86 ,94 .98 .99 1 .. 00 
5 .20· 39 ,6-1 JIO ,92 .97 ,99 1.00 1:00 
6 .21 042 .66 :85 .95 ;99 1.00 1.00 1.00 
7 .22 A~ ~io ;8~ :96 .99 1.00 1.00 LOO 
8 .23 :4Z ,72 ,,90 .9'1 ,:00 1.Op' 1.00 1.00 
9 .24' .49 ,:.;74: ;9J ~98 1.00 1.00 1.00 1.00 

10 .25 :50 ]6 :92 .98 1.00 1.00 1.00 1.00 
12 .26 .5.~ .18' ;93 .~9 1.90 1.00 1.00 1.00 
i4 .27 ;54 '.80: .94 ;-99 1.09. 1.00 1.00 1.00 
16 .2,7 :55 .81' .95 .99 1.09 1 :00 1.00 1.00 
18 ,28, ;5.6 .82' :95 .99 Lop 1.00 1.00 1.00 
20 ,.28 .57 .83 ;96 .99 i.Oo 1.00 1.00 1.00 
22 .29 .58 ,.8~ :96 '·99 Loo 1.00 1.00 1.00 
24 .29 ,58 ,.84 :99 ,.,99, 1.00 1.00 1.00 1.00 
26 .29 .59 .&4 :96 .. 99 1:00 Lob 1.00 1.00 
28 .29 ~59 .85' :9'6- '1.66 1:00 1.00 1.00 1.00 
30 .29 ;60 :85 .ciT 1.00 1.00 1.00 1.00 1.00 

60 .31 :62 ;87 ,97 LPP l;gO J.OO 1:00 1.00 
120 .31 .63 .88 .98 l.(){j 1.00 '1.00 LOO 1.00 
00 .32 :64 ;88 .98 'i.oo ,:00 1.00 1.00 1.00 

Vl' =;2 anc;l,(¥=.Ol 

ck 
V2 1.0 loS' ?~Q .2.5, :t.O 3.5 4.0 405, 5:0 

1 .02 .02 .03 .04 .04 .05 .06 .06 .07 
2 ,.02 .04 .07 .lO, .14 .18 .22 .27 .32 
3 .03 .07 .13 .20 .29 AD ;50 .60 .69 
4 .04 .10 ;19 ,31 046 .61 .73 .83 .91 
5 .05 .13. .25. .42, ,.60, .75 .87 .94 .97 
6 .06 .15 ;30 .50 .69' .84 .93 .98 .99 
7 .07 .17 .35 ;57 .76 .90 .96 ;99 1.00 
8 .07 . 19 .39' .62 . .81 :93 .98' Loo 1.00 
9 :08 .21 .42 .69 .85 .95 .99 1.00 1.00 

10 .08 22 .45 .69 . 87 .96 . .;99 1.00 1.00 
12 \ .09 .24 ;49 .74 .9J .98· 1.00 1.00 1.00 
14 .09 .2,6 :52 ,78 .93 :98 i .00 1.00 1.00 
16 .10 .28 :55 .80 .94 .99 1.00 1.00 1.00 
18 .10 .29 ;57 .8i .95 .99 LOO 1.00 1.00 
20 .10 .30 .58 .83. .95 ,99 1.00 1.00 1.00 
22 .11 .31 .60 .84 .96 .99 .1.00 1.00 1.00 
24 .11 .31 .61 .85 .96 \99 1;00 1.00 1.00 
26 .11 .32 :62 ;86 :97' 1.00 1.00 1.00 1.00 

.28 .11 .32 .63 .86 ·97 1.00 1.:00 1.00 1.00 
30 .11 .33 ,63 .87 .97' 1.00 1.00 1.00 1.00 
60 :13 .36 .68 ;90 .98 1.00 l.OO 1.00 1.00 

126 J3 .38 jo :Sl1 .98 1.00 LOG 1.00 1.00 
00 .14 .40 .72 .92 .. 99 1.00 1.60 1.00 1.00 



TABLE B.ll 
Vl = 3 and ex = .05 

(continued) cp Power Values 
for Analysis of V2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Variance (fixed 1 .08 .10 .13 .16 .19 .22 .25 .28 .31 effects). 2 .11 .18 .27 .38 .48 .58 .68 .76 .82 

3 .14 .26 .42 .58 .73 .84 .92 .96 .98 
4 .17 .33 .53 .72 .86 .94 .98 .99 1.00 
5 .19 .38 .61 .81 .93 .98 .99 1.00 1.00 
6 .21 .43 .67 .86 .96 .99 1.00 1.00 1.00 
7 .22 .46 .72 .89 .97 1.00 1.00 1.00 1.00 
8 .24 .49 .75 .92 .98 1.00 1.00 1.00 1.00 
9 .25 .51 .77 .93 .99 1.00 1.00 1.00 1.00 

10 .25 .53 .79 .94 .99 1.00 1.00 1.00 1.00 
12 .27 .56 .82 .96 .99 1.00 1.00 1.00 1.00 
14 .28 .58 .84 .97 1.00 1.00 1.00 1.00 1.00 
16 .29 .60 .86 .97 1.00 1.00 1.00 1.00 1.00 
18 .29 .61 .87 .97 1.00 1.00 1.00 1.00 1.00 
20 .30 .62 .87 .98 1.00 1.00 1.00 1.00 1.00 
22 .3; .63 .88 .98 1.00 1.00 1.00 1.00 1.00 
24 .31 .63 .89 .98 1.00 1.00 1.00 1.00 1.00 
26 .31" .64 .89 .98 1.00 1.00 1.00 1.00 1.00 
28 .32 .65 .89 .98 1.00 1.00 1.00 1.00 1.00 
30 .32 .65 .90 .98 1.00 1.00 1.00 1.00 1.00 

60 .34 .68 .92 .99 1.00 1.00 1.00 1.00 1.00 
120 .35 .70 .93 .99 1.00 1.00 1.00 1.00 1.00 
00 .36 .71 .93 .99 1.00 1.00 1.00 1.00 1.00 

Vl = 3 and ex = .01 
cp 

V2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

1 .02 .02 .03 .03 .04 .04 .05 .06 .06 
2 .02 .04 .06 .09 .12 .16 .20' .24 .29 
3 .03 .06 .12 .19 .27 .37 .47 .58 .67 
4 .04 .09 .18 .30 .45 .59 .72 .83 .90 
5 .05 .12 .25 .42 .60 .76 .87 .94 .98 

6 .06 .15 .31 .51 .71 .86 .94 .98 .99 
7 .06 .17 .36 .59 .79 .91 .97 .99 1.00 
8 .07 .20 .41 .65 .84 .95 .99 1.00 1.00 
9 .08 .22 .45 .70 .88 .97 .99 1.00 1.00 

10 .08 .23 .48 .74 .91 .98 1.00 1.00 1.00 

12 .09 .26 .54 .79 .94 .99 1.00 1.00 1.00 
14 .10 .29 .58 .83 .96 .99 1.00 1.00 1.00 
16 .10 .31 .61 .86 .97 1.00 1.00 1.00 1.00 
18 .11 .32 .63 .87 .97 1.00 1.00 1.00 1.00 
20 .11 .34 .65 .89 .98 1.00 1.00 1.00 1.00 

22 .12 .35 .67 .90 .98 1.00 lJlO 1.00 1.00 
24 .12 .36 .68 .91 .98 1.00 1.00 1.00 1.00 
26 .12 .37 .69 .91 .99 1.00 1.00 1.00 1.00 
28 .12 .37 .70 .92 .99 1.00 1.00 1.00 1.00 
30 .13 .38 .71 .92 .99 1.00 1.00 1.00 1.00 

60 .14 .43 .77 .95 .99 1.00 1.00 1.00 1.00 
120 .15 .46 .80 .96 1.00 1.00 1.00 1.00 1.00 
00 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00 



TABLE B.l 1 =' 4an:(r~,~";05, 
,'i 

'Yl 
(continued) 

d;: Power Values _ < ~ ..'--o~ 
" .. ', .. ,,' 

Analysis ,'i~ 1:0 ~:s: 
.,. 

'319" .' "c,~:~ 4,0 4;5: 'i9· for of V2 ,1 . .0', 
Variance (fixed ,OS: Ao ,.1) ~:i~; .. 

';,1,~ .~~f 
~,:,; 

::~~ 
'1 .7.1. ;27 

effects). 2, .11 , . .l~ .26 ;3.6 /!6 ';56 .~6· .74 
.41 

>-,.,., 

3 .J4 .26 .;57 .12 ,133; .• !?]: ,96 ;;98, 
4 .l'7 .~a .53 i7l, ;~tl 94, ,.98 .99, .hOP 

.5 .19 .39 .62 ;8'1 :93 ~9i' :1:00 1:.0:0 1,OQ 
6 .:21 ;.43 .~~ .87 \96 .99 '1':00 hOO }.Op 

.~< 

047 ~~~, 1.QO 7 .;23 ,.73' ,Sl.!3 1.00' l!;oO. k:gg· & :24. .59 .77 .99 'i.oo 1~6.o. 1~00 
.25, .95 

,-~:, ' ./':'-. -----, 

1.00 Sl ,'5,3 ,;80, };J9 hPP; hOO :1,.00 
:82 ,99.- '1:.00 

'-~:- ". ;",/ 
10 .26 ;55 :96 LOa l.go .1;00 

,"' 

12 ·;28, .?9 .~Y '97 l';~O ,1.00 {FQo 1-;0,0 1.00: 
14 ,29 ;61 .~17 ~98 J~.qo ·1,.00 hOO 1.00. J,~OO 

'16 .63 --,"-..,:'-,' 
,.3Q .;;89 .98 1'.Q0~ 1':00: "LOO 1.00 1.00 

18 i.oO ~l:~~ 1:06 
.'''. j>, 

3t .65 ·90 .99 1.00 hO(j, 
io .3.2 .66 :91" :99 i ;00. 1.00 EOO 1:00 -'" ~, " 

.. 

22 :33; .67 .91; ~'9.9 );oi=i 'fob' '1:00 'LOP, 1~OQ 
~4 :3'3 .68 i92: :9? 1.00 {:~g: 1.00 1.00' ~iZg - <.-', 

l~o:O 29 :3;~, . 69 ,,?2 :?~ .'1.00 •• 1-00 
28· ,.34 .69 ;?~ .99' foo' 1'.00 1;00 1 .po, I,pO 
30 34 .:70 ,.93 ·99 1,QO "t':op 1\60 1-,00: l.Qo 
66 37, j4 ,9~ hOQ 1:00 1.00 1;00 1.00 :1':06 

1'20 .3§ .76 .. 96' .1:.00 1.06: f06 1:00 J.OO T;QIl 
oq' .39 ,.lit .96 1.00 1:00 1:00 l:PO' 1.00 1;00 

Vl =;:4' and~;;===. ,91 
fp." 

'1'.0~ 1: • .5 ,2:P ~.5 is' ~Q 4.5 '. 
5~0, 'v:c ~~O' 

---~ 

.02 " 
.03, ;Q4! ,C-;-'''-'' '" 

:05 
.. ". 

'.05 
l' 

.Q6 :i .02 ;0,3. ,0,4 
2 .,Oi .64 ;06 :08 ;)2 ':15 ,19, .23 :,?8 
3 :0.3 .06; .11 :l8 .16 :36 AQ . .s6 .65 
4 ,04 .c)9' '.18 ;}O :4li t59 . .7l ;J12 .90 
'5 .05 ."2 :25 .42 .60 ,,76 .88 ,;94 :98 

6 ~06 ;15 ,;32 ;52 .72 .87 ,9:5., .98 1~00 
7 :06, .18 .38 ;61' ;ai. .93 .98 .99 1:00 
8, .07 ,?O ;43 ';68 :86 :96, ".9Sl 1,,00 ,.~OO 

9 ~08 ,Z3 047 ;n .90 ;97 LPO 1,00 1,pO 
10, .08" ;15 .51 :77 ,9} ;98' 1,00 1;00 1.00 
12 .. 09 {is .S,§, .,83 ;96 ';~9, LoO 1.09 1'.00 
'14' .10 :;31 .62 Jll :97' l.QO LOO 1,00 Lob 
1;6 .11 :34 ,66 ;89 .9,8 ij,dQ 1:0'0 l:QO 1:00 
1.8 .'12 :36 .• 69 ;91 :99 1.00 :'.'00 1 .0.0 1:00 
20 ,.1:2 .71 ,1.00' 

."- •• <", 

1.0'0 .37 '.92 :99 1.00 1 .. 00 
22 

~ 
;13. .3'9 .73 .93 ,:99 1,09 1;00 hOG 1.0'0 

24 
: 

.1:3. :40 ,74, .9~ :99 1.00 1:0q 1.00 1..ao 
;26 ,:13 .41 ...7fj , -.95' ;99' 1;00 lOO 1.00 1.PO, 
28 0;4 A2 .7,7 .. 95 1.po J§Q: dlO too l:QQ 
;30 .14: A3 ·Z8 ,;96, 1'.00 l.OO: '1.0'0' ".00 J,OO 

:60 .16 ;4? .B,4· .98, U)O top, LOO 1':0,0 21·PQ )'20 .'17 ~53 :86: ;9.8 1;00; ~·1·90: '1,00 hQQ 1,00 
00 ,;19 ;56 .88 .99' LoO ,1.00 1;00 1.00 ;1:.00 



TABLE B.ll 
Vl = 5 and ex = .05 

(continued) 
Power Values cp 
for Analysis of V2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Variance (fixed 

1 .08 .10 .12 .15 .18 .20 .23 .26 .29 effects). 2 .11 .17 .26 .35 .45 .55 .64 .72 .79 
3 .14 .25 .40 .56 .71 .83 .91 .95 .98 
4 .17 .32 .53 .72 .86 .94 .98 .99 1.00 
5 .19 .39 .62 .82 .93 .98 1.00 1.00 1.00 
6 .21 .44 .70 .88 .97 .99 1.00 1.00 1.00 
7 .23 .48 .75 .92 .98 1.00 1.00 1.00 1.00 
8 .24 .52 .79 .94 .99 1.00 1.00 1.00 1.00 
9 .26 .55 .82 .96 .99 1.00 1.00 1.00 1.00 

10 .27 .57 .84 .97 1.00 1.00 1.00 1.00 1.00 
12 .29 .61 .88 .98 1.00 1.00 1.00 1.00 1.00 
14 .30 .64 .90 .99 1.00 1.00 1.00 1.00 1.00 
16 .32 .66 .91 .99 1.00 1.00 1.00 1.00 1.00 
18 .33 .68 .92 .99 1.00 1.00 1.00 1.00 1.00 
20 .34 .70 .93 .99 1.00 1.00 1.00 1.00 1.00 
22 .34 .71 .94 .99 1.00 1.00 1.00 1.00 1.00 
24 .35 .72 .94 1.00 1.00 1.00 1.00 1.00 1.00 
26 .36 .73 .95 1.00 1.00 1.00 1.00 1.00 1.00 
28 .36 .73 .95 1.00 1.00 1.00 1.00 1.00 1.00 
30 .36 .74 .95 1.00 1.00 1.00 1.00 1.00 1.00 

60 .40 .78 .97 1.00 1.00 1.00 1.00 1.00 1.00 
120 .41 .80 .97 1.00 1.00 1.00 1.00 1.00 1.00 
00 .43 .82 .98 1.00 1.00 1.00 1.00 1.00 1.00 

Vl = 5 and ex = .01 
cp 

V2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

1 .02 .02 .02 .03 .04 .04 .05 .05 .06 
2 .02 .04 .06 .08 .11 .15 .18 .22 .27 
3 .03 .06 .11 .18 .26 .35 .45 .55 .64 
4 .04 .09 .18 .30 .44 .59 .72 .82 .90 
5 .05 .12 .25 .42 .61 .77 .88 .95 .98 

6 .06 .15 .32 .53 .73 .88 .95 .99 1.00 
7 .06 .18 .39 .63 .82 .93 .98 1.00 1.00 
8 .07 .21 .44 .70 .88 .97 .99 1.00 1.00 
9 .0£ .24 .49 .75 .92 .98 1.00 1.00 1.00 

10 .09 .26 .54 .80 .94 .99 1.00 1.00 1.00 

12 .10 .30 .61 .86 .97 1.00 1.00 1.00 1.00 
14 .11 .34 .66 .90 .98 1.00 1.00 1.00 1.00 
16 .12 .36 .70 .92 .99 1.00 1.00 1.00 1.00 
18 .12 .39 .73 .94 .99 1.00 1.00 1.00 1.00 
20 .13 .41 .76 .95 .99 1.00 1.00 1.00 1.00 

22 .14 .43 .78 .96 1.00 1.00 1.00 1.00 1.00 
24 .14 .44 .79 .96 1.00 1.00 1.00 1.00 1.00 
26 .14 .45 .80 .97 1.00 1.00 1.00 1.00 1.00 
28 .15 .46 .82 .97 1.00 1.00 1.00 1.00 1.00 
30 .15 .47 .82 .97 1.00 1.00 1.00 1.00 1.00 

60 .18 .55 .88 .99 1.00 1.00 1.00 1.00 1.00 
120 .20 .59 .91 .99 1.00 1.00 1.00 1.00 1.00 
00 .21 .62 .93 1.00 1.00 1.00 1.00 1.00 1.00 



TABLE B.ll Vt ~6anda=::::.05 
(concluded) "--"" 

c::4J.c 
" ", 

Power Values 
for Analysis of 1.0 1:5 

cc 
2:«) :25 

cC 
c3 ·C)c'c Cc3~5 4.0 4.5 V2 5,0 

Variance (fixed 
1 .07c :10 .12 .15 .17 .20 .23 .25 .28 

effects). 2c .10 .17 .25 ;34 ;'44 :siL .63 .71 .78 
3 .14 .25 04(1' .56 j1 :82 ,90 .95 .98 
4 .16 .32. .53 .72 .86 .94 .98 .99 1.00 
5 :19 .3.9 .6~ J~i .94. .98 1.00 1.00 1.00 
6 ·f,l. A4 .70 .§9 .c;97: .99 LOO 1.00 1.00 
7 .23 .49 .79 .93 .98' '1.00 1.00 1.00 1.00 
8 . 25 .53 . .80 .95 ;.99' 1.00 1.00 1.00 1.00 
9 .26 .56 .83 :9.6c 1:00 Loo 1.00 1.00 1.00 

10 .28 .59 .86 .97 cJc:OO 1;00 1.00 1.00 1.00 
-~"'< 

12 .30 .63 .89 .98 1.00 1;00 1;00 1.00 1.00 
14 .32 .66 .~11 ;99 i.OO (00 1.00 1.00 1.00 
16 .33 .69 ~93 .99 cl :oo LOa LOO 1.00 1.00 
f8 .34 .71 ;94 .99 /~.oo {oo 1.00 1.00 1.00 
20 .35 ,73 :95 ':00 ':00, too Loo ,1.00 1.00 
22 .3? .74 :95 1:1;>0 Loo, 1:00 1·00 1.00 1.00 
24 .37 .75 .96 J,oo 1.00 1-00 1.00 1.00 1.00 
26 .37, .7fj .96 1.00 1.60 1,00 1.00 1.00 1.00 
28 .38 .77 .96 1.00 too 1.00 1:00 1.00 1.00 
30 .39 ,77 .97 1.00 LOO l;OP 1:00 1.00 1.00 

60 ·42: .82 ;98 1.00 1:00 1.00 1.00 1;00 1.00 
120 ;45 .84 .99 ':OQ f,do 1:00 1.00 1.00 1.00 
00 .47 ;86 .99 cl:(>O 1.00 1.00 .1.00 1.00 1.00 

. Vl:::::: 6}ln~ t:¥ = .C)'l 

P 
V2 1~0 1.5 2:0 :2,5 3.0c 3~5 4.0 4.5 5.0 

1 .01 .U2 c.02c ,63 .04 .04 .05 .05 .06 
i .02 .04 .06 .08 ;11 .14 .18 .22 .26 
3 .03 .06 .. 11 J7 .25 ,,35 045 .55 .64 
4 .04 .09 .18 .30 044 .59 ·72 .82 .90 
5 .05 ;12 .25 ·1c3 .61 .77 .88 .95 .98 

6 c.06 .J? .3} .54 .74 c·8S' .96 .99 1.00 
7 .07 '.19 .39 :64 .83 .94 .98. 1.00 1.00 
8 .07 ;22 .46 ;71 )19 .97 .99 1.00 1.00 
9 :08 .24 .51 :'17 .9~ .98' 1.00 1.00 1.00 

10 .09 .27 A6c 
:82 .95 .99 1:00 1.00 1.00 

12 .10 .32 .. 64 .88 .98 1.00 ·1.00 1.00 1.00 
14 .11 .36 ;69 .92 :99 1.00 1.00 1.00 1.00 
16 .12 .?9 }3 ;94 .99 too i.oo 1.00 1.00 

.13 Al .. 77 .95 Lao 
," -:"< 

~.:OO 18 .1:00 1.00 1.00 
20 .14 .44 .79 :96 l.OCh hob 1.00 1.ob 1.00 

22 .14 .46 .81 ;97, .1.00 cLOO LaO 1.00 1.00 
" /~.-:; 

>@o 1:00 r. 24 .15 .48 .83 .98 1.90' 1.00 1:00 
'26 .i6 A9~ 

.c 
too 1.00 .84 .98 ,1.(jO, 1.00' 1.00 

28c .16 .50 .85 ,.98, 1.00 .1:gi) 1'00 1.00, 1.00 
30 .i6 :$1 .86 .98 i.Oo 'LoO 'iloo 1.00 1.00 

60 :20 .60 c .92c :99 l;QO" 1.00 'Loo 1.00 1.00 
120 ;22 ;65 .94 Hio :1,00 1'.00. '1:00 1.00 1.00 
00 .24 .69 .96 1.00 1.00 (00 1.00 1.00' LOO 



... 
~ 

TABLE B.12 Table for Determining Sample Size for Analysis of Variance (fixed factor levels model). 

Power 1 - f3 = .70 

~/(F = 1.0 ~/(F = 1.25 ~/(F = 1.50 ~/(F = 1.75 ~/(F = 2.0 ~/(F = 2.5 ~/(F = 3.0 
a a a a a a a 

r .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 

2 7 11 14 21 5 7 cJ 15 4 6 7 11 3 4 6 9 3 4 5 7 2 3 4 5 2 3 3 5 
3 9 13 17 25 6 9 11 17 5 7 8 12 4 5 7 10 3 4 5 8 3 3 4 6 2 3 3 5 
4 11 15 19 28 7 10 13 19 5 7 9 13 4 6 7 10 4 5 6 8 3 4 4 6 2 3 4 5 
5 12 17 21 30 8 11 14 20 6 8 10 14 5 6 8 11 4 5 6 9 3 4 5 6 3 3 4 5 
6 13 18 22 32 9 12 15 21 6 9 11 15 5 7 8 12 4 5 7 9 3 4 5 7 3 3 4 5 
7 14 19 24 34 9 13 16 22 7 9 11 16 5 7 9 12 4 6 7 10 3 4 5 7 3 3 4 5 
8 15 20 25 35 10 13 16 23 7 10 12 17 6 7 9 13 5 6 7 10 3 4 5 7 3 3 4 5 
9 15 21 26 37 10 14 17 24 7 10 12 17 6 8 9 13 5 6 8 10 3 4 5 7 3 4 4 6 

10 16 22 27 38 11 14 18 25 8 10 13 18 6 8 10 14 5 6 8 11 4 5 6 7 3 4 4 6 

Power 1 - f3 = .80 

~/(F = 1.0 ~/(F = 1.25 ~/(F = 1.50 ~/(F = 1.75 ~/(F = 2.0 ~/(F = 2.5 ~/(F = 3.0 
a a a a a a a 

r .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 ;01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 .01 .2 .1 .05 ,01 

2 10 14 17 26 7 9 12 17 5 7 9 13 4 5 7 10 3 4 6 8 3 3 4 6 2 3 4 5 
3 12 17 21 30 8 11 14 20 6 8 10 14 5 6 8 11 4 5 6 9 3 4 5 7 3 3 4 5 
4 14 19 23. 33 9 13 15 22 7 9 11 16 5 7 9 12 4 6 7 10 3 4 5 7 3 3 4 5 
5 16 21 25 35 10 14 17 23 8 10 12 17 6 8 9 13 5 6 7 10 4 4 5 7 3 4 4 6 
6 17 22 27 38 11 15 18 25 8 11 13 18 6 8 10 13 5 7 8 11 4 5 6 8 3 4 4 6 
7 18 24 29 39 12 16 19 26 9 11 14 18 7 9 10 14 5 7 8 11 4 5 6 8 3 4 5 6 
8 19 25 30 41 12 16 20 27 9 12 14 19 7 9 11 15 6 7 9 12 4 5 6 8 3 4 5 6 
9 20 26 31 43 13 17 21 28 9 12 15 20 7 9 11 15 6 7 9 12 4 5 6 8 3 4 5 6 

10 21 27 33 44 14 18 21 29 10 13 15 21 8 10 12 16 6 8 9 12 4 5 6 8 3 4 5 6 



... 

TABLE B.12 (concluded) Table for Determining Sample Size for Analysis of Variance (fixed factor levels model). 
; ... ,'. ;;;',~-T""~-~-;-~----:-------'----'---

Power:1 -f3= .90 
'~,' " " '<, < ' 

4:/0-,=1;0 '" , 'Ai~=::ol:25 aj&=:1.S0 
. d 

Aid: = (75 ',' alQ'~ 2;9 " ''a/ri'===2.5, "A":t,.. ';"""'3'0 ~'(_v·,-::-:-:, . .• 

a a ('l!, a a 
. ~",,'1 '. 

.1 :05 

2 ,,1418 23 
3 11 22 21 
420 25: 30 
5 21' 2132 

r .2 
" 

; .• ~~ ~,~i~ 
826 3238 
9 27 ;33 4(), 
10.~S' ,35 41 

.()j 

32 
3t 
40 
43' 
46, 
48 
50 
52: 
5l!i 

.2" .1.~~ . .lil .?, ;'1'" ;()S 

'9 12 15 21 7 9 11 
fl' 15 18'24 811 1:3 
13 1'6 20 :27 9: ~k i 4 
14 18 2J'2S: 1() 13 lS 
l5 1:9233,0 n. i l'4; 16' 
16 2624 31 11 14:1"7 
,1:721: 2'533·' 12. ':5: 18 
172226 3:4 13 1'618 
18 2327 35 13 16 19 , '., ... " 

.OS, .flJ 
15 5 1 8, 12 
18 68Hi' h 
39 7'911 is 
20 8 1012 15 
21 8 10 'F2' '16 
22' 9 Tl13 11 
23 9' '11 13'11 

)~~ i~ l~~' ri' ;}~ 

.01 :2 ,;l 

Pbwe(1,~),8==,~5~ ,', 

.2 ;1 ,~OS .Ql .2 i1::0S ,01~2 .:1.05 .01 

4 6 7 JP 3 45 1 33 1, 6 
5 ,,78 11' A 5:' .6,8 3,;.4 5 6 
6 '1 9'12 4 5 6,;8,j '45: ,6 
6 8" 912 ,4, 5' 6 9' 4. 45 1 
1 8 1:013 5 6 7 9 4"4 ,5 1 
1 9 {O Yi~ 5'6 '1 9; 4' ;5 '5 1 

~, '~: n~ '1:f~; ~' l~; !' '.'~ •• ~ ; 
8' lP, 1'1 1:5, :5 '1 8, 104 ',,5 :,6 T 

Ajo-=d:O ~;.O'---:-== ~is: -,~I~'=li;s()-'~A/i7:::::.f'7S ,a/i:F='2~6 A/o-~:g:~ 4/~:~~.0 
(j 

, r';~ ---::f~~6s;:0~ 
2 18\2g2738 
3: :22,,2,7 ,32 -4.3 
4: 2,$: '~'q ~,6 4,7 
5 21 33 39 ;51 
6' 29 35 4153 
1 gO 31 43 56 
,8 32 39 455.8 
9 33 40, 41 60 

10 34 42 48 62 

~ 'a, 

:2 ,':~li,05,;0:1 ,Yl. ,.;1:';0$:' :.()t 
12 '151'8:'25'9 10r 13 1S' 

~:~: i!g"~~:,:~i l~};~ ,~!~. ~g 
f8'~22:S: 33' ',1315'18' 23 
19 ;:23' :2135 :<1316 19"25 
2024 28 '3614 17 .20· 26 
2125 29 38 1518' 21 2/ 
22,26 3()' 39 15'1922: 28 
22 27 31 4016 1;92,:2, 29 

'& 

.~: • .1 iQs, )jl.2 c
.-,) 

781'014'5 Y 
:8 1012 16 68 
,9 11:13 11'79 

TO 1i +4 18.8 '9 
101:214 19 810 
J,11315 19 '810 
11 14 :1:6 20911 
1214 16 21 :9 ]:1 
121'511 2191'4 

a 

;05' 

S 
,9 

1'0 
(i 
1':1 
12, 
12: 
13 
13, 

.01: 

.1'1, 
,J2, 
'13: 
f4 
15 
is 
16 

"6 ,1,7 

,ia: 

,2.1 ,OS 
A:s; ,6 
:S" ;6 :,7 
'~:6 /' 
5 .6:/ 
67 8 
6 1 8 
'6 7 '8 
6,89 
,6.8::Q 

;(tl 
B 

;:~. 
1'0 
1.0 

';l~\ 
H 

"',1 
" 

'a' 

.2:;,J;(iS, .01 

3 !if 5 6 
4, 4. 5 1 
4' ,5:. 5 1 
4. S 6' 1 
4:5, ($ 8 
4 5,' 6 8 
,,' , . ~.' 

5": 5, 6 8 
5" ,6: 6, 8 

".§:,6: 78 

~ Source, Reprinted, with permission, from T. L Bratcher, M. A. Moran, and W. J. Zimmer, "Tables of Sample Sizes in the Analysis of Variance," Journal of Quality Technology 2 (1970), pp. 156-64. Copyright 
u.J American Society for Quality Control, Inc. 
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TABLE B.13 
Table of 
'L/ii/u for 
Determining 
Sample Size to 
Find "Best" of 
r Population 
Means. 

TABLE B.14 
Selected 
Standard Latin 
Squares. 

Number of 
Populations (r) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Probability of Correct Identification 
(1- ex) 

.90 

1.8124 
2.2302 
2.4516 
2.5997 
2.7100 
2.7972 
2.8691 
2.9301 
2.9829 

.95 

2.3262 
2.7101 
2.9162 
3.0552 
3.1591 
3.2417 
3.3099 
3.3679 
3.4182 

.99 

3.2900 
3.6173 
3.7970 
3.9196 
4.0121 
4.0861 
4.1475 
4.1999 
4.2456 

Source: Reprinted, with permission, from R. E. Bechhofer, "A Single-Sample Multiple Decision 
Procedure for Ranking Me-,ms of Normal Populations with Known Variances," TIle Annals of 
Mathematical Statistics 25 (1954), pp. 16-39. 

3x3 4x4 

1 2 3 
A B C A B C D A B C D A B C 
B C A B A D C B C D A B D A 
C A B C D B A C D A B C A D 

D C A B D A B C D C B 

5x5 6x6 

A B c: D E A B C D E F A B 
B A E C D B F D C A E B C 
C D A E B C D E F B A C D 
D E B A C D A F E C B D E 
E C D B A E C A B F D E F 

F E B A D C F G 
G A 

8x8 9x9 

A B C D E F G H A B C D E F 
B C D E F G H A B C D E F G 
C D E F G H A B C D E F G H 
D E F G H A B C D E F G H I 
E F G H A B C D E F G H I A 
F G H A B C D E F G H I A B 
G H A B C D E F G H I A B C 
H A B C D E F G H I A B C D 

I A B C D E 

4 
D A B C D 
C B A D C 
B C D A B 
A D C B A 

7x7 

C D E F G 
D E F G A 
E F G A B 
F G A B C 
G A B C D 
A B C D E 
B C D E F 

G H I 
H I A 
I A B 
A B C. 
B C D 
C D E 
D E F 
E F G 
F G H 
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TABLE B.15 Selected Balanced Incomplete Block Designs. 

Design 1: r=4, rb=2, Design 2: r=:=4frb~}, 
nb=6, n=3, np=l nb = 4, n,==,3, Pp =:=:?-

Design3: r=5, rb=2, "Design 4: r = 5,;F,b =3, 
. n~=JO, n=4!np=1· , nb=10, n=6;hp='3' 

Block Treatments Block Tr~atrTIe.i~ Blcick Treatments Block T reatfJlents 

1 1 2 1 1 2 3 1 1 2 1 1 2 3 
2 3 4 2 1 2. .4 2 3" 4: 2 1 2 5. 
3 1 3 3 1 3 4 
4 2 4 4 2 3 A 

3 2 ,~, 3 1 4 5 
4 '1 3 4 2 3 4 

5 1 4 s '4 5 S 3 4 5 
6 2 3 6 1 -4 6 1 2 4 

<7 2 3.; 7 1 3 4 
8 3 S 8 1 3 5 
9 1 5' 9 2 3 5 

)0 2 4 1,0 2 4 5 

Design 5: r=5, rb==4, Design 6: r=,6, rb == 2, Design 7;.r =6itb=3, Design 8: r = 6, rb = 3, 
nb=5, n=4, np=3 nb=15,n=;:5, np=:l ,nb=lOit1=5, t7p=2 nb=20in=10, n~=4 

Block Treatments Block Treatments Block Treatments Block T-:e~tments 

l' 1 2 3 4 1 1 2 1 1 2 5 1 1 2 3 
2 1 2 3 5 2 3 4 2 1 2 6 2 4 5 6 
3 1 2 4 5 3 5 6 -3 1 3 4 3 1 2 4 
4 1 3 4 5 4 1 3, 4 1 3 6 4 3 5 6 
5 2 3 4 5 5- 2' 5 5 J 4 5 5 1 2 5 

6 4, 6 6 2' 3 A 6 3 4 6 
7 1 4 <7 2 ~, 5 '1 1 2 6 
8 2 6, '8 2' 4 6: 8 3 4 5 
9 3 5 .9 3 :s 6 9 1 3 4 

10 ,1 5 TO 4 5 '6 10 2 5 6 
11 2 4' 11 1 3 5 
12 3 6 12 2 4 6 
13 1 6 13 1 3 6 
14 2 3' 14 2 4 5 
15 4 5 15 1 4 5 

16 2 3 6 
17 1 4 6 
18 2 3 5 
19 1 5 6 
20 2 3 4 
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TABLE B.15 (continued) Selected Balanced Incomplete Block Designs. 

Design 9: r = 6, rb = 4, Design 10: r = 6, rb = 5, Design 11: r = 7, rb = 2, 
nb = 15, n = 10, np = 6 nb = 6, n = 5, np = 4 nb = 21, n = 6, np = 1 

Block Treatments Block Treatments Block Treatments 

1 1 2 3 4 1 1 2 3 4 5 1 1 2 
2 1 4 5 6 2 1 2 3 4 6 2 2 6 
3 2 3 5 6 3 1 2 3 5 6 3 3 4 
4 1 2 3 5 4 1 2 4 5 6 4 4 7 
5 1 2 4 6 5 1 3 4 5 6 5 1 5 
6 3 4 5 6 6 2 3 4 5 6 6 5 6 
7 1 2 3 6 7 3 7 
8 1 3 4 5 8 1 3 
9 2 4 5 6 9 2 4 

10 1 2 4 5 10 3 5 
11 1 3 5 6 11 4 6 
12 2 3 4 6 12 5 7 
13 1 2 5 6 13 1 6 
14 1 3 4 6 14 2 7 
15 2 3 4 5 15 1 4 

16 2 3 
17 3 6 
18 4 5 
19 2 5 
20 6 7 
21 1 7 

Design 12: r = 7, rb = 3, Design 13: r = 7, rb = 4, Design 14: r = 7, rb = 6, 
nb = 7, n = 3, np = 1 nb= 7, n=4, np=2 nb = 7, n = 6,. np = 5 

Block Treatments Block Treatments Block Treatments 

1 1 2 4 1 3 5 6 7 1 1 2 3 4 5 6 
2 2 3 5 2 1 4 6 7 2 1 2 3 4 5 7 
3 3 4 6 3 1 2 5 7 3 1 2 3 4 6 7 
4 4 5 7 4 1 2 3 6 4 1 2 3 5 6 7 
5 5 6 1 '5 2 3 4 7 5 1 2 4 5 6 7 
6 6 7 2 6 1 3 4 5 6 1 3 4 5 6 7 
7 7 1 3 7 2 4 5 6 7 2 3 4 5 6 7 

'" 
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TABLE B.15 (continued) Selected Balanced Incomplete Block Designs. 
~ '~ ,-

Design 1 Z: r = 8" rb = Z, 
nb~8/ti= Z, np =·6 

De.sign 1~: r = 8, rb =2, Design 16: r = 8, rb =:4, 
nb =-28, n = Z, np = 1 nb ~-14, n = ~,Pp =.3 

--
Block' Treatments -Block Treatments BI6ck Treatments 

1 1 2 .~ 4 ';' 6 Z 
:2 1 2 3 4 5 6 ,8 

1 1 2 J 1 2 3 4 
2 3 :4 2 .s 6 Z 8 

.~ 1 2 .~ 4 5 ] .~ 
4 1 .2 3 4 6 "1 8. 

3 5 6 3 1 2 Z 8 
4 "1 '8 4 3 4 5 6 
'5 1 3 5 1 3 6 8 .5 1 .2 3 5 6 Z 8 
6 2 .8 6 2 -4 5 Z 6 1 2 4 5 6 7 .8 
"} :4 5 Z 1 4 6. Z Z 1 3 4 5 6 Z _8 
8 6 Z 8 4 3 5 8 8 2 3, 4 ;, 6 ."1 ;~ 

9 l 4 9 1 2 5. 6 
DesigJ'l18:r = 9 ]rb =3.1 
nb'=12, ,~-= 4, rip =1 

Block Treatments 

TO 2 Z 10. 3 4 Z 8 
1'1 3 .6 11 '1 3 .s 7 
';2' 5 8 12' 2 4 6 8 
13 1- 5 13 1" 4 5 j:}" 
14 .2 3 14 2 3, 6. Z 1 1 2 3 
1,;' 4 Z 2 1 4 Z 
16- 6 8 3 1 5 9 
'l.t 1 '6 :4 1 6 8 
18 2. 4 5. 2 4 9 
19 3, 8 6 2 5 8 
20 5- Z Z 2 6 Z 
21 1 Z 8 3 4 8 

9. 3 5 Z 
",' ~. 

10 " 3 6· 9 
i1 4" 5 6 

22 2 6 
2:t. 3 5 
74 4 8 
25 1 8 12 '7 8 9 
26 2 5 
2"1. 3 1 
28 4 6 
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Data Sets 

Data Set C.l SENIC 

Variable 
Number 

1 
2 
3 
4 

5 

6 

7 
8 
9 

10 
11 

12 

Thf!primary objective of the Study on the Efficacy of Nosocomial Infection Control (SENIC 
Pr~Ject) was to determine whether infection surveillance and control programs have reduced 
the rates of nosocomial (hospital-acquired) infection in United States hospitals. This data 
set consists of a random sample of 113 hospitals selected from the original 338 hospitals 
surveyed. 

Each line of the data set has an identification number and provides information on 11 other 
variables for a single hospital. The data presented here are for the 1975-76 study period. 
The 12 variables are: 

Variable Name 

Identification number 
Length of stay 
Age 
Infection risk 

Routine culturing 
ratio 

Routine chest X-ray 
ratio 

Number of beds 
Medical school affiliation 
Region 
Average daily census 
Number of nurses 

Available facilities 
and services 

Description 

1-113 
Average length of stay of all patients in hospital (in days) 
Average age of patients (in years) 
Average estimated probability of acquiring infection in hospital 

(in percent) 
Ratio of number of cultures performed to number of patients without 

signs or symptoms of hospital-acquired infection, times 100 
Ratio of number of X-rays performed to number of patients 
, without signs or symptoms of pneumonia, times 100 
Average number of beds in hospital during study period 
1 =Yes, 2=No 
Geographic region, where: 1 =NE, 2=NC, 3=S, 4=W 
Average number of patients in hospital per day during study period 
Average number of full-time equivalent registered and licensed 

practical nurses during study period (number full-time plus 
one half the number part time) 

Percent of 35 potential facilities and services that are provided 
by the hospital 

Reference: Special Issue, "The SENIC Project," American JOllmal of Epidemiology III (1980), pp. 465-653. Data obtained from Robert W. Haley, M.D., Hospital 
Infections Program, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333. 

1348 
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2 3 4 5 6 7 8 9 10 11 12 

1 7.13 55.7 4.1 9.0 39.6 279 2 4 207 241 60.0 
2 8.82 58.2 1.6 3.8 51.7 80 2 2 51 52 40.0 
3 8.34 56.9 2.7 8.1 74.0 107 2 3 82 54 20.0 

111 7.70 56.9 4.4 12.2 67.9 129 2 4 85 136 62.9 
112 17.94 56.2 5.9 26.4 91.8 835 1 1 791 407 62.9 
113 9.41 59.5 3.1 20.6 91.7 29 2 3 20 22 22.9 

Data Set C.2 CDI 

Variable 
Number 

1 
2 
3 
4 
5 
6 

7 

8 

9 
10 

11 

12 

13 

14 
15 
16 
17 

This data set provides selected county demographic information (CDI) for 440 of the most 
populous counties in the United States. Each line of the data set has an identification number 
with a county name and state abbreviation and provides information on 14 variables for a 
single county. Counties with missing data were deleted from the data set. The information 
generally pertains to the years 1990 and 1992. The 17 variables are: 

Variable Name 

Identification number 
County 
State 
Land area 
Total population 
Percent of population 

aged 18-34 
Percent of population 

65 or older 
Number of active 

physicians 
Number of hospital beds 
Total serious crimes 

Percent high school 
graduates 

Percent bachelor's 
degrees 

Percent below 
poverty level 

Percent unemployment 
Per capita income 
Total personal income 
Geographic region 

~ 

Description 

1-440 
County name 
Two-letter state abbreviation 
Land area (square miles) 
Estimated 1990 population 
Percent of 1990 CDI population 

aged 18-34 
Percent of 1990 CDI population 

aged 65 years old or older 
Number of professionally active nonfederal 

physicians during 1990 
Total number of beds, cribs, and bassinets during 1990 
Total number of serious crimes in 1990, including murder, rape, 

robbery, aggravated assault, burglary, larceny-theft, and 
motor vehicle theft, as reported by law enforcement agencies 

Percent of adult population (persons 25 years old or older) 
who completed 12 or more years of school 

Percent of adult population (persons 25 years old or older) 
with bachelor's degree 

Percent of 1990 CDI population with income below 
poverty level 

Percent of 1990 CDI labor force that is unemployed 
Per capita income of 1990 CDI population (dollars) 
Total personal income of 1990 CDI population (in millions of dollars) 
Geographic region classification is that used by the U.S. Bureau 

of the Census, where: 1 = NE, 2 = NC, 3 = S, 4 = W 

Source: Geospatial and Statistical Data Center, University of Virginia. 
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1 2 3 4 5 6 7 8 9 10 

1 Los_Angeles CA 4060 8863164 32.1 9.7 23677 27700 688936 
2 Cook IL 946 5105067 29.2 12.4 15153 21550 436936 
3 Harris TX 1729 2818199 31.3 7.1 7553 12449 253526 

438 Montgomery TN 539 100498 35.7 7.9 87 188 6537 
439 Maui HI 1159 100374 26.2 11.3 192 182 7130 
440 Morgan AL 582 100043 26.3 11.7 122 464 4693 

11 12 13 14 15 16 17 

70.0 22.3 11.6 8.0 20786 184230 4 
73.4 22.8 11.1 7.2 21729 110928 2 
74.9 25.4 12.5 5.7 19517 55003 3 

77.9 16.5 10.8 8.0 13169 1323 3 
77.0 17.8 5.7 3.2 18504 1857 4 
69.4 15.5 9.4 7.1 16458 1647 3 

Data Set C.3 Market Share 

Company executives from a large packaged foods manufacturer wished to determine which 
factors influence the market share of one of its products. Data were collected from a national 
database (Nielsen) for 36 consecutive months. Each line of the data set has an identification 
number and provides information on 6 other variables for each month. The data presented 
here are for September, 1999, through August, 2002. The variables are: 

Variable 
Number Variable Name 

1 Identification number 
2 Market share 
3 Price 
4 Gross Nielsen 

rating points 
5 Discount price 

6 Package promotion 

7 Month 
8 Year 

2 3 

1 3.15 2.198 
2 2.52 2.186 
3 2.64 2.293 

34 2.80 2.518 
35 2.48 2.497 
36 2.85 2.781 

Description 

1-36 
Average monthly market share for product (percent) 
Average monthly price of product (dollars) 
An index of the amount of advertising exposure that 

the product received 
Presence or absence of discount price during 

period: 1 if discount, 0 otherwise 
Presence or absence of package promotion during 

period: 1 if promotion present, 0 otherwise 
Month (Jan-Dec) 
Year (1999-2002) 

4 5 6 7 " 8 

498 1 1 Sep 1999 
510 0 0 Oct 1999 
422 1 1 Nov 1999 

270 1 0 lun 2002 
322 0 1 lui 2002 
317 1 1 Aug 2002 
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Data Set C.4 University Admissions 

The director of admissions at a state university wanted to determine how accurately students' 
grade-point averages at the end of their freshman year could be predicted by entrance test 
scores and high school class rank. The academic years cover 1996 through 2000. Each line 
of the data set has an identification number and information on 4 other variables for each 
student. The 5 variables are: 

Variable 
Number 

1 
2 
3 

4 
5 

Variable Name 

Identification number 
GPA 
High school class rank 

ACT score 
Academic year 

1 2 

1 0.980 
2 1.130 
3 1.250 

703 4.000 
704 4.000 
705 4.000 

Description 

1-705 
Grade-point average following freshman year 
High school class rank as percentile: lower 

percentiles imply higher class ranks 
ACT entrance examination score 
Calendar year that freshman entered university 

3 4 5 

61 20 1996 
84 20 1996 
74 19 1996 

97 29 2000 
97 29 2000 
99 32 2000 

Data Set C.S Prostate Cancer 

A university medical center urology group was interested in the association between 
prostate-specific antigen (PSA) and a number of prognostic clinical measurements in men 
with advanced prostate cancer. Data were collected on 97 men who were about to undergo 
radical prostectomies. Each line of the data set has an identification number and provides 
information on 8 other variables for each person. The 9 variables are: 

Variable 
Number Variable Name 

1 Identification number 
2 PSA level 
3 Cancer volume 
4 Weight 
5 Age 
6 Benign prostatic 

hyperplasia 
7 Seminal vesicle invasion 
8 Capsular penetration 
9 Gleason score 

Description 

1-97 
Serum prostate-specific antigen level (mg/ml) 
Estimate of prostate cancer volume (cc) 
Prostate weight (gm) 
Age of patient (years) 
Amount of benign prostatic hyperplasia (cm2) 

Presence Or absence of seminal vesicle invasion: 1 if yes; 0 otherwise 
Degree of capsular penetration (cm) 
Pathologically determined grade of disease using total score of two 

patterns (summed scores were either 6, 7, or 8 with higher 
scores indicating worse prognosis) 
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1 2 3 4 5 6 7 8 9 

1 0.651 0.5599 15.959 50 0 0 0 6 
2 0.852 0.3716 27.660 58 0 0 0 7 
3 0.852 0.6005 14.732 74 0 0 0 7 

95 170.716 18.3568 29.964 52 0 1 11.7048 8 
96 239.847 17.8143 43.380 68 4.7588 1 4.7588 8 
97 265.072 32.1367 52.985 68 1.5527 1 18.1741 8 

Adapted in part from: Hastie, T. J.; R. J. Tibshirani; and J. Friedman. The Elements of Sll1tiSlical Learning: Data Mining. Inference. and 
Prediction. New York: Springer-Verlag, 2001. 

Data Set C.6 Website Developer 

Variable 
Number 

1 
2 

3 
4 
5 
6 

7 
8 

Management of a company that develops websites was interested in determining which 
variables have the greatest impact on the number of websites developed and delivered to 
customers per quarter. Data were collected on website production output for 13 three-person 
website development teams, from January 2001 through August 2002. Each line of the data 
set has an identification number and provides information on 6 other variables for thirteen 
teams over time. The 8 variables are: 

Variable Name 

Identification number 
Websites delivered 

Backlog of orders 
Team number 
Team experience 
Process change 

Year 
Quarter 

1 
2 
3 

71 
72 
73 

2 

1 
2 
7 

7 
19 
12 

Description 

1-73 
Number of websites completed and delivered to customers 

during the quarter 
Number of website orders in backlog at the close of the quarter 
1-13 
Number of months team has been together 
A change in the website development process occurred during the 

second quarter of 2002: 1 if quarter 2 or 3, 2002; 0 otherwise 
2001 or 2002 
1,2,3,or4 

3 4 5 6 7 8 

12 1 3 0 2001 1 
18 1 6 0 2001 2 
26 1 9 0 2001 3 

36 13 14 0 2002 1 
37 13 17 1 2002 2 
26 13 20 1 2002 3 
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Data Set C.? Real Estate Sales 

Variable 
Number 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 

1 
2 
3 

520 
521 
522 

The city tax assessor was interested in predicting residential home sales prices in a mid­
western city as a function of various characteristics of the home and surrounding property. 
Data on 522 arms-length transactions were obtained for home sales during the year 2002. 
Each line of the data set has an identification number and provides information on 12 other 
variables. The 13 variables are: 

2 

Variable Name 

Identification number 
Sales price 
Finished square feet 
Number of bedrooms 
Number of bathrooms 
Air conditioning 
Garage size 
Pool 
Year built 
Quality 

Style 
Lot size 
Adjacent to highway 

3 4 

360000 3032 4 
340000 2058 4 
250000 1780 4 

133500 1922 3 
124000 1480 3 

95500 1184 2 

5 

4 
2 
3 

1 
2 
1 

Description 

1-522 
Sales price of residence (dollars) 
Finished area of residence (square feet) 
Total number of bedrooms in residence 
Total number of bathrooms in residence 
Presence or absence of air conditioning: 1 if yes; 0 otherwise 
Number of cars that garage will hold 
Presence or absence of swimming pool: 1 if yes; 0 otherwise 
Year property was originally constructed 
Index for quality of construction: 

1 indicates high quality; 
2 indicates medium quality; 
3 indicates low quality 

Qualitative indicator of architectural style 
Lot size (square feet) 
Presence or absence of adjacency to highway: 1 if yes; 0 otherwise 

6 7 8 9 10 11 12 13 

1 2 0 1972 2 22221 0 
1 2 0 1976 2 22912 0 
1 2 0 1980 2 21345 0 

0 2 0 1950 3 14805 0 
1 2 0 1953 3 28351 0 
0 1 0 1951 3 14786 0 

Data Set C.B Heating Egui2ment 

A manufacturer of heating equipment was interested in forecasting the volume of monthly 
orders as a function of various economic indicators, supply-chain factors, and weather in a 
particular sales region. Data by month over a four-year period (1999-2002) for this region 
were available for analysis. Each line of the data set has an identification number and 
provides information on 9 other variables. The 10 variables are: 
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Variable 
Number Variable Name 

1 Identification number 
2 Number of orders 
3 Interest rate 
4 New homes 

5 Discount 

6 Inventories 
7 Sell through 
8 Temperature deViation 

9 Year 
10 Month 

2 

1 121 
2 227 
3 446 

41 754 
42 1098 
43 1158 

Description 

1-43 
Number of heating equipment orders during month 
Prime rate in effect during month 
Number of new homes completed and for sale in sales region 

during month 
Percent discount (0-5) offered to distributors during month; value is 

usually 0, indicating no discount 
Distributor inventories in warehouses during month 
Number of units sold by distributor to contractors in previous month 
Difference between average temperature for month and 30-year 

average for that month 
1999, 2000, 2001, or 2002 
Coded 1-12 

3 4 5 6 

0.0750 64 0 3536 
0.0750 64 0 3042 
0.0750 65 0 2456 

0.0475 64 0 1417 
0.0475 65 0 1244 
0.0475 65 0 1465 

7 8 9 10 

615 2.22 1999 1 
813 0.28 1999 2 
704 0.79 1999 3 

927 0.81 2002 6 
877 0.28 2002 7 
809 0.50 2002 8 

Data Set C.9 Ischemic Heart Disease 

Variable 

A health insurance company collected information on 788 of its subscribers who had made 
claims resulting from ischemic (coronary) heart disease. Data were obtained on total costs 
of services provided for these 788 subscribers and the nature of the various services for 
the period of January 1, 1998 through December 31, 1999. Each line in the data set has an 
identification number and provides information on 9 other variables for each subscriber. 
The 10 variables are: 

Number Variable Name Description 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Identification number 
Total cost 
Age 
Gender 
Interventions 
Drugs 
Emergency room visits 
Complications 
Comorbidities 
Duration 

1-788 
Total cost of claims by subscriber (dollars) 
Age of subscriber (years) 
Gender of subscriber: 1 if male; 0 otherwise " 
Total number of interventions or procedures carried out 
Number of tracked drugs prescribed 
Number of emergency room visits 
Number of other complications that arose during heart disease treatment 
Number of other diseases that the subscriber had during period 
Number of days of duration of treatment condition 
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1 2 3 4 5 6 7 8 9 10 

1 179.1 63 0 2 1 4 0 3 300 
2 319.0 59 0 2 0 6 0 0 120 
3 9310.7 62 0 17 0 2 0 5 353 

786 2677.7 68 0 3 2 6 0 10 303 
787 1282.2 58 0 7 2 2 0 7 244 
788 586.0 56 0 4 4 6 0 3 336 

Data Set C.l0 Disease Outbreak 

This data set provides information from a study based on 196 persons selected in a probabil­
ity sample within two sectors in a city. Each line of the data set has an identification number 
and provides information on 5 other variables for a single person. The 6 variables are: 

Variable 
Number 

1 
2 
3 
4 

5 
6 

Variable Name 

Identification number 
Age 
Socioeconomic status 
Sector 

Disease status 
Savings account status 

Description 

1-196 
Age of person (in years) 
1 = upper, 2 = middle, 3 = lower 
Sector within city, where: 1 = sector 1, 

2 = sector 2 
1 = with disease, 0 = without disease 
1 = has savings account, 0 = does not have 

savings account 

Adapted in part from H. G. D,mtes, J. S. Koopman, C. L. Addy, et aI., "Dengue Epidemics on the Pacific Coast of Mexico," Illternntional 
Journal of Epideminlogy 17 (1988), pp. 178-86. 

Data Set C.ll IPO 

1 

1 
2 
3 

194 
195 
196 

2 

33 
35 

6 

31 
85 
24 

3 

3 
3 
2 

4 

1 
1 
1 

1 
1 
1 

5 

o 
o 
o 

o 
o 
o 

6 

1 
1 
o 

o 
1 
o 

Private companies often go public by issuing shares of stock referred to as initial public 
offerings (IPOs). A study of 482 IPOs was conducted to determine what are the character­
istics of companies that attract venture capital funding. The response of interest is whether 
or not a company was financed with venture capital funds. Potential predictors include the 
face value of the company, the number of shares offered, and whether or not the company 
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underwent a leveraged buyout. Each line of the data set has an identification number and 
provides information on 4 other variables for a single person. The 5 variables are: 

Variable 
Number Variable Name Description 

1 Identification number 1-482 
2 Venture capital funding Presence or absence of venture capital funding: 

1 if yes; 0 otherwise 
3 Face value of company Estimated face value of company from prospectus 

(in dollars) 
4 Number of shares offered Total number of shares offered 
5 Leveraged buyout 

1 2 

1 0 
2 0 
3 0 

480 0 
481 0 
482 0 

Presence or absence of leveraged buyout: 
1 if yes; 0 otherwise 

3 4 5 

1,200,000 3,000,000 0 
1,454,000 1,454,000 1 
1,500,000 300,000 0 

159,500,000 7,250,000 0 
165,000,000 11,000,000 0 
234,600,000 9,200,000 0 

Data Set C.12 Drug Effect Experiment 

This data set provides results adapted from an experiment in which the effects of a drug on 
the behavior of rats were studied. The behavior under consideration was the rate at which 
a rat deprived of water presses a lever to obtain water. The experiment was carried out in 
two parts. Variable 2 identifies the two parts of the study (1, 2). 

In Part I of the study, 12 male albino rats of the same strain and approximately the same 
weight were utilized. Variable 3 identifies each rat (1, .. , , 12). Prior to the experiment, 
each rat was trained to press a lever for water until a stable rate of pressing was reached. 
Two factors were studied in this experiment-initial lever press rate (factor A) and dosage 
of the drug (factor B). The 12 rats were classified into one of three groups according to their 
initial lever press rate. Variable 4 identifies the level of the initial lever press rate (1, 2, 3). 
Levell is a slow rate, level 2 a moderate rate, and level 3 a fast rate. The levels were defined 
such that one third of the rats were classified into each of the three le~ls. 

Four dosage levels of the drug were studied, including a zero level consisting of a saline 
solution. Variable 5 identifies the drug dosage (1, ... ,4). All dosage levels were specified 
in terms of milligrams of drug per kilogram of weight of the rat. 

One hour after a drug dosage injection was administered, an experimental session began 
during which the rat received water each time after the second lever press. This reinforce­
ment schedule will be denoted by FR-2. Each rat received all four drug dosage levels in a 
random order. Each of the four drug dosages was administered twice, thus providing two 
observation units for each treatment. Variable 6 identifies the observation unit (1, 2). 
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The response variable was defined as the total number of lever presses divided by the 
elapsed time (in seconds) during a session for the given treatment. Variable 7 is the response 
variable. 

In Part II of the study, another 12 albino male rats of the same strain and approximately 
the same weight as the rats used in Part I were used. Variable 2 identifies this part of the 
study, and variable 3 identifies the 12 additional rats (13, ... ,24). The experimental design 
for Part II of the study was exactly the same as for Part I, except that each rat received water 
each time after the fifth lever press. This reinforcement schedule will be denoted by FR-5. 
Variable 2 identifies the reinforcement schedule since Part I of the study used schedule FR -2 
while Part II of the study used schedule FR-5. The reinforcement schedule thus is another 
factor (factor C) that was studied in the combined experiment. 

To summarize, the variables for this experimental design are: 

Variable 
Number 

1 
2 

3 
4 

5 

6 
7 

Variable Name 

Identification number 
Part of study 

(factor C: reinforcement schedule) 
Rat identification 
Initial lever press rate 

(factor A) 

Dosage level (mg/kg) 
(factor 8) 

Observation unit 
Response variable-lever 

press rate 

Description 

1-192 
1 :Part I (FR-2) 
2:Part II (FR-5) 
1-24 
l:Slow 
2:Moderate 
3:Fast 
1 :0 (saline solution) 
2:.5 
3:1.0 
4:1.8 
1,2 
Total number of lever 

presses divided by elapsed 
time in seconds 

Reference: T. G. Heffner; R. B. Drawbaugh; and M.J. Zigmond. "Amphetamine and Operant Behavior in Rats: Relationship 
between Drug Effect and Control Response Rate." Journal of Comparative and Physiological Psychology 86 (1974). pp. 1 031-43. 

1 2 

1 1 
2 1 
3 1 

190 
191 
192 

2 
2 
2 

3 

24 
24 
24 

4 

3 
3 
3 

5 6 7 

1 1 .81 
2 1 .80 
3 1 .82 

2 2 2.98 
3 2 2.47 
4 2 1.51 



Appendix 

Rules for Developing 
ANOVA Models and Tables 
for Balanced Designs 
In this appendix, we present and illustrate rules for developing models for nested and/or 
crossed factor designs, for finding the appropriate sums of squares and degrees of freedom 
for the needed mean squares, and for finding the expected values of the mean squares. The 
rules in Sections D.I-D.3 apply to all balanced designs with two or more replications and 
with no interactions assumed to equal zero. The rule modifications in Section D.4 show 
how these rules need to be modified to make them applicable to balanced designs with no 
replications and/or with some interaction terms assumed to equal zero. 

As noted earlier, a design is balanced in the nested case when (1) the number of factor 
levels of a nested factor is the same for each level of the factor in which the nesting 
takes place, and (2) the number of replications is constant for the different fa<;:tor level 
combinations. In the crossed case, a design is balanced whenever the number of replications 
is constant for all factor level combinations. In a subs amp ling design, balance requires that 
the subs ample sizes at each stage of sampling be constant. 

D.1 Rule for Model Development 

Rule (D.l) 

1358 

We begin by presenting a rule for the development of a nested and/or crossed factor design 
model. This rule is applicable when no interactions are assumed to equal zero. We shall 
utilize as an illustration the training school example of Table 26.1, where the effects of three 
schools (factor A) and two instructors within each school (factor B) were studied and two 
replications were made in each instance. 

" Step 1. Include an overall constant and a main effect term for each factor. taking into 
account when one factor is nested within another. 

Example For the training school example, we include: 

fJ., •• (Xi (3j(i) 

Note that factor B is nested within factor A. 
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Step 2. Include all interaction terms except those containing both a nested factor and the 
factor within which it is nested. 

Example Since factor B is nested within factor A, the AB interaction term (the only 
possible interaction term here) is not included. 

Step 3. Interactions between a nested factor and another factor with which the nested 
factor is crossed are always themselves nested. 

Example For the training school example, this situation does not arise. 

Step 4. Include the error term, which is nested within all factors. 
Since the model formulation will be used for developing the needed ANOVA sums of 

squares, degrees of freedom, and expected mean squares, we now need to recognize that 
the error term 8 is nested within a factor level combination. That is, the kth experimental 
unit when factor A is at levelland factor B is at level 1 is not the same unit as the kth 
experimental unit for another factor level combination. 

Example For the training school example the error term is Ck(ij)' and the appropriate 
model therefore is: 

Yijk = fJ., •• + ai + (3j(i) + Ck(ij) 

i = 1,2,3; j = 1,2; k= 1,2 
(0.2) 

D.2 Rule for Finding Sums of Squares and Degrees of Freedom 

This rule is applicable to all balanced designs with two or more replications and with no 
interaction terms assumed to equal zero. We shall continue to consider the training school 
example where factor B is nested within factor A. It does not matter for this rule whether 
the factor effects are fixed or random. 

Rule (D.3) for Definitional Forms of Sums of Squares 
and Degrees of Freedom 

Step 1. Write the model equation. 

Example The model equation for the training school example was given earlier. We show 
this model now in its general form, where factor A has a levels, factor B has b levels, and 
there are n replications: 

Yijk = fJ., •• + ai + (3j(i) + Ck(ij) 

i=I, ... ,a; j=I, ... ,b; k=I, ... ,n 
(D.2a) 

Step 2. For each model term other than the overall constant, write the associated SS 
notation. 

Example We do this for the training school example in columns 1 and 2 of Table D.l for 
ai, (3j(ih and 8k(ij). The line for Total will not be completed until step 9. 

Step 3. Each sum of squares will have as coefficient the product of the limits of the 
subscripts not appearing in the model term. The coefficient is taken to be 1 if all subscripts 
appear in the model term. 
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TABLE D.l Derivation of Sums of Squares Formulas for Nested Two-Factor Experiment (B nested within A). 

(1) (2) 
Model 
Term 55 

Cij SSA 

f3j(i) SSB(A) 

E:k(ij) SSE 

Total ssm 

(3) (4) (5) (6) (7) (8) 
Symbolic Term to Sum of Degrees 

Coefficient L Product Be Squared Squares of Freedom 

bn L i -1 Y; .. - Y. •• bn L(Yt .. - y' .. )2 0-1 
j 

n LL i(j-1)=ij-i Y;i· - Yj •• n L L(Ytj· - Y; .. )2 0(b-1) 
I j j j 

LLL (k - l)i j = i j k - i j Yijk - Y;j. L L L(Yijk - Ytj.)2 ob(n-1) 
j - j k i j k 

Yijk - Y. •• L L L(Yijk - y' .. )2 obn-1 
i j k 

Example The coefficients for our example are shown in column 3 of Table D.l. For 
instance, Cij does not contain j and k. These subscripts have limits of band n, respectively. 
The coefficient for the SSA term is therefore bn. Since the model term ek(ij) contains all 
subscripts, the coefficient is taken to be I here. 

Step 4. Each sum of squares is summed over all of the subscripts of the model term, 
whether in parentheses or not. 

Example The summations for our example are shown in column 4. For instance, the sum 
of squares term corresponding to Cii is summed over i, the only subscript in that model term. 
Similarly, the sum of squares term corresponding to ek(ij) is summed over i, j, and k since 
all of these appear in the model term. 

Step 5. Fonn a symbolic product from the subscripts of the model tenn, using the subscript 
if it is in parentheses, and the subscript minus 1 if it is not in parentheses. Expand the product. 

Example The symbolic products for our example are shown in column 5. For instance, 
for Cii the symbolic product is i-I. For (3j(i), the symbolic product is i(j - 1) = ij - i. 
For ek(ij), the symbolic product is (k - l)ij = ijk - ij. 

Step 6. The typical tenn to be squared consists of means of the observations with the 
subscripts consisting of the symbolic product tenn and dots elsewhere. The sign of each 
mean is that of the symbolic product. A 1 refers to the overall mean. 

Example The terms to be squared for our example are shown in column 6. Note that for 
Cii, the symbolic product is i-I, and the typical term to be squared theref~re is: 

Yj .. - Y. .. 

For (3j(i) the symbolic product is ij - i, and hence the typical term to be squared is: 
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Similarly, for 8k(ij) , the symbolic product is ij k - ij. Hence the typical term to be squared is: 

Note that we write the first term as Yijk since it is not averaged over any subscript. 

Step 7. Combining the steps of squaring, summing, and multiplying by the coefficient 
yields the appropriate sums of squares. 

Example The sums of squares for our example are shown in column 7. 

Step 8. The degrees of freedom are obtained by replacing in each symbolic product the 
subscript variable by its limit. 

Example For our example, the degrees of freedom are shown in column 8. For instance, 
for ai the symbolic product is i-I; hence df = a-I. Similarly for 8k(ij), the symbolic 
product is ijk - ij; hence df = abn - ab = ab(n - 1). 

Step 9. The total sum of squares is always defined as the sum, over all observations, of the 
squared deviations of the observations from the overall mean. The total degrees of freedom 
are always defined as one less than the total number of observations. 

D.3 Rule for Finding Expected Mean Squares 

Rule (DA) 

The rule for finding expected mean squares that we shall now present enables us to avoid 
tedious derivations. The rule applies to both nested factors and crossed factors. The rule is 
applicable to all balanced designs with two or more replications and with no interaction 
terms assumed to equal zero. We continue to use the training school example of Table 26.1 
as our illustration. Here factor A (school) and factor B (instructor) are both fixed factors, 
factor B is nested within factor A, factor B has b levels within each level of factor A, 
factor A has a levels, and there are n replications. 

The rule for finding expected mean squares to be presented may appear to be a bit complex 
on first reading. However, with a little practice the desired expected mean squares can be 
obtained very quickly and easily. 

Step 1. list the model equation. 

Example The model equation is that of (D.2a): 

Yijk = fJ., •• + ai + {3j(i) + 8k(ij) 

Step 2. For each term other than the overall constant, write the associated random effects 
variance term. 

Example 
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If factors have fixed effects, as in this example, we shall at the end replace these variance 
terms by sums of squared effects divided by degrees of freedom. For instance, in the training 
school example the term a; later will be replaced by L (Xl/ (a - 1), and likewise aJ will be 
replaced by L L {3J(i) / a (b - 1). In the meantime, however, it is easier to write the variance 
term rather than a sum of squared effects divided by degrees of freedom. 

Step 3. Set up a table, with the rows consisting of the model elements other than the 
overall constant. 

Example 

(Xi 

f3j(i) 

E:k(ij) 

Step 4. The column headings for the table are the subscripts in the model. Under each 
heading, write F if the factor indexed by the subscript is fixed, and write R if it is random. 
Also write the number of levels for that factor. 

Example 
j k 

F F R 
a b n 

(Xi 

f3 j(i) 

ck(ij) 

For instance, i refers to school, a fixed factor that occurs at a levels.· Note that the 
subscript k refers to replication, which is a random "factor" and occurs at n levels. 

Step 5. In each row where one or more subscripts are in parentheses, enter a I in the 
column(s) corresponding to the subscript(s) in parentheses. 

Example 

(Xi 

f3jO) 

E:k(ij) 

F 
a 

j k 

F 
b 

R 
n 

Thus, in the {3j(i) row, we enter a 1 in the i column, and so on. 

" 

Step 6. In each row where one or more subSCripts are not in parentheses, enter in the 
column( s) corresponding to the subscript( s) not in parentheses a 1 if the subscript refers to 
a random factor, and a 0 if the factor is fixed. 
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Example 

j k 

F F R 
a b n 

(ti 0 
f3j(i) 1 0 
E:k(ij) 1 1 

Thus, for the {3 j (i) row, the subscript not in parentheses is j, which refers to factor B, a 
fixed factor. Hence, a 0 is entered in the j column. 

Step 7. Fill in all remaining empty cells with the number of levels appearing in the column 
heading. 

Example 

j k 

F F R 
a b n 

(ti 0 b n 
f3!(i) 1 0 n 
E:k(ij) 1 1 1 

Each E {MS} will consist of a linear combination of the variance terms enumerated in 
step 2, with the coefficients obtained by taking additional steps in the table just completed. 
Some of the coefficients may be zero, which means that the corresponding variance term is 
not present in the E{MS}. 

Step 8. Adjoin on the right of the table just completed the variance term associated with 
the effect in that row. In addition, adjoin a column for each expected mean square to be 
found. Under each expected mean square, indicate all of the subscripts (including any 
parentheses) associated with the corresponding model term. 

Example 

j k 

F F R E{MSA} E{MS8(A)} E{MSE} 
a b n Variance (i)j (ij)k 

(ti 0 b n ([2 
a 

f3 j(i) 0 n ([2 
fJ 

E:k(ij) ([2 

Note that all of the subscripts of the associated model term, whether in parentheses or 
not, are shown under the expected mean square. For example, E{MSB(A)} has associated 
with it the model term (3j(i), so that the subscripts shown are (i) and j. Similarly, E{MSE} 
has associated with it the model term Ck(ij), so that (ij) and k are shown. 
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Step 9. For each expected mean square column, the coefficient of any variance term is 
zero if the subscript(s) of the model term in that row (whether in parentheses or not) do not 
include all of the subscript( s) in the heading of that E {MS} column (whether in parentheses 
or not). 

Example 

j k 

F F R E{MSA} E{MSB(A)} E{MSE} 
a b n Variance (i)j (ij)k 

Cij 0 b n ([2 
a 0 0 

f3 j(i) 0 n ([2 
fJ 0 

E:k(ij) ([2 

For the E{MSA} column, it will be noted that the model terms in all rows contain the 
subscript i. Hence, none of the variances receives a zero coefficient as a result of this step. 

For the E{MSB(A)} column, note that the first row has a model term not containing both 
i and j. Hence, ([; receives a zero coefficient in the E{MSB(A)} column. 

Finally, for the E {MSE} column, the first and second rows have model terms that do not 
contain the three subscripts i, j, and k. Hence, both ([; and ([J receive zero coefficients in 
the E {MSE} column. 

Step 10. The coefficients of the variance terms that have not been assigned a zero coeffi­
cient as a result of step 9 are found as follows: 

a. For each expected mean square column, delete (e.g., mask or cover) the column(s) on 
the left corresponding to the subscripts not in parentheses in the heading of !he E {MS} 
column. 

b. Multiply the entries in the remaining columns for each row being considered. 

Step 11. The expected mean square equals the sum of the products of each coefficient 
times the associated variance term, with the variance terms for fixed effects replaced by 
sums of squared effects divided by degrees of freedom. , 

Example 

j k 

F F R E{MSA} E{MSB(A)} E{MSE} 
a b n Variance (i)j (ij)k 

0 b n ([2 bn o (step 9) " o (step 9) Cij a 

f3j(i) 0 n ([2 
fJ 0 n o (step 9) 

E:k(ij) ([2 1 

To find the coefficients for the E{MSA} column, for example, we noted earlier that no 
zero coefficient is assigned as a result of step 9. Step lOa calls for column i on the left to 
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be deleted. Hence, we obtain by multiplying the terms in the j and k columns: 

j k 

F R E{MSA} 
b n Variance 

(ti b n ([2 
a bn 

f3 j(i) 0 n ([2 
fJ 0 

E:k(ij) ([2 

Thus: 

E{MSA} = bn([~ + (O)a~ + (l)a 2 = bna~ + a 2 

Since factor A has fixed effects, we finally obtain: 

I:cv2 

E{MSA} =bn--i +a2 

a-I 

We find the remaining coefficients for E {MSB(A)} in similar fashion. We delete column j 
on the left, the subscript not in parentheses, and obtain: 

k 

F R E{MSB(A)} 
a n Variance (i)j 

(ti 0 n ([2 
a o (step 9) 

f3 j(i) n ([2 
fJ n 

E:k(ij) ([2 

Thus: 

E{MSB(A)} = (O)a~ + nCJ~ + (l)a 2 = na~ + a 2 

Since factor B has fixed effects, we finally obtain: 

E{MSB(A)} = n I: I: f3](i) + ([2 

a(b - 1) 

To find the remaining coefficient in the E{MSE} column, we delete column k, and the 
product on the a 2 line is 1 . 1 = 1. Thus: 

E{MSE} = (O)([~ + (O)a~ + (l)a 2 = a 2 

Assembling our results, we have: 

I:cv2 

E{MSA} = bn--i + a 2 

a-I 

E{MSB(A)} = n I: I: f3](i) + a 2 

a(b - 1) 

E{MSE} = a 2 

(D.Sa) 

(D.Sb) 

(D.Se) 

1: 
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Comment 

Some computer packages provide the expected mean squares for any balanced ANOVA study. An 
example is shown in Figure 26.7. • 

D.4 No Replications and/or Some Interactions Equal Zero 

Modification of Rules 
When a balanced design includes no replications and/or some interactions are assumed 
to equal zero-as, for instance, in a randomized complete block design with fixed 
block effects-rules (D.l) and (D.3) need to be modified slightly. Rule (D.4) requires no 
modification. 

The modification of rule (D. 1 ) is very slight. Step 2 now becomes: 

Rule (D.l) modification: Step 2. Include all interaction terms except those 
assumed to equal zero and those containing both a nested factor and the (D.6) 
factor within which it is nested. 

The modification of rule (D.3) is also a simple one: 

Rule (D.3) modification: Steps 2 through 8 do not apply to the model error 
term e. Instead, the sum of squares associated with the model error term e is 
obtained as a remainder from the total sum of squares. Likewise, the degrees (D.7) 
of freedom associated with this remainder sum of squares are obtained as a 
remainder from the total degrees of freedom. 

The sum of squares associated with the model error term e in balanced designs where 
there are no replications and/or where some interaction terms are assumed to equal zero 
will be denoted by SSRem, which stands for the remainder sum of squares. Frequently, 
the remainder sum of squares will tum out to be an interaction sum of squares for the 
interaction terms in the model that are assumed to equal zero. The remainder mean square 
will be denoted by MSRem. 

Additional Modification for Latin Square Designs 
For latin square design model (28.12), one of the subscripts in Yijk is redundant since the 
row and column indices defi{1e the treatment for a given latin square design. Hence, when 
using the rules presented in the case of a latin square design, one of the subscripts must be 
treated as redundant, i.e., it needs to be ignored. 

D.S Additional Examples of Use of Rules 

Crossed Two-Factor Study-Mixed Factor Effects '" 
Consider a two-factor experiment in a completely randomized design, where factors A and B 
are crossed, factor A has fixed effects and factor B has random effects, and n replications 
are obtained for each factor combination. The model equation is that of (25.42): 

Yijk = fJ., •• + ai + f3j + (af3)ij + ek(ij) 

where we now recognize the nesting of the error term e. 
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Table D.2 contains the derivation of the sums of squares. Table D.3a contains the pre­
liminary tabulations for finding the expected mean squares, while Table D.3b presents the 
results of steps 9 and 10 of rule (D.4). The random effects variance terms corresponding to 
the model terms are: 

Here, only the (Xi are fixed effects, so at the end a; will need to be replaced by a sum of 
squared effects divided by degrees of freedom. Note in Table D.3b that for finding E {MSA}, 
aJ receives a zero coefficient as a result of step 9 since the SUbscript in the f3 j model term 
does not contain the SUbscript i in the E {MSA} column. Column i is deleted for step 10 for 
finding the coefficients in the E{MSA} column since it is the only SUbscript in the column 
heading and is not in parentheses. The other expected mean squares coefficients are found 
in similar fashion. Table D.3b indicates for each expected mean square whether the zero 
coefficients are obtained from step 9, and also which columns are deleted. The final expected 
mean squares, presented in Table D.3c, are identical to those shown in Table 25.5. 

Subsampling in Randomized Block Design 
The model usually employed for a randomized block design when only a single observation 
is made on an experimental unit is ANOVA model (21.1) in the case of fixed treatment and 
block effects: 

(D.8) 

We shall now consider a slightly more complex case, namely when subsampling is used in 
a randomized block design-that is, when more than one observation is made on each 
experimental unit. Consider, for instance, an experiment to study how three different 
motivational stimuli affect the length of time a person requires to perform a task. The 
persons in the experiment are blocked into groups of three, according to age, and each 
person is assigned at random one of the three motivational stimuli. Three observations are 
then made on the time required to complete the task; that is, the subject is asked to perform 
the same task three times. 

In this type of situation, we simply add a random observation error component to ANOVA 
model (D.8). Assuming that the treatment and block effects (motivational stimuli and age 
groups in our example) are fixed, an appropriate model is: 

Yijk = fJ., •• + Pi + Tj + C(ij) + 1]k(ij) (D.9) 

where: 

C(ij) and 1]k(ij) are independent normal random variables with expectations 0 and variances 
a 2 and a~, respectively 

j = I, . .. ,r; k = I, ... ,m 
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TABLE 0.2 Derivation of Sums of Squares Formulas for Crossed Two-Factor Experiment in Completely Randomized Design . 

(1) , (2) (3) 
Model .... 
'T~rm $5' C::oeffident 

·a;. 

~j 

SSA 

SSB. 

(af3h $SA,p 

eM/ii SSE 

Total· .SST9 

bn 

.an 

n 

• 

(4) 

b 
22. 

i 

E 
j 

.• ~'~ 
LJ,b 
;,"'j 

bEE 
; j k 

.. (~) .. ,. 
Symt?0lic 
'Product 

l.:...J 

j;.c." .1 

'(6) 
T~r{ll·t.o 

i;Je.Squared: 

.Y;~ . .,.. ~~; 

.y.}~-"y. .. 

(1- 1)(t .... 1 )~JT:...f -'- I+1 Y;j~ .-:Y; .. -.Y, J. +Y.: •.. 

(k.",l>n=iw""U Y;jk- YIj. 

Y;jk'- y. .. 

• (7) ..... 

Sum :ofScj4ares 

bh~(YJ"..-y' .. )2 , ~0', -. . ' .. -
i . 

an[)~i: -,y':.)2 
J 

n ~·D(-y···· 'i2 -y.. +·'-y.··· •... )2 
·L.JD . ii···7 •1;:,..,., 'i' ..... 
Ii' . .' 

E2:E(Yiik"'- ¥;i:)2 
ii . k .. 

E ttxyUk ''''' y' .. )2 
;. i k . 

(8Y 
D~grees 

of'Freedom 

q:""":l 

b-·,1 

(a . .;:..1)(b-1) 

ab(~-1) 

abn.:...·1 



TABLE D.3 
E{MS} 
Derivations for 
Crossed 
Two-Factor 
Experiment 
(A fixed, B 
random). 

variance 

(J'; 

.' 2 
(J'fJ) 

9'lfJ 
JJ2 
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E{MSA} 
i 

b·n 

O.(step9) 

~t·n 
J ., 

(a)Tabl,e 

r l k 

F R R 
'0 'I> n· 

cd 0 
.tJ..j. .9 
(afA( p 
E:k(ij) 1: 

'E{MSB} 

I 
o (step 9) 

,g·b 
O;/n 

'1':··'1' 

b 
1 
1 
1 

n 
n 
n 
1 

E{¥SAB} 
;J 

o (step 9) 

o ($fep9) 

it 

HMSf} 
(ij)k 

o (step 9) 

o (step:9J 

o (step 9) 

1·' 
.(i col.:del~te(j) ·flcol;.~eiited} (i, /c.9Js.deletedj (k col. deleted) 

....... I>~?' .' '.' 
E{N1SA}=bri~ + na:?-+ a:2 
..... , .:. 0-,-1 a~ 

E{JlASB}'=and2 + (J'2 '" . '. fJ 

E{MSAB} =na:lfJ +0-2
' 

E{MS£} = (J'2 
'" ,-~, ,':- -

Here Pi is the block effect, Tj the treatment effect, s(ij) the random effect associated with 
the experimental unit, and '/]k(ij) the random effect associated with the kth observation on 
the experimental unit. Note that the experimental error S is nested within the (ij) block­
treatment combination; there is no additional subscript since only one experimental unit 
is assigned to a treatment within a block. Thus, there are no replications for experimen­
tal units. Also note that the observation error'/] is nested within the (ij) block-treatment 
combination. 

Since there are no replications present and the block-treatment interactions are assumed to 
equal zero, we need to use the modified rules, as explained in Section D.4. Table D.4 contains 
the derivation of the sums of squares for ANOVA model (D.9), and Table D.5 contains the 
derivation of the expected mean squares. Note that the sum of squares for experimental units 
is obtained as a remainder in Table D.4 because there is only one experimental unit assigned 
to a treatment within a block. As expected, SSRem turns out to be the block-treatment 
interaction sum of squares, as for a randomized block design without sUbsampling. 
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TABLE D.4 Derivation of Sums of Squares Formulas for Randomized Block Design 
with Subsampling-ANOVA Model (D.9). 

Model Term Symbolic Product "SUr11 O(SquCl~~: :oegrees of Freedo~ 

np-T PI 

1)k(ij) 

Total 

TABLE D.S 
Derivation of 
Expected Mean 
Squares for 
Randomized 
Block Design 
with 
SubsampHng-
ANOVAModel 
(D.9). 

i - r 
j-l 

(ie -l)ij = ijk - ij 

j 

F F 
nc r 

PI 0 r 

"Cj nc 0 

BCij) 1 

1)k(ij) 1 f 

SSBL =, r mE<Y;,'i- )( .. )2 

SSTR = ncmL2(Kj.- r..)2 

SSRem= SSBL 1"1< 

'= mEE(Yrj. ~ B.·.·..,. ~~r +: g/.)~: 
SSOE =~ ~~(Y.··k - Y",)~ b b LJ.J ,'I, )1" , 

SST() =££ £(Yijk - y'.:)2 

(a) T~hle 

r..:.1 

Remainder 

='(nc -1 )(r -" 1) 

nci(m'-l) 

ncrm .. :·J1 

EXpectedMe~n;Sq~are of 
k Variance ',BL " :TR' ;Rem DE 

-""co 

" 

k 
m I r ,;<Ut (ij)k' 

","" 
" , 

m' 2. (Jp rin' ,0 " 

0 b 

in (J;: 0 I]li,m; 0 Q 
:"f,> '····,1 

m: '(J2 om :m 'in 0 
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Table D.5b indicates that for ANOVA model (D.9) with fixed treatment and block effects, 
the test statistic for examining the presence of treatment effects is F* = MSTRj MSRem, 
as is also the case when no subsampling occurs in a randomized complete block design­
see (21. 7b). Remember that MSRem denotes simply the interaction mean square MSBLTR 
here. 
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D.l. Refer to ANOVA model (25.39). Use rule (D.4) to obtain the expected mean squares in 
Table 25.5 for this model. 

D.2. Refer to ANOVA model (25.77). 

a Use rule (D.3) to obtain the sums of squares formulas in (24.22) and the associated degrees 
of freedom. 

b. Use rule (D.4) to obtain the expected mean squares in Table 25.9. 

D.3. Refer to ANOVA model (25.79). 

a. Use rule (D.3) to obtain the sums of squares formulas in (24.22) and the associated degrees 
of freedom. 

b. Use rule (D.4) to obtain the expected mean squares in Table 25.10. 

D.4. Refer to nested design model (26.7), but assume that factor A is nested within factor B, 
factor A effects are random, and factor B effects are fixed. (See also "Random Factor Effects" 
on page 1093.) 

a Use rule (D.3) to obtain the sums of squares formulas and the associated degrees of freedom. 

b. Use rule (D.4) to obtain the expected mean squares. 

c. What is the appropriate mean square to be used in constructing a confidence interval for /h. j ? 

D.5. Refer to randomized complete block model (21.1). 

a. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas in (21.6) and 
the associated degrees of freedom. 

b. Use rule (D.4) to obtain the expected mean squares in Table 21.2 for this model. 

D.6. Refer to randomized complete block model (21.1), but assume that treatment effects are 
random. (See also Comment 2 on page 897.) 

a Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas in (21.6) and 
the associated degrees of freedom. 

b. Use rule (D.4) to obtain the expected mean squares in Table 21.2 for this model. 

D.7. Refer to randomized complete block model (25.67). 

a. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas in (21.6) and 
the associated degrees of freedom. 

b. Use rule (D.4) to obtain the expected mean squares in Table 25.8 for this model. 

D.8. Refer to randomized complete block model (D.9), but assume that block effects are random. 

a. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas and the 
associated degrees of freedom. 

b. Use rule (D.4) to obtain the expected mean squares. 

D.9. In a balanced three-factor study, factors A and C are crossed and factor B is nested within 
factor C. Factor A has fixed effects, and factors Band C have random effects. There are n 
replications for each treatment. 

a Use rule (D.3) to obtain the sums of squares formulas and the associated degrees offreedom. 

b. Use rule (D.4) to obtain the expected mean squares. 

c. What is the appropriate denominator mean square for testing for factor A main effects? 

D.10. Swimmer motivation. A large metropolitan swim club for youths studied the effects of three 
motivational stimuli on performance. The three motivational stimuli were: (1) presentation of 
merit award, (2) granting oftearn leadership privileges, and (3) publicity in the club newsletter. 
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Since age is known to be related to performance, the nine female swimmers included in the 
study were grouped according to age into three blocks of three each. Within each age block, the 
three swimmers were randomly assigned to one of the motivation treatments. After a suitable 
amount of training, each swimmer was timed on three separate occasions while swimming a 
fixed distance. The coded data on the time for each of the three trials follow. 

Motivation Treatment 

j=l j=2 j=3 
Block Observation Merit Award leadership Publicity 

i = 1 k = 1: 28 26 27 
(7-8 years) k=2: 32 24 29 

k=3: 31 27 30 

i=2 k= 1: 24 22 20 
(9-10 years) k=2: 26 19 21 

k= 3: 23 18 22 

i=3 k= 1: 18 13 17 
(11-12 years) k=2: 21 16 19 

k= 3: 20 15 19 

Obtain the residuals for randomized block model (D.9) and plot them against the fitted values. 
Also prepare a normal probability plot of the residuals. What are your findings about the 
appropriateness of model (D.9)? 

D.ll. Refer to Swimmer motivation Problem D.1O. Assume that randomized block model (D.9) 
with fixed block and treatment effects is appropriate. 

a Obtain the analysis of variance table. 

b. Test whether or not the mean times are the same for the three motivational stimuli; use 
a = .05. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 

c. Make all pairwise comparisons among the three treatment means; use the Tukey procedure 
with a 90 percent family confidence coefficient. State your findings. 

d. Obtain point estimates of ([2 and ([;. Does one variance appear to be much larger than the 
other? Discuss. 

D.I2. Refer to repeated measures model (27.21). Consider a simpler model, in which interactions 
SA and SB are not present. The parameters M ...• Pi. aj, {Jk, (a{J)jk, and 8ijk are defined in the 
same way as (27.21). 

a. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas similar to 
those in Table 27.11 b and the associated degrees offreedom similar to those in Table 27.11a. 

b. Use rule (D.4) to obtain the expected mean squares similar to those in Table 27.11a. 

D.13. Refer to repeated measures model (27.11). 

a. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas and the 
associated degrees offreedom in Table 27.5. " 

b. Use rule (D.4) to obtain the expected mean squares in Table 27.6. 

D.14. Refer to the Drug effect experiment data set. Consider the combined study. Assume that 
SUbjects (rats) and observation units have random effects, and that factor A (initial lever press 
rate), factor B (dosage level), and factor C (reinforcement schedule) have fixed effects. Also 
assume that there are no interactions between subjects and treatments. 
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a. Use rule (D.I) and modification (D.6) to develop the model for this experiment. 

b. Use rule (D.3) and modification (D.7) to obtain the sums of squares formulas and the 
associated degrees of freedom. 

c. Use rule (D.4) to obtain the expected mean squares. 

D.15. Derive the expected mean squares in Table 28.5 for latin square model (28.12) by using rule 
(D.4). (See also "Additional Modification for Latin Square Designs" on page 1366.) 

D.16. Derive the expected mean squares for latin square model (28.27) with n replications by using 
rule (D.4). (See also "Additional Modification for Latin Square Designs" on page 1366.) 

D.17. Derive the expected mean squares in Thble 28.10 for latin square cross-over model (28.29) 
with n subjects for each treatment order pattern by using rule (D.4). (See also "Additional 
Modification for Latin Square Designs" on page 1366.) 

L 
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First differences procedure, 496-498 
First-order autoregressive error model, 

484-487 
Cochrane-Orcutt procedure, 492-495 
Durbin-Watson test, 487-490 
first differences procedure, 496-498 
forecasting with, 499-501 
Hildreth-Lu procedure, 495-496 

First -order interactions, 995 
First-order regression model, 9, 215-217, 

318-319 (See also Regression 
models) 

Fish-bone diagrams, 649 
Fisher Company, 1272-1274 
Fisher z transformation, 85 
Fitted logit response function, 565 
Fitted values, 202-203, 688. 835. 1004 

influences on, 401-404 
and multicollinearity, 286--288 
and residuals, 224-225 
total mean square error, 357-359 

Fitting, 298-299 
of ANOVA model, 685-689, 

1003-1011 
Fixed effects contrasts, 1058 
Fixed effects model, 685 
Fixed X sampling, 459 
Folding over, 1240 
Foldover design, 1240 

Forecasting with autoregressive error 
model,499-501 

Forward selection procedure, 368 
Forward stepwise regression, 364-367 
Fraction, 1209 
Fractional factorial designs. 

665-666, 1209 
Frequencies, proportional, 980 
Friedman test, 900-901, 1138 
F test: 

for analysis of variance, 69-71 
equivalence of t test, 71 
forlack of fit, 119-127,235 
nonparametric rank, 795-798 
for regression relation, 226 

Full model, 72,121-123,700,711-712 
Functional relation, 2-3 

G 

Galton, Francis, 5 
Gauss-Markov theorem, 18,43, 884 
Gauss-Newton method, 518-524 
Generalized interaction, 1230 
Generalized least squares, 430 
Generalized randomized block design, 

906-908 
Generalized randomized block model, 907 
General linear regression models, 

217-221,510-511,623-624 
General linear test, 72-73,121-127 

approach, 972-974 
Goodness of fit tests, 586--590 

deviance, 588-590 
Hosmer-Lemeshow, 589-590 
Pearson chi-square, 586--588, 590 

G-optimality, 1282 . 
Gulledge, T. R., Jr., 115, 146, 1329 
Gumbel density function (extreme 

value),562 

H 

Half-fraction design, 1229 
Half-normal probability plot, 

595--598, 1222 
Hartley test, 782-784,1144 
Hat matrix, 202-203, 392-394,398-400 
Heating equipment data set, 1353-1354 
Hessian matrix, 578, 1074 
Heteroscedasticity, 429 
Hidden nodes, 54'0 
Hidden replication, 816 
Hierarchical fitting, 298-299 
Hildreth-Lu procedure, 495-496 
Histograms, 110,778,781 
Holm simultaneous testing procedure, 850 
Homoscedasticity, 429 



Honestly significant difference tests, 752 
Hosmer-Lemeshow goodness of fit test, 

589-590 
Hougaard, p., 529 
H statistic, 782 

table of percentiles, 1336 
Huber weight function, 439--440 
Hyperplane, 217 

I 

IC Technologies, 1282-1283 
Idempotent matrix, 203 
Identity matrix, 186 
Important interactions, 824-825, 1016 
Incomplete block designs, 664--665, 1183 

two-level factorial, 1240-1244 
Independent random variables, 1302 
Independent samples, 1309-1311 
Independent variables, 2-3. 3-4 
Index of response, 939 
Indicator variables, 314--315 

allocated codes vs .• 321-322 
alternative codings, 323-324 
in analysis of variance, 680-681 
for comparing regression functions, 

329-335 
interaction effects, 324--327 
quantitative variables vs., 322-323 
time series applications, 319-321 

Individual outcome, 56 
Individual test, 745 
Influential cases, 400-406 
Influential observations, detection of, 

598--601 
Instrumental variables, 167 
Interaction effect coefficient, 297 
Interaction effects, 220 

with indicator variables, 324--327 
interference/antagonistic, 308 
reinforcement type, 308 

Interaction model for random block 
effects, 1064--1065 

Interaction regression models, 306--313 
Interactions, 823 

in analysis of variance, 822-829 
generalized, 1230 
multiple two-factor, 999-1000 
single two-factor, 1000-1002 
tests for, 844 
three-factor, 996, 998-999,1016 
two-factor, 856-861 
two-Ievelfactorial design, 1218-1219 

Interaction sum of squares, 838 
Interaction sum of squares between blocks 

and treatments, 898 
Interaction sum of squares between 

treatments and subjects, 1130 
Intercorrelation (see Multicollinearity) 

Interference interaction effect, 308 
Internally studentized residuals, 394 
Interval (caliper) matching, 669 
Interval plot, 738 
Intraclass correlation coeffiCient, 1035 
Intrinsically linear response functions, 514 
Inverse of matrix, 189-193 
Inverse predictions, 168-170 
Inverse regression, 170 
Iowa Aluminum Corporation, 1233-1239 
IPO data set, 1355-1356 
IRLS robust regression, 439--441 
Irregular experimental regions, 1276--1277 
Ischemic heart disease data set, 

1354--1355 
Ishakawa diagrams, 649 
Iteratively reweighted least squares. 426 

J 

JMp, 981 
J-1 nominal response logits, 610-614 
Joint density function, 1073 
Joint estimation. 154--157 
Joint probability function, 1300 

K 

Kendall's coefficient of concordance, 1139 
Kendall's r, 89 
Kenton Food Company, 694--695, 712 
Kimball inequality, 846. 1010, 1011, 1215 
Kolmogorov-Smirnov test, 115 
Kruskal-Wallis rank test, 796-797 
Kurtosis, 793 

L 

Lack of fit mean square, 124 
Lack of fittest, 119-127,235,764--766, 

1222-1223 
LAD (least absolute deviations) 

regression, 438 
Large-sample theory, 528-530 
LAR (least absolute residuals) 

regression, 438 
Latent explanatory variables, 348 
Latin square changeover design, 1198 
Latin square design, 1183-1186 

ANOVA partitioning, 1188-1189 
crossover design, 1198-1200 
double crossover deSign, 1201 
efficiency, 1193-1194 
estimation of effects, 1190 
factorial treatment, 1192 
fitting of model, 1188 

F test, 1190 
model,1187 
notation, 1188 
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planning of sample sizes, 1193-1194 
random blocking effects, 1193 
randomization, 1185-1186 
repeated measures, 1198-1201 
replications, 1193 
replications within cells, 1195-1196 
residual analysis, 1191 
rule modification, 1366 
sums of squares, 1188-1189 
table, 1344 
Tukey test for additivity, 1191-1192 
use of independent squares, 

1200-1201 
use of several squares, 1196-1198 

Learning Curve models, 533-537 
Least absolute deviations (LAD) 

regression, 438 
Least squares estimation, 161-162, 

1305-1306 
criterion, 15-19 
generalized, 430 
and maximum likelihood estimation, 

32-33 
multiple regression, 223-224 
penalized, 436 
randomized complete block 

model, 898 
simple linear regression, 199-201 
single-factor ANOVA model, 

687-689 
standardized regression coefficients, 

275-278 
three-factor analysis of variance. 

1003-1005 
two-factor analysis of variance, 

834--836,975-976 
weighted, 421-431 

Levene test (see Modified Levene test) 
Leverage, 398 
Likelihood function, 29-33, 564, 1305 
Likelihood ratio test, 580-582 
Likelihood value, 28 
LilIiefors test, 115 
Linear-by-Iinear interaction term, 306 
Linear combination of factor level 

means, 744 
Linear dependence, 188 
Linear effect coeffiCient, 296 
Linear function of normal random 

variable, 1302 
Linear independence, 188 
Linearity. test for, 119-127 
Linearization method (see Gauss-Newton 

method) 
Linear model, 221 

ANOVA model, 683-684 
Linear predictor, 560, 623 
Linear regression functions, 7 
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Line plot of estimated factor level means. 
735-736 

Link function, 623-624 
LMS (least median of squares) 

regression, 439 
LocaJIy weighted regression scatter plot 

smoothing, 138-139 
Location model, 1247, 1250 
Logistic mean response function, 560-562 
Logistic regression, polytomous, 608-618 
Logistic regression diagnostics, 591-601 

influential observations, detection of, 
598-601 

plots, residual, 594--598 
residuals, 591-594 

Logistic regression models, 512-513 (See 
also Regression models) 

Logit response function, 562 
Logit transformation, 562 
Looney,S. VV., 115, 146,1329 
Lowess method, 138-139,449-450 

M 

Main effects, 818-819, 1012 
Main effects plot of estimated factor level 

means, 736-737 
MalIows' Cp criterion, 357-359 
Marginal probability function, 1300 
Market share data set, 1350 
Marquardt algorithm, 525 
Matched-pairs design, 669 
Matched studies, 668-669 
Matching, 668-669 
Mathematics proficiency, 441-448 
Matrix( -ces): 

addition, 180-181 
with alI elements unity, 187 
basic theorems, 193 
definition, 176-178 
determinant, 190 
diagonal,185-186 
dimension, 176-177 
elements, 176-177 
equality of two, 179-180 
hat,202-203,392-394,398-400 
Hessian, 578 
idempotent, 203 
identity, 186 
inverse, 189-193 
linear dependence. 188 
multiplication by matrix, 182-185 
multiplication by scalar, 182 
nonsingular,19O 
of quadratic form, 205-206 
random, 193-196 
rank, 188-189 
scalar,187 
scatter plot, 232-233 

simple linear regression model, 
197-199 

singular, 190 
square, 178 
subtraction, 180-181 
symmetric, 185 
transpose, 178-179 
vector, 178 
zero vector, 187 

Maximum likelihood estimation, 27-33, 
612-614,617,1305 

logistic regression, 564--567 
mixed ANOVA models, 1072-1076 
Poisson regression model, 620 
single-factor ANOVA model, 

687-689 
Mean: 

of the distribution, 56 
prediction of, 60-61 
of residuals, 102 

Mean response: 
interval estimation; 52 
logistic regression 

interval estimation, 602-603 
point estimation, 602-604 

multiple regression 
estimation, 229-232 
joint estimation, 230 

simple linear regression 
interval estimation, 52-55, 

157-159,208-209 
joint estimation, 157-159 
point estimation, 21-22 

Mean squared error: 
of regression coefficient, 433 
total, of n fitted values, 357-359 

Mean square prediction error, 370-371 
Mean squares, 25, 66-67, 693-694, 

839-840, 1009 
analysis of variance, 225 
expected, 68-69 

Measurement errors in observation, 
165-168 

Median absolute deviation (MAD), 
440-441 

Method o( steepest descent, 525 
Minimax, 1285 
Minimum L I -norm regression, 438 
Minimum variance estimator, 1305 
MINITAB, 20-21,46,47,49-50, 101. 

104,671.777,840,981,1117. 
1249 

MINITAB Fractional Factorial procedure, 
1235-1238 

Minnesota Department of Transportation, 
464-471 

Mixed experimental and observational 
studies, 646-647 

Mixed factor effects model, 1049-1052 
MLS procedure. 1045-1047 
Model-building set, 372 

Modified large sample procedure (see 
MLS procedure) 

Modified Levene test, 115. 116-118, 
784--785, 1144 

Modified Levene test statistic, 234 
Moving average method, 137 
MSEp criterion, 355-356 
Multicategory logistic regression models 

(see Polytomous logistic 
regression) 

Multicollinearity,278-289 
detection of, 406-410 
remedial measures, 431-437 
ridge regression, 431-437 

Multifactor covariance analysis, 934--937 
Multifactor studies, 648 

sample size planning, 1021-1022 
unequal sample sizes, 1019-1021 

MUltiple comparison procedures, 
746-759,1059 

Multiple logistic regression, 570-577 
geometric interpretation, 572-573 
model, 570-573 
polynomial logistic regression, 

575-576 
prediction of new observation, 

604--608 
Multiple pairwise comparisons, 797-798, 

850-851,856-861 
Multiple pairwise testing procedure, 

1138-1139 
Multiple regression (see Mean response; 

Prediction of new observation; 
Regression coeffiCients; 
Regression function) 

Multiple regression coefficients. 216-217 
danger in simultaneous tests, 287-288 
interval estimation, 228, 229 
joint inferences, 228 
least squares estimation, 223-224 
tests concerning, 228, 263-268 
variance-covariance matrix of, 

227-228 
Multiple regression mean response: 

estimation, 229-232 
joint estimation, 230 

Multiple regression models, 214--221 
ANOVA table, 225 
diagnostics, 232-236 
extra sum of squares, 256-262 
general model, 217-221 
interaction effects, 220 
logistic regression, 570-577 
lowess method, 449-45i,l 
in matrix terms, 222-223 
multicollinearity effects, 278-289 
remedial measures, 236 
standardized,271-278 
two predictor variables, 236-248 

Multiplication theorem, 1298 
Multivariate normal distribution, 196-197 



N 

Nested design, 662-663, 1088-1091 
balanced, 1088-1091 
residual analysis, 1100 
rule for model development, 

1091-1092 
subsampling, 1106-1114 
three-factor partiaIly nested, 

1114---1I19 
two-factor 

ANOVA partitioning, 1093-1099 
estimation of effects, 1100-1104 
fitting of model, 1093 
F test, 1097-1099 
model, 1091-1092 
residual analysis, 1100 

unbalanced, 11 04---11 06 
Nested factor, 649, 1088-1091 
Neural networks, 537-547 

conditional effects plots, 546 
example illustrating, 543-546 
as generalization of linear 

regression. 541 
network representation, 540-541 
and penalized least squares, 542-543 
single-hidden-layer, feedforward, 537 
training the network, 542 

No-interaction model, 880-886 
Noise factors, 1246, 1250-1252 
Noncentral F distribution, 70, 699 
Noncentrality measure, 51 
NoncentraJity parameter, 717 
Nonconstant error variance, 557-558, 778 
Nonindependence of error terms, 

778-779, 794---795 
Nonindependent residuals, 102-103 
Nonlinear regression models, 511-512 

transformations for. 129-132 (See also 
Regression models) 

Nonnormal error terms, 557 
Nonnormality, 793-794 

of error terms, 781 
transformations for, 132-134 

Nonparametric rank F test, 795-798, 
900-901,1138-1139 

Nonparametric regression, 449--458 
Nonparametric regression curves, 137 
Nonsingular matrix, 190 
Nonstandard models, 1277 
Nonstandard sample sizes, 1278 
Nontransformable interactions, 826---827 
Normal equations, 17-18,271-272. 

517-518 
Normal error regression model, 

26-33,82 
confidence band for regression line, 

61-63 
inferences concerning {3o, 48-51 
sampling distribution of hI. 41--46 
X and Y random, 78-89 

Normality: 
assessing, 112 
correlation test for, 115 
tests for, 115 

Normal popUlation: 
one population mean, 1306-1308 
population variance, 1311-1312 
two population means, 1309-1311 
two population variances, 1312-1314 

Normal probabiJi ty distribution, 
1302-1303 

Normal probability plot, 110-112, 
781,1221 

of residuals, 778 
Nuisance factors, 656 
Numerator degrees of freedom, 1304 

o 

Observational data, 12-13 
Observational factors, 645, 647 
Observational studies, 344---345, 347-349, 

368-369,644---646 
cross-sectional studies, 666-667 
design of, 666 
experimental vs., 677-679 
factor level means, 684 
mixed experimental and, 646--647 
prospeCtive (cohort) studies, 667 
retrospective studies, 667-668 

Observation units, 1112 
Observed value, 21 
Odds ratio, 562, 567 
One-factor-at-a-time (OFAA1) approach 

to experimentation, 815, 816 
One-sided test, 47--48 
Optimal response surface design, 

1276--1283 
Optimum conditions, 1290-1292 
Order effect, 1128 
Order position sum of squares. 1199 
Ordinal interaction, 326 
Orthogonal coding, 1214 
Orthogonal decomposition, 838 
Orthogonality, 1273, 1275 
OrthogonaIly blocked design, 1276 
Orthogonal polynomials, 305 
Ott, E. R, 758 
Outliers: 

detection of, 779-780 
observations. outlying, 108-109, 129 
tests for, 115,396--398 

Outlying cases, 390-391,437--438 
Overall F test, 264, 266 

P 

Paired-comparlson design, 669 
Paired comparison plot. 748 

Index 1391 

Paired observations, 1311 
Pair-wise comparison, 739. 746, 797-798, 

850-851,856--861,962-964,1182 
Pareto plot, 1219-1220 
Partial F test, 264, 267-268 
Partially hierarchical nested design, 1114 
Partially nested design, 1114 
Partial regression coeffiCients, 216 
Partial regression plots (see 

Added-variable plots) 
Partitioning: 

degrees of freedom, 66 
sum of squares total, 63-66 

Path of steepest ascent/descent, 1290 
Pattern sum of squares, 1199 
Pearson chi-square goodness of fit test, 

586--588,590 
Pearson product-moment correlation 

coefficient, 84, 87 
Pearson semistudentized residuals, 591 
Pearson studentized residuals, 592 
Pecos Foods Corporation, 1216-1222 
Penalized least squares, 436, 542-543 
Penalty weight, 541 
Permutation test, 714 
Plackett-Burrnan designs, 1240 
Plots of estimated factor level means, 

735-737 
line plot, 735-736 
main effects plot, 736-737 

Plots of residuals against fitted values, 
778,779 

Plutonium measurement, 141-144 
Point clouds, 233 
Point estimators, 17, 21-22, 24---26. 602, 

1056-1057 
Poisson regression model, 618-623 
Polynomial logistic regression, 575-576 
Polynomial regression model, 219-220, 

294---305 
Polytomous (multicategory) logistiC 

regression: 
for nominal response, 608-614 
for ordinal response, 614---618 

Pooling sums of squares, 861-862 
Population of consumers, 970 
Power approach to sample planning, 

716-723,862-863 
Power of tests: 

latin square design, 1193 
planning of sample size, 716--717 
randomized block design, 909-910 
regression coefficients, 50-51, 228 

Power transformations, 134, 135 
• Prediction error rate, 607-608 

Prediction interval, 57-60 
Prediction of mean, 60-61 
Prediction of new observation: 

logistic regression, 604---608 
mUltiple regression, 231 
simple linear regression, 209 
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Prediction of new observation (cant.) 
simple linear regression model, 

55-61 
Prediction set, 372 
Predictor variables. 3-4. 6-7 

added-variable plots, 384--390 
in analysis of variance, 679-681 
diagnostics, 100-102 
measurement errors, 165-168 
multicollinearity, 278-289 
multiple regression. 214--217, 

236-248 
omission of important, 129 
polynomial regression, 295-298 
qualitative, 218-219,313-318 
residuals and omission of, 112-114 

PRESSp criterion. 360-361 
Primary variables, 344 
Principal components regression, 432 
Probability distribution, 50, 52-53 

in single-factor ANOVA model, 681 
Probability theorems, 1298 
Probit mean response function, 559-560 
Probit response function, 560, 568 
Product operator, 1298 
Projection property, 1232 
Proportional frequencies, 980 
Proportional influence (bubble) plot, 600 
Proportionality constant, 424 
Proportional odds model, 615, 616 
Prospective studies, 667 
Prostate cancer data set, 1351-1352 
Pseudo F test statistic, 1068-1069 
Pure error estimate, 1222 
Pure error mean square. 124 
Pure error sum of squares, 122 
Puri, M. L., 798 

Q 

Quadratic effect coefficient, 296 
Quadratic forms, 205-206 
Quadratic linear regression model, 

220-221 
Quadratic regression function, 7, 128 
Quadratic response function, 295, 305, 

764--766 
Qualitative factor, 647 
Qualitative predictor variables, 218-219, 

313-318 
in analysis of variance. 679-681 
more than one variable, 328 
with more than two classes, 318-320 
with two classes, 314-318 
variables only, 329 

Quantitative factors, 647, 762-766 
Quantitative predictor variables, in 

analysis of variance, 679, 681 
Quantitative variables, 322-323 

Quarter-fraction design, 1229-1231 
Quasi F test statistic, 1068-1069 

R 

R2a criterion, 355-356 
R2 P criterion, 354--356 
Radial basis function, 541 
Random ANOVA model, 1031 
Random cell means model, 1031-1034 
Random effects model, 685 
Random factor effects model, 1047 
Randomization, 643, 652-658, 895, 

1128-1129 
constrained, 655-658 
latin square design, 1185--1186 
restricted, 656 

Randomization distribution, 713-714 
Randomization tests, 712-715 
Randomized complete block design. 

661-662,892-896 
analysis of covariance, 937-938 
ANOVA partitioning, 898-900. 

908-909 
appropriateness of model, 901-903 
diagnostic plots, 901-903 
estimation of effects, 904--905 
factorial treatments, 908-909 
fitting of model, 898 
F test, 898-900, 900-901, 1138-1139 
generalized design, 906-908 
missing observations, 967-969 
models, 897-898, 1061-1065 
multiple pairwise testing procedure, 

1138-1139 
nonparametric rank F test, 900-901, 

1138-1139 
planning of sample sizes, 

909-912,939 
random block effects, 1060-1065 
rank data, 900-901, 1138-1139 
regression approach, 938, 967-969 
residual analysis, 901-903 
subsampling, 1367, 1369-1370 
Tukey test for additivity, 903-904 
use of more than one blocking 

variable, 905-906 
use of more than one replicate in each 

block, 906-908 
Random matrix, 193-196 
Randomness tests. 114 
Random variables, 1299-1302 
Random vector, 193-196 
Random X sampling, 459 
Rank correlation procedure, 87 
Rank of matrix, 188-189 
Real estate sales data set, 1353 
Receiver operating characteristic (ROC) 

curve,606 

Reduced model, 700, 711-712 
Reduced model general linear test, 123 
Reduced model general test, 72 
Referent (baseline) category, 611 
Reflection method, 460 
Regression: 

and causality, 8-9 
as term, 5 

Regression analysis, 2 
analysis of variance approach, 63-71 
approach to balanced incomplete 

block designs, 1177-1179 
approach to single-factor ANOVA 

model, 704--712 
compared to analysis of variance, 

679-681 
completely randomized design, 13 
computer calculations, 9 
considerations in applying, 77-78 
experimental data, 13 
inferences concerning fJl> 40-48 
observational data, 12-13 
overview of steps, 13-15 
transformations of variables, 129-137 
uses, 8 

Regression approach: 
to analysis of covariance, 924--925, 

934--935 
to analysis of variance models 

three-factor, 1019-1020 
to randomized block design, 938, 

967-969 
to repeated measures design, 1161 
two-factor, 953-959 

Regression coefficients, 404--405 
bootstrapping, 458-464 
effects of multicollinearity, 284--285 
interaction regression, 306-309 
interpretation for predictor variables, 

315-318,324--327 
lack of comparability, 272 
multiple regression (see Multiple 

regression coefficients) 
partial,216 
simple linear regression (see Simple 

linear regression coefficients) 
standardized,275-278 

Regression curve, 6 
Regression function, 6 

comparison of two or more, 
329-330 

constraints, 558-559 
estimation, 15-24 
exploration of'shape, 137-144 
exponential, 128 
hyperplane, 217 
interaction models, 309 
intrinsically linear, 514 
nonlinearity, 104--107, 128 
through origin, 161-165 
outlying cases, 390-391 



polynomial regression, 299-300 
quadratic, 128 
test for fit, 235 
test forIack of fit, 119-127 
test for regression relation, 226 

Regression line, 61-63 
Regression mean square, 66 
Regression models: 

autocorrelation problems, 481-484 
basic concepts, 5-7 
with binary response variable, 

555-559 
bootstrapping, 458-464 
building, 343-350,368-369 
building process diagnostics, 

384--414 
choice oflevels, 170-171 
coefficient of correlation, 76 
coefficient of determination, 74 
compared to correlation models, 78 
construction of, 7-8 
degree oflinear association, 74--77 
effect of measurement errors, 

165-168 
estimation of error terms, 24--26 
first-order autoregressive, 484--487 
general linear, 121-127,217-223, 

510-511,623-624 
interaction, 306-313 
inverse predictions, 168-170 
logistic regression 

mean response, 602-604 
multiple, 570-577 
parameters, 577-582 
polytomous, 608-618 
simple, 564--570 
tests for, 586-601 

multiple regression (see Multiple 
regression models) 

nonlinear regression 
building, 526-527 
Gauss-Newton method, 518-524 
learning curve, 533-537 
least squares estimation, 515-525 
logistic, 563-618 
parameters, 527-533 
Poisson, 618-623 

normal error, X and Y random, 78-89 
normal error terms, 26-33 
origin, 5 
overview of remedial measures, 

127-129 
Poisson regression, 618-623 
polynomial, 219-220, 294--305 
with qualitative predictor variables, 

313-321 
residual analysis, 102-115 
scope of, 8 
selection and validation, 343-375 

automatic search procedures, 
361-369 

backward elimination, 368 
criteria for model selection, 

353-361 
forward selection, 368 
forward stepwise regression, 

364--367 
simple linear (see Simple linear 

regression models) 
smoothing methods, 137-141 
third order, 296 
transformed variables, 220 
validation of, 350, 369-375 

Regression relation, functional form, 7-8 
Regression sum of squares, 65, 260-262 
Regression surface, 216, 229-230 
Regression through origin, 161-165 
Regression trees, 453-457 
Reinforcement interaction effect, 308 
Remainder sum of squares, 1366 
Repeated measures design, 663-664, 894, 

1127-1129 
blocking of subjects in, 1153 
estimation of effects, 1137-1138, 

1145, 1157-1158 
F test, 1130-1134,1138-1139, 

1142-1143,1155-1157 
latin square crossover deSign, 

1198-1200 
multiple pairwise testing procedure, 

1138-1139 
ranked data, 1138-1139 
regression approach, 1161 
repeated measures on both factors, 

1153-1161 
repeated measures on one factor, 

1140-1153 
residual analysis, 1134--1135, 

1144,1157 
single-factor, 1129-1139 
split-plot design, 1162-1163 

Replicates, 120 
Replication, 120, 426, 653 

hidden, 816 
ReprodUCibility, 653 
Residuals, 203-204, 224--225 

deleted, 395-396 
departures from simple linear 

regression, 103 
logistic regression diagnostics, 

591-598 
and omitted predictor variables, 

112-114 
outliers, 108-109 
overview of tests, 114--115 
properties, 102-103 
in regression models, 22-24 
scaled, 440-441 
semistudentized, 103,392,591 
studentized, 394 
studentized deleted, 396-398 
studentized Pearson, 592 

Index 1393 

variance-covariance matrix of, 
203-204 

Residual analysis, 102 
analysis of variance, 775-781, 

842-843,1006,1007 
latin square design, 1191 
nested design, 1100 
randomized block design, 901-903 
repeated measures design, 1134--1135, 

1144,1157 
Residual dot plots, 779 
Residual mean square, 25 
Residual plots, 104--114, 233-234, 

384--390 
Residual plots against fitted values, 

776-778,780-781 
Residuals, 689, 835,1004 

analysis of variance, 775-776 
Residual sequence plot, 778-779 
Residual sum of squares, 25 
Response, 21 
Response function, 764 (See also 

Regression function) 
Response modeling approach, 1255 
Response surface, 216, 309, 310 
Response surface design, 666, 

1267-1268 
blocking central composite design, 

1275--1276 
central composite design, 1268-1276 
design criteria, 1279-1281 
model interpretation and visualization, 

1284--1286 
optimal, 1276-1283 
optimal conditions, 1286-1287 
rotatable central composite design, 

1271-1272 
Response variables, 3,165--168,555-563 

transformations, 789-793 
Restricted mixed factor effects 

model, 1049 
Restricted randomization, 656 
Retrospective studies, 667-668 
Ridge regression, 431-437 
Ridge trace, 434, 435, 437 
Robust product design, 1244--1255 
Robust regression, 437-449 
Robust test, 794 
ROC (receiver operating characteristic) 

curve, 606 
Rotatable central composite design, 

1271-1273 
Rotatable inscribed central composite 

design, 1273 
Roundoff errors, in normal equations 

calculations, 271-272 
Row sum of squares, 1189 
Row vector, 178 
Running medians method, 137-138 
Rutgers Experimental Station, 

1277-1281 
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s 

Saddle point, 1285 
Sample size, 652--653 
Sample size planning for analysis of 

variance; 
estimation approach, 759-761, 

863-864,1182-1183 
to find "best" treatment, 

721-722,864 
F test, 1021 
latin square design, 1193-1194 
multifactor studies, 1021-1022 
power approach, 716-723,862-863 
random block design, 909-912, 939 
tables, 1342-1344 

Sampling distribution, 44--46, 48-50, 
52-54,69-70 

SAS PROC GLM, 981 
SAS PROC MIXED, 1075 
SAS PROC OPTEX, 1283 
Satterthwaite approximate F test, 

1068-1069 
Satterthwaite procedure, 1043-1045 
Saturated model, 588 
SBCp (Schwarz' Bayesian criterion), 

359-360 
Scalar, 182 
Scalar matrix, 186, 187 
Scaled residuals, 440-441 
Scaling, 272 
Scatter diagram/plot, 4, 19-21, 

104--105 
Scatter plot matrix, 232-233 
Scheffe, Henry, 793 
Scheffe joint estimation procedure, 

930-931,934 
latin square design, 1190 
nested design, 11 0 I, 11 02 
prediction of new observation, 

160-161,231 
randomized block design, 904 
repeated measures design, 1157 
single-factor analysis of variance, 761 
three-factor analysis of variance, 

1015, 1017 
two-factor analysis of variance, 

852,857 
Scheffe multiple comparison procedure, 

794 
single-factor analysis of variance, 

753-755 
Schwarz' Bayesian criterion (SBCp)' 

359-360 
Scientific studies, statistical design 

of,642 
Scope of model, 8 
Screening designs, 1239-1240 
Second-order interaction, 996 
Second-order regression model, 295-296, 

297,884 

Selection and validation of models, 
343-375 

automatic model selection, 582-585 
automatic search procedures, 361-369 
backward elimination, 368 
criteria for model selection, 353-361 
forward selection, 368 
forward stepwise regression, 364--367 

Semistudentized residuals, 103, 392, 
591,776 

Sen, P. K., 798 
SENIC data set, 1348-1349 
Sensitivity, 606 
Sequence plot, 101, 108-109 
Sequential experimental runs, 1290-1292 
Serial correlation, 481 
Servo-Data, Inc., 790-791 
Shapiro-Wilk test, 116 
Sheffield Foods Company, 1070-1076 
Sigmoidal response functions, 538, 

559-563 
Signal-noise ratio, 1255 
Simple linear regression coeffiCients, 

11-12 
interval estimation, 45-47, 49-50, 

52-55,54--55 
least squares estimation, 15-19, 

199-201 
point estimation, 21-22, 155-157 
tests for, 47-48,50-51,69-71 
variance-covariance matrix of, 

207-208 
Simple linear regression mean response; 

interval estimation, 52-55, 157-159, 
208-209 

joint estimation, 157-159 
point estimation, 21-22 

Simple linear regression models, 9-12 
ANOVA table, 67--68 
diagnostiCS for predictor variables, 

100-102 
error term distribution unspecified, 

9-12 
general test approach, 72-73 
interval estimation, 52-55 
joint estimation procedures, 

154--161 
in matrix terms, 197-199 
nonnalerror terrns, 26-33 
through origin, 161-165 
prediction of new observation, 55--61 
regression coeffioients, 11-12 
residual analysis, 102-115 
tests for coefficients. 47-48 (See also 

Regression models) 
Simulated envelope,' 596-598 
Simultaneous estimation, 747 
Simultaneous testing, 747-748 
Single-blind study, 658 
Single comparison procedure, 904 
Single degree of freedom test, 744, 964 

Single-factor ANOVA models, 681--685 
estimation of effects, 762-766 
factor effeCts model, 701 -704 

with unweighted mean, 705-708 
with weighted mean, 709-710 

fitting of model, 685--689 
F tests, 698-701, 704 
least squares estimation, 687--689 
maximum likelihood estimation, 

687--689 
model I vs. model n, 685 
partitioning of SSW, 690-693 
residual analysis, 775-781 

Single-factor study, 648 
analysis of covariance, 920-933 
estimation of effects, 737-761, 

930-932 
expected mean squares, 694--698 
experimental vs. observational studies 

677--679 
F tests, 716-718, 744, 795-798, 

928-929 
model II,1030-1034, 1047 
planning of sample sizes, 716-718, 

718-720 
regression approach, 704--712 
repeated measures design, 1129-1139 
subsampling, 1106-1113 

Single-hidden-layer, feedforward neural 
networks, 537 

Single-layer perceptrons, 537 
Singular matrix, 190 
Smoothing methods, 137-141 
Sparsity of effects prinCiple, 1224 
Spearman rank correlation coefficient, 

87-89 . 
Specificity, 606, 607 
Spector, P., 369 
Split-plot designs, 664, 1162-1163 
SPSS ANOVA, 981 
SPSS',763 
Square matrix, 178 
SSE (see Error sum of squares) 
SSTO (see Total sum of squares) 
SSTR (see Treatment sum of squares) 
Standard deviation, studentized 

statistic, 44 
Standardized multiple regression 

model, 273 
Standardized random variable, 1301 
Standardized regression coefficients, 

275-278 
Standard latin s~uares, 1186 
Standard normal distribution, table of 

cumulative probabilities, 1316 
Standard normal random variable, 

1302-1303 
Standard order, 1211 
Star points, 1269 
Statement confidence coefficient, 154 
Statistical computing packages, 980-981 



Statistical design of scientific studies, 642 
Statistical estimation, 1305-1306 
Statistical relation, 2, 3-5 
Steichen Bakeries, 1241-1244 
Stem-and-Ieafmodels, 101-102, 108, 110 
Stem-and-Ieaf plots, 779 
Stepwise Regression Methods, 364-368 
Stepwise regression selection procedures, 

364-368,583-584 
Structural empty cell, 967 
Studentized deleted residuals, 396-398, 

776-777 
Studentized Pearson residuals, 592 
Studentizedrange, 746-747 
Studentized range distribution, tables of 

percentiles, 1333-1335 
Studentized residuals, 394, 776 
Studentized statistic, 44, 58 
Subjects, 1127 

blocking, 1153 
Subsampling: 

randomized block design, 1367, 
1369-1370 

single-factor study, 1106-1113 
in three stages, 1113-1114 

Sufficient estimator, 1305 
Summation operator, 1297 
Sums of squares, 25, 225 

for blocks, 898 
in matrix notation, 204-205 
nested design, 1094-1095 
partitioning, 63--66 
pooling, in two-factor analysis of 

variance,861--862 
quadratic forms, 205-206 
rule for finding, 1359-1361 
for subjects, 1130 

Supplemental variables, 344, 347, 919 
Suppressor variable, 286 
SYGRAPH, 101, 102, 104 
Symmetric matrix, 185 
Symmetry (of probit response 

function), 560 
Synergistic interaction type, 308 
SYSTAT, 19-20, 981 

T 

Taguchi, G., 1244 
Taylor series expansion, 518 
t distribution, 1304 

Bonferroni procedure, 159, 160 
table of percentiles, 1317-1318 

Testing, 738 
Tests: 

for constancy of error variance. 
116-119,780-785 

for constancy of variance, 115 
factor level means, 704 

family of, 154-155 
goodness of fit, 586-590 
lack of fittest, 119-127 
for normality, 115 
for outliers, 115 
for randomness, 114 (See also F test; 

t test) 
Third-order regression model, 296 
Three-dimensional plots, 1284-1286 
Three-dimensional scatter plots, 233 
Three-factor interactions, 996 

interpretation of, 998-999 
test for, 1011-1012 

Three-factor study: 
ANOVA model, 992--998 
ANOVA partitioning, 1008--1009 
estimation of effects, 1013-1017. 

1069-1070 
evaluation of appropriateness, 

1005-1007 
expected mean squares, 1009 
fitting of model, 1003-1005 
F tests, 1009-1010, 1067-1068 
model II, 1066 
model III, 1066-1067 
nested design, 1114-1119 
regression approach, 1019-1020 
residual analysis, 1006, 1007 
unequal sample sizes, 1019-1021, 

1070-1077 
Tidwell, P. W, 236 
Time series data, 319-321, 481 (See also 

Autocorrelation) 
Total deviation, 65 
Total mean squared error, 357-359 
Total sum of squares, 63--66, 690-693 

partitioning, 836-838,1008-1009 
Total uncorrected sum of squares, 67 
Total variance, 1033 
Training sample, 372 
Training the network, 542 
Transformable interactions, 826-827 
Transformations of variables, 85-87, 

129-137,220,236,490-492,562, 
789-793 

Transpose of matrix, 178-179 
Treatment, 13, 649-652 
Treatment combination, 649 
Treatment effects (analysis of covariance), 

922--923,928--929,940. 
1180-1182 

Treatment means, 764, 817, 853, 
1018-1019 

differences of, 1002 
of equal importance, 1091 
estimation, 884-886 
multiple comparisons, 856-861 
of unequal importance, 970-980 

Treatment means plot, 820 
Treatment mean square, 694 
Treatment pattern sum of squares, 1199 

Index 1395 

Treatment sum of squares, 691, 837--838 
Trial,4 
t test, 287-288 

equivalence of F test, 71 
power of, 50-51 
power value charts, 1327-1328 

Tukey joint estimation procedure: 
balanced incomplete block 

design, 1182 
latin square design, 1190, 1191 
nested design, 1101, 1102 
randomized block design, 904 
repeated measures design, 

1148,1157 
three-factor analysis of variance, 

1015,1017 
two-factor analysis of variance, 

850--851,856 
Tukey-Kramer procedure, 751 
Tukey multiple comparison procedure, 

single-factor analysis of variance, 
746-753 

Tukey one degree of freedom test, 887 
Tukey test for additivity: 

latin square design, 1191-1192 
randomized block design, 903-904 
two-factor analysis of variance, 

886-888 
Tuning constants, 440 
Two-factor interactions, 823, 995,1012 

interpretation of multiple, 
999-1000,1016 

interpretation of single, 10 16-10 17 
Two-factor studies: 

analysis of covariance, 934-935 
ANOVA model for. 829-833 
ANOVA partitioning, 836-840 
crossed, 1366-1369 
empty cells, 964-967 
estimation of effects, 848-861, 

959-964, 970-980, 
1055-1060 

example, 812-813 
expected mean squares, 840, 

1052-1053 
fitting of model, 834-836 
F tests, 843-847,1053-1054 
general linear test approach, 953, 

972-974 
mean squares, 839-840 
model II, 1047-1049 
model III, 1049-1052 
nested design, 1091-1092 
no-interaction model, 880--886 
partitioning, 836-840 
planning sample sizes for, 862-864 

estimation approach. 863-864 
finding the "best" treatment, 864 
power approach, 862-863 

pooling sums of squares, 861-862 
regression approach, 953-959 
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Two-factor studies (cant.) 
repeated measures design, 1153-1161 
residual analysis, 842-843 
strategy for analysis, 847-858 
Tukey test for additivity, 886--888 
unequal sample sizes, 951-964 

Two-level factorial design, 665-666, 
1210-1212 

center point replications, 1222-1223, 
1243 

estimation of effects, 1212-1214 
F test, 1214-1215 
incomplete block designs, 

1240-1244 
normal probability plot, 1222 
Pareto plot, 1219-1220 
pooling of interactions, 1218-1219 
unreplicated, 1216--1223 

Two-level fractional factorial design, 
1223-1224 

confounding, 1224-1227 
defining relation, 1227-1228 
half-fraction, 1229 
projection propeny, 1232 
quaner-fraction,I229-1231 
resolution. 1231-1232 
setting a fraction of highest resolution, 

1232-1239 
smaller-fraction design, 1229-1231 

Two-sided test, 47, 51 
Two-variable conditioning plots, 

451-452 

U 

Unbalanced nested design, 1104-!1 06 
Unbiased condition, 43-44 
Unbiased estimator, 1305 
Uncontrolled variables, 919 (See also 

Supplemental variables) 
Unequal error variances, transformations, 

132-134 
Unequal sample sizes in analysis of 

variance, 951-964 
estimation of effects, 959--964, 

970-980, 1020-1021 

testing of effects, 953-959, 
1019-1020 

three-factor studies, 1070-1077 
Unequal treatment importance, 

970-980 
Uniform precision central composite 

design, 1273, 1275 
Unimportant interactions, 824-826 
University admissions data set, 1351 
Unmeasurable mean, 1226 
Umestricted mixed factor effects model, 

1049,1050 
Unweighted mean, 702 

factor effects model with, 705-708 

v 

Validation of regression model, 350, 
369-375 

Validation set, 372 
Variables: 

relations between, 2-5 
transformations, 129-137 

Variable metric method, 543 
Variance, 52-54 

of error terms, 9, 24-26, 27-28, 
43-44 

of prediction error, 57-59 
ofrandom variable, 1299-1300 
of residuals, 102 
tests for constancy of error 

variance, 115-119,234, 
780-785 

Variance analysis (see Analysis of 
variance) 

Variance components, 1055-1056 
Variance-covariance matrix: 

of random vector, 194-196 
of regression coeffiCients, 207-208, 

227-228 
of residuals, 203-204 

Variance function, 1271 
Variance inflation factor, 406-410, 

434-435 
Variance operator, 1299 
V criterion, 1280-1281 

Vector, 178 
with all elements 0, 187 
with all elements unity, 187 
random, 193-196 

Wald test, 578 
Watts, D. G., 529 

w 

Website developer data set, 1352 
Weighted least squares method, 128, 

421-431 
ANOVA models, 786--789 

Weighted mean, 703 
factor effects model with, 

709-710 
Weight function, 439-441 
Whole plots, 1162, 1163 
Within-class matching, 669 
Within-subjects sum of squares, 1131 
Working-Hotellingjoint estimation of 

mean responses: 
confidence band, 61-62 
multiple regression, 230 
simple linear regression, 158-159 

x 

X2 distribution, 1303 
table of percentiles, 1319 

X levels, 170-171 
X values, random, 78-89 

y 

Y values, random. 78-89 

z 

z' transformation, 85 
Zero vector, 187 

,. 






