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Preface to the Fourth Edition

This is a textbook to help you learn about applied linear regression. The book 
has been in print for more than 30 years, in a period of rapid change in statisti-
cal methodology and particularly in statistical computing. This fourth edition 
is a thorough rewriting of the book to reflect the needs of current students. As 
in previous editions, the overriding theme of the book is to help you learn to 
do data analysis using linear regression. Linear regression is a excellent model 
for learning about data analysis, both because it is important on its own and 
it provides a framework for understanding other methods of analysis.

This edition of the book includes the majority of the topics in previous edi-
tions, although much of the material has been rearranged. New methodology 
and examples have been added throughout.

• Even more emphasis is placed on graphics. The first two editions stressed 
graphics for diagnostic methods (Chapter 9) and the third edition added 
graphics for understanding data before any analysis is done (Chapter 1). 
In this edition, effects plots are stressed to summarize the fit of a model.

• Many applied analyses are based on understanding and interpreting 
parameters. This edition puts much greater emphasis on parameters, with 
part of Chapters 2–3 and all of Chapters 4–5 devoted to this important 
topic.

• Chapter 6 contains a greatly expanded treatment of testing and model 
comparison using both likelihood ratio and Wald tests. The usefulness 
and limitations of testing are stressed.

• Chapter 7 is about the variance assumption in linear models. The discus-
sion of weighted least squares has been been expanded to cover  
problems of ecological regressions, sample surveys, and other cases. 
Alternatives such as the bootstrap and heteroskedasticity corrections 
have been added or expanded.

• Diagnostic methods using transformations (Chapter 8) and residuals and 
related quantities (Chapter 9) that were the heart of the earlier editions 
have been maintained in this new edition.
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• The discussion of variable selection in Chapter 10 has been updated from 
the third edition. It is designed to help you understand the key problems 
in variable selection. In recent years, this topic has morphed into the area 
of machine learning and the goal of this chapter is to show connections 
and provide references.

• As in the third edition, brief introductions to nonlinear regression 
(Chapter 11) and to logistic regression (Chapter 12) are included, with 
Poisson regression added in Chapter 12.

Using This Book
The website for this book is http://z.umn.edu/alr4ed.

As with previous editions, this book is not tied to any particular computer 
program. A primer for using the free R package (R Core Team, 2013) for the 
material covered in the book is available from the website. The primer can 
also be accessed directly from within R as you are working. An optional pub-
lished companion book about R is Fox and Weisberg (2011).

All the data files used are available from the website and in an R package 
called alr4 that you can download for free. Solutions for odd-numbered 
problems, all using R, are available on the website for the book1. You cannot 
learn to do data analysis without working problems.

Some advanced topics are introduced to help you recognize when a problem 
that looks like linear regression is actually a little different. Detailed method-
ology is not always presented, but references at the same level as this book 
are presented. The bibliography, also available with clickable links on the 
book’s website, has been greatly expanded and updated.

Mathematical Level
The mathematical level of this book is roughly the same as the level of previ-
ous editions. Matrix representation of data is used, particularly in the deriva-
tion of the methodology in Chapters 3–4. Derivations are less frequent in later 
chapters, and so the necessary mathematics is less. Calculus is generally not 
required, except for an occasional use of a derivative. The discussions requiring 
calculus can be skipped without much loss.
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C H A P T E R  1

Scatterplots and Regression

Regression is the study of dependence. It is used to answer interesting ques-
tions about how one or more predictors influence a response. Here are a few 
typical questions that may be answered using regression:

• Are daughters taller than their mothers?
• Does changing class size affect success of students?
• Can we predict the time of the next eruption of Old Faithful Geyser from 

the length of the most recent eruption?
• Do changes in diet result in changes in cholesterol level, and if so, do the 

results depend on other characteristics such as age, sex, and amount of 
exercise?

• Do countries with higher per person income have lower birth rates than 
countries with lower income?

• Are highway design characteristics associated with highway accident 
rates? Can accident rates be lowered by changing design 
characteristics?

• Is water usage increasing over time?
• Do conservation easements on agricultural property lower land value?

In most of this book, we study the important instance of regression meth-
odology called linear regression. This method is the most commonly used in 
regression, and virtually all other regression methods build upon an under-
standing of how linear regression works.

As with most statistical analyses, the goal of regression is to summarize 
observed data as simply, usefully, and elegantly as possible. A theory may be 
available in some problems that specifies how the response varies as the values 

Applied Linear Regression, Fourth Edition. Sanford Weisberg.
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2 chapter 1 scatterplots and regression

of the predictors change. If theory is lacking, we may need to use the data to 
help us decide on how to proceed. In either case, an essential first step in 
regression analysis is to draw appropriate graphs of the data.

We begin in this chapter with the fundamental graphical tools for studying 
dependence. In regression problems with one predictor and one response, the 
scatterplot of the response versus the predictor is the starting point for regres-
sion analysis. In problems with many predictors, several simple graphs will be 
required at the beginning of an analysis. A scatterplot matrix is a convenient 
way to organize looking at many scatterplots at once. We will look at several 
examples to introduce the main tools for looking at scatterplots and scatterplot 
matrices and extracting information from them. We will also introduce nota-
tion that will be used throughout the book.

1.1  SCATTERPLOTS

We begin with a regression problem with one predictor, which we will generi-
cally call X, and one response variable, which we will call Y.1 Data consist of 
values (xi, yi), i = 1, . . . , n, of (X, Y) observed on each of n units or cases. In 
any particular problem, both X and Y will have other names that will be dis-
played in this book using typewriter font, such as temperature or 
concentration, that are more descriptive of the data that are to be ana-
lyzed. The goal of regression is to understand how the values of Y change as 
X is varied over its range of possible values. A first look at how Y changes as 
X is varied is available from a scatterplot.

Inheritance of Height
One of the first uses of regression was to study inheritance of traits from  
generation to generation. During the period 1893–1898, Karl Pearson (1857–
1936) organized the collection of n = 1375 heights of mothers in the United 
Kingdom under the age of 65 and one of their adult daughters over the age 
of 18. Pearson and Lee (1903) published the data, and we shall use these data 
to examine inheritance. The data are given in the data file Heights.2

Our interest is in inheritance from the mother to the daughter, so we 
view the mother’s height, called mheight, as the predictor variable and 
the daughter’s height, dheight, as the response variable. Do taller mothers 
tend to have taller daughters? Do shorter mothers tend to have shorter 
daughters?

A scatterplot of dheight versus mheight helps us answer these questions. 
The scatterplot is a graph of each of the n points with the response dheight 
on the vertical axis and predictor mheight on the horizontal axis. This plot is 

1In some disciplines, predictors are called independent variables, and the response is called a 
dependent variable, terms not used in this book.
2See Appendix A.1 for instructions for getting data files from the Internet.



1.1 scatterplots 3

Figure 1.1  Scatterplot of mothers’ and daughters’ heights in the Pearson and Lee data. The origi-
nal data have been jittered to avoid overplotting in (a). Plot (b) shows the original data, so each 
point in the plot refers to one or more mother–daughter pairs.
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shown in Figure 1.1a. For regression problems with one predictor X and a 
response Y, we call the scatterplot of Y versus X a summary graph.

Here are some important characteristics of this scatterplot:

1.  The range of heights appears to be about the same for mothers and for 
daughters. Because of this, we draw the plot so that the lengths of the 
horizontal and vertical axes are the same, and the scales are the same. If 
all mothers and daughters pairs had exactly the same height, then all the 
points would fall exactly on a 45°-line. Some computer programs for 
drawing a scatterplot are not smart enough to figure out that the lengths 
of the axes should be the same, so you might need to resize the plot or 
to draw it several times.

2.  The original data that went into this scatterplot were rounded so each 
of the heights was given to the nearest inch. The original data are plotted 
in Figure 1.1b. This plot exhibits substantial overplotting with many 
points at exactly the same location. This is undesirable because one point 
on the plot can correspond to many cases. The easiest solution is to use 
jittering, in which a small uniform random number is added to each value. 
In Figure 1.1a, we used a uniform random number on the range from 
−0.5 to +0.5, so the jittered values would round to the numbers given in 
the original source.

3.  One important function of the scatterplot is to decide if we might reason-
ably assume that the response on the vertical axis is independent of the 
predictor on the horizontal axis. This is clearly not the case here since  
as we move across Figure 1.1a from left to right, the scatter of points is 
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different for each value of the predictor. What we mean by this is shown 
in Figure 1.2, in which we show only points corresponding to mother–
daughter pairs with mheight rounding to either 58, 64, or 68 inches. We 
see that within each of these three strips or slices, the number of points 
is different, and the mean of dheight is increasing from left to right. 
The vertical variability in dheight seems to be more or less the same 
for each of the fixed values of mheight.

4.  In Figure 1.1a the scatter of points appears to be more or less elliptically 
shaped, with the major axis of the ellipse tilted upward, and with more 
points near the center of the ellipse rather than on the edges. We will see 
in Section 1.4 that summary graphs that look like this one suggest the use 
of the simple linear regression model that will be discussed in Chapter 2.

5.  Scatterplots are also important for finding separated points. Horizontal 
separation would occur for a value on the horizontal axis mheight that 
is either unusually small or unusually large relative to the other values 
of mheight. Vertical separation would occur for a daughter with 
dheight either relatively large or small compared with the other daugh-
ters with about the same value for mheight.

These two types of separated points have different names and roles 
in a regression problem. Extreme values on the left and right of the 
horizontal axis are points that are likely to be important in fitting regres-
sion models and are called leverage points. The separated points on the 
vertical axis, here unusually tall or short daughters give their mother’s 
height, are potentially outliers, cases that are somehow different from 

Figure 1.2  Scatterplot showing only pairs with mother’s height that rounds to 58, 64, or 68 inches.
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the others in the data. Outliers are more easily discovered in residual 
plots, as illustrated in the next example.

While the data in Figure 1.1a do include a few tall and a few short 
mothers and a few tall and short daughters, given the height of the 
mothers, none appears worthy of special treatment, mostly because in a 
sample size this large, we expect to see some fairly unusual mother–
daughter pairs.

Forbes’s Data
In an 1857 article, the Scottish physicist James D. Forbes (1809–1868) discussed 
a series of experiments that he had done concerning the relationship between 
atmospheric pressure and the boiling point of water. He knew that altitude 
could be determined from atmospheric pressure, measured with a barometer, 
with lower pressures corresponding to higher altitudes. Barometers in the 
middle of the nineteenth century were fragile instruments, and Forbes won-
dered if a simpler measurement of the boiling point of water could substitute 
for a direct reading of barometric pressure. Forbes collected data in the Alps 
and in Scotland. He measured at each location the atmospheric pressure pres 
in inches of mercury with a barometer and boiling point bp in degrees Fahr-
enheit using a thermometer. Boiling point measurements were adjusted for 
the difference between the ambient air temperature when he took the mea-
surements and a standard temperature. The data for n = 17 locales are repro-
duced in the file Forbes.

The scatterplot of pres versus bp is shown in Figure 1.3a. The general 
appearance of this plot is very different from the summary graph for the 
heights data. First, the sample size is only 17, as compared with over 1,300 for 
the heights data. Second, apart from one point, all the points fall almost exactly 
on a smooth curve. This means that the variability in pressure for a given 
boiling point is extremely small.

Figure 1.3  Forbes data: (a) pres versus bp; (b) residuals versus bp.
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The points in Figure 1.3a appear to fall very close to the straight line  
shown on the plot, and so we might be encouraged to think that the mean  
of pressure given boiling point could be modeled by a straight line. Look 
closely at the graph, and you will see that there is a small systematic deviation 
from the straight line: apart from the one point that does not fit at all,  
the points in the middle of the graph fall below the line, and those at the 
highest and lowest boiling points fall above the line. This is much easier to  
see in Figure 1.3b, which is obtained by removing the linear trend from  
Figure 1.3a, so the plotted points on the vertical axis are given for each value 
of bp by

residual pres= − point on the line

This allows us to gain resolution in the plot since the range on the vertical 
axis in Figure 1.3a is about 10 inches of mercury while the range in Figure 1.3b 
is about 0.8 inches of mercury. To get the same resolution in Figure 1.3a, we 
would need a graph that is 10/0.8 = 12.5 as big as Figure 1.3b. Again ignoring 
the one point that clearly does not match the others, the curvature in the plot 
is clearly visible in Figure 1.3b.

While there is nothing at all wrong with curvature, the methods we will be 
studying in this book work best when the plot can be summarized by a straight 
line. Sometimes we can get a straight line by transforming one or both of the 
plotted quantities. Forbes had a physical theory that suggested that log(pres) 
is linearly related to bp. Forbes (1857) contains what may be the first published 
summary graph based on his physical model. His figure is redrawn in Figure 
1.4. Following Forbes, we use base-ten common logs in this example, although 
in most of the examples in this book we will use natural logarithms. The choice 

Figure 1.4  (a) Scatterplot of Forbes’s data. The line shown is the ols line for the regression of 
log(pres) on bp. (b) Residuals versus bp.
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of base has no material effect on the appearance of the graph or on fitted 
regression models, but interpretation of parameters can depend on the choice 
of base.

The key feature of Figure 1.4a is that apart from one point, the data appear 
to fall very close to the straight line shown on the figure, and the residual plot 
in Figure 1.4b confirms that the deviations from the straight line are not sys-
tematic the way they were in Figure 1.3b. All this is evidence that the straight 
line is a reasonable summary of these data.

Length at Age for Smallmouth Bass
The smallmouth bass is a favorite game fish in inland lakes. Many smallmouth 
bass populations are managed through stocking, fishing regulations, and other 
means, with a goal to maintain a healthy population.

One tool in the study of fish populations is to understand the growth pattern 
of fish such as the dependence of a measure of size like fish length on age of 
the fish. Managers could compare these relationships between different popu-
lations that are managed differently to learn how management impacts fish 
growth.

Figure 1.5 displays the Length at capture in mm versus Age at capture for 
n = 439 smallmouth bass measured in West Bearskin Lake in Northeastern 
Minnesota in 1991. Only fish of age 8 or less are included in this graph. The 
data were provided by the Minnesota Department of Natural Resources and 
are given in the file wblake. Similar to trees, the scales of many fish species 
have annular rings, and these can be counted to determine the age of a fish. 

Figure  1.5  Length (mm) versus Age for West Bearskin Lake smallmouth bass. The solid line 
shown was estimated using ordinary least squares or ols. The dashed line joins the average 
observed length at each age.

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350

Age

Le
ng

th



8 chapter 1 scatterplots and regression

These data are cross-sectional, meaning that all the observations were taken 
at the same time. In a longitudinal study, the same fish would be measured 
each year, possibly requiring many years of taking measurements.

The appearance of this graph is different from the summary graphs shown 
for the last two examples. The predictor Age can only take on integer values 
corresponding to the number of annular rings on the scale, so we are really 
plotting eight distinct populations of fish. As might be expected, length gener-
ally increases with age, but the length of the longest fish at age 1 exceeds the 
length of the shortest fish at age 4, so knowing the age of a fish will not allow 
us to predict its length exactly; see Problem 2.15.

Predicting the Weather
Can early season snowfall from September 1 until December 31 predict snow-
fall in the remainder of the year, from January 1 to June 30? Figure 1.6, using 
data from the data file ftcollinssnow, gives a plot of Late season snowfall 
from January 1 to June 30 versus Early season snowfall for the period Sep-
tember 1 to December 31 of the previous year, both measured in inches at Ft. 
Collins, Colorado (Colorado Climate Center, 2012). If Late is related to 
Early, the relationship is considerably weaker than in the previous examples, 
and the graph suggests that early winter snowfall and late winter snowfall may 
be completely unrelated or uncorrelated. Interest in this regression problem 
will therefore be in testing the hypothesis that the two variables are uncor-
related versus the alternative that they are not uncorrelated, essentially  

Figure 1.6  Plot of snowfall for 93 years from 1900 to 1992 in inches. The solid horizontal line is 
drawn at the average late season snowfall. The dashed line is the ols line.
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Figure 1.7  Weight gain versus Dose of methionine for turkeys. The three symbols for the points 
refer to sources of methionine. The lines on the plot join the means within a source.
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comparing the fit of the two lines shown in Figure 1.6. Fitting models and 
performing tests will be helpful here.

Turkey Growth
This example is from an experiment on the growth of turkeys (Noll et al., 
1984). Pens of turkeys were grown with an identical diet, except that each pen 
was supplemented with a Dose of the amino acid methionine as a percentage 
of the total diet of the birds. The methionine was provided using either a 
standard source or one of two experimental sources. The response is average 
weight gain in grams of all the turkeys in the pen.

Figure 1.7 provides a summary graph based on the data in the file turkey. 
Except at Dose = 0, each point in the graph is the average response of five 
pens of turkeys; at Dose = 0, there were 10 pens of turkeys. Because averages 
are plotted, the graph does not display the variation between pens treated 
alike. At each value of Dose > 0, there are three points shown, with different 
symbols corresponding to the three sources of methionine, so the variation 
between points at a given Dose is really the variation between sources. At 
Dose = 0, the point has been arbitrarily labeled with the symbol for the first 
group, since Dose = 0 is the same treatment for all sources.

For now, ignore the three sources and examine Figure 1.7 in the way we 
have been examining the other summary graphs in this chapter. Weight gain 
is seen to increase with increasing Dose, but the increase does not appear 
to be linear, meaning that a straight line does not seem to be a reasonable 
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representation of the average dependence of the response on the predictor. 
This leads to study of mean functions.

1.2  MEAN FUNCTIONS

Imagine a generic summary plot of Y versus X. Our interest centers on how 
the distribution of Y changes as X is varied. One important aspect of this 
distribution is the mean function, which we define by

 E | a function that depends on the value of( )Y X x x= =  (1.1)

We read the left side of this equation as “the expected value of the response 
when the predictor is fixed at the value X = x”; if the notation “E( )” for 
expectations and “Var( )” for variances is unfamiliar, refer to Appendix A.2. 
The right side of (1.1) depends on the problem. For example, in the heights 
data in Example 1.1, we might believe that

 E |( )dheightmheight = = +x xβ β0 1  (1.2)

that is, the mean function is a straight line. This particular mean function has 
two parameters, an intercept β0 and a slope β1. If we knew the values of the 
βs, then the mean function would be completely specified, but usually the βs 
need to be estimated from data. These parameters are discussed more fully in 
the next chapter.

Figure 1.8 shows two possibilities for the βs in the straight-line mean func-
tion (1.2) for the heights data. For the dashed line, β0 = 0 and β1 = 1. This mean 
function would suggest that daughters have the same height as their mothers 
on the average for mothers of any height. The second line is estimated using 
ordinary least squares, or ols, the estimation method that will be described in 
the next chapter. The ols line has slope less than 1, meaning that tall mothers 
tend to have daughters who are taller than average because the slope is posi-
tive, but shorter than themselves because the slope is less than 1. Similarly, 
short mothers tend to have short daughters but taller than themselves. This is 
perhaps a surprising result and is the origin of the term regression, since 
extreme values in one generation tend to revert or regress toward the popula-
tion mean in the next generation (Galton, 1886).

Two lines are shown in Figure 1.5 for the smallmouth bass data. The dashed 
line joins the average length at each age. It provides an estimate of the mean 
function E(Length|Age) without actually specifying any functional form for 
the mean function. We will call this a nonparametric estimated mean function; 
sometimes we will call it a smoother. The solid line is the ols estimated straight 
line (1.1) for the mean function. Perhaps surprisingly, the straight line and the 
dashed lines that join the within-age means appear to agree very closely, and 
we might be encouraged to use the straight-line mean function to describe 
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these data. The increase in length per year is modeled to be the same for all 
ages. We cannot expect this to be true if we were to include older-aged fish 
because eventually the growth must slow down. For the range of ages here, 
the approximation seems to be adequate.

For the Ft. Collins weather data, we might expect the straight-line mean 
function (1.1) to be appropriate but with β1 = 0. If the slope is 0, then the mean 
function is parallel to the horizontal axis, as shown in Figure 1.6. We will even-
tually test for independence of Early and Late by testing the hypothesis that 
β1 = 0 against the alternative hypothesis that β1 ≠ 0.

Not all summary graphs will have a straight-line mean function. In  
Forbes’s data, to achieve linearity we have replaced the measured value  
of pres by log(pres). Transformation of variables will be a key tool in 
extending the usefulness of linear regression models. In the turkey data and 
other growth models, a nonlinear mean function might be more appropriate, 
such as

 E |( ) [ exp( )]Y x xDose = = + − −β β β0 1 21  (1.3)

The βs in (1.3) have a useful interpretation, and they can be used to summarize 
the experiment. When Dose = 0, E(Y|Dose = 0) = β0, so β0 is the baseline 
growth without supplementation. Assuming β2 > 0, when the Dose is large, 
exp(−β2Dose) is small, and so E(Y|Dose) approaches β0 + β1 for larger values 
of Dose. We think of β0 + β1 as the limit to growth with this additive. The rate 

Figure 1.8  The heights data. The dashed line is for E(dheight|mheight) = mheight, and the 
solid line is estimated by ols.
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parameter β2 determines how quickly maximum growth is achieved. This 
three-parameter mean function will be considered in Chapter 11.

1.3  VARIANCE FUNCTIONS

Another characteristic of the distribution of the response given the predictor 
is the variance function, defined by the symbol Var(Y|X = x) and in words 
as the variance of the response given that the predictor is fixed at X = x. 
For example, in Figure 1.2 we can see that the variance function for 
dheight|mheight is approximately the same for each of the three values of 
mheight shown in the graph. In the smallmouth bass data in Figure 1.5, an 
assumption that the variance is constant across the plot is plausible, even if it 
is not certain (see Problem 1.2). In the turkey data, we cannot say much about 
the variance function from the summary plot because we have plotted treat-
ment means rather than the actual pen values, so the graph does not display 
the information about the variability between pens that have a fixed value  
of Dose.

A frequent assumption in fitting linear regression models is that the vari-
ance function is the same for every value of x. This is usually written as

 Var |( )Y X x= = σ 2  (1.4)

where σ2 (read “sigma squared”) is a generally unknown positive constant. 
Chapter 7 presents more general variance models.

1.4  SUMMARY GRAPH

In all the examples except the snowfall data, there is a clear dependence of 
the response on the predictor. In the snowfall example, there might be no 
dependence at all. The turkey growth example is different from the others 
because the average value of the response seems to change nonlinearly with 
the value of the predictor on the horizontal axis.

The scatterplots for these examples are all typical of graphs one might see 
in problems with one response and one predictor. Examination of the summary 
graph is a first step in exploring the relationships these graphs portray.

Anscombe (1973) provided the artificial data given in the file anscombe 
that consists of 11 pairs of points (xi, yi), to which the simple linear regression 
mean function E(y|x) = β0 + β1x is fit. Each data set leads to an identical 
summary analysis with the same estimated slope, intercept, and other summary 
statistics, but the visual impression of each of the graphs is very different. The 
first example in Figure 1.9a is as one might expect to observe if the simple 
linear regression model were appropriate. The graph of the second data set 
given in Figure 1.9b suggests that the analysis based on simple linear regres-
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sion is incorrect and that a smooth curve, perhaps a quadratic polynomial, 
could be fit to the data with little remaining variability. Figure 1.9c suggests 
that the prescription of simple regression may be correct for most of the data, 
but one of the cases is too far away from the fitted regression line. This is called 
the outlier problem. Possibly the case that does not match the others should 
be deleted from the data set, and the regression should be refit from the 
remaining cases. This will lead to a different fitted line. Without a context for 
the data, we cannot judge one line “correct” and the other “incorrect.” The 
final set graphed in Figure 1.9d is different from the others in that there is not 
enough information to make a judgment concerning the mean function. If the 
separated point were deleted, we could not even estimate a slope. We must 
distrust an analysis that is so heavily dependent upon a single case.

1.5  TOOLS FOR LOOKING AT SCATTERPLOTS

Because looking at scatterplots is so important to fitting regression models, we 
establish some common vocabulary for describing the information in them 
and some tools to help us extract the information they contain.

The summary graph is of the response Y versus the predictor X. The mean 
function for the graph is defined by (1.1), and it characterizes how Y changes 
on the average as the value of X is varied. We may have a parametric model 
for the mean function and will use data to estimate the parameters. The  

Figure 1.9  Four hypothetical data sets (Anscombe, 1973).
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variance function also characterizes the graph, and in many problems we will 
assume at least at first that the variance function is constant. The scatterplot 
also will highlight separated points that may be of special interest because they 
do not fit the trend determined by the majority of the points.

A null plot has a horizontal straight line as its mean function, constant vari-
ance function, and no separated points. The scatterplot for the snowfall data 
appears to be a null plot.

1.5.1  Size

We may need to interact with a plot to extract all the available information, 
by changing scales, by resizing, or by removing linear trends. An example of 
this is given in Problem 1.3.

1.5.2  Transformations

In some problems, either or both of Y and X can be replaced by transforma-
tions so the summary graph has desirable properties. Most of the time, we will 
use power transformations, replacing, for example, X by Xλ for some number 
λ. Because logarithmic transformations are so frequently used, we will inter-
pret λ = 0 as corresponding to a log transform.

1.5.3  Smoothers for the Mean Function

In the smallmouth bass data in Figure 1.5, we computed an estimate of 
E(Length|Age) using a simple nonparametric smoother obtained by averag-
ing the repeated observations at each value of Age. Smoothers can also be 
defined when we do not have repeated observations at values of the predictor 
by averaging the observed data for all values of X close to, but not necessarily 
equal to, x. The literature on using smoothers to estimate mean functions has 
exploded in recent years, with fairly elementary treatments given by Bowman 
and Azzalini (1997), Green and Silverman (1994), Härdle (1990), and Simonoff 
(1996). Although these authors discuss nonparametric regression as an end in 
itself, we will generally use smoothers as plot enhancements to help us under-
stand the information available in a scatterplot and to help calibrate the fit of 
a parametric mean function to a scatterplot.

For example, Figure 1.10 repeats Figure 1.1a, this time adding the estimated 
straight-line mean function and smoother called a loess smooth (Cleveland, 
1979). Roughly speaking, the loess smooth estimates E(Y|X = x) at the point 
x by fitting a straight line to a fraction of the points closest to x; we used the 
fraction of 0.20 in this figure because the sample size is so large, but it is more 
usual to set the fraction to about 2/3. The smoother is obtained by joining the 
estimated values of E(Y|X = x) for many values of x. The loess smoother and 
the straight line agree almost perfectly for mheight close to average, but they 
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agree less well for larger values of mheight where there is much less data. 
Smoothers tend to be less reliable at the edges of the plot. We briefly discuss 
the loess smoother in Appendix A.5, but this material is dependent on the 
results in Chapters 2 and 3.

1.6  SCATTERPLOT MATRICES

With one predictor, a scatterplot provides a summary of the regression rela-
tionship between the response and the predictor. With many predictors, we 
need to look at many scatterplots. A scatterplot matrix is a convenient way to 
organize these plots.

Fuel Consumption
The goal of this example is to understand how fuel consumption varies over 
the 50 United States and the District of Columbia (Federal Highway Admin-
istration, 2001). Table 1.1 describes the variables to be used in this example; 
the data are given in the file fuel2001. The data were collected by the U.S. 
Federal Highway Administration.

Both Drivers and FuelC are state totals, so these will be larger in states 
with more people and smaller in less populous states. Income is computed 
per person. To make all these comparable and to attempt to eliminate the 
effect of size of the state, we compute rates Dlic = Drivers/Pop and 

Figure 1.10  Heights data with the ols line and a loess smooth with span = 0.20.
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Fuel = FuelC/Pop. Additionally, we replace Miles by its logarithm before 
doing any further analysis. Justification for replacing Miles with log(Miles) 
is deferred to Problem 8.7.

Many problems will require replacing the observable predictors like 
Drivers and Pop with a function of them like Dlic. We will use the term 
predictor to correspond to the original variables, and the new term regressor, 
described more fully in Section 3.3, to refer to variables that are computed 
from the predictors. In some instances this distinction is artificial, but in others 
the distinction can clarify issues.

The scatterplot matrix for the fuel data is shown in Figure 1.11. Except for 
the diagonal, a scatterplot matrix is a 2D array of scatterplots. The variable 
names on the diagonal label the axes. In Figure 1.11, the variable log(Miles) 
appears on the horizontal axis of all the plots in the rightmost column and on 
the vertical axis of all the plots in the bottom row.3

Each plot in a scatterplot matrix is relevant to a particular one predictor 
regression of the variable on the vertical axis, given the variable on the hori-
zontal axis. For example, the plot of Fuel versus Tax in the top row and 
second column of the scatterplot matrix in Figure 1.11 is relevant for the 
regression of Fuel on Tax. We can interpret this plot as we would a scatterplot 
for simple regression. We get the overall impression that Fuel decreases on 
the average as Tax increases, but there is lot of variation. We can make similar 
qualitative judgments about the each of the regressions of Fuel on the other 
variables. The overall impression is that Fuel is at best weakly related to each 
of the variables in the scatterplot matrix.

Does this help us understand how Fuel is related to all four predictors 
simultaneously? The marginal relationships between the response and each of 

Table 1.1  Variables in the Fuel Consumption Dataa

Drivers Number of licensed drivers in the state
FuelC Gasoline sold for road use, thousands of gallons
Income Per person personal income for the year 2000, in thousands of dollars
Miles Miles of Federal-aid highway miles in the state
Pop 2001 population age 16 and over
Tax Gasoline state tax rate, cents per gallon
Fuel 1000 × Fuelc/Pop
Dlic 1000 × Drivers/Pop
log(Miles) Natural logarithm of Miles

aAll data are for 2001, unless otherwise noted. The last three variables do not appear in the data 
file, but are computed from the previous variables, as described in the text.

3The scatterplot matrix program used to draw Figure 1.11, which is the pairs function in R, has 
the diagonal running from the top left to the lower right. Other programs, such as the splom 
function in R, has the diagonal from lower left to upper right. There seems to be no compelling 
reason to prefer one over the other.
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the variables are not sufficient to understand the joint relationship between 
the response and the more than one predictor at a time. The interrelationships 
among the predictors are also important. The pairwise relationships between 
the predictors can be viewed in the remaining cells of the scatterplot matrix. 
In Figure 1.11, the relationships between all pairs of predictors appear to be 
very weak, suggesting that for this problem, the marginal plots including Fuel 
are quite informative about the multiple regression problem. General consid-
erations for other scatterplot matrices will be developed in later chapters.

1.7  PROBLEMS

1.1 United  Nations (Data file: UN11) The data in the file UN11 contains 
several variables, including ppgdp, the gross national product per person 

Figure 1.11  Scatterplot matrix for the fuel data.
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in U.S. dollars, and fertility, the birth rate per 1000 females, both from 
the year 2009. The data are for 199 localities, mostly UN member countries, 
but also other areas such as Hong Kong that are not independent coun-
tries. The data were collected from United Nations (2011). We will study 
the dependence of fertility on ppgdp.4

1.1.1  Identify the predictor and the response.
1.1.2  Draw the scatterplot of fertility on the vertical axis versus 

ppgdp on the horizontal axis and summarize the information in this 
graph. Does a straight-line mean function seem to be plausible for 
a summary of this graph?

1.1.3  Draw the scatterplot of log(fertility) versus log(ppgdp) using 
natural logarithms. Does the simple linear regression model seem 
plausible for a summary of this graph? If you use a different base of 
logarithms, the shape of the graph won’t change, but the values on 
the axes will change.

1.2 Smallmouth bass data (Data file: wblake) Compute the means and the 
variances for each of the eight subpopulations in the smallmouth bass data. 
Draw a graph of average length versus Age and compare with Figure 1.5. 
Draw a graph of the standard deviations versus age. If the variance func-
tion is constant, then the plot of standard deviation versus Age should be 
a null plot. Summarize the information.

1.3 (Data file: Mitchell) The data shown in Figure 1.12 give average soil 
temperature in degrees C at 20 cm depth in Mitchell, Nebraska for 17 
years beginning January 1976, plotted versus the month number. The data 
were collected by K. Hubbard (Burnside et al., 1996).
1.3.1  Summarize the information in the graph about the dependence of 

soil temperature on month number.
1.3.2  The data used to draw Figure 1.12 are in the file Mitchell. Redraw 

the graph, but this time make the length of the horizontal axis at 
least 4 times the length of the vertical axis. Repeat Problem 1.3.1.

1.4 Old Faithful (Data file: oldfaith) The data file gives information about 
eruptions of Old Faithful Geyser during October 1980. Variables are the 
Duration in seconds of the current eruption, and the Interval, the 
time in minutes to the next eruption. The data were collected by volunteers 
and were provided by the late Roderick Hutchinson. Apart from missing 
data for the period from midnight to 6 a.m., this is a complete record of 
eruptions for that month.

4In the third edition of this book, similar data from 2000 were used in this problem. Those data 
are still available in the R package that accompanies this book and is called UN1.
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Old Faithful Geyser is an important tourist attraction, with up to several 
thousand people watching it erupt on pleasant summer days. The park 
service uses data like these to obtain a prediction equation for the time 
to the next eruption.

Draw the relevant summary graph for predicting interval from duration 
and summarize your results.

1.5 Water runoff in the Sierras (Data file: water) Can Southern California’s 
water supply in future years be predicted from past data? One factor 
affecting water availability is stream runoff. If runoff could be predicted, 
engineers, planners, and policy makers could do their jobs more efficiently. 
The data file contains 43 years’ worth of precipitation measurements taken 
at six sites in the Sierra Nevada mountains (labeled APMAM, APSAB, 
APSLAKE, OPBPC, OPRC, and OPSLAKE) and stream runoff volume at a 
site near Bishop, California, labeled BSAAM.

Draw the scatterplot matrix for these data and summarize the informa-
tion available from these plots.

1.6 Professor ratings (Data file: Rateprof) In the website and online forum 
RateMyProfessors.com, students rate and comment on their instruc-
tors. Launched in 1999, the site includes millions of ratings on thousands 
of instructors. The data file includes the summaries of the ratings of  
364 instructors at a large campus in the Midwest (Bleske-Rechek and 
Fritsch, 2011). Each instructor included in the data had at least 10 ratings 
over a several year period. Students provided ratings of 1–5 on quality, 

Figure 1.12  Monthly soil temperature data.
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helpfulness, clarity, easiness of instructor’s courses, and rater-
Interest in the subject matter covered in the instructor’s courses. The 
data file provides the averages of these five ratings, and these are shown 
in the scatterplot matrix in Figure 1.13.

Provide a brief description of the relationships between the five ratings.

Figure 1.13  Average professor ratings from the file Rateprof.
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C H A P T E R  2

Simple Linear Regression

The simple linear regression model consists of the mean function and the vari-
ance function

 
E |

Var |

( )

( )

Y X x x

Y X x

= = +
= =

β β
σ

0 1

2  (2.1)

The parameters in the mean function are the intercept β0, which is the value 
of E(Y|X = x) when x equals 0, and the slope β1, which is the rate of change 
in E(Y|X = x) for a unit change in X; see Figure 2.1. We can get all possible 
straight lines by varying the parameters. The values of the parameters are 
usually unknown and must be estimated using data. In the simple regression 
model, the variance function in (2.1) is assumed to be constant, with a positive 
value σ 2 that is usually unknown.

Because the variance σ 2 > 0, the observed value of the ith response yi will 
typically not equal its expected value E(Y|X = xi). To account for this differ-
ence between the observed data and the expected value, statisticians have 
invented a quantity called a statistical error, or ei, for case i defined implicitly 
by the equation yi = E(Y|X = xi) + ei or explicitly by ei = yi − E(Y|X = xi). The 
errors ei depend on unknown parameters in the mean function and so are not 
observable quantities. They are random variables and correspond to the verti-
cal distance between the point yi and the mean function E(Y|X = xi). In the 
heights data, Section 1.1, the errors are the differences between the heights of 
particular daughters and the average height of all daughters with mothers of 
a given fixed height.

We make two important assumptions concerning the errors. First, we assume 
that E(ei|xi) = 0, so if we could draw a scatterplot of the ei versus the xi, we 
would have a null scatterplot, with no patterns. The second assumption is that 
the errors are all independent, meaning that the value of the error for one case 

Applied Linear Regression, Fourth Edition. Sanford Weisberg.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc. 
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Figure 2.1 Graph of a straight line E(Y|X = x) = β0 + β1x. The intercept parameter β0 is the expected 
value of the response when the predictor x = 0. The slope parameter β1 gives the change in the 
expected value when the predictor x increases by 1 unit.
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gives no information about the value of the error for another case. This is likely 
to be true in the examples in Chapter 1, although this assumption will not hold 
in all problems.

Errors are often assumed to be normally distributed, but normality is much 
stronger than we need. In this book, the normality assumption is used primar-
ily to obtain tests and confidence statements with small samples. If the errors 
are thought to follow some different distribution, such as the Poisson or the 
binomial, other methods besides ols may be more appropriate; we return to 
this topic in Chapter 12.

2.1 ORDINARY LEAST SQUARES ESTIMATION

Many methods have been suggested for obtaining estimates of parameters in 
a model. The method discussed here is called ordinary least squares, or ols, in 
which parameter estimates are chosen to minimize a quantity called the resid-
ual sum of squares. A formal development of the least squares estimates is 
given in Appendix A.3.

Parameters are unknown quantities that characterize a model. Estimates of 
parameters are computable functions of data and are therefore statistics. To 
keep this distinction clear, parameters are denoted by Greek letters like α, β, 
γ , and σ, and estimates of parameters are denoted by putting a “hat” over the 
corresponding Greek letter. For example, β̂1 (read “beta one hat”) is the esti-
mator of β1, and σ̂ 2  is the estimator of σ2. The fitted value for case i is given 
by Ê(Y|X = xi), for which we use the shorthand notation ŷi,

 ˆ ˆ ( ) ˆ ˆy Y X x xi i i= = = +E | β β0 1  (2.2)
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Although the ei are random variables and not parameters, we shall use the 
same hat notation to specify the residuals: the residual for the ith case, denoted 
êi, is given by the equation

 ˆ ˆ ( ) ˆ ( ˆ ˆ ) , ,e y Y X x y y y x i ni i i i i i i= − = = − = − + =E | β β0 1 1…  (2.3)

which should be compared with the equation for the statistical errors,

 e y x i ni i i= − + =( ) , ,β β0 1 1…

The computations that are needed for least squares for simple regression 
depend only on averages of the variables and their sums of squares and sums 
of cross-products. Definitions of these quantities are given in Table 2.1. Sums 
of squares and cross-products are centered by subtracting the average from 
each of the values before squaring or taking cross-products. Appropriate alter-
native formulas for computing the corrected sums of squares and cross prod-
ucts from uncorrected sums of squares and cross-products that are often given 
in elementary textbooks are useful for mathematical proofs, but they can be 
highly inaccurate when used on a computer and should be avoided.

Table 2.1 also lists definitions for the usual univariate and bivariate summary 
statistics, the sample averages ( , )x y , sample variances ( , )SD SDx y

2 2 , which are 
the squares of the sample standard deviations, and the estimated covariance 
and correlation (sxy, rxy).1 The “hat” rule described earlier would suggest 
that different symbols should be used for these quantities; for example, ρ̂xy 
might be more appropriate for the sample correlation if the population cor-
relation is ρxy. This inconsistency is deliberate since these sample quantities 
estimate population values only if the data used are a random sample from a 

Table 2.1 Definitions of Symbolsa

Quantity Definition Description

x ∑ x ni / Sample average of x
y ∑ y ni / Sample average of y
SXX ∑ − = ∑ −( ) ( )x x x x xi i i

2 Sum of squares for the xs
SDx

2 SXX/(n − 1) Sample variance of the xs
SDx SXX/( )n − 1 Sample standard deviation of the xs
SYY ∑ − = ∑ −( ) ( )y y y y yi i i

2 Sum of squares for the ys
SDy

2 SYY/(n − 1) Sample variance of the ys
SDy SYY/( )n − 1 Sample standard deviation of the ys
SXY ∑ − − = ∑ −( )( ) ( )x x y y x x yi i i i Sum of cross-products
sxy SXY/(n − 1) Sample covariance
rxy sxy/(SDxSDy) Sample correlation

aIn each equation, the symbol Σ means to add over all n values or pairs of values in the data.

1See Appendix A.2.2 for the definitions of the corresponding population quantities.
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population. The random sample condition is not required for regression cal-
culations to make sense, and will often not hold in practice.

To illustrate computations, we will use Forbes’s data introduced in Section 
1.1, for which n = 17. The data are given in the file Forbes. The response 
given in the file is the base-ten logarithm of the atmospheric pressure, 
lpres = 100 × log10(pres) rounded to two decimal digits, and the predictor 
is the boiling point bp, rounded to the nearest 0.1°F. Neither multiplication by 
100 nor the base of the logarithms has important effects on the analysis. Mul-
tiplication by 100 avoids using scientific notation for numbers we display in 
the text, and changing the base of the logarithms merely multiplies the loga-
rithms by a constant. For example, to convert from base-ten logarithms to 
base-two logarithms, multiply by log(10)/log(2) = 3.3219. To convert natural 
logarithms to base-two, multiply by 1.4427.

Forbes’s data were collected at 17 selected locations, so the sample variance 
of boiling points, SDx

2 33 17= . , is not an estimate of any meaningful population 
variance. Similarly, rxy depends as much on the method of sampling as it does 
on the population value ρxy, should such a population value make sense. In the 
heights example, Section 1.1, if the 1375 mother–daughter pairs can be viewed 
as a sample from a population, then the sample correlation is an estimate of 
a population correlation.

The usual sample statistics are often presented and used in place of the 
corrected sums of squares and cross-products, so alternative formulas are 
given using both sets of quantities.

2.2 LEAST SQUARES CRITERION

The criterion function for obtaining estimators is based on the residuals, which 
are the vertical distances between the fitted line and the actual y-values, as 
illustrated in Figure 2.2. The residuals reflect the inherent asymmetry in the 
roles of the response and the predictor in regression problems.

The ols estimators are those values β0 and β1 that minimize the function2

 RSS( , ) ( )β β β β0 1 0 1
2

1

= − +[ ]
=
∑ y xi i

i

n

 (2.4)

When evaluated at ˆ , ˆβ β0 1( ) , we call the quantity RSS ˆ , ˆβ β0 1( ) the residual sum 
of squares, or just RSS.

The least squares estimates can be derived in many ways, one of which is 
outlined in Appendix A.3. They are given by the expressions

 
ˆ

ˆ ˆ

/

β

β β

1

1 2

0 1

= = = 





= −

SXY
SXX

SYY
SXX

r r

y x

xy
y

x
xy

SD
SD  (2.5)

2We occasionally abuse notation by using the symbol for a fixed though unknown quantity like 
β0 or β1 as if it were a variable argument. Thus, for example, RSS(β0, β1) is a function of 2 variables 
to be evaluated as its arguments β0 and β1 vary.
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The several forms for β̂1 are all equivalent.
We emphasize again that ols produces estimates of parameters but not the 

actual values of the parameters. As a demonstration, the data in Figure 2.2 
were created by setting the xi to be random sample of 20 numbers from a 
normal distribution with mean 2 and variance 1.5 and then computing 
yi = 0.7 + 0.8xi + ei, where the errors were sampled from a normal distribution 
with mean 0 and variance 1. The graph of the true mean function is shown in 
Figure 2.2 as a dashed line, and it seems to match the data poorly compared 
with ols, given by the solid line. Since ols minimizes (2.4), it will always fit at 
least as well as, and generally better than, the true mean function.

Using Forbes’s data to illustrate computations, we will write x  to be the 
sample mean of bp and y  to be the sample mean of lpres. The quantities 
needed for computing the least squares estimators are

 
x

y

= = =
= =

202 9529 530 7824 475 3122

139 6053 427 7942

. . .

. .

SXX SXY
SYY

 (2.6)

The quantity SYY, although not yet needed, is given for completeness. In the 
rare instances that regression calculations are not done using statistical soft-
ware, intermediate calculations such as these should be done as accurately as 
possible, and rounding should be done only to final results. We will generally 
display final results with two or three digits beyond the decimal point. Using 
(2.6), we find

ˆ .β1 0 895= =SXY
SXX

ˆ ˆ .β β0 1 42 138= − = −y x

Figure 2.2 A schematic plot for ols fitting. Each data point is indicated by a small circle. The solid 
line is the ols line. The vertical lines between the points and the solid line are the residuals. Points 
below the line have negative residuals, while points above the line have positive residuals. The 
true mean function shown as a dashed line for these simulated data is E(Y|X = x) = 0.7 + .8x.
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The estimated intercept ˆ .β0 42 138= − °F  is the estimated value of lpres 
when bp = 0. Since the temperatures in the data are in the range from about 
194°F to 212°F, this estimate does not have a useful physical interpretation. 
The estimated slope of ˆ .β1 0 895=  is the change in lpres for a 1°F change in 
bp.

The estimated line given by

 ˆ ( ) . .E |lpresbp bp= − +42 138 0 895

was drawn in Figure 1.4a. The fit of this line to the data is excellent.

2.3 ESTIMATING THE VARIANCE σ 2

Since the variance σ 2 is essentially the average squared size of the ei
2, we 

should expect that its estimator σ̂ 2 is obtained by averaging the squared 
residuals. Under the assumption that the errors are uncorrelated random 
variables with 0 means and common variance σ 2, an unbiased estimate of 
σ 2 is obtained by dividing RSS = ∑ êi

2 by its degrees of freedom (df), where 
residual df = number of cases minus the number of parameters in the mean 
function. For simple regression, residual df = n − 2, so the estimate of σ2 is 
given by

 σ̂ 2

2
=

−
RSS
n

 (2.7)

This quantity is called the residual mean square. In general, any sum of squares 
divided by its df is called a mean square. The residual sum of squares can be 
computed by squaring the residuals and adding them up. It can also be com-
puted from the formula (Problem 2.18)

 RSS SYY SXY
SXX

SYY SXX= − = −
2

1
2β̂  (2.8)

Using the summaries for Forbes’s data given at (2.6), we find

 
RSS = −

=

427 794
475 3122
530 7824

2 1549

2

.
.
.

.
 

(2.9)

 σ 2 2 1549
17 2

0 1436=
−

=.
.  (2.10)

The square root of σ̂ 2, ˆ . .σ = =0 1436 0 379 is called the standard error of 
regression. It is in the same units as is the response variable.
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If in addition to the assumptions made previously the ei are drawn from 
a normal distribution, then the residual mean square will be distributed  
as a multiple of a chi-squared random variable with df = n − 2, or in 
symbols,

ˆ ( )σ σ χ2
2

2

2
2∼

n
n

−
−

This is proved in more advanced books on linear models and is used  
to obtain the distribution of test statistics and also to make confidence state-
ments concerning σ 2. In addition, since the mean of a χ 2 random variable with 
m df is m,

E | Eˆ ( ) ( )σ σ χ σ σ2
2

2
2

2

2
2

2
2X

n
n

n
n( ) =

−
−[ ] =

−
− =

This shows that σ̂ 2  is an unbiased estimate of σ2 if the errors are normally 
distributed, although normality is not required for this result to hold. Expecta-
tions throughout this chapter condition on X to remind us that X is treated as 
fixed and the expectation is over the conditional distribution of Y|X, or equiva-
lently of the conditional distribution of e|X.

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES

The ols estimates depend on data only through the statistics given in Table 
2.1. This is both an advantage, making computing easy, and a disadvantage, 
since any two data sets for which these are identical give the same fitted regres-
sion, even if a straight-line model is appropriate for one but not the other, as 
we have seen in the example from Anscombe (1973) in Section 1.4. The esti-
mates β̂0  and β̂1 can both be written as linear combinations of y1, . . . , yn. 
Writing c x xi i= −( )/SXX (see Appendix A.3), then

ˆ ( )( )β1 =
∑ − −



 =

−



 =∑ ∑x x y y x x

y c yi i i
i i iSXX SXX

and

ˆ ˆβ β0 1
1= − = −



 =∑ ∑y x

n
c x y d yi i i i

with di = (1/n − cixi). A fitted value ˆ ˆ ˆy xi i= +β β0 1  is equal to ∑ +( )d c x yi i i i , also 
a linear combination of the yi.
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The fitted value at x x=  is

ˆ ( ) ˆ ˆE |Y X x y x x y= = − + =β β1 1

so the fitted line passes through the point ( , )x y , intuitively the center of the 
data. Finally, as long as the mean function includes an intercept, ∑ =êi 0 . Mean 
functions without an intercept may have ∑ ≠êi 0 .

Since the estimates β̂0 and β̂1 depend on the random eis, the estimates are 
also random variables. If all the ei have 0 mean and the mean function is 
correct, then, as shown in Appendix A.4, the least squares estimates are 
unbiased,

E |β̂ β0 0X( ) =

E |β̂ β1 1X( ) =

The variances of the estimators, assuming Var(ei|X) = σ 2, i = 1, . . . , n, and 
Cov(ei, ej|X) = 0, i ≠ j, are from Appendix A.4,

Var |β̂ σ1
2 1

X( ) =
SXX

 Var |β̂ σ0
2

21
X

n
x( ) = +



SXX

 

(2.11)

From (2.5) we have β̂0 depends on β̂1, ˆ ˆβ β0 1= −y x , and so it is no surprise 
that the estimates are correlated, and

 

Cov | Cov |

Cov | Var |

ˆ , ˆ ( ˆ , ˆ )

( , ˆ ) ( ˆ )

β β β β

β β

0 1 1 1

1 1

X y x X

y X x X

( ) = −

= −

= −−σ 2 x
SXX

 

(2.12)

The estimated slope and intercept are generally correlated unless the predictor 
is centered to have x = 0 (Problem 2.8). The correlation between the intercept 
and slope estimates is

 ρ β βˆ , ˆ
0 1

2
|

/
X

x

n x
( ) = −

+SXX

The correlation will be close to plus or minus 1 if the variation in the predictor 
reflected in SXX is small relative to x .

The Gauss–Markov theorem provides an optimality result for ols 
estimates. Among all estimates that are linear combinations of the ys and 
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unbiased, the ols estimates have the smallest variance. These estimates are 
called the best linear unbiased estimates, or blue. If one believes the assump-
tions and is interested in using linear unbiased estimates, the ols estimates are 
the ones to use.

The means and variances, and covariances of the estimated regression coef-
ficients do not require a distributional assumption concerning the errors. Since 
the estimates are linear combinations of the yi, and hence linear combinations 
of the errors ei, the central limit theorem shows that the coefficient estimates 
will be approximately normally distributed if the sample size is large enough.3 
For smaller samples, if the errors e = y − E(y|X = x) are independent and 
normally distributed, written in symbols as

 e X i ni | NID∼ …( , ) , ,0 12σ =

then the regression estimates β̂0 and β̂1 will have a joint normal distribution 
with means, variances, and covariances as given before. When the errors are 
normally distributed, the ols estimates can be justified using a completely 
different argument, since they are then also maximum likelihood estimates, as 
discussed in any mathematical statistics text, for example, Casella and Berger 
(2001).

2.5 ESTIMATED VARIANCES

Estimates of Var |β̂0 X( ) and Var |β̂1 X( ) are obtained by substituting σ̂ 2 for σ 2 
in (2.11). We use the symbol Var�( ) for an estimated variance. Thus

 Var |� ˆ ˆβ σ1
2 1

X( ) =
SXX

 Var |� ˆ ˆβ σ0
2

21
X

n
x( ) = +



SXX

The square root of an estimated variance is called a standard error, for which 
we use the symbol se( ). The use of this notation is illustrated by

 se | Var |ˆ ˆβ β1 1X X( ) = ( )�

The terms standard error and standard deviation are sometimes used inter-
changeably. In this book, an estimated standard deviation always refers to the 
variability between values of an observable random variable like the response 

3The main requirement for all estimates to be normally distributed in large samples is that 
max ( )i ix x−[ ]2 /SXX  must get close to 0 as the sample size increases (Huber and Ronchetti, 2009, 
Proposition 7.1).
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yi or an unobservable random variance like the errors ei. The term standard 
error will always refer to the square root of the estimated variance of a statistic 
like a mean y, or a regression coefficient β̂1.

2.6 CONFIDENCE INTERVALS AND t-TESTS

Estimates of regression coefficients and fitted values are all subject to uncer-
tainty, and assessing the amount of uncertainty is an important part of most 
analyses. Confidence intervals result in interval estimates, while tests provide 
methodology for making decisions concerning the value of a parameter or 
fitted value.

When the errors are NID(0, σ 2), parameter estimates, fitted values, and 
predictions will be normally distributed because all of these are linear combi-
nations of the yi and hence of the ei. Confidence intervals and tests can be 
based on a t-distribution, which is the appropriate distribution with normal 
estimates but using σ̂ 2 to estimate the unknown variance σ 2. There are many 
t-distributions, indexed by the number of df associated with σ̂ . Suppose we let 
t(α/2, d) be the value that cuts off α/2 × 100% in the upper tail of the 
t-distribution with d df. These values can be computed in most statistical pack-
ages or spreadsheet software.4

2.6.1 The Intercept

The intercept is used to illustrate the general form of confidence intervals for 
normally distributed estimates. The standard error of the intercept is 
se | / /β σ0

2 1 2
1X n x( ) = +( )ˆ /SXX . Hence, a (1 − α) × 100% confidence interval for 

the intercept is the set of points β0 in the interval

 ˆ ( , ) ( ˆ ) ˆ ( , ) ( ˆ )β α β β β α β0 0 0 0 02 2 2 2− − ≤ ≤ + −t n X t n X/ se | / se |

For Forbes’s data, se | / /ˆ . . . .
/

β0
2 1 2

0 379 1 17 202 953 530 724 3 340X( ) = + ( )( ) = . For a 
90% confidence interval, t(0.05, 15) = 1.753, and the interval is

 − − ≤ ≤ − +42 138 1 753 3 340 42 138 1 753 3 3400. . ( . ) . . ( . )β

 − ≤ ≤ −47 99 36 280. .β

Ninety percent of such intervals will include the true value.
A hypothesis test of

 
NH arbitrary

AH arbitrary

: ,

: ,

*

*

β β β
β β β

0 0 1

0 0 1

=
≠

4Readily available functions include tinv in Microsoft Excel, and the function pt in R. Tables of 
the t distributions can be easily found by googling t table.
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is obtained by computing the t-statistic

 t
X

= −ˆ

( ˆ )

*β β
β

0 0

0se |
 (2.13)

and referring this ratio to the t-distribution with df = n − 2, the number of df 
in the estimate of σ 2. For example, in Forbes’s data, consider testing the NH 
β0 = −35 against the alternative that β0 ≠ −35. The statistic is

 t = − − − = −42 138 35
3 34

2 137
. ( )

.
.

Since AH is two-sided, the p-value corresponds to the probability that a t(15) 
variable is less than −2.137 or greater than +2.137, which gives a p-value that 
rounds to 0.05, providing some evidence against NH. This hypothesis test for 
these data is not one that would occur to most investigators and is used only 
as an illustration.

2.6.2 Slope

A 95% confidence interval for the slope, or for any of the partial slopes in 
multiple regression, is the set of β1 such that

 ˆ ( , ) ( ˆ ) ˆ ( , ) ( ˆ )β α β β β α β1 1 1 1 12 2− ≤ ≤ +t df X t df X/ se | / se |  (2.14)

For simple regression, df = n − 2 and se | /ˆ ˆβ σ1 X( ) = SXX . For Forbes’s data, 
df = 15, se |ˆ .β1 0 0165X( ) = , and

 0 895 2 131 0 0165 0 895 2 131 0 01651. . ( . ) . . ( . )− ≤ ≤ +β

 0 86 0 931. .≤ ≤β

As an example of a test for slope equal to 0, consider the Ft. Collins  
snowfall data in Section 1.1. One can show, Problem 2.5, that ˆ .β1 0 203= , 
se ˆ | .β1 0 131X( ) = . The test of interest is of

 
NH

AH

:

:

β
β

1

1

0

0

=
≠

 (2.15)

and t = (0.203 − 0)/0.131 =1.553. To get a significance level for this test, compare 
t with the t(91) distribution; the two-sided p-value is 0.124, suggesting no 
evidence against the NH that Early and Late season snowfalls are 
independent.
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2.6.3 Prediction

The estimated mean function can be used to obtain values of the response for 
given values of the predictor. The two important variants of this problem are 
prediction and estimation of fitted values. Since prediction is more important, 
we discuss it first.

In prediction we have a new case, possibly a future value, not one used to 
estimate parameters, with observed value of the predictor x*. We would like 
to know the value y*, the corresponding response, but it has not yet been 
observed. If we assume that the data used to estimate the mean function are 
relevant to the new case, then the model fitted to the observed data can be 
used to predict for the new case. In the heights example, we would probably 
be willing to apply the fitted mean function to mother–daughter pairs alive in 
England at the end of the nineteenth century. Whether the prediction would 
be reasonable for mother–daughter pairs in other countries or in other time 
periods is much less clear. In Forbes’s problem, we would probably be willing 
to apply the results for altitudes in the range he studied. Given this additional 
assumption, a point prediction of y*, say ỹ*, is just

 �y x* = +ˆ ˆ
*β β0 1

ỹ* predicts the as yet unobserved y*. Assuming the model is correct, then the 
true value of y* is

 y x e* * *= + +β β0 1

where e* is the random error attached to the future value, presumably with 
variance σ 2. Thus, even if β0 and β1 were known exactly, predictions would not 
match true values perfectly, but would be off by a random amount with stan-
dard deviation σ. In the more usual case where the coefficients are estimated, 
the prediction error variability will have a second component that arises from 
the uncertainty in the estimates of the coefficients. Combining these two 
sources of variation and using Appendix A.4,

 Var |( )
( )

* *
*�y x

n
x x= + + −





σ σ2 2
21

SXX
 (2.16)

The first σ 2 on the right of (2.16) corresponds to the variability due to e*, and 
the remaining term is the error for estimating coefficients. If x* is similar 
to the xi used to estimate the coefficients, then the second term will generally 
be much smaller than the first term. If x* is very different from the xi used in 
estimation, the second term can dominate.

Taking square roots of both sides of (2.16) and estimating σ 2 by σ̂ 2 , we get 
the standard error of prediction (sepred) at x*,
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 sepred |( )
( )

* *
*

/

�y x
n

x x= + + −





σ 1
1 2 1 2

SXX
 (2.17)

A prediction interval uses multipliers from the t-distribution with df equal to 
the df in estimating σ 2. For prediction of 100 × log(pres) for a location with 
x* = 200, the point prediction is ỹ* = −42.138 + +0.895(200) = 136.961, with 
standard error of prediction

 
sepred |( ) .

( . )
.

* *�y x = = + + −





200 0 379 1
1

17
200 202 9529

530 7824

2



=

1 2

0 393

/

.

Thus, a 99% predictive interval is the set of all y* such that

 136 961 2 95 0 393 136 961 2 95 0 393. . ( . ) . . ( . )*− ≤ ≤ +y

 135 803 138 119. .*≤ ≤y

More interesting would be a 99% prediction interval for pres, rather than for 
100 × log(pres). A point prediction is just 10(136.961/100) = 23.421 inches of 
Mercury. The prediction interval is found by exponentiating the end points of 
the interval in log scale. Dividing by 100 and then exponentiating, we get

 10 10135 803 100 138 119 100. / . /≤ ≤pres

 22 805 24 054. .≤ ≤pres

In the original scale, the prediction interval is not symmetric about the point 
estimate.

For the heights data, Figure 2.3 is a plot of the estimated mean function 
given by the dashed line for the regression of dheight on mheight along 
with curves at

 ˆ ˆ (. , ) ( )* * *β β0 1 025 1373+ ±x t sepred |dheight mheight

The vertical distance between the two solid curves for any value of  
mheight corresponds to a 95% prediction interval for daughter’s height given 
mother’s height. Although not obvious from the graph because of the very 
large sample size, the interval is wider for mothers who were either relatively 
tall or short, as the curves bend outward from the narrowest point at 
mheight mheight= .

2.6.4 Fitted Values

In rare problems, one may be interested in obtaining an estimate of E(Y|X = x*). 
In the heights data, this is like asking for the population mean height of all 
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daughters of mothers with a particular height. This quantity is estimated by 
the fitted value ŷ = β0 + β1x*, and its standard error is

 sefit |ˆ ˆ ( )
*

*
/

y x
n

x x( ) = + −





σ 1 2 1 2

SXX

To obtain confidence intervals, it is more usual to compute a simultaneous 
interval for all possible values of x. This is the same as first computing a joint 
confidence region for β0 and β1, and from these, computing the set of all pos-
sible mean functions with slope and intercept in the joint confidence set. The 
confidence region for the mean function is the set of all y such that

 
ˆ ˆ ˆ ; ,

ˆ ˆ ˆ

/β β α

β β

0 1
1 2

0 1

2 2 2+( ) − ( ) −( )[ ] ≤

≤ +( ) +

x y x F n y

x

sefit |

sefit yy x F n|( ) −( )[ ]2 2 2 1 2α; , /

This formula uses an F-distribution with 2 and n − 2 df in place of the t 
distribution to correct for the simultaneous inference about two estimates 
rather than just one.5 For multiple regression, replace 2F(α; 2, n − 2) by 
p′F(α; p′, n − p′), where p′ is the number of parameters estimated in the mean 
function including the intercept. The simultaneous band for the fitted line for 
the heights data is shown in Figure 2.3 as the vertical distances between the 
two dotted lines. The prediction intervals are much wider than the confidence 
intervals. Why is this so (Problem 2.13)?

Figure 2.3 Prediction intervals (solid lines) and intervals for fitted values (dashed lines) for the 
heights data.
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5Like the t distributions, tables of F distributions are available using the finv function in Microsoft 
Excel, the function pf in R or by googling F table.
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2.7 THE COEFFICIENT OF DETERMINATION, R2

Ignoring all possible predictors, the best prediction of a response y would 
simply be the sample average y  of the values of the response observed in the 
data. The total sum of squares SYY = ∑ −( )y yi

2 is the observed total variation 
of the response, ignoring any and all predictors. The total sum of squares is the 
sum of squared deviations from the horizontal line illustrated in Figure 2.4.

When we include a predictor, the unexplained variation is given by RSS, the 
sum of squared deviations from the fitted line, as shown on Figure 2.4. The 
difference between these sums of squares is called the sum of squares due to 
regression, SSreg, defined by

 SSreg SYY RSS= −  (2.18)

We can get a computing formula for SSreg by substituting for RSS from (2.8),

 SSreg SYY SYY SYY
SXX

SXY
SXX

= − −





=( ) ( )2 2

 (2.19)

If both sides of (2.18) are divided by SYY, we get

 
SSreg
SYY

RSS
SYY

= −1  (2.20)

The left-hand side of (2.20) is the proportion of observed variability in the 
response explained by regression on the predictor. The right-hand side consists 
of one minus the remaining unexplained variability. This concept of dividing 

Figure 2.4 Unexplained variation. The sum of squared deviations of the points from the horizontal 
line represent is the total variation. The sum of squared deviations from the ols line is the remain-
ing variation unexplained by regression on the predictor.
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up the total variability according to whether or not it is explained is of suffi-
cient importance that a special name is given to it. We define R2, the coefficient 
of determination, to be

 R2 1= = −SSreg
SYY

RSS
SYY

 (2.21)

R2 is a scale-free one-number summary of the strength of the relationship 
between the xi and the yi in the data. It generalizes nicely to multiple regres-
sion, depends only on the sums or squares, and appears to be easy to interpret. 
For Forbes’s data,

 R2 425 6391
427 794

0 995= = =SSreg
SYY

.
.

.

and thus about 99.5% of the variability in the observed values of 100 × 
log(pres) is explained by boiling point. Since R2 does not depend on units of 
measurement, we would get the same value if we had used logarithms with a 
different base, or if we did not multiply log(pres) by 100, or if we replaced 
the response bp by a0 + a1bp for any a0 and for any a1 ≠ 0.

By appealing to (2.18) and to Table 2.1, we can write

 R rxy
2

2
2= =

×
=SSreg

SYY
SXY

SXX SYY
( )

and thus R2 in simple linear regression is the same as the square of the sample 
correlation between the predictor and the response.

Many computer packages will also produce an adjusted R2, defined by

 R
df

n
adj

/
/

2 1
1

= −
−

RSS
SYY ( )

This differs from (2.21) by adding a correction for df of the sums of squares 
that can facilitate comparing models in multiple regression. Radj

2  is not used in 
this book because there are better ways of making this comparison discussed 
in Chapter 10.

2.8 THE RESIDUALS

Plots of residuals versus other quantities are used to find failures of assump-
tions. The most common plot, especially useful in simple regression, is the plot 
of residuals versus the fitted values. A null plot would indicate no failure  
of assumptions. Curvature might indicate that the fitted mean function is  
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inappropriate. Residuals that seem to increase or decrease in average magni-
tude with the fitted values might indicate nonconstant residual variance. A few 
relatively large residuals may be indicative of outliers, cases for which the 
model is somehow inappropriate.

The plot of residuals versus fitted values for the heights data is shown in 
Figure 2.5. This is a null plot, indicating no particular problems. The simple 
linear regression model provides a useful summary for these data.

The fitted values and residuals for Forbes’s data are plotted in Figure 2.6. 
The residuals are generally small compared with the fitted values, and they do 
not follow any distinct pattern in Figure 2.6. The residual for case number 12 
is about 4 times the size of the next largest residual in absolute value. This may 
suggest that the assumptions concerning the errors are not correct. Either 
Var(100 × log(pressure)|bp) may not be constant or for case 12, the corre-
sponding error may have a large fixed component. Forbes may have misread 
or miscopied the results of his calculations for this case, which would suggest 

Figure 2.5 Residuals versus fitted values for the heights data.
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Figure 2.6 Residuals versus fitted values for Forbes’s data.
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that the numbers in the data do not correspond to the actual measurements. 
Forbes noted this possibility himself, by marking this pair of numbers in his 
paper as being “evidently a mistake,” presumably because of the large observed 
residual.

Since we are concerned with the effects of case 12, we could refit the data, 
this time without case 12, and then examine the changes that occur in the 
estimates of parameters, fitted values, residual variance, and so on. This is sum-
marized in Table 2.2, giving estimates of parameters, their standard errors,  
σ̂ 2 , and the coefficient of determination R2 with and without case 12. The 
estimated intercept is somewhat smaller when case 12 is removed, while the 
intercept is nearly unchanged. In other regression problems, deletion of a 
single case can change everything. The effect of case 12 on standard errors is 
more marked: if case 12 is deleted, standard errors are decreased by a factor 
of about 3.1, and variances are decreased by a factor of about 3.12 ≈ 10. Inclu-
sion of this case gives the appearance of less reliable results than would be 
suggested on the basis of the other 16 cases. In particular, prediction intervals 
of pres are much wider based on all the data than on the 16-case data, 
although the point predictions are nearly the same. The residual plot obtained 
when case 12 is deleted before computing indicates no obvious failures in the 
remaining 16 cases.

Two competing fits using the same mean function but somewhat different 
data are available, and they lead to slightly different conclusions, although the 
results of the two analyses agree more than they disagree. On the basis of the 
data, there is no real way to choose between the two, and we have no way of 
deciding which is the correct ols analysis of the data. A good approach to this 
problem is to describe both or, in general, all plausible alternatives.

2.9 PROBLEMS

2.1 Height and weight data (Data file: Htwt) The table below and the data 
file give ht = height in centimeters and wt = weight in kilograms for a 

Table 2.2 Summary Statistics for Forbes’s Data with All 
Data and with Case 12 Deleted

Quantity All Data Delete Case 12

β̂0 −42.138 −41.308

β̂1 0.895 0.891

se β̂0( ) 3.340 1.001

se β̂1( ) 0.016 0.005

σ̂ 0.379 0.113

R2 0.995 1.000
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sample of n = 10 18-year-old girls. The data are taken from a larger 
study described in Problem 3.3. Interest is in predicting weight from 
height.

ht wt

169.6 71.2
166.8 58.2
157.1 56.0
181.1 64.5
158.4 53.0
165.6 52.4
166.7 56.8
156.5 49.2
168.1 55.6
165.3 77.8

2.1.1 Draw a scatterplot of wt on the vertical axis versus ht on the hori-
zontal axis. On the basis of this plot, does a simple linear regression 
model make sense for these data? Why or why not?

2.1.2 Show that x = 165 52. , y = 59 47. , SXX = 472.08, SYY = 731.96, 
and SXY = 274.79. Compute estimates of the slope and the intercept 
for the regression of Y on X. Draw the fitted line on your 
scatterplot.

2.1.3 Obtain the estimate of σ2 and find the estimated standard errors of 
β̂0  and β̂1. Also find the estimated covariance between β̂0 and β̂1. 
Compute the t-tests for the hypotheses that β0 = 0 and that β1 = 0 
and find the appropriate p-values using two-sided tests.

2.2 (Data file: UBSprices) The international bank UBS regularly produces 
a report (UBS, 2009) on prices and earnings in major cities throughout 
the world. Three of the measures they include are prices of basic com-
modities, namely 1 kg of rice, a 1 kg loaf of bread, and the price of a Big 
Mac hamburger at McDonalds. An interesting feature of the prices they 
report is that prices are measured in the minutes of labor required for a 
“typical” worker in that location to earn enough money to purchase the 
commodity. Using minutes of labor corrects at least in part for currency 
fluctuations, prevailing wage rates, and local prices. The data file includes 
measurements for rice, bread, and Big Mac prices from the 2003 and the 
2009 reports. The year 2003 was before the major recession hit much of 
the world around 2006, and the year 2009 may reflect changes in prices 
due to the recession.

The figure below is the plot of y = rice2009 versus x = rice2003, 
the price of rice in 2009 and 2003, respectively, with the cities correspond-
ing to a few of the points marked.
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2.2.1 The line with equation y = x is shown on this plot as the solid line. 
What is the key difference between points above this line and 
points below the line?

2.2.2 Which city had the largest increase in rice price? Which had the 
largest decrease in rice price?

2.2.3 The ols line ˆ ˆ ˆy x= +β β0 1  is shown on the figure as a dashed line, 
and evidently β̂1 1< . Does this suggest that prices are lower in 2009 
than in 2003? Explain your answer.

2.2.4 Give two reasons why fitting simple linear regression to the figure 
in this problem is not likely to be appropriate.

2.3 (Data file: UBSprices) This is a continuation of Problem 2.2. An alterna-
tive representation of the data used in the last problem is to use log scales, 
as in the following figure:

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.5

2.0

2.5

3.0

3.5

4.0

4.5

log(2003 rice price)

lo
g(

20
09

 r
ic

e 
pr

ic
e)

Vilnius
budapest

ols
y=x



2.9 problems 41

2.3.1 Explain why this graph and the graph in Problem 2.2 suggests that 
using log-scale is preferable if fitting simple linear regression is 
desired.

2.3.2 Suppose we start with a proposed model

 E |( )y x x= γ β
0

1

This is a common model in many areas of study. Examples include 
allometry (Gould, 1966), where x could represent the size of one 
body characteristic such as total weight and y represents some 
other body characteristic, such as brain weight, psychophysics 
(Stevens, 1966), in which x is a physical stimulus and y is a psycho-
logical response to it, or in economics, where x could represent 
inputs and y outputs, where this relationship is often called a Cobb–
Douglas production function (Greene, 2003).

If we take the logs of both sides of the last equation, we get

 log( ( )) log( ) log( )E |y x x= +γ β0 1

If we approximate log(E(y|x)) ≈ E(log(y)|x), and write β0 = log(γ), 
to the extent that the logarithm of the expectation equals the 
expectation of the logarithm, we have

 E |(log( ) ) log( )y x x= +β β0 1

Give an interpretation of β0 and β1 in this setting, assuming β1 > 0.

2.4 (Data file: UBSprices) This problem continues with the data file 
UBSprices described in Problem 2.2.
2.4.1 Draw the plot of y = bigmac2009 versus x = bigmac2003, the 

price of a Big Mac hamburger in 2009 and 2003. On this plot draw 
(1) the ols fitted line; (2) the line y = x. Identify the most unusual 
cases and describe why they are unusual.

2.4.2 Give two reasons why fitting simple linear regression to the figure 
in this problem is not likely to be appropriate.

2.4.3 Plot log(bigmac2009) versus log(bigmac2003) and explain why 
this graph is more sensibly summarized with a linear regression.

2.5 Ft. Collins snowfall data (Data file: ftcollinssnow) Verify the t-test 
for the slope in the Ft. Collins snowfall data given in Section 2.6.2.

2.6 Ft. Collins temperature data (Data file: ftcollinstemp) The data file 
gives the mean temperature in the fall of each year, defined as Sep-
tember 1 to November 30, and the mean temperature in the following 
winter, defined as December 1 to the end of February in the following 
calendar year, in degrees Fahrenheit, for Ft. Collins, CO (Colorado 
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Climate Center, 2012). These data cover the time period from 1900 to 
2010. The question of interest is: Does the average fall temperature 
predict the average winter temperature?
2.6.1 Draw a scatterplot of the response versus the predictor, and describe 

any pattern you might see in the plot.
2.6.2 Use statistical software to fit the regression of the response on the 

predictor. Add the fitted line to your graph. Test the slope to be 0 
against a two-sided alternative, and summarize your results.

2.6.3 Compute or obtain from your computer output the value of the 
variability in winter explained by fall and explain what this 
means.

2.6.4 Divide the data into 2 time periods, an early period from 1900 to 1989, 
and a late period from 1990 to 2010. You can do this using the vari-
able year in the data file. Are the results different in the two time 
periods?

2.7 More with Forbes’s data (Data files: Forbes and Hooker) An alterna-
tive approach to the analysis of Forbes’s experiments comes from the 
Clausius–Clapeyron formula of classical thermodynamics, which dates to 
Clausius (1850). According to this theory, we should find that

 E |( )presbp
bpKelvin

= +β β0 1
1

 (2.22)

where bpKelvin is boiling point in kelvin, which equals 255.37 + 
(5/9) × bp. If we were to graph this mean function on a plot of pres 
versus bpKelvin, we would get a curve, not a straight line. However, we 
can estimate the parameters β0 and β1 using simple linear regression 
methods by defining u1 to be the inverse of temperature in kelvin,

 u1
1 1

5 9 255 37
= =

+bpKelvin bp( ) ./

The mean function (2.22) can be rewritten as

 E |( )presbp = +β β0 1 1u  (2.23)

for which simple linear regression is suitable. The notation we have used 
in (2.23) is a little different, as the left side of the equation says we are 
conditioning on bp, but the variable bp does not appear explicitly on the 
right side of the equation, although of course the regressor u1 depends 
on bp.
2.7.1 Draw the plot of pres versus u1, and verify that apart from case 

12 the 17 points in Forbes’s data fall close to a straight line. Explain 
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why the apparent slope in this graph is negative when the slope in 
Figure 1.4a is positive.

2.7.2 Compute the linear regression implied by (2.23), and summarize 
your results.

2.7.3 We now have two possible models for the same data based on the 
regression of pres on bp used by Forbes, and (2.23) based on the 
Clausius–Clapeyron formula. To compare these two mean func-
tions, draw the plot of the fitted values from Forbes’s mean function 
fit versus the fitted values from (2.23). On the basis of these and 
any other computations you think might help, is it possible to prefer 
one approach over the other? Why?

2.7.4 In his original paper, Forbes provided additional data collected by 
the botanist Joseph D. Hooker (1817–1911) on temperatures and 
boiling points measured often at higher altitudes in the Himalaya 
Mountains. The data for n = 31 locations is given in the file Hooker. 
Find the estimated mean function (2.23) for Hooker’s data.

2.8 Deviations from the mean Sometimes it is convenient to write the simple 
linear regression model in a different form that is a little easier to manip-
ulate. Taking Equation (2.1), and adding β β1 1x x− , which equals 0, to the 
right-hand side, and combining terms, we can write

 

y x x x e

x x x e

x x e

i i i

i i

i i

= + + − +
= + + − +
= + − +

β β β β
β β β

α β

0 1 1 1

0 1 1

1

( ) ( )

( )
 

(2.24)

where we have defined α β β= +0 1x . This is called the deviations from 
the sample mean form for simple regression.
2.8.1 What is the meaning of the parameter α?
2.8.2 Show that the least squares estimates are

 ˆ , ˆ ( . )α β= y 1 2 5as given by

2.8.3 Find expressions for the variances of the estimates and the covari-
ance between them.

2.9 Invariance
2.9.1 In the simple regression model (2.1), suppose the value of the pre-

dictor X is replaced by Z = aX + b, where a ≠ 0 and b are constants. 
Thus, we are considering 2 simple regression models,

 I E |: ( )Y X x x= = +β β0 1

 II E |: ( ) ( )Y Z z z ax b= = + = + +γ γ γ γ0 1 0 1
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Find the relationships between β0 and γ0; between β1 and γ1; between 
the estimates of variance in the 2 regressions, and between the t-
tests of β1 = 0 and of γ1 = 0.

2.9.2 Suppose each value of the response Y is replaced by V = dY, for 
some d ≠ 0, so we consider the two regression models

 I E |: ( )Y X x x= = +β β0 1

 III E |: ( )V X x x= = +δ δ0 1

Find the relationships between β0 and δ0; between β1 and δ1; 
between the estimates of variance in the 2 regressions, and between 
the t-tests of β1 = 0 and of δ1 = 0.

2.10 Two-sample tests One of the basic problems in elementary statistics is 
testing for equality of two means. If yj , j = 0,1, are the sample means, the 
sample sizes are mj, j = 0, 1, and the sample standard deviations are SDj, 
j = 0, 1, then under the assumption that sample j is NID(μj, σ2), the 
statistic

 t
y y

m m
= −

+
1 0

0 11 1σ̂ / /
 (2.25)

with ˆ ( ) ( ) /σ 2
0 0

2
1 1

2
0 11 1 2= − + −[ ] + −[ ]m m m mSD SD  is used to test μ0 = μ1 

against a general alternative. Under normality and the assumptions of 
equal variance in each population, the null distribution is t ∼ t(m0 + m1 − 2).

For simplicity assume m0 = m1 = m, although the results do not depend 
on the equal sample sizes. Define a predictor X with values xi = 0 for i = 
1, . . . , m and xi = 1 for i = m+1, . . . , 2m. Combine the response yi into a 
vector of length 2m, the first m observations corresponding to population 
0 and the remaining to population 1. In this problem we will fit the simple 
linear regression model (2.1) for this X and Y, and show that it is equiva-
lent to the two-sample problem.
2.10.1 Show that y y y= +( )0 1 2/ , x = 1 2/ , SXX = m/2, and 

SXY = −m y y( )1 0 2/ .
2.10.2 Give the formulas for the ols estimates of β0 and β1 in the simple 

linear regression model with the Y and X as specified in this 
problem. Interpret the estimates.

2.10.3 Find the fitted values and the residuals. Give an expression for 
RSS obtained by squaring and adding up the residuals and then 
dividing by the df.

2.10.4 Show that the t-statistic for testing β1 = 0 is exactly the same as 
the usual two-sample t-test for comparing two groups with an 
assumption of equal within-group variance.
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2.10.5 The group indicator is set to xi = 0 for one group and xi = 1 for the 
other group. Suppose we used as the group indicator xi

* = −1 for 
the first group and xi

* = +1  for the second group. How will this 
change the estimates of β0 and β1 and the meaning of the test that 
β1 = 0? (Hint: Find values a and b such that x a x bi i

* ( )= + , and then 
apply Problem 2.9.1.)

2.10.6 (Data file: cathedral) The datafile contains the Height and 
Length in feet of 25 cathedrals, nine in the Romanesque style, 
and 16 in the later Gothic style. Consider only the first 18 rows of 
this data file, which contain all the Romanesque cathedrals and 
nine of the Gothic cathedrals, and consider testing the hypothesis 
that the mean length is the same for Romanesque and Gothic 
cathedrals against the alterative that they are different. Use these 
data to verify all the results of the preceding sections of this 
problem. (Hint: In the data file the group indicator Type is a text 
variable with values Romanesque and Gothic that you may need 
to convert to zeros and ones. In R, for example, the statement

> cathedral$group <-
+    ifelse(cathedral$Type==“Romanesque”, 0, 1)

will do it. Don’t forget to remove the last seven rows of the file, 
although if you do forget the test computed will still be a t-test of 
the hypothesis that the two types of cathedrals have the same 
mean height, but based on different data.)

2.11 The slope estimate as an average of pairwise slopes
2.11.1 Suppose we have a sample (xi, yi), i = 1, . . . , n. By completing the 

square show that

 ( )x x ni j

j

n

i

n

− =
==

∑∑ 2

11

2 SXX

 ( )( )x x y y ni j i j

j

n

i

n

− − =
==

∑∑
11

2 SXY

2.11.2 Given any 2 points (xi, yi) and (xj, yj), the slope of the line joining 
the first point to the second point is:

 b
y y
x x

ij
i j

i j

=
−
−

(To allow for data sets with repeated values of the xi, define bij = 0 
if xi = xj.) Show that the ols estimate β̂1 =SXY SXX/  is a weighted 
combination of the bij,
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 β̂1

11

=
==

∑∑ w bij ij

j

n

i

n

where the weights wij = (xi − xj)2/(2nSXX). This weighting scheme 
gives larger weight to pairs of points that are widely separated, 
(xi − xj)2 is large, and less weight to pairs that are close together.

2.12 The t-test for slope as a function of the correlation Show that the t-statistic 
for testing the slope β1 = 0 can be written as a function of sample size 
and the sample correlation rxy,

 t n
r

r

xy

xy

= = −
−

ˆ

ˆ
β

σ
1

2
2

1SXX  (2.26)

2.13 Heights of mothers and daughters (Data file: Heights)
2.13.1 Compute the regression of dheight on mheight, and report the 

estimates, their standard errors, the value of the coefficient of 
determination, and the estimate of variance. Write a sentence or 
two that summarizes the results of these computations.

2.13.2 Obtain a 99% confidence interval for β1 from the data.
2.13.3 Obtain a prediction and 99% prediction interval for a daughter 

whose mother is 64 inches tall.

2.14 Average prediction error (Data file: Heights) In many problems, the 
analyst may wish to characterize the average prediction error for a 
regression model either to describe the accuracy that could be expected 
for predictions of future values in general, or possibly to help choose 
between competing regression models, as will be discussed in Chapter 10. 
If sufficient data are available, a simple cross-validation scheme can be 
used. We divide the data into two parts, a construction set to be used to 
estimate coefficients, and a validation set used to test the accuracy of the 
prediction equation.
2.14.1 Using the Heights data, create a construction set by selecting 

approximately 2/3 of the rows of the data file at random. The 
remaining 1/3 of the rows will comprise the validation set.

2.14.2 Obtain predictions from the model fit to the construction set for 
the values of Mheight in the validation set. Compute and report 
the average squared residual. The square root of this quantity is 
an estimate of the average prediction error.

2.14.3 As an alternative to cross-validation in this problem, use the fitted 
model based on the construction set to obtain predictions and the 
standard error of prediction (2.17) for each of the rows in the 
validation set. Then compute the average squared prediction  
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error and its square root. Compare with the results of the last 
subproblem.

2.15 Smallmouth bass (Data file: wblake)
2.15.1 Using the West Bearskin Lake smallmouth bass data in the file 

wblake, obtain 95% intervals for the mean length at ages 2, 4, 
and 6 years.

2.15.2 Obtain a 95% interval for the mean length at age 9. Explain why 
this interval is likely to be untrustworthy.

2.16 United Nations data (Data file: UN11)
Refer to the UN data in Problem 1.1.
2.16.1 Use a software package to compute the simple linear regression 

model corresponding to the graph in Problem 1.1.3.
2.16.2 Draw a graph of log(fertility) versus log(ppgdp), and add the 

fitted line to the graph.
2.16.3 Test the hypothesis that the slope is 0 versus the alternative that 

it is negative (a one-sided test). Give the significance level of the 
test and a sentence that summarizes the result.

2.16.4 Give the value of the coefficient of determination, and explain its 
meaning.

2.16.5 For a locality not in the data with ppgdp = 1000, obtain a point 
prediction and a 95% prediction interval for log(fertility). If 
the interval (a, b) is a 95% prediction interval for log(fertility), 
then a 95% prediction interval for fertility is given by (exp(a), 
exp(b)). Use this result to get a 95% prediction interval for 
fertility.

2.16.6 Identify (1) the locality with the highest value of fertility; (2) 
the locality with the lowest value of fertility; and (3) the two 
localities with the largest positive residuals from the regression 
when both variables are in log scale, and the two countries with 
the largest negative residuals in log scales.

2.17 Regression through the origin Occasionally, a mean function in which 
the intercept is known a priori to be 0 may be fit. This mean function is 
given by

 E |( )y x x= β1  (2.27)

The residual sum of squares for this model, assuming the errors are inde-
pendent with common variance σ2, is RSS = ∑ −( )y xi iβ̂1

2
.

2.17.1 Show that the least squares estimate of β1 is β̂1
2= ∑ ∑x y xi i i/ . Show 

that β̂1 is unbiased and that Var | /β̂ σ1
2 2X xi( ) = ∑ . Find an expres-

sion for σ̂ 2. How many df does it have?
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2.17.2 (Data file: snake) The data file gives X = water content of snow 
on April 1 and Y = water yield from April to July in inches in 
the Snake River watershed in Wyoming for n = 17 years from 
1919 to 1935 (Wilm, 1950). Fit a regression through the origin and 
find β̂1 and σ 2. Obtain a 95% confidence interval for β1. Test the 
hypothesis that the slope β1 = 0.49, against the alternative that 
β1 > 0.49.

2.17.3 Plot the residuals versus the fitted values, and comment on the 
adequacy of the mean function with 0 intercept. In regression 
through the origin, ∑ ≠êi 0 .

2.18 Using Appendix A.3, verify Equation (2.8).

2.19 Zipf’s law (Data file: MWwords) Suppose we counted the number of times 
each word was used in the written works by Shakespeare, Alexander 
Hamilton, or some other author with a substantial written record. Can 
we say anything about the frequencies of the most common words?

Suppose we let fi be the rate per 1000 words of text for the ith most 
frequent word used. The linguist George Zipf (1902–1950) observed a 
law-like relationship between rate fi and rank i (Zipf, 1949),

 E | /( )f i ii = α γ

and further observed that the exponent γ is close to 1. Taking logarithms 
of both sides, we get approximately

 E |(log( ) log( )) log( ) log( )f i ii = −α γ  (2.28)

Zipf’s law has been applied to frequencies of many other classes of 
objects besides words, such as the frequency of visits to web pages on the 
Internet and the frequencies of species of insects in an ecosystem.

The data file gives the frequencies of 165 common words like “the,” 
“of,” “to,” and “which,” in works from four sources: the political writings 
of eighteenth-century American political figures Alexander Hamilton, 
James Madison, and John Jay, and the book Ulysses by twentieth-century 
Irish writer James Joyce. The data are from Mosteller and Wallace (1964, 
table 8.1-1). Several missing values occur in the data; these are really 
words that were used so infrequently that their count was not reported 
in Mosteller and Wallace’s table.
2.19.1 Using only the 50 most frequent words in Hamilton’s work (i.e., 

using only rows in the data for which HamiltonRank ≤ 50), draw 
the appropriate summary graph, estimate the mean function 
(2.28), and summarize your results. The response variable should 
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be Hamilton, the frequency with which Hamilton used a word, 
and the predictor is HamiltonRank, the rank of that word among 
the words that Hamilton used.

2.19.2 Test the hypothesis that γ = 1 against the two-sided alternative in 
(2.28) and summarize.

2.19.3 Repeat Problem 2.19.1, but for words with rank of 75 or less, and 
with rank less than 100. For larger number of words, Zipf’s law 
may break down. Does that seem to happen with these data?

2.20 Old Faithful (Data file: oldfaith) Use the data from Problem 1.4.
2.20.1 Use simple linear regression methodology to obtain a prediction 

equation for interval from duration. Summarize your results 
in a way that might be useful for the nontechnical personnel who 
staff the Old Faithful Visitor’s Center.

2.20.2 An individual has just arrived at the end of an eruption that lasted 
250 seconds. Give a 95% confidence interval for the time the 
individual will have to wait for the next eruption.

2.20.3 Estimate the 0.90 quantile of the conditional distribution of

 interval duration|( )= 250

assuming that the population is normally distributed.

2.21 Windmills (Data file: wm1) Energy can be produced from wind using 
windmills. Choosing a site for a wind farm, the location of the windmills, 
can be a multimillion dollar gamble. If wind is inadequate at the site,  
then the energy produced over the lifetime of the wind farm can be  
much less than the cost of building and operation. Prediction of long-term 
wind speed at a candidate site can be an important component in the 
decision to build or not to build. Since energy produced varies as  
the square of the wind speed, even small errors can have serious 
consequences.

The data in the file wm1 provides measurements that can be used to 
help in the prediction process. Data were collected every 6 hours for the 
year 2002, except that the month of May 2002 is missing. The values Cspd 
are the calculated wind speeds in meters per second at a candidate site 
for building a wind farm. These values were collected at a tower erected 
on the site. The values RSpd are wind speeds at a reference site, which is 
a nearby location for which wind speeds have been recorded over a very 
long time period. Airports sometimes serve as reference sites, but in this 
case, the reference data comes from the National Center for Environ-
mental Modeling (NCAR, 2013). The reference is about 50 km southwest 
of the candidate site. Both sites are in the northern part of South Dakota. 
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The data were provided by Mark Ahlstrom and Rolf Miller of 
WindLogics.
2.21.1 Draw the scatterplot of the response CSpd versus the predictor 

RSpd. Is the simple linear regression model plausible for these 
data?

2.21.2 Fit the simple regression of the response on the predictor, and 
present the appropriate regression summaries.

2.21.3 Obtain a 95% prediction interval for CSpd at a time when 
RSpd = 7.4285.

2.21.4 Using generic notation, let x = RSpd, y = CSpd and let n be the 
number of cases used in the regression (n = 1116 in the data we 
have used in this problem) and x  and SXX defined from these n 
observations. Suppose we want to make predictions at m time 
points with values of wind speed x*1, . . . , x*m that are different 
from the n cases used in constructing the prediction equation. 
Show that (1) the average of the m predictions is equal to the 
prediction taken at the average value x*  of the m values of the 
predictor, and (2) using the first result, the standard error of  
the average of m predictions is

 se of average prediction = + + −





ˆ
ˆ ( )*σ σ

2
2

21
m n

x x
SXX

 (2.29)

If m is very large, then the first term in the square root is negligible, 
and the standard error of average prediction is essentially the 
same as the standard error of a fitted value at x*.

2.21.5 For the period from January 1, 1948, to July 31, 2003, a total of 
m = 62,039 wind speed measurements are available at the refer-
ence site, excluding the data from the year 2002. For these mea-
surements, the average wind speed was x* .= 7 4285. Give a 95% 
prediction interval on the long-term average wind speed at the 
candidate site. This long-term average of the past is then taken as 
an estimate of the long-term average of the future and can be used 
to help decide if the candidate is a suitable site for a wind farm.



51

C H A P T E R  3

Multiple Regression

Multiple linear regression generalizes the simple linear regression model by 
allowing for many regressors in a mean function. We start with adding just a 
regressor to the simple regression mean function because the ideas generalize 
to adding many regressors.

3.1  ADDING A REGRESSOR TO A SIMPLE LINEAR  
REGRESSION MODEL

We start with a response Y and the simple linear regression mean function

 E |( )Y X x x1 1 0 1 1= = +β β

Now suppose we have a second variable X2 and would like to learn about the 
simultaneous dependence of Y on X1 and X2. By adding X2 to the problem, 
we will get a mean function that depends on both the value of X1 and the 
value of X2,

 E |( , )Y X x X x x x1 1 2 2 0 1 1 2 2= = = + +β β β  (3.1)

The main idea in adding X2 is to explain the part of Y that has not already 
been explained by X1.

United Nations Data
We will use the United Nations data discussed in Problem 1.1. To the regres-
sion with response lifeExpF and regressor log(ppgdp) we consider adding 
fertility, the average number of children per woman. Interest therefore 
centers on the distribution of log(lifeExpF) as log(ppgdp) and fertility 
both vary. The data are in the file UN11.

Applied Linear Regression, Fourth Edition. Sanford Weisberg.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc. 
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Figure 3.1a is a summary graph for the simple regression of lifeExpF on 
log(ppgdp). This graph can also be called a marginal plot because it ignores 
all other regressors. The fitted mean function to the marginal plot using ols is

 ˆ ( log( )) . . log( )E |lifeExpF ppgdp ppgdp= +29 815 5 019  (3.2)

with R2 = 0.596, so about 60% of the variability in lifeExpF is explained by 
log(ppgdp). Expected lifeExpF increases as log(ppgdp) increases.

Similarly, Figure 3.1b is the marginal plot for the regression of lifeExpF 
on fertility. This simple regression has fitted mean function

 ˆ ( ) . .E |lifeExpFfertility fertility= −89 481 6 224

with R2 = 0.678, so fertility explains about 68% of the variability in life-
ExpF. Expected lifeExpF decreases as fertility increases. Thus, from 
Figure 3.1a, the response lifeExpF is related to the regressor log(ppgdp) 
ignoring fertility, and from Figure 3.1b, lifeExpF is related to fertil-
ity ignoring log(ppgdp).

If the regressors log(ppgdp) and fertility were uncorrelated, then the 
marginal plots shown in Figure 3.1 would provide a complete summary of the 
dependence of the response on the regressors, as the effect of fertility 
adjusted for log(ppgdp) would be the same as the effect of fertility ignor-
ing log(ppgpd). Figure 3.2 is a plot of the regressors. Countries with larger 
log(ppgdp) also tend to have lower fertility and so these variables are 
negatively correlated. The regressors will in part be explaining the same 
variation.1

Figure  3.1  United Nations data on 199 localities, mostly nations: (a) lifeExpF versus 
log(ppgdp); (b) lifeExpF versus fertility.
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1There are a few localities with relatively large log(ppgdp) that have higher values of fertility 
than would be expected by the overall trend in Figure 3.2, and perhaps also have relatively low 
lifeExpF from Figure 3.1a. Can you identify these localities and what they have in common 
(Problem 3.1)?
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3.1.1  Explaining Variability

Given these graphs, what can be said about the proportion of variability in 
lifeExpF explained jointly by log(ppgdp) and fertility? The total 
explained variation must be at least 67.8%, the larger of the variation explained 
by each variable separately, since using both log(ppgdp) and fertility 
must surely be at least as informative as using just one of them. If the regres-
sors were uncorrelated, then the variation explained by them jointly would 
equal the sum of the variations explained individually. In this example, the 
sum of the individual variations explained exceeds 100%, 59.6% + 67.8% 
= 127.4%. As confirmed by Figure 3.2, the regressors are correlated so this 
simple addition formula won’t apply. The variation explained by both variables 
can be smaller than the sum of the individual variation explained if the regres-
sors are in part explaining the same variation. The total can exceed the sum if 
the variables act jointly so that knowing both gives more information than 
knowing just one of them. For example, the area of a rectangle may be only 
poorly determined by either the length or width alone, but if both are consid-
ered at the same time, area can be determined exactly. It is precisely this 
inability to predict the joint relationship from the marginal relationships that 
makes multiple regression rich and complicated.

3.1.2  Added-Variable Plots

To get the effect of adding fertility to the model that already includes 
log(ppgdp), we need to examine the part of the response lifeExpF not 
explained by log(ppgdp) and the part of the new regressor fertility not 
explained by log(ppgdp).

1.  Compute the regression of the response lifeExpF on the first regressor 
log(ppgdp), corresponding to the ols line shown in Figure 3.1a. The 

Figure 3.2  Marginal plot of fertility versus log(ppgdp).
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fitted equation is given at (3.2). Keep the residuals from this regression. 
These residuals are the part of the response lifeExpF not explained by 
the regression on log(ppgdp).

2.  Compute the regression of fertility on log(ppgdp), corresponding 
to Figure 3.2. Keep the residuals from this regression as well. These 
residuals are the part of the new regressor fertility not explained by 
log(ppgdp).

3.  The added-variable plot is of the unexplained part of the response from 
(1) on the unexplained part of the added regressor from (2).

The added-variable plot is shown in Figure 3.3a. It summarizes the relation-
ship between lifeExpF and fertility adjusting for log(ppgdp), while 
Figure 3.3b, repeated for convenience from Figure 3.1b, shows this relationship 
but ignoring log(ppgdp). If Figure 3.3a shows a stronger relationship than 
does Figure 3.3b, meaning that the points in the plot show less variation about 
the fitted straight line, then the two variables act jointly to explain extra varia-
tion. If the two graphs have similar variation, then the total explained vari-
ability by both variables is less than the additive amount. The latter is the  
case here.

If we fit the simple regression mean function to Figure 3.3a, the fitted  
line has 0 intercept, since the averages of the plotted variables are 0, and the 
estimated slope via ols is ˆ .β2 4 199= − . It turns out that this is exactly the esti-
mate β̂2  that would be obtained using ols to get the estimates using the mean 
function (3.1) with both regressors. The proportion of variability explained in 
this plot is 0.367, which is the square of the partial correlation between life-
ExpF and fertility adjusted for log(ppgdp). Thus, adding fertility 
explains 36.7% of the remaining variability in lifeExpF after adjusting for 
log(ppgdp).

We now have two estimates of the coefficient β2 for fertility:

Figure 3.3  (a) Added-variable plot for fertility after log(ppgdp). (b) The marginal plot of 
lifeExpF versus fertility ignoring log(ppgdp), repeated from Figure 3.1b.
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ˆ . log( )β2 6 224= − ignoring ppgdp
 ˆ . log( )β2 4 199= − adjusting for ppgdp

The slope in the added-variable plot is about 30% smaller than the slope in 
the plot that ignores log(ppgdp), although in this instance, after adjusting for 
log(ppgdp), the effect of fertility is still important. The regressor fer-
tility is useful after adjusting for log(ppgdp).

To get the coefficient estimate for log(ppgdp) in the regression of life-
ExpF on both regressors, we would use the same procedure we used for 
fertility and consider the problem of adding log(ppgdp) to a mean func-
tion that already includes fertility. This would require looking at the 
graph of the residuals from the regression of lifeExpF on fertility 
versus the residuals from the regression of log(ppgdp) on fertility (see 
Problem 3.2).

3.2  THE MULTIPLE LINEAR REGRESSION MODEL

The general multiple linear regression model with response Y and regressors 
X1, . . . , Xp will have the form

 E |( )Y X X Xp p= + + +β β β0 1 1 �  (3.3)

The symbol X in E(Y|X) means that we are conditioning on all the regressors 
on the right side of the equation. When we are conditioning on specific values 
for the predictors x1, . . . , xp that we will collectively call x, we write

 E |( )Y X x xp p= = + + +x β β β0 1 1 �  (3.4)

As in Chapter 2, the βs are unknown parameters to be estimated. When p = 1, 
X has only one element, and we get the simple regression problem discussed 
in Chapter 2. When p = 2, the mean function (3.3) corresponds to a plane in 
3 dimensions. When p > 2, the fitted mean function is a hyperplane, the gen-
eralization of a p-dimensional plane in a (p + 1)-dimensional space. We cannot 
draw a general p-dimensional plane in our three-dimensional world.

3.3  PREDICTORS AND REGRESSORS

Regression problems start with a collection of potential predictors. Some of 
these may be continuous measurements, like the height or weight of an object. 
Some may be discrete but ordered, like a doctor’s rating of overall health of 
a patient on a nine-point scale. Other potential predictors can be categorical, 
like eye color or an indicator of whether a particular unit received a treatment. 
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All these types of potential predictors can be useful in multiple linear 
regression.

From the pool of potential predictors, we create a set of regressors2 that are 
the X-variables that appear in (3.3). The regressors might include

The intercept  Suppose we define 1 to be a regressor that is always equal 
to 1. The mean function (3.3) can be rewritten as

E |( )Y X X Xp p= + + +β β β0 1 11 �

Mean functions without an intercept would not have this regressor 
included. In most computer programs, an intercept is included unless it 
is specifically suppressed.

Predictors  The simplest type of regressor is equal to a predictor, for 
example, the variable mheight in the heights data or fertility in 
the UN data.

Transformations of predictors  Sometimes the original predictors need to 
be transformed in some way to make (3.3) hold to a reasonable approxi-
mation. This was the case in the UN data in which ppgdp was used in 
log scale. The willingness to replace predictors by transformations of 
them greatly expands the range of problems that can be summarized 
with a linear regression model.

Polynomials  Problems with curved mean functions can sometimes be 
accommodated in the multiple linear regression model by including poly-
nomial regressors in the predictor variables. For example, we might 
include as regressors both a predictor X1 and its square X1

2  to fit a qua-
dratic polynomial in that predictor. Complex polynomial surfaces in 
several predictors can be useful in some problems, as will be discussed 
in Section 5.3.3

Interactions and other combinations of predictors  Combining several pre-
dictors is often useful. An example of this is using body mass index, given 
by weight in kilograms divided by height in meters squared, in place of 
both height and weight, or using a total test score in place of the separate 
scores from each of several parts. Products of regressors called interac-
tions are often included in a mean function along with the base regressors 
to allow for joint effects.

Dummy  variables  and  factors  A categorical predictor with two or more 
levels is called a factor. Factors are included in multiple linear regression 

2In the third edition of this book, the word terms was used for the variables called regressors in 
this edition. This change in notation is consistent with Fox and Weisberg (2011).
3This discussion of polynomials might puzzle some readers because in Section 3.2, we said the 
linear regression mean function was a hyperplane, but here we have said that it might be curved, 
seemingly a contradiction. However, both of these statements are correct. If we fit a mean function 
like E(Y|X = x) = β0 + β1x + β2x2, the mean function is a quadratic curve in the plot of the response 
versus X but a plane in the three-dimensional plot of the response versus X and X2.
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using dummy variables, which are typically regressors that have only two 
values, often 0 and 1, indicating which category is present for a particular 
observation. We will see in Chapter 5 that a categorical predictor with two 
categories can be represented by one dummy variable, while a categorical 
predictor with many categories can require several dummy variables.

Regression splines  Polynomials represent the effect of a predictor by using 
a sum of regressors, like β1x + β2x2 + β3x3. We can view this as a linear 
combination of basis functions, given in the polynomial case by the func-
tions {x, x2, x3}. Using splines is similar to fitting a polynomial, except we 
use different basis functions that can have useful properties under some 
circumstances. We return to the use of splines in Section 5.4.

Principal components  In some problems we may have a large number of 
predictors that are thought to be related. For example, we could have 
predictors that correspond to the amount of a particular drug that is 
present in repeated samples on the same subject. Suppose X1, . . . , Xm 
are m such predictors. For clarity, we may wish to replace these m predic-
tors by a single regressor Z a Xj j= ∑  where Z summarizes the informa-
tion in the multiple indicators as fully as possible. One way to do this is 
to set all the aj = 1/m, and then Z is just the average of the Xj. Alterna-
tively, the ajs can be found that satisfy some criterion, such as maximizing 
the variance of Z. This leads to the use of principal components as pre-
dictors, as described in Section 5.5.

A regression with k predictors may combine into fewer than k regressors 
or expand to require more than k regressors. The distinction between predic-
tors and regressors can be very helpful in thinking about an appropriate mean 
function to use in a particular problem, and in using graphs to understand a 
problem. For example, a regression with 1 predictor can always be studied 
using the 2D scatterplot of the response versus the predictor, regardless of the 
number of regressors required in the mean function.

We will use the fuel consumption data introduced in Section 1.6 as the 
primary example for the rest of this chapter. As discussed earlier, the goal is 
to understand how fuel consumption varied (in 2001!) as a function of state 
characteristics. The variables were defined in Table 1.1 and are given in the file 
fuel2001. From the six initial predictors, we define regressors in the regres-
sion mean function.

Basic summary statistics for the relevant variables in the fuel data are given 
in Table 3.1, and these begin to give us a picture of these data. First, there is 
quite a bit of variation in Fuel, with values between a minimum of about 
317 gal./year and a maximum of about 843 gal./year. The gas Tax varies from 
only 8 cents/gal. to a high of 29 cents/gal., so unlike much of the world, gasoline 
taxes account for only a small part of the cost to consumers of gasoline. Also 
of interest is the range of values in Dlic: The number of licensed drivers per 
1000 population over the age of 16 is between about 700 and 1075. Some states 
appear to have more licensed drivers than they have population over age 16. 
Either these states allow drivers under the age of 16, allow nonresidents to 
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Table 3.1  Summary Statistics for the Fuel Data

N Average Std Dev Min Max

Tax 51 20.15 4.54 7.50 29.00
Dlic 51 903.68 72.86 700.20 1075.29
Income 51 28.40 4.45 20.99 40.64
log(Miles) 51 10.91 1.03 7.34 12.61
Fuel 51 613.13 88.96 317.49 842.79

obtain a driver’s license, or the data are in error. For this example, we will 
assume one of the first two reasons.

Of course, these univariate summaries cannot tell us much about how fuel 
consumption depends on the other variables. For this, graphs are very helpful. 
The scatterplot matrix for the fuel data is repeated in Figure 3.4. From our 
previous discussion, Fuel decreases on the average as Tax increases, but there 
is a lot of variation. We can make similar qualitative judgments about each of 
the regressions of Fuel on the other variables. The overall impression is that 
Fuel is at best weakly related to each of the variables in the scatterplot matrix, 
and in turn, these variables are only weakly related to each other.

Does this help us understand how Fuel is related to all four regressors 
simultaneously? We know from the discussion in Section 3.1 that the marginal 
relationships between the response and each of the variables is not sufficient 
to understand the joint relationship between the response and the regressors. 
The interrelationships among the regressors are also important. The pairwise 
relationships between the regressors can be viewed in the remaining cells of 
the scatterplot matrix. In Figure 3.4, the relationships between all pairs of 
regressors appear to be very weak, suggesting that for this problem the mar-
ginal plots including Fuel are quite informative about the multiple regression 
problem.

A more traditional, and less informative, summary of the two-variable 
relationships is the matrix of sample correlations, shown in Table 3.2. In this 
instance, the correlation matrix helps to reinforce the relationships we see in 
the scatterplot matrix, with fairly small correlations between the predictors 
and Fuel, and essentially no correlation between the predictors themselves.

3.4  ORDINARY LEAST SQUARES

From the initial collection of potential predictors, we have computed a set of 
p + 1 regressors, including an intercept, X = (1, X1, . . . , Xp). The mean function 
and variance function for multiple linear regression are

 
E |

Var |

( )

( )

Y X X X

Y X

p p= + + +

=

β β β
σ

0 1 1

2

�
 (3.5)

Both the βs and σ2 are unknown parameters that are to be estimated.
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Figure 3.4  Scatterplot matrix for the fuel data.
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Table 3.2  Sample Correlations for the Fuel Data

Tax Dlic Income log(Miles) Fuel

Tax 1.0000 −0.0858 −0.0107 −0.0437 −0.2594
Dlic −0.0858 1.0000 −0.1760 0.0306 0.4685
Income −0.0107 −0.1760 1.0000 −0.2959 −0.4644
log(Miles) −0.0437 0.0306 −0.2959 1.0000 0.4220
Fuel −0.2594 0.4685 −0.4644 0.4220 1.0000
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3.4.1  Data and Matrix Notation

In this and the next few sections we use matrix notation as a compact way to 
describe data and perform manipulations of data. Appendix A.6 contains a 
brief introduction to matrices and linear algebra that some readers may find 
helpful.

Suppose we have observed data for n cases or units, meaning we have a 
value of Y and all of the regressors for each of the n cases. We define

 Y X=
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y

y

y

x x

x x

x xn
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 (3.6)

so Y is an n × 1 vector and X is an n × (p + 1) matrix. The ith row of X will 
be defined by the symbol ′xi , which is a (p + 1) × 1 vector for mean functions 
that include an intercept. Even though xi is a row of X, we use the convention 
that all vectors are column vectors and therefore need to include the transpose 
on ′xi  to represent a row. The first few and the last few rows of the matrix X 
and the vector Y for the fuel data are

 X =

1 18 00 1031 38 23 471 16 5271

1 8 00 1031 64 30 064 13 7343

1 18 0

. . . .

. . . .

. 00 908 597 25 578 15 7536

1 25 65 904 894 21 915 15 1751

1 27 3

. . .

. . . .

.

� � � � �

00 882 329 28 232 16 7817

1 14 00 970 753 27 230 14 7362

. . .

. . . .
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The first row of X is ′ = ′x1 1 18 00 1031 38 23 471 16 5271( , . , . , . , . ) , and the first 
row of Y is y1 = 690.264, an ordinary number or scalar. The regressors in X are 
in the order intercept, Tax, Dlic, Income, and finally, log(Miles). The matrix 
X is 51 × 5 and Y is 51 × 1.

Next, define β to be a (p + 1) × 1 vector of unknown regression 
coefficients,

 b = ′( , , , )β β β0 1 � p

An equation for the mean function evaluated at xi is

 
E |( )Y X

x x
i i

i p ip

= = ′
= + + +

x x b
β β β0 1 1 �

 
(3.7)
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and the mean function in matrix terms is

 E |(Y X X) = b  (3.8)

where Y is the vector of responses, and X is the n × (p + 1) matrix whose ith 
row is ′xi .

3.4.2  The Errors e

Define the unobservable random vector of errors e elementwise by 
e y Y X yi i i i i= − = = − ′E |( )x x b , and e = (e1, . . . , en)′. The assumptions concern-
ing the eis given in Chapter 2 are summarized in matrix form as

 E | Var |( ) ( )e 0 e IX X n= = σ 2

where Var(e|X) means the covariance matrix of e for a fixed value of X, In is 
the n × n matrix with ones on the diagonal and zeroes everywhere else, and 0 
is a matrix or vector of zeroes of appropriate size. If we add the assumption 
of normality, we can write

 ( ~ ( , )e 0 I| NX n) 2σ

3.4.3  Ordinary Least Squares Estimators

The least squares estimate b̂  of β is chosen to minimize the residual sum of 
squares function

 RSS( ) (b b b b= − ′ = − ′ −∑( ) ) ( )2yi ix Y X Y X  (3.9)

The ols estimates can be found from (3.9) by differentiation in a matrix 
analog to the development of Appendix A.3. The ols estimate is given by the 
formula

 ˆ ( )b = ′ ′−X X X Y1  (3.10)

provided that the inverse (X′X)−1 exists.4 The estimator b̂  depends only on the 
sufficient statistics X′X and X′Y, which are matrices of uncorrected sums of 
squares and cross products.

Do not compute the least squares estimates using (3.10)! Uncorrected sums 
of squares and cross products are prone to large rounding error, and so  

4Practical methods for problems for which this inverse does not exist are discussed in Section 
4.1.4; theoretical discussions can be found in any book on linear models such as Christensen 
(2011).
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computations can be highly inaccurate. The preferred computational methods 
are based on matrix decompositions as briefly outlined in Appendices A.9 and 
A.10. At the very least, computations should be based on corrected sums of 
squares and cross products. Suppose we define X  to be the n × p matrix

 X =

− −
− −

− −
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( ) ( )

x x

x x

x x
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This matrix consists of the original X matrix, but with the first column removed 
and the column mean subtracted from each of the remaining columns. Simi-
larly, Y  is the vector with typical elements y yi − . Then

 C
X X X Y

Y X Y Y
=

−
′ ′
′ ′







1
1n

 (3.11)

is the matrix of sample variances and covariances, and this is the summary of 
the data that is most often produced in regression software. When p = 1, the 
matrix C  is given by

 C =
−







1
1n

SXX SXY
SXY SYY

The elements of C  are the summary statistics needed for ols computations 
in simple linear regression. If we let β* be the parameter vector excluding the 
intercept β0, then for p ≥ 1,

 ˆ ( )b * 1= ′ ′−X X X Y  (3.12)

ˆ ˆ *β0 = − ′y b x

where x  is the vector of sample means for all the regressors except for the 
intercept.

Once b̂  is computed, we can define several related quantities. The fitted 
values are ˆ ˆY X= b  and the residuals are ê = Y − Ŷ. The function (3.9) evaluated 
at b̂  is the residual sum of squares, or RSS. Recognizing that ′ =Y Y SYY,

 

RSS

SYY

= ′

= − ′ −

= − ′ −

= − ′ ′

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

* *

e e

Y X Y X( ) ( )

( ) ( )

( )*

b b

b b

b

Y X Y X

X X bb *

= −SYY SSreg

 

(3.13)
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The last equation implicitly defines the regression sum of squares to be the 
difference between the total sum of squares SYY and the residual sum of 
squares RSS. Most regression software will provide two of these three quanti-
ties, and the third can be computed by subtraction.

3.4.4  Properties of the Estimates

Additional properties of the ols estimates are derived in Appendix A.8 and 
are only summarized here. Assuming that E(e|X) = 0 and Var(e|X) = σ2In, then 
b̂  is unbiased, E( | )b̂ bX = , and

 Var |( 2 1ˆ ) ( )b X = ′ −σ X X  (3.14)

Excluding the intercept regressor,

 Var |( * 2 1ˆ ) ( )b X = ′ −σ X X  (3.15)

and so ( ) 1′ −X X  is all but the first row and column of (X′X)−1. An estimate of 
σ 2 is given by

 ˆ
( )

σ 2

1
=

− +
RSS

n p
 (3.16)

If e is normally distributed, then the residual sum of squares has a chi-squared 
distribution,

 n p
n p

− +( ) − +( )( )1 2ˆ
~

σ
σ

χ
2

2 1

By substituting σ̂ 2 for σ 2 in (3.14), we find the estimated variance of b̂  
to be

 Var |�( ) ( )2 1ˆ ˆb X = ′ −σ X X  (3.17)

3.4.5  Simple Regression in Matrix Notation

For simple regression, X and Y are given by

 X Y=
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and thus
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By direct multiplication, (X′X)−1 can be shown to be
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so that
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as found previously. Also, since ∑ = +x n n xi
2 2/( ) 1/ /SXX SXX , the variances and 

covariances for β̂0  and β̂1 found in Chapter 2 are identical to those given by 
σ2(X′X)−1.

The results are simpler in the deviations from the sample mean form,  
since

 ′ = ′ =X X X YSXX SXY

and

 β̂1
1( )= ′ ′ =−X X X Y

SXY
SXX

ˆ ˆβ β0 1= −y x

Fuel Consumption Data
We will generally let p equal the number of regressors in a mean function 
excluding the intercept, and p′ = p + 1 equal if the intercept is included; 
p′ = p if the intercept is not included. We shall now fit the mean function 
with p′ = 5 regressors, including the intercept for the fuel consumption 
data. The model can be specified using Wilkinson and Rogers (1973) 
notation,

 Fuel~Tax+Dlic+Income+log(Miles) (3.19)

This is shorthand for using ols to fit the multiple linear regression model with 
mean function
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 E |( ) ( )0 1 2 3 4Fuel Tax Dlic Income MilesX = + + + +β β β β β log  (3.20)

where, as usual, conditioning on X is short for conditioning on all the regres-
sors in the mean function. The intercept is not present in (3.19) but is included 
in (3.20) unless it is specifically excluded. See Section 5.1 for more discussion 
of this notation.

All the computations are based on the summary statistics, which are the 
sample means given in Table 3.1 and the sample covariance matrix C  defined 
at (3.11) and given by

Tax Dlic Income log(Miles) Fuel

Tax 20.6546 −28.4247 −0.2162 −0.2048 −104.8944
Dlic −28.4247 5308.2591 −57.0705 2.2968 3036.5905
Income −0.2162 −57.0705 19.8171 −1.3572 −183.9126
log(Miles) −0.2048 2.2968 −1.3572 1.0620 38.6895
Fuel −104.8944 3036.5905 −183.9126 38.6895 7913.8812

Intercept Tax Dlic Income log(Miles)

Intercept 9.02e+00 −2.85e−02 −4.08e−03 −5.98e−02 −2.79e−01
Tax −2.85e−02 9.79e−04 5.60e−06 4.26e−05 2.31e−04
Dlic −4.08e−03 5.60e−06 3.92e−06 1.19e−05 7.79e−06
Income −5.98e−02 4.26e−05 1.19e−05 1.14e−03 1.44e−03
log(Miles) −2.79e−01 2.31e−04 7.79e−06 1.44e−03 2.07e−02

Most statistical software will give the sample correlations rather than the 
covariances. The reader can verify that the correlations in Table 3.2 can be 
obtained from these covariances. For example, the sample correlation between 
Tax and Income is − × = −0 2162 20 6546 19 8171 0 0107. / ( . . ) .  as in Table 3.2.

The 5 × 5 matrix (X′X)−1 is given by

The elements of (X′X)−1 often differ by several orders of magnitude, as is the 
case here, where the smallest element in absolute value is 3.92 × 10−6 = 
0.00000392, and the largest element is 9.02 × 100 = 9.02. It is the combining of 
these numbers of very different magnitude that can lead to numerical inac-
curacies in computations. Matrices like this one are often displayed in scientific 
notation, which can be hard to read.

The lower-right 4 × 4 submatrix of (X′X)−1 is ( )′ −X X 1. Using the formulas 
based on corrected sums of squares in this chapter, the estimate b̂ *  is com-
puted to be
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The estimated intercept is

 ˆ ˆ .β0
* 154 1928= − ′ =y b x

and the residual sum of squares is

RSS = ′ − ′ ′ =Y Y X Xˆ ˆ ,b b* *( ) 193 700

so the estimate of σ2 is

ˆ
( )

,
( )

,σ 2

1
193 700

51 4 1
4 211=

− +
=

− +
=RSS

n p

Estimated variances and covariances of the β̂ j  are found by multiplying σ̂ 2 
by the elements of (X′X)−1. Estimated standard errors are the square roots of 
the corresponding estimated variances. For example,

se |( ) 3 922 10 0 1292
6ˆ ˆ . .β σX = × =−

Virtually all statistical software packages include higher-level functions that 
will fit multiple regression models, but getting intermediate results like (X′X)−1 
may be a challenge. Table 3.3 shows typical output from a statistical package. 
This output gives the estimates b̂  and their standard errors computed 
based on σ̂ 2 and the diagonal elements of (X′X)−1. The column marked t 
value is the ratio of the estimate to its standard error. The column labeled 
Pr(> | t |) will be discussed shortly. Below the table are the estimated residual 
standard deviation σ̂ , its df discussed previously, and the coefficient of deter-
mination R2, also to be discussed shortly.

3.4.6  The Coefficient of Determination

Rearranging (3.13), the total sum of squares SYY can we written as

 SYY RSS SSreg= +  (3.21)

Table 3.3  Multiple Linear Regression Summary in the Fuel Data

Estimate Std. Error t-Value Pr(>| t |)

(Intercept) 154.1928 194.9062 0.79 0.4329
Tax −4.2280 2.0301 −2.08 0.0429
Dlic 0.4719 0.1285 3.67 0.0006
Income −6.1353 2.1936 −2.80 0.0075
log(Miles) 26.7552 9.3374 2.87 0.0063

ˆ .σ = 64 8912 with 46 df, R2 = 0.5105.
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where the residual sum of squares RSS is the unexplained sum of squares, and 
the regression sum of squares SSreg is the explained sum of squares. As with 
simple regression, the ratio

 R2 1= = −SSreg
SYY

RSS
SYY

 (3.22)

gives the proportion of variability in Y explained by regression on the regres-
sors. R2 can also be shown to be the square of the correlation between the 
observed values Y and the fitted values Ŷ; we will explore this further in the 
next chapter. R is also called the multiple correlation coefficient because it is 
the maximum of the correlation between Y and any linear combination of the 
regressors in the mean function.

For the fuel consumption data we have

R2 1 1
193 700
395 694

1 0 490 0 510= − = − = − =RSS
SYY

,
,

. .

About half the variation in Fuel is explained by the regressors. The value of 
R2 is given in Table 3.3 and is typically produced by regression software.

3.4.7  Hypotheses Concerning One Coefficient

The multiple regression model has many regression coefficients, and so many 
tests are possible. In this section we consider only testing of individual coef-
ficients and defer more general testing to Chapter 6.

As in simple regression, an estimated coefficient divided by its standard 
error provides the basis for a test that the coefficient is equal to 0. In the Fuel 
data, consider a test concerning β1, the coefficient for the regressor Tax. The 
hypothesis tested is

 
NH arbitrary

AH arbitrary

: 0

: 0
1 0 2 3 4

1 0 2 3 4

β β β β β
β β β β β

=
≠

, , , ,

, , , ,
 (3.23)

This hypothesis explicitly shows that the test concerns β1 only and that all other 
coefficients are not effected, so it is essentially testing the effect of adding Tax 
to a mean function that already includes all the other regressors. From Table 
3.3, t = −2.08. The df associated with the t-statistic is the number of df in the 
estimate of variance, which is n − p′ = 46. Most computer programs will find 
the corresponding significance level for this test for you, and it is given in Table 
3.3 as p = 0.043, providing some evidence that the effect of Tax on fuel con-
sumption, after adjusting for the other predictors, is different from 0. For a 
one-sided alternative, for example testing β1 < 0, the significance level would 
be 0.043/2 = 0.022 because β̂1 0< . For the one-sided test that β1 > 0, the signifi-
cance level would be 1 − 0.043/2 = 0.978.
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Tests concerning other regression coefficients have a similar interpretation: 
each of the tests is computed as if that regressor were added last to a regres-
sion model, and the test adjusted for all regressors in the model.

A t-test that βj has a specific value versus a two-sided or one-sided alterna-
tive with all other coefficients arbitrary can be carried out as described in 
Section 2.6.

3.4.8  t-Tests and Added-Variable Plots

In Section 3.1, we discussed adding a regressor to a simple regression mean 
function. The same general procedure can be used to add a regressor to any 
linear regression mean function. For the added-variable plot for a regressor, 
say X1, plot the residuals from the regression of Y on all the other Xs versus 
the residuals for the regression of X1 on all the other Xs. One can show 
(Problem 3.2) that (1) the slope of the regression in the added-variable plot 
is the estimated coefficient for X1 in the regression with all the regressors, 
(2) the t-test for testing the slope to the 0 in the added-variable plot is essen-
tially the same as the t-test for testing β1 = 0 in the fit of the larger mean func-
tion, the only difference being a correction for df, and (3) the value of R2 in 
the added-variable plot is equal to the square of the partial correlation between 
the response and the regressor, adjusted for the other regressors in the mean 
function.

3.5  PREDICTIONS, FITTED VALUES, AND LINEAR 
COMBINATIONS

Suppose we have observed, or will in the future observe, a new case with its 
own set of predictors that result in a vector of regressors x*. We would like to 
predict the value of the response given x*. In exactly the same way as was done 
in simple regression, the point prediction is �y* *= ′x b̂ , and the standard error 
of prediction, sepred |( )* *�y x , using Appendix A.8, is

 sepred |( ) 1 ( )* * *
1

*�y x x X X x= + ′ ′ −σ̂  (3.24)

Similarly, the estimated average of all possible units with a value x for the 
regressors is given by the estimated mean function at x, ˆ ˆ ˆE Y X y( )| = = = ′x x b  
with standard error given by

 sefit |( ) ( ) 1ˆ ˆy x x X X x= ′ ′ −σ  (3.25)

Virtually all software packages will give the user access to the fitted values, 
but getting the standard error of prediction and of the fitted value may be 
harder. If a program produces sefit but not sepred, the latter can be computed 
from the former from the result
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sepred | sefit |( ) ( )* *
2

* *
2� �y yx x= +σ̂

A minor generalization allows computing an estimate and standard error 
for any linear combination of estimated coefficients. Suppose a is a vector of 
numbers of the same length as β. Then the linear combination ℓ = a′β has 
estimate and standard error given by

 ˆ ˆ ˆ ˆ� �= ′ = ′ ′ −a a X X ab se |( ) ( ) 1X σ  (3.26)

3.6  PROBLEMS

3.1 (Data file: UN11) Identify the localities corresponding to the poorly 
fitting points in Figure 3.2 and explain what these localities have in 
common.

3.2 Added-variable  plots (Data file: UN11) This problem uses the United 
Nations example in Section 3.1 to demonstrate many of the properties  
of added-variable plots. This problem is based on the mean function  
fertility  ∼  log(ppgdp)  +  pctUrban. There is nothing special 
about a two-predictor regression mean function, but we are using this case 
for simplicity.
3.2.1  Examine the scatterplot matrix for (fertility, log(ppgdp), 

pctUrban), and comment on the marginal relationships.
3.2.2  Fit the two simple regressions for fertility ∼ log(ppgdp) and 

for fertility ∼ pctUrban, and verify that the slope coefficients 
are significantly different from 0 at any conventional level of 
significance.

3.2.3  Obtain the added-variable plots for both predictors. Based on 
the added-variable plots, is log(ppgdp) useful after adjusting for 
pctUrban, and similarly, is pctUrban useful after adjusting for 
log(ppgdp)? Compute the estimated mean function with both pre-
dictors included as regressors, and verify the findings of the added-
variable plots.

3.2.4  Show that the estimated coefficient for log(ppgdp) is the same as 
the estimated slope in the added-variable plot for log(ppgdp) after 
pctUrban. This correctly suggests that all the estimates in a multiple 
linear regression model are adjusted for all the other regressors in the 
mean function.

3.2.5  Show that the residuals in the added-variable plot are identical to 
the residuals from the mean function with both predictors.

3.2.6  Show that the t-test for the coefficient for log(ppgdp) is not quite 
the same from the added-variable plot and from the regression with 
both regressors, and explain why they are slightly different.
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3.3 Berkeley Guidance Study (Data file: BGSgirls) The Berkeley Guidance 
Study enrolled children born in Berkeley, California, between January 
1928 and June 1929, and then measured them periodically until age 18 
(Tuddenham and Snyder, 1954). The data we use include heights in centi-
meters at ages 2, 9, and 18, (HT2, HT9, and HT18), weights in kilogram 
(WT2, WT9, and WT18), leg circumference in centimeters (LG2, LG9, and 
LG18), and strength in kilogram (ST2, ST9, and ST18). Two additional 
measures of body type are also given, soma, somatotype, a scale from 1, 
very thin, to 7, obese, and body mass index, computed as BMI18 = WT18/
(HT18/100)2, weight in kilogram divided by the square of mass in meters, 
a standard measure of obesity. The data are in the files BGSgirls for girls 
only, BGSboys for boys only, and BGSall for boys and girls combined (in 
this last file an additional variable Sex has value 0 for boys and 1 for girls). 
For this problem use only the data on the girls.5

3.3.1  For the girls only, draw the scatterplot matrix of HT2, HT9, WT2, WT9, 
ST9, and BMI18. Write a summary of the information in this scat-
terplot matrix. Also obtain the matrix of sample correlations between 
the these same variables and compare with the scatterplot matrix.

3.3.2  Starting with the mean function E(BMI18|WT9) = β0 + β1WT9, use 
added-variable plots to explore adding ST9 to get the mean function 
E(BMI18|WT9, ST9) = β0 + β1WT9 + β2ST9. Obtain the marginal plots 
of BMI18 versus each of WT9 and ST9, the plot of ST9 versus WT9, 
and then the added-variable plots for ST9. Summarize your results.

3.3.3  Fit the multiple linear regression model with mean function

 E |( ) 0 1 2 3 4 5BMI18 HT2 WT2 HT9 WT9 ST9X = + + + + +β β β β β β  (3.27)

Find σ̂  and R2. Compute the t-statistics to be used to test each of the 
βj to be 0 against two-sided alternatives. Explicitly state the hypoth-
eses tested and the conclusions.

3.4 The following questions all refer to the mean function

 E |( , )Y X x X x x x1 1 2 2 0 1 1 2 2= = = + +β β β  (3.28)

3.4.1  Suppose we fit (3.28) to data for which x1 = 2.2x2, with no error. For 
example, x1 could be a weight in pounds, and x2 the weight of the 
same object in kilogram. Describe the appearance of the added-
variable plot for X2 after X1.

3.4.2  Again referring to (3.28), suppose now that Y = 3X1 without error, 
but X1 and X2 are not perfectly correlated. Describe the appearance 
of the added-variable plot for X2 after X1.

5The variable soma was used in earlier editions of this book but is not used in this problem.
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3.4.3  Under what conditions will the added-variable plot for X2 after X1 
have exactly the same shape as the marginal plot of Y versus X2?

3.4.4  True or false: The vertical variation of the points in in an added-
variable plot for X2 after X1 is always less than or equal to the verti-
cal variation in a plot of Y versus X2. Explain.

3.5 Suppose we have a regression in which we want to fit the mean function 
(3.1). Following the outline in Section 3.1, suppose that the two terms  
X1 and X2 have sample correlation equal to 0. This means that, if xij, 
i = 1, . . . , n, and j = 1, 2 are the observed values of these two terms 
for the n cases in the data, SX X1 2 1 1 1 2 2 0= ∑ − − ==i

n
i ix x x x( )( ) . Define 

SX Xj j i
n

ij jx x= ∑ −=1
2( )  and SX Yj i

n
ij j i jx x y y= ∑ − −=1( )( ), for j = 1, 2.

3.5.1  Give the formula for the slope of the regression for Y on X1, and for 
Y on X2. Give the value of the slope of the regression for X2 on X1.

3.5.2  Give formulas for the residuals for the regressions of Y on X1 and 
for X2 on X1. The plot of these two sets of residuals corresponds to 
the added-variable plot for X2.

3.5.3  Compute the slope of the regression corresponding to the added-
variable plot for the regression of Y on X2 after X1, and show 
that this slope is exactly the same as the slope for the simple regres-
sion of Y on X2 ignoring X1. Also find the intercept for the added-
variable plot.

3.6 (Data file: water) Refer to the data described in Problem 1.5. For this 
problem, consider the regression problem with response BSAAM, and three 
predictors as regressors given by OPBPC, OPRC, and OPSLAKE.
3.6.1  Examine the scatterplot matrix drawn for these three regressors and 

the response. What should the correlation matrix look like (i.e., 
which correlations are large and positive, which are large and nega-
tive, and which are small)? Compute the correlation matrix to verify 
your results.

3.6.2  Get the regression summary for the regression of BSAAM on these 
three regressors. Explain what the “t-values” column of your output 
means.

3.7 Suppose that A is a p × p symmetric matrix that we write in partitioned 
form

A
A A

A A
=

′






11 12

12 22

The matrix A11 is p1 × p1, so A22 is (p − p1) × (p − p1). One can show that 
if A−1 exists, it can be written as
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A
A A A A A A

A A A
−

− − −

− −
=

+ ′ −
− ′







1 11
1

12 22
1

12 12 22
1

22
1

12 22
1

Using this result, show that, if X is an n × (p + 1) data matrix with all 1s 
in the first column,

( )
1

( ) ( )1
1 1

1 1

′ =
+ ′ ′ − ′ ′

− ′ ′













−
− −

− −
X X

x x x

x
n

X X X X

X X X X( ) ( )

where X  and x  are defined in Section 3.4.3.
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C H A P T E R  4

Interpretation of Main Effects

The computations that are done in multiple linear regression, including 
drawing graphs, creation of regressors, fitting models, and performing tests, will 
be similar in most problems. Interpreting the results, however, may differ by 
problem, even if the outline of the analysis is the same. Many issues play into 
drawing conclusions, and some of them are discussed in this chapter, with 
elaborations in Chapter 5 where more complex regressors like factors, interac-
tions, and polynomials are presented.

4.1  UNDERSTANDING PARAMETER ESTIMATES

We start with the fitted mean function for the fuel consumption data,  
given by

ˆ ( ) . . . .

. log(

E |Fuel Tax Dlic Income
Mil

X = − + −
+
154 19 4 23 0 47 6 14

26 76 ees) (4.1)

This equation represents the estimated conditional mean of Fuel given 
a fixed value for the regressors collected in X. The β-coefficients, often 
called slopes or partial slopes, have units. Since Fuel is measured in gallons 
per person, all the quantities on the right of (4.1) must also be in gallons. The 
intercept is 154.19 gal. It corresponds to the expected fuel consumption in a 
state with no taxes, no drivers, no income and essentially no roads, and so is 
not interpretable in this problem because no such state could exist. Since 
Income is measured in thousands of dollars, the coefficient for Income must 
be in gallons per person per thousand dollars of income. Similarly, the units 
for the coefficient for Tax is gallons per person per cent of tax.

Applied Linear Regression, Fourth Edition. Sanford Weisberg.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc. 
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4.1.1  Rate of Change

The usual interpretation of an estimated coefficient is as a rate of  
change: increasing Tax rate by 1 cent, with all the other regressors in 
the model held fixed, is associated with a change in Fuel of about 
−4.23 gal per person on the average. We can visualize the effect of Tax 
by fixing the other regressors in (4.1) at their sample mean values, 
x2 903 68 28 4 10.91= = = =( )Dlic Income Miles. , . , log( ) ′, to get

ˆ ( , ) ˆ ˆ ˆ ˆ ˆ log(E |Fuel Tax Dlic Income MX x X1 1 2 2 0 1 2 3 4= = = + + + +x β β β β β iiles
Tax

)

= − + −
+
154.19 4.23 0.47(903.68) 6.14(28.4)

26.76(10.91)

== −606.92 4.23Tax

We can then draw the graph shown in Figure 4.1. This graph is called an  
effects plot (Fox, 2003), as it shows the effect of Tax with all other predictors 
held fixed at their sample mean values. For a mean function like (4.1), choosing 
any other fixed value of the remaining predictors X2 would not change the 
shape of the curve in the plot, but would only change the intercept. The dotted 
lines on the graph provide a 95% pointwise confidence interval for the fitted 
values, as described in Section 3.5, computed at ( , )1 2x x  as x1 is varied, and so 
the graph can show both the effect and its variability. This graph shows that 
the expected effect of higher Tax rate is lower Fuel consumption. Some 
readers will find this graph to be a better summary than a numeric summary 
of the estimated β̂1 and its standard error, although both contain the same 
information.

Figure 4.1  Effects plot for Tax in the fuel consumption data.
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Interpreting a coefficient or its estimate as a rate of change given that other 
regressors are fixed assumes that the regressor can in fact be changed without 
affecting the other regressors in the mean function and that the available data 
will apply when the predictor is so changed. The fuel data are observational 
since the assignment of values for the predictors was not under the control of 
the analyst, so whether increasing taxes would cause a decrease in fuel con-
sumption cannot be assessed from these data. We can observe association but 
not cause: states with higher tax rates are observed to have lower fuel con-
sumption. To draw conclusions concerning the effects of changing tax rates, 
the rates must in fact be changed and the results observed.

4.1.2  Signs of Estimates

The sign of a parameter estimate indicates the direction of the relationship 
between the regressor and the response after adjusting for all other regressors 
in the mean function, and in many studies, the most important finding is the 
sign, not the magnitude, of an estimated coefficient. If regressors are corre-
lated, both the magnitude and the sign of a coefficient may change depending 
on the other regressors in the model. While this is mathematically possible 
and, occasionally, scientifically reasonable, it certainly makes interpretation 
more difficult. Sometimes this problem can be removed by redefining the 
regressors into new linear combinations that are easier to interpret.

4.1.3  Interpretation Depends on Other Terms in the Mean Function

The value of a parameter estimate not only depends on the other regressors 
in a mean function, but it can also change if the other regressors are replaced 
by linear combinations of the regressors.

Berkeley Guidance Study
Data from the Berkeley Guidance Study on the growth of boys and girls are 
given in Problem 3.3. We will view body mass index at age 18, BMI18, as the 
response, and weights in kilogram at ages 2, 9, and 18, WT2, WT9, and WT18 as 
predictors, for the n = 70 girls in the study. The scatterplot matrix for these 
four variables is given in Figure 4.2.

Look at the first row of this figure, giving the marginal response plots of 
BMI18 versus each of the three potential predictors. BMI18 is increasing with 
each of the potential predictors, although the relationship is strongest at the 
oldest age, as would be expected because BMI is computed from weight, and 
weakest at the youngest age.1 The two-dimensional plots of each pair of 

1One point corresponding to a value of BMI18 > 35 is separated from the other points, and a more 
careful analysis would repeat any analysis with and without that point to see if the analysis is 
overly dependent on that point.
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Figure 4.2  Scatterplot matrix for the girls in the Berkeley Guidance Study.
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predictors suggest that the predictors are correlated among themselves. Taken 
together, we have evidence that the regression on all three predictors cannot 
be viewed as just the sum of the three separate simple regressions because we 
must account for the correlations between the regressors.

We will proceed with this example using the three original predictors as 
regressors and BMI18 as the response. We are encouraged to do this because 
of the appearance of the scatterplot matrix. Since each of the two-dimensional 
plots appears to be well summarized by a straight-line mean function, we will 
see later that this suggests transformations are unnecessary and that the 
regression of the response with regressors given by the original predictors is 
likely to be appropriate.

The parameter estimates for the regression with regressors WT2, WT9, and 
WT18 given in the column marked “Model 1” in Table 4.1 leads to the unex-
pected conclusion that heavier girls at age 2 may tend to be thinner and have 
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lower expected BMI18. We reach this conclusion based on the small p-value 
for the t-test that the coefficient of WT2 is equal to zero (t = −2.53, p-value = 0.01, 
two-tailed). The unexpected sign may be due to the correlations between the 
regressors. In place of the preceding variables, consider the following:

WT2= Weight at age 2

DW9 WT9 WT2= − = Weight gain from age to2 9

DW18 WT18 WT9= − = Weight gain from age to9 18

Since all three original regressors measure weight, combining them in this way 
is reasonable. If the variables were in different units, then taking linear com-
binations of them could lead to uninterpretable estimates. The parameter 
estimates for the regression with regressors WT2, DW9, and DW18 are given in 
the column marked “Model 2” in Table 4.1. Although not shown in the table, 
summary statistics for the regression like R2 and σ̂ 2 are identical for all the 
mean functions in Table 4.1. In Model 2, the coefficient estimate for WT2 is 
about one-fifth the size of the estimate in Model 1, and the corresponding 
t-statistic is much smaller (t = −0.51, p-value = 0.61, two-tailed). In Model 1, 
the “effect” of WT2 seems to be negative and significant, while in the equivalent 
Model 2, the effect of WT2 would be judged not different from zero. As long 
as predictors are correlated, interpretation of the effect of a predictor depends 
not only on the other predictors in a model but also upon which linear trans-
formation of those variables is used.

Another interesting feature of Table 4.1 is that the estimate for WT18 in 
Model 1 is identical to the estimate for DW18 in Model 2. This is not a coinci-
dence. In Model 1, the estimate for WT18 is the effect on BMI18 of increasing 
WT18 by 1 kg, with all other regressors held fixed. In Model 2, the estimate for 
DW18 is the change in BMI18 when DW18 changes by 1 kg, when all other 
regressors are held fixed. But the only way DW18 = WT18 − WT9 can be changed 
by 1 kg with the other variables, including WT9 = DW9 − WT2, held fixed is by 
changing WT18 by 1 kg. Consequently, the regressors WT18 in Model 1 and 

Table 4.1  Regression of BMI18 on Different Combinations of Three Weight 
Variables for the n = 70 Girls in the Berkeley Guidance Study

Regressor Model 1 Model 2 Model 3

(Intercept) 8.298* 8.298* 8.298*

WT2 −0.383* −0.065 −0.383*

WT9 0.032 0.032
WT18 0.287* 0.287*

DW9 0.318* Aliased
DW18 0.287* Aliased

*Indicates p-value < 0.05.
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DW18 in Model 2 play identical roles and therefore we get the same estimates, 
even though the regressors are different.

4.1.4  Rank Deficient and Overparameterized Mean Functions

In the last example, several regressors derived from the basic predictors WT2, 
WT9, and WT18 were studied. One might naturally ask what would happen if 
more than three combinations of these predictors were used in the same 
regression model. As long as we use linear combinations of the predictors, as 
opposed to nonlinear combinations or transformations of them, we cannot use 
more than three, the number of linearly independent quantities.

To see why this is true, consider adding DW9 to the mean function, 
including WT2, WT9, and WT18. As in Chapter 3, we can learn about adding 
DW9 using an added-variable plot of the residuals from the regression 
BMI18  ∼  WT2  +  WT9  +  WT18 versus the residuals from the regression 
DW9 ∼ WT2  + WT9 + WT18. Since DW9 can be written as an exact linear 
combination of the other predictors, DW9 = WT9 − WT2, the residuals from this 
second regression are all exactly zero. A slope coefficient for DW9 is thus not 
defined after adjusting for the other three regressors. We would say that the 
four regressors WT2, WT9, WT18, and DW9 are linearly dependent, since one can 
be determined exactly from the others. The three variables WT2, WT9, and 
WT18 are linearly independent because one of them cannot be determined 
exactly by a linear combination of the others. The maximum number of lin-
early independent regressors that could be included in a mean function is 
called the rank of the data matrix X.

Model 3 in Table 4.1 gives the estimates produced in a computer package 
when we tried to fit BMI18 ∼ WT2 + WT9 + WT18 + DW9 + DW18. Some 
computer packages will silently select three of these five regressors, usually 
the first three. Others may indicate the remaining coefficient estimates to be 
NA for not available, or as aliased, a better choice because it can remind the 
analyst that the choice of which three coefficients to estimate is arbitrary. The 
same R2, σ̂ 2, fitted values, and residuals would be obtained for all choices of 
the three coefficients to estimate.

Mean functions that are overparameterized occur most often in designed 
experiments. The simplest example is the one-way design that will be described 
more fully in Section 5.1. Suppose that an experimental unit is assigned to one 
of three treatment groups, and let X1 = 1 if the experimental unit is in group 
one and 0 otherwise, X2 = 1 if the experimental unit is in group two and 0 
otherwise, and X3 = 1 if the experimental unit is in group three and 0 otherwise. 
For each unit, we must have X1 + X2 + X3 = 1 since each unit is in only one of 
the three groups. We therefore cannot fit the model

E |( )Y X X X X= + + +β β β β0 1 1 2 2 3 3

because the sum of the Xj is equal to the column of ones, and so, for example, 
X3 = 1 − X1 − X2. To fit a model, we must do something else. The options are 
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(1) place a constraint like β1 + β2 + β3 = 0 on the parameters; (2) exclude one 
of the Xj from the model, or (3) leave out an explicit intercept. All of these 
options will in some sense be equivalent, since the same overall fit result. Of 
course, some care must be taken in using parameter estimates, since these will 
surely depend on the parameterization used to get a full rank model. For 
further reading on matrices and models of less than full rank, see, for example, 
Christensen (2011), Schott (2005), or Fox and Weisberg (2011, section 4.6.1).

4.1.5  Collinearity

Suppose X is the data matrix for the set of regressors in a particular regression 
problem. We say that the set of regressors is collinear if we can find a vector of 
constants a such that Xa ≈ 0. If the “≈” is replaced by an “=” sign, then at least 
one of the regressors is a linear combination of the others, and we have an 
overparameterized model as outlined in Section 4.1.4. If X is collinear, then the 
R2 for the regression of one of the regressors on all the remaining regressors, 
including the intercept, is close to one. Collinearity depends on the sample cor-
relations between the regressors, not on theoretical population quantities.2

The data in the file MinnWater provide yearly water usage in Minnesota 
for the period 1988–2011. For the example we consider here, the response 
variable is log(muniUse), the logarithm of water used in metropolitan areas, 
in billions of gallons, and potential predictors are year of measurement, 
muniPrecip, growing season precipitation in inches, and log(muniPop) the 
logarithm of the metropolitan state population in census years, and U.S. Census 
estimates between census years. The data were collected to explore if water 
usage has changed over the 24 years in the data.

The data are shown in Figure 4.3. The bottom row of this graph shows  
the marginal relationships between log(muniUse) and the regressors. The 
bottom-left graph shows that usage was clearly increasing over the time  
period, and the second graph in the bottom row suggests that usage may be 
somewhat lower when precipitation is lower. The two regressors appear to  
be nearly uncorrelated because the second graph in the third row appears to 
be a null plot.

Table 4.2 summarizes three multiple linear regression mean functions fit to 
model log(muniUse). The first column labeled Model 1 uses only year as a 
regressor. Listed in the table are the values of the estimated intercept and 
slope. To save space, we have used an asterisk (*) to indicate estimates with 
corresponding significance levels less than 0.01.3 As expected, log(muniUse) 
is increasing over time. When we add muniPrecip to the mean function in 
the second column, the estimate for year hardly changes, as expected from 
the lack of correlation between year and muniPrecip.

2The term multicollinearity contains more syllables, but no additional information, and is a 
synonym for collinearity.
3For data collected in time order like these, the standard t-tests might be questionable because of 
lack of independence of consumption from year to year. Several alternative testing strategies are 
presented in Chapter 7.
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Figure 4.3  Scatterplot matrix for the Minnesota water use data.
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Table 4.2  Regression of log(muniUse) on Different Combinations of 
Regressors for the Minnesota Water Use Data

Regressor Model 1 Model 2 Model 3

(Intercept) −20.0480* −20.1584* −1.2784
year 0.0124* 0.0126* −0.0111
muniPrecip −0.0099* −0.0106*

log(muniPop) 1.9174

*Indicates p-value < 0.01.

Adding log(muniPop), however, tells a different story: the coefficient for 
year is much smaller and negative, and has a large corresponding significance 
level. The cause of this is clear: log(muniPop) is seen in Figure 4.3 to be very 
highly correlated with year, so year and log(muniPop) are possibly explain-
ing the same variation in log(muniUse). We simply cannot tell from this 
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regression if the increase in usage is simply a reflection of increased population 
or increased usage per person per year.

An alternative approach is to use log(perCapitaUse) = log(106muniUse/
muniPop) as a response variable. The multiplier 106 is included to rescale to 
thousands of gallons per person rather than billions of gallons per person. We 
leave as a homework problem to show that in the per capita scale there is no 
evidence of increasing municipal water usage.

4.1.6  Regressors in Logarithmic Scale

Logarithms are commonly used both for the response and for regressors. Com-
monly used logarithmic scales include decibels for loudness, the Richter scale 
for the intensity of an earthquake, and pH levels for measuring acidity. Varsh-
ney and Sun (2013) suggest that in many cases, human perception is logarith-
mic. As a practical matter, predictors that span several orders of magnitude 
should be transformed to log scale. Examples of this in this book include miles 
of roadway in a state, which vary from around 1,500 miles to over 300,000 
miles, and per capita gross domestic product in different countries, which vary 
from about $100 per person to about $100,000 per person.

The regressor log(Miles) in the fuel consumption data summarized in 
Equation (4.1) uses natural logarithms. The effects plot for log(Miles) is 
shown as Figure 4.4a, a straight line with standard error lines similar to Figure 
4.1, the effects plot for Tax. Figure 4.4b is a different version of the effects 
plot for log(Miles), with the horizontal axis in the original units Miles rather 
than the transformed units. The transformation changes the straight line for 

Figure 4.4  (a) Effects plot for log(Miles) in the fuel consumption data. (b) The horizonal axis 
is given in the more useful scale of Miles, and thus the fitted effect is a curve rather than a 
straight line.
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the effects plot into a curve. We see that the effect of Miles is increasing 
fastest in states with fewest miles of roadway, with relatively little change in 
states with the most roads. This is the usual effect of logarithms: it allows fitted 
effect that change most rapidly when the predictor is small and less rapidly 
when the predictor is large.

4.1.7  Response in Logarithmic Scale

As with predictors, transforming a response to log scale is sometimes based 
on theoretical considerations, but even lacking a theory if the response is 
strictly positive log scale will generally be desirable when errors are of the 
form “plus or minus 5%” rather than additive errors of the form “plus or minus 
5 units.”

Suppose the response is log(Y). The interpretation of the regression coef-
ficient for the jth regressor βj in a regression model is the rate of change in 
log(Y) as Xj varies. This is generally not very useful because log(Y) changes 
nonlinearly with Y, and an alternative interpretation is often used.

Concentrating on the jth coefficient, we use the subscript (j) to imply 
excluding the jth element, so X(j), x(j), β(j) are, respectively, the regressors exclud-
ing Xj, the observed values of the regressors excluding xj, and the regression 
coefficients excluding βj. The regression model is

 E |[log( ) ]( ) ( ) ( )Y X x X xj j j j j j j j= = = + + ′, 0 ( )x xβ β b  (4.2)

We first approximate the expected value of log(Y) by the logarithm of the 
expected value,

 log[ ( , )] [log( ) , )]( ) ( ) ( ) ( )E | E |Y X x X Y X x Xj j j j j j j j= = ≈ = =x x  (4.3)

We use the “≈” sign to indicate approximate equality that is generally suffi-
ciently accurate for the results of this section. Exponentiating both sides of 
(4.3), using (4.2) we get

E | E |[ , ] exp{ [log( ) , )]}
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If we increase xj by 1 while keeping X(j) fixed, we have
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(4.4)



4.1 understanding parameter estimates 83

Thus, for any j increasing xj by 1 will multiply the mean of Y by approxi-
mately exp(βj). This is often expressed as a percentage change, and

100
1

×
= + = − = =

=
E | E |

E |
[ , ] [ , ]

[ ,
( ) ( ) ( ) ( )Y X x X Y X x X

Y X x X
j j j j j j j j

j j

x x

(( ) ]
(exp( ) )

j j
j=

= −
x( )

100 1β

is the approximate percentage increase, or decrease if the value of βj is nega-
tive, in the response when Xj is increased by 1. For example, if βj = 0.3, then 
100(exp(βj) − 1) = 34%, or a 34% increase in the expected value of the 
response. If βj = −0.2, then increasing Xj yields a percentage increase of 
100(exp(−0.2) − 1) = −18%, or an 18% decrease in the expected value of the 
response.

 Using the UN data, fit a regression model with response log(fertility) 
and regressors log(ppgdp) and lifeExpF. The fitted regression is

log . . log( ) 3 507 0 065 ( ) 0.028fertility ppgdp lifeExpF� = − −

Increasing lifeExpF by 1 year is associated with 100(exp(−0.028) − 1) 
= −2.8% decrease in fertility.

If natural logarithms are used and the value of βj is close to 0, say 
−0.4 ≤ βj ≤ 0.4, then to a reasonable approximation (exp(βj) − 1) ≈ βj, so in this 
case βj can be interpreted as the fractional increase (or decrease if the sign is 
negative) in the expected value of Y when Xj increases by 1 and the other 
regressors are fixed. For example, in the Minnesota water use data, the coef-
ficient for year from Model 2 in Table 4.2 was ˆ .β1 0 0126= , suggesting an 
approximate 1.3% increase in water use per year (assuming, of course, that 
Model 2 is meaningful).

If both the regressor and the response are in log scale, then increasing the 
regressor by 1 unit as in (4.4) corresponds to multiplying the regressor by 
e ≈ 2.718 . . . , and this rarely makes sense. Suppose Z is a predictor and Xj is 
the regressor representing it in the model, Xj = log(Z). If the observed value 
z of Z is replaced by cz, then the regressor becomes log(cz) = log(c) + log(z). 
Then the result similar to (4.4) is

E |[ log( ), ] exp[ ( log( ))]exp( ) ( )Y X x c X x cj j j j j j j= + = ≈ + + ′x xβ β0 ( )b (( )

1 1 2 2 )
j

jc Y X x X

( )
= = =[ ]exp(log( ) ) ( ,β E | x

 
(4.5)

For example, if Z is increased by 10%, then c = 1.1, and the expected 
response is multiplied by exp[log(1.1)βj] ≈ exp(0.1βj) because log(1.1) ≈ 0.1. In 
the UN example, for a 10% increase in ppgdp, the expected fertility will 
be multiplied by exp(0.1 × (−0.065)) = 0.994, corresponding to a change in 
fertility of 100% (0.994 − 1) = −0.6%. A 25% increase in ppgdp is associ-
ated with a change in fertility of −1.4%.
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4.2  DROPPING REGRESSORS

The regression parameters are always conditioned on a set of regressors; if the 
regressors are changed, then usually so are the parameters and their interpre-
tation. If a linear regression model is appropriate for one set of regressors, we 
shall see that it is not necessarily true that a linear regression model is appro-
priate for a subset of the regressors. In particular, if

 E |( 1 1 2 2 0 1 1 2 2Y X X= = = + ′ + ′x x x x, ) β b b  (4.6)

is known to hold, what can we say about E(Y|X1 = x1), obtained by dropping 
the regressors in X2?

An example might be helpful. Suppose we have a sample of n rectangles 
from which we want to model log(area) as a function of log(length), perhaps 
through the simple regression mean function

 E |( ( ) ( ) 0 1log log ) log( )area length length= +η η  (4.7)

We know from elementary geometry that area = length × width, and 
so the “true” mean function for Y = log(area) is given by (4.6), with 
X1 = log(length) and X2 = log(width). In this instance, we also know the 
parameters β0 = 0 and β1 = β2 = 1. Is (4.7) appropriate if log(width) is 
not used?

4.2.1  Parameters

The results in Appendix A.2.4 provide the answer. The mean function for  
Y|X1 is
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(4.8)

We cannot simply drop a set of regressors from a correct mean function, but 
we need to substitute the conditional expectation of the regressors dropped 
given the regressors that remain in the mean function.

In the context of the rectangles example, we get

 
E |

E |

(log( ) log( )) log( )

(log( ) l
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= +
+
β β

β
0 1

2 oog( ))length
 

(4.9)

The answers to the questions posed depend on the mean function for the 
regression log(width) ∼ log(length). This conditional expectation has 
little to do with the area of rectangles, but much to do with the way we obtain 
a sample of rectangles to use in our study. We will consider three cases.
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In the first case, imagine that each of the rectangles in the study is  
formed by sampling a log(length) and a log(width) from independent 
distributions. If the mean of the log(width) distribution is W, then by 
independence,

E | E(log( ) log( )) (log( ))width length width= = W

Substituting into (4.9),

E |(log( ) log( )) log(

( ) l

area length length= + +
= + +

β β β
β β β
0 1 2

0 2 1

) W

W oog( )

log( )

length
length= +W

where the last equation follows by substituting β0 = 0, β1 = β2 = 1. For this 
case, the mean function (4.7) would be appropriate for the regression 
log(width)  ∼  log(length). The intercept for the mean function (4.7) 
would be W, and so it depends on the distribution of the widths in the data. 
The slope for log(length) is the same in the full model or the model with 
only one regressor.

In the second case, suppose that

E |(log( ) log( )) log( )width length length= +γ γ0 1

so the mean function for the regression of log(width) on log(length) is 
a straight line. This could occur, for example, if the rectangles in our study  
were obtained by sampling from a family of similar rectangles, so the ratio 
γ1 = width/length is the same for all rectangles in the study. Substituting this 
into (4.9) and simplifying gives

E |(log( ) log( )) log( ) logarea length length leng= + + +β β β γ γ0 1 2 0 1( ( tth
length

length

))

1
0 2 0 1 2 1

0 1

= + + +
= + +

( ) ( )log( )

( )log( )

β β γ β β γ
γ γ

Once again, fitting using (4.7) will be appropriate, but the values of η0 and η1 
depend on the parameters of the regression of log(width) on log(length). 
Two experimenters who sample rectangles of different shapes will end up 
estimating different parameters.

For a final case, suppose that the mean function

E |(log( ) log( )) log( ) log( )width length length length= + +γ γ γ0 1 2
2

is quadratic. Substituting into (4.9), setting β0 = 0, β1 = β2 = 1 and simplifying 
gives
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E |(log( ) log( )) log( )
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which is a quadratic function of log(length). If the mean function is 
quadratic, or any other function beyond a straight line, then fitting (4.7) is 
inappropriate.

From the above three cases, we see that both the mean function and the 
parameters for the response depend on the mean function for the regression 
of the removed regressors on the remaining regressors. If the mean function 
for the regression of the removed regressors on the retained regressors is not 
linear, then a linear mean function will not be appropriate for the regression 
problem with fewer regressors.

4.2.2  Variances

Variances are also affected when regressors are dropped. Returning to the true 
mean function given by (4.6), the general result for the regression of Y on X1 
alone is, from Appendix A.2.4,
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(4.10)

In the context of the rectangles example, β2 is a scalar, β2 = 1, and we get

Var | Var |(log( ) log( )) (log( logarea length width length= +σ 2 ) ( ))

Although fitting (4.7) can be appropriate if log(width) and log(length) 
are linearly related, the errors for this mean function can be much  
larger than those for (4.6) if Var(log(width)|log(length)) is large. If 
Var(log(width)|log(length)) is small enough, then fitting (4.7) can actually 
give answers that are nearly as accurate as fitting with the true mean  
function (4.6).

4.3  EXPERIMENTATION VERSUS OBSERVATION

There are fundamentally two types of predictors that are used in a regression 
analysis: experimental and observational. Experimental predictors have values 
that are under the control of the experimenter. For observational predictors, 
the values are observed rather than set. Consider, for example, a hypothetical 
study of factors determining the yield of a certain crop. Experimental variables 
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might include the amount and type of fertilizers used, the spacing of plants, 
and the amount of irrigation, since each of these can be assigned by the inves-
tigator to the units, which are plots of land. Observational predictors might 
include characteristics of the plots in the study, such as drainage, exposure, soil 
fertility, and weather variables. All of these are beyond the control of the 
experimenter, yet may have important effects on the observed yields.

The primary difference between experimental and observational predictors 
is in the inferences we can make. From experimental data, we can often infer 
causation. If we assign the level of fertilizer to plots, usually on the basis of a 
randomization scheme, we can infer a causal relationship between fertilization 
and yield. Observational predictors allow weaker inferences. We might say that 
weather variables are associated with yield, but the causal link is not available 
for variables that are not under the experimenter’s control. Some experimen-
tal designs, including those that use randomization, are constructed so that the 
effects of observational factors can be ignored or used in analysis of covariance 
(Cox, 1958; Oehlert, 2000).

Purely observational studies that are not under the control of the analyst 
can only be used to predict or model the events that were observed in the 
data, as in the fuel consumption example. To apply observational results to 
predict future values, additional assumptions about the behavior of future 
values compared with the behavior of the existing data must be made. The 
goal of inferring causality from data has been studied in depth in a number of 
subject-matter areas, including statistics. A recent book of essays on this subject 
is Berzuini et al. (2012).

4.3.1  Feedlots

A feedlot is a farming operation that includes large number of cattle, swine, 
or poultry in a small area. Feedlots are efficient producers of animal products 
and can provide high-paying skilled jobs in rural areas. They can also cause 
environmental problems, particularly with odors, groundwater pollution, and 
noise.

Taff et al. (1996) reported a study on the effect of feedlots on property 
values. This study was based on all 292 rural residential property sales in two 
southern Minnesota counties in 1993–1994. Regression analysis was used. The 
response was the logarithm of sale price. Predictors were derived from house 
characteristics, such as size, number of bedrooms, age of the property, and so 
on. Additional predictors described the relationship of the property to existing 
feedlots, such as distance to the nearest feedlot, number of nearby feedlots, 
and related features of the feedlots such as their size. The “feedlot effect” could 
be inferred from the coefficients for the regressors created from the feedlot 
variables.

In the analysis, the coefficient estimates for feedlot effects were generally 
positive and judged to be nonzero, meaning that close proximity to feedlots 
was associated with an increase in sale prices. While association of the opposite 



88 chapter 4 interpretation of main effects

sign was expected, the positive sign is plausible if the positive economic impact 
of the feedlot outweighs the negative environmental impact. The positive 
effect is estimated to be small, however, and equal to 5% or less of the sale 
price of the homes in the study.

These data are purely observational, with no experimental predictors. The 
data collectors had no control over the houses that actually sold, or siting of 
feedlots. Consequently, any inference that nearby feedlots cause increases in 
sale price is unwarranted from this study. Given that we are limited to associa-
tion, rather than causation, we might next turn to whether we can generalize 
the results. Can we infer the same association to houses that were not sold in 
these counties during this period? We have no way of knowing from the data 
if the same relationship would hold for homes that did not sell. For example, 
some homeowners may have perceived that they could not get a reasonable 
price and may have decided not to sell. This would create a bias in favor of a 
positive effect of feedlots.

Can we generalize geographically, to other Minnesota counties or to other 
places in the Midwest United States? The answer to this question may depend 
on the characteristics of the two counties studied. Both are rural counties with 
populations of about 17,000. Both had very low property values with median 
sale price in this period of less than $50,000, a low value even in 1993–1994. 
Each county had different regulations for operators of feedlots, and these 
regulations could impact pollution problems. Applying the results to a county 
with different demographics or regulations cannot be justified by these data 
alone, and additional information and assumptions are required.

Joiner (1981) coined the picturesque phrase lurking variable to describe a 
predictor variable not included in a mean function that if included would 
change the interpretation of a fitted model. Suppose we have a regression with 
regressors X derived from the available predictors and a lurking variable L 
not included in the study, and that the true regression mean function is

 E |( , )Y X L xj j

j

p

= = = + +
=
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 (4.11)

with δ ≠ 0. We assume that X and L are correlated and for simplicity we assume 
further that E |( )L X xj j= = + ∑x γ γ0 . When we fit the incorrect mean function 
that ignores the lurking variable, we get, from Section 4.2,
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(4.12)

Suppose we are particularly interested in inferences about the coefficient 
for X1, and, unknown to us, β1 in (4.11) is equal to 0. If we were able to fit with 
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the lurking variable included, we could conclude that X1 is not important. If 
we fit the incorrect mean function (4.12), the coefficient for X1 becomes 
(β1 + δγ1), which will be nonzero if δ  ≠ 0. The lurking variable masquerades as 
the variable of interest to give an incorrect inference. A lurking variable can 
also hide the effect of an important variable if, for example, β1 ≠ 0 but 
β1 + δγ1 = 0.

All large observational studies like this feedlot study potentially have 
lurking variables. For this study, a casino had recently opened near these coun-
ties, creating many jobs and a demand for housing that might well have over-
shadowed any effect of feedlots. In experimental data with random assignment, 
the potential effects of lurking variables are greatly decreased, since the 
random assignment guarantees that the correlation between the regressors in 
the mean function and any lurking variable is small or 0.

The interpretation of results from a regression analysis depends on the 
details of the data design and collection. The feedlot study has extremely 
limited scope and is but one element to be considered in trying to understand 
the effect of feedlots on property values. Studies like this feedlot study are 
easily misused. The study was cited in spring 2004 in an application for a permit 
to build a feedlot in Starke county, Indiana, claiming that the study supports 
the positive effect of feedlots on property values, confusing association with 
causation, and inferring generalizability to other locations without any estab-
lished foundation for doing so.

4.4  SAMPLING FROM A NORMAL POPULATION

Much of the intuition for the use of least squares estimation is based on the 
assumption that the observed data are a sample from a multivariate normal 
population. While the assumption of multivariate normality is only rarely 
tenable in practical regression problems, it is worthwhile to explore the rele-
vant results for normal data, first assuming random sampling and then remov-
ing that assumption.

Suppose that all of the observed variables are normal random variables, 
and the observations on each case are independent of the observations on 
each other case. In a two-variable problem, for the ith case observe (xi, yi), and 
suppose that
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Equation (4.13) says that xi and yi are each realizations of normal 
random variables with means μx and μy, variances σ x

2  and σ y
2, and the covari-

ance Cov(x, y) = ρxyσxσy. Now, suppose we consider the conditional distribution 
of yi given that we have already observed the value of xi. It can be shown 
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(Casella and Berger, 2001) that the conditional distribution of yi given xi is 
normal and

 y x xi i y xy
y

x
i x y xy| N~ ( ), ( )µ ρ

σ
σ

µ σ ρ+ − −





2 21  (4.14)

If we define

 β µ β µ β ρ
σ
σ

σ σ ρ0 1 1
2 2 21= − = = −y x xy

y

x
y xy( )  (4.15)

then the conditional distribution of yi given xi is simply

 y x xi i i| N~ ( , )β β σ0 1
2+  (4.16)

which is essentially the same as the simple regression model with the added 
assumption of normality. The variance σ σ ρ2 2 21= −y xy( ) in (4.16) is often called 
the residual variance, as it is the variance of the part of y that is not explained 
by x.

Given random sampling, the five parameters in (4.13) are estimated, using 
the notation of Table 2.1, by
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Maximum likelihood estimates of the regression parameters β0 and β1 are 
found in Appendix A.11. They are obtained by substituting estimates from 
(4.17) for parameters in (4.15), so that β̂1 = rxy y xSD /SD , and so on, as derived 
in Chapter 2. To get the unbiased estimate of σ2 we must correct for degrees 
of freedom, ˆ [( ) ( )] ( )σ 2 2 21 2 1= − − −n n ry xy/ SD .

If the observations on the ith case are yi and a p × 1 vector xi not including 
a constant, multivariate normality is shown symbolically by
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where Σxx is a p × p matrix of variances and covariances between the elements 
of xi, and Σxy is a p × 1 vector of covariances between xi and yi. The conditional 
distribution of yi given xi is then

 yi i y x i| N * *x x~ ,( ) 2µ σ− ′ + ′( )b m b  (4.19)

If R2 is the population squared multiple correlation we can write
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 b* ; ( )= = − ′ = −− −S S S S Sxx xy y xy xx xy y
1 2 2 1 2 21σ σ σ R  (4.20)

The formulas for β* and σ2 and the formulas for their least squares estimators 
differ only by the substitution of estimates for parameters, with ( 1) ( )1n − ′− X X  
estimating Σxx, and ( 1) ( )1n − ′− X Y  estimating Σxy.

The last result generalizes: if z is a k × 1 random variable with a multivariate 
normal distribution, for any vector a, y = a′z is a linear combination of the 
elements of z, and for any matrix p × k matrix B, X = Bz is a set of linear 
combinations of the elements of z, then the regression of y on z is always a 
linear regression model.

4.5  MORE ON R2

The conditional distribution in (4.14) or in (4.19) does not depend on random 
sampling, but only on normal distributions, so whenever multivariate normal-
ity seems reasonable, a linear regression model is suggested for the conditional 
distribution of one variable given the others. However, if random sampling is 
not used, some of the usual summary statistics, including R2, lose their connec-
tion to population parameters.

Apart from using a different aspect ratio in the plot, Figure 4.5a repeats 
Figure 1.1, the scatterplot of dheight versus mheight for the heights data. 
These data closely resemble a bivariate normal sample (see Problem 4.12), 
and so R2 = 0.24 estimates the population R2  for this problem. Figure 4.5b 
repeats this last figure, except that all cases with mheight between 61 and 64 
inches, which are the lower and upper quartiles of the mother’s heights rounded 
to the nearest inch, respectively, have been removed from the data. The ols 
regression line appears similar, but the value of R2 = 0.37 is about 50% larger. 
Removing the middle of the data increased R2, and it no longer estimates a 
population value. Similarly, in Figure 4.5c, we exclude all the cases with 
mheight outside the quartiles, and get R2 = 0.027, and the relationship between 
dheight and mheight virtually disappears.

We have seen that we can manipulate the value of R2 merely by changing 
our sampling plan for collecting data: if the values of the regressors are widely 
dispersed, then R2 will tend to be too large, while if the values are over a very 
small range, then R2 will tend to be too small. Because the notion of propor-
tion of variability explained is so useful, a diagnostic method is needed to 
decide if it is a useful concept in any particular problem.

4.5.1  Simple Linear Regression and R2

In simple linear regression problems, we can always determine the appropri-
ateness of R2 as a summary by examining the summary graph of the response 
versus the regressor. If the plot looks like a sample from a bivariate normal 
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population, as in Figure 4.5a, then R2 is a useful measure. The less the graph 
looks like this figure, the less useful is R2 as a summary measure.

Figure 4.6 shows six summary graphs. Only for the first three of them is R2 
a useful summary of the regression problem. In Figure 4.6d, the mean function 
appears curved rather than straight so correlation is a poor measure of depen-
dence. In Figure 4.6e the value of R2 is virtually determined by one point, 
making R2 necessarily unreliable. The regular appearance of Figure 4.6f sug-
gests a different type of problem. We may have several identifiable groups of 
points caused by a lurking variable not included in the mean function, such 
that the mean function for each group has a negative slope, but when groups 
are combined the slope becomes positive. Once again, R2 is not a useful 
summary of this graph.

4.5.2  Multiple Linear Regression and R2

The sample multiple correlation coefficient R2 can be shown to be the correla-
tion between the response Y and the ols fitted values Ŷ. This suggests that a 
plot of Y on the vertical axis and Ŷ on the horizontal axis can be useful for 
interpreting R2 paralleling the methodology for simple regression just out-
lined. When the data are sampled from a multivariate normal, R2 will estimate 

Figure 4.5  Three views of the heights data.
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the population multiple correlation R2 defined implicitly in (4.19). Without 
multivariate normality, R2 estimates a quantity that depends on the sampling 
plan.

For other regression methods such as nonlinear regression, we can continue 
to define R2 to be the square of the correlation between the response and the 
fitted values, and use this summary graph to decide if R2 is a useful summary. 
This extension is not universal, however. In binary regression models described 
in Chapter 12, R2-like measures are not directly analogous to the plot of a 
response versus fitted values.

4.5.3  Regression through the Origin

With regression through the origin, the proportion of variability explained is 
given by 1 2− ∑RSS/ yi , using uncorrected sums of squares. This quantity is not 
invariant under location change, so, for example, if units are changed from 
Fahrenheit to Celsius, the value for the proportion of variability explained 
changes. For this reason, use of an R2-like measure for regression through the 
origin is not recommended.

4.6  PROBLEMS

4.1 (Data file: BGSgirls) In the Berkeley Guidance Study data discussed 
in Section 4.1, another set of linear transformations of the weight  
variables is

Figure 4.6  Six summary graphs. R2 is an appropriate measure for a–c, but inappropriate for d–f.

(a) (b) (c)

(d) (e) (f)

Predictor or ŷ

R
es

po
ns

e



94 chapter 4 interpretation of main effects

ave WT2 WT9 WT18= + +( )/3

lin WT18 WT2= −

quad WT2 WT9+WT18= − 2

Since the three weight variables are approximately equally spaced in 
time, these three variables correspond to the average weight, a linear 
component in time, and a quadratic component in time; see Oehlert 
(2000) or Kennedy and Gentle (1980), for example, for a discussion of 
orthogonal polynomials.

Fit with these regressors using the girls in the Berkeley Guidance 
Study data and compare with the results in Section 4.1.

4.2 (Data file: Transact) The data in this example consists of a sample of 
branches of a large Australian bank (Cunningham and Heathcote, 1989). 
Each branch makes transactions of two types, and for each of the branches 
we have recorded the number t1 of type 1 transactions and the number 
t2 of type 2 transactions. The response is time, the total minutes of labor 
used by the branch.

Define a = (t1 + t2)/2 to be the average transaction time, and 
d = t1 − t2, and fit the following four mean functions

M E |1: 01 11 21( , )timet1 t2 t1 t2= + +β β β

M E |2 02 32 42: ( , )timet1 t2 a d= + +β β β

M E |3 03 23 43: ( , )timet1 t2 t2 d= + +β β β

M E |4 04 14 24 34 44: ( , )timet1 t2 t1 t2 a d= + + + +β β β β β

4.2.1  In the fit of M4, some of the coefficients estimates are labeled as 
“aliased” or else they are simply omitted. Explain what this means 
and why this happens.

4.2.2  What aspects of the fitted regressions are the same? What aspects 
are different?

4.2.3  Why is the estimate for t2 different in M1 and M3?

4.3 Finding a joint distribution
4.3.1  Starting with (4.14), we can write

y x ei y xy
y

x
i x i= + − +µ ρ

σ
σ

µ( )

Ignoring the error term ei, solve this equation for xi as a function 
of yi and the parameters.
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4.3.2  Find the conditional distribution of xi|yi. Under what conditions is 
the equation you obtained in Problem 4.3.1, which is computed by 
inverting the regression of y on x, the same as the regression of 
x on y?

4.4 Suppose we have a vector z which has a multivariate normal 
distribution,

z ~ ,N mz S( )

Let y = a′z for some k × 1 vector a, and let x = Bz for some p × k matrix 
B. Using (A.17) and (A.18) in Appendix A.7, show that the conditional 
distribution of y|x is normal and that the conditional mean is a linear 
function of x. Get expressions for the parameters of the conditional 
distribution.

4.5 If you use the response log10(Y), show that the interpretation of a regres-
sion coefficient as a percentage change in Y changes slightly; how does 
it change?

4.6 (Data file: UN11) In the simple linear regression of log(fertility) on 
pctUrban using the UN11 data, the fitted model is

log( ) . .fertility pctUrban� = −1 501 0 01

Provide an interpretation of the estimated coefficient for pctUrban.

4.7 (Data file: UN11) Verify that in the regression log(fertility)  ∼ 
log(ppgdp) + lifeExpF a 25% increase in ppgdp is associated with 
a 1.4% decrease in expected fertility.

4.8 Suppose we fit a regression with the true mean function

E |( , )Y X x X x x x1 1 2 2 1 23 4 2= = = + +

Provide conditions under which the mean function for E(Y|X1 = x1) is 
linear but has a negative coefficient for x1.

4.9 In a study of faculty salaries in a small college in the Midwest, a linear 
regression model was fit, giving the fitted mean function

 E |( )SalarySex Sex� = −24697 3340  (4.21)

where Sex equals 1 if the faculty member was female and 0 if male. The 
response Salary is measured in dollars (the data are from the 1970s).
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4.9.1  Give a sentence that describes the meaning of the two estimated 
coefficients.

4.9.2  An alternative mean function fit to these data with an additional 
term, Years, the number of years employed at this college, gives 
the estimated mean function

 E |( 18065 201 759SalarySex Years Sex Years, )� = + +  (4.22)

The important difference between these two mean functions is that the 
coefficient for Sex has changed signs. Using the results of this chapter, 
explain how this could happen. (Data consistent with these equations are 
presented in Problem 5.17).

4.10 Suppose you are given random variables x and y such that

x x x~ ( , )N µ σ 2

y x x| N~ ( , )β β σ0 1
2+

so you have the marginal distribution of x and the conditional distribu-
tion of y given x. The joint distribution of (x, y) is bivariate normal. Find 
the 5 parameters ( , , , , )µ µ σ σ ρx y x y xy

2 2  of the bivariate normal.

4.11 For this problem, you will use normal random deviates. First, generate 
vectors x and e, each of 10,000 standard normal random deviates, and 
then compute y = 2x + e. View x as 10,000 realizations of a random vari-
able x and y as 10,000 corresponding realizations of a random variable 
y. Because a very large sample size is used, estimated statistics are nearly 
equal to population values.
4.11.1  What is the joint distribution of (x, y)? Verify that the conditional 

distribution of y|x ∼ N(2x, 1).
4.11.2  Fit the simple regression of y on x. Verify that the estimates of 

the intercept, slope, variance, and R2 agree with the theoretical 
values to at least two decimal places.

4.11.3  Test the hypothesis that the slope is equal to 2 against a two-sided 
alternative and obtain the significance level. What is the probabil-
ity of rejecting this hypothesis?

4.11.4  Refit the simple regression model, but to the following subsets of 
the data: (1) all observations with |x| < 2/3; (2) all observations 
with |x| > 2/3, and (3) all observations with x < 0. The first two cases 
are similar to the models used in Figure 4.5, but the last case is 
different because it is not symmetric about the middle of the dis-
tribution of x. In each case, about 50% of the data is used in the 
estimation. Whether or not we observe a case depends on the 
predictor but not the response, and we would say the data are 
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missing at random. Compare the estimates of the intercept, slope, 
σ2, and the value of R2 for these three cases and for the regression 
fit to all the data.

4.11.5  Repeat Problem 4.11.4, but this time select the subset based on 
the value of the response y, according to the rules (1) all observa-
tions with |y| < 1.5; (2) all observations with |y| > 1.5, and (3) all 
observations with y < 0; as with the last problem each of these will 
include about 50% of the data in the estimation. Here the prob-
ability of observing a case depends on the value that would have 
been observed, and the data are not missing at random.

In Problem 4.11.4, the mechanism for observing data depends 
on the predictor but not on the response. In this problem the 
mechanism for observing data depends on the response. Compare 
the estimates of the intercept, slope, σ2, and the value of R2 for 
these three cases and for the regression fit to all the data.

4.12 This problem is for you to see what two-dimensional plots of data will 
look like when the data are sampled from a variety of distributions. For 
this problem you will need a computer program that allows you to gener-
ate random numbers from given distributions. In each of the cases below, 
set the number of observations n = 300, and draw the indicated graphs. 
Few programs have easy-to-use functions to generate bivariate random 
numbers, so in this problem you will generate first the predictor X, then 
the response Y given X.
4.12.1  Generate X and e to be independent standard normal random 

vectors of length n. Compute Y = 2 + 3X + σe, where in this 
problem we take σ = 1. Draw the scatterplot of Y versus X, add 
the true regression line Y = 2 + 3X, and the ols regression line. 
Verify that the scatter of points is approximately elliptical, and the 
regression line is similar to, but not exactly the same as, the major 
axis of the ellipse.

4.12.2  Repeat Problem 4.12.1 twice, first set σ = 3 and then repeat again 
with σ = 6. How does the scatter of points change as σ changes?

4.12.3  Repeat Problem 4.12.1, but this time set X to have a standard 
normal distribution and e to have a Cauchy distribution (set 
σ = 1). The easy way to generate a Cauchy is to generate two 
vectors V1 and V2 of standard normal random numbers, and then 
set e = V1/V2. With this setup, the values you generate are not 
bivariate normal because the Cauchy does not have a population 
mean or variance.

4.13 (Data file: MinnWater) As suggested in Section 4.1.5, examine 
the regression with response given by log(perCapitaUse) = log
(106muniUse/muniPop) and the regressors described in the text and 
summarize your results.
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C H A P T E R  5

Complex Regressors

In this chapter we describe methods for including predictors in a regression 
problem that will require more than one regressor, or regressors that are 
functions of more than one predictor. The most important of these are 
factors, predictors whose values are typically category labels rather than 
numeric. A factor with d categories will generally require d − 1 regressors 
in a regression model. We also consider interactions, which are formed by 
taking the products of regressors derived from two or more predictors.  
We round out the discussion of complex regressors by including polynomial 
and splines that allow modeling curved relationships, and principal compo-
nent scores that may be useful to reduce a large number of similar predictors 
to a more manageable set of regressors. The effects plots introduced in the 
last chapter provide a useful graphical approach to understanding the effect 
of predictors on the response, even in cases where direct interpretation  
of coefficient estimates is rather opaque, and so we emphasize graphical 
summaries.

5.1  FACTORS

Factors allow the inclusion of qualitative or categorical predictors in the mean 
function of a multiple linear regression model. Factors can have two levels, 
such as male or female, treated or untreated, and so on, or they can have more 
than two levels, such as eye color, location, or type of business.

As an example, we return to the United Nations data described in Section 
3.1. This is an observational study of all n = 199 localities, mostly countries, for 
which the United Nations provides data. The factor we use is called group, 
which classified the countries into three categories, africa for the 53 coun-
tries on the African continent, oecd for the 31 countries that are members of 
the OECD, the Organisation for Economic Co-operation and Development, 
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an international body1 whose members are generally the wealthier nations, 
none of which are in Africa, and other for the remaining 115 countries in the 
data set that are neither in Africa nor in the OECD. The variable group is a 
factor, with these d = 3 levels. We will use as a response the variable lifeExpF, 
the expected life span of women in each country, and so the problem at first 
is to see how lifeExpF differs between the three groups of countries.

5.1.1  One-Factor Models

With no predictors beyond group, the model we fit returns estimated mean 
values for lifeExpF for each level of group. This is called a one-factor design 
or a one-way design.

Figure 5.1a provides a boxplot (Mosteller and Tukey, 1977) of lifeExpF 
versus group for the example. A boxplot is a useful graphical device for com-
paring different levels of a factor. Each of the boxes corresponds to one of the 
levels of group. The thick line near the middle of each box is the group 
median. The “box” extends to the quartiles, and so 50% of the data in the 
group falls inside the box. The distance between the quartiles is called the 
interquartile range (IQR) and is a measure of variability that is roughly similar 
to the standard deviation. The “whiskers” generally extend to the observed 
value closest to the median that is at least 1.5 IQRs from the median. Any 
points outside this range are shown explicitly. Boxplots give information about 
location or typical value through the median, scale through the IQR, symmetry 
by comparing the part of the boxes above the median to the part below it, and 
possible outliers, the points shown explicitly. In this example the oecd coun-
tries generally have the highest lifeExpF and africa has the lowest. There 

1See http://www.oecd.org.

Figure 5.1  UN data. (a) Boxplot of lifeExpF separately for each group in the UN data. (b) 
Effect plot for group for the one-way model.

�

�

�

group

lif
eE

xp
F

60

65

70

75

80

85

(b)

oecd other africa

(a)

oecd other africa

50

60

70

80

group

lif
eE

xp
F

Turkey

Japan

Afghanistan

Nauru

http://www.oecd.org


100 chapter 5  complex regressors

is some overlap between other and the remaining levels. Two countries have 
relatively low lifeExpF for the other group, while in the oecd Japan is high 
and Turkey is low for that group. The levels of the factor have been ordered 
according to the median value of the response, not alphabetically, which facili-
tates comparison between groups. The variation in the oecd group appears to 
be smallest and in africa it is the largest.

Factor predictors can be included in a multiple linear regression mean func-
tion using dummy variables. For a factor with two levels, a single dummy vari-
able, a regressor that takes the value 1 for one of the categories and 0 for the 
other category, can be used. Assignment of labels to the values is generally 
arbitrary, and will not change the outcome of the analysis. Dummy variables 
can alternatively be defined with a different set of values, perhaps −1 and 1, 
or possibly 1 and 2. The important point is the regressor has only two values.

Since group has d = 3 levels, the jth dummy variable Uj for the factor, j = 
1, . . . , d has ith value uij, for i = 1, . . . , n, given by

 u
j

ij
i=

=



1

0

if th category of

otherwise

group group
 (5.1)

The values of the dummy variables for the first 10 cases in the example are 
as follows:

Group U1 U2 U3

Afghanistan other 0 1 0
Albania other 0 1 0
Algeria africa 0 0 1
Angola africa 0 0 1
Anguilla other 0 1 0
Argentina other 0 1 0
Armenia other 0 1 0
Aruba other 0 1 0
Australia oecd 1 0 0
Austria oecd 1 0 0

The variable U1 is the dummy variable for the first level of group, which is 
oecd, U2 is for other, and U3 is for the remaining level africa.

If we add an intercept to the mean function, the resulting model would be 
overparameterized as in Section 4.1.4 because U1 + U2 + U3 = 1, a column of 
1s, and the column of 1s is the regressor that corresponds to the intercept. This 
problem can be solved by dropping one of the dummy variables:2

2The statistical program R by default deletes the dummy variable for the first level, while SAS, 
SPSS, and Stata delete the dummy variable for the last level of the factor. All these programs 
allow reordering the levels of a factor, and so the choice of the deleted level can be changed by 
the user. The choice of the deleted level effects interpretation of parameters and sometimes tests, 
but will not generally change fitted values or other summary statistics like R2.
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 E |( ) 0 2 2 3 3lifeExpFgroup = + +β β βU U  (5.2)

Since the first level of group will be implied when U2 = U3 = 0,

E |( ) 0 00 2 3 0lifeExpFgroup oecd= = + + =β β β β

and so β0 is the mean for the first level of group. For the second level U2 = 1 
and U3 = 0,

E |( ) 1 00 2 3 0 2lifeExpFgroup other= = + + = +β β β β β

and β0 + β2 is the mean for the second level of group. Similarly, for the third 
level U2 = 0 and U3 = 1

E |( ) 0 10 2 3 0 3lifeExpFgroup africa= = + + = +β β β β β

Most computer programs allow the user to use a factor3 in a mean function 
without actually computing the dummy variables. For example, the R package 
uses notation for indicating factors and interactions first suggested by Wilkin-
son and Rogers (1973). If group has been declared to be a factor, then the 
mean function (5.2) is be specified by

 lifeExpF~1 group+  (5.3)

where the “1” specifies fitting the intercept, and group specifies fitting the 
dummy variable regressors that are created for the factor group. Since most 
mean functions include an intercept, R assumes it will be included, and the 
specification

 lifeExpF~group  (5.4)

is equivalent to (5.3).4

Table 5.1 summarizes the fit of the one-way model.5 For group level oecd 
the values of the dummy variables are (U1, U2) = (0, 0), for other the values 

3A factor is called a class variable in SAS. Some older programs, such as the “Linear Regression” 
procedure in SPSS, do not allow symbolic specification of factors and require the user to create 
dummy variables for them. Programs that allow specifying factors without the user constructing 
dummy variables, such as the “General Linear Model” program in SPSS, are to be preferred.
4The intercept is excluded in R by including -1 in the model, and in other programs by selecting 
an available option for no intercept.
5Using ols here assumes the variability of the response is the same for each level of group. While 
Figure 5.1 suggests that the variability may not be constant, we continue for this example assuming 
constant variance. Methods described in Chapter 7 could provide alternative approaches if non-
constant variance were indeed a problem.
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are (U1, U2) = (1, 0), and for africa they are (U1, U2) = (0, 1). The means for 
the 3 groups are

 

ˆ ˆ ˆ ˆ .

ˆ

E |

E |

( ) 0 0 82 45

(

0 2 3lifeExpFgroup oecd

lifeExpFgro

= = + + =β β β

uup other

lifeExpFgroup afric

= = + + = −

=

) 1 0 82 45 7 12

(

0 2 3
ˆ ˆ ˆ . .

ˆ

β β β

E | aa) 0 1 82 45 22 670 2 3= + + = −ˆ ˆ ˆ . .β β β

 (5.5)

The intercept is the sample mean for the omitted level oecd. The estimated 
coefficient for other is the difference between the sample mean for other 
and the sample mean for oecd. The coefficient estimate for africa is the 
difference between the oecd sample mean and the sample mean for africa. 
The standard errors in the second column of Table 5.1 are, respectively, the 
standard errors of the estimated mean of oecd followed by the standard errors 
of the estimated differences between oecd and the other two groups. The 
standard error for the difference between other and africa is not given in 
this table but can be computed most easily by changing the baseline level of 
the factor to be other and refitting or by using the method in Section 5.1.2 
to get the standard error and then compute the test.

The column of t-values provide test statistics of, respectively, the mean for 
oecd is 0; the difference in mean between oecd and other is 0; and the dif-
ference in mean between oecd and africa is 0. Using two-sided alternatives, 
in all three cases, the null hypotheses are clearly rejected since the correspond-
ing significance levels are 0 to the number of digits shown.

A graphical summary of the fitted model is the effects plot introduced in 
Section 4.1.1. Whereas the boxplot like Figure 5.1a shows the variability in the 
original data, the effects plot in Figure 5.1b shows the variability in the esti-
mated means. The intervals shown are 95% confidence intervals (without cor-
rection for multiple intervals), assuming the variance σ2 is constant. An 
important feature of the effects plot is that the summary is in terms of fitted 
values, in this case fitted means, not in terms of the particular parameterization 
used for the factor. The baseline level of group is treated differently in the 
parameterization, but all levels of group are treated equally in the effects plot.

5.1.2  Comparison of Level Means

A common component of the analysis of problems with factors is the com-
parisons of means for the various levels of a factor adjusted for other factors 

Table 5.1  Regression Summary for Model (5.4)

Estimate Std. Error t-Value Pr(>|t|)

(Intercept), β̂0 82.4465 1.1279 73.09 0.0000
other, β̂2 −7.1197 1.2709 −5.60 0.0000
africa, β̂3 −22.6742 1.4200 −15.97 0.0000

ˆ .σ = 6 2801  with 196 df, R2 = 0.6191.
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and regressors included in the model. To compare the means pairwise in 
general requires computing the standard error of the difference between each 
pair of means.

Even in more complicated models, the estimated adjusted difference 
between means will be given by a linear combination of the estimated  
regression coefficients. For the example, the estimated difference between 
means for other and africa is ˆ ˆ . ( . ) .β β2 3 7 12 22 67 15 55− = − − − = , and the 
standard error of this difference is not given in Table 5.1. It can, however, be 
computed using the general results given in Section 3.5. Let a = (0, 1, −1, 0)′ 
so ℓ = a′β = β2 − β3 is the difference between the group means. Using 
equation (3.26)

se X

c c c

( ) ( )

2

1

22 33 23

ˆ ˆ

ˆ

�| = ′ ′

= + −

−σ

σ

a X X a

where cij is the (i, j) element of (X′X)−1. In R, the function vcov applied to a 
regression model returns σ̂ 2 1( )′ −X X , but not all programs provide easy access 
to this matrix. Often, a higher-level method will be available in the program 
that will compute all the pairwise comparisons for you. In SAS, SPSS, and 
others, the term lsmeans is often used for the method that does these tests. 
Table 5.2 presents a summary that would be obtained for comparing differ-
ences between level means. The estimate column is the difference in means, 
and the SE is the standard error of the difference. The t-value is the ratio of 
the estimated difference to its standard error. The p-value is the significance 
level of the test. The p-values for these tests are generally adjusted to account 
for multiple testing, in this case using the Tukey method. Oehlert (2000, chapter 
5) provides a useful discussion of multiple comparisons. Bretz et al. (2010) and 
Lenth (2013) discuss implementations of multiple testing using R. In this 
example, the additional testing was probably unnecessary because the levels 
were so obviously different.

5.1.3  Adding a Continuous Predictor

As an additional predictor in the UN example, suppose we add log(ppgdp), 
the per person gross domestic product in the country, as a measure of relative 
wealth. The data can now be visualized as in Figure 5.2, which is a plot of  
the response lifeExpF versus the continuous regressor log(ppgdp), with 

Table 5.2  Pairwise Comparisons of Level Means for Group

Comparison Estimate SE t-Value p-Value

oecd − other 7.12 1.27 5.60 0.000
oecd − africa 22.67 1.42 15.97 0.000
other − africa 15.55 1.04 14.92 0.000
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separate symbols used for points in the different levels of group. Also shown 
on the graph are ols lines fit separately to each of the levels, so each level has 
its own intercept and slope.

The solid circles for countries in the level africa generally have lower 
values for both the response and the regressor, while the points for the remain-
ing levels are similar. The range of values for log(ppgdp) is considerably 
smaller in the oecd level, reflecting that the countries in this group are gener-
ally wealthier. The three lines on the figure seem to be nearly parallel, sug-
gesting that while the intercepts may differ, or at least the intercepts differ 
between africa and the other levels, the slopes, the change in lifeExpF as 
log(ppgdp) increases, may be the same in each group.

The model fit to obtain the three lines in Figure 5.2 corresponds fitting a 
separate intercept and slope in each group. Writing group = j to represent an 
observation in level j,

 E |( ( ) ) 0 1lifeExpF ppgpd grouplog ,= = = +x j xj jη η  (5.6)

where (η0j, η1j) are the intercept and slope for level j = 1, . . . , d, so there 2d = 6 
parameters. This model is generally parameterized differently using main 
effects and interactions, as

 
E |( ( ) , ) 0 02 2 03 3

1 22 2

lifeExpF ppgdp grouplog = = + +
+ + +
x U U

x U x

β β β
β β β113 3U x

 
(5.7)

As verified in Problem 5.2,

Figure 5.2  Plot of lifeExpF versus log(ppgdp) for the UN data. Points are marked with differ-
ent symbols for the 3 levels of group, and ols lines are shown for each of the 3 levels of group.
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η β η β
η β β η β β
η β β η β β

01 0 11 1

02 0 02 12 1 12

03 0 03 13 1 13

= =
= + = +
= + = +

The parameters (β0, β1) are the intercept and slope for the baseline level, 
while the remaining βs are differences between the other levels and the 
baseline.

Statistical packages generally allow (5.7) to be fit symbolically. In R one 
specification is

lifeExpF~group log(ppgdp) group:log(ppgdp)+ +

The colon “:” is the indicator for an interaction in R. There is a shorthand for 
this available in R,

lifeExpF~group*log(ppgdp)

The asterisk “*” in R expands to include all main effects and interactions. 
In SAS, you cannot transform a variable inside a model specification, so you 
must create pre-compute log(ppgdp), which we call lppgdp. The SAS 
specifica tion is

modellifeExpF =grouplppgdpgroup*lppgdp;

Unlike R, SAS uses the asterisk “*” to indicate an interaction. In menu-based 
programs like SPSS, interactions are specified in dialog boxes.

The regression summary for (5.7) is given in Table 5.3. The estimated  
intercept is largest for oecd because the estimates of both β02 and β03 are 
negative. The estimated slope is smallest for oecd because both β̂12 and β̂23  
are positive. The t-tests for the coefficients, however, are very confusing, as 
apart from β0 none of the coefficients are clearly different from 0, which con-
tradicts intuition from Figure 5.2. We will return to this in the next section and 
more comprehensively in Section 6.1.

Table 5.3  Regression Summary for Model (5.7)

Estimate Std. Error t-Value Pr(>|t|)

(Intercept), β̂0 59.2137 15.2203 3.89 0.0001
other, β̂02 −11.1731 15.5948 −0.72 0.4746
africa, β̂03 −22.9848 15.7838 −1.46 0.1470
log(ppgdp), β̂1 1.5544 1.0165 1.53 0.1278
other: log(ppgdp), β̂12 0.6442 1.0520 0.61 0.5410
africa: log(ppgdp), β̂13 0.7590 1.0941 0.69 0.4887

ˆ .σ = 5 1293 with 193 df, R2 = 0.7498.
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Figure 5.3 provides two variations of effects plots for the fit of the interac-
tion model. In each of the plot curves are shown each level of the factor 
group. The curves give the fitted value of lifeExpF for each given value of 
ppgdp. The lines shown in Figure 5.3a are curves, not straight lines, because 
the horizontal axis is for ppgdp, not its logarithm, while in Figure 5.3b the 
horizontal axis is in log scale, and the curves become straight lines.

Graphing in the original rather than logarithmic scale emphasizes that the 
greatest change in fitted lifeExpF occurs for increases in smaller values of 
ppgdp, and that in the wealthier countries, changes in ppgdp are associated 
with only small increases in lifeExpF. The line shown for oecd is really 
an extrapolation at the lower end of the ppgdp scale, because all the countries 
in this group have high values of ppgdp; similarly in africa, the curve at 
the high end is an extrapolation. The other and oecd groups are clearly 
very similar to each other, while the curve for africa starts lower and 
stays lower.

5.1.4  The Main Effects Model

Examination of Figure 5.2 suggests that while intercepts might differ for the 
three levels of group, the slopes may be equal. This suggests fitting a model 
that allows each group to have its own intercept, but all groups have the same 
slope,

 E |( ( ) , ) 0 02 2 03 3 1lifeExpF ppgdp grouplog = = + + +x U U xβ β β β  (5.8)

Model (5.8), whose Wilkinson–Rogers representation is lifeExpF  ∼ 
log(ppgdp) + group, is obtained from (5.7) by dropping the interaction, 
so we call this a main effects model. Main effects models are much simpler 

Figure 5.3  Effects plot for the interaction model (5.7) for the UN data. (a) ppgdp on the hori-
zontal axis. (b) ppgdp in log-scale.
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than are models with interactions because the effect of the continuous regres-
sor is the same for all levels of the factor. Similarly, the difference between 
levels of the factor are the same for every fixed value of the continuous regres-
sor. When primary interest is in differences due to the level of the factor, for 
example, if the factor were the levels of a treatment randomly assigned to 
subjects, model (5.8) is called the analysis of covariance.

The fit of the main effects model (5.8) is given in Table 5.4. The t-statistics 
are less baffling in this fit. The intercept for africa differs from the intercept 
for oced because the coefficient estimate β̂03 is about 7.8 standard deviations 
from 0. No test is provided here of the difference in intercept between other 
and africa. Multiple testing comparing levels of group follow the general 
prescription given in Section 5.1.2, except that the comparisons are made 
between the means adjusted for log(ppgdp).

The effects plots for (5.8) are shown in Figure 5.4. For the more complicated 
interaction model, there was only one effects plots with separate curves for 
each level of group. In the main effects model, separate plots are drawn 
for each effect. The effects plot for group displays fitted values with the 
other regressors in the model set to a fixed value. The default behavior will 

Table 5.4  Regression Summary for Model (5.8)

Estimate Std. Error t-value Pr(>|t|)

(Intercept), β̂0 49.5292 3.3996 14.57 0.0000
other, β̂02 −1.5347 1.1737 −1.31 0.1926
africa, β̂03 −12.1704 1.5574 −7.81 0.0000
log(ppgdp), β̂1 2.2024 0.2190 10.06 0.0000

ˆ .σ = 5 1798  with 195 df, R2 = 0.7422.

Figure 5.4  Effects plots for the main effects model (5.8) for the UN data: (a) group, (b) ppgdp. 
Dotted lines are drawn at plus and minus 1 standard error.
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depend on the software used. The default used in this book is to set the  
other variables to their mean value. Write x  for the mean of log(ppgdp). Then 
the 3 plotted points in the effects plot for group are the fitted values 
ˆ logE |( ( ) , )lifeExpF ppgdp group= =x j , for j ∈ {oecd, other, africa}. 

These are also the adjusted means that would be used in a multiple comparison 
procedure.

A point on the curve shown in the effect plot for ppgdp is a little more 
complicated because we need to fix the factor group at a “typical value.” The 
procedure used in this book to draw the graph is (1) compute a fitted value 
for each level of the factor; and (2) use a weighted average of these fitted 
values, with the weights determined by the sample size in each level of the 
factor. This is admittedly an arbitrary way of combining the levels of the factor, 
but using any sensible procedure would change the values on the vertical axis, 
but not the shape of the curve, and the shape is the important feature of the 
plot.6 As before, the effects plot for ppgdp is a curve because the model uses 
the regressor log(ppgdp) but we display using the original untransformed 
predictor to get a curve. The main effects model says that the predictors can 
be interpreted separately. Level africa of group has a lower fitted value 
than the other two levels. The predictor ppgdp is associated with increased 
fitted lifeExpF, with the greatest effect for values of ppgdp less than about 
$15,000.

5.2  MANY FACTORS

Increasing the number of factors or the number of continuous predictors in a 
mean function can add considerably to complexity but does not really raise 
new fundamental issues. Consider first a problem with many factors but no 
continuous predictors. The data in the file Wool are from a small experiment 
to understand the strength of wool as a function of three factors that were 
under the control of the experimenter (Box and Cox, 1964). The variables are 
summarized in Table 5.5. Each of the three factors was set to one of three 

Table 5.5  The Wool Data

Variable Definition

len Length of test specimen (250, 300, 350 mm)
amp Amplitude of loading cycle (8, 9, 10 mm)
load Load put on the specimen (40, 45, 50 g)
log(cycles) Logarithm of the number of cycles until the specimen fails

6The plotted quantities in effects plots can be viewed as adjusted means. The effects plots in 
this book use the default adjustments in the effects package in R (Fox, 2003). SAS and many 
other programs use lsmeans (SAS Institute, Inc., 2013), which can produce somewhat different 
adjustments.
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levels, and all 33 = 27 possible combinations of the three factors were used 
exactly once in the experiment, so we have a single replication of a 33 design. 
The response variable log(cycles) is the logarithm of the number of loading 
cycles to failure of worsted yarn. We will treat each of the three predictors as 
a factor with 3 levels.

A main effects mean function for these data includes an intercept and two 
dummy variables for each of the factors, for a total of seven parameters. A full 
second-order mean function adds all the two-factor interactions to the mean 
function. The interaction between two factors is obtained by multiplying each 
of the dummy variables for the first factor by each of the dummy variables for 
the second factor, so in this experiment a two-factor interaction requires 
2 × 2 = 4 regressors. The second-order model will have 7 + 3 × 4 = 19 param-
eters. The third-order model includes the three-factor interaction with 
2 × 2 × 2 = 8 dummy variables for a total of 19 + 8 = 27 parameters. This latter 
mean function will fit the data exactly because it has as many parameters as 
data points.

Wilkinson–Rogers’s specification of these three mean functions are, assum-
ing that len, amp, and load have all been declared as factors,

log ~

log ~

( )

( )

cycles len amp load
cycles len amp load len:amp l

+ +
+ + + + een:load amp:load

cycles len amp load len:amp len:load
+

+ + + +log ~( ) ++
+

amp:load
len:amp:load

Other mean functions can be obtained by dropping some of the two-factor 
interactions.

Mean functions with only factors and interactions are often called analysis 
of variance models after the type of analysis that is generally applied. These 
models are discussed more completely in experimental design books such as 
Oehlert (2000) or Montgomery (2012). Analysis of variance models are really 
a subset of multiple linear regression models. We discuss the analysis of vari-
ance method in Chapter 6. Analysis of the wool data is continued in Problems 
5.19 and 8.6.

5.3  POLYNOMIAL REGRESSION

If a mean function with one predictor X is smooth but not straight, integer 
powers of the predictors can be used to approximate E(Y|X). The simplest 
example of this is quadratic regression, in which the mean function is

 E |( ) 0 1 2
2Y X x x x= = + +β β β  (5.9)

Depending on the signs of the βs, a quadratic mean function can look like 
either of curves shown in Figure 5.5. Quadratic mean functions can therefore 
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be used when the mean is expected to have a minimum or maximum in the 
range of the predictor. The minimum or maximum will occur for the value of 
X for which the derivative dE(Y|X = x)/dx = 0, which occurs at

 xM = −β β1 22/( )  (5.10)

xM is estimated by substituting estimates for the βs into (5.10).7

Quadratics can also be used when the mean function is curved but does not 
have a minimum or maximum within the range of the predictor. Referring to 
Figure 5.5a, if the range of X is between the dashed lines, then the mean func-
tion is everywhere decreasing but not linear, while in Figure 5.5b it is increas-
ing but not linear. In these cases, however, using polynomials can lead to 
nonsensical answers when a fitted model is applied for new values of the pre-
dictors outside the range of the observed data.

Quadratic regression is an important special case of polynomial regression. 
The polynomial mean function of degree d with one predictor is

 E |( 0 1 2
2Y X x x x xd

d= = + + + +) β β β β�  (5.11)

If d = 2, the model is quadratic, d = 3 is cubic, and so on. Any smooth function 
can be estimated by a polynomial of high-enough degree. Polynomial mean 
functions are generally used as approximations and rarely represent a physical 
model.

Figure 5.5  Generic quadratic curves. A quadratic is the simplest curve that can approximate a 
mean function with a minimum or maximum within the range of possible values of the predictor. 
It can also be used to approximate some nonlinear functions without a minimum or maximum in 
the range of interest, possibly using the part of the curve between the dashed lines.

X

E
(Y

|X
)

(a) (b)

7The standard error of a nonlinear function of parameters can be computed with the delta method, 
Section 7.6.



5.3  polynomial regression  111

5.3.1  Polynomials with Several Predictors

With more than one predictor, we can contemplate having integer powers and 
products of all the predictors as regressors in the mean function. For example, 
for the important special case of two predictors, the second-order mean func-
tion is given by

 E |( 1 1 2 2 0 1 1 2 2 11 1
2

22 2
2

12 1 2Y X x X x x x x x x x= = = + + + + +, ) β β β β β β  (5.12)

The new regressor in (5.12) is the multiplicative interaction x1x2. With k 
predictors, the second-order model includes an intercept, k linear regressors, 
k quadratic regressors, and k(k − 1)/2 interaction regressors. If k = 5, the 
second-order mean function has 21 regressors, and with k = 10, it has 66 regres-
sors. A usual strategy is to view the second-order model as consisting of too 
many regressors and use testing or other selection strategies such as those to 
be outlined in Section 10.2.1 to delete regressors for unneeded quadratics and 
interactions. Without the interaction regressors, the effect of each predictor is 
the same regardless of the values of the other predictors. With the interaction, 
the effect of a predictor can change depending on the values of the other 
predictors.

Cakes
Oehlert (2000, Example 19.3) provides data from a small experiment with 
n = 14 observations on baking packaged cake mixes. Two factors, X1 = baking 
time in minutes and X2 = baking temperature in degrees F, were varied in the 
experiment. The response Y was the average palatability score of four cakes 
baked at a given combination of (X1, X2), with higher values desirable.

The estimated mean function based on (5.12) and using the data in the  
file cakes is

 
E |( 2204 485 25 9176 9 9183

0 1569 0
1 1 2 2 1 2

1
2

Y X x X x x x

x

= = = − + +
− −

, ) . . .

. .0012 0 04162
2

1 2x x x− .
 

(5.13)

Each of the coefficient estimates, including both quadratics and the interac-
tion, has significance level of 0.005 or less, so all regressors are useful in the 
mean function (see Problem 5.8).

Effects plots provide graphical summary of the fit, as in Figure 5.6. In  
Figure 5.6a, the horizontal axis is the baking time X1, and the vertical axis is 
the fitted response Ŷ. The three curves shown on the graph are obtained by 
fixing the value of temperature X2 at either 340, 350, or 360, and substituting 
into (5.13). For example, when X2 = 350, substitute 350 for X2 in (5.13), and 
simplify to get

E Y X x X x x( | , 350) (350) (350) (350)1 1 2 0 2 22
2

1 1 12= = = + + + +ˆ ˆ ˆ ˆ ˆβ β β β β 11 11 1
2

1 1
2203.08 11.36 0.16

+
= − + −

β̂ x

x x
 

(5.14)
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Equation (5.14) is plotted as the dashed line in Figure 5.6a. Each of the 
lines shown is a quadratic curve because both X1

2 and X2
2 regressors are in 

the mean function. Each of the curves has a somewhat different shape because 
the interaction is present. For example, in Figure 5.6a, the baking time X1 that 
maximizes the response is lower at X2 = 360 degrees than it is at X2 = 340 
degrees. Figure 5.6b contains the same information as Figure 5.6a except that 
the roles of X1 and X2 have been reversed with X2 on the horizontal axis and 
fixed values of X1 ∈ {33, 35, 37} providing the 3 curves. The response curves 
are about the same for baking time of 35 or 37 minutes, but the response is 
lower at the shorter baking time. The palatability score is perhaps surprisingly 
sensitive to changes in temperature of 10 or 15 degrees and baking times of 
just a few minutes.

5.3.2  Numerical Issues with Polynomials

Numerical problems can arise when using polynomial regressors in a regres-
sion. The first problem is that regressors Xd and Xd+1 can be very highly cor-
related, and high correlations can cause inaccurate computation of the ols 
estimator. A second problem is that computers have only a finite number of 
digits to represent a number, and in some problems Xd can be so large (or, if 
|X| < 1, so small) that significant round-off error occurs.

A solution to these computing problems is to use orthogonal polynomials 
to define the polynomial regressors. For example, for fitting with a cubic  
polynomial with regressors X, X2, and X3, we would fit with regressors 
Q X X1 = − , the residuals Q2 from the regression of X2 on Q1, and the residuals 
Q3 from the regression of X3 on Q1 and Q2. The Qs are then rescaled to have 

Figure 5.6  Effects plots for the cakes data, based on (5.13). Both plots show the same effects, in 
(a) with X1 on the x-axis and levels of X2 indicated by separate curves, and in (b) with X2 on the 
x-axis and levels of X1 indicated by separate curves.
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unit length. The resulting Qj are uncorrelated and have elements that by the 
rescaling are neither too small nor too large, and so replacing (X, X2, X3) by 
the rescaled Qj avoids numerical problems.8

Most statistical packages will automatically orthogonalize before comput-
ing, so this need not be a concern of the user. If you write your own software, 
however, you should take care to avoid numerical problems.

5.4  SPLINES

Figure 5.7 shows polynomial fits of degree d = 1, 2, 3, 4 for the Old Faithful 
Geyser data (Problem 1.4). The predictor in this problem is Duration, the 
length of the current eruption of the geyser in seconds, and the response is the 
time Interval in minutes until the next eruption. The data fall in two clusters, 
with little data between the two clusters. The d = 1 fit in Figure 5.7a predicts 
Interval increasing linearly with Duration. The d = 2 fit in Figure 5.7b 
flattens out the predictions in the cluster with larger values of Duration but 
doesn’t effect the cluster with smaller values of Duration. The predictions 
for d = 3 flatten out in the larger cluster even more than the d = 2 fit, but add 
the undesirable and unlikely feature of decreasing predictions for the largest 
values of Duration. The d = 4 fit flattens the predictions in both clusters but 
has an undesirable increase for the smallest values of Duration and an 
unlikely increase in slope for the largest values of Duration. These figures 
demonstrate that increasing the dimension d of the polynomial can make some 
aspects of a fitted curve better, but it can also make other aspects of the fitted 
curve worse.

A polynomial fit is really just a weighted sum of basis functions,

E |( )Y X x xj
j

j

d

= = +
=

∑β β0

1

The basis functions are the monomials {x = x1, x2, . . . , xd}, and the weights are 
the βs. Since the monomials are defined for all possible values of X, they are 
best for modeling global behavior of a function, but may not be very useful 
for modeling local behavior, as would be desirable for the data in Figure 5.7.

Splines provide a different set of basis functions, each of which acts locally, 
so changing the weight for one of the basis functions will mostly effect the 
fitted curve only for a limited range. Figure 5.8 shows a set of d = 6 basis func-
tions b1(x), . . . , b6(x) for a hypothetical predictor x with values between −1 
and +1. In this book we will use cubic B-splines to define the basis, although 
the literature includes many other options.9 The first or leftmost of these basis 

8The resulting Qj are the QR-factorization of (X X− , X2, X3); see Appendix A.9.
9The algebraic form for cubic B-splines is not particularly enlightening and is omitted; see de Boor 
(1978). Many computer programs will include functions for computing the cubic B-spline basis.
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functions b1(x) is mostly concentrated on x ∈ (−1, −0.5), and so changing the 
weight on this basis function will mostly change the fitted curve for small 
values of x. The third basis function is largest for x ≈ 0 and decreases symmetri-
cally around 0. The last basis function is concentrated for values of x close to 
1. For x ≈ 0.5, for example, the fit will be mostly determined by the weights for 
b4 and b5, and to a lesser extent b3 because these are the only basis functions 
that are substantially different from 0 at x = 0.5.

As long as we can compute the spline basis we can use ols or other standard 
methods to fit the mean function

 E |( ) ( )Y X x b xj j

j

d

= = +
=

∑β β0

1

 (5.15)

Figure 5.7  Polynomial fits for the Old Faithful Geyser data.
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where d is the number of splines in the basis. Using the cubic B-spline basis, 
we can hope to fit local features of a mean function without distorting features 
for a different part of the range of the predictors.

Figure 5.9 shows four cubic B-spline fits to the Old Faithful Geyser data, 
with varying number of basis functions. These fits are more nearly consistent 
with the idea that the within-cluster predictions should be nearly constant,  
but with between-cluster differences. All the fits have trouble with the extremes 
of the range of the predictor because there is no information outside the range 
to temper the very local information at the extremes.

5.4.1  Choosing a Spline Basis

With polynomials, the user can choose the degree d of polynomial as a smooth-
ing parameter. With cubic B-splines, the number of vectors in the basis, which 
we also call d, is a similar smoothing parameter. B-splines in general have more 
smoothing parameters, including the relative width and center of each of the 
basis functions, but for the purposes of this book, selecting d will generally 
provide adequate flexibility.

In most problems, setting d = 3 or d = 4 will allow matching many functions 
that could be encountered in practice. Wood (2006) provides a comprehensive 
reference for using splines to fit regression models.

Figure 5.8  The B-spline basis with d = 6 basis functions.
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5.4.2  Coefficient Estimates

Coefficient estimates for the βs for the spline basis in (5.15) are rarely of inter-
est, and the useful summaries are necessarily graphical as in Figure 5.9.

5.5  PRINCIPAL COMPONENTS

Suppose we have variables X1, . . . , Xk with k large, although the same meth-
odology applies for any k ≥ 2. Our goal is to replace the k variables with k0 < k 
linear combinations of them such that the smaller set of variables represents 
the larger set as closely as possible. We start with k0 = 1, so our goal is to replace 

Figure 5.9  Spline fits for the Old Faithful geyser data.
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the k predictors with 1 linear combination. Let X′ = (X1, . . . , Xk) be the vari-
ables written as a vector, and let u1 be a p × 1 vector of constants, subject to 
the constraint that ′ =u u1 1 1. The first principal component will be a linear 
combination Z1 = u′X such that the variance of Z1,

 Var Var Var( ) ( ) ( )1 1 1 1Z = ′ = ′u X u X u  (5.16)

is as large as possible to retain as much as the variation in the predictors as 
possible. If Var(X) were known, then as sketched in Appendix A.10, this is a 
standard problem in linear algebra, and the solution is to set u1 to be the 
eigenvector corresponding to the largest eigenvalue of Var(X). For a solution 
with k0 principal components, the linear combinations are the eigenvectors 
corresponding to the k0 largest eigenvalues.

In the usual case, Var(X) is unknown, and the sample covariance matrix is 
used in place of the unknown variance matrix. We use the notation ûj to refer 
to the jth eigenvector and λ̂ j  as the corresponding eigenvalue of the sample 
covariance matrix. To simplify the presentation, we assume no two eigenvalues 
are the same.

Professor Ratings
The data used in Problem 1.6 in the file Rateprof on professor ratings from 
the website RateMyProfessor.com includes averages of many student 
ratings for each instructor on five different measures, including quality, 
helpfulness, clarity, easiness of the course, and raterInterest in 
the subject matter. All the ratings were on a five-point scale, so the averages 
are numbers between 1 and 5. The scatterplot matrix of the ratings is shown 
in Figure 1.13, where we see that the first three ratings very highly correlated, 
and the remaining two ratings are less highly correlated with each other and 
with the first three ratings. Using principal components would replace these 
five ratings by linear combinations of them.

Computing can be done with software designed for principal component 
analysis or with more general software that finds the eigenvalues and eigenvec-
tors of a matrix. Typical summary output from a special-purpose program is 
shown in Table 5.6. The upper part of the table labeled “Importance of com-
ponents” refers to the eigenvalues λ̂ j . By construction λ̂ j  is the estimated 
variance of the jth principal component, and these variances are shown in 
the first row. The variance for the first principal component is considerably 
larger than the others. The next two rows of the first part of the table sum-
marize the relative importance of the principal components. The second row 
is ˆ ˆλ λj m

k
m/ 1∑ = , the estimated fraction of the total variance in the data that is 

included in the jth principal component. The third row gives the cumulative 
proportion of variance in the first j principal components. This idea of “propor-
tion of variance” is justified by the fact that the sum of the eigenvalues is equal 
to the sum of the diagonal elements of estimated variance matrix, or the sum 
of the estimated variances of the original data.
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In this example, about 78% of the variance in the five ratings is captured 
by the first principal component. The second principal component increases 
the variance to nearly 91% of the total, and three components capture nearly 
all the variation. This finding agrees well with examination of Figure 1.13:  
the first three ratings are measuring essentially the same thing, and so they 
can be replaced without much loss by any one of them or by any linear com-
bination of them. The remaining two ratings are distinct, leaving three useful 
components.

The columns of the second part of Table 5.6 give the ûj. The vector û1 gives 
almost equal weight to the first three scales, and lower weight to the remaining 
scales. With distinct eigenvalues, the ûj are unique only up to multiplication by 
±1, so the signs of the weights shown could all be changed to + signs. If we 
ignore the ratings with the smaller weights, the first principal component is 
essentially the sum, or average, of the first three ratings. The eigenvector û2 is 
essentially for the rating easiness because the weight for this rating is close 
to 1; recall that by construction, the sum of the squares of the weights is always 
1. Similarly, the third component is essentially for raterInterest.

5.5.1  Using Principal Components

Principal components are sometimes used in regression problems to replace 
several variables by just a few linear combinations of them. If we write X to 
be the vector of the five ratings in the professor rating data, we might choose 
to use Zj = X′ûj for j = 1, 2, 3 as regressors in the model. In this particular 
problem we might choose to use the three regressors consisting the average 
of the first three ratings, easiness and raterInterest, because these 
regressors are much easier to interpret, but not all problems will permit this 
simple explanation. Similarly, if the ratings were responses, using principal 

Table 5.6  Principal Component Analysis for the Professor Ratings Data  
Importance of Components  l̂ j  (Eigenvalues)

Component 1 2 3 4 5

Variance = λ̂ j 2.39 0.39 0.22 0.06 0.00
Proportion of Variance 0.78 0.13 0.07 0.02 0.00
Cumulative Proportion 0.78 0.91 0.98 1.00 1.00

Linear combinations ûj (eigenvectors)

û1 û2 û3 û4 û5

quality −0.535 −0.155 0.150 −0.046 −0.815
helpfulness −0.529 −0.136 0.136 −0.701 0.438
clarity −0.537 −0.188 0.167 0.711 0.379
easiness −0.336 0.916 −0.215 0.037 0.005
raterInterest −0.181 −0.287 −0.941 0.009 −0.001
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components has reduced the number of responses from five to just three or 
less, and this too can simplify a problem.

5.5.2  Scaling

Unlike almost all the methods in this book, principal components will change 
depending on the scale of each of the predictors that is used. In the professor 
ratings data, all the ratings were on the range 1 to 5, and all standard devia-
tions of all the ratings are similar. In other problems, the standard deviations 
of the predictors can be very different. For example, in the Berkeley Guidance 
Study, variables include heights, weights, and leg strengths, all measured in 
different units with very different standard deviations. Using principal com-
ponents on the raw data will generally give more weight to variables with 
larger variances.

The standard “solution” to the scaling problem with principal components 
is to replace each of the original predictors by a standardized version obtained 
by dividing by the sample standard deviations. The sample correlation matrix 
is then used to find the principal components. This solution is not without 
problems. If the data at hand are not a random sample from a population, then 
the sample standard deviations used to standardize the variables will not esti-
mate a population quantity, and so the variables are now measured on some 
arbitrary scale that depends on the sampling design. Experimenters who 
collect data in different ways will end up with different standard deviations 
and eventually different principal components. Thus, reproducibility of results 
based on principal components can be questionable without strong assump-
tions about the sampling plan used to collect the data.

5.6  MISSING DATA

In many problems, some variables will be unrecorded for some cases. The 
methods we study in this book generally assume and require complete data, 
without any missing values. The literature on analyzing incomplete data prob-
lems is very large, and our goal here is more to point out the issues than to 
provide solutions. Two important books on this topic are by Little and Rubin 
(2002) and Schafer (1997). Survey articles include Allison (2001) and Schafer 
and Graham (2002).

Minnesota Agricultural Land Sales
The data file MinnLand includes information on nearly every agricultural land 
sale in the six major agricultural regions of the state of Minnesota for the 
period 2002–2011, a total of 18,700 sales. The data were collected from the 
Minnesota Department of Revenue to study the effect of enrollment of land 
in the U.S. Conservation Reserve Program (CRP) (Taff and Weisberg, 2007). 
The CRP is a voluntary program in which farmers commit environmentally 
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sensitive land for conservation usage in exchange for a fixed payment. The 
period of this agreement, also called an easement, is typically for 10–15 years. 
The land owner or purchaser of a property with a CRP easement cannot 
change the use of the land until the easement expires.

The model log(acrePrice)∼year*region+crpPct+financing was 
fit, where the variable crpPct is the percentage of the total parcel that is 
committed to a CRP easement at the time of sale, financing is an indicator 
of whether the sale was owner-financed, region is a factor with six levels for 
the six economic regions of the state included in the data, and year is a factor 
for years. The response variable log(acrePrice) is the logarithm of the sale 
price per acre of the land adjusted to a common day within the year to account 
for seasonal and within-year changes in prices.

The row labeled Model 1 of Table 5.7 shows a 95% confidence interval for 
the coefficient crpPct. According to this model, a 1% increase in land com-
mitted to CRP is associated with about 0.59–0.51% lower per acre price; a 
50% commitment to CRP is associated with lower value about 50 times this 
interval, from about 29.5% lower to 25.5% lower.

One possible explanation for this very large effect is that farmers with less 
valuable land could have more to gain from enrollment in CRP, so the appar-
ent CRP effect could really be a land quality effect. Another variable in the 
database is productivity, a score between 1 and 100 based on University 
of Minnesota soil studies. Higher values should correspond to more valuable 
land. The variable productivity is missing for 9717 of the records in 
the data, and so Model 2 in the second row in Table 5.7, which fits 
log(acrePrice) ∼ year*region  + crpPct  + financing  + 
productivity, is based on the 8983 complete cases. The apparent effect of 
crpPct adjusted for productivity as well as year and region is smaller 
than in Model 1, but still quite large. Does omitting more than half the data 
make any sense?

5.6.1  Missing at Random

The most common solution to missing data problems is to delete either cases 
or variables so the resulting data set is complete, as done in Table 5.7. Most 
software packages delete partially missing cases by default and fit regression 
models to the remaining, complete, cases. This is a reasonable approach as long 
as the fraction of cases deleted is small enough, and the cause of values being 

Table 5.7  Confidence Intervals for crpPct

2.5% 97.5%

Model 1 −0.0059 −0.0051
Model 2 −0.0046 −0.0036
Model 3 −0.0058 −0.0050
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unobserved is unrelated to the relationships under study. This would include 
data lost through an accident like dropping a test tube, or making an illegible 
entry in a logbook. If the reason for not observing values depends on the 
values that would have been observed, then the analysis of data may require 
modeling the cause of the failure to observe values. For example, if values of 
a measurement are unrecorded if the value is less than the minimum detection 
limit of an instrument, then the value is missing because the value that should 
have been observed is too small. A simple expedient in this case that is some-
times helpful is to substitute a value less than or equal to the detection limit 
for the unobserved values. This expedient is not always entirely satisfactory 
because substituting, or imputing, a fixed value for the unobserved quantity 
can reduce the variation on the filled-in variable and yield misleading 
inferences.

As a second example, suppose we have a clinical trial that enrolls subjects 
with a particular medical condition, assigns each subject a treatment, and then 
the subjects are followed for a period of time to observe their response, which 
may be time until a particular landmark occurs, such as improvement of the 
medical condition. Subjects who do not respond well to the treatment may 
drop out of the study early, while subjects who do well may be more likely to 
remain in the study. Since the probability of observing a value depends on the 
value that would have been observed, simply deleting subjects who drop out 
early can easily lead to incorrect inferences because the successful subjects 
will be overrepresented among those who complete the study.

In some studies, the response variable is not observed because the study 
ends, not because of patient characteristics. In this case, we call the response 
times censored, and for each patient we know either the time to the landmark 
or the time to censoring. This is a different type of missing data problem, and 
analysis needs to include both the uncensored and censored observations. 
Many book-length treatments of censored survival data are available, includ-
ing Hosmer et al. (2008).

As a final example, consider a cross-cultural demographic study. Some 
demographic variables are harder to measure than others, and some variables, 
such as the rate of employment for women over the age of 15, may not be 
available for less-developed countries. Deleting countries that do not have this 
variable measured could change the population that is studied by excluding 
less-developed countries.

Rubin (1976) defined data to be missing at random (mar) if the failure to 
observe a value does not depend on the value that would have been observed. 
With mar data, case deletion can be a useful option. Determining whether an 
assumption of mar is appropriate for a particular data set is an important step 
in the analysis of incomplete data.

In the Minnesota agricultural land sales example including the  
productivity variable reduces the sample size by more than half. The 
remaining sample is still quite large, and so the expedient of examining  
only fully observed cases could be reasonable here if the mar assumption is 
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reasonable. The percentage of observations with productivity observed 
was between 20.8% in the Northwest region and 95.4% in the Southwest 
region. The Northwest region also had the lowest observed average 
log(acrePrice). Missingness varies less by year, between 39% in 2004 and 
54.8% in 2009.

Productivity scores can be reported only if they are computed in the first 
place. Counties had to pay the University for the productivity score, and not 
all counties in some of the regions chose to participate. It is at least plausible 
that the counties that did not participate have less valuable land, which would 
violate the mar assumption. Model 3 in Table 5.7 is log(acrePrice) ∼ 
year*region + crpPct + financing + hasprod, where hasprod is 
a dummy indicator of 0 for observations for which productivity is missing 
and 1 if productivity is observed. The coefficient estimate for crpPct is 
essentially the same as the estimate in Model 1. The coefficient estimate for 
hasprod is 0.123, suggesting that sales with a productivity score reported 
were on average 12% higher priced. These analyses suggest that additional use 
of CRP is associated with lower per acre sales price, but quantifying the 
amount of change is not completely clear.

What exactly to do about missing data depends on the problem. There  
are many problems for which a textbook prescription is likely to be 
inadequate.

5.6.2  Imputation

An alternative to deleting cases with missing values that may be appropriate 
in some problems is to “fill in” the missing data with plausible values. For 
example, the web page of the U.S. Census (undated) explains methods the 
census uses to fill in missing values in the Current Population Survey. One of 
the methods they use is called the hot deck, in which a missing entry is filled 
in with a value from another individual with a similar record on other vari-
ables. This will permit standard estimation methods and standard computer 
programs to be used to process the data. As long as the fraction of missing 
values is relatively small, this procedure is likely to work well.

In regression problems, an attractive procedure is to fill in the missing 
values by fitting regression models. For example, to impute missing values for 
a particular predictor X1 based on a set of other predictors X2, one could build 
a regression model for E(X1|X2) based on complete data. The fitted model can 
be used to estimate a predicted value for X1 based on X2 for the cases for 
which X1 is unobserved. In general this can give fill in values that are “too 
good” in the sense that the imputed values will be less variable than would 
the unobserved “true” values. A solution to this is using multiple imputation, 
in which several filled in data sets are created, a complete data analysis is 
performed for each data set, the results are averaged to get an overall analysis. 
Carpenter and Kenward (2012) provide many examples and a very useful 
companion website.
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5.7  PROBLEMS

5.1 For a factor X with d categories, the one-factor mean function is

 E |( 2 0 2 2Y U U U Ud d d, , )… �= + + +β β β  (5.17)

where Uj is a dummy variable equal to 1 for the jth level of the factor 
and 0 otherwise.
5.1.1  Show that μ1 = β0 is the mean for the first level of X and that 

μj = β0 + βj is the mean for all the remaining levels, j = 2, . . . , d.
5.1.2  It is convenient to use two subscripts to index the observations, so 

yji is the ith observation in level j of the factor, j = 1, . . . , d and i = 
1, . . . , nj. The total sample size is n nj= ∑ . The residual sum of 
squares function can then be written as

RSS( ) 0 2 2
2

11

b = − − − −
==
∑∑ ( )y U Uji d d

i

n

j

d j

β β β�

Find the ols estimates of the βs, and then show that the ols esti-
mates of the group means are µ̂ j y= 1, j = 1, . . . , d, where yj  is the 
average of the ys for the jth level of X.

5.1.3  Show that the residual sum of squares can be written

RSS = −
=

∑( )nj j

j

d

1 2

1

SD

where SDj is the standard deviation of the responses for the jth 
level of X. What is the df for RSS?

5.1.4  If all the nj are equal, show that (1) the standard errors of ˆ , , ˆβ β2 … d  
are all equal, and (2) the standard error of β̂0 is equal to the stan-
dard error of each of ˆ ˆβ β0 + j , j = 2, . . . , d.

5.2 Verify the relationships between the η-parameters in (5.6) and the β-
parameters in (5.7).

5.3 (Data file: UN11)
5.3.1  In the fit of lifeExpF ∼ group, verify the results of Table 5.2.
5.3.2  Compare all adjusted mean differences in the levels of group in 

the model lifeExpF ∼ group + log(ppgpd) with the results 
in Table 5.2.

5.4 (Data file: MinnLand) The data file includes information on nearly every 
agricultural land sale in the six major agricultural regions of Minnesota 
for the period 2002–2011. The data are from the Minnesota Department 
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of Revenue and were provided by Steven Taff. Two of the variables in 
the data are acrePrice, the selling price per acre adjusted to a common 
date within a year, and year, the year of the sale. All the variables are 
described in Table 5.8.
5.4.1  Draw boxplots of log(acrePrice) versus year, and summarize 

the information in the boxplots. In particular, housing sales prices 
in the United States were generally increasing from about 2002–
2006, and then began to fall beginning in 2007 or so. Is that pattern 
apparently repeated in Minnesota farm sales?

5.4.2  Fit a regression model with log(acrePrice) as the response and 
a factor representing the year. Provide an interpretation of the 
estimated parameters. Interpret the t-statistics. (Hint: Since year is 
numeric, you may need to turn it into a factor.)

5.4.3  Fit the regression model as in the last subproblem, but this time 
omit the intercept. Show that the parameter estimates are the 
means of log(acrePrice) for each year. The standard error of 

the sample mean in year j is SD j jn/ , where SDj and nj are the 
sample standard deviation and sample size of the for the jth year. 
Show that the standard errors of the regression coefficients are  
not the same as these standard errors and explain why they are 
different.

5.5 Interpreting parameters with factors and interactions Suppose we have 
a regression problem with a factor A with two levels (a1, a2) and a factor 
B with three levels (b1, b2, b3), so there are six treatment combinations. 

Table 5.8  Minnesota Agricultural Land Sales

Variable Definition

acrePrice Sale price in dollars per acre, adjusted to a common date 
within year

year Year of sale
acres Size of property, acres
tillable Percentage of farm rated arable
improvements Percentage of property value due to buildings and other 

improvements
financing Type of financing either title transfer or seller finance
crp Enrolled of any part of the acreage is enrolled in the U.S. 

Conservation Reserve Program (CRP), and none 
otherwise

crpPct Percentage of land in CRP
productivity A numeric score between 1 and 100 with larger values 

indicating more productive land, calculated by the 
University of Minnesota
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Suppose the response is Y, and further that E(Y|A = ai, B = bj) = μij. The 
estimated μij are the quantities that are used in effects plots. The purpose 
of this problem is to relate the μij to the parameters that are actually fit 
in models with factors and interactions.
5.5.1  Suppose the dummy regressors (see Section 5.1.1) for factor A are 

named (A1, A2) and the dummy regressors for factor B are named 
(B1, B2, B3). Write the mean function

E |( 0 1 2 2 2 3 3 4 2 2 5 2 3Y A a B b A B B A B A Bi j= = = + + + + +, ) β β β β β β

in Wilkinson–Rogers notation (e.g., (3.19) in Chapter 3).
5.5.2  The model in Problem 5.5.1 has six regression coefficients, includ-

ing an intercept. Express the βs as functions of the μij.
5.5.3  Repeat Problem 5.5.2, but start with Y ∼ A + B.
5.5.4  We write μ+j = (μ1j + μ2j)/2 to be the “main effect” of the jth level 

of factor B, obtained by averaging over the levels of factor A. For 
the model of Problem 5.5.2, show that the main effects of B depend 
on all six β-parameters. Show how the answer simplifies for the 
model of Problem 5.5.3.

5.5.5  Start with the model of Section 5.5.1. Suppose the combination 
(a2, b3) is not observed, so we have only five unique cell means. How 
are the βs related to the μij? What can be said about the main effects 
of factor B?

5.6 The coding of factors into dummy variables described in the text is used 
by default in most regression software. Older sources, and sources that 
are primarily concerned with designed experiments, may use effects 
coding for the dummy variables. For a factor X with d levels {1, 2, . . . , d} 
define Vj, j = 1, . . . , d − 1 with elements vji are given by:

v

i j

i dji =
=

− =






1

1

0 otherwise

The mean function for the one-factor model is then

 E |( 1 1 0 1 1 1 1Y V V V Vd d d, , )… �− − −= + + +η η η  (5.18)

5.6.1  Show that the mean for the jth level of the factor is η0 + αj, 
where

α
η

η η ηj
j

d

j d

j d
=

≠
− + + + =



 −( )1 2 1�
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By taking the mean of the level means show that η0 is the mean of 
the response ignoring the factor. Thus, we can interpret αj, the dif-
ference between the overall mean and the level mean, as the effect 
of level j, and ∑ =α j 0 .

5.7 Suppose X1 were a continuous predictor, and F is a factor with three 
levels, represented by two dummy variables X2 with values equal to 1 for 
the second level of F and X3 with values equal to 1 for the third level of 
F. The response is Y. Consider three mean functions:

 E |( ) 0 1 1 2 2 3 3Y x x xX x= = + + +β β β β  (5.19)

 E |( ) 0 1 1 12 1 2 13 1 3Y x x x x xX x= = + + +β β β β  (5.20)

 E |( ) 0 1 1 12 1 2 13 1 3Y x x x x xX x= = + − + − + −β β δ β δ β δ( ) ( ) ( )  (5.21)

Equation (5.21) includes an additional unknown parameter δ that may 
need to be estimated.

All of these mean functions specify that for a given level of F the plot 
of E(Y|X1, F) is a straight line, but in each the slope and the intercept 
changes. For each of these three mean functions, determine the slope(s) 
and intercept(s), and on a plot of Y on the vertical axis and X1 on the 
horizontal axis, sketch the three fitted lines.

The model (5.21) is a generalization of (5.20). Because of the extra 
parameter δ that multiplies some of the βs, this is a nonlinear model; see 
Saw (1966) for a discussion.

5.8 Cake data (Data file: cakes)
5.8.1  Fit (5.12) and verify that the significance levels for the quadratic 

terms and the interaction are all less than 0.005. When fitting poly-
nomials, tests concerning main effects in models that include a 
quadratic are generally not of much interest.

5.8.2  The cake experiment was carried out in two blocks of seven obser-
vations each. It is possible that the response might differ by block. 
For example, if the blocks were different days, then differences in 
air temperature or humidity when the cakes were mixed might have 
some effect on Y. We can allow for block effects by adding a factor 
for block to the mean function and possibly allowing for block by 
regressor interactions. Add block effects to the mean function fit in 
Section 5.3.1 and summarize results. The blocking is indicated by 
the variable Block in the data file.

5.9 (Data file: salarygov) The data file gives the maximum monthly salary 
for 495 nonunionized job classes in a midwestern governmental unit in 
1986. The variables are described in Table 5.9.
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5.9.1  Examine the scatterplot of MaxSalary versus Score, and verify 
that simple regression provides a poor description of this figure.

5.9.2  Fit the regression with response MaxSalary and regressors given 
by B-splines, with d given by 4, 5, and 10. Draw the fitted curves on 
a figure with the data and comment.

5.9.3  According to Minnesota statutes, and probably laws in other states 
as well, a job class is considered to be female dominated if 70% of 
the employees or more in the job class are female. These data were 
collected to examine whether female-dominated positions are com-
pensated at a lower level, adjusting for Score, than are other posi-
tions. Create a factor with two levels that divides the job classes 
into female dominated or not. Then, fit a model that allows for a 
separate B-spline for Score for each of the two groups. Since the 
coefficient estimates for the B-splines are uninterpretable, sum-
marize the results using an effects plot. If your program does not 
allow you to use B-splines, use quadratic polynomials.

5.10 (Data file: MinnLand) Refer to Problem 5.4. Another variable in this 
data file is the region, a factor with six levels that are geographic 
identifiers.
5.10.1  Assuming both year and region are factors, consider the two 

mean functions given in Wilkinson–Rogers notation as:
(a) log(acrePrice) ∼ year + region
(b) log(acrePrice) ∼ year + region + year:region
Explain the difference between these two models (no fitting is 
required for this problem).

5.10.2  Fit model (b). Examining the coefficients of this model is unpleas-
ant because there are so many of them, and summaries either 

Table 5.9  The Governmental Salary Data

Variable Description

MaxSalary Maximum salary in dollars for employees in this job class, the 
response

NE Total number of employees currently employed in this job class
NW Number of women employees in the job class
Score Score for job class based on difficulty, skill level, training 

requirements and level of responsibility as determined by a 
consultant to the governmental unit. This value for these 
data is in the range between 82 and 1017.

JobClass Name of the job class; a few names were illegible or partly 
illegible
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using graphs or using tests are required. We defer tests until the 
next chapter. Draw an effects plot for the year by region interac-
tion and summarize the graph or graphs.

5.11 (Data file: MinnLand) This is a continuation of Problem 5.10. Another 
variable in the MinnLand data is the type of financing for the sale, a 
factor with levels seller_financed for sales in which the seller pro-
vides a loan to the buyer, and title_transfer in which financing of 
the sale does not involve the seller.
5.11.1  Add the variable financing to model (b) in Problem 5.10, and 

obtain and interpret a 95% confidence interval for the effect of 
financing.

5.11.2  Comment on each of the following statements:
1.  Seller financing lowers sale prices.
2.  Seller financing is more likely on lower-priced property 

transactions.

5.12 (Data file: lathe1) The data in the file lathe1 are the results of an 
experiment on characterizing the life of a drill bit in cutting steel on a 
lathe. Two factors were varied in the experiment, Speed and Feed rate. 
The response is Life, the total time until the drill bit fails, in minutes. 
The values of Speed and Feed in the data have been coded by 
computing

Speed = −( 900)
300

Actual speed in feet per minute

Feed = −( 13)Actual feed rate in thousandths of an inch per revolution
66

The coded variables are centered at zero. Coding has no material  
effect on the analysis but can be convenient in interpreting coefficient 
estimates.
5.12.1  Draw a scatterplot matrix of Speed, Feed, Life, and log(Life), 

the logarithm of tool life. Add a little jittering to Speed and Feed 
to reveal overplotting. The plot of Speed versus Feed gives a 
picture of the experimental design, which is called a central com-
posite design. It is useful when we are trying to find a value of the 
factors that maximizes or minimizes the response. Also, several of 
the experimental conditions were replicated, allowing for an esti-
mate of variance and lack-of-fit testing. Comment on the scatter-
plot matrix.

5.12.2  For experiments in which the response is a time to failure or time 
to event, the response often needs to be transformed to a more 
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useful scale, typically by taking the log of the response, or some-
times by taking the inverse. For this experiment, log scale can be 
shown to be appropriate (Problem 9.15). Fit the full second-order 
mean function (5.12) to these data using log(Life) as the response. 
Find the fitted equation, and obtain tests for the quadratic and 
interaction regressors.

5.12.3  Draw appropriate summary graphs for the fitted model. If either 
of the quadratics or the interaction is unnecessary, drop it and refit 
before drawing graphs.

5.13 (Data files: Forbes and Hooker) Refer to the data in Problem 2.7. 
Assuming equal intercepts, obtain tests of equality of slopes for the two 
sources of observations. How does the test change if the suspected outlier 
in Forbes’s data, case 12, is removed?

5.14 (Data file: BGSall) Refer to the Berkeley Guidance study described in 
Problem 3.3. Using the data file BGSall, consider the regression of HT18 
on HT9 and the grouping factor Sex.
5.14.1  Draw the scatterplot of HT18 versus HT9, using a different symbol 

for males and females. Comment on the information in the graph 
about an appropriate mean function for these data.

5.14.2  Obtain the appropriate test for a parallel regression model.
5.14.3  Assuming the parallel regression model is adequate, estimate a 

95% confidence interval for the difference between males and 
females. For the parallel regression model, this is the difference in 
the intercepts of the two groups.

5.15 (Data file: BGSall) Continuing with Problem 5.14, consider the response 
HT18 and the continuous predictors HT2 and HT9 and the factor Sex. 
Explain the meaning of each of the following models, written in 
Wilkinson–Rogers notation:
(a) HT18 ~ 1 + HT2 + HT9 + Sex
(b) HT18 ~ 1 + HT2 + HT9 + Sex + Sex:HT2 + Sex:HT9
(c) HT18 ~ 1  + HT2  + HT9  + HT2:HT9  + Sex  + Sex:HT2 

+ Sex:HT9 + Sex:HT2:HT9

5.16 Gothic  and  Romanesque  cathedrals (Data file: cathedral) The data 
file gives Height = nave height and Length = total length, both in feet, 
for medieval English cathedrals. The cathedrals can be classified accord-
ing to their architectural style, either Romanesque or the later Gothic 
style. Some cathedrals have both a Gothic and a Romanesque part, each 
of differing height; these cathedrals are included twice. Names of the 
cathedrals are also provided in the file. The data were provided by 
Stephen Jay Gould based on plans given by Clapham (1934).
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5.16.1  For these data, it is useful to draw separate plots of Length versus 
Height for each architectural style. Summarize the differences 
apparent in the graphs in the regressions of Length on Height 
for the two styles. Include in your graph the fitted simple and 
quadratic regressions.

5.16.2  Use the data to obtain tests that verify the visual results from the 
graphs.

5.17 Sex discrimination (Data file: salary) The data file concerns salary and 
other characteristics of all faculty in a small Midwestern college collected 
in the early 1980s for presentation in legal proceedings for which dis-
crimination against women in salary was at issue. All persons in the data 
hold tenured or tenure track positions; temporary faculty are not included. 
The variables include degree, a factor with levels PhD and MS; rank, 
a factor with levels Asst, Assoc, and Prof; sex, a factor with levels Male 
and Female; Year, years in current rank; ysdeg, years since highest 
degree, and salary, academic year salary in dollars.
5.17.1  Get appropriate graphical summaries of the data and discuss the 

graphs.
5.17.2  Test the hypothesis that the mean salary for men and women 

is the same. What alternative hypothesis do you think is 
appropriate?

5.17.3  Assuming no interactions between sex and the other predictors, 
obtain a 95% confidence interval for the difference in salary 
between males and females.

5.17.4  Finkelstein (1980), in a discussion of the use of regression in dis-
crimination cases, wrote, “[a] variable may reflect a position or 
status bestowed by the employer, in which case if there is discrimi-
nation in the award of the position or status, the variable may be 
‘tainted.’ ” Thus, for example, if discrimination is at work in promo-
tion of faculty to higher ranks, using rank to adjust salaries before 
comparing the sexes may not be acceptable to the courts.

Exclude the variable rank, refit, and summarize.

5.18 (Data file: salary) Using the salary data in Problem 5.17, one fitted 
mean function is

E |( , ) 18223 571 741 169salarysex year sex year sex year= − + + ×

5.18.1  Give the coefficients in the estimated mean function if Sex were 
coded so males had the value 2 and females had the value 1 (the 
coding given to get the above mean function was 0 for males and 
1 for females).



5.7  problems  131

5.18.2  Give the estimated coefficients if sex were coded as −1 for males 
and +1 for females.

5.19 (Data file: Wool) Refer to the Wool Data discussed in Section 5.2.
5.19.1  Write out in full the main effects and the second-order mean func-

tions, assuming that the three predictors will be turned into factors, 
each with three levels. This will require you to define appropriate 
dummy variables and parameters.

5.19.2  For the two mean functions in Problem 5.19.1, write out the 
expected change in the response when len and amp are fixed at 
their middle levels, but load is increased from its middle level to 
its high level.

5.20 (Data file: domedata) Until 2010, the Minnesota Twins professional 
baseball team played its games in the Metrodome, an indoor stadium 
with a fabric roof.10 In addition to the large air fans required to keep the 
roof from collapsing, the baseball field is surrounded by ventilation fans 
that blow heated or cooled air into the stadium. Air is normally blown 
into the center of the field equally from all directions.

According to a retired supervisor in the Metrodome, in the late innings 
of some games, the fans would be modified so that the ventilation air 
would blow out from home plate toward the outfield. The idea is that the 
air flow might increase the length of a fly ball. For example, if this were 
done in the middle of the eighth inning, then the air-flow advantage 
would be in favor of the home team for six outs, three in each of the 
eighth and ninth innings, and in favor of the visitor for three outs in the 
ninth inning, resulting in a slight advantage for the home team.

To see if manipulating the fans could possibly make any difference, a 
group of students at the University of Minnesota and their professor built 
a “cannon” that used compressed air to shoot baseballs. They then did 
the following experiment in the Metrodome in March 2003:
1.  A fixed angle of 50 degrees and velocity of 150 ft/s was selected. In 

the actual experiment, neither the velocity nor the angle could be 
controlled exactly, so the actual angle and velocity varied from shot  
to shot.

2.  The ventilation fans were set so that to the extent possible all the air 
was blowing in from the outfield toward home plate, providing a head-
wind. After waiting about 20 minutes for the air flows to stabilize, 20 
balls were shot into the outfield, and their distances were recorded. 
Additional variables recorded on each shot include the weight (in 

10The Metrodome is scheduled to be replaced by a football-only stadium in 2014.
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grams) and diameter (in centimeters) of the ball used on that shot, 
and the actual velocity and angle.

3.  The ventilation fans were then reversed, so as much as possible air was 
blowing out toward the outfield, giving a tailwind. After waiting 20 
minutes for air currents to stabilize, 15 balls were shot into the outfield, 
again measuring the ball weight and diameter, and the actual velocity 
and angle on each shot.
The data from this experiment are in the file domedata, courtesy of 

Ivan Marusic. The variable names are Cond, the condition, head or tail 
wind; Velocity, the actual velocity in feet per second; Angle, the actual 
angle; BallWt, the weight of the ball in grams used on that particular 
test; BallDia, the diameter in inches of the ball used on that test; Dist, 
distance in feet of the flight of the ball.
5.20.1  Summarize any evidence that manipulating the fans can change 

the distance that a baseball travels. Be sure to explain how you 
reached your conclusions, and provide appropriate summary sta-
tistics that might be useful for a newspaper reporter (a report  
of this experiment is given in the Minneapolis StarTribune of July 
27, 2003).

5.20.2  One could argue that this experiment by itself cannot provide 
adequate information to decide if the fans can affect length of a 
fly ball. The treatment is manipulating the fans; each condition was 
set up only once and then repeatedly observed. Resetting the fans 
after each shot is not practical because of the need to wait at least 
20 minutes for the air flows to stabilize.

A second experiment was carried out in May 2003, using a 
similar experimental protocol. As before, the fans were first set to 
provide a headwind, and then, after several trials, the fans were 
switched to a tailwind. Unlike the first experiment, however, the 
nominal Angle and Velocity were varied according to a 3 × 2 
factorial design. The data file domedata1 contains the results 
from both the first experiment and the second experiment, with 
an additional column called Date indicating which sample is 
which. Analyze these data, and write a brief report of your 
findings.
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C H A P T E R  6

Testing and Analysis of Variance

Hypothesis testing is a regular part of regression analysis. The tests we have 
encountered so far concerned either a single regression coefficient (Sections 
2.6 and 3.4.7), or a linear combination of them (Section 3.5). In either case, 
suppose θ̂  is the estimator of a parameter θ, and its standard error is se( )θ̂ . To 
test the simple null hypothesis NH : θ = θ0 versus the alternative hypothesis 
AH : θ ≠ θ0, compute the statistic

 t = −ˆ

ˆ
θ θ

θ
0

( )se
 (6.1)

Large values of |t| suggest evidence that the unknown θ is different from θ0, 
while small values of |t| support the NH. To get a significance level for the test, 
we generally refer the value of |t| to a tabled distribution.1 In most linear 
regression situations, the appropriate tabled distribution is a t-distribution with 
df given by the df in the estimate of σ2 used in the standard error. In some 
instances, for example, if σ2 is known, the standard normal distribution is used. 
The p-value is the area under the standard curve that is either greater than |t| 
or less than −|t|. One-sided tests (Section 3.4.7), for example, with AH : θ > θ0, 
would use only the area under the curve that is greater than t. Tests that are 
based on comparing the difference between an estimate and a hypothesized 
value, standardized by an estimate of error, are called Wald tests, in honor of 
Abraham Wald (1902–1950).

In this chapter, we present a different approach to testing based on compar-
ing the fit of mean functions rather than comparing parameter estimates to 
hypothesized values. In linear regression, this leads to F-tests. These are also 
called analysis of variance tests, named after the way the tests are often 

Applied Linear Regression, Fourth Edition. Sanford Weisberg.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc. 

1The bootstrap based tests introduced in Section 7.7.4 provide an alternative to using a standard 
distribution for tests.
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summarized rather than the way they are computed, or likelihood-ratio tests, 
because of the general approach to testing in mathematical statistics that justi-
fies these tests.

6.1  F-TESTS

Suppose we have a response Y and a vector of p′ regressors X′ = (X′1, X′2) that 
we partition into two parts so that X2 has q regressors and X1 has the remain-
ing p′ − q regressors. The intercept, if present, is generally included in X1, but 
this is not required. The general hypothesis test we consider is

 
NH E |

AH E |

: ( , )

: ( , )
1 1 2 2 1 1

1 1 2 2 1 1 2 2

Y

Y

X x X x x

X x X x x x

= = = ′
= = = ′ + ′

b
b b

 (6.2)

This is a different approach to hypothesis testing, since the null and alternative 
models refer to specification of mean functions, rather than to restrictions on 
parameters. A necessary condition for the methodology of this section to apply 
is that the model under NH must be a special case of the model under AH. 
In (6.2), the NH is obtained by setting β2 = 0.

For any linear regression model, the residual sum of squares measures the 
amount of variation in the response not explained by the regressors. If the NH 
were false, then the residual sum of squares RSSAH under the alternative model 
would be considerably smaller than the residual sum of squares RSSNH under 
the null model. This provides the basis of a test, and we will have evidence 
against the NH if the difference (RSSNH − RSSAH) is large enough.

The general formula for the test is

 F
df df

df
NH AH NH AH

AH AH

=
− −( ) ( )RSS RSS
RSS

/
/

 (6.3)

 =
SSreg/dfReg

σ̂ 2
 (6.4)

In this equation, dfNH and dfAH are the df for residual under NH and AH, 
SSreg = RSSNH − RSSAH is the sum of squares for regression, and 
dfReg = dfNH − dfAH is its df. The denominator of the statistic is generally the 
estimate of σ2 computed assuming that AH is true, σ̂ 2 = RSSAH AHdf/ , but as 
we will see later, other choices are possible. A sum of squares divided by its 
df is called a mean square, and so the F-test is the mean square for regression 
divided by the mean square for error under AH.

The F-test as described here appears to require fitting the model under both 
NH and AH, getting the residual sums of squares, and then applying (6.3); 
viewing the test in this way explains exactly what the test is doing. Computer 
packages generally take advantage of the elegant structure of the linear regres-
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sion model to compute the test while fitting only under the AH by computing 
SSreg in (6.4) directly.

If we assume that the errors are NID(0, σ2) random variables, then if NH 
is true, (6.3) has an F(dfReg, dfAH)-distribution, and large values of F provide 
evidence against the NH. The letter “F” is used in honor of R. A. Fisher 
(1890–1962) who is generally credited with the first use of this type of testing 
(Fisher and Mackenzie, 1923). The theory behind these tests is very beautiful 
and worthy of study; see Christensen (2011, chapter 3), among others, for 
general results.

Overall Test, Simple Regression
If we have a simple linear regression with the mean function 
E(Y|X = x) = β0 + β1x, the overall F-test is of the hypotheses

 
NH E |

AH E |

: ( )

: ( )
0

0 1

Y X x

Y X x x

= =
= = +

β
β β

 (6.5)

Under NH the response depends on none of the regressors apart from the 
intercept, and under AH it depends on the regressor X. The model for the NH 
including only the intercept is called a null model.

Under the null model, the residual sum of squares function is

RSSNH iy( ) ( )0 0
2β β= −∑

This function is minimized at β̂0 = y , and so 
RSS SYYNH i iy y y= ∑ − = ∑ − =( ) ( )0

2 2β̂ , the total sum of squares. The df is the number n of observa-
tions minus the number of estimated parameters in the mean function which 
is equal to 1 in this situation, so dfNH = n − 1.

The AH is just the simple linear regression mean function, so its residual 
sum of squares and df are, respectively, RSS given at (2.8) and df = n − 2. 
Substituting into (6.2), the overall test is

F
n n

=
− − − −

=

( ) [( 1) ( 2)]
2

2

SYY RSS

SSreg

/
ˆ

ˆ

σ

σ

where SSreg = SYY − RSS is the sum of squares for regression defined at 
(2.7), and σ̂ 2 is the estimated variance from simple linear regression. This 
statistic is compared with the F(1, n − 2) distribution to get significance levels.

For Forbes’s data, from Section 2.3, we have n = 17, SYY = 427.794, 
RSS = 2.155, and ˆ .σ 2 0 144= . We can compute

F = − =427.794 2.155
0.144

2962.79

RSS SYYNH i iy y y= ∑ − = ∑ − =( ) ( )0
2 2β̂
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which is compared with the F(1, 15) distribution. F is so large that the p-value 
is effectively zero, and the evidence is very strong against NH. This is no sur-
prise in light of Figure 1.3b.

For the Ft. Collins snowfall data, Section 2.6.2, the overall F-statistic is 
F = 2.41, with (1, 91) df. Comparing to the F(1, 91) distribution, the significance 
level is 0.12, providing very weak evidence against the null hypothesis.

Overall Test, Multiple Regression
For the fuel consumption example discussed in Section 3.3, the overall F-test 
compares the null model with no regressors except for the intercept as NH 
with the AH fitting all the regressors. As with simple regression, the fit under 
the null model is β̂0 = y , and so the residual sum of squares is SYY with n − 1 
df. Under AH, the residual sum of squares and df are from the fit when all the 
regressors are used. We get F = 11.99 which is compared with the F(4, 46) 
distribution to get a p-value that rounds to 0. This provides strong evidence 
against NH.

Wool Data
With this example, we show that this testing paradigm can be used in more 
complex situations beyond the overall test. For the wool data, Section 5.2, the 
predictors len, amp, and load are factors, each with 3 levels. We can consider 
testing

NH:log(cycles)~len amp load len:amp len:load+ + + +

AH:log(cycles)~len amp load len:amp
len:load amp:load

+ + +
+ +

The statement of these hypotheses use the Wilkinson and Rogers (1973) nota-
tion. The NH model includes three main effects and two interactions.  
The AH includes all these regressors plus the amp:load interaction. Under 
NH this last interaction is zero, and under AH it is nonzero. The regressors 
that are common to NH and AH are estimated under both models. Thus,  
the desired test is for adding amp:load to a model that includes other 
regressors.

Hypothesis df RSS

NH 12 0.181
AH 8 0.166

For the F-test we estimate σ2 under AH as ˆ .σ 2 0.166 8 0 0208= =/ , and

F =
− −

=
(0.181 0.166) (12 8)

0.0208
0.18

/
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When compared with the F(4, 8) distribution, we get a p-value of 0.94, sug-
gesting no evidence against NH.

For this problem we could contemplate tests for each of the interactions 
and possibly for each of the main effects. We return to this example in  
Section 6.2.

UN Data
The UN data discussed in Section 5.1 considered a sequence of mean functions 
given in Wilkinson–Rogers notation as

Mean function df RSS

lifeExpF ∼ 1 198 20293.2 (6.6)
lifeExpF ∼ group 196 7730.2 (6.7)
lifeExpF ∼ log(ppgdp) 197 8190.7 (6.8)
lifeExpF ∼ group + log(ppgdp) 195 5090.4 (6.9)
lifeExpF ∼ group + log(ppgdp) 
+ group:log(ppgdp)

193 5077.7 (6.10)

The first of these models (6.6) is the null model, so it has residual sum of 
squares equal to SYY, and df = n − 1. Mean function (6.7) has a separate mean 
for each level of group but ignores log(ppgdp). Mean function (6.8) has a 
common slope and intercept for each level of group; (6.9) has separate inter-
cepts but a common slope. The most general (6.10) has separate slopes and 
intercepts.

Tests can be derived to compare most of these mean functions. A reasonable 
procedure is to start with the most general, comparing NH: mean function 
(6.9) to AH: mean function (6.10),

 F =
− −

=
(5090.4 5077.7) (195 193)

5077.7 193
0.24

/
/

 (6.11)

When compared with the F(2, 193) distribution, we get a p-value of 0.79, 
providing no evidence of the need for separate slopes, confirming the visual 
impression of Figure 5.2.

If this first test had suggested that separate slopes and intercepts were 
needed, then further testing would not be needed.2 Since the interaction is 
probably unnecessary, we can consider further testing using the first-order 
mean function (6.9) as AH, and either (6.7) or (6.8) as NH. For the test for 
(6.8) versus (6.9), we get

F =
− −

=
(8190.7 5090.4) (197 195)

5090.4 195
59.38

/
/

2A model not considered here would have a common intercept but separate slopes, and a test of 
this model versus model (6.10) could be reasonable; see Problem 6.4.
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When compared with the F(2, 195) distribution, we get a p-value of 
essentially 0, providing strong evidence that intercepts for the three levels of 
group are not all equal. The remaining test is left as a homework problem 
(Problem 6.3).

The two tests illustrated above used different denominators for the F-tests, 
as suggested by the general formula (6.3). When testing is summarized in an 
analysis of variance table, as to be discussed shortly, the largest model (6.10) 
would be used to provide the denominator for all tests. In this example, chang-
ing the denominator would change the value of F to 58.92, a change of no 
practical importance, but in other problems, pooling dropped regressors into 
the estimate of σ 2 can change the outcome of the test.

Cakes Data
For the cakes data in Section 5.3.1, we fit the full second-order model,

 E |( , )1 1 2 2 0 1 1 2 1
2

3 2 4 2
2

5 1 2Y X x X x x x x x x x= = = + + + + +β β β β β β  (6.12)

Several hypothesis tests are of interest here:

 NH vs AH: 0 . : 05 5β β= ≠  (6.13)

 NH vs AH: 0 . : 02 2β β= ≠  (6.14)

 NH vs AH Not all: 0 . : 01 2 5β β β= = =  (6.15)

These hypotheses are presented in terms of parameters rather than mean 
functions, but are equivalent to comparing mean functions. The notation is 
again a shorthand; for example, the test (6.13) implies that all coefficients not 
explicitly shown in the hypothesis statement are included in both NH and AH. 
In test (6.13), AH is given by (6.12), and the NH requires that the interaction 
regressor is dropped. The test in (6.14) specifies that the quadratic regressor 
in X2 has a zero coefficient, while the third test (6.15) is somewhat nonstandard 
and tests to see if all regressors that involve X1 can be dropped. You are asked 
to do these tests in Problem 6.9.

6.1.1  General Likelihood Ratio Tests

The F-tests described here are applications of likelihood ratio tests to linear 
models with normal errors. Any textbook on mathematical statistics, such as 
Casella and Berger (2001, section 8.4), will provide the general formulation of 
these tests.

6.2  THE ANALYSIS OF VARIANCE

In any given regression problem, many tests are possible. Which tests are 
appropriate, and the order in which the testing should be done, is not always 
clear, and many approaches have been proposed.
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Suppose we fit the following model in Wilkinson–Rogers notation:

 Y~A B C A:B A:C B:C A:B:C+ + + + + +  (6.16)

In this model, each of A, B, or C could represent a continuous predictor with 
a single df, or a factor, polynomial, or spline basis with more than 1 df. An 
interaction like A:B can have many df.

The approach to testing we adopt in this book follows from the marginality 
principle suggested by Nelder (1977). A lower-order term, such as the A main 
effect, is never tested in models that include any of its higher-order relatives 
like A:B, A:C, or A:B:C. All regressors that are not higher-order relatives of 
the regressor of interest, such as B, C, and B:C, are always included in both 
NH and AH.

Based on the marginality principle, testing should begin with the highest-
order interaction first:

NH

AH

:

:

Y~A B C A:B A:C B:C
Y~A B C A:B A:C B:C A:B:C

+ + + + +
+ + + + + +

If the A:B:C interaction is judged to be nonzero, no further testing is called 
for, since A:B:C is a higher-order relative of all remaining regressors in the 
mean function.

If the A:B:C interaction is judged nonsignificant, then proceed to examine 
the two-factor interactions, such as

NH

AH

:

:

Y~A B C A:C B:C
Y~A B C A:B A:C B:C

+ + + +
+ + + + +

which tests the A:B interaction. There are similar tests for A:C and B:C.
Tests for a main-effect like A would be carried out only if all its higher-order 

relatives, A:B, A:C, and A:B:C, are judged to be unimportant. One would 
then test

NH

AH

:

:

Y~B C B:C
Y~A B C B:C

+ +
+ + +

The B:C interaction is included in both the NH and the AH.
All tests that satisfy the marginality principle can be collected into an 

analysis of variance or anova table, as in Table 6.1 for the UN data. Apart from 
the last row of the table, the column marked df are the degrees of freedom 
for the numerator of the test. The next column is the sum of squares for regres-
sion for the numerator of the tests, and the third column is the corresponding 
mean square, the sum of squares divided by its df. The last row of the table 
gives the df for the residual, RSS, and the estimate of variance σ̂ 2 for fitting a 
model with all regressors. The F-values are the ratio of the regression mean 
squares to σ̂ 2, and the final column gives p-values for these tests, obtained 
essentially by looking up the F-value in the appropriate table of critical values 
of F.
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Analysis of variance tables should be read from bottom to top to conform 
to the marginality principle. The bottom test is for the group:log(ppgdp) 
interaction, and is identical to the test given at (6.11) for the test NH given by 
(6.9) versus AH (6.10). In this problem the test for the interaction has a large 
p-value, so testing lower-order effects is reasonable. Both of the main-effect 
tests have tiny p-values, suggesting that separate intercepts and a single 
nonzero slope are required. An effects plot was shown in Figure 5.3. The paral-
lel lines of the fitted model have become curves because the horizontal axis is 
ppgpd rather than its logarithm. The africa group appears to be different 
from oecd and other, which suggests further testing of equality for these 
latter two groups.

An analysis of variance table derived under the marginality principle has 
the unfortunate name of Type II analysis of variance. At least two other types 
of analysis of variance are commonly available in software packages:

• Type I analysis of variance, also called sequential analysis of variance, fits 
models according to the order that the regressors are entered into in the 
mean function. For example, if (6.16) were fit, the sequence of models 
that would be represented in the anova table would have regressors {A}, 
{A, B}, {A, B, C}, {A, B, C, A:B}, {A, B, C, A:B, A:C}, {A, B, C, A:B, A:C, B:C}, 
and {A, B, C, A:B, A:C, B:C, A:B:C}. One result of this is that one of the 
interactions, A:B is adjusted for none of the other interactions, another, 
A:C is adjusted for A:B, and A:C is adjusted for both A:C and A:C. If 
the terms were written in a different order, then the analysis would have 
different conditioning. Except in the special case of orthogonal regres-
sors to be described shortly, when all the types described here are equiva-
lent, Type I anova generally has only pedagogical interest and should not 
be used, even though it may be the default anova in some computer 
programs.3

• Type III analysis of variance violates the marginality principle. It com-
putes the test for every regressor adjusted for every other regressor; so, 
for example, the test for the A main effect would include the interactions 
A:B, A:C, and A:B:C in both NH and AH. There is a justification for 

Table 6.1  Analysis of Variance for the UN Data

df Sum Sq Mean Sq F-Value Pr(>F)

Group 2 3100.31 1550.15 58.92 0.00
log(ppgdp) 1 2639.81 2639.81 100.34 0.00
group:log(ppgdp) 2 12.68 6.34 0.24 0.79
Residuals 193 5077.70 26.31

3One such program is R, but to be fair, Type I anova can be appropriate for other problems 
beyond those discussed here. Type II anova is available with the Anova function in the car 
package in R.
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this testing paradigm, called the marginal means method by Hocking 
(1985, 2003), but some of these tests depend on the parameterization 
used for the regressors and so they are not recommended for general 
use (McCullagh, 2002). In particular, the standard coding used for factors 
of omitting a baseline level (Section 5.1.1) is not appropriate for comput-
ing Type III sums of squares. The packages SAS and SPSS use Type III 
by default but have Type II as an available option.

The analysis of variance was originally formulated for problems in which 
all the regressors are orthogonal, or equivalently are uncorrelated with each 
other. Many designed experiments (Oehlert, 2000) will have this property. 
Now anova is used more generally in problems with continuous regressors, 
polynomials, complex interactions, and nonorthogonal factors. In this situation, 
anova is more complicated.

The wool data, Section 6.1, is from a designed experiment in which all the 
factors are orthogonal (Appendix A.6.6) to each other. Table 6.2 is the anova 
table for the full second-order model, including all main effects and two-factor 
interactions. Because the regressors are orthogonal, Type I, Type II, and Type 
III tests are identical. We prefer to interpret the tests in every instance using 
the hypotheses formulated under the marginality principle.

Once again, the table is read from bottom to top. The amp:load and 
len:load interactions both have large p-values, and so both of these interac-
tions can be neglected. The len:amp interaction has p-value of 0.028, which 
we may treat as evidence that this interaction is nonzero. In the presence of 
the len:amp interaction, the main effects for len and load become rela-
tively uninteresting, but the test for the main effect of load, which is not part 
of the interaction, is of interest, and has a tiny p-value.

This analysis suggests refitting without the interactions that appear to be 
unimportant. The summarizing effects plot is shown in Figure 6.1. The small 
p-value for the main effect of load corresponds to the line in the plot for 
load differing from a horizontal line: larger loads result in smaller number of 
cycles. None of the interactions with load are included in the model, so this 
plot provides a complete summary of the relationship between load and the 
response. The small p-value for the amp:len interaction suggests the need to 

Table 6.2  Analysis of Variance for the Second-Order Model for the Wool Data

df Sum Sq Mean Sq F-Value Pr(>F)

len 2 12.516 6.258 301.74 0.000
amp 2 7.167 3.584 172.80 0.000
load 2 2.802 1.401 67.55 0.000
len:amp 4 0.401 0.100 4.84 0.028
len:load 4 0.136 0.034 1.64 0.256
amp:load 4 0.015 0.004 0.18 0.945
Residuals 8 0.166 0.021
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consider amp and len simultaneously, as in the second graph in Figure 6.1. 
The lines are not parallel because of the interaction. When (amp, len) = (9, 
350), the fitted response is lower than would be expected if no interaction were 
present. Given the graph and small sample sizes, many experimenters might 
judge this interaction to be of little practical importance without verification 
from further experimentation.

6.3  COMPARISONS OF MEANS

The comparisons of adjusted means for levels of a factor, or for levels of an 
interaction, proceed as outlined in Section 5.1.2. There are two apparent 
impediments. First, the combinations of the parameters corresponding to the 
adjusted means can be complicated. Second, because many comparisons are 
possible, adjustment of significance levels of tests to account for multiple 
testing can be critical. From a practical point of view, both of these complica-
tions are nearly ignorable because software is generally available to construct 
the correct linear combinations and also to adjust the tests.

Comparisons of means can be made for any effect that satisfies the margin-
ality principle. For example, in the fit of log(cycles) ∼ load + len:amp 
in the wool data, comparisons of levels of load adjusted for len:amp make 
sense, as do comparisons of the nine levels of len:amp given load. Compari-
sons of the levels of len would generally not be recommended as these violate 
the marginality principle. The appropriate comparisons correspond to the 
effects plots in Figure 6.1.

For the amp:len interaction, there are nine means so there are 36 possible 
paired comparisons. The interesting comparisons are likely to be between 
levels of amp for each level of len, for which there are only nine comparisons. 
We leave this for homework (Problem 6.13).

Figure 6.1  Effects plots for the wool data after deleting unimportant interactions.
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6.4  POWER AND NON-NULL DISTRIBUTIONS

For a fixed significance level, the probability of rejecting an NH is called the 
power of the test (Casella and Berger, 2001, section 8.3.1). Suppose that f* is 
the critical value for a test at level α obtained from an F-table, meaning that 
Prob(F > f*|NH is true) = α. The power is

Power Prob detect a false NH

Prob |AH is true

=
= >

( )

( )F f *

When the AH is true, the numerator and denominator of the test statistic 
(6.3) remain independent. The denominator estimates σ2 under both the NH 
and the AH. The distribution of the numerator sum of squares is different 
under the NH and the AH. Apart from df, the numerator under the AH is 
distributed as σ2 times a noncentral χ2. In particular, the expected value of the 
numerator of (6.3) will be

 E(numerator of ) noncentrality parameter(6 3) 12. ( )= +σ  (6.17)

The larger the value of the noncentrality parameter, the greater the power 
of the test. For hypothesis (6.2), and now interpreting X1 as an n × (p′ − q) 
matrix and X2 as an n × q matrix, the noncentrality parameter λ is given by 
the expression

 λ
σ

= ′ ′ − ′ ′−b b2 2 1 1 1
1

1 2 2
2

( ( ) )X I X X X X X
q

 (6.18)

This formidable equation can be simplified in special cases. For q = 1, β2 is a 
scalar and the test is for a single regressor. Write RX X2 1,

2  to be the value of R2 
for the ols regression with response X2 and regressors X1. As is usual, we write 
SD2 to be the standard deviation of the regressor X2. Then, the noncentrality 
parameter λ is

 λ β
σ

= − 



 −[ ]( )n RX X1 (1 )2

2

2
2

,
2

2 1SD  (6.19)

Power increases with λ, so it increases with sample size n, the “size” of 
the parameter relative to the error standard deviation (β2/σ)2, and it 
increases with the unexplained variability in X2 after X1. In the special case 
that X2 and X1 are uncorrelated, or in simple regression, RX X2 1,

2 0= . If X2 is an 
indicator of a treatment that will be allocated to half of the cases at random, 
λ β σ= n 2

2 2(4 )/ .
In most designed experiments, interesting tests concern effects that are 

orthogonal, and in this case (6.18) becomes for q ≥ 1
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 λ
σ

= − ′
( 1) 2 2 2

2
n

q
b bS

 (6.20)

where S2 is the sample covariance matrix for X2. General results on F-tests are 
presented in advanced linear model texts such as Christensen (2011).

Many computer programs include power calculators that can help you 
decide on necessary sample size to detect a difference of interest in a number 
of problems. It is typical of these calculators that the user specifies the type of 
problem, such as linear regression or a some other problem. Lenth (2006–
2009) provides a Java applet for computing power and discussion of how to 
use it.

Minnesota Farm Sales
Problem 5.10 presents models of log price per acre, log(acrePrice) as a 
function of the factors year of sale and region, for n = 18,700 sales in Min-
nesota for the years 2002–2011. Table 6.3 gives the Type II analysis of variance 
for the model log(acrePrice) ∼ year + region + year:region. 
The F-test for the interaction has a p-value that rounds to zero to five digits, 
suggesting a year by region interaction for these data. The effects plot, 
however (Problem 5.10) suggests relatively unimpressive differences between 
the response curves for the regions.

The very large sample size here implies that the test for an interaction is 
very powerful and likely to detect even very small differences. If the sample 
size were smaller, the test might not have given a significant result. To dem-
onstrate this a simulation was done. The model with the interaction was fit  
to a subset of the data selected at random, and the p-value for the test for 
interaction was recorded. This was repeated 100 times for each several sample 
sizes varying from 935, corresponding to 5% of the original sample size, to 
n = 5610, corresponding to 30% of the original sample size. The average and 
standard deviation of the p-values are shown in Table 6.4. Also shown in the 
table is the empirical power, the fraction of times the test had a p-value less 
than 0.05.

When the sample is the smallest, n = 935, the average significance level is 
about 0.40 with standard deviation of 0.23, and the empirical power is only 
12%. For comparison, if the NH is true, then the p-value is uniformly distrib-

Table 6.3  Analysis of Variance for the Minnesota Farm Sales

df Sum Sq Mean Sq F-Value Pr(>F)

fyear 9 153.01 17.00 73.02 0.00000
region 5 4200.29 840.06 3608.17 0.00000
region:year 5 29.87 5.97 25.66 0.00000
Residuals 18680 4349.09 0.23
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uted with mean 0.5 and standard deviation of about 0.29. With this sample size, 
the outcome of the test is close to the outcome that would be expected if the 
NH were true. A sample size of 935 is hardly a small sample. A sample size of 
about 2800 is required for about 60% power. A sample consisting of 30%  
of the original data of 5610 has empirical power of 1. This simulation varied 
only the sample size to show that power can change. The power also depends 
on the size of the differences, but those were not changed in this simulation. 
Large sample sizes can find small differences, and at least in this instance, 
statistical significance may not translate into practical significance.

6.5  WALD TESTS

Wald tests about coefficients in regression are based on the distribution of the 
estimator b̂ . In most regression problems, the estimator is at least approxi-
mately normally distributed,

ˆ ~b bN( , )V

Generally, the Cov(β) = V is unknown, but an estimate V̂ is available. From 
Appendix 3.4.4, for ols estimators we have

ˆ ˆV X X= ′ −σ 2 1( )

With other estimation methods like weighted least squares and logistic regres-
sion encountered later in this book, the form of V̂ changes, but the results 
given here still apply.

6.5.1  One Coefficient

To test a hypothesis concerning a particular coefficient estimate, say NH : βj = βj0 
versus AH : βj ≠ βj0, compute, as in Section 2.6, t vj j jj= −( )0

ˆ ˆβ β , where v̂jj is 
the (j, j) element of V̂. This test is compared with the t-distribution with df 
equal to the df in estimating σ2 to get p-values. In problems like logistic regres-
sion in which there is no σ2 to estimate, the Wald test is compared with the 
standard normal distribution. One-sided tests use the same test statistic, but 
only a one-sided tail-area to get the p-value.

Table 6.4  Average p-Value in Simulation

n = 935 1870 2805 3740 4675 5610

Average 0.40 0.22 0.09 0.02 0.01 0.00
SD 0.29 0.23 0.14 0.04 0.02 0.00
Power 0.12 0.32 0.61 0.87 0.97 1.00
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6.5.2  One Linear Combination

Suppose a is a vector of numbers of the same length as β. Then the linear 
combination ℓ = a′β has estimate ˆ ˆ� = ′a b  and from (3.26)

ˆ ~� �N( , )′a Va

The standard error is se( )ˆ ˆ� = ′a Va . Thus, for NH : ℓ = ℓ0, the statistic is 
t = −( ) / ( )0

ˆ ˆ� � �se , which is compared with the t-distribution with df given by 
the df for σ̂ 2 . The same statistic is used for two-sided or one-sided alternatives, 
but tail areas are different (Section 3.4.7). If ℓ consists of all zeros except for 
a single one for the jth coefficient, then this t-test is identical to the t-test in 
Section 6.5.1.

6.5.3  General Linear Hypothesis

More generally, let L be any q × p′ matrix of constants which we take to be of 
full row rank q. Suppose we wish to test NH : Lβ = c versus the alternative 
AH : Lβ ≠ c. This generalizes from one linear combination to q linear combi-
nations. The test statistic is

 F
q

= − ′ ′ −−( ) ( ) ( )1L c LVL L cˆ
 (6.21)

Under NH and normality this statistic can be compared with an F(q, n − p′) 
distribution to get significance levels.

6.5.4  Equivalence of Wald and Likelihood-Ratio Tests

For linear models, the Wald tests and the likelihood ratio tests give the same 
results for any fixed hypothesis test. Thus, for example, the square of the Wald 
t-test for a single coefficient is numerically identical to the likelihood ratio 
F-test for the same coefficient. As long as the hypothesis matrix L is correctly 
formulated, (6.21) and (6.3) will be numerically identical. This equality does 
not carryover to other regression settings like logistic regression. Wald and 
likelihood ratio tests for logistic regression are equivalent, in the sense that 
for large enough samples they will give the same inference, but not equal, as 
the computed statistics generally have different values. Likelihood ratio tests 
are generally preferable.

6.6  INTERPRETING TESTS

6.6.1  Interpreting p-Values

Under the appropriate assumptions, the p-value is the conditional probability 
of observing a value of the computed statistic, here the value of F, as extreme 
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or more extreme, here as large or larger, than the observed value, given that 
the NH is true. A small p-value provides evidence against the NH.

In many research areas it has become traditional to adopt a fixed signifi-
cance level when examining p-values. For example, if a fixed significance level 
of α is adopted, then we would say that an NH is rejected at level α if the p-
value is less than α. The most common choice for α is 0.05, which would mean 
that, were the NH to be true, we would incorrectly find evidence against it 
about 5% of the time, or about one test in 20. Accept–reject rules like this are 
generally unnecessary for reasonable scientific inquiry, although they may be 
mandated by some research journals. Simply reporting p-values and allowing 
readers to decide on significance seems a better approach.

There is an important distinction between statistical significance, the obser-
vation of a sufficiently small p-value, and scientific significance, observing an 
effect of sufficient magnitude to be meaningful. Judgment of the latter usually 
will require examination of more than just the p-value.

6.6.2  Why Most Published Research Findings Are False

A widely circulated article, Ioannidis (2005), has the same title as this section. 
While this section title is intended as hyperbole, there are several reasons to 
doubt findings or question interpretation of results based on a single hypoth-
esis test. For simplicity in this discussion, suppose that all tests are done at 
level α, and that all have the same power or probability of detecting a false 
NH of γ.

Following Ioannidis (2005),

• Suppose that a fraction f of hypothesis tests are potential discoveries. 
This is the fraction of tests for which rejecting the NH is the correct 
decision.

• A true discovery will occur if we correctly reject an NH when it is false. 
This will occur with probability fγ.

• A false discovery will occur if NH is rejected but NH is actually true, and 
this will occur with probability (1 − f)α.

• The probability of a discovery is the sum of these, fγ + (1 − f)α.
From these, we can compute the conditional probability of a true  

discovery given a discovery,

Prob (true discovery|discovery) =
+ −

f
f f

γ
γ α(1 )

Figure 6.2 gives a graph if this probability as a function of the fraction of 
potential discoveries f with both variables in log scale, for three values of 
γ ∈ {0.50, 0.75, 0.99} and for α = 0.05. The power γ has relatively limited effect 
on these curves, so we will discuss only the case of γ = 0.75. If the fraction of 
potential discoveries is high, say f = 0.90, then Prob (true discovery|discovery) 
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= 0.99, so we can reliably believe that a rejected NH will correspond to a true 
discovery. When f = 1/16, Prob (true discovery|discovery) = 0.5, so a rejected 
NH is equally likely to be a true or false discovery. If f = 0.01, then Prob (true 
discovery|discovery) = 0.13 and the vast majority of discoveries will be false 
discoveries.

The reliability of tests in a particular situation requires an assessment of 
the relevant value of f. In testing situations where data are collected based on 
a well-established theory, we might hope for f > 0.5, with more theoretical 
knowledge corresponding to larger values of f, and most discoveries will be 
true discoveries. Not all experiments fit this paradigm, however. Ioannidis 
presents as an example a genome association study in which 100,000 gene 
polymorphisms will each be tested to find the 10 or so genes that are associ-
ated with a particular disease. For this study f = 10/100,000 = 0.001, and nearly 
all discoveries will be false discoveries. Lehrer (2010) presents a nontechnical 
review of many other findings that were eventually not supported by later 
data, or findings that seem to have weakened over time.

6.6.3  Look at the Data, Not Just the Tests

Tests can be computed for any data set, whether the test is appropriate or not. 
The scatterplots in Figure 1.9 provide an example. If simple regression is fit to 
any of the graphs shown, the t-statistic for testing the slope equal to zero is 
t = 4.24, with a corresponding two-sided p-value = 0.002, but only for Figure 
1.9a is the test meaningful because in the other graphs, either simple regression 
is clearly inappropriate, or the inference is effectively determined by only one 
data point.

Many analysts skip the step of actually looking at the data, and they do so 
at their own peril. The graphical methods throughout this book, and the diag-
nostic methods to be presented in Chapter 9, can help avoid this type of pitfall.

Figure 6.2  The probability of a true discovery as a function of the fraction f of false NH and the 
power of the test.
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6.6.4  Population versus Sample

Tests are designed to infer from observations on a sample to a larger popula-
tion. In the Berkeley Guidance Study (Problem 3.3), for example, tests could 
be inferences to the population of other children born near Berkeley in the 
same era, or with somewhat less justification to children born in other areas 
in California or even the United States during that era. Inference to the popu-
lation of children in a different era is more of a stretch, as too much else may 
have changed to make children born in 1928–1929 representative of children 
from other times or other places.

Applicability is also at issue with the UN data used extensively in this book. 
The unit of analysis is a locality, generally a country, for which the UN provides 
statistics and for which the variables described are measured. The countries/
localities represented in the data include more than 99% of the world’s people, 
and so the data in the UN examples form a population, not a sample from a 
population. The only variation in the estimates is due to measurement errors 
in the variables, but not to sampling from a population. If the variables were 
measured without error, then the “estimates” in the data would be the true 
parameter values.

Freedman and Lane (1983) proposed an alternative interpretation of sum-
maries of tests that they call reported significance levels. Using an argument 
related to the bootstrap, they suggest that a small reported significance levels 
characterizes an unusual data set relative to hypothetical data sets that could 
have arisen if NH were true. For the UN data, but ignoring the additional 
problems outlined in the next paragraph, this would suggest that the signifi-
cance levels of tests remain helpful summaries of the analysis.

6.6.5  Stacking the Deck

The UN data have been used to explore the dependence of female life expec-
tancy on national per capita income, separately for three groups of countries/
localities. Perhaps you found the grouping puzzling, since countries were 
divided geographically into Africa and not Africa, and the not Africa group 
was subdivided according to membership in the OECD. This seems like a very 
strange way to divide up the world.

It happened like this: Figure 3.1c, discussed further in Problem 3.1, sug-
gested that the African countries had a different relationship between life-
ExpF and log(ppgdp) than did other countries, and so this became the basis 
of the example. To make the problem more interesting for presentation in this 
book, the “not Africa” nations were divided again. OECD membership pro-
vided a convenient way to divide this group roughly into richer and poorer 
countries.

Any test to compare the groups is almost certain to show significance 
because the group variable was defined to match the different groups seen 
in Figure 3.1. We “stacked the deck.” The data, not theory, guided the test, and 
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this renders the test concerning differences between Africa and non-Africa at 
least suspect.

6.6.6  Multiple Testing

Multiple testing is one of the most important problems with interpreting tests. 
If 100 independent tests are done, each at level α = 0.05, even if NH is true in 
all 100 tests, then about 0.05 × 100 = 5 of the tests are expected to be “signifi-
cant at the 5% level” and therefore false discoveries. Traditional methods of 
surviving multiple testing are to control the family-wise error rate rather than 
the per-test error rate (Miller, 1981), but recent methodology is based on con-
trolling the false discovery rate, as proposed by Benjamini and Hochberg 
(1995); see Bretz et al. (2010) for current methodology. Except for testing for 
outliers in Section 9.4.3, we leave discussion and application of multiple testing 
methods to other sources.

6.6.7  File Drawer Effects

Similar to the multiple testing problem is the file drawer problem. If 100 inves-
tigators set out to do the same experiment to learn about a treatment effect, 
about 5% of them will get significant results even if there are no real effects. 
The 95% who find no difference may put their experiment aside in a file 
drawer and move on; the remaining 5% seek to publish results. Consequently, 
published results can appear significant only because the reader of them is 
unaware of the unpublished results.

6.6.8  The Lab Is Not the Real World

Observing a phenomenon can change its outcome, and effects that are observed 
in a study or in a laboratory setting may not persist in a natural setting with 
no one watching or interfering. People, animals, and even plants can behave 
differently when they are being studied than when they are acting indepen-
dently. This is called a Hawthorne effect, after a set of experiments with lighting 
in work spaces at the Western Electric Hawthorne Works in the 1920s (Hart, 
1943). Similarly, in a medical trial, patients in a controlled setting may have 
differents outcome than they would if they were responsible for their own 
care, perhaps due to failure to understand or to comply with a protocol. As 
another example, a variety of a crop may be more successfully planted at an 
experimental farm with the latest in agronomic methodology than it would be 
planted elsewhere.

6.7  PROBLEMS

6.1 (Data file: UN11) With the UN data, perform a test of NH : (6.6) against 
the alternative AH : (6.7), and summarize results. This is an overall F-test 
for a model with one factor and no additional regressors.
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6.2 (Data file: UN11) With the UN data, explain why there is no F-test com-
paring models (6.7) and (6.8).

6.3 (Data file: UN11) In the UN data, compute the F-test

NH Model

AH Model

: (6 7)

: (6 9)

.

.

and summarize results.

6.4 (Data file: UN11) With the UN data, consider testing

NH

AH

:

:

lifeExpF~log(ppgdp) group:log(ppgdp)
lifeExpF~group l

+
+ oog(ppgdp) group:log(ppgdp)+

The AH model is the most general model given at (6.10), but the NH is 
was not given previously.
6.4.1  Explain in a sentence or two the meaning of the NH model.
6.4.2  Perform the test and summarize results.

6.5 (Data file: UN11) In the UN data, start with the parallel regression model 
(6.9).
6.5.1  Test for equality of intercepts for the oecd and other levels of 

the factor group.
6.5.2  Test for equality of the intercepts for group other and africa.

6.6 (Data file: fuel2001) State the null and alternative hypotheses for the 
overall F-test for the fuel consumption data (Section 3.3). Perform the 
test and summarize results.

6.7 (Data file: fuel2001) With the fuel consumption data, consider the fol-
lowing two models in Wilkinson–Rogers notation:

 fuel~Tax+Dlic+Income+log(Miles) (6.22)

 fuel~log(Miles)+Income+Dlic+Tax  (6.23)

These models are of course the same, as they only differ by the order in 
which the regressors are written.
6.7.1  Show that the Type I anova for (6.22) and (6.23) are different. 

Provide an interpretation of each of the tests.
6.7.2  Show that the Type II anova is the same for the two models. Which 

of the Type II tests are equivalent to Type I tests?
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6.8 Show that the overall F-test for multiple regression with an intercept can 
be written as

F
n p

p
R

R
= − ′



 −

2

21

where R2 is the proportion of variability explained by the regression. 
Thus, the F-statistic is just a transformation of R2.

6.9 (Data file: cakes) For the cakes data in Section 5.3.1, we fit the full 
second-order model,

E |( , )1 1 2 2 0 1 1 2 1
2

3 2 4 2
2

5 1 2Y X x X x x x x x x x= = = + + + + +β β β β β β

Compute and summarize the following three hypothesis tests.

NH vs AH

NH vs AH

NH vs AH Not a

: 0 . : 0

: 0 . : 0

: 0 . :

5 5

2 2

1 2 5

β β
β β
β β β

= ≠
= ≠
= = = lll 0

6.10 RateMyProfessor.com (Data file: Rateprof) In the professor 
ratings data introduced in Problem 1.6, suppose we were interested in 
modeling the quality rating. We take as potential predictors character-
istics of the instructor, including gender of the professor, the number of 
years numYears in which the instructor had ratings, between 1999 and 
2009, a factor discipline, with levels for humanities, social science, 
pre-professional, and stem for science technology, engineering, and math-
ematics. Additional potential predictors are easiness, average rating 
of the easiness of the course, raterInterest in the course material. A 
final predictor is pepper, a factor with levels no and yes. A value of 
yes means that the consensus is that the instructor is physically attrac-
tive. The variables helpfulness and clarity have been excluded, 
since these are essentially the same as quality (Section 5.5). Data are 
included for n = 366 professors.
6.10.1  Fit the first-order regression model quality ∼ gender + 

numYears + pepper + discipline + easiness + 
raterInterest, and print the summary table of coefficient 
estimates. Suppose that β2 is the coefficient for numYears. Provide 
a test and significance level for the following three hypothesis 
tests: (1) NH : β2 = 0 versus AH : β2 ≠ 0; (2) NH : β2 = 0 versus 
AH : β2 ≤ 0; (1) NH : β2 = 0 versus AH : β2 ≥ 0.

6.10.2  Obtain the Type II analysis of variance table. Verify that the F-
tests in the table are the squares of the t-tests in the regression 
coefficient table, with the exception of the tests for the dummy 
regressors for discipline. Summarize the results of the tests.
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6.10.3  Draw the effects plot for discipline. It will suggest that the 
adjusted quality varies by discipline, in agreement with the test 
for discipline. Describe as carefully you can the discipline 
effect. You may want to report further tests.

6.10.4  Summarize the dependence of quality on the predictors.

6.11 (Data file: salarygov) For the government salary data described in 
Problem 5.9, use the model of Problem 5.9.3, obtain tests for the interac-
tion between the indicator for female-dominated occupations and the 
spline basis for Score. Obtain a 95% confidence interval for the differ-
ence between female-dominated job classes and all other job classes.

6.12 (Data file: twins) The data in the file twins give the IQ scores of identi-
cal twins, one raised in a foster home, IQf, and the other raised by birth 
parents, IQb. The data were published by Burt (1966), and their authen-
ticity has been questioned. For purposes of this example, the twin pairs 
can be divided into three social classes C, low, middle, or high, coded in 
the data file 1, 2, and 3, respectively, according to the social class of the 
birth parents. Treat IQf as the response and IQb as the predictor, with 
C as a factor.

Describe the dependence of the response on the predictors, using 
appropriate graphs, models discussed in the last chapter, and tests 
described in this chapter.

6.13 (Data file: Wool) With the wool data, fit the model log(cycles)  ∼ 
load + len:amp. Use computer software to obtain (1) the estimates 
and standard errors of the adjusted means of each level of load and for 
each combination of len:amp; (2) obtain tests to compare the levels of 
load and to compare the levels of amp for each level of len. (Hints: The 
levels of len, amp, and load are numeric, and so you may need to tell 
your computer program to treat them as factors; for example, in R, you 
would use the “factor” function. Many programs use the keyword lsmeans 
to describe the means you need to compute. In R there is a package called 
lsmeans (Lenth, 2013) that will do all the computations you need. The 
estimated means computed in this package can differ slightly from the 
means plotted by the effects package because they have slightly dif-
ferent defaults for values for conditioning.)

6.14 Testing  for  lack-of-fit (Data file: MinnLand) Refer to the Minnesota 
farm sales data introduced in Problem 5.4.
6.14.1  Fit the regression model log(acrePrice)  ∼  year via ols, 

where year is not a factor, but treated as a continuous predictor. 
What does this model say about the change in price per acre over 
time? Call this model A.
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6.14.2  Fit the regression model via log(acrePrice) ∼ 1 + fyear 
via ols, where fyear is a factor with as many levels are there are 
years in the data, including the intercept in the model. What does 
this model say about the change in price per acre over time? Call 
this model B. (Hint: fyear is not included in the data file. You 
need to create it from the variable year.)

6.14.3  Show that model A is a special case of model B, and so a hypoth-
esis test of NH : model A versus AH : model B is reasonable.

6.14.4  A question of interest is whether or not model A provides an 
adequate description of the change in log(acrePrice) over time. 
The hypothesis test of NH : model A versus AH : model B addresses 
this question, and it can be called a lack-of-fit test for model A. 
Perform the test and summarize results.

6.15 (Data file: MinnLand) Continuing with the last problem, suppose you fit 
the model log(acrePrice) ∼ year + fyear, including year both 
as a continuous predictor and as a factor. What do you think will happen? 
Try it and find out if you were right!

6.16 (Data file: MinnLand) Repeat the simulation of Section 6.4, but for the 
lack-of-fit test of Problem 6.14. In the simulation, use the fraction of data 
used in the test f ∈ {0.01, 0.05, 0.10, 0.15, 0.20}. Comment on the results.

6.17 An experiment is planned in which we have a set of regressors X1 and 
one addition regressor X2 will be created with values 0 for subjects that 
get a control treatment and 1 for subjects that get the experimental treat-
ment. Treatment assignment will be done at random, with half of the 
subjects getting the experimental treatment. The test for a treatment 
effect will be done at level α = 0.05, and it desired to make the experi-
ment large enough to have 90% power. An estimate of σ is required, and 
suppose that setting σ = 0.5 is reasonable.

Use a sample size calculator such as that of Lenth (2006–2009) to 
determine the sample size if the smallest meaningful treatment effect is 
equal to 1.0. Repeat for effect sizes of 0.5 and 2.0.

6.18 Windmill data (Data file: wm2) In Problem 2.21 we considered data to 
predict wind speed CSpd at a candidate site based on wind speed RSpd 
at a nearby reference site where long-term data are available. In addition 
to RSpd, we also have available the wind direction, RDir, measured in 
degrees. A standard method to include the direction data in the predic-
tion is to divide the directions into several bins and then fit a separate 
mean function for CSpd on RSpd in each bin. In the wind farm literature, 
this is called the measure, correlate, predict method (Derrick, 1992). The 
data file contains values of CSpd, RSpd, RDir, and Bin for 2002 for 
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the same candidate and reference sites considered in Problem 2.21. 
Sixteen bins are used, the first bin for cases with RDir between 0 and 
22.5 degrees, the second for cases with RDir between 22.5 and 45 
degrees, . . . , and the last bin between 337.5 and 360 degrees. Both the 
number of bins and their starting points are arbitrary.
6.18.1  Obtain an appropriate graphical summary of the data.
6.18.2  Obtain tests that compare fitting the four mean functions dis-

cussed in Section 5.1.3 with the 16 bins. How many parameters are 
in each of the mean functions?

6.19 Land valuation (Data file: prodscore) Taxes on farmland enrolled in 
a “Green Acres” program in metropolitan Minneapolis–St. Paul are 
valued only with respect to the land’s value as productive farmland; the 
fact that a shopping center or industrial park has been built nearby 
cannot enter into the valuation. This creates difficulties because almost 
all sales, which are the basis for setting assessed values, are priced accord-
ing to the development potential of the land, not its value as farmland. 
A method of equalizing valuation of land of comparable quality was 
needed.

One method of equalization is based on a soil productivity score P, a 
number between 1, for very poor land, and 100, for the highest quality 
agricultural land. The data in the file prodscore, provided by Douglas 
Tiffany, give P along with Value, the average assessed value, the Year, 
either 1981 or 1982, and the County name for four counties in Minne-
sota, Le Sueur, Meeker, McLeod, and Sibley, where development pres-
sures had little effect on assessed value of land in 1981–1982. The unit of 
analysis is a township, roughly 6 miles square.

The goal of analysis is to decide if soil productivity score is a good 
predictor of assessed value of farmland. Be sure to examine county and 
year differences, and write a short summary that would be of use to deci-
sion makers who need to determine if this method can be used to set 
property taxes.
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C H A P T E R  7

Variances

In this chapter we consider a variety of extensions to the linear model that 
allow for more general variance structures than the independent, identically 
distributed errors assumed in earlier chapters. This greatly extends the prob-
lems to which linear regression can be applied. Some of the extensions require 
only minor adaptation of earlier results, while others add considerable com-
plexity. Most of these latter extensions are only briefly outlined here with 
references to other sources for more details.

7.1  WEIGHTED LEAST SQUARES

The assumption that the variance function Var(Y|X) is the same for all 
values of X can be relaxed in a number of ways. In an important generaliza-
tion, suppose we have the multiple regression mean function given for the ith 
case by

 E |( )Y X i i= = ′x xb  (7.1)

but rather than assume that errors are constant, we assume that

 Var | Var /( ) ( )Y X e wi i i= = =x σ 2  (7.2)

where w1, . . . , wn are known positive numbers. The variance function is still 
characterized by only one unknown positive number σ2, but the variances can 
be different for each case. This will lead to the use of weighted least squares, 
or wls, in place of ols, to get estimates.

The wls estimator b̂  is chosen to minimize the weighted residual sum of 
squares function,
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 RSS( ) ( )b = − ′∑w yi i ix β 2  (7.3)

Squared differences ( )2yi i− ′x b  in (7.3) with relatively larger values of wi are 
more influential in the weighted RSS, and so observations with smaller vari-
ance, that is σ2/wi smaller, are more important.

We will generally use the symbol b̂  for both the ols and wls estimators 
because ols is a special case of wls with wi = 1 for all i. Writing W as the n × n 
matrix with the wi on the diagonal and zeroes elsewhere, the wls estimator is 
given by

 b̂ = ′ ′−( ) 1X WX X WY  (7.4)

The properties of the wls estimator are very similar to the properties of the 
ols estimator, and are briefly outlined in Appendix A.8.4. Except for residual 
analysis described in Chapter 9, using weights is essentially a “set and forget” 
procedure. Output from statistical packages for ols and wls will appear identi-
cal, and can be interpreted identically.

Strong Interaction
The purpose of the experiment described here is to study the interactions of 
unstable elementary particles in collision with proton targets (Weisberg et al., 
1978). These particles interact via the so-called strong interaction force that 
holds nuclei together. Although the electromagnetic force is well understood, 
the strong interaction is somewhat mysterious, and this experiment was 
designed to test certain theories of the nature of the strong interaction.

The experiment was carried out with beams having various values of inci-
dent momentum, or equivalently for various values of s, the square of the total 
energy in the center-of-mass frame of reference system. For each value of s, 
we observe the scattering cross-section y, measured in millibarns (mb). A theo-
retical model of the strong interaction force predicts that

 E | relatively small terms( ) /y s s= + +−β β0 1
1 2  (7.5)

The theory makes quantitative predictions about β0 and β1 and their depen-
dence on particular input and output particle type.

The data given in Table 7.1 and in the file physics summarize the results 
of experiments when both the input and output particle was the π− meson. A 
very large number of particles was counted at each setting of s, and as a result, 
the values of Var(y|s = si) = σ2/wi are known almost exactly; the square roots 
of these values are given in the third column of Table 7.1, labeled SDi.

Ignoring the smaller terms, mean function (7.5) is a simple linear regression 
mean function with regressors for an intercept and x = s−1/2. We should use wls 
because the variances are different for each value of s. Because of the very 
large sample sizes, we are in the unusual situation that we not only know  
the weights, but we know the value of σ2/wi for each value of i. There are 11 
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Table 7.1  The Strong Interaction Data

x = s−1/2 y(mb) SDi

0.345 367 17
0.287 311 9
0.251 295 9
0.225 268 7
0.207 253 7
0.186 239 6
0.161 220 6
0.132 213 6
0.084 193 5
0.060 192 5

Table 7.2  WLS Estimates for the Strong Interaction Data

Estimate Std. Error t-Value Pr(>|t|)

(Intercept) 148.4732 8.0786 18.38 0.0000
x 530.8354 47.5500 11.16 0.0000

ˆ .σ = 1 6565  with 8 df, R2 = 0.9397

quantities w1, . . . , w10 and σ2 that describe the values of only 10 variances, so 
we have too many parameters, and we are free to specify one of the 11 param-
eters to be any nonzero value we choose. The simplest approach is to set σ2 = 1, 
and then the last column of Table 7.1 gives 1 wi , i = 1, 2, . . . , n, and so the 
weights are just the inverse squares of the last column of this table.

The fit of the simple regression model via wls is summarized in Table 7.2. 
The summary for the fit is the same as for ols, and interpretation is the same. 
The standard errors shown are the correct wls estimated standard errors. The 
t-tests for both coefficients are very large with corresponding p-values of 
effectively 0. The value of R2 is large.

Interestingly, the estimate ˆ .σ = 1 66 is larger than the assumed value of σ = 1, 
which could indicate that the straight-line mean function (7.5) does not provide 
an adequate summary of these data. We explore this graphically in Figure 7.1. 
The solid line on the figure shows the wls fit of (7.5). The dashed curve 
matches the points more closely, and so we should not trust the usefulness of 
this model to describe this experiment.

A simple alternative to (7.5) is to add a quadratic regressor in x = s−1/2 to 
the mean function to get

 E | relatively small terms( ) /y s s s= + + +−β β β0 1
1 2

2  (7.6)

and this is the model that is fit to get the dashed line in Figure 7.1. One can 
show that adding the additional regressor gives ˆ .σ = 0 679 , increases R2 
to 0.991, providing nearly a perfect fit. An F-test comparing for adding the 
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quadratic term has p-value smaller than 0.001, suggesting the alternative 
model with the quadratic term provides a superior fit.

One exception to the “set and forget” metaphor for wls is in prediction of 
future values, given in Section 3.5 for ols. A point prediction for a new obser-
vation x* given a fitted wls model is �y* = ′b x*. The variance of a prediction is 
the sum of two components. The first component is the variance of the fitted 
value �y*. As with ols, it is estimated by the square of (3.25). The second com-
ponent is the variance of the unobservable error for the new observation at 
x*, and this depends on weights. In the physics example, if x* = xj, one of the 
observed values of x in the data, we would take the known variance SD j

2  
as the variance of the future value. The standard error of prediction would 
then be

sepred | SD sefit |( ) ( )* * *� �y x x yj j= = +2 2x

In wls more generally, the variance of a future value will be σ2/w*, where 
w* is the weight that is appropriate for the future value, so we would need to 
know w* to compute a standard error of prediction,

sepred | / sefit |( ) )* *� �y x w y= +σ 2
* *

2( x

7.1.1  Weighting of Group Means

The data used in Problem 1.6 in the file Rateprof on professor ratings 
from the website RateMyProfessor.com provide another use of weights in 
fitting models. These data consist of the averages of many student ratings for 

Figure 7.1  Scatterplot for the strong interaction data.
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each instructor. We take as the response variable yi = quality, the average 
rating for quality for the ith instructor in the data. All the ratings in these 
data are on a 1 to 5 scale, with 5 the highest, and so average ratings can be 
any number between 1 and 5. We take as the regressors x i1 = easiness, the 
average rating for easiness of the ith instructor’s course or courses, and 
x i2 = raterinterest, the average student interest in the material covered 
by the ith instructor. Also given in the data file is ni = numRaters, the number 
of ratings that were averaged for the ith instructor.

Suppose we let (yij, x1ij, x2ij) be, respectively, the quality rating, easiness 
rating, and rater interest score of the jth student who rated the ith instructor. 
These values for the individual raters are not given in the data. Nevertheless, 
we can write for instructor i and for j = 1, . . . , ni

 E | Var |( ) ( )y X x x y Xij ij ij ij= + + =β β β σ0 1 1 2 2
2  (7.7)

The observed rating for instructor i is y y ni ij i= ∑ /  and
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Assuming the ratings are independent, the variance of the rating of  
instructor i is
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(7.9)

Thus, to estimate the parameters in (7.7) from the rater averages, we should 
use wls.1 Comparing to (7.2), the weights are wi = ni = numRaters. This 
weighting correctly pays more attention to instructor ratings with ni large than 
with ni small.

Inferring from a large group, here the average of many raters, to individuals, 
here each student rater, is called an ecological regression (Robinson, 2009). If 
(7.7) holds for all students and all instructors, then the inference from means 
to individuals is completely justified by the derivation that leads to (7.8). On 
the other hand, if different parameters β1i and β2i are required for each instruc-
tor, then (7.8) may not hold, even as a reasonable approximation. If the data 

1In Problem 6.10 weighting was ignored for these data. The reader is invited to repeat that problem 
using weights.
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consist only of the instructor averages, we cannot tell if the assumption of the 
same parameters for all instructors is acceptable or not.

If the ni observations on the ith instructor are correlated, the variance 
formula (7.9) is not correct. If all the students in this example were from  
the same class in a single year, then they may influence each other and  
induce correlation. We will touch briefly on how to model correlated data in 
Section 7.4.

7.1.2  Sample Surveys

Sample surveys (Cochran, 1977; Lohr, 2009; Lumley, 2010) are often used to 
collect data. Suppose we have a finite population of N units, and inferences of 
interest about these N units are to be based on a subset of n of the units. In a 
simple random sample, all possible samples of n of the N observations are 
equally likely to be the sample actually collected, and as a result, all units have 
the sample inclusion probability, the probability that a particular unit is 
included in the sample, of π = n/N.

Few large-scale surveys actually use a simple random sample, however. For 
example, in a stratified random sample, a population is divided into J subpopu-
lations or strata, with sizes N1, . . . , NJ. If the within-stratum sample sizes are 
n1, . . . , nJ, the inclusion probability for units in stratum j is πj = nj/Nj. The πj 
can be different in each stratum. Another alternative that may lead to unequal 
probability of inclusion is cluster sampling or multistage sampling. For example, 
to study schoolchildren, researchers could first take a simple random sample 
of schools in the school district of interest, and then take a simple random 
sample of children in a school to study. If the number of children selected is 
the same in each school, then the inclusion probability for a particular child 
will depend on the number of children in his or her school, and this is likely 
to be different for each school.

For illustration, we return to the UN data from Section 3.1 of estimating 
the regression of lifeExpF on log(ppgdp) and fertility. We will now 
treat the N = 199 localities/countries in the data set as if they were a popula-
tion. Suppose we divide the world into three strata according to the value of 
the variable group. The number of countries/localities in each of the levels of 
group is

oecd other africa

Count 31 115 53

We take a simple random sample of size nj = 20 separately from each 
of the three strata, for a total sample size of n = 60. In the oecd stratum, 
the inclusion probability is π1 = 20/31 = 0.65. The inverse of the inclusion 
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probability 1/π1 = 31/20 = 1.55 is called the sampling weight; all observations 
in the oecd statum have the same sampling weight. We can interpret the 
sampling weight as the number of units in a stratum that are represented by 
each observation in the sample from that stratum. For the oecd stratum, each 
observation represents 1.55 countries in the oecd. For other, the sampling 
weight is 1/π2 = 5.75 and for africa, it is 1/π3 = 2.65, so each observation in 
these latter two strata represents more countries in their strata than do the 
observations from the oecd. When fitting regression using survey data, wls is 
appropriate with weights given by the sampling weights. The sampling weights 
account for differing inclusion probabilities for the units in the sample, not for 
nonconstant variance.

With survey data, if we fit a regression model like

E |( log ), )

log(

lifeExpF ppgdp fertility
ppgdp fertili

(

)0 1 2= + +β β β tty

there are two distinct approaches to interpreting the β-coefficients. In the finite 
population approach, the βs computed from the ols regression of the response 
on the regressors in the whole population are parameters, and these are to be 
estimated from the data in the sample. The superpopulation approach would 
treat the population as if it were a random sample from a theoretical super-
population, and then interpret coefficients in the usual way as described in this 
book. Further discussion of weighting for surveys data is given by Lumley 
(2010, section 5.3).

7.2  MISSPECIFIED VARIANCES

There are many wls estimators of a regression parameter β, one for each 
specification of W. Gilstein and Leamer (1983) described the set of all possible 
wls estimates. We consider a more limited goal of describing the bias and 
variance of estimates based on a misspecified set of weights. The bottom line 
is: wls produces unbiased estimates for any choice of W with positive diagonal 
elements, but the variance of the estimate is not the matrix produced by regres-
sion software, and unless corrected for misspecification, confidence statements 
and tests can be incorrect.

Using matrix notation, suppose the true regression model is

E | Var |( ( )Y X X Y X W) 2 1= = −b σ

where W has positive weights on the diagonal and zeroes elsewhere. We get 
the weights wrong, and fit using ols, corresponding to assuming
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E | Var |( ) ( )Y X X Y X I= =b σ 2

The ols estimator is

ˆ (b0
1)= ′ ′−X X X Y

Similar to the correct wls estimate, this estimate is unbiased, E |b̂ b0 X( ) = . The 
variance of this estimate is

 σ 2 1 1 1( ) ( )( )′ ′ ′− − −X X X W X X X  (7.10)

If W = I then the last two terms in (7.10) cancel to give the usual formula for 
the variance of the wls estimate (A.28). When W ≠ I, the variance of the 
estimator has an interesting “sandwich” form.

7.2.1  Accommodating Misspecified Variance

To estimate Var |b̂0 X( ) requires estimating σ 2W−1 in (7.10). Suppose we let 
ˆ ˆe yi i i= − ′b0x  be the ith residual from the misspecified model. Then êi

2  is an 
estimate of σ2/wi, the ith diagonal element of σ 2W−1. Although this seems like 
a rather poor estimate—after all, it is based mostly on the single observation 
yi—theoretical work by Eicker (1963, 1967), Huber (1967), and White (1980), 
among others, have shown that replacing σ 2W−1 by a diagonal matrix with the 
êi

2  on the diagonal produces a consistent estimate of Var |b̂0 X( ).
Several variations of this estimate that are equivalent in large samples but 

have better small sample behavior have been proposed (Long and Ervin, 
2000). The method that appears to be most commonly used is called HC3, and 
this method estimates the variance (7.10) by

 Var | diagˆ ( )
ˆ

( )
( )b0

1
2

2
1

1
X X X X X X X( ) = ′ ′

−












′− −e
h
i

ii

 (7.11)

where diag( ) means a diagonal matrix, and hii is the ith leverage, a number 
between 0 and 1 to be described in Section 9.1.2. An estimator of this type is 
often called a sandwich estimator.

In some fields, (7.11) is used routinely to get standard errors in t-tests for 
individual coefficients, sometimes without comment. The significance levels 
obtained by using sandwich estimates are generally larger than significance 
levels assuming weights are correctly specified, and so the tests done this way 
are often conservative. The sandwich estimators can be used in F-tests using 
(6.21) with V̂ given by the right-hand side of (7.11).

Corrections for different types of variance misspecification, such as cluster-
ing or autoregressive errors, are described by Long and Ervin (2000) and 
Zeileis (2004).
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Sniffer Data
When gasoline is pumped into a tank, hydrocarbon vapors are forced out of 
the tank and into the atmosphere. To reduce this significant source of air pol-
lution, devices are installed to capture the vapor. In testing these vapor recov-
ery systems, a “sniffer” measures the amount recovered. To estimate the 
efficiency of the system, some method of estimating the total amount given 
off must be used. To this end, a laboratory experiment was conducted in which 
the amount of vapor given off was measured under controlled conditions. Four 
predictors are relevant for modeling:

TankTemp = initial tank temperature degrees F( )

GasTemp = temperature of the dispensed gasoline degrees F( )

TankPres= initial vapor pressure in the tank psi( )

GasPres= vapor pressure of the dispensed gasoline psi( )

The response is the hydrocarbons Y emitted in grams. The data, kindly pro-
vided by John Rice, are given in the data file sniffer, and are shown in 
Figure 7.2. The clustering of points in many of the frames of this scatterplot 
matrix is indicative of the attempt of the experimenters to set the predictors 
at a few nominal values, but the actual values of the predictors measured 
during the experiment were somewhat different from the nominal. We also 
see that the predictors are generally linearly related. Some of the predictors, 
notably the two pressure variables, are closely linearly related, suggesting, as 
we will see in Chapter 10, that using both in the mean function may not be 
desirable. For now, however, we will use all four predictors as regressors. Table 
7.3 gives the ols estimates, ols standard errors, and standard errors based on 
HC3. The standard errors for TankPres and GasPres are about 25% larger 
with the HC3 method, but otherwise the standard errors are similar.

7.2.2  A Test for Constant Variance

Cook and Weisberg (1983), with similar work by Breusch and Pagan (1979), 
provided a diagnostic test for nonconstant variance by building a simple model 
for the weights wi. We suppose that for some parameter vector λ and some 
vector of regressors Z

 Var |( , ) exp(Y X Z = = ′z zσ 2 )l  (7.12)

In this equation the weights are given by w = 1/exp(λ′z) = exp(−λ′z). If λ = 0, 
then (7.12) corresponds to constant variance, so a test of NH: λ = 0 versus AH: 
λ ≠ 0 is a test for nonconstant variance. There is great latitude in specifying Z. 
If Z = Y, then variance depends on the response. Similarly, Z may be the same 
as X, a subset of X, or indeed it could be completely different from X, perhaps 
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Figure 7.2  Scatterplot matrix for the sniffer data.
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indicating spatial location or time of observation. In (7.12) Var(Y|X, Z = z) > 0 
for all z because the exponential function is never negative. The variance is 
monotonic, either increasing or decreasing, in each component of Z unless 
interactions are included. The results of Chen (1983) suggest that the tests 
described here are not very sensitive to the exact functional form used in 
(7.12), and so the use of the exponential function is relatively benign, and any 

Table 7.3  Sniffer Data Estimates and Standard Errors

ols Est ols SE HC3 SE

(Intercept) 0.154 1.035 1.047
TankTemp −0.083 0.049 0.044
GasTemp 0.190 0.041 0.034
TankPres −4.060 1.580 1.972
GasPres 9.857 1.625 2.056
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form that depends on the linear combination λ′x would lead to very similar 
inference.

Assuming normal errors, a score test of constant variance is available in 
many statistics packages; Problem 7.5 outlines how to compute this test with 
any statistical package. The test statistic has an approximate χ2(q) distribution, 
where q is the number of (linearly independent) regressors in Z.

Sniffer Data
In the last section, we found that using the HC3 method to estimate variances 
give somewhat different answers for two of the coefficients, but we did not 
provide evidence that nonconstant variance was indeed present. Residual 
plots can help find nonconstant variance. If the residuals appear to increase 
or decrease in magnitude as a function of the variable on the horizontal  
axis, then nonconstant variance may be present.2 Figure 7.3a is the plot of 
residuals versus fitted values. While this plot is far from perfect, it does not 
suggest the need to worry much about the assumption of nonconstant variance. 
Figures 7.3b and c, which are plots of residuals against TankTemp and 
GasPres, respectively, give a somewhat different picture, as particularly in 
Figure 7.3c variance does appear to increase from left to right. Because none 
of the graphs in Figure 7.2 have clearly nonlinear mean functions, the inference 
that variance may not be constant can be tentatively adopted from the residual 
plots.

Table 7.4 gives the results of several nonconstant variance score tests, each 
computed using a different choice for Z. The plot shown in Figure 7.3d has 
estimates of ˆ ′l x  on the horizontal axis, where λ was estimated using the 
method outlined in Problem 7.5, with Z corresponding to all four of the 
regressors.

From Table 7.4, we would diagnose nonconstant variance as a function of 
various choices of Z. We can compare nested choices for Z by taking the dif-
ference between the score tests and comparing the result with the χ2 distribu-
tion with df equal to the difference in their df (Hinkley, 1985). For example, 
to compare the 4 df choice of Z to Z = (TankTemp, GasPres), we can 
compute 13.76 − 11.78 = 1.98 with 4 − 2 = 2 df, to get a p-value of about 0.37, 
and so the simpler Z with two regressors is adequate. Comparing Z = (Tank-
Temp, GasPres) with Z = GasPres, the test statistic is 11.78 − 9.71 = 2.07 
with 2 − 1 = 1 df, giving a p-value of about 0.15, so once again the simpler 
choice of Z seems adequate. A reasonable approach to working with these 
data is to assume that

Var |( , )Y X Z = ×σ 2 GasPres

and use 1/GasPres as weights in weighted least squares.

2We will see in Chapter 9 that other problems besides nonconstant variance may produce this 
pattern if the regressors have nonlinear relationships.
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Figure 7.3  Residuals plots for the sniffer data with variance assumed to be constant.
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Table 7.4  Score Tests for the Sniffer Data

Choice for Z df Test stat. p-Value

GasPres 1 5.50 .019
TankTemp 1 9.71 .002
TankTemp, GasPres 2 11.78 .003
TankTemp, GasTempTankPres, GasPres 4 13.76 .008
Fitted values 1 4.80 .028

Pinheiro and Bates (2000, section 5.2) start with the model for nonconstant 
variance (7.12) and discuss methodology for both testing λ = 0, and for estimat-
ing λ. They also consider a number of alternative models for nonconstant 
variance.
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7.3  GENERAL CORRELATION STRUCTURES

The generalized least squares or gls model extends wls one step further, and 
starts with

 E | Var |(Y X X Y X) ( )= =b S  (7.13)

where Σ is an n × n positive definite symmetric matrix. The wls model uses 
Σ = σ2W−1, and the ols model uses Σ = σ2I. If Σ is fully known, meaning that 
all n(n + 1)/2 unique variances and covariances between the elements of the 
response are completely known, then gls estimation is completely analogous 
to wls estimation with Σ substituted for σ2W−1, and σ2 = 1.

If we have n observations and Σ is completely unknown, then the total 
number of parameters is the number of regression coefficients p′ plus n vari-
ances on the diagonal of Σ plus n(n − 1)/2 covariances on the off-diagonals of 
Σ, many more parameters than observations. The only hope in fitting (7.13) 
with Σ unknown is in introducing some structure in Σ so it depends on a small 
number of parameters. Three of many possible choices are:

Compound Symmetry  If all the observations are equally correlated, then

SCS =
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has only two parameters, ρ and σ2. Generalized least squares software, 
such as the gls function in the nlme package in R (Pinheiro and Bates, 
2000), can be used to do the estimation. Interpretation would be similar 
to wls fitting.

Autoregressive  This form is generally associated with time series (Box et 
al., 2008; Tsay, 2005). If data are time ordered and equally spaced, the 
lag-1 autoregressive covariance structure is

SAR =



















−

−

− −

σ

ρ ρ
ρ ρ

ρ ρ

2

1

2

1 2

1

1

1

�
�

� � � �
�

n

n

n n

In this form, the correlation between two observations t time units apart 
is ρt. Again, there are only two parameters in the covariance matrix.

Block Diagonal  A block diagonal form for Σ can arise if observations are 
sampled clusters. For example, a study of school performance might 
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sample m children from each of k classrooms. The m children within a 
classroom may be correlated because they all have the same teacher, but 
children in different classrooms are independent. If ΣCS(m) is an m × m 
covariance matrix for compound symmetry, then Σ could be a matrix with 
ΣCS(m) repeated k times along its diagonal, and with 0 in all other loca-
tions. This matrix also has only two parameters, but hints at the general 
structures that are possible with just a few parameters.

7.4  MIXED MODELS

An important and popular extension of the linear model theory used in this 
book is to mixed models. This is an enormous topic, and comprehensive treat-
ment of it is beyond the scope of this book. We present here an example to 
illustrate a few of the possibilities. Useful and more comprehensive references 
include Fitzmaurice et al. (2011), Goldstein (2010), McCulloch et al. (2008), 
Raudenbush and Bryk (2002), and Zuur et al. (2009).

Psychophysics is the branch of psychology that explores the relationship 
between physical stimuli and psychological responses (Stevens, 1966; Varshney 
and Sun, 2013). Theory suggests that psychological responses are proportional 
to the magnitude of the stimulus raised to a power, so the regression of the 
log-response on the log-stimulus should have a linear mean function.

In a classic experiment, S. S. Stevens (1906–1973) and his colleagues played 
tones of varying loudness to each of m = 10 subjects. Each subject heard three 
replications of tones at 50, 60, 70, 80, and 90 decibels (db), presented in random 
order. The subject was asked to draw a line whose length in cm corresponds 
to the loudness of the tone. The data file Stevens presents the data, including 
variables y, the average of the logarithms of the three lengths for each value 
of loudness, and a factor for subject. Since the decibel scale is logarithmic, 
within subject the regression of y on loudness should be have a straight-line 
mean function.

In Figure 7.4 a line joins the data for each of the subjects, so 10 lines are 
shown on the figure. The psychophysical model seems plausible here, but each 
subject may have a different slope and intercept.

This experiment has several features that were not apparent in earlier 
examples in this book. First, each subject was measured several times. While 
observations on different subjects are likely to be independent, observations 
on the same subject but at different values of loudness are likely to the cor-
related. Analysis should account for this correlation.

A second important feature of this experiment is that the levels of the  
factor subject can be thought of as a random sample of possible subjects 
who might have been included in the experiment. The fit of a model for a 
particular subject may not be of particular interest. In contrast, in the UN data 
example the fit of a model within each level of group might be of primary 
interest.
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The random coefficients model, as special case of mixed models, allows for 
appropriate inferences. First, we hypothesize the existence of a population 
regression mean function,

 E |( 0 1y x xloudness= = +) β β  (7.14)

Primary interest could be in the estimates of these parameters, and on  
whether or not the psychophysics model that leads to (7.14) is supported by 
the data.

Subject effects are not included in (7.14). To add them we hypothesize that 
each of the subjects may have his or her own slope and intercept. Let yij, i = 
1, . . . , 10, j = 1, . . . , 5 be the log-response for subject i measured at the jth 
level of loudness. For the ith subject,

 E |( , , ) ( ) ( )y x b b b bij i i i i ijloudness loudness= = + + +0 1 0 0 1 1β β  (7.15)

The b0i and b1i are the deviations from the population intercept and slope 
for the ith subject. The new feature is that we treat the bji as random 
variables,
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Inferences about (β0, β1) concern population behavior. Inferences about 
(τ0

2 , τ1
2) concern the variation of the intercepts and slopes between individuals 

in the population. Model (7.15) cannot be fit directly because the bji are unob-
servable random variables. In fitting we need to average over their distribution, 

Figure 7.4  Psychophysics example.
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and this will induce correlation between observations on the same subject, as 
desired.

Figure 7.5 summarizes the fitted model for these data. The thick line has 
the estimates of β0 and β1 as intercept and slope. The gray lines are “predicted” 
lines for each individual subject. The gray lines indicate the variation in fitted 
models that could be expected for other subjects from the same population.

There is plenty of standard jargon that describes this model. This is a 
repeated measures problem because each experimental unit, a subject, is mea-
sured repeatedly. It is a random coefficients model because each subject has 
his or her own slope and intercept. If there were additional regressors that 
describe the subjects, for example, gender, age, or others, then this is a hierar-
chical or multilevel problem.

7.5  VARIANCE STABILIZING TRANSFORMATIONS

Suppose that the response is strictly positive, and the variance function is

 Var | E |( ) ( ( ))Y X g Y X= = =x xσ 2  (7.16)

where g(E(Y|X = x)) is a function that is increasing with the value of its argu-
ment. For example, if the distribution of Y|X has a Poisson distribution, then 
g(E(Y|X = x)) = E(Y|X = x), since for Poisson variables, the mean and variance 
are equal. Although the regression models for Poisson and for binomial 
responses introduced in Chapter 12 are commonly used, an alternative 
approach is to transform the response so the transformed response has an 
approximately constant variance function (Scheffé, 1959, section 10.7). Table 
7.5 lists the common variance stabilizing transformations. Of course, trans-
forming away nonconstant variance can introduce nonlinearity into the mean 
function, so this option may not always be reasonable.

Figure 7.5  Fitted mixed model for the psychophysics example. The thick line is the population 
estimate, while the thinner lines are predicted lines for individuals.
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The square root, log(Y), and 1/Y are appropriate when variance increases 
or decreases with the response, but each is more severe than the one before 
it. The square-root transformation is relatively mild and is most appropriate 
when the response follows a Poisson distribution. The logarithm is the most 
commonly used transformation; the base of the logarithms is irrelevant. It is 
appropriate when the error standard deviation is a percentage of the response, 
such as ±10% of the response, not ±10 units, so Var(Y|X) ∝ σ2[E(Y|X)]2.

The reciprocal or inverse transformation is often applied when the response 
is a time until an event, such as time to complete a task, or until healing. This 
converts times per event to a rate per unit time; often the transformed mea-
surements may be multiplied by a constant to avoid very small numbers. Rates 
can provide a natural measurement scale.

7.6  THE DELTA METHOD

The delta method is used to obtain standard errors for nonlinear combinations 
of estimated coefficients. For example, we have seen at Equation (5.10) in 
Section 5.3 that the value of the predictor that will maximize or minimize a 
quadratic, depending on the signs of the βs, is xM = −β1/(2β2). This is a nonlinear 
combination of the βs, and so its estimate, ˆ ˆ ( ˆ )xM = −β β1 22/ , is a nonlinear com-
bination of estimates. The delta method provides an approximate standard 
error of a nonlinear combination of estimates that is accurate in large samples. 
The derivation of the delta method, and possibly its use, requires elementary 
calculus.

We will use different notation for this derivation to emphasize that the 
results are much more general than just for ratios of coefficient estimates in 

Table 7.5  Common Variance Stabilizing Transformations

YT Comments

Y Used when Var(Y|X) ∝ E(Y|X), as for Poisson distributed data. 
Y Y YT = + + 1 can be used if many of the counts are small 
(Freeman and Tukey, 1950).

log(Y) Use if Var(Y|X) ∝ [E(Y|X)]2. In this case, the errors behave like a 
percentage of the response, ±10%, rather than an absolute 
deviation, ±10 units.

1/Y The inverse transformation stabilizes variance when 
Var(Y|X) ∝ [E(Y|X)]4. It can be appropriate when responses 
are mostly close to 0, but occasional large values occur.

sin ( )−1 Y The arcsine square-root transformation is used if Y is a proportion 
between 0 and 1, but it can be used more generally if y has a 
limited range by first transforming Y to the range (0, 1), and 
then applying the transformation.
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multiple linear regression. Let θ be a k × 1 parameter vector, with estimator 
q̂  such that

 ˆ ~ ,q qN( )2σ D  (7.17)

where D is a known, positive definite, matrix. Equation (7.17) can be exact, as 
it is for the multiple linear regression model with normal errors, or asymptoti-
cally valid, as in nonlinear or generalized linear models. In some problems, σ2 
may be known, but in the multiple linear regression problem, it is usually 
unknown and will be estimated from data.

Suppose g(θ) is a nonlinear continuous function of θ that we would like to 
estimate and that θ* is the true value of θ. To approximate g q̂( ), we can use a 
Taylor series expansion, as in Section 11.1, about g(θ*),
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evaluated at θ*. The vector �g  has dimension k × 1. We have expressed in (7.18) 
our estimate g q̂( ) as approximately a constant g(θ*) plus a linear combination 
of data. The variance of a constant is 0, as is the covariance between a constant 
and a function of data. We can therefore approximate the variance of g q̂( ) by

 

Var Var Var

Var

g gˆ ˆ

ˆ

* *

*

q q q q q

q q

( )  = ( )[ ] + ( ) −( ) 
= ( )

* �

�

g

g

′

′ (( ) ( )
= ( ) ( )

�

� �

g

g Dg

q

q q

*

* *σ 2 ′

 

(7.19)

This equation is the heart of the delta method, so we will write it out again 
as a scalar equation. Let �gi  be the jth element of �g θ̂( ), so �gi  is the partial 
derivative of g(θ) with respect to θi, and let dij be the (i, j)-element of the matrix 
D. Then the estimated variance of g θ̂( ) is

 Var g g g di j ij

j

k

i

k

q̂( )  =
==

∑∑σ 2

11

� �  (7.20)

In practice, all derivatives are evaluated at θ̂ , and σ2 is replaced by its 
estimate.
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In large samples and under regularity conditions, g q̂( ) will be normally 
distributed with mean g(θ*) and variance (7.19). In small samples, the normal 
approximation may be poor, and inference based on the bootstrap might be 
preferable.

For quadratic regression at Equation (5.9), the minimum or maximum 
occurs at g(β) = −β1/(2β2), which is estimated by g b̂( ). To apply the delta 

method, we need the partial derivative, evaluated at b̂ ,
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Using (7.20), straightforward calculation gives
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The variances and covariances in (7.21) are elements of the matrix σ2(X′X)−1, 
and so the estimated variance is obtained from ˆ ˆ ( )σ σ2 2 1D X X= ′ − .3

As a modestly more complicated example, the estimated mean function for 
palatability for the cake data (Section 5.3.1) when the temperature is 350 
degrees is given by (5.14). The estimated maximum palatability occurs when 
the baking time is

ˆ
ˆ ˆ ( )

ˆ . minxM = − + =β β
β

1 12

11

350

2
36 2

which depends on the estimate β̂12  for the interaction as well as on the linear 
and quadratic terms for X1. The standard error from the delta method can be 
computed to be 0.4 minutes. If we can believe the normal approximation, a 
95% confidence interval for xM is 36.2 ± 1.96 × 0.4 or about 35.4–37.0 minutes.

Writing a function for computing the delta method is not particularly hard 
using a language such as Maple, Mathematica, Matlab, or R that can do 
symbolic differentiation to get �g. If your package will not do the differentia-
tion for you, then you can still compute the derivatives by hand and use (7.20) 
to get the estimated standard error. The estimated variance matrix ˆ ( )σ 2 1′ −X X  
is computed by all standard regression programs, although getting access to it 
may not be easy in all programs.

7.7  THE BOOTSTRAP

The bootstrap provides a computationally intensive alternative method used 
primarily for computing standard errors, confidence intervals, and tests when 

3The estimated variance ˆ ( )σ 2 1′ −X X  could be replaced by a sandwich estimator, as in Section 7.2.1.
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either the assumptions needed for standard methods are questionable, or 
where standard methods are not readily available. We start with a simple 
example of the latter, and then turn to applying the bootstrap to regression 
problems.

Suppose we have a sample y1, . . . , yn from a particular distribution G, for 
example, a standard normal distribution. What is a confidence interval for the 
population median?

Rather than developing the theory to compute this interval, or googling the 
problem to see if someone else has done the work, we can obtain an approxi-
mate answer to this question by computer simulation, set up as follows:

1.  Obtain a simulated random sample y yn1
* *,,…  from the known distribu-

tion G. Most statistical computing languages and even spreadsheet pro-
grams include functions for simulating random deviates (see Thisted, 
1988, for computational methods).

2.  Compute and save the median of the sample in step 1.
3.  Repeat steps 1 and 2 a large number of times, say B times. The larger the 

value of B, the more precise the ultimate answer.
4.  If we take B = 999, a simple percentile-based 95% confidence interval for 

the median is the interval between the 25th smallest value and the 975th 
largest value, which are the sample 2.5 and 97.5 percentiles, respectively.

In most interesting problems, we will not actually know G and so this simu-
lation is not possible. Efron (1979) pointed out that the observed data can be 
used to estimate G, and then we can sample from the estimate Ĝ . The algo-
rithm becomes as follows:

1.  Obtain a random sample y yn1
**, ,…  from Ĝ by sampling with replacement 

from the observed values y1, . . . , yn. In particular, the jth element of the 
sample yi

* is equally likely to be any of the original y1, . . . , yn. Some of 
the yi will appear several times in the random sample, while others will 
not appear at all.

2.  Continue with steps 2–4 of the first algorithm.

A test at the 5% level concerning the population median can be rejected  
if the hypothesized value of the median does not fall in the confidence 
interval.

Efron called this method the bootstrap, and we call B the number of boot-
strap samples. Excellent references for the bootstrap are the books by Efron 
and Tibshirani (1993) and Davison and Hinkley (1997).

7.7.1  Regression Inference without Normality

Bootstrap methods can be applied in more complex problems like regression. 
Inferences and accurate standard errors for parameters and mean functions 
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require either normality of regression errors or large sample sizes. In small 
samples without normality, standard inference methods can be misleading, and 
in these cases, a bootstrap can be used for inference.

Transactions Data
For each of n branches of a large Australian bank, we have recorded the 
number t1 of type 1 transactions, the number t2 of type 2 transactions, and 
the total number of minutes time of labor used by the branch. For j = 1, 2 
suppose the time of a transaction of type j is like a draw from a distribution 
with mean βj minutes, and for simplicity suppose the standard deviation is τ 
minutes for either type of transaction. The total number of minutes is expected 
to be

 E |( , )timet1 t2 t1 t2= + +β β β0 1 2  (7.22)

possibly with β0 = 0 because 0 transactions should imply 0 time spent. 
The response time is a sum, and the variance is a sum of the individual 
variances,

Var |( , ) ( )timet1 t2 t1 t2= + τ 2

meaning that the variance should be larger in branches with more 
transactions.

The data are displayed in Figure 7.6, and are given in the data file Trans-
act. The key features of the scatterplot matrix are (1) the marginal response 
plots in the last row appear to have reasonably linear mean functions; (2) there 
appear to be a number of branches with no t1 transactions but many t2 
transactions; and (3) in the plot of time versus t2, variability appears 
to increase from left to right, as expected by the derivation in the last 
paragraph.

A case resampling bootstrap (Davison and Hinkley, 1997, p. 264) is com-
puted as follows:

1.  Number the cases in the data set from 1 to n. Take a random sample with 
replacement of size n from these case numbers.

2.  Create a data set from the original data, but repeating each row in the 
data set the number of times that row was selected in the random sample 
in step 1. Some cases will appear several times, and others will not appear 
at all. Compute the regression using this data set, and save the values of 
the coefficient estimates.

3.  Repeat steps 1 and 2 a large number of times, say, B times.
4.  Estimate a 95% confidence interval for each of the estimates by the 2.5 

and 97.5 percentiles of the sample of B bootstrap samples. A more accu-
rate method called the bias corrected and accelerated or BCa method, 
discussed by Efron and Tibshirani (1993, chapter 14) and Davison and 
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Hinkley (1997, section 3.9), produces an interval based on different 
sample quantiles that depend on the data. The BCa method generally 
produces narrower intervals and is the usual default method used in 
statistical software.

Many standard computing packages, including R, SAS, Stata, and SPSS, have 
procedures available that implement the bootstrap for regression.

Table 7.6 summarizes some of the bootstrap results. The column marked 
“ols” shows ols estimates from the regression of time on t1 and t1. The 
column marked “boot” gives the average of B = 999 case bootstraps. In prin-
ciple, the values in both columns are estimating the same quantities. The dif-
ference between these two columns is called the bootstrap bias, and it is given 
in the third column in the table. The estimates of t1 and t2 agree to two digits, 
while the bias in the intercept appears to be larger. The “ols.se” is the standard 
error from the usual regression formula (3.14), while the “boot.SE” is the 

Figure 7.6  Scatterplot matrix for the transactions data.
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estimated standard errors from the bootstrap, which is the standard deviation 
of the B = 999 bootstrap estimates. We see first that the biases are small rela-
tive to either set of standard errors, and the standard errors from ols are 
overly optimistic relative to the bootstrap estimated standard errors, particu-
larly for the coefficients for t1 and t2.

Table 7.7 reports confidence intervals for the three coefficients. The first 
row of the table gives the standard method based on ols estimates and large 
sample theory, from (2.14). The second method also uses (2.14), but it substi-
tutes the bootstrap estimated standard error for the ols standard error. From 
Table 7.6, the bootstrap standard errors are uniformly larger than the ols 
standard errors, and so these intervals are larger than the ols intervals but are 
still symmetric about the ols point estimate. The percentile and BCa methods 
are given in the last two rows. The normal theory confidence intervals are 
probably too short, and any of the other three methods appear to provide 
more reasonable intervals.

7.7.2  Nonlinear Functions of Parameters

Suppose we wanted to get a confidence interval for the ratio β1/β2 in the trans-
actions data. The point estimate from the ols fit is ˆ ˆ .β β1 2 2 68/ = . Section 7.6 
shows how to compute an approximate standard error for this ratio using 
normal theory via the delta method, but we can use the bootstrap without the 
need for any additional theoretical calculations.

In the B = 999 bootstrap samples, the mean ratio was 2.76. The standard 
deviation of the B ratios is the bootstrap estimated standard error of the ratio, 
which turns out to be 0.52. The percentile-based confidence interval for the 
ratio is from the 25th smallest of the ratios to the 975th largest, or from 1.85 
to 3.89.

Table 7.6  Summary Statistics for Case Bootstrap in the Transactions Data

ols boot bias ols.se boot.SE

(Intercept) 144.37 159.20 −14.83 170.54 188.54
t1 5.46 5.51 −0.04 0.43 0.66
t2 2.03 2.02 0.01 0.09 0.15

Table 7.7  95% Confidence Intervals for the Transactions Data

Method (Intercept) t1 t2

Normal theory (−191.47, 480.21) (4.61, 6.32) (1.85, 2.22)
Normal with boot SE (−240.00, 499.08) (4.12, 6.72) (1.75, 2.34)
Percentile (−204.33, 538.92) (4.20, 6.80) (1.73, 2.32)
BCa (−259.44, 487.18) (3.88, 6.64) (1.79, 2.38)



7.8  problems  179

7.7.3  Residual Bootstrap

The case resampling plan outlined in Section 7.7.1 resamples from the joint 
distribution of the response and the terms. An alternative uses residual resam-
pling in which the residuals from the initial fit are resampled. Here is the 
general algorithm:

1.  Given data (xi, yi), i = 1, . . . , n, fit the linear regression model 
E(Y|X = x) = β′x and compute the ols estimator b̂ , and the residuals, 
ˆ ˆe yi i i= − ′b x .

2.  Randomly sample from the residuals to get a new sample e en1
*,… ˆ*( ), 

where ˆ*ei  is equally likely to be any of ˆ , ˆe en1 ,…( ). A modified definition 
of residuals can be used that may slightly improve performance by cor-
recting for unequal variances of the residuals; see Davison and Hinkley 
(1997, p. 262).

3.  Create a bootstrap response with elements y ei i i
* = ′ +ˆ ˆb x *. Compute the 

regression of the bootstrap response on X, and get the coefficient esti-
mates or other summary statistic of interest.

4.  Repeat steps 2 and 3 B times. Confidence intervals are obtained as with 
the case bootstrap.

This sampling procedure assumes the linear mean function is correct, and 
that variance is constant. If these assumptions are correct, this resampling 
method can be more accurate than case resampling.

7.7.4  Bootstrap Tests

The presentation of the bootstrap here has emphasized its use to estimate 
variances and to compute confidence intervals. The bootstrap can also be  
used for testing hypotheses. When testing a single coefficient to be equal  
to 0, one could reject the null hypothesis at level one minus the stated confi-
dence level if the bootstrap confidence interval for that coefficient does  
not include the null value of 0 (Davison and Hinkley, 1997, section 5.5).  
More complicated tests equivalent to F-tests or tests for several coefficients 
simultaneously (Chapter 6) can also be carried out with minimal assumptions 
using a bootstrap, but the methodology is beyond the level of presentation in 
this book. See Davison and Hinkley (1997, section 6.3.2) for a readable 
summary.

7.8  PROBLEMS

7.1 Sue fits a wls regression with all weights equal to 2. Joe fits a wls regres-
sion to the same data with all weights equal to 1. What are the differences 
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in estimates of coefficients, standard errors, σ2, F-tests between Sue’s and 
Joe’s analyses?

7.2 (Data file: physics1) The data file physics1 gives the results of the 
experiment described in Section 7.1, except in this case, the input is the 
π− meson as before, but the output is the π+ meson.

Analyze these data following the analysis done in the text, and sum-
marize your results.

7.3 Large public surveys such as the Youth Risk Behavior Survey conducted 
by the Centers for Disease Control (2013) often provide weights to be 
used in an analysis.
7.3.1  Subpopulations may be oversampled to insure that the number of 

participants in a particular subpopulation is large enough to get 
estimates of the desired precision. For example, if estimates are 
required for each state separately, then states with smaller popula-
tion would need to be oversampled relative to states with a large 
population to get the same precision.

In combining data over subpopulations, should larger weight be 
given to observations from the oversampled subpopulation to those 
not in the oversampled subpopulation?

7.3.2  Nonresponse is a common problem in surveys. For example, if a 
sample size of 1000 is planned in a particular state but in that state 
only 600 responses are obtained, if we are prepared to believe that 
the responders in the subpopulation are no different from the 
nonresponders, then we can weight the responders to represent the 
nonresponders.

In combining data over subpopulations, should larger weight be 
given to observations that represent the nonresponders in the sub-
population or smaller weight?

7.4 (Data file: salarygov) Refer to Problems 5.9 and 6.11.
7.4.1  The data as given have as its unit of analysis the job class. In a study 

of the dependence of maximum salary on skill, one might prefer to 
have the employee as the unit of analysis. Explain why changing the 
unit of analysis to the employee rather than the job class would 
suggest using wls. What are the relevant weights?

7.4.2  Repeat Problem 6.11, but use wls. Do any conclusions change?

7.5 The score test for nonconstant variance, Section 7.2.2, is available as an 
option in many standard regression packages. If not available, it can be 
computed using the following prescription. Suppose X represents the 
regressors in the mean function and Z the regressors in the variance 
function (7.12).
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1.  Assume λ = 0 and use ols to fit with the mean function E(Y|X = x) = β′x. 
Save the residuals êi and the residual sum of squares RSS.

2.  Compute scaled squared residuals u nei i= ˆ 2 /RSS. We combine the ui 
into a regressor U.

3.  Fit ols with the mean function E(U|Z = z) = λ0 + λ′z. Obtain SSreg 
for this regression with df = q, the number of components in Z. If 
variance is thought to be a function of the responses, then in this 
regression, replace Z by the fitted values from the regression in step 
1. The SSreg then will have 1 df.

4.  Compute the score test, S = SSreg/2. The significance level for the test 
can be obtained by comparing S with its asymptotic distribution, 
which, under the hypothesis λ = 0, is χ2(q). If λ ≠ 0, then S will be too 
large, so large values of S provide evidence against the hypothesis of 
constant variance.

Reproduce the score tests given for the sniffer data in Section 7.2.1.

7.6 (Data file: stopping) The (hypothetical) data in the file give automobile 
stopping Distance in feet and Speed in mph for n = 62 trials of various 
automobiles (Ezekiel and Fox, 1959).
7.6.1  Draw a scatterplot of Distance versus Speed. Explain why this 

graph supports fitting a quadratic regression model.
7.6.2  Fit the quadratic model but with constant variance. Compute the 

score test for nonconstant variance for the alternatives that (a) 
variance depends on the mean; (b) variance depends on Speed; 
and (c) variance depends on Speed and Speed2. Is adding Speed2 
helpful?

7.6.3  Refit the quadratic regression model assuming Var(Distance|
Speed) = Speed σ2. Compare the estimates and their standard 
errors with the unweighted case.

7.6.4  Based on the unweighted model, use a sandwich estimator of vari-
ance to correct for nonconstant variance. Compare with the results 
of the last subproblem.

7.6.5  Fit the unweighted quadratic model, but use a case resampling 
bootstrap to estimate standard errors, and compare with the previ-
ous methods.

7.7 Galton’s  sweet  peas (Data file: galtonpeas) Many of the ideas of 
regression first appeared in the work of Sir Francis Galton (1822–1911) 
on the inheritance of characteristics from one generation to the next. In 
Galton (1877), he discussed experiments on sweet peas. By comparing 
the sweet peas produced by parent plants to those produced by offspring 
plants, he could observe inheritance from one generation to the next. 
Galton categorized parent plants according to the typical diameter of the 
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peas they produced. For seven size classes from 0.15 to 0.21 inches, he 
arranged for each of nine of his friends to grow 10 plants from seed in 
each size class; however, two of the crops were total failures. A summary 
of Galton’s data were later published in Pearson (1930). The data file 
includes Parent diameter, Progeny diameter, and SD the standard 
deviation of the progeny diameters. Sample sizes are unknown but are 
probably large.
7.7.1  Draw the scatterplot of Progeny versus Parent.
7.7.2  Assuming that the standard deviations given are population values, 

compute the weighted regression of Progeny on Parent. Draw 
the fitted mean function on your scatterplot.

7.7.3  Galton took the average size of all peas produced by a plant to 
determine the size class of the parental plant. Yet for seeds to rep-
resent that plant and produce offspring, Galton chose seeds that 
were as close to the overall average size as possible. Thus, for a 
small plant, the exceptional large seed was chosen as a representa-
tive, while larger, more robust plants were represented by relatively 
smaller seeds. What effects would you expect these experimental 
biases to have on (1) estimation of the intercept and slope and (2) 
estimates of error?

7.8 Jevons’s  gold  coins (Data file: jevons) The data in this example are 
deduced from a diagram in Jevons (1868) and provided by Stephen M. 
Stigler. In a study of coinage, Jevons weighed 274 gold sovereigns that he 
had collected from circulation in Manchester, England. For each coin, he 
recorded the weight after cleaning to the nearest 0.001 g, and the date of 
issue. The data file includes Age, the age of the coin in decades, n, the 
number of coins in the age class, Weight, the average weight of the coins 
in the age class, SD, the standard deviation of the weights. The minimum 
Min and maximum Max of the weights are also given. The standard 
weight of a gold sovereign was 7.9876 g; the minimum legal weight was 
7.9379 g.
7.8.1  Draw a scatterplot of Weight versus Age, and comment on the 

applicability of the usual assumptions of the linear regression 
model. Also draw a scatterplot of SD versus Age, and summarize 
the information in this plot.

7.8.2  To fit a simple linear regression model with Weight as the response, 
wls should be used with variance function Var(Weight|Age) 
= nσ2/SD2. Sample sizes are large enough to assume the SD are 
population values. Fit the wls model.

7.8.3  Is the fitted regression consistent with the known standard weight 
for a new coin?

7.8.4  For previously unsampled coins of Age = 1, 2, 3, 4, 5, estimate the 
probability that the weight of the coin is less than the legal minimum. 



7.8  problems  183

(Hints: The standard error of prediction is the square root of the 
sum of two terms, the assumed known variance of an unsampled 
coin of known Age, which is different for each age, and the esti-
mated variance of the fitted value for that Age; the latter is com-
puted from the formula for the variance of a fitted value. You 
should use the normal distribution rather than a t to get the 
probabilities.)

7.8.5  Determine the Age at which the predicted weight of coins is equal 
to the legal minimum, and use the delta method to get a standard 
error for the estimated age. This problem is called inverse regres-
sion, and is discussed by Brown (1993).

7.9 Bootstrap for a median (Data file: UN11)
7.9.1  Find a 95% confidence interval for the mean of log(fertility). 

Then, obtain an approximate 95% confidence interval for the 
median of fertility by exponentiating the end points of the 
interval for the mean of log(fertilty).

7.9.2  Use the bootstrap to obtain a 95% confidence interval for the 
median of fertility. Compare with the interval for the mean of 
fertility from Problem 7.9.1.

7.10 (Data file: fuel2001)
7.10.1  Use the bootstrap to estimate confidence intervals for the coeffi-

cients in the fuel data, and compare the results with the usual large 
sample ols estimates.

7.10.2  Examine the histograms of the bootstrap replications for each of 
the coefficients. Are the histograms symmetric or skewed? Do 
they look like normally distributed data, as they would if the large 
sample normal theory applied to these data? Do the histograms 
support or refute the differences between the bootstrap and large 
sample confidence intervals found in Problem 7.10.1?

7.11 (Data file: cakes) Refer to Problem 5.8, which uses the model given at 
(5.12),

 E |( )Y X X X X X X X= + + + + +β β β β β β0 1 1 2 2 3 1
2

4 2
2

5 1 2  (7.23)

Estimate the optimal (X1, X2) combination ( , )1 2
� �X X  that maximizes the 

fitted response and find the standard errors of �X1 and �X2 . (Hint: You will 
need to differentiate (7.23) with respect to both X1 and X2 and then find 
the maximizers as functions of the βs.)

7.12 (Data file: mile) The data file gives the world record times for the one-
mile run (Perkiömäki, 1997). For males, the records are for the period 
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from 1861 to 2003, and for females, for the period 1967–2003. The vari-
ables in the file are Year, year of the record, Time, the record time, in 
seconds, Name, the name of the runner, Country, the runner’s home 
country, Place, the place where the record was run (missing for many 
of the early records), and Gender, either male or female.
7.12.1  Draw a scatterplot of Time versus Year, using a different symbol 

for men and women. Comment on the graph.
7.12.2  Fit a regression model with intercepts and slopes for each gender. 

Provide an interpretation of the slopes.
7.12.3  Find the year in which the female record is expected to be 240 

seconds, or 4 minutes. This will require inverting the fitted regres-
sion equation. Use the delta method to estimate the standard 
error of this estimate.

7.12.4  Using the model fit in Problem 7.12.2, estimate the year in which 
the female record will match the male record, and use the delta 
method to estimate the standard error of the year in which they 
will agree. Comment on whether you think using the point at 
which the fitted regression lines cross is a reasonable estimator of 
the crossing time.

7.13 (Data file: Transact) Use the delta method to get a 95% confidence 
interval for the ratio β1/β2 for the transactions data, and compare with 
the bootstrap interval obtained at the end of Section 7.7.1.

7.14 Windmill  data (Data file: wm1) These data were discussed in Problem 
2.21. Use B = 999 replications of the bootstrap to estimate a 95% confi-
dence interval for the long-term average wind speed at the candidate site 
and compare this with the prediction interval in Problem 2.21.5. See the 
comment at the end of Problem 2.21.4 to justify using a bootstrap confi-
dence interval for the mean as a prediction interval for the long-term 
mean.
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C H A P T E R  8

Transformations

There are exceptional problems for which we know the correct regressors to 
make E(Y|X) a linear regression mean function. For example, if (Y, X) has a 
joint normal distribution, then as in Section 4.4, the conditional distribution 
of Y|X has a linear mean function. Sometimes, the mean function may be 
determined by a theory, apart from parameter values, as in the strong interac-
tion data in Section 7.1. Often no theory tells us the correct form for the mean 
function, and any parametric form we use is little more than an approximation 
that we hope is adequate for the problem at hand. Replacing either the predic-
tors, the response, or both by nonlinear transformations of them is an impor-
tant tool that the analyst can use to extend the number of problems for which 
linear regression methodology is appropriate. This brings up two important 
questions: How do we choose transformations? How do we decide if an 
approximate model is adequate for the data at hand? We address the first of 
these questions in this chapter, and the second in Chapter 9.

8.1  TRANSFORMATION BASICS

The most frequent purpose of transformations is to achieve a mean function 
that is linear in the transformed scale. In problems with only one predictor 
and a response, the mean function can be visualized in a scatterplot, and we 
can attempt to select transformations so the resulting scatterplot has an 
approximate straight-line mean function. With many predictors, selection of 
transformations can be harder, so we consider the one predictor case first. We 
seek a transformation so if X is the regressor obtained by transforming the 
predictor and Y is the transformed response, then the mean function in the 
transformed scale is
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E |( )Y X x x= ≈ +β β0 1

where we have used “≈” rather than “=” to recognize that this relationship 
may be an approximation and not exactly true.

Figure 8.1 contains a plot of body weight BodyWt in kilograms and brain 
weight BrainWt in grams for 62 species of mammals (Allison and Cicchetti, 
1976), using the data in the file brains. Apart from the three separated points 
for humans and two species of elephants, the clumping of points in the lower 
left of the plot hides any useful visual information about the mean of BrainWt 
given BodyWt. Little or no evidence for a straight-line mean function is avail-
able from this graph. Both variables range over several orders of magnitude 
from tiny species with body weights of just a few grams to huge animals of 
over 6600 kg. Transformations can help in this problem.

8.1.1  Power Transformations

A transformation family is a collection of transformations that are indexed by 
one or a few parameters that the analyst can select. The family that is used 
most often is called the power family, defined for a strictly positive variable 
U by

 ψ λ λ( , )U U=  (8.1)

This family includes the square root and cube root transformations, λ = 1/2 or 
1/3, the inverse, λ = −1, and untransformed, λ = 1. We will interpret the value 
of λ = 0 to be a log transformation. The values of λ used most often in practice 

Figure 8.1  Plot of BrainWt versus BodyWt for 62 mammal species.
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are in the range [−1, 1], or less often in the range [−2, 2]. The variable U must 
be strictly positive for these transformations to be used, but we will have more 
to say later about transforming variables that may be 0 or negative. We have 
introduced the ψ-notation1 because we will later consider other families of 
transformations, and having this notation will allow more clarity in the 
discussion.

Figure 8.2 shows plots of ψ(BrainWt, λ) versus ψ(BodyWt, λ) with the same 
λ for both variables, for λ = −1, 0, 1/3, 1/2. There is no requirement that the 
same transformation is used for both variables, but it is reasonable here 
because both are weights. If we allowed each variable to have its own trans-
formation parameter, the visual search for a transformation is harder because 

Figure 8.2  Scatterplots for the brain weight data with four possible transformations.
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1ψ is the Greek letter psi.
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more possibilities need to be considered. A negative power like λ = −1 reorders 
the points, so the isolated point in the upper right of Figure 8.2a is for the 
smallest animal in the data, but in the remaining plots the largest animals are 
in the upper right.

The clear choice from the four graphs in Figure 8.2 is to replace the vari-
ables by their logarithms. The mean function appears to be a straight line in 
this scale. As a bonus, the variance function in the log plot appears to be con-
stant because the variation is uniform across the plot.

The use of logarithms for the brain weight data may not be particularly 
surprising, in light of the following two empirical rules that are often helpful 
in linear regression modeling:

The log rule  If the values of a variable range over more than one order of 
magnitude and the variable is strictly positive, then replacing the variable 
by its logarithm is likely to be helpful.

The range rule  If the range of a variable is considerably less than one order 
of magnitude, then any transformation of that variable is unlikely to be 
helpful.

The log rule is satisfied for both BodyWt, with range 0.005 kg to 6654 kg, 
and for BrainWt, with range 0.14 g to 5712 g, so log transformations would 
have been indicated as a starting point for examining these variables for 
transformations.

Simple linear regression seems to be appropriate with both variables in log 
scale. This corresponds to the physical model

 BrainWt BodyWt= × ×α δβ1  (8.2)

where δ is a multiplicative error. For example, if δ = 1.1 for a particular species, 
then the BrainWt for that species is 1.1 times the expected BrainWt for all 
species with the same BodyWt. On taking logarithms and setting β1 = log(α) 
and e = log(δ),

log( ) log( )BrainWt BodyWt= + +β β0 1 e

which for BodyWt fixed is the simple linear regression model. Scientists who 
study the relationships between attributes of individuals or species call (8.2) 
an allometric model (Gould, 1966, 1973; Hahn, 1979), and the value of β1 plays 
an important role in allometric studies. We emphasize, however, that not all 
useful transformations will correspond to interpretable physical models.

8.1.2  Transforming One Predictor Variable

Transformations of both the response and the predictor are required to get  
a linear mean function in the brain weight example. In other problems,  
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transformation of only one of these variables may be desirable. For selecting 
a transformation, it is convenient to introduce the family of scaled power 
transformations, defined for strictly positive X by

 ψ λ
λ λ

λ

λ

S X
X

X
( , )

( )/

log( )
=

− ≠
=





1 0

0

if

if
 (8.3)

ψS(X, λ) is continuous as a function of λ. Since limλ→0ψS(X, λ) = log(X), the 
logarithmic transformation is a member of this family with λ = 0. Scaled power 
transformations preserve the direction of association, in the sense that if (X, 
Y) are positively related, then (ψS(X, λ), Y) are positively related for all values 
of λ. With basic power transformations, the direction of association changes 
when λ < 0.

If we find an appropriate power to use for a scaled power transformation, 
we would in practice use the basic power transformation ψ(X, λ) in regression 
modeling, since the two differ only by a scale, location, and possibly a sign 
change. The scaled transformations are generally used to select a transforma-
tion only.

If transforming only the predictor and using a choice from the power family, 
we begin with the mean function

 E |( ) ( , )Y X XS= +β β ψ λ0 1  (8.4)

If we know λ, we can fit (8.4) via ols and get the residual sum of squares, 
RSS(λ). An estimate λ̂  of λ is the value of λ that minimizes RSS(λ). We do 
not need to know λ very precisely, and selecting λ to minimize RSS(λ) from 
λ ∈ {−1, −1/2, 0, 1/3, 1/2, 1} is usually adequate.

As an example, consider the dependence of tree Height in decimeters on 
Dbh, the diameter of the tree in mm at 137 cm above the ground, for a sample 
of western cedar trees in 1991 in the Upper Flat Creek stand of the University 
of Idaho Experimental Forest (courtesy of Andrew Robinson). The data are 
in the file ufcwc. Figure 8.3 is the scatterplot of the data, and on this plot we 
have superimposed curved lines corresponding to the fit of (8.4) for λ ∈ {−1, 
0, 1}. For these values of λ we get

λ RSS(λ)

−1 197,352
0 152,232
1 193,740

The value of RSS(0) is much lower than the RSS for the other two values, in 
agreement with the visual fit of the line on log scale compared with the other 
two. By solving a nonlinear least squares problem, we can find the value of λ 
that minimizes the RSS; it is given by ˆ .λ = 0 05. The corresponding fitted line, 
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shown in Figure 8.3, is essentially identical to the line for the log transforma-
tion. The plot of Height versus log(Dbh) is shown in Figure 8.4.

8.1.3  The Box–Cox Method

Box and Cox (1964) provided a general method for selecting a transformation 
from a family indexed by a parameter λ. This method is usually applied in the 
important problem of choosing a response transformation as will be presented 
in Section 8.3. We introduce the Box–Cox method now because it can also be 
used to select transformations of many predictors simultaneously, as presented 
in Section 8.2.2.

We use a slightly more complicated version of the power family called  
the modified power family, defined by Box and Cox (1964) for strictly positive 
Y to be
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where gm(Y) is the geometric mean of the untransformed variable: if the values 
of Y are y1, . . . , yn, the geometric mean of Y is gm( ) exp( log( )/ )Y y ni= ∑ .

Suppose that the mean function

 E |( ( , ) )ψ λM yY X = = ′x xb  (8.6)

Figure 8.3  Height versus Dbh for the red cedar data from Upper Flat Creek.
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holds for some λy. If λy were known, we could fit the mean function (8.6) using 
ols because the transformed response ψM(Y, λy) would then be completely 
specified. Write the residual sum of squares from this regression as RSS(λy). 
Multiplication of the scaled power transformation by gm(Y)1−λ guarantees that 
the units of ψM(Y, λy) are the same for all values of λy, and so all the RSS(λy) 
are in the same units. We estimate λy to be the value of the transformation 
parameter that minimizes RSS(λy). From a practical point of view, we can again 
select λy from λy ∈ {−1, −1/2, 0, 1/3, 1/2, 1}.

The Box–Cox method is not transforming for linearity, but rather it is trans-
forming for normality: λ is chosen to make the residuals from the regression 
of ψ(Y, λy) on X as close to normally distributed as possible. Hernandez and 
Johnson (1980) point out that “as close to normal as possible” need not be 
very close to normal, and so graphical checks are desirable after selecting a 
transformation. The Box–Cox method will also produce a confidence interval 
for the transformation parameter; see Appendix A.12.1 for details.

8.2  A GENERAL APPROACH TO TRANSFORMATIONS

The data described in Table 8.1 and given in the data file Highway are taken 
from an unpublished master’s paper in civil engineering by Carl Hoffstedt. 
They relate the automobile accident rate in accidents per million vehicle miles 
to several potential predictors. The data include 39 sections of large highways 
in the state of Minnesota in 1973. The goal of this analysis is to understand the 
impact on accidents of the design variables slim, sigs, and shld that are 
under the control of the highway department. The other variables are thought 

Figure 8.4  The red cedar data from Upper Flat Creek transformed.
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to be important determinants of accidents but are more or less beyond the 
control of the highway department and are included to reduce variability due 
to these uncontrollable factors. We have no particular reason to believe that 
rate will be a linear function of the predictors, or any theoretical reason to 
prefer any particular form for the mean function.

An important first step in this analysis is to examine the scatterplot matrix 
of all the predictors and the response, as given in Figure 8.5. Here are some 
observations about this scatterplot matrix that might help in selecting 
transformations:

1.  The variable sigs, the number of traffic lights per mile, is 0 for freeway-
type road segments but can be well over 2 for other segments. We can’t 
use power transformations or logs because of the 0 values. A simple 
expedient with variables that can be 0 is to add a small constant before 
transforming. The variable sigs is a rate per mile, so we add the constant 
to the number of signals in the segment, and then recompute a rate,

sigs1 sigs len
len

= × + 1

This variable is always positive and can be transformed using the power 
family.

2.  adt and len have wide ranges, and logarithms are likely to be appropri-
ate for them.

3.  slim varies only from 40 mph to 70 mph, with most values in the range 
from 50 to 60. Transformations are unlikely to be much use here.

4.  Each of the predictors seems to be at least modestly associated with 
rate, as the mean function for each of the plots in the top row of Figure 
8.5 is not flat.

5.  Many of the predictors are also related to each other. In some cases, the 
mean functions for the plots of predictor versus predictor appear to be 
linear; in other cases, they are not linear.

Table 8.1  The Highway Accident Data

Variable Description

rate 1973 accident rate per million vehicle miles
len Length of the segment in miles
adt Estimated average daily traffic count in thousands
trucks Truck volume as a percentage of the total volume
slim 1973 speed limit
shld Shoulder width in feet of outer shoulder on the roadway
sigs Number of signalized interchanges per mile in the segment
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Given these preliminary views of the scatterplot matrix, we now have the 
daunting task of finding good transformations to use. This raises immediate 
questions: What are the goals in selecting transformations? How can we decide 
if we have made a good choice?

The overall goal is to find transformations in which multiple linear regres-
sion matches the data to a reasonable approximation. The connection between 
this goal and choosing transformations that make the 2D plots of predictors 
have linear mean functions is not entirely obvious. Important work by Brill-
inger (1983) and Li and Duan (1989) provides a theoretical connection. 
Suppose we have a response variable Y and a set of regressors X derived from 
the predictors, and suppose it were true that

 E |( )Y X g= = ′x x) (b  (8.7)

Figure 8.5  The highway accident data, no transformations.
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for some completely unknown and unspecified function g. According to this, 
the mean of Y depends on X only through a linear combination of the regres-
sors in X, and if we could draw a graph of Y versus β′x, this graph would have 
g as its mean function. We could then either estimate g, or we could transform 
Y to make the mean function linear. All this depends on estimating β without 
specifying anything about g. Are there conditions under which the ols regres-
sion of Y on X can help us learn about β?

8.2.1  The 1D Estimation Result and Linearly Related Regressors

We will say that X is a set of linearly related regressors if the graph of any 
linear combination of the regressors in X versus any other linear combination 
of the regressions in X has a straight-line mean function. The condition that 
all the graphs in a scatterplot matrix of X have straight-line mean functions is 
weaker than the condition for linearly related regressors, but it is a reasonable 
condition that we can check in practice. Requiring that X is multivariate 
normal is much stronger than linearly related regressors. Hall and Li (1993) 
show that the condition for linearly related regressors holds approximately as 
the number of predictors grows large, so in very large problems, transforma-
tion becomes less important because the assumption of linearly related regres-
sors will hold approximately without any transformations.

Given that linearly related regressors hold at least to a reasonable approxi-
mation, and assuming that E(Y|X = x) = g(β′x), then the ols estimate b̂  is a 
consistent estimate of cβ for some constant c that is usually nonzero (Cook, 
1998; Li and Duan, 1989). Given this theorem, a useful general procedure for 
applying multiple linear regression analysis is

1.  Transform predictors to get regressors for which the condition for lin-
early related regressors holds, at least approximately. The regressors in 
X may include dummy variables that represent factors, which should not 
be transformed, as well as transformations of continuous predictors.

2.  We can estimate g from the 2D scatterplot of Y versus ˆ ′b x, where b̂  is 
the ols estimator from the regression of Y on X. Almost equivalently, 
we can estimate a transformation of Y either from the inverse plot of 
ˆ ′b x versus Y or from using the Box–Cox method.

This is a general and powerful approach to building regression models that 
match data well, based on the assumption that (8.7) is appropriate for the data. 
We have already seen mean functions in Chapter 5 for which (8.7) does not 
hold because of the inclusion of interaction regressors, and so transformations 
chosen using the methods discussed here may not provide a comprehensive 
mean function when interactions are present.

The Li–Duan theorem is actually much more general and has been extended 
to problems with interactions present and to many other estimation methods 
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beyond ols. See Cook and Weisberg (1999a, chapters 18–20) and, at a higher 
mathematical level, Cook (1998).

8.2.2  Automatic Choice of Transformation of Predictors

Using the results of Section 8.2.1, we seek to transform the predictors so that 
all plots of one predictor versus another have a linear mean function, or at 
least have mean functions that are not too curved. Velilla (1993) proposed a 
multivariate extension of the Box–Cox method to select transformations to 
linearity, and this method can often suggest a very good starting point for 
selecting transformations of predictors. Starting with k untransformed strictly 
positive predictors X = (X1, . . . , Xk), we will apply a modified power transfor-
mation to each Xj, and so there will be k transformation parameters collected 
into λ = (λ1, λ2, . . . , λk)′. We will write ψM(X, λ) to be the set of variables

ψ ψ λ ψ λM M M k kX X X( , ) ( ( , ), , ( , ))l = … ′1 1

Let V(λ) be the sample covariance matrix of the transformed data ψM(X, 
λ). The value l̂  is selected as the value of λ that minimizes the logarithm of 
the determinant of V(λ). If special purpose software is not available, this 
minimization can be carried using a general function minimizer included in 
many high-level languages, such as R, Maple, Mathematica, or even Micro-
soft Excel. The minimizers generally require only specification of the func-
tion to be minimized and a set of starting values for the algorithm. The starting 
values can be taken to be λ = 0, λ = 1, or some other appropriate vector of 
zeros and ones.

Returning to the highway data, we eliminate slim as a variable to be 
transformed because its range is too narrow. For the remaining predictors,  
we get the summary of transformations using the multivariate Box–Cox 
method in Table 8.2. The table gives the value of l̂  in the column marked 
“Est. power.” The standard errors are computed as outlined in Appendix 
A.12.2. The standard errors can be treated like standard errors of regression 
coefficients. The next two columns provide a 95% confidence interval for  
each λ. The estimated powers for len, adt, trks, and sigs1 are close to 0, 
and the power for shld does not appear to be different from 1. Table 8.2b 
includes three likelihood ratio tests. The first of these tests is that all powers 
are 0; this is firmly rejected as the approximate test, with an approximate χ2(5) 
distribution,2 has a tiny significance level. Similarly, the test for no transforma-
tion (λ = 1) is firmly rejected. The test that the first three variables should be 
in log scale, the next untransformed, and the last in log scale, has a p-value 
0.29 and suggests using these simple transformations in further analysis with 
these data. The predictors in transformed scale, along with the response, are 
shown in Figure 8.6. All these 2D plots have a linear mean function, or at least 

2The df are the number estimated elements in λ.
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Table 8.2  Power Transformations to Normality for the Highway Data

(a) Estimated Powers

Wald Conf. Int.

Est.Power Std.Err. Lower Upper

len 0.144 0.213 −0.273 0.561
adt 0.051 0.121 −0.185 0.287
trks −0.703 0.618 −1.913 0.508
shld 1.346 0.363 0.634 2.057
sigs1 −0.241 0.150 −0.534 0.052

(b) Test Statistics

LRT df p-Value

LR test, lambda = (0 0 0 0 0) 23.32 5 0.00
LR test, lambda = (1 1 1 1 1) 132.86 5 0.00
LR test, lambda = (0 0 0 1 0) 6.09 5 0.30

are not strongly nonlinear. They provide a good place to start regression 
modeling.

8.3  TRANSFORMING THE RESPONSE

Once the predictors are transformed, we can turn our attention to transform-
ing the response.

Cook and Weisberg (1994) suggested that the methodology of Section 8.1.2 
for transforming a single predictor can be adapted to visualizing the need to 
transform a response, and to select an appropriate transformation from the 
graph. Start with

E |( ) 0 1
ˆ ( , )Y Y YS y= +α α ψ λ

where Ŷ are the fitted values from the regression of the untransformed Y on 
the appropriately transformed regressors X. This implies examining a graph 
with Ŷ on the vertical axis and Y on the horizontal axis, called an inverse fitted 
value plot. If the regressors are approximately linearly related, the transforma-
tion with parameter λy can be selected either to minimize the RSS or 
visually.

Figure 8.7a is the inverse fitted value plot for the highway data using the 
transformed regressors determined in the last section. We can use the method 
of Section 8.1.2 to select a transformation for rate. The best-fitting curve with 
ˆ .λ = 0 19 and the log curve for λ = 0 are nearly identical, and so a log transfor-

mation of rate is suggested.
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Figure 8.6  Transformed predictors for the highway data.
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Figure  8.7  (a) Inverse fitted value plot for the highway data. (b) Profile log-likelihood for the 
Box–Cox method.
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The Box–Cox method is the most commonly used procedure for finding a 
transformation of the response. This method is often summarized by a graph 
with λy on the horizontal axis and either RSS(λy) or better yet log[L(λy)] = −(n/2) 
log[RSS(λy)/n] on the vertical axis. With this latter choice, the estimate λ̂y is 
the point that maximizes the curve, and a 95% confidence interval for the 
estimate is given by the set of all λy with log[ ( )] log[ ( )] 1.92L Ly yλ̂ λ− < ; see 
Appendix A.12.1. This graph for the highway data is shown in Figure 8.7b, with 
ˆ .λ ≈ −0 2 and the confidence interval of about −0.8 to +0.3. The log transforma-

tion is in the confidence interval, agreeing with the inverse fitted value plot.
The two transformation methods for the response seem to agree for the 

highway data, but there is no theoretical reason why they need to give the 
same transformation. The following path is recommended for selecting a 
response transformation:

1.  With approximately linearly related regressors, draw the inverse response 
plot of ŷ versus the response. If this plot shows a clear nonlinear trend, 
then the response should be transformed to match the nonlinear trend. 
There is no reason why only power transformations should be consid-
ered. For example, the transformation could be selected using a smoother. 
If there is no clear nonlinear trend, transformation of the response is 
unlikely to be helpful.

2.  The Box–Cox procedure can be used to select a transformation to nor-
mality. It requires the use of a transformation family.

For the highway data, we now have a reasonable starting point for regres-
sion, with several of the predictors and the response all transformed to log 
scale. We will continue with this example in Chapter 10.

8.4  TRANSFORMATIONS OF NONPOSITIVE VARIABLES

Several transformation families for a variable U that includes negative values 
have been suggested. The central idea is to use the methods discussed in this 
chapter for selecting a transformation from a family but to use a family that 
permits U to be nonpositive. One possibility is to consider transformations of 
the form (U + γ)λ, where γ is sufficiently large to ensure that U + γ is strictly 
positive. We used a variant of this method with the variable sigs in the 
highway data. In principle, (γ, λ) could be estimated simultaneously, although 
in practice, estimates of γ are highly variable and unreliable. Alternatively, Yeo 
and Johnson (2000) proposed a family of transformations that can be used 
without restrictions on U that have many of the good properties of the Box–
Cox power family. These transformations are defined by

 ψ λ
ψ λ

ψ λYJ
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If U is strictly positive, then the Yeo–Johnson transformation is the same as 
the Box–Cox power transformation of (U + 1). If U is strictly negative, then 
the Yeo–Johnson transformation is the Box–Cox power transformation of 
(−U + 1), but with power 2 − λ. With both negative and positive values, the 
transformation is a mixture of these two, so different powers are used for 
positive and negative values. In this latter case, interpretation of the transfor-
mation parameter is difficult, as it has a different meaning for U ≥ 0 and for 
U < 0.

8.5  ADDITIVE MODELS

Additive models provide an alternative to the methods for selecting transfor-
mations for predictors. Suppose we have a regression problem with regressors 
for factors and other variables that do not need transformation given in a 
vector z, and additional predictors that may need to be transformed in x′ = 
(x1, . . . , xq). We consider the mean function

 E |( , )Y g xj jz x z= ′ + ∑β ( )  (8.9)

where gj(xj) is some unknown function that is essentially a transformation of 
xj. Additive models proceed by estimating the functions gj. Regression param-
eters for the xj do not appear in (8.9) because they are absorbed into the 
estimates of the gj (this takes some getting used to). Methodology that uses 
splines to estimate the gj is discussed in a fine book by Wood (2006), with 
accompanying software available in R in the mgcv package.

8.6  PROBLEMS

8.1 (Data file: baeskel) These data were collected in a study of the effect of 
dissolved sulfur on the surface tension of liquid copper (Baes and Kellogg, 
1953). The predictor Sulfur is the weight percent sulfur, and the response 
is Tension, the decrease in surface tension in dynes per centimeter. Two 
replicate observations were taken at each value of Sulfur. These data 
were previously discussed by Sclove (1968).
8.1.1  Draw the plot of Tension versus Sulfur to verify that a transfor-

mation is required to achieve a straight-line mean function.
8.1.2  Set λ = −1, and fit the mean function

E |( ) 0 1TensionSulfur Sulfur= +β β λ

using ols; that is, fit the ols regression with Tension as the 
response and 1/Sulfur as the regressor. Add a line for the fitted 
values from this fit to the plot you drew in Problem 8.1.2. If you do 
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not have a program that will do this automatically, you can let new 
be a vector of 100 equally spaced values between the minimum value 
of Sulfur and its maximum value. Compute the fitted values 
Fit.new new= +ˆ ˆβ β λ

0 1 , and a line joining these points to your graph. 
Repeat for λ = 0, 1, and so in the end you will have three lines on 
your plot. Which of these three choices of λ gives fitted values that 
match the data most closely?

8.1.3  Replace Sulfur by its logarithm, and consider transforming the 
response Tension. To do this, draw the inverse fitted value plot with 
the fitted values from the regression Tension ∼ log(Sulfur) 
on the vertical axis and Tension on the horizontal axis. Repeat the 
methodology of Problem 8.1.2 to decide if further transformation of 
the response will be helpful.

8.2 (Data file: stopping) We reconsider the stopping distance data used in 
Problem 7.6.
8.2.1  Using Speed as the only regressor, find an appropriate transforma-

tion for Distance that can linearize this regression.
8.2.2  Using Distance as the response, transform the predictor Speed 

using a power transformation with each λ ∈ {−1, 0, 1}, and show that 
none of these transformations is adequate.

8.2.3  Show that using λ = 2 does match the data well. This suggests using 
a quadratic polynomial for regressors, including both Speed and 
Speed2.

8.2.4  Hald (1960) suggested on the basis of a theoretical argument using 
a quadratic mean function for Distance given Speed, with 
Var(Distance|Speed) = σ2Speed2. Draw the plot of Distance 
versus Speed, and add a line on the plot of the fitted curve from 
Hald’s model. Then obtain the fitted values from the fit of the trans-
formed Distance on Speed, using the transformation you found 
in Problem 8.2.1. Transform these fitted values to the Distance 
scale (for example, if you fit the regression sqrt(Distance) 
∼ Speed, then the fitted values would be in square-root scale and 
you would square them to get the original Distance scale). Add to 
your plot the line corresponding to these transformed fitted values. 
Compare the fit of the two models.

8.3 (Data file: water) A major source of water in Southern California is the 
Owens Valley. This water supply is in turn replenished by spring runoff 
from the Sierra Nevada mountains. If runoff could be predicted, engineers, 
planners, and policy makers could do their jobs more efficiently. The data 
file contains snowfall depth measurements over 43 years taken at six sites 
in the mountains, in inches, and stream runoff volume at a site near Bishop, 
California. The three sites with names starting with “O” are fairly close to 
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each other, and the three sites starting with “A” are also fairly close to each 
other. Year is also given in the data file, but should not be used as a 
predictor.
8.3.1  Construct the scatterplot matrix of the data, and provide general 

comments about relationships among the variables.
8.3.2  Using the methodology for automatic choice of transformations out-

lined in Section 8.2.2, find transformations to make the transformed 
predictors as close to linearly related as possible. Obtain a test of 
the hypothesis that all λj = 0 against a general alternative, and sum-
marize your results. Do the transformations you found appear to 
achieve linearity? How do you know?

8.3.3  Given log transformations of the predictors, show that a log trans-
formation of the response is reasonable.

8.3.4  Consider the multiple linear regression model with mean function 
given by

log(BSAAM)~log(APMAM)+log(APSAB)+log(APSLAKE)+
log(OPBPC)+loog(OPRC)+log(OPSLAKE)

with constant variance function. Estimate the regression coefficients 
using ols. You will find that two of the estimates are negative; Which 
are they? Does a negative coefficient make any sense? Why are the 
coefficients negative?

8.3.5  Test the hypothesis that the coefficients for the three “O” log predic-
tors are equal against the alternative that they are not all equal. 
Repeat for the “A” predictors. Explain why these might be interest-
ing hypotheses. (Hint: The geometric mean of the regressors OPBPC, 
OPRC, OPSLAKE is equal to exp[(log(OPBPC) + log(OPRC) + log(OP
SLAKE))/3], and so the sum [log(OPBPC) + log(OPRC) + log(OPSLA
KE)] is proportional to the logarithm of the geometric mean of these 
regressors. If the three coefficients are equal, then we are essentially 
replacing the three predictors by one regressor equivalent to the 
logarithm of their geometric mean.)

8.4 (Data file: salarygov) In Problem 5.9 we modeled MaxSalary as the 
response and modeled the predictor Score using regressors from a 
B-spline basis to account for curvature.
8.4.1  As an alternative, show that the regression model log(MaxSalary) 

∼ Score has an approximately linear mean function with approxi-
mately constant variance. Most studies of salary and income are 
done in log scale.

8.4.2  As in Problem 5.9.3, define a factor with two levels for male- and 
female-dominated job classes, and fit appropriate models to explore 
differences between the two classes of jobs.



202 chapter 8 transformations

8.5 World  cities (Data file: BigMac2003) The Union Bank of Switzerland 
publishes a report entitled “Prices and Earnings Around the Globe” 
(2009). The data described in Table 8.3 are taken from their 2003 version 
for 69 world cities.
8.5.1  Draw the scatterplot with BigMac on the vertical axis and FoodIn-

dex on the horizontal axis. Provide a qualitative description of this 
graph. Two of the cities had very high cost for BigMac. What are 
they?

8.5.2  Use the Box–Cox method and, if available, an inverse response plot 
to find a transformation of BigMac so that the resulting scatterplot 
has a linear mean function.

8.5.3  An advantage of the inverse response plot is that we can find indi-
vidual points that may be important in fitting curves to the plot. 
These influential points will often be at the extreme left or at the 
extreme right of the plot. Removing these points could change the 
fitted curve substantially. Less often, points that are separated verti-
cally from the fitted line can be influential.

The two cities at the far right of the inverse response plot are 
candidates for influential points. To verify this, refit the transforma-
tion methods without these two points and summarize the changes, 
if any, in choice of transformation.

8.5.4  Draw the scatterplot matrix of the three variables (BigMac, Rice, 
Bread), and use the multivariate Box–Cox procedure to decide 
on normalizing transformations. Test the null hypothesis that λ = 
(1, 1, 1)′ against a general alternative. Does deleting Karachi and 
Nairobi change your conclusions?

8.5.5  Set up the regression using the four regressors, log(Bread), log(Bus), 
log(TeachGI), and Apt0.33, and with response BigMac. Draw the 

Table 8.3  Global Price Comparison Data

Variable Description

BigMac Minutes of labor to buy a BigMac hamburger based on a typical 
wage averaged over 13 occupations

Bread Minutes of labor to buy 1 kg bread
Rice Minutes of labor to buy 1 kg of rice
Bus Lowest cost of 10 km public transit
FoodIndex Food price index, Zurich = 100
TeachGI Primary teacher’s gross annual salary, thousands of U.S. dollars
TeachNI Primary teacher’s net annual salary, thousands of U.S. dollars
TaxRate 100 × (TeachGI − TeachNI)/TeachGI. In some places, this is 

negative, suggesting a government subsidy rather than tax
TeachHours Teacher’s hours per week of work
Apt Monthly rent in U.S. dollars of a typical three-room apartment
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inverse fitted value plot of ŷ versus BigMac. Estimate the best power 
transformation. Check on the adequacy of your estimate by refitting 
the regression model with the transformed response and drawing 
the inverse response plot again. If transformation was successful,  
this second inverse fitted value plot should have a linear mean 
function.

8.6 (Data file: Wool) These data were introduced in Section 5.2. For this 
problem, we will start with cycles, rather than its logarithm, as the 
response. Remember that you may need to declare len, amp, and load 
as factors.
8.6.1  Draw the scatterplot matrix for these data and summarize the infor-

mation in this plot. (Warning:  The predictors are factors, not continu-
ous variables, so the plotting program might label the levels as 1, 2, 
and 3, rather than the actual numeric value of the variable.)

8.6.2  View all three predictors as factors with three levels, and without 
transforming cycles, fit the second-order mean function with 
regressors for all main effects and all two-factor interactions. Sum-
marize results of the amp by load interaction with an effects plot.

8.6.3  Fit the first-order mean function consisting only of the main effects. 
From Problem 8.6.2, this mean function is not adequate for these 
data based on using cycles as the response because the tests for 
each of the two-factor interactions indicate that these are likely to 
be nonzero. Use the Box–Cox method to select a transformation for 
cycles based on the first-order mean function.

8.6.4  In the transformed scale, fit both the first-order model and the 
second-order model, and compute an F-test comparing these two 
models. This is a nonstandard test because it is simultaneously testing 
all interactions to be equal to zero. Then provide an effects plot for 
the len by amp interaction. This will of course be three parallel lines. 
Then redraw this effects plot with cycles rather than log(cycles) 
on the horizontal axis, and compare with the effects plot you drew 
in Problem 8.6.2.

8.7 (Data file: fuel2001) Justify transforming Miles in the fuel data.
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C H A P T E R  9

Regression Diagnostics

Graphs so far have mostly been used to help us decide what to do before fitting 
a regression model. Regression diagnostics are used after fitting to check if a 
fitted mean function and assumptions are consistent with observed data. The 
basic statistics here are the residuals or possibly rescaled residuals. If the fitted 
model does not give a set of residuals that appear to be reasonable, then some 
aspect of the model, either the assumed mean function or assumptions con-
cerning the variance function, may be called into doubt. A related issue is the 
importance of each case on estimation and other aspects of the analysis. In 
some data sets, the observed statistics may change in important ways if a few 
cases are deleted from the data. Such cases are called influential, and we shall 
learn to detect such cases. We will be led to study and use two relatively unfa-
miliar diagnostic statistics, called distance measures and leverage values. We 
concentrate on graphical diagnostics but include numerical quantities that can 
aid in interpretation of the graphs.

9.1  THE RESIDUALS

We begin by deriving the properties of residuals using the matrix notation 
outlined in Chapter 3. The basic multiple linear regression model is given by

 E | = Var |( ) ( ) 2Y X X Y X Ib = σ  (9.1)

where X is a known matrix with n rows and p′ columns, including a column of 
ones for the intercept if the intercept is included in the mean function. We will 
further assume that we have selected a parameterization for the mean function 
so that X has full column rank, meaning that the inverse (X′X)−1 exists; as we 
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have seen previously, this is not an important limitation on regression models 
because we can always delete regressors from the mean function, or equiva-
lently delete columns from X, until we have full rank. The p′ × 1 vector β is 
the unknown parameter vector.

In fitting model (9.1), we estimate β by b̂ = ′ ′−( ) 1X X X Y, and the fitted 
values Ŷ corresponding to the observed values Y are then given by

 

ˆ ˆY X

X X X X Y

HY

=
= ′ ′
=

−

b
( ) 1  

(9.2)

where H is the n × n matrix defined by

 H X X X X= ′ ′−( ) 1  (9.3)

H is called the hat matrix because it transforms the vector of observed 
responses Y into the vector of fitted responses Ŷ. The vector of residuals ê is 
defined by

 

ˆ ˆ

ˆ
e Y Y

Y X

Y X X X X Y

I H Y

= −

= −
= − ′ ′
= −

−

b
( )

( )

1
 

(9.4)

9.1.1  Difference between ê and e

In this book the vector of errors e has been defined implicity by

 
e Y Y X

Y X

= −
= −

E |( )

b
 

(9.5)

The errors e are unobservable random variables, with E(e|X) = 0 and 
Var(e|X) = σ2I. The residuals ê are computed quantities that can be graphed 
or otherwise studied. Their mean and variance, using (9.4) and Appendix  
A.7, are

 
E |

Var |

( )

( ) ( )2

ˆ

ˆ

e X 0

e X I H

=
= −σ

 (9.6)

Like the errors, each of the residuals has zero mean. Unlike the errors, each 
residual may have a different variance, and in general, the residuals are cor-
related. If the errors are normally distributed, so are the residuals. From (9.4), 
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if the errors are not normally distributed, then the residuals may still be nearly 
normal because sums of nonnormal variables are approximately normal. If the 
intercept is included in the model, then ∑ =êi 0. In scalar form, the variance 
of the ith residual is

 Var( ) (1 )2ê hi ii= −σ  (9.7)

where hii is the ith diagonal element of H. Diagnostic procedures are based 
on the residuals which we would like to assume behave as the unobservable 
errors would. The usefulness of this assumption depends on the hat matrix, 
since it is H that relates e to ê and also gives the variances and covariances of 
the residuals.

9.1.2  The Hat Matrix

H is n × n and symmetric with many special properties that are easy to verify 
directly from (9.3). Multiplying X on the left by H leaves X unchanged, 
HX = X. Similarly, (I − H)X = 0. The property HH = H2 = H also shows that 
H(I − H) = 0, so the covariance between the fitted values HY and residuals 
(I − H)Y is

Cov | Cov |( , ) ( , ( ) )

( )2

ˆ ˆY e X HY I H Y X

H I H 0

= −
= − =σ

Another name for H is the orthogonal projection on the column space of X. 
The elements of H, the hij, are given by

 h hij i j j i ji= ′ ′ = ′ ′ =− −x X X x x X X x( ) ( )1 1  (9.8)

Many helpful relationships can be found between the hij. For example,

 h pii

i

n

=
∑ = ′

1

 (9.9)

and, if the mean function includes an intercept,

 h hij

i

n

ij

j

n

= =
∑ ∑= =

1 1

1  (9.10)

Each diagonal element hii is bounded below by 1/n and above by 1/r, if r is the 
number of rows of X that are identical to xi.

As can be seen from (9.7), cases with large values of hii will have small 
values for Var(êi|X); as hii gets closer to 1, this variance will approach 0. For 
such a case, no matter what value of yi is observed for the ith case, we are 
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nearly certain to get a residual near 0. Hoaglin and Welsch (1978) pointed this 
out using a scalar version of (9.2),

 ŷ h y h y h yi ij j

j

n

ii i ij j

j i

n

= = +
= ≠

∑ ∑
1

 (9.11)

In combination with (9.10), Equation (9.11) shows that as hii approaches 1, ŷi 
gets closer to yi. For this reason, they called hii the leverage of the ith case.

Cases with large values of hii will have unusual values for xi. Assuming that 
the intercept is in the mean function, and using the notation of the deviations 
from the average cross-products matrix discussed in Chapter 3, hii can be 
written as

 h
n

’ii i i= + − ′ −−1
( ) ( ) ( )1x x x x* *X X  (9.12)

where ′ = ′x xi i(1, )* , and x  is the mean of the xi
*. The second term on the right-

hand side of (9.12) is the equation of an ellipsoid centered at x .
For example, consider again the United Nations data, Section 3.1. The plot 

of log(ppgdp) versus pctUrban is given in the scatterplot in Figure 9.1. The 
ellipses drawn on graph correspond to elliptical contours of constant hii for 
hii = 0.01, 0.03, 0.05, and 0.07. Any point that falls exactly on the outer contour 
would have hii = 0.07, while points on the innermost contour have hii = 0.01. 
Points near the long or major axis of the ellipsoid need to be much farther 

Figure 9.1  Contours of constant leverage in two dimensions.
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away from x, in the usual Euclidean distance sense, than do points closer to 
the minor axis, to have the same values for hii.1

In the example, the localities with the highest level of urbanization, which 
are Anguilla, Bermuda, Cayman Islands, Hong Kong, Macao, Nauru, and  
Singapore, all with 100% urbanization, do not have particularly high leverage, 
as all the points for these places are between the contour for hii = 0.02 
and 0.04. None of the hii is very large, with the largest value for the marked 
point for Trinidad and Tobago, which has relatively high income for relatively 
low urbanization. High leverage points with values close to one can occur,  
and identifying these cases is very useful in understanding a regression  
problem.

9.1.3  Residuals and the Hat Matrix with Weights

When Var(e|X) = σ2W−1 with W a known diagonal matrix of positive weights 
as in Section 7.1, all the results so far in this section require some modification. 
A useful version of the hat matrix is given by

 H W X X WX X W= ′ ′−1/2 1 1/2( )  (9.13)

and the leverages are the diagonal elements of this matrix. The fitted values 
are given as usual by ˆ ˆY X= b , where now b̂  is the wls estimator.

The definition of the residuals is a little trickier. The “obvious” definition 
of a residual is, in scalar version, yi i− ′b̂ x , but this choice has important defi-
ciencies. First, the sum of squares of these residuals will not equal the residual 
sum of squares because the weights are ignored. Second, the variance of the 
ith residual will depend on the weight of case i.

Both of these problems can be solved by defining residuals for weighted 
least squares for i = 1, . . . , n by

 ˆ ˆe w yi i i i= − ′( )b x  (9.14)

The sum of squares of these residuals is the residual sum of squares. The  
variance of these residuals does not depend on the weight. When all the 
weights are equal to 1, (9.14) reduces to (9.4). In drawing graphs and other 
diagnostic procedures discussed in this book, (9.14) should be used to define 
residuals. Some computer packages use the unweighted residuals rather  
than (9.14) by default. The residuals defined by (9.14) are generally called 
Pearson residuals. In this book ê and ê always refer to the residuals defined 
by (9.14).

1The regressor pctUrban is a percentage between 0 and 100. Contours of constant leverage cor-
responding to pctUrban < 0 or pctUrban > 100 are shown to give the shape of the contours, 
even though in this particular problem points could not occur in this region.
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9.1.4  Residual Plots When the Model Is Correct

Residuals are generally used in scatterplots of the residuals ê against a regres-
sor or linear combination of regressors in the mean function that we will call 
U. The key features of these residual plots when the correct model is fit are 
as follows:

1.  The mean function is E(ê|U) = 0. This means that the scatterplot of 
residuals on the vertical axis versus any linear combination of the regres-
sors should have a constant mean function equal to 0. When the model 
is correct, residual plots should look like null plots.

2.  Since Var (êi|U) = σ2(1 − hii) even if the fitted model is correct, the vari-
ance function is not quite constant. The variability will be smaller for 
high-leverage cases with hii close to 1.

3.  The residuals are correlated, but this correlation is generally unimport-
ant and not visible in residual plots.

9.1.5  The Residuals When the Model Is Not Correct

If the fitted model is based on incorrect assumptions there is a U for which 
the plot of residuals versus U is not a null plot. Figure 9.2 shows several generic 
residual plots for a simple linear regression problem. Figure 9.2a is a null plot 
that indicates no problems with the fitted model. If obtained from simple 
regression, Figure 9.2b–d would suggest nonconstant variance as a function  
of the quantity plotted on the horizontal axis. The curvature apparent in  

Figure  9.2  Residual plots: (a) null plot; (b) right-opening megaphone; (c) left-opening mega-
phone; (d) double outward bow; (e) and (f) nonlinearity; (g) and (h) combinations of nonlinearity 
and nonconstant variance function.
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R
es

id
ua

l,
ê
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Figure 9.2e–h suggests an incorrectly specified mean function. Figure 9.2g,h 
suggest both curvature and nonconstant variance.

In models with many regressors, we cannot necessarily associate shapes in 
a residual plot with a particular problem with the assumptions. Figure 9.3 
shows a residual plot for the fit of the mean function E(Y|X = x) = β0 + β1x1 + β2x2 
for the artificial data given in the file caution from Cook and Weisberg 
(1999b). The right-opening megaphone is clear in this graph, suggesting non-
constant variance. But these data were actually generated using a mean 
function

 E |( )
2 (1.5 )

1

2
2

Y X
x

x
= =

+ +
x  (9.15)

and so the real problem is that the mean function is wrong. A nonnull residual 
plot in multiple regression indicates that something is wrong but does not 
necessarily tell what is wrong.

Residual plots in multiple regression can be interpreted just as residual 
plots in simple regression if two conditions are satisfied. First, the predictors 
should be approximately linearly related (Section 8.2.1). The second condition 
is on the mean function: we must be able to write the mean function in the 
form E(Y|X = x) = g(β′x) for some unspecified function g. If either of these 
conditions fails, then residual plots cannot be interpreted as in simple regres-
sion (Cook and Weisberg, 1999b). In the caution data, the second condition 
fails because (9.15) cannot be written as a function of a single linear combina-
tion of the regressors.

Figure 9.3  Residual plot for the caution data.
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9.1.6  Fuel Consumption Data

According to theory, if the mean function and other assumptions are correct, 
then all possible residual plots of residuals versus any function of the regressors 
or predictors should resemble a null plot, so many plots of residuals should be 
examined. Usual choices include plots versus each of the regressors and versus 
fitted values, as shown in Figure 9.4 for the fuel consumption data. None of 
the plots versus individual regressors in Figure 9.4a–d suggests any particular 
problems, apart from the relatively large positive residual for Wyoming and 
large negative residual for Alaska. In some of the graphs, the point for the 
District of Columbia is separated from the others. Wyoming is large but 
sparsely populated with a well-developed road system. Driving long distances 
for the necessities of life, such as going to see a doctor, will be common in this 
state. While Alaska is also very large and sparsely populated, most people live 
in relatively small areas around cities. Much of Alaska is not accessible by 
road. These conditions should result in lower use of motor fuel than might 
otherwise be expected. The District of Columbia is a very compact urban area 
with good rapid transit, so use of cars will generally be less. It has a small 
residual but unusual values for the regressors in the mean function, so it is 

Figure  9.4  Residual plots for the fuel consumption data. The curves are quadratic fits used in 
lack-of-fit testing.
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separated horizontally from most of the rest of the data. The District of Colum-
bia has high leverage (h9,9 = 0.415), while the other two are candidates for 
outliers.

Figure 9.4e is a plot of residuals versus the fitted values, which are just a 
linear combination of the regressors. Some computer packages will produce 
this graph as the only plot of residuals and if only one plot were possible, this 
would be the plot to draw, as it contains some information from all the regres-
sors in the mean function. There is a hint of curvature in this plot, possibly 
suggesting that the mean function is not adequate for the data. We will look 
at this more carefully in the next section.

9.2  TESTING FOR CURVATURE

Tests can be computed to help decide if residual plots such as those in  
Figure 9.4 are null plots or not. One helpful test looks for curvature in this 
plot. Suppose we have a plot of residuals ê versus a quantity U, where U could 
be a regressor in the mean function or a combination of regressors.2 A simple 
test for curvature is to refit the original mean function with an additional 
regressor for U2 added. The test for curvature is then based on the t-statistic 
for testing the coefficient for U2 to be 0. If U does not depend on estimated 
coefficients, then a usual t-test of this hypothesis can be used. If U is equal to 
the fitted values so that it depends the estimated coefficients, then the test 
statistic should be compared with the standard normal distribution to get 
significance levels. This latter case is called Tukey’s test for nonadditivity 
(Tukey, 1949).

The lack-of-fit tests for the residual plots in Figure 9.4 are the following:

2This procedure is not recommended for factor, polynomial, or spline regressors.

Test Stat p-Value

Tax −1.08 0.29
Dlic −1.92 0.06
Income −0.08 0.93
log(Miles) −1.35 0.18
Tukeytest −1.45 0.15

None of the tests has small significance levels, providing no evidence against 
the mean function.

As a second example, consider again the United Nations data with the 
model fertility ∼ log(ppgdp) + pctUrban. Plots of residuals versus 
the two regressors and versus fitted values are shown in Figure 9.5. Even 
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without reference to the curved lines shown on the plot, the visual appearance 
of these plots suggests curvature, as confirmed by the lack-of-fit tests:

Test Stat p-Value

log(ppgdp) 5.41 0.000
pctUrban 3.29 0.001
Tukey test 5.42 0.000

Figure 9.5  Residual plots for the UN data. The curved lines are quadratic polynomials fit to the 
residual plot and do not correspond exactly to the lack-of-fit tests that add a quadratic regressor 
to the original mean function.
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All p-values are 0 to two decimal places, suggesting that the mean function is 
not adequate for these data.

Since the fit is inadequate, we should consider modification to get a mean 
function that matches the data well. One approach is to include both quadratic 
regressors and an interaction between log(ppgdp) and pctUrban. Using the 
methods described elsewhere in this book, we conclude that the mean function 
fertility ∼ log(ppgdp) + pctUrban + log(ppgdp):pctUrban 
matches adequately, with a p-value for Tukey’s test of 0.09. Addition of a 
quadratic term in log(ppgdp) would also provide a minor improvement, but 
we omit this because transforming a transformed predictor is unusual. The 
effects plot for this model is shown in Figure 9.6. For mostly rural countries, 
fertility is estimated to be very high with low ppgdp, and decline most 
rapidly as ppgdp increases. The effects are attenuated as pctUrban increases. 
The graph is slightly misleading, however, because there are few relatively 
wealthy rural countries, and no relatively poor urban countries.

9.3  NONCONSTANT VARIANCE

A nonconstant variance function in a residual plot may indicate that a constant 
variance assumption is false. There are at least four basic remedies for non-
constant variance. The first is to use a variance stabilizing transformation, 
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Section 7.5, since replacing Y by YT may induce constant variance in the trans-
formed scale. A second option is to find empirical weights that could be used 
in weighted least squares. Weights that are simple functions of single predic-
tors, such as Var(Y|X) = σ2X1, with X1 > 0, can sometimes be justified theoreti-
cally. If replication is available, then within-group variances may be used to 
provide approximate weights. The third option is to do nothing and use the 
corrections for misspecified variances described in Section 7.2.1 at the cost of 
decreased efficiency of estimates.

The final option is to use generalized linear models that account for the 
nonconstant variance that is a function of the mean, introduced in Chapter 12.

9.4  OUTLIERS

In some problems, the observed response for a few of the cases may not seem 
to correspond to the model fitted to the bulk of the data. In a simple regres-
sion problem, such as displayed in Figure 1.9c, Section 1.4, this may be obvious 
from a plot of the response versus the predictor, where most of the cases lie 
near a fitted line but a few do not. Cases that do not follow the same model 
as the rest of the data are called outliers, and identifying these cases can be 
useful.

We use the mean shift outlier model to define outliers. Suppose that the ith 
case is a candidate for an outlier. We assume that the mean function for all 
other cases is E |( )Y X j j= = ′x x b , but for case i, the mean function is 
E |( )Y X i j= = ′ +x x b δ . The expected response for the ith case is shifted by an 
amount δ, and a test of δ = 0 is a test for a single outlier in the ith case. In this 
development, we assume Var(Y|X) = σ2.

Figure 9.6  Effects plot for the UN data with an interaction.
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Cases with large residuals are candidates for outliers. Not all large residual 
cases are outliers, since large errors ei will occur with the frequency prescribed 
by the generating probability distribution. Whatever testing procedure we 
develop must offer protection against declaring too many cases to be outliers. 
This leads to the use of simultaneous testing procedures. Also, not all outliers 
are bad. For example, a geologist searching for oil deposits may be looking for 
outliers, if the oil is in the places where a fitted model does not match the data. 
Outlier identification is done relative to a specified model. If the form of the 
model is modified, the status of individual cases as outliers may change. Finally, 
some outliers will have greater effect on the regression estimates than will 
others, a point that is pursued shortly.

9.4.1  An Outlier Test

Suppose that the ith case is suspected to be an outlier. Define a new regressor 
U to be a dummy variable that has a 1 for its ith element and 0 for all other 
elements. Compute the regression of the response on both the regressors in X 
and U. The estimated coefficient for U is the estimate of the mean shift δ. The 
t-statistic for testing δ = 0 against a two-sided alternative is the appropriate 
test statistic. Normally distributed errors are required for this test, and then 
the test will be distributed as Student’s t with n − p′ − 1 df.

We will now consider an alternative approach that will lead to the same 
test, but from a different point of view. The equivalence of the two approaches 
is left as an exercise.

Again suppose that the ith case is suspected to be an outlier. We can 
proceed as follows:

1.  Delete the ith case from the data, so n − 1 cases remain in the reduced 
data set.

2.  Using the reduced data set, estimate β and σ2. Call these estimates b̂( )i  
and σ̂( )

2
i  to remind us that case i was not used in estimation. The estimator 

σ̂( )
2
i  has n − p′ − 1 df.

3.  For the deleted case, compute the fitted value ˆ ˆyi i i i( ) ( )= ′x b . Since the ith 
case was not used in estimation, yi and ŷi(i) are independent. The variance 
of yi − ŷi(i) is given by

 Var |( ) ( )( )
2 2

( ) ( )
1y yi i i i i i i− = + ′ ′ −ˆ X x X X xσ σ  (9.16)

where X(i) is the matrix X with the ith row deleted. This variance is esti-
mated by replacing σ2 with σ̂( )

2
i  in (9.16).

4.  Now E |( )( )y yi i i− =ˆ X δ , is 0 under the null hypothesis that case i is not 
an outlier but nonzero otherwise. Assuming normal errors, a Student’s 
t-test of the hypothesis δ = 0 is given by
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ˆ
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11 ( )σ x X X x

 (9.17)

This test has n − p′ − 1 df, and is identical to the t-test suggested in the first 
paragraph of this section.

There is a simple computational formula for ti in (9.17). We first define an 
intermediate quantity, often called a standardized residual, by

 r
e

h
i

i

ii

=
−

ˆ

σ̂ 1
 (9.18)

where the hii is the leverage for the ith case, defined at (9.8). Like the residuals 
êi, the ri have mean 0, but unlike the êi, the variances of the ri are all equal to 
1. Because the hii need not all be equal, the ri are not just a rescaling of the êi. 
With the aid of Appendix A.13, one can show that ti can be computed as

 t r
n p
n p r

e

h
i i

i

i

i ii
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− ′ −







=
−

1
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( )

ˆ

σ̂
 (9.19)

A statistic divided by its estimated standard deviation is usually called a stu-
dentized statistic, in honor of W. S. Gosset, who first wrote about the t-distribution 
using the pseudonym Student.3 The residual ti is called a studentized residual. 
We see that ri and ti carry the same information since one can be obtained 
from the other via a simple formula. Also, this result shows that ti can be com-
puted from the residuals, the leverages and σ̂ 2, so we don’t need to delete the 
ith case, or to add a variable U, to get the outlier test.

Studentized or standardized residuals are sometimes used in place of the 
Pearson residuals in residual plots described in Section 9.1. This has the advan-
tage of removing some of the nonconstant variance in the plotted residuals, 
but the disadvantage of losing the units of the residuals. Any of these sets of 
residuals can be used in graphical methods with little difference in 
interpretation.

9.4.2  Weighted Least Squares

If we initially assumed that Var(Y|X) = σ2/w for known positive weights w, 
then in Equation (9.18), we compute the residuals êi using the correct weighted 
formula (9.14) and leverages are the diagonal elements of (9.13). Otherwise, 
no changes are required.

3See St. Andrews University (2003) for a biography of Student.
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9.4.3  Significance Levels for the Outlier Test

If the analyst suspects in advance that the ith case is an outlier, then ti should 
be compared with the central t-distribution with the appropriate number of 
df. The analyst rarely has a prior choice for the outlier. Testing the case with 
the largest value of |ti| to be an outlier is like performing n significance tests, 
one for each of n cases. If, for example, n = 65, p′ = 4, the probability that a 
t-statistic with 60 df exceeds 2.000 in absolute value is 0.05; however, the prob-
ability that the largest of 65 independent t-tests exceeds 2.000 is 0.964, sug-
gesting quite clearly the need for a different critical value for a test based on 
the maximum of many tests. Since tests based on the ti are correlated, this 
computation is only a guide. Bretz et al. (2010) discuss multiple testing prob-
lems in more generality.

For outlier testing, the usual correction for multiple testing is based on the 
Bonferroni inequality, which states that for n tests each of size a, the probabil-
ity of falsely labeling at least one case as an outlier is no greater than na. This 
procedure is conservative and provides an upper bound on the probability. For 
example, the Bonferroni inequality specifies only that the probability of the 
maximum of 65 tests exceeding 2.00 is no greater than 65(0.05), which is larger 
than 1. Choosing the critical value to be the (α/n) × 100% point of t will give 
a significance level of no more than n(α/n) = α. We would choose a level 
of 0.05/65 = 0.00077 for each test to give an overall level of no more than 
65(0.00077) = 0.05.

Standard functions for the t-distribution can be used to compute p-values 
for the outlier test: simply compute the p-value as usual and then multiply by 
the sample size. If this number is smaller than 1, then this is the p-value 
adjusted for multiple testing. If this number exceeds 1, then the p-value is 1.

In Forbes’s data, Example 1.1, case 12 was suspected to be an outlier 
because of its large residual. To perform the outlier test, we first need the 
standardized residual, which is computed using (9.18) from êi = 1.36, 
ˆ .σ = 0 379, and h12,12 = 0.0639,

r12
1.359

0.379 1 .0639
3 708=

−
= .

and the outlier test is

ti = − −
− −





 =3.708

17 2 1
17 2 3.708

12.41
2

1/2

The nominal two-sided p-value corresponding to this test statistic when com-
pared with the t(14) distribution is 6.13 × 10−9. If the location of the 
out  lier was not selected in advance, the Bonferroni-adjusted p-value is 
17 × 6.13 × 10−9 = 1.04 × 10−7. This very small value supports case 12 as an 
outlier.
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The test locates an outlier, but it does not tell us what to do about it. If we 
believe that the case is an outlier because of a blunder, for example, an unusu-
ally large measurement error, or a recording error, then we might delete the 
outlier and analyze the remaining cases without the suspected case. Some-
times, we can try to figure out why a particular case is outlying, and finding 
the cause may be the most important part of the analysis. All this depends on 
the context of the problem you are studying.

9.4.4  Additional Comments

There is a vast literature on methods for handling outliers, including Barnett 
and Lewis (1994), Beckman and Cook (1983), and Hawkins (1980). If a set of 
data has more than one outlier, a sequential approach can be recommended, 
but the cases may mask each other, making finding groups of outliers difficult. 
Cook and Weisberg (1982, p. 28) provide the generalization of the mean shift 
model given here to multiple cases. Hawkins et al. (1984) provide a promising 
method for searching all subsets of cases for outlying subsets. Bonferroni 
bounds for outlier tests are discussed by Cook and Prescott (1981). They find 
that for one-case-at-a-time methods, the bound is very accurate, but it is much 
less accurate for multiple-case methods.

The testing procedure helps find outliers, to make them available for further 
study. Alternatively, we could design robust statistical methods that can toler-
ate or accommodate some proportion of bad or outlying data; see, for example, 
Staudte and Sheather (1990).

9.5  INFLUENCE OF CASES

Single cases or small groups of cases can strongly influence the fit of a regres-
sion model. In Anscombe’s example in Figure 1.9d, the fitted model depends 
entirely on the one point with x = 19. If that case were deleted, we could not 
estimate the slope. If it were perturbed, moved around a little, the fitted line 
would follow the point. In contrast, if any of the other cases were deleted or 
moved around, the change in the fitted mean function would be quite small.

The general idea of influence analysis is to study changes in a specific part 
of the analysis when the data are slightly perturbed. Whereas statistics such as 
residuals are used to find problems with a model, influence analysis is done as 
if the model were correct, and we study the robustness of the conclusions, 
given a particular model, to the perturbations. The most useful and important 
method of perturbing the data is deleting the cases from the data one at a 
time. We then study the effects or influence of each individual case by compar-
ing the full data analysis to the analysis obtained with a case removed. Cases 
whose removal causes major changes in the analysis are called influential.

Using the notation from the last section, a subscript (i) means “with the ith 
case deleted,” so, for example, β(i) is the estimate of β computed without case 
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i, X(i) is the (n − 1) × p′ matrix obtained from X by deleting the ith row, and 
so on. In particular, then,

 b̂( ) ( ) ( )
1

( ) ( )( )i i i i i= ′ ′−X X X Y  (9.20)

A simple computing formula for b̂( )i  is derived in Appendix A.13.
Figure 9.7 is a scatterplot matrix of coefficient estimates for the three 

parameters in the UN data, based on the model fertility 
∼ log(ppgdp) + lifeExpF obtained by deleting cases one at a time. Every 
time a case is deleted, different coefficient estimates are obtained. Apart from 
the points for Botswana, Lesotho, South Africa, and Swaziland, all 2D plots  
in Figure 9.7 are more or less elliptically shaped, which is a common charac-
teristic of the deletion estimates. Deletion of any of the four African countries 

Figure 9.7  Estimates of parameters in the UN data obtained by deleting one case at a time. The 
ellipses shown on the plots would be 95% confidence regions for the bivariate mean in each plot 
if the points in the plot were a sample from a bivariate normal distribution.
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Table 9.1  Coefficient Estimates and Standard Errors for Fitting with the UN Data, 
with All the Data and 4 Countries Removed

Est, All SE, All Est, Reduced SE, Reduced

(Intercept) 3.5074 0.1271 3.7322 0.1289
log(ppgdp) −0.0654 0.0178 −0.0336 0.0182
lifeExpF −0.0282 0.0027 −0.0349 0.0029

decreases the estimated intercept and coefficient for log(ppgdp), and increases 
the coefficient for lifeExpF. If we refit the regression model after deleting 
all four of these countries, we get the coefficient estimates and standard errors 
shown in Table 9.1. Removing the four countries does not materially change 
the SEs of the estimates, but the slope estimate for log(ppgdp) is reduced by 
almost 50% and the slope estimate for lifeExpF is increased in magnitude 
by about 25%. The analysis is unstable and changes in important ways, depend-
ing on the cases that are included in the data set. This could reflect either a 
few countries that are really unusual, or, as is more likely here, a difference in 
the relationship between these variables for African countries in general, as 
discussed in Section 5.1.

9.5.1  Cook’s Distance

Cook (1977) suggested a method that can be used to summarize the difference 
between b̂  and b̂( )i  with a single number. We define Cook’s distance Di to be

 D
p

i
i i=

− ′ ′ −
′

( ) ( )( )( ) ( )

2

ˆ ˆ ˆ ˆ

ˆ
b b b bX X

σ
 (9.21)

This statistic has several desirable properties. First, contours of constant Di 
are ellipsoids. Second, the contours can be thought of as defining the distance 
from b̂( )i  to b̂ . Third, Di does not depend on parameterization, so if the 
columns of X are modified by linear transformation, Di is unchanged. Finally, 
if we define vectors of fitted values as ˆ ˆY X= b  and ˆ ˆY X( ) ( )i i= b , then (9.21) can 
be rewritten as

 D
p

i
i i=

− ′ −
′

( ) ( )( ) ( )

2

ˆ ˆ ˆ ˆ

ˆ
Y Y Y Y

σ
 (9.22)

so Di is the ordinary Euclidean distance between Ŷ and Ŷ(i). Cases for 
which Di is large have substantial influence on both the estimate of β and on 
fitted values, and deletion of them may result in important changes in 
conclusions.



9.5  influence of cases  221

9.5.2  Magnitude of Di

Cases with large values of Di are the ones whose deletion will result in sub-
stantial changes in the analysis. Typically, the case with the largest Di, or in 
large data sets the cases with the largest few Di, will be of interest. One method 
of calibrating Di is obtained by analogy to confidence regions. If Di were 
exactly equal to the α × 100% point of the F-distribution with p′ and n − p′ df, 
then deletion of the ith case would move the estimate of b̂  to the edge of a 
(1 − α) × 100% confidence region based on the complete data. Since for most 
F-distributions the 50% point is near one, a value of Di = 1 will move the 
estimate to the edge of about a 50% confidence region, a potentially important 
change. If the largest Di is substantially less than one, deletion of a case will 
not change the estimate of b̂  by much. To investigate the influence of a case 
more closely, the analyst should delete the large Di case and recompute the 
analysis to see exactly what aspects of it have changed.

9.5.3  Computing Di

From the derivation of Cook’s distance, it is not clear that using these statistics 
is computationally convenient. However, the results sketched in Appendix 
A.13 can be used to write Di using more familiar quantities. A simple form 
for Di is

 D
p

r
h

h
i i

ii

ii

=
′ −

1
1

2  (9.23)

Di is a product of the square of the ith standardized residual ri and a monotonic 
function of the leverage hii. If p′ is fixed, the size of Di will be determined by 
two different sources: the size of ri, a random variable reflecting lack of fit of 
the model at the ith case, and hii, reflecting the location of xi relative to x . A 
large value of Di may be due to large ri, large hii, or both.

Rat Data
An experiment was conducted to investigate the amount of a particular drug 
present in the liver of a rat. Nineteen rats were randomly selected, weighed, 
placed under light ether anesthesia and given an oral dose of the drug. Because 
large livers would absorb more of a given dose than smaller livers, the actual 
dose an animal received was approximately determined as 40 mg of the drug 
per kilogram of body weight. Liver weight is known to be strongly related to 
body weight. After a fixed length of time, each rat was sacrificed, the liver 
weighed, and the percentage of the dose in the liver determined. The experi-
mental hypothesis was of no relationship between the percentage of the dose 
in the liver y and the body weight BodyWt, liver weight LiverWt, and relative 
Dose. The data, provided by Dennis Cook and given in the file rat, are shown 
in Figure 9.8. As had been expected, the marginal summary plots for y versus 
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Figure 9.8  Scatterplot matrix for the rat data.
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Table 9.2  Regression Summary for the Rat Data

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 0.2659 0.1946 1.37 0.1919
BodyWt −0.0212 0.0080 −2.66 0.0177
LiverWt 0.0143 0.0172 0.83 0.4193
Dose 4.1781 1.5226 2.74 0.0151

σ̂ = 0.0773 with 15 df, R2 = 0.3639.

each of the predictors suggests no relationship, and none of the simple regres-
sions is significant, all having t-values less than 1.

The fitted regression summary for the regression of y on the three predic-
tors is shown in Table 9.2. BodyWt and Dose have significant t-tests, with 
p < 0.05 in both cases, indicating that the two measurements combined are a 
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useful indicator of Y; if LiverWt is dropped from the mean function, the same 
phenomenon appears. The analysis so far, based only on summary statistics, 
might lead to the conclusion that while neither BodyWt or Dose are associated 
with the response when the other is ignored, in combination, they are associ-
ated with the response. But, from Figure 9.8, Dose and BodyWt are almost 
perfectly linearly related, so they measure the same thing!

We turn to diagnostics to attempt to resolve this paradox. Figure 9.9 dis-
plays diagnostic statistics for the mean function with all the regressors included. 
The studentized residuals that test for outliers are not particularly large. 
However, Cook’s distance immediately locates a possible cause: D3 = 0.93 is 
much larger than all the other values of Cook’s distance, suggesting that the 
third case may have large enough influence on the fit to induce the anomaly. 
The value of h33 = 0.85 indicates that the problem is an unusual set of predic-
tors for case 3.

The fit without the third case is shown in Table 9.3. The paradox dissolves 
and the apparent relationship found in the first analysis can thus be ascribed 
to the third case alone.

Once again, the diagnostic analysis finds a problem, but does not tell us 
what to do next, and this will depend on the context of the problem. Rat 
number 3, with weight 190 g, was reported to have received a full dose of 1.000, 
which was a larger dose than it should have received, according to the rule for 
assigning doses; for example, rat number 8 with weight of 195 g got a lower 
dose of 0.98. A number of causes for the result found in the first analysis are 

Figure 9.9  Diagnostic statistics for the rat data.
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Table 9.3  Regression Summary for the Rat Data with Case 3 Deleted

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 0.3114 0.2051 1.52 0.1512
BodyWt −0.0078 0.0187 −0.42 0.6838
LiverWt 0.0090 0.0187 0.48 0.6374
Dose 1.4849 3.7131 0.40 0.6953

σ̂ = 0.0782 with 14 df, R2 = 0.0211.

possible: (1) the dose or weight recorded for case 3 was in error, so the case 
should probably be deleted from the study, or (2) the regression fit in the 
second analysis is not appropriate except in the region defined by the 18 points 
excluding case 3. This has many implications concerning the experiment. It is 
possible that the combination of dose and rat weight chosen was fortuitous, 
and that the lack of relationship found would not persist for any other com-
binations of them, since inclusion of a data point apparently taken under dif-
ferent conditions leads to a different conclusion. This suggests the need for 
collection of additional data, with dose determined by some rule other than a 
constant proportion of weight.

9.5.4  Other Measures of Influence

The added-variable plots introduced in Section 3.1 provide a graphical diag-
nostic for influence. Cases corresponding to points at the left or right of an 
added-variable plot that do not match the general trend in the plot are likely 
to be influential for the variable that is to be added. For example, Figure 9.10 
shows the added-variable plots for BodyWt and for Dose for the rat data. The 

Figure 9.10  Added-variable plots for BodyWt and Dose.
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point for case 3 is clearly separated from the others, and is a likely influential 
point based on these graphs. The added-variable plot does not correspond 
exactly to Cook’s distance, but to local influence defined by Cook (1986).

As with the outlier problem, influential groups of cases may serve to mask 
each other and may not be found by examination of cases one at a time. In 
some problems, multiple-case methods may be desirable; see Cook and Weis-
berg (1982, section 3.6).

9.6  NORMALITY ASSUMPTION

The assumption of normal errors plays only a minor role in linear regression 
analysis. It is needed primarily for inference with small samples, and even then 
the bootstrap outlined in Section 7.7 can be used for inference. Furthermore, 
nonnormality of the unobservable errors is very difficult to diagnose in small 
samples by examination of residuals. The relationship between the errors and 
the residuals is

ˆ

ˆ
e I H Y

I H X e

I H e

= −

= − +
= −

( )

( )( )

( )

b

because (I − H)X = 0. In scalar form, the ith residual is

 ê e h ei i ij j

j

n

= −










=
∑

1

 (9.24)

The first term on the right of (9.24) is the ith error. The second term is a linear 
combination of all the errors, and by the central limit theorem, this will gener-
ally be nearly normally distributed even if the ei are not normally distributed. 
With a small or moderate sample size n, the second term can dominate the 
first, and the residuals can behave like a normal sample even if the errors are 
not normal. Gnanadesikan (1997) refers to this as the supernormality of 
residuals.

As n increases for fixed p′, the second term in (9.24) has small variance 
compared with the first term, and the distribution of the residuals will more 
closely resemble the distribution of the errors, and so the residuals could be 
used to test for normality. Should a test of normality be desirable, a normal 
probability plot can be used. A general treatment of probability plotting is 
given by Gnanadesikan (1997). Suppose we have a sample of n numbers z1, 
z2, . . . , zn, and we wish to examine the hypothesis that the z’s are a sample 
from a normal distribution with unknown mean μ and variance σ2. A useful 
way to proceed is as follows:
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1.  Order the z’s to get z(1) ≤ z(2) ≤ · · · ≤ z(n). The ordered z’s are called the 
sample order statistics.

2.  Now, consider a standard normal sample of size n. Let u(1) ≤ u(2) ≤ · · · ≤ u(n) 
be the mean values of the order statistics that would be obtained if we 
repeatedly took samples of size n from the standard normal. The u(i)s are 
called the expected order statistics. The u(i) are available in printed tables 
or can be well approximated using a computer program.4

3.  If the zs are normal, then

E z ui i( )( ) ( )= +µ σ

so that the regression of z(i) on u(i) will be a straight line. If it is not 
straight, we have evidence against normality.

Judging whether a probability plot is sufficiently straight requires experi-
ence. Daniel and Wood (1980) provided many pages of plots to help the analyst 
learn to use these plots; this can be easily recreated using a computer package 
that allows one quickly to look at many plots. Atkinson (1985) used a variation 
of the bootstrap to calibrate probability plots.

Many statistics have been proposed for testing a sample for normality. One 
of these that works extremely well is the Shapiro and Wilk (1965) W statistic, 
which is essentially the square of the correlation between the observed order 
statistics and the expected order statistics. Normality is rejected if W is too 
small. Royston (1982a–c) provides details and computer routines for the cal-
culation of the test and for finding p-values.

Figure 9.11 shows normal probability plots of the residuals for the heights 
data (Section 1.1) and for the transactions data (Section 7.7.1). Both have large 
enough samples for normal probability plots to be useful. For the heights data, 
the plot is very nearly straight, indicating no evidence against normality. For 
the transactions data, normality is in doubt because the plot is not straight. In 
particular, there are very large positive residuals well away from a fitted line. 
This supports the earlier claim that the errors for this problem are likely to 
be skewed with too many large values.

9.7  PROBLEMS

9.1 (Data file: Rpdata) The data in this file has a response y and six regres-
sors x1, . . ., x6. The data are artificial, to make a few points.

4Suppose Φ(x) is a function that returns the area p to the left of x under a standard normal dis-
tribution, and Φ−1(p) computes the inverse of the normal, so for a given value of p, it returns the 
associated value of x. Then the ith expected normal order statistic is approximately Φ−1[(i − (3/8))/
(n + (1/4))] (Blom, 1958).
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9.1.1  First draw a scatterplot matrix of all data and comment. Is there 
anything strange?

9.1.2  Fit the ols regression y ∼ x1 + x2 + x3 + x4 + x5 + x6. 
Is there anything strange?

9.1.3  Draw a plot of residuals versus fitted values. Is there anything 
strange? See Stefanski (2007) if you want to find out how this data 
set came about.

9.2 Working with the hat matrix
9.2.1  Prove the results given by (9.9) and (9.10).
9.2.2  Prove that 1/n ≤ hii ≤ 1/r, where hii is a diagonal entry in H, and r is 

the number of rows in X that are exactly the same as xi.

9.3 Alaska  pipeline  faults (Data file: pipeline) This example compares 
in-field ultrasonic measurements of the depths of defects, Field, in the 
Alaska oil pipeline with measurements of the same defects in a labora-
tory, Lab. The lab measurements were done in six different batches, in 
the variable Batch. The goal is to decide if the field measurement can 
be used to predict the more accurate lab measurement. The lab measure-
ment is the response variable and the field measurement is the predictor 
variable. The data are from the National Institute of Science and Technol-
ogy (2012, section 6).
9.3.1  Draw the scatterplot of Lab versus Field, and comment on the 

applicability of the simple linear regression model.
9.3.2  Fit the simple regression model, get the residual plot, and summa-

rize. Explain why the plot suggests nonconstant variance and 
provide a test for nonconstant variance.

Figure 9.11  Normal probability plots of residuals for (a) the heights data and (b) the transactions 
data.
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9.3.3  Having diagnosed nonconstant variance, consider four options for 
summarizing these data: (1) do nothing; use the ols fit computed 
previously; (2) use ols for fitting but the bootstrap to estimate 
standard errors; (3) use wls with the variance function 
Var(Lab|Field) = σ2 × Field; and (4) use ols for fitting by the 
correction for nonconstant variance described in Section 7.2.1. 
Compare the solutions for the slope and its standard error.

9.4 Simple regression Consider the simple regression model, E(Y|X = x) = 
β0 + β1x, Var(Y|X = x) = σ2.
9.4.1  Find a formula for the hij and for the leverages hii.
9.4.2  In a 2D plot of the response versus the predictor in a simple regres-

sion problem, explain how high-leverage points can be identified.
9.4.3  Make up a predictor X so that the value of the leverage in simple 

regression for one of the cases is equal to 1.

9.5 QR  factorization  and  the  hat  matrix Using the QR factorization 
defined in Appendix A.13, show that H = QQ′. Hence, if qi is the ith row 
of Q,

h hii i i ij i j= ′ = ′q q q q

This means that if the QR factorization of X has been computed, hii is 
the sum of squares of the elements of qi, and the less-frequently used 
off-diagonal elements hij are the sums of products of the elements of 
qi and qj.

9.6 Let U be an n × 1 vector with 1 as its first element and 0s elsewhere. 
Consider computing the regression of U on an n × p′ full rank matrix X. 
As usual, let H = X(X′X)−1X′ be the hat matrix with elements hij.
9.6.1  Show that the elements of the vector of fitted values from the 

regression of U on X are the h1j, j = 1, 2, . . ., n.
9.6.2  Show that the first element of the vector of residuals is 1 − h11, and 

the other elements are −h1j, j > 1.

9.7 Two n × n matrices A and B are orthogonal if AB = BA = 0. Show that 
I − H and H are orthogonal. Use this result to show that as long as the 
intercept is in the mean function, the slope of the regression of ê on Ŷ is 
0. What is the slope of the regression of ê on Y?

9.8 California  water (Data file: water) Draw residual plots for the mean 
function described in Problem 8.3.4 for the California water data,  
and comment on your results. Test for curvature as a function of fitted 
values.
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9.9 Lake diversity (Data file: lakes) The number of crustacean zooplankton 
species present in a lake can be different, even for two nearby lakes. The 
data from Dodson (1992) give the number of known crustacean zooplank-
ton species for 69 world lakes. Also included are a number of character-
istics of each lake. There are some missing values; most computer programs 
will delete all rows of data that are missing any of the predictors and the 
response, so your analysis will likely be based on the 42 fully observed 
lakes. The goal of the analysis is to understand how the number of species 
present depends on the other measured variables that are characteristics 
of the lake. The variables are described in Table 9.4.

Decide on appropriate transformations of the data to be used in this 
problem. Then, fit appropriate linear regression models, and summarize 
your results. Include residual analysis to support your conclusions.

9.10 In an unweighted regression problem with n = 54, p′ = 5, the results 
included σ̂ = 4.0 and the following statistics for four of the cases:

êi hii

1.000 0.9000
1.732 0.7500
9.000 0.2500

10.295 0.1850

For each of these four cases, compute ri, Di, and ti. Test each of the four 
cases to be an outlier. Make a qualitative statement about the influence 
of each case on the analysis.

9.11 (Data file: fuel2001) In the fuel consumption data, consider fitting the 
mean function

Table 9.4  Crustacean Zooplankton Species Data (Dodson, 1992)

Variable Description

Species Number of zooplankton species
MaxDepth Maximum lake depth, m
MeanDepth Mean lake depth, m
Cond Specific conductance, micro Siemans
Elev Elevation, m
Lat N latitude, degrees
Long W longitude, degrees
Dist Distance to nearest lake, km
NLakes Number of lakes within 20 km
Photo Rate of photosynthesis, mostly by the 14C method
Area Surface area of the lake, in hectares
Lake Name of lake
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E |( ) 0 1 2 3 4Fuel Tax Dlic Income log(Miles)X = + + + +β β β β β

For this regression, we find σ̂ = 64.891  with 46 df, and the diagnostic 
statistics for four states and the District of Columbia were the 
following:

Fuel êi hii

Alaska 514.279 −163.145 0.256
New York 374.164 −137.599 0.162
Hawaii 426.349 −102.409 0.206
Wyoming 842.792 183.499 0.084
District of Columbia 317.492 −49.452 0.415

Compute Di and ti for each of these cases, and test for one outlier. Which 
is most influential?

9.12 The matrix ( )( ) ( )′X Xi i  can be written as ( )( ) ( )′ = ′ − ′X X X X x xi i i i , where ′xi  
is the ith row of X. By direct multiplication, use this definition to verify 
that (A.44) holds.

9.13 The quantity yi i i− ′x b̂( )  is the residual for the ith case when β is estimated 
without the ith case. Use (A.44) to show that

y
e

h
i i i

i

ii

− ′ =
−

x ˆ ˆ
b( )

1

This quantity is called the predicted residual, or the PRESS residual.

9.14 Use Appendix A.13 to verify (9.23).

9.15 (Data file: lathe) Refer to the lathe data in Problem 5.12.
9.15.1  Starting with the full second-order model, use the Box–Cox 

method to show that an appropriate scale for the response is the 
logarithmic scale.

9.15.2  Find the two cases that are most influential in the fit of the qua-
dratic mean function for log(Life), and explain why they are 
influential. Delete these points from the data, refit the quadratic 
mean function, and compare with the fit with all the data.

9.16 Florida election 2000 (Data file: florida) In the 2000 election for U.S. 
president, the counting of votes in Florida was controversial. In Palm 
Beach County in south Florida, for example, voters used a so-called but-
terfly ballot. Some believe that the layout of the ballot caused some 
voters to cast votes for Buchanan when their intended choice was Gore.
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The data from Smith (undated) has four variables, County, the county 
name, and Gore, Bush, and Buchanan, the number of votes for each of 
these three candidates. Draw the scatterplot of Buchanan versus Bush, 
and test the hypothesis that Palm Beach County is an outlier relative to 
the simple linear regression mean function for E(Buchanan|Bush). 
Identify another county with an unusual value of the Buchanan vote, 
given its Bush vote, and test that county to be an outlier. State your 
conclusions from the test, and its relevance, if any, to the issue of the 
butterfly ballot.

Next, repeat the analysis, but first consider transforming the variables 
in the plot to better satisfy the assumptions of the simple linear regres-
sion model. Again test to see if Palm Beach County is an outlier, and 
summarize.

9.17 (Data file: landrent) These data were collected by Douglas Tiffany to 
study the variation in rent paid in 1977 for agricultural land planted to 
alfalfa. The variables are average rent per acre Y planted to alfalfa, 
average rent paid X1 for all tillable land, density of dairy cows X2 (number 
per square mile), proportion X3 of farmland used as pasture, and X4 = 1 
if liming is required to grow alfalfa and 0 otherwise.

The unit of analysis is a county in Minnesota; the 67 counties with 
appreciable rented farmland are included. Alfalfa is a high protein crop 
that is suitable feed for dairy cows. It is thought that rent for land planted 
to alfalfa relative to rent for other agricultural purposes would be higher 
in areas with a high density of dairy cows and rents would be lower in 
counties where liming is required, since that would mean additional 
expense. Use all the techniques learned so far to explore these data with 
regard to understanding rent structure. Summarize your results.

9.18 (Data file: cloud) The data summarize the results of the first Florida 
Area Cumulus Experiment, or FACE-1, designed to study the effective-
ness of cloud seeding to increase rainfall in a target area (Woodley et al., 
1977). A fixed target area of approximately 3000 square miles was estab-
lished to the north and east of Coral Gables, Florida. During the summer 
of 1975, each day was judged on its suitability for seeding. The decision 
to use a particular day in the experiment was based primarily on a suit-
ability criterion S depending on a mathematical model for rainfall. Days 
with S > 1.5 were chosen as experimental days; there were 24 days chosen 
in 1975. On each day, the decision to seed was made by flipping a coin; 
as it turned out, 12 days were seeded, 12 unseeded. On seeded days, silver 
iodide was injected into the clouds from small aircraft. The predictors 
and the response are defined in Table 9.5.

The goal of the analysis is to decide if there is evidence that cloud 
seeding is effective in increasing rainfall. Begin your analysis by drawing 
appropriate graphs. Obtain appropriate transformations of predictors. Fit 
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appropriate mean functions and summarize your results. (Hint: Be sure 
to check for influential observations and outliers.)

9.19 (Data file: drugcost) Health plans use many tools to try to control the 
cost of prescription medicines. For older drugs, generic substitutes that 
are equivalent to name-brand drugs are sometimes available at a lower 
cost. Another tool that may lower costs is restricting the drugs that physi-
cians may prescribe. For example, if several similar drugs are available 
for treating the same symptoms, a health plan may require physicians to 
prescribe only a few of them. Since the usage of the chosen drug will be 
higher, the health plan may be able to negotiate a lower price for that 
drug.

The data described in Table 9.6, provided by Mark Siracuse, can be 
used to explore the effectiveness of these two strategies in controlling 
drug costs. The response variable is COST, the average cost of drugs per 
prescription per day. The data are from the mid-1990s, and are for 29 

Table 9.5  The Florida Area Cumulus Experiment on Cloud Seeding

Variable Description

A Action: 1 = seed, 0 = do not seed
D Days after the first day of the experiment (June 16, 1975 = 0)
S Suitability for seeding
C Percentage cloud cover in the experimental area, measured using 

radar in Coral Gables, Florida
P Prewetness, amount of rainfall in the hour preceding seeding in 107 

cubic meters
E Echo motion category, either l or 2, a measure of the type of cloud
Rain Rainfall following the action of seeding or not seeding in 107 cubic 

meters

Table 9.6  The Drug Cost Data

Variable Description

COST Average cost to plan for one prescription for one day, dollars
RXPM Average number of prescriptions per member per year
GS Percentage generic substitution used by the plan
RI Restrictiveness index (0 = none, 100 = total)
COPAY Average member copayment for prescriptions
AGE Average member age
F Percentage female members
MM Member months, a measure of the size of the plan
ID An identifier for the name of the plan
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plans throughout the United States with pharmacies administered by a 
national insurance company.

Provide a complete analysis of these data, paying particular regard to 
possible outliers and influential cases. Summarize your results with regard 
to the importance of GS and RI. In particular, can we infer that more use 
of GS and RI will reduce drug costs?
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C H A P T E R  1 0

Variable Selection

The methods suggested in the last few chapters can go a long way toward 
helping an analyst to build a useful regression model. Main-effects and interac-
tions, Chapters 4 and 5, illustrate how to include information about qualitative 
predictors in a model. Transformations, Chapter 8, can help select useful scales 
for quantitative predictors. Regressors derived from basis functions, such as 
polynomials, Section 5.3, and splines, Section 5.4, further enhance our ability 
to model the effects of predictors on a response. The diagnostic methods of 
Chapters 9 can confirm that a model appears to match data.

Some problems have many potential predictors and responses. For example, 
a manufacturer studying the factors that impact the quality of its product may 
have many measures of quality, and possibly hundreds or even thousands of 
potential predictors of quality, including characteristics of the manufacturing 
process, training of employees, suppliers of raw materials, and many others. In 
a medical setting, to model the size of tumor, we might have predictors that 
describe the status of the patient, treatments given, and environmental factors 
thought to be relevant. In both of these settings, and in many others, we can 
have too many predictors.

The purpose of this chapter is to outline methods to select predictors, and 
the regressors derived from them, to use in a regression problem of interest. 
The methodology to be used depends on the goal of the regression analysis, 
and for this we distinguish three general cases:

• Many regression problems have as their primary goal assessing the effect 
of one, or at most a few, predictors on a response. In this case, including 
additional predictors beyond the ones of primary interest could be desir-
able for either interpretability of the results, or for increasing precision 
of tests and estimates. Including too many additional predictors could 
decrease precision.
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• Interest could center on discovering the predictors that are associated 
with the response. The goal is to divide potential predictors into two sets, 
the active predictors and the inactive ones. This can be surprisingly dif-
ficult if predictors are related to each other.

• The goal of regression could be prediction of future values of a response 
given predictors. Including too many predictors can lead to relatively 
inaccurate predictions because a fitted model could account for the 
quirks of the observed data that are not present in future observations, 
while using a model that is too small can also lead to relatively inaccurate 
predictions if important predictors are missed.

The literature on the problem of model selection is enormous, concentrat-
ing mostly on the second and third goals. The fields of machine learning and 
to some extent data mining provide techniques for these problems. An intro-
duction to these areas is given by Hastie et al. (2009). In this chapter we 
emphasize the first problem, briefly discuss the second problem, and mostly 
summarize general approaches to the prediction problem.

10.1  VARIABLE SELECTION AND PARAMETER ASSESSMENT

Suppose the primary goal of the analysis is to test the “effect” of a focal pre-
dictor on the response of interest, and the problem faced is selecting additional 
predictors to include when performing the test. As a reminder from Chapter 
4, regression coefficients are defined as a characteristic of the conditional 
distribution of the response given the predictors. As long as assumptions of a 
linear regression model are satisfied for the set of predictors used, the test for 
the focal predictor will give an appropriate inference for that particular con-
ditional distribution.

For simplicity in this discussion, we suppose that the predictor is repre-
sented by the regressor X1, and we consider only two regression models. The 
first is the simple regression model using only the focal regressor,
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The second model adds q additional regressors,
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 (10.2)

Adopting the assumption of linearly related regressors, Section 8.2.1, if  
the linear regression model is appropriate for (10.2), then it is also appropriate 
for (10.1). The usual notation in this book is to use the same name for the 
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parameters regardless of the mean function, but for this section we use βs in 
(10.1) and γs in (10.2) to remind us that the meaning of a regression coefficient 
depends on all the regressors in a mean function. Similarly, we use different 
subscripts for σ2 in the two models to remind us that the variance also depends 
on the regressors. β1 measures the expected change in the response when X1 
is changed, while γ1 is the expected change in the response when X1 is changed 
and X2 is held fixed at its current value. Thus, the tests of β1 = 0 and of γ1 = 0 
test different hypotheses concerning the effect of X1. The further assumption 
is that the analyst would be willing to summarize the effect of X1 relative to 
either of the candidate models.

Let RY X X,( , )1 2
2  be the value of R2 for the linear regression with response Y 

and regressors given by (X1, X2) and the intercept. Similarly, define 
R R RY X X Y X X Y X, ,( , ) ,1 2 1 2 2

2 2 2
| = −  to be the increase in R2 when X1 is added to a 

regression model already using X2 as regressors. This could be called a partial 
R2. If tγ is the value of the t-test for testing the coefficient of γ1 = 0, and tβ is 
the test for β1 = 0, then if tβ

2 0≠ , one can show that

 t t
n q

n

R

R R
Y X X

Y X Y X X
γ β
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The ratio involving sample size is a correction for df, so all else being equal, 
adding regressors will decrease the size of the test statistic. Recall from Section 
4.1.5 that the quantity RX X1 2

2
,  measures the collinearity between X1 and the 

remaining regressors. Although this quantity does not appear in (10.3), all the 
other terms can be understood as a function of this one quantity.

If RX X1 2

2 0, ≈ , then the sum of squares explained by X1 should be about the 
same if X2 is included or excluded from the model. This means that 
( ), ,R RY X X Y X1 2 1

2 2 1| / ≈ . We will also have in this case that R RY X X Y X, ,2 1 2

2 2
| ≈ , and so 

the term in curly brackets in (10.3) will be large if X2 contains useful regres-
sors. Unless q is so large that the first term dominates the result, including X2 
should increase the size of the test statistic.

The primary and possibly the only case with RX X1 2

2  exactly equal to 0 occurs 
in designed experiments in which levels of factors are assigned to units at 
random using an orthogonal design. Additional covariates, if included, would 
then be at least approximately uncorrelated with the design predictors and the 
regressors derived from them, implying low collinearity. The results here 
confirm the usual practice in this case of fitting a model with factors, interac-
tions, and covariates, and then using the residual mean square from a large 
model to test for the effect of focal predictors.

When RX X1 2

2
,  is small, inference about a focal predictor from the larger 

model will be appropriate as long as the number of regressors q is not too 
large. Again, this seems to be standard practice in many areas, particularly in 
social sciences, in which selection of variables before testing appears to be the 
exception rather than the rule. If q is too large, then the benefit of adding 
variables could be outweighed by the correction for df in (10.3).
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In the collinear case of RX X1 2

2 1, ≈ , the numerator of the term in curly brack-
ets in (10.3) will be close to 0. If RY X X, 2 1

2
|  is large as well, then (10.3) will behave 

like the ratio of two small numbers, and the test tγ will be of little value because 
it will be very unstable. If RY X X, 2 1

2
|  is not large, then tγ ≈ 0. Exactly how to 

proceed depends on the context of the problem. In the Minnesota water use 
example described in Section 4.1.5, the focal predictor is year, and X2 consists 
of the remaining regressors including log(muniPop). Water use was seen to 
increase with year if log(muniPop) is ignored, but after adjusting for 
log(muniPop), the coefficient for year is negative with a small t-value. 
Because of the high collinearity between year and log(muniPop), we expect 
the estimate for year adjusted for X2 to be of little use. The importance of 
the focal predictor is therefore ambiguous and depends on whether or not 
adjustment is made for X2. Ambiguity is perhaps the correct inference for this 
problem.

This leaves the case of RX X1 2

2
,  not close to 0 or to 1. Including additional 

regressors that are correlated with the response will generally increase tγ
2, 

while including regressors not correlated with the response will generally 
decrease tγ

2 . Selection methods, such as the stepwise procedure illustrated in 
Section 10.2.2, can be useful in this circumstance if the analyst is uncertain 
about the appropriate conditional distribution to study to learn about the 
effect of the focal predictor.

If the focal predictor were a factor, interaction or other term that requires 
r regressors, the appropriate test will be an F-test rather than a t-test. The 
result corresponding to (10.3) is

 F F
n q r

n r
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R R
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 (10.4)

which differs from (10.3) by a change in notation for the test statistic and a 
modification in the ratio of degrees of freedom.

Comparing tβ and tγ should be based on their power (Section 6.4), not on 
the values of the statistics, but that would require additional notation and 
assumptions concerning the data. The discussion here can provide general 
guidelines on how to select predictors for study of a focal predictor.

10.2  VARIABLE SELECTION FOR DISCOVERY

The second use of variable selection is to discover which of a many predictors 
in a problem are active. Section 6.6.2 outlined an extreme example of this from 
Ioannidis (2005) where the goal is to find the few active genes that are associ-
ated with a particular trait from a pool of thousands of possible genes. The 
idea is that we have a pool of predictors in X, and seek to find a partition 
X X X= ( , )A I , where XA  is the set of active regressors, and XI  is the set of 
inactive regressors, such that XA is the smallest subset of the regressors, 
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subject to the marginality principle, such that E | E |( ) (Y X Y X= A ). In Ioanni-
dis’s example, XA  would consist of the regressors for active genes.

Unless the regressors are all uncorrelated, deciding on the regressors that 
should be considered active is not easy. For example, in a problem to find the 
active predictors that relate to a child’s school achievement, the predictors 
X1 = mother’s years of education and X2 = father’s years of education are likely 
to be very highly correlated, and a method that determines one of these to be 
active and the other inactive based solely on a numeric criterion seems arbi-
trary. For this particular case, replacing X1 and X2 by X3 = (X1 + X2)/2 and 
X4 = X1 − X2 could solve the problem because both these predictors are on 
the same scale and their average and difference are meaningful. This can be 
generalized: before applying selection methods, combine predictors in sensible 
ways suggested by subject-matter considerations.

The approach to finding the active predictors we pursue here is to consider 
all possible choices for XA, and then select the one that optimizes some selec-
tion criterion. To implement this method, we need to select a criterion function, 
and also to face the possibly daunting task of fitting hundreds or even thou-
sands of models. Stepwise fitting using an information criterion like aic, 
both to be defined later, is probably the most common computational 
compromise.

10.2.1  Information Criteria

Let XC  be a candidate subset of pC  of the regressors in X. We want to assess 
the candidate model

 
E |

Var |

( )Y X x

Y X
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 (10.5)

for different candidate sets XC . Using (10.5) will be a reasonable mean func-
tion for the regression problem if the methods of earlier chapters in this book 
suggest that E(Y|X) has a linear mean function with constant variance, and 
the assumption of linearly related predictors described in Section 8.2.1 is 
sensible.

Criteria for comparing various candidate subsets are based on the lack of 
fit of a model and its complexity. Lack of fit for a candidate subset XC is mea-
sured by its residual sum of squares RSSpC . Complexity for multiple linear 
regression models is measured by the number of regressors pC in XC , including 
the intercept.1 The most common criterion that is useful in multiple linear 
regression and many other problems where model selection is at issue is the 
Akaike Information Criterion, or aic. Ignoring constants that are the same for 

1The complexity may also be defined as the number of parameters estimated in the regression as 
a whole, which is equal to the number of regressors plus 1 for estimating σ2.
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every candidate subset, aic is given for linear regression by Sakamoto et al. 
(1986),

 AIC /= +n n pplog( )RSS C C2  (10.6)

Small values of aic are preferred, so better candidate sets will have smaller 
RSS and a smaller number of terms pC . An alternative to aic is the Bayes 
Information Criterion, or bic, given by Schwarz (1978),

 BIC /= +n p n n plog( ) log( )RSS C C  (10.7)

which provides a different balance between lack of fit and complexity. Once 
again, smaller values are preferred.

As the sample size n increases for fixed pC , the lack-of-fit term in aic 
increases with n, while the complexity term says constant. The bic criterion, 
however, pays more attention to sample size as the complexity term increases 
with n, although at a slower rate than the lack-of-fit term. If there really exists 
a partition of the regressors into active and inactive regressors, then as n 
increases, bic will select XA with probability approaching 1 (Nishii, 1984). In 
many problems, the linear model is only an approximation to the real data-
generating process, and there may be no XA. In this case, for a large enough 
sample, aic will perform better (Yang, 2005). Although these large sample 
results do not guarantee much in a finite sample, both aic and bic, or modifica-
tions of them with other measures of complexity, are often used in practice to 
select regressors.

10.2.2  Stepwise Regression

There are potentially 2p possible choices of XA  obtained from all possible 
subsets of the regressors.2 If p = 5, there are only 25 = 32 choices for XA , and 
all 32 possible can be fit and compared. If p = 10, there are 1024 choices, and 
fitting such a large number of models is possible but still an unpleasant 
prospect.

For p ≤ 30, the leaps and bounds algorithm (Furnival et al., 1974) can be 
used to find the few candidate models that minimize aic or bic without actually 
computing all possible models. The algorithm has been implemented in statisti-
cal packages and in subroutine libraries (Orestes Cerdeira et al., 2012; Rogue 
Wave Software, 2013). This algorithm doesn’t work well with predictors that 
are represented with several regressors like factors, interactions, and polyno-
mials, and so it is not frequently used in practice. Stepwise methods are not 

2There are fewer possible models if the regressors represent factors and interactions that are 
treated as a group. In addition, with interactions, permissible models should obey the marginality 
principle, again decreasing the number of possible models.
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guaranteed to find the candidate subset that is optimal according to any cri-
terion function, but they often give useful results.

Stepwise methods have three basic variations. For this section, we will 
define a term to all the regressors that represent a factor or an interaction, or 
a single regressor that represents a predictor or its transformation. Suppose 
aic were the criterion function of interest. Forward selection starts with a 
current subset consisting of only the intercept and any regressors to be included 
in all models.

[FS] Consider all candidate subsets consisting of one additional term 
beyond the current subset, such that the models considered do not violate the 
marginality principle from Section 6.2, so an interaction is never added unless 
all the lower order effects in the interaction are already included. Compute 
aic for each of these models. If the aic for all the candidate models exceeds 
the aic for the current model, stop and accept the current model. Otherwise, 
accept the subset model that minimizes aic as the current model. If more 
regressors are available for fitting, repeat this step; otherwise, stop.

If the number of terms beyond the intercept is k, this algorithm will 
consider at most k + (k − 1) + ··· + 1 = k + (k + 1)/2 of the 2k possible 
subsets. For k = 10, the number of subsets considered is 45 of the 1024 possible 
subsets.

Backward elimination works in the opposite direction. Set the model with 
all terms to be the current model.

[BE] Consider candidate models that differ from the current model by 
the deletion of one term, subject to the marginality principle, and compute aic 
for each. Accept the current model if the aic for all the candidate models 
exceeds the aic for the current model; otherwise, set the current model to the 
candidate with the minimum aic. If no regressors remain in the current model, 
stop; otherwise, repeat this step.

As with the forward selection method, only k(k + 1)/2 subsets are consid-
ered. The subsets considered by forward selection and by backward elimina-
tion may not be the same.

The forward and backward algorithms can be combined into a stepwise 
method, where at step subsets are considered that either add a term or delete 
a term. Start with a candidate model as with either the forward or backward 
algorithm.

[SW] The candidate models consist of all subsets obtained from the 
current subset by either adding or deleting a term, subject to the marginality 
principle. Accept as the new candidate model the subset with the smallest aic. 
If the new candidate was the same as at the last step, stop; otherwise, repeat 
this step.

Highway Accidents
We will use the highway accident data described in Section 8.2 concerning 
frequency of accident on segments of highways in Minnesota, modeled by 
characteristics of the segment. The response is log(rate), the log of the 
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accidents per million vehicle miles of travel on the segment. The regressors 
include the four log-transformed predictors found in Section 8.2.2 as well as 
lane, the number of lanes; slim, the speed limit; shld, the width of the 
roadway shoulder in feet; lwid, the width of a driving lane in feet; acpt, the 
number of access points per mile; and itg, the number of freeway-type inter-
changes per mile. Finally, a factor htype with 4 levels is included, indicating 
the type of funding that supports the highway. The various funding types have 
different design requirements, and so the levels of htype could be associated 
with the response. The number of segments is n = 39.

Suppose a were the number of accidents in a segment, v were the number 
of vehicles that used the segment in the period, in millions, and len is the 
length of the segment in miles. Then the accident rate is rate = a/(v × len). 
Accidents generally occur at a few relatively rare “bad spots” on a highway, 
and increasing the length of a segment by a small amount is unlikely to add a 
“bad spot.” Thus, increasing len will decrease rate because the other two 
components that go into computing rate should be nearly constant. Conse-
quently, the response and log(len) should be negatively correlated, and we 
should consider only models that include log(len).3

Suppose the goal of the analysis were to discover the set of active regressors. 
The regressors in the highway data exhibit moderate collinearity, with the 
values of RX X1 2

2
,  varying from 0.49 for X1 = log(trucks) to 0.97 for 

X1 = log(adt), and this suggests that the regressors contain redundant infor-
mation and that selecting a subset of regressors may be helpful.

We illustrate using forward selection based on aic. The first step considers 
all choices for the active regressors XA  that include log(len) and one addi-
tional term. There are 9 such choices, and each of these is summarized in Table 
10.1. The first column of the table gives the name of the term added. The 
column marked df is the number of regressors in the added term, which is 1 
whenever a single regressor is added and 3 for adding the factor htype. The 
row labeled [none] corresponds to using only log(len) and no additional 
regressors. The RSS is the residual sum of squares for the model including 
log(len) and the additional term. The remaining columns give the values of 
aic and bic. The rows are ordered by the value of aic, and all the rows with 
aic less than the aic for [none] would be an improvement over the current 
model using aic as the criterion. The model listed first, adding slim, gives the 
smallest value of aic so this is the model that would be accepted at this step. 
If [none] had the smallest aic, selection would have stopped before adding 
any regressors.

The next step starts with the model log(rate) ∼ log(len) + slim. 
Again consider all models obtained by adding a term. This is continued  

3A possible alternative here would be to use as a response the logarithm of the number of acci-
dents per million vehicles log(y) = log(a/v), but this is likely to change the negative relationship 
between the response and log(len) to a positive relationship. Can you see why this is likely to 
be true?
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At this point, selection stops because adding more regressors increases aic. 
Although coefficient estimation and tests are not the primary concerns in 
variable discovery, the fitted model from the forward stepwise procedure is 
summarized in Table 10.2.

A curious feature of this model is that the coefficient for slim is negative. 
This nominally implies that higher speed limits are associated with fewer acci-
dents. While inferring causation here might please those who like to drive fast, 
it could well be that highway officials lower speed limits on roads with high 
accident rates, so slim could be caused by the response. The significance levels 
reported for slim and for the other regressors in Table 10.2 are not to be 

Table 10.1  First Step in Forward Stepwise Regression

Add . . . df RSS aic bic

+slim 1 2.94 −94.87 −89.88
+acpt 1 3.38 −89.36 −84.36
+shld 1 3.78 −85.05 −80.06
+log(sigs1) 1 4.52 −78.03 −73.03
+htype 3 4.14 −77.44 −69.12
+log(trks) 1 4.76 −76.06 −71.07
+log(adt) 1 5.06 −73.68 −68.69
[none] 5.48 −72.51 −69.18
+lane 1 5.22 −72.42 −67.43
+itg 1 5.27 −72.08 −67.09
+lwid 1 5.30 −71.85 −66.86

Step Model aic

2 log(rate) ∼ log(len) −72.51
3 log(rate) ∼ log(len) + slim −94.87
4 log(rate) ∼ log(len) + slim + acpt −96.89
5 log(rate) ∼ log(len) + slim + acpt + log(trucks) −97.53

Table 10.2  Forward Stepwise Fit for the Highway Data

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 4.1665 0.7411 5.62 0.0000
log(len) −0.2357 0.0849 −2.78 0.0089
slim −0.0319 0.0103 −3.10 0.0038
acpt 0.0110 0.0067 1.65 0.1081
log(trks) −0.3290 0.2135 −1.54 0.1325

ˆ .σ = 0 2698  with 34 df, R2 = 0.6961.

until adding a term would increase aic. For these data, the following models 
are fit:
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trusted, as the t-values may not follow t-distributions even approximately after 
subset selection.

These data were originally collected to study the effects of design variables 
on accident rates. We now change our emphasis and assume that the goal is 
to learn about the effect of the focal predictor shld on accident rate, as in 
Section 10.1. Four selection methods were used, requiring that log(len) and 
shld are included in all models, with the following results:

Method β̂shld tshld aic

None −0.070 −4.034 −85.05
Forward −0.045 −2.687 −96.72
Backward 0.007 0.284 −101.41
All 0.003 0.087 −94.20

The row marked “None” includes only log(len) and shld as regressors, 
and the row marked “All” includes all the regressors. The rows “Forward” and 
“Backward” are the models selected by forward selection and backward elimi-
nation, respectively, considering only models including log(len) and shld 
using aic as the stopping criterion. Given in the table are the coefficient esti-
mate and t-value for shld, along with the value of aic for the different models. 
Both the model “None” and the model from forward selection suggest that 
shld has a large negative effect; since the response is in log scale, increasing 
shld by one foot is associated with a decrease in rate of about 7% ignoring 
all other terms except for log(length) or about 4% conditioning on the 
additional variables in the model selected by forward selection, log(rate) 
∼ log(len)  + shld  + acpt  + log(sigs1). The model selected by 
backward elimination, log(rate) ∼ log(len) + shld + log(adt) 
+  slim  +  log(sigs1)  +  htype, has more regressors and has a much 
smaller value of aic. Conditioning on these regressors, the effect of shld is 
now slightly positive, although the corresponding t-value is very small. The 
“size” of the shld effect depends on the other regressors in the mean function, 
just as its interpretation depends on the other regressors. The inclusion, or not, 
of the factor htype, the classification of the highway, changes the inference 
about the focal predictor shld. The interstate highways, htype = fai, all have 
shld = 10 ft, while the other types generally have lower values of shld. If 
adjustment is made for htype, shld has little remaining variability, and so it 
is not related to the response.

The model selected by forward selection forcing shld into all subsets has 
somewhat higher aic than the model selected without forcing shld into all 
models, as should be expected. Using backward elimination in this example 
found a model including shld with a smaller aic than the forward model that 
did not force shld into all models. There is no requirement that forward selec-
tion and backward elimination finish with the same model, and neither is 
guaranteed to find the model with the smallest aic. If the focus is on shld, 
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then finding an optimal model is of little consequence in any case, since the 
main finding is that either wider shoulders, or wider shoulders with the extra 
design and maintenance features that define the levels of htype, are associ-
ated with lower accident rates in these data.

10.2.3  Regularized Methods

A different approach to discovering relevant variables starts from an assump-
tion of sparsity, that only a small number of predictors are required to model 
a response. The justification for this belief is interesting: “Use a procedure 
that does well in sparse problems, since no procedure does well in dense prob-
lems” [italics in the original] (Hastie et al., 2009, p. 611). The problem cited 
by Ioannidis (2005) in Section 6.6.2 is an example of an application of the 
sparcity principle, in which it is thought that only a few of the many thousands 
of available genes are active in determining a mutation of interest. This 
assumption could be exactly true, it could be true enough, meaning that while 
many genes are active, knowledge of only a few are required for building 
therapeutic methods, or it could simply reflect reliance on a simplified under-
standing of the mechanism that causes the mutation that may be useful but 
inaccurate.

Using an information criterion like aic or bic does not incorporate sparcity 
directly into the procedure. The lasso (Tibshirani, 1996) is typical of methods 
that use sparsity directly. Start with the usual linear regression model assuming 
E(Y|X = x) = β0 + β′x and Var(Y|X) = σ2. The goal is to obtain an estimate of 
β that has most of its elements equal to 0. Regressors with nonzero estimates 
are selected for the active regressors. The lasso estimate minimizes

 ˆ argminb bλ
β

β λ βlasso
i i j

n
y= − − ′ +{ }∑ ∑1

2
( )0

2x  (10.8)

This is just the usual least squares criterion plus a penalty given by a tuning 
parameter λ times the sum of the absolute values of the coefficients. If λ = 0 
the lasso is the same as ols; as λ increases, the second term can swamp the 
first, and for large enough λ, all the estimates will equal 0. Modifications to 
the lasso, such as the elastic net (Zou and Hastie, 2005) and scad (Fan and Li, 
2001), use different penalties to get estimates with better properties. As a class, 
these are regularized estimation methods.

Study of methods that use sparseness is an active area of research, and there 
is no consensus on applied methodology. There are, however, a few important 
conceptual limitations. The methods generally depend on the scaling of the 
regressors. If one of the regressors is divided by a constant c, then its corre-
sponding regression coefficient is multiplied by c (see Problem 2.9), and so a 
penalty that depends on the size of the coefficients will change. We have also 
seen in Chapters 4–5 that the meaning and values of coefficients change 
depending on the other regressors included in mean function. The penalized 
methods will give different results if, for example, the baseline level of a factor 
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is changed. If the data are a random sample from a population, and no factors 
and interactions are included, then prescaling to correlation scale can produce 
sensible results, but with either nonrandom sampling or factors and interac-
tions models fit to a particular data set may not apply when used for prediction 
of future values.

10.2.4  Subset Selection Overstates Significance

All selection methods can overstate significance. Consider a simulated example. 
A data set of n = 100 cases with a response Y and k = 50 regressors X = (X1, 
. . . , X50) was generated using standard normal random deviates, so there are 
no active regressors, and the unobservable population multiple correlation 
between Y and X is 0. The sample multiple correlation R2 for the regression 
of Y on X in this single simulation was 0.497. This may seem surprisingly large, 
considering that all the data are independent random numbers. The overall 
F-test, which is in a scale more easily calibrated, gives a p-value of 0.544 for 
the data; Rencher and Pun (1980) and Freedman (1983) report similar simula-
tions with the overall p-value varying from near 0 to near 1, as it should since 
the null hypothesis of β = 0 is true.

Table 10.3 reports the summary of this regression and the final model using 
both forward selection and backward elimination. As expected, the value of 
R2 for the subset models is less than the R2 for the model with all the regres-
sors. Perhaps unexpectedly, the significance level for the overall F is now tiny 
for both selection algorithms. In addition, many of the coefficients for the 
selected regressors have significance levels less than 0.05. Tests from subset 
models cannot be trusted. See Hurvich and Tsai (1990) for more discussion.

10.3  MODEL SELECTION FOR PREDICTION

The basic idea in prediction is to use observable values of predictors for a new 
subject or case to predict the value of an interesting response. Here are a few 
examples.

Epworth Sleepiness Scale
A primary result of a sleep disorder in humans is daytime sleepiness. To diag-
nose the existence of a disorder, patients fill out a questionnaire called the 
Epworth Sleepiness Scale or ESS. The ESS consists of 8 standard questions. 

Table 10.3  Results of a Simulated Example

Method
Number of 
Regressors R2

p-Value of 
Overall F

Coefs. with 
p-Value <.05

No selection 50 0.497 0.5442 2
Forward selection 19 0.427 0.0002 8
Backward elimination 12 0.352 0.0002 9
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One of the questions is: “How likely are you to doze while sitting and reading?” 
The answer xj to the jth question is an integer between 0 for “no chance of 
dozing” and 3 for “high chance of dozing.” The computed scale is the sum of 
the scores, ∑β j jx , with all the βj = 1, so this is in the form of a linear regression 
mean function. Johns (1991) reported that the ESS can distinguish between 
normal subjects and subjects with sleep disorders, with high values of the scale 
corresponding to the sleep disorder group.

Prediction functions that are simply a sum of scores are very common. 
Other examples include most tests given for certification or licensing for some 
particular skill, where a minimum number correct is required to predict that 
a candidate is proficient. Simple prediction functions like the ESS are impor-
tant because they are easily used and explained. The ESS has been validated 
with data, but it was not based on fitting a model because an objective measure 
of sleepiness is not available for a construction set of subjects. Were such data 
available, then estimating a prediction function could give better predictions. 
Replacing an easily administered method like the ESS by a more complicated 
but possibly more precise prediction method may or may not improve clinical 
outcomes.

Credit Scoring
A credit score is a measure of a person’s credit worthiness, with higher numbers 
indicating that the person is more likely to repay a loan than is a person with 
a lower credit score. Credit scores are generally predictions from models fit to 
data on other people for whom outcomes of loans and predictors such as the 
person’s characteristics are known. In the United States, many private compa-
nies compute credit scores, with the FICO score, sold by the Fair Isaac Cor-
poration, the most prominent of these.

Because credit scoring affects so many people, both the predictors and the 
regression coefficients or weights for the predictors can be very contentious. 
The FICO score, for example, is explained on a website (Fair Isaac Corpora-
tion, 2013) as a linear combination of components, much like a linear regres-
sion equation. Many details are hidden, however, and exactly which regressors 
are used to represent “payment history,” for example, are not included on the 
website. The FICO score is based on fitting models to data and applying the 
model to future individuals.

The Epworth Sleepiness Scale is a straightforward equation used for predic-
tion. The FICO score is explained on its website as if it were also based on a 
simple equation, although the actual proprietary prediction method is prob-
ably more complicated.

Weather Forecasting
Weather forecasting can provide an example in which the prediction method 
is not simply explained. For example, the University of Washington Probability 
Forecast (University of Washington Applied Physics Laboratory, 2013) pro-
vides real-time weather forecasts by averaging predictions from a variety of 
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sources. Each source may use different methodology, different predictors, and 
have different accuracy for a particular location. The predictions are combined 
using a weighted average to give overall predictions and the uncertainty in the 
predictions. Averaging many models will often give better predictions than will 
using any one model, at the cost of greatly increased complexity. See Fraley  
et al. (2011) for application to weather forecasting, Hoeting et al. (1999) for a 
tutorial on Bayesian model averaging in general, or Yang (2001) for other 
approaches.

The general problem of formulating predictions from training data has 
spawned a new field of machine learning with a huge literature of its own. 
Dozens of methods, with wonderful names like neural networks and random 
forests, and features for these methods like boosting and bagging, make this 
an exciting area of study. Hastie et al. (2009) provides a readable introduction. 
The linear regression methodology in this book will generally produce predic-
tion methods that are worse than the newer machine learning methods, but 
the improvements obtained by the more complex methods are often small.

10.3.1  Cross-Validation

We conclude with an example using cross-validation, a general method that 
can be used to judge how well a procedure will predict with future data 
sampled from the same population or data-generating mechanism that pro-
duced the current data. The idea is to divide the available data into two parts 
at random, a construction set and a validation set. The construction set is used 
to obtain a model for prediction. The fitted model is then applied to the valida-
tion set, and prediction errors, observed minus fit, are computed. These are 
then summarized, typically by the SD of the prediction errors. It is usual to 
divide to use between 50% and 75% of the data for the construction set and 
the remainder for the validation set.

10.3.2  Professor Ratings

Suppose we were interested in modeling professor’s quality rating as a 
function of the characteristics of the professor and some characteristics of the 
student raters, using the regressors used in Problem 6.10. Because collinearity 
is low in this problem, the methods in this book should be adequate for the 
purposes of either selecting a set of active predictors or for obtaining a predic-
tion equation. The numeric predictors, raterInterest, easiness, and 
numYears, are used without transformation.4

The data were divided at random into a set of 250 observations for a con-
struction set and the remaining 116 for a validation set. Several methods listed 
in Table 10.4 were fit to the data in the construction set. As suggested in Section 

4The response is bounded between 1 and 5, and so models we fit could give predictions outside 
that range. This could suggest rescaling the response, an option not pursued here.
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7.1.1, we used numRaters, the number of raters averaged to get quality, 
as weights. Predictions were obtained for both the construction and validation 
set with the resulting SDs reported in the table. The row in the table marked 
“No regressors” estimates quality by the weighted mean quality in the 
construction set. The weighted mean in the validation set is somewhat different 
and the SD is a little larger in the validation set. The first-order model uses all 
the regressors, and the second-order model uses all the main effects and two-
factor interactions. The second-order model has somewhat smaller prediction 
SD on the construction set, as it must because bigger models must result in 
smaller residual error, but it has higher prediction SD than the first-order 
model. Similarly, the value of aic = 511.8 for the second-order model is con-
siderably larger than the value aic = 491.1 for the first-order model.

The stepwise method started with the second-order model using aic to 
remove/add terms. The selected model has aic = 486.5, but it also has predic-
tion SD on the validation set that is larger than the prediction SD for the 
first-order model. The next three lines of the table refer to methods that are 
not described in this book. The first uses a random forest (Hastie et al., 2009, 
chapter 15) to get predictions, and the remaining two lines summarize the lasso 
and a version of the elastic net. The random forest method fits the observed 
data exceedingly well and does about as well as the first-order model on the 
validation set. Because of low collinearity, the lasso and the elastic net perform 
about the same in this example. The last line of the table used predictions 
obtained by averaging the predictions from the other 6 methods excluding the 
no regressors case. The average does the best, although in this example, none 
of the methods differ by much.

10.4  PROBLEMS

10.1 Suppose the regressors in a problem are divided into the focal predictor 
X1 and the remaining regressors collected into X2. For the purpose of 
estimating the effect of X1, collinearity is a problem if RX X1 2

2
,  is large. 

Table 10.4  SD of Prediction Errors for Several Methods 
of Fitting the Professor Ratings Data

Method Construction Validation

No regressors 0.824 0.863
First-order 0.565 0.640
Second-order 0.541 0.661
Stepwise 0.554 0.635
Random forest 0.341 0.631
Lasso 0.588 0.645
Elastic net 0.593 0.651
Average 0.514 0.623
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Many computer programs allow computing a quantity called the variance 
inflation factor given by 1 1

1 2

2/( ),− RX X , from which RX X1 2

2
,  can be easily 

computed.
10.1.1  (Data file: MinnWater) In the Minnesota water use data, suppose 

the response is log(irrUse), the logarithm of the amount of 
water used in irrigation of crops, and the regressors are agPre-
cipitation, Year, and log(statePop). Compute RX X1 2

2
, , select-

ing each of the three variables in turn as the focal regressor, and 
summarize your findings.

10.1.2  (Data file: UN11) With the United Nations data, use lifeExpF 
as the response, and log(ppgdp), fertility, and pctUrban 
as regressors, compute the collinearity measure assuming each  
of these three is the focal predictor in turn, and summarize  
results.

10.2 (Data file: Highway)
10.2.1  For the highway accident data, use your software to verify the 

forward selection and backward elimination subsets that are given 
in Section 10.2.2.

10.2.2  Use as response log(rate × len) and treat lwid as the focal 
regressor. Use both forward selection and backward elimination 
to assess the importance of lwid. Summarize your results.

10.2.3  Using the identity log(rate × len) = log(rate) + log(len), we 
can write

E |(log( ) )rate len× = = + ′X x xβ0 b

E |(log( ) log( ) )rate len+ = = + ′X x xβ0 b

E |(log( ) ) log( )rate lenX = = + ′ −x xβ0 b

In this last equation, the variable log(len) is on the right side of the 
equation with an implied known regression coefficient equal to −1. A 
regressor with a known regression coefficient is called an offset, and most 
modern regression software allows you to include offsets in fitting a 
model. The difference between an offset and a regressor is that no coef-
ficient will be estimated for the offset.

Repeat Problem 10.2.2, but use log(rate) as the response and 
−log(len) as an offset. Is the analysis the same or different? Explain.

10.3 (Data file: mantel) Using these “data” with a response Y and three 
regressors X1, X2, and X3 from Mantel (1970), apply the forward selection 
and backward elimination algorithms, using aic as a criterion function. 
Also, find AIC and bic for all possible models and compare results. Which 
appear to be the active regressors?
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10.4 (Data file: BGSboys) For the boys in the Berkeley Guidance Study in 
Problem 3.3, find a model for HT18 as a function of the other variables 
for ages 9 and earlier. Perform a complete analysis, including selection 
of transformations and diagnostic analysis, and summarize your results.

10.5 (Data file: dwaste) An experiment was conducted to study O2UP, oxygen 
uptake in milligrams of oxygen per minute, given five chemical measure-
ments shown in Table 10.5 (Moore, 1975). The data were collected on 
samples of dairy wastes kept in suspension in water in a laboratory for 
220 days. All observations were on the same sample over time. We desire 
an equation relating log(O2UP) to the other variables. The goal is to find 
variables that should be further studied with the eventual goal of devel-
oping a prediction equation; Day cannot be used as a predictor.

Complete the analysis of these data, including a complete diagnostic 
analysis. What diagnostic indicates the need for transforming O2UP to a 
logarithmic scale?

10.6 Galápagos  Islands (Data file: galapagos) The Galápagos Islands off 
the coast of Ecuador provide an excellent laboratory for studying the 
factors that influence the development and survival of different species. 
Johnson and Raven (1973) have presented data in the file galapagos, 
giving the number of species and related variables for 29 different islands 
(Table 10.6). Counts are given for both the total number of species and 

Table 10.5  Oxygen Update Experiment

Variable Description

Day Day number
BOD Biological oxygen demand
TKN Total Kjeldahl nitrogen
TS Total solids
TVS Total volatile solids
COD Chemical oxygen demand
O2UP Oxygen uptake

Table 10.6  Galápagos Island Data

Variable Description

Island Island name
NS Number of species
ES Number of endemic species (occurs only on that island)
Area Surface area of island, hectares
Anear Area of closest island, hectares
Dist Distance to closest island, kilometers
DistSC Distance from Santa Cruz Island, kilometers
Elevation Elevation in m, missing values given as zero
EM 1 if elevation is observed, 0 if missing
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the number of species that occur only on that one island (the endemic 
species).

Use these data to find factors that influence diversity, as measured by 
some function of the number of species and the number of endemic 
species, and summarize your results. One complicating factor is that 
elevation is not recorded for six very small islands, so some provision 
must be made for this. Four possibilities are (1) find the elevations; (2) 
delete these six islands from the data; (3) ignore elevation as a predictor 
of diversity, or (4) substitute a plausible value for the missing data. 
Examination of large-scale maps suggests that none of these elevations 
exceed 200 m.
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C H A P T E R  1 1

Nonlinear Regression

A regression mean function cannot always be written as a linear combination 
of the regressors. For example, the mean function

 E |( ) exp( )Y X x x= = + − −[ ]θ θ θ1 2 31  (11.1)

was suggested for the turkey diet supplement experiment described in Section 
1.1, where Y was three-week weight gain from baseline and X the amount of 
supplement added to the turkey diet. This mean function has three parameters, 
θ1, θ2, and θ3, but only one regressor, X. The mean function is a nonlinear mean 
function because it is not a linear combination of the parameters. In (11.1), θ2 
multiplies [1 − exp(−θ3x)], and θ3 enters through the exponent.

Another nonlinear mean function we have already seen was used in esti-
mating transformations of predictors to achieve linearity, given by

 E |( ) ( , )Y X x xS= = +β β ψ λ0 1  (11.2)

where ψS(x, λ) is the scaled power transformation defined by (8.3). This is a 
nonlinear model because the slope parameter β1 multiplies ψS(x, λ), which 
depends on the parameter λ. The transformation parameter λ was estimated 
visually in Chapter 8, and then the βs are estimated from the linear model 
assuming λ is fixed at its estimated value. If we estimate all three parameters 
simultaneously, then the mean function is nonlinear.

The parameters of the nonlinear mean function often have a useful inter-
pretation. In the turkey growth example, when X = 0, E(Y|X = 0) = θ1, so θ1 is 
the expected weight gain with no supplementation. Assuming θ3 > 0, as X 
increases, E(Y|X = x) will approach θ1 + θ2, so the sum of the first two param-
eters is the maximum growth possible for any dose called an asymptote, 
and θ2 is the maximum additional growth due to supplementation. The final 
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parameter θ3 is a rate parameter; for larger values of θ3, the expected growth 
approaches its maximum more quickly than it would if θ3 were smaller.

11.1  ESTIMATION FOR NONLINEAR MEAN FUNCTIONS

Here is the general setup for nonlinear regression. We have a set of p regres-
sors X, and a vector θ = (θ1, . . . , θk)′ of parameters such that the mean function 
relating the response Y to X is given by

 E |( ) ( , )Y X = =x xm q  (11.3)

We call the function m a kernel mean function. The two examples of m we have 
seen so far in this chapter are in (11.1) and (11.2), but there are of course many 
other choices, both simpler and more complex. The linear kernel mean func-
tion, m(x, θ) = x′θ is a special case of the nonlinear kernel mean function. Many 
nonlinear mean functions impose restrictions on the parameters, like θ3 > 0 
in (11.1).

As with linear models, we also need to specify the variance function, and 
for this we will use the same structure as for the linear model and assume

 Var |( ) 2Y X wi i= =x σ /  (11.4)

where, as before, the wi are known, positive weights, and σ2 is an unknown 
positive number. Equations (11.3) and (11.4) together with the assumption 
that observations are independent of each other define the nonlinear regres-
sion model. The only difference between the nonlinear regression model and 
the linear regression model is the form of the mean function, and so we should 
expect that there will be many parallels that can be exploited.

The data consists of observations (xi, yi), i = 1, . . . , n. Because we have 
retained the assumption that observations are independent and that the vari-
ance function (11.4) is known apart from the scale factor σ2, we can use least 
squares to estimate the unknown parameters, so we need to minimize over all 
permitted values of θ the residual sum of squares function,

 RSS m( ) ( ( , ))2

1

q q= −
=
∑w yi i i

i

n

x  (11.5)

We have ols if all the weights are equal and wls if they are not all equal.
The solution q̂  that minimizes (11.5) for linear models is available at (A.21) 

in Appendix A.7. For nonlinear regression, there generally is no formula, and 
minimization of (11.5) is a numerical problem. We present some theory now 
that will approximate (11.5) at each iteration of a computing algorithm by a 
nearby linear regression problem. Not only will this give one of the standard 



254 chapter 11  nonlinear regression

computing algorithms used for nonlinear regression but will also provide 
expressions for approximate standard errors and point out how to do approxi-
mate tests. The derivation uses some calculus.

We begin with a brief refresher on approximating a function using a Taylor 
series expansion.1 In the scalar version, suppose we have a function g(β), where 
β is a scalar. We want to approximate g(β) for values of β close to some fixed 
value β*. The Taylor series approximation is

 g g
dg

d
d g

d
( ) ( ) ( )

( )
( )

( )* * *β β β β β
β

β β β
β

= + − + − +1
2

2
2

2
Remainder  (11.6)

All the derivatives in Equation (11.6) are evaluated at β*, and so the Taylor 
series approximates g(β), the function on the left side of (11.6) using the poly-
nomial in β on the right side of (11.6). We have only shown a two-term Taylor 
expansion and have collected all the higher-order terms into the remainder. 
By taking enough terms in the Taylor expansion, any smooth function g can 
be approximated as closely as wanted. In most statistical applications, only one 
or two terms of the Taylor series are needed to get an adequate approximation. 
Indeed, in the application of the Taylor expansion here, we will mostly use a 
one-term expansion that includes the quadratic term in the remainder.

When g(θ) is a function of a vector valued parameter θ, the two-term Taylor 
series is very similar,

g g( ) ( ) ( ) ( ) ( ) ( )( )* * * 1
2

* * *q q q q q q q q q q= + − ′ + − ′ − +u H Remainder  (11.7)

where we have defined two new quantities in (11.7), the score vector u(θ*), and 
the Hessian matrix H(θ*). If θ* has k elements, then u(θ*) also has k elements, 
and its jth element is given by ∂g(x, θ)/∂θj, evaluated at θ = θ*. The Hessian is 
a k × k symmetric matrix whose (ℓ, j) element is the partial second derivative 
∂2g(x, θ)/(∂θℓ∂θj), evaluated at θ = θ*.

We return to the problem of minimizing (11.5). Suppose we have a current 
guess θ* of the value of θ that will minimize (11.5). The general idea is to 
approximate m(θ, xi) using a Taylor approximation around θ*. Using a one-term 
Taylor series, ignoring the term with the Hessian in (11.7), we get

 m m( , ) ( , ) ( ) ( )* * *q q q q qx x ui i i≈ + ′ −  (11.8)

We have put the subscript i on the u because the value of the derivatives 
can be different for every value of xi. The ui(θ*) play the same role as the 
regressors in the multiple linear regression model. There are as many elements 

1Jerzy Neyman (1894–1981), one of the major figures in the development of statistics in the twen-
tieth century, often said that arithmetic had five basic operations: addition, subtraction, multiplica-
tion, division, and Taylor series.
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of ui(θ*) as parameters in the mean function. The difference between nonlinear 
and linear models is that the ui(θ*) may depend on unknown parameters, while 
in multiple linear regression, the regressors depend only on the predictors.

Substitute the approximation (11.8) into (11.5) and simplify to get
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(11.9)

where ê yi i i
* *( , )= − m q x  is the ith working residual that depends on the 

current guess θ*. The approximate RSS(θ) is now in the same form as the 
residual sum of squares function for multiple linear regression (7.3), with 
response given by the working residuals, regressors given by ui(θ*), parameter 
given by θ − θ*, and weights wi. We switch to matrix notation and let U(θ*) be 
an n × k matrix with ith row ui(θ*)′, W is an n × n diagonal matrix of weights, 
and ˆ ˆ ˆe*

1
* *( , , )= ′e en… . The least squares solution is then

 q q q q q− = ′ ′−* * * 1 * *[ ( ) ( )] ( )� U WU U Wê  (11.10)

 ˆ ˆq q q q q= + ′ ′−* * * 1 * *[ ( ) ( )] ( )U WU U We  (11.11)

We will use (11.10) in two ways, first to get a computing algorithm for estimat-
ing θ in the rest of this section and then as a basis for inference in the next 
section.

Here is the Gauss–Newton algorithm that is suggested by (11.10) and 
(11.11):

1.  Select an initial guess θ(0) for θ, and compute RSS(θ(0)).
2.  Set the iteration counter at j = 0.
3.  Compute U(θ(j)) and ê(j) with ith element yi − m(xi, θ(j)). Evaluating (11.11) 

obtains the solution of a weighted linear least squares problem, with 
response ê(j), predictors U(θ(j)), and weights given by the wi. The new 
estimator is θ(j+1). Also, compute the residuals sum of squares RSS(θ(j+1)).

4.  Stop if RSS(θ(j)) − RSS(θ(j+1)) is sufficiently small, in which case there is 
convergence. Otherwise, set j = j + 1. If j is too large, stop, and declare that 
the algorithm has failed to converge. If j is not too large, go to step 3.

The Gauss–Newton algorithm estimates the parameters of a nonlinear regres-
sion problem by a sequence of approximating linear wls calculations.

Most statistical software for nonlinear regression uses the Gauss–Newton 
algorithm, or a modification of it, for estimating parameters. Some programs 
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allow using a general function minimizer based on some other algorithm to 
minimize (11.5). We provide some references at the end of the chapter.

There appear to be two impediments to the use of the Gauss–Newton 
algorithm. First, the score vectors, which are the derivatives of m with respect 
to the parameters, are needed. Some software may require the user to provide 
expressions for the derivatives, but many packages compute derivatives using 
either symbolic or numeric differentiation. Also, the user must provide starting 
values θ(0); there appears to be no general way to avoid specifying starting 
values. The optimization routine may also converge to a local minimum of the 
residuals sum of squares function rather than a global minimum, and so finding 
good starting values can be very important in some problems. With poor start-
ing values, an algorithm may fail to converge to any estimate. We will shortly 
discuss starting values in the context of an example.

11.2  INFERENCE ASSUMING LARGE SAMPLES

We repeat (11.11), but now we reinterpret θ* as the true, unknown value of θ. 
In this case, the working residuals ê* are now the actual errors e, the differences 
between the response and the true means. We write

 q̂ q q q q= + ′ ′−* * * 1 *[ ( ) ( )] ( )U WU U We  (11.12)

This equation is based on the assumption that the nonlinear kernel mean 
function m can be accurately approximated close to θ* by the linear approxima-
tion (11.8), and this can be guaranteed only if the sample size n is large enough. 
We then see that q̂  is equal to the true value plus a linear combination of the 
elements of e, and by the central limit theorem q̂  under regularity conditions 
will be approximately normally distributed,

 ˆ ~q q q q| NX ( , [ ( ) ( )] )* 2 * * 1σ U WU′ −  (11.13)

An estimate of the large sample variance is obtained by replacing the unknown 
θ* by q̂  on the right side of (11.13),

 Var |�( ) [ ( ) ( )]2 1ˆ ˆ ˆ ˆq q qX = ′ −σ U WU  (11.14)

where the estimate of σ2 is

 ˆ
ˆ

σ 2 ( )=
−

RSS q
n k

 (11.15)

and k is the number of parameters estimated in the mean function.
These results closely parallel the results for the linear model, and conse-

quently the inferential methods such as F- and t-tests and the analysis of 
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variance for comparing nested mean functions, can be used for nonlinear 
models. One change that is recommended is to use the normal distribution 
rather than the t for inferences where the t would be relevant, but since (11.13) 
is really expected to be valid only in large samples, this is hardly important. We 
emphasize that in small samples, large sample inferences may be inaccurate.

11.3  STARTING VALUES

We can illustrate using these results with the turkey growth experiment. The 
experiment was conducted to study the effects on turkey growth of different 
amounts A of methionine, ranging from a control with no supplementation to 
0.44% of the total diet. The experimental unit was a pen of young turkeys, and 
treatments were assigned to pens at random so that 10 pens get the control 
(no supplementation) and five pens received each of the other five amounts 
used in the experiment, for a total of 35 pens. Pen weights, the average weight 
of the turkeys in the pen, were obtained at the beginning and the end of the 
experiment 3 weeks later. The response variable is Gain, the average weight 
gain in grams per turkey in a pen. The weight gains are given in the file turk0 
(Cook and Witmer, 1985). The primary goal of this experiment is to understand 
how expected weight gain E(Gain|A) changes as A is varied. The data are 
shown in Figure 11.1.

In Figure 11.1, E(Gain|A) appears to increase with A, at least over the range 
of values of A in the data. In addition, there is considerable pen-to-pen varia-
tion, reflected by the variability between repeated observations at the same 
value of A. The mean function is certainly not a straight line since the differ-
ence in the means when A > 0.3 is much smaller than the difference in means 
when A < 0.2. While a polynomial of degree two or three might well match the 

Figure 11.1  Turkey data.
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mean at the six values of A in the experiment, it will surely not match the 
data outside the range of A, and the parameters would have no practical 
interpretation.

For turkey growth as a function of an amount of an amino acid, the mean 
function

 E |( ) 11 2 3GainA = + − −θ θ θ( exp( ))A  (11.16)

was suggested by Parks (1982). To estimate the parameters in (11.16), we need 
starting values for θ. While there is no absolute rule for selecting starting 
values, the following approaches are often useful:

Guessing  Sometimes, starting values can be obtained by guessing values 
for the parameters. In the turkey data, from Figure 11.1, the intercept is 
about 620 and the asymptote is around 800. This leads to starting values 
θ1

0 620( ) =  and θ2
0 800 620 180( ) = − = . Guessing a value for the rate param-

eter θ3 is harder.
Solving  equations  for  a  subset  of  the  data  Select as many distinct data 

points as parameters, and solve the equations for the unknown param-
eters. The hope is that the equations will be easy to solve. Selecting data 
points that are diverse often works well. In the turkey data, given 
θ1

0 620( ) =  and θ2
0 180( ) =  from the graph, we can get an initial estimate 

for θ3 by solving only one equation in one unknown. For example, when 
A = 0.16, a plausible value of Gain is Gain = 750, so

750 620 180 1 163
0= + − −( exp( (. )))( )θ

which is easily solved to give θ3
0 8( ) ≈ . Thus, we now have starting values 

for all three parameters.
Linearization  If possible, transform to a multiple linear regression mean 

function, and fit it to get starting values. In the turkey data, we can move 
the parameters θ1 and θ2 to the left side of the mean function to get

( )
exp( )

θ θ
θ

θ1 2

2
3

+ − = −y
Ai

Taking logarithms of both sides,

log
( )θ θ

θ
θ1 2

2
3

+ −



 = −y

Di

Substituting initial guesses θ1
0 620( ) =  and θ2

0 180( ) =  on the left side of this 
equation, we can compute an initial guess for θ3 by the linear regression of 
log[(yi − 800)/180] on −D, through the origin. The ols estimate in this approxi-
mate problem is θ3

0 12( ) ≈ .
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Many computer packages for nonlinear regression require specification of 
the function m using an expression such as

y~th1+th2*(1-exp(-th3*A))

As with the Wilkinson and Rogers (1973) notation for linear models, the ∼ is 
read “is modeled as,” and the left side is the name of the response. The right 
side uses syntax similar to a computer language like C, Basic or Fortran to 
specify the model, including both variable names and parameter names. In 
contrast, the Wilkinson–Rogers notation for linear models omits parameter 
names because of the implied relationship between regressors and parameters 
in linear models.

If the starting values are adequate and the nonlinear optimizer converges, 
output including the quantities in Table 11.1 will be produced. This table is 
very similar to the usual output for linear regression. The column marked 
“Estimate” gives q̂ . Since there is no necessary connection between regressors 
and parameters, the lines of the table are labeled with the names of the param-
eters, not the names of the regressors. The next column labeled “Std. Error” 
gives the square root of the diagonal entries of the matrix given at (11.14), so 
the standard errors are based on large sample approximation. The column 
labeled “z-value” is the ratio of the estimate to its large sample standard error 
and can be used for a test of the null hypothesis that a particular parameter 
is equal to zero against either a general or one-sided alternative. The column 
marked “P(>|z|)” is the significance level for this test, using a normal reference 
distribution rather than a t-distribution. Given at the foot of the table is the 
estimate σ̂  and its df, which is the number of cases minus the number of ele-
ments in θ that were estimated, df = 35 − 3 = 32.

Since this example has only one predictor, Figure 11.1 is a summary graph 
for this problem. Figure 11.2 repeats this figure, but with the fitted mean func-
tion Ê(Gain|A = a) = 622.958 + 178.252(1 − exp(−7.122a)) added to the graph. 
The fitted mean function does not reproduce the possible decline of response 
for the largest value of A because it is constrained to increase toward an 
asymptote. For A = 0.28, the fitted function is somewhat less than the mean of 
the observed values, while at A = 0.44, it is somewhat larger than the mean of 

Table 11.1  Nonlinear Least Squares Fit of (11.16)

Estimate Std. Error z-Value Pr(>|z|)

θ̂1 622.958 5.901 105.57 <2e−16
θ̂2 178.252 11.636 15.32 2.74e−16
θ̂3 7.122 1.205 5.91 1.41e−06

ˆ .σ = 19 66 , df = 32.
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the observed values. If we believe that an asymptotic form is really appropriate 
for these data, then the fit of this mean function seems to be very good.

Factors with Nonlinear Models
The primary purpose of the turkey growth experiment was to compare weight 
gain curves for methionine derived from three different sources, indicated in 
the data file by a factor S with three levels. The most general model is, for j = 1, 
2, 3,

 
E |

Var |

( , 1

( ,

1 2 3

2

GainA S
GainA S

= = = + − −

= = =

a j a

a j

j j j

j

) [ exp( )]

)

θ θ θ
σ

 
(11.17)

This model allows each level of S to have its own curve and its own variance. 
Fitting (11.17) may be straightforward in many statistical packages.2 If the 
variance is thought to be the same for the various levels of S, then 
σ̂ 2 /= ∑ ∑RSSj jdf  is the pooled estimate of σ2, with RSSj and dfj the RSS and 
residual df for the jth level, and it can be used in testing and confidence 
statements.

For the weight gain example model (11.17) is inappropriate because a dose 
of A = 0 from source 1 is the same as A = 0 with any of the sources, so the 
expected response at A = 0 must be the same for all three sources. This requires 
that the intercept parameters are all equal, θ11 = θ12 = θ13. To fit this model may 
require using dummy variables, as most packages cannot interpret factors in 
nonlinear fitting.

Figure 11.2  Fitted mean function.
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2In R the function nlsList in the nlme package can be used.
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For j = 1, 2, 3, let Sj be a dummy variable for level j of S, with value 1 when 
S = j and 0 otherwise. A model with a common intercept but separate rate and 
asymptote parameters is

 

E |( [ (1 ( ))]

[ (1
1 2 3 1 1 21 31

2 22
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+ −
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θ (( ))]
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32

3 23 33
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, )Var |GainA S

 (11.18)

The common variance assumption could be relaxed in some circumstances as 
discussed in Chapter 7. Another reasonable mean function assumes common 
asymptote but different rate parameters,

 E |( 11 2 3 1 2 3GainA = = + − −( ) ∑a S S S S ai i, , , ) expθ θ θ  (11.19)

The model of no group differences is given by (11.16).
The data from this experiment are given in the data file turkey. For each 

combination of A and S the file contains m, the number of pens of turkeys with 
that combination of settings, the average weight gain Gain, and the SD of those 
weight gains. Assuming variance between pens treated alike is the same in all 
combinations of A and S,

 ˆ .σpe
SD2

2( 1)
( 1)

19916
57

349 40=
∑ −

∑ −
= =

m
m

 (11.20)

provides a model-free estimate of the variance σ2 with 57 df  that can be used 
in testing. This estimate is called the mean square for pure error.

The data are shown in Figure 11.3, with the fitted lines from (11.18). A 
separate symbol was used for each of the three groups. Each point shown is 
an average over m pens, where m = 5 for every point except at A = 0, where 
m = 10. The point at A = 0 is common to all three groups.

The four mean functions (11.16)–(11.19) are fit using nonlinear weighted 
least squares, with weights equal to m. Starting values for the estimates can be 
obtained in the same way as for fitting for one group. For testing, all we need 
are the RSS and df for each fitted model: and df for each.

Model df RSS

Common mean function (11.16) 10 4326.1
Different rates (11.19) 8 2568.4
Common intercept (11.18) 6 2040.0
Separate regressions (11.17) 4 1151.2
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Testing can proceed as in Section 6.1, using σ̂pe
2  as the denominator 

of the F-tests. For example, to test the NH given by the common mean 
function (11.16) versus the AH given by (11.19), the test, using σ̂pe

2  in the 
denominator, is

F F= − − = =( . . )/( )
.

.

.
. ~ ( , )

4326 1 2040 0 10 6
349 4

571 5
349 4

1 63 2 57

for which p = 0.27, suggesting no evidence against the simpler mean function. 
Further testing is not needed in this problem because the separate regression 
model is not relevant to these data, and the different rates model is intermedi-
ate between the models for which no difference can be found. If we did not 
have a pure error estimate of variance, the estimate of variance from the most 
general mean function (11.18) would be used in the F-tests.

11.4  BOOTSTRAP INFERENCE

The inference methods based on large samples introduced in the last section 
may be inaccurate and misleading in small samples. We cannot tell in advance 
if the large sample inference will be accurate or not, as it depends not only on 
the mean function but also on the way we parameterize it, since there are 
many ways to write the same nonlinear mean function, and on the actual 
values of the predictors and the response. Because of this possible inaccuracy, 

Figure 11.3  Turkey growth as a function of methionine added for three sources of methionine. 
The lines shown on the figure are for the fit of (11.18), the most general reasonable mean function 
for these data.
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computing inferences in some other way, at least as a check on the large sample 
inferences, is a good idea.

One generally useful approach is to use the bootstrap introduced in Section 
7.7. We illustrate with data in the file segreg, which consists of measurements 
of electricity consumption in kilowatt-hours and mean temperature in degrees 
Fahrenheit for one building on the University of Minnesota’s Twin Cities 
campus for 39 months in 1988–1992, courtesy of Charles Ng. The goal is to 
model consumption as a function of temperature. Higher temperature causes 
the use of air conditioning, so high temperatures should mean high consump-
tion. This building is steam heated, so electricity is not used for heating. Figure 
11.4 is a plot of C = consumption in KWH/day versus Temp, the mean tem-
perature in degrees F.

The mean function for these data is

E |( )
0

0 1

CTemp
Temp

Temp Temp
=

≤
+ − >





θ γ
θ θ γ γ( )

This mean function has three parameters, the level θ0 of the first phase; the 
slope θ1 of the second phase; and the knot, γ, and assumes that energy con-
sumption is unaffected by temperature when the temperature is below the 
knot, but the mean increases linearly with temperature beyond the knot. The 
goal is to estimate the parameters.

The mean function can be combined into a single equation by writing

E |( ) 00 1CTemp Temp= + −θ θ γ(max( , ))

Figure 11.4  Electrical energy consumption per day as a function of mean temperature for one 
building. The line shown on the graph is the least squares fit.
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Starting values can be easily obtained from the graph, with θ0
0 70( ) = , 

θ1
0 0 5( ) .= , and γ(0) = 40. The fitted model is summarized in Table 11.2. The 

baseline electrical consumption is estimated to be about θ̂0 75≈ KWH/day. 
The knot is estimated to be at γ̂ ≈ °42 F, and the increment in consumption 
beyond that temperature is about ˆ .θ2 0 6≈ KWH per degree increase.

From Figure 11.4, one might get the impression that information about the 
knot is asymmetric: γ could be larger than 42 but is unlikely to be substantially 
less than 42. We might expect that in this case, confidence or test procedures 
based on asymptotic normality will be quite poor. We can confirm this using 
the bootstrap.

Figure 11.5 is a scatterplot matrix of B = 999 case resampling bootstrap 
replications. All three parameters are estimated on each replication. The diag-
onals contain histograms of the 999 estimates of each of the parameters. If the 
normal approximation were adequate, we would expect that each of these 
histograms would look like a normal density function. While this may be so 
for θ1, this is not the case for θ2 or γ. As expected, the histogram for γ is skewed 
to the right, meaning that estimates of γ much larger than about 40 occasion-
ally occur, but smaller values almost never occur. The univariate normal 
approximations are therefore poor.

The other graphs in the scatterplot matrix tell us about the distributions of 
the estimated parameters taken two at a time. If the normal approximation 
were to hold, these graphs should have approximately straight-line mean func-
tions. The smoothers on Figure 11.5 are generally far from straight, and so the 
large sample inferences are likely to be badly in error.

In contrast, Figure 11.6 is the bootstrap summary for the first source in the 
turkey growth data. Normality is apparent in histograms on the diagonal, and 
a linear mean function seems plausible for most of the scatterplots, and so the 
large sample inference is adequate here.

Table 11.3 compares the estimates and 95% confidence intervals produced 
by the asymptotic z-approximation and by the percentile bootstrap. Although 
the bootstrap SDs match the large sample standard errors reasonably well, the 
confidence intervals for both θ1 and for γ are shifted toward smaller values 
than the more accurate bootstrap estimates.

Table 11.2  Regression Summary Segmented Regression Example

Estimate Std. Error t-Value Pr(>|t|)

θ̂0 74.6953 1.3433 55.607 <2e−16
θ̂1 0.5674 0.1006 5.641 2.10e−06
γ̂ 41.9512 4.6583 9.006 9.43e−11

ˆ .σ = 5 373, df = 36.
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Figure  11.5  Scatterplot matrix of estimates of the parameters in the segmented regression 
example, computed from B = 999 case bootstraps.
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11.5  FURTHER READING

Seber and Wild (1989) and Bates and Watts (1988) provide textbook-length 
treatments of nonlinear regression problems. Computational issues are also 
discussed in these references and in Thisted (1988, chapter 4). Ratkowsky 
(1990) provides an extensive listing of nonlinear mean functions that are com-
monly used in various fields of application.

11.6  PROBLEMS

11.1 (Data file: sleep1) Suppose we have a response Y, a predictor X, and 
a factor G with g levels. A generalization of the concurrent regression 
mean function given by Model 3 of Section 5.1.3, is, for j = 1, . . . , g,
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Figure  11.6  Scatterplot matrix of bootstrap estimates for the turkey growth data. Two of the 
replicates were very different from the others and were deleted before graphing.
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Table 11.3  Comparison of Large-Sample and Bootstrap Inference for the  
Segmented Regression Data

Large Sample Bootstrap

θ0 θ1 γ θ0 θ1 γ

Estimate 74.70 0.57 41.95 Mean 74.92 0.62 43.60
SE 1.34 0.10 4.66 SD 1.47 0.13 4.81
2.5% 72.06 0.37 32.82 2.5% 71.96 0.47 37.16
97.5% 77.33 0.76 51.08 97.5% 77.60 0.99 55.59
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 E |( 0 1Y X x G j xj= = = + −, ) ( )β β γ  (11.21)

for some point of concurrence γ.
11.1.1  Explain why (11.21) is a nonlinear mean function. Describe in 

words what this mean function specifies.
11.1.2  Allison and Cicchetti (1976) provided data on the typical sleeping 

habits of mammal species. Of interest here is ts, the total hours 
of sleep per day; BodyWt, the typical body weight of the species; 
and D, a discrete variable with five values, from D = 1, animals with 
low danger to d = 5 for animals with very high danger. Fit the 
mean function

E |( ( ) 0 1TS BodyWtlog , ) ( )= = = + −x D j xjβ β γ

To get starting values, fit the concurrent regression model with 
γ = 0. The estimate of γ will be very highly variable, as is often the 
case with centering parameters like γ in this mean function.

11.2 (Date file: lakemary) In fisheries studies, the most commonly used 
mean function for expected length of a fish at a given age is the von 
Bertalanffy function (Bertalanffy, 1938; Haddon and Haddon, 2010), 
given by

 E |( 1 0LengthAge = = − − −∞t L K t t) ( exp( ( ))  (11.22)

The parameter L∞ is the expected value of Length for extremely large 
ages, and so it is the asymptotic or upper limit to growth, and K is a 
growth rate parameter that determines how quickly the upper limit to 
growth is reached. When Age = t0, the expected length of the fish is 0, 
which allows fish to have nonzero length at birth if t0 < 0.
11.2.1  The data in the file gives the Age in years and Length in milli-

meters for a sample of 78 bluegill fish from Lake Mary, Minnesota, 
in 1981 (courtesy of Richard Frie). Age is determined by counting 
the number of rings on a scale of the fish. This is a cross-sectional 
data set, meaning that all the fish were measured once. Draw a 
scatterplot of the data.

11.2.2  Use nonlinear regression to fit the von Bertalanffy function to 
these data. To get starting values, first guess at L∞ from the scat-
terplot to be a value larger than any of the observed values in the 
data. Next, divide both sides of (11.22) by the initial estimate of 
L∞, and rearrange terms to get just exp(−K(t − t0)) on the right of 
the equation. Take logarithms, to get a linear mean function, and 
then use ols for the linear mean function to get the remaining 
starting values. After getting the fitted model, draw the fitted mean 
function on your scatterplot.
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11.2.3  Obtain a 95% confidence interval for L∞ using the large sample 
approximation, and using the bootstrap.

11.3 (Data file: walleye) The data in the file walleye give the length in 
mm and the age in years of a sample of over 3,000 male walleye, a 
popular game fish, captured in Butternut Lake in Northern Wisconsin 
(LeBeau, 2004). The fish are also classified according to the time period 
in which they were captured, with period = 1 for pre-1990, period = 2 
for 1990–1996, and period = 3 for 1997–2000. Management practices on 
the lake were different in each of the periods, so it is of interest to 
compare the length at age for the three time periods.

Using the von Bertalanffy length at age function (11.22), compare the 
three time periods. If different, are all the parameters different, or just 
some of them? Which ones? Summarize your results.

11.4 A quadratic polynomial as a nonlinear model (Data file: swan96) The 
data were collected by the Minnesota Department of Natural Resources 
to study the abundance of black crappies, a species of fish, on Swan Lake, 
Minnesota in 1996. The response variable is LCPUE, the logarithm of the 
catch of 200 mm or longer black crappies per unit of fishing effort. It is 
believed that LCPUE is proportional to abundance. The single predictor 
is Day, the day on which the sample was taken, measured as the number 
of days after June 19, 1996. Some of the measurements were taken the 
following spring on the same population of fish before the young of the 
year are born in late June. No samples are taken during the winter 
months when the lake surface was frozen.
11.4.1  For these data, fit the quadratic polynomial

E |( 0 1 2
2LCPUEDay = = + +x x x) β β β

assuming Var(LCPUE|Day = x) = σ2. Draw a scatterplot of LCPUE 
versus Day, and add the fitted curve to this plot.

11.4.2  Using the delta method described in Section 7.6, obtain the 
estimate and variance for the value of Day that maximizes 
E(LCPUE|Day).

11.4.3  Another parameterization of the quadratic polynomial is

E |( )Y X x x= − +θ θ θ θ1 2 3 3
22

where the θs can be related to the βs by

θ β θ β β θ β1 0 2 1 2 3 22= = − =, / ,

In this parameterization, θ1 is the intercept, θ2 is the value of the 
predictor that gives the maximum value of the response, and θ3 is 
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a measure of curvature. This is a nonlinear model because the 
mean function is a nonlinear function of the parameters. Its advan-
tage is that at least two of the parameters, the intercept θ1 and the 
value of x that maximizes the response θ2, are directly interpre-
table. Use nonlinear least squares to fit this mean function. 
Compare your results with the first two parts of this problem.

11.5 (Data file: Highway) Nonlinear regression can be used to select trans-
formations for a linear regression mean function. As an example, con-
sider the highway accident data, described in Table 8.1, with response 
log(rate) and two predictors X1 = len and X2 = adt. Fit the nonlinear 
mean function

E |( ( ) , , ) ( , ) ( , )1 1 2 2 3 3 0 1 1 1 2 2 2log Rate X x X x X x X XS S= = = = + +β β ψ λ β ψ λ

where the scaled power transformations ψS(Xj, λj) are defined at (8.3). 
Compare the results you get to results obtained using the transformation 
methodology in Chapter 8.
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C H A P T E R  1 2

Binomial and Poisson Regression

In this chapter we show how nearly all the methods described in this book can 
be extended to problems in which the response variable is a count rather than 
a measured variable. We will consider binomial regression, which includes a 
binary categorical response, and also the closely related Poisson regression. 
We first review a bit about the binomial and Poisson distributions, and then 
describe the regression models with counted responses with either binomial 
or Poisson distributions, emphasizing the connections to the rest of this book.

Books dedicated to binomial regression include Collett (2003) and Hosmer 
et al. (2013). Counted data more generally is covered in Agresti (2007, 2013). 
Counted data models can also be studied in the framework of generalized 
linear models, in which the linear model, binomial model, and Poisson model 
are all special cases. McCullagh and Nelder (1989) provided the basis for this 
approach.

12.1  DISTRIBUTIONS FOR COUNTED DATA

12.1.1  Bernoulli Distribution

Suppose the random variable Y has two possible values, perhaps called 
“success” or “failure,” with probability of success equal to θ where 0 ≤ θ ≤ 1. 
We label the possible outcomes of Y as y = 1 if success occurs, and y = 0 if 
success does not occur. We will say that Y with these characteristics has a 
Bernoulli distribution1 with probability of success θ. Using Appendix A.2,

 E Var( ) ( ) ( )Y Y= = −θ θ θ1  (12.1)

1Named for Jacob Bernoulli, 1654–1705.
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An important feature of the Bernoulli distribution is that the variance 
depends on the mean, Var(Y) = E(Y)(1 − E(Y)). The variance is largest for 
θ = 1/2, and smallest for θ close to 0 or 1. The Bernoulli is the only distribution 
for a random variable with sample space {0, 1}.

12.1.2  Binomial Distribution

The binomial distribution generalizes the Bernoulli. Suppose we have m 
random variables B1, B2, . . . , Bm, such that (1) each Bj has a Bernoulli distribu-
tion with the same probability θ of success; and (2) all the Bj are independent. 
Then if Y is the number of successes in the m trials, Y Bj= ∑ , we say that Y 
has a binomial distribution with m trials and probability of success θ. We write 
this as Y ∼ Bin(m, θ). Each of the Bernoulli variables is Bj ∼ Bin(1, θ).

The probability mass function for the binomial is

 Pr( ) ( )( )Y j
m

j
j m j= = 





− −θ θ1  (12.2)

for j ∈ {0, 1, . . . , m}. The mean and variance of a binomial are

 E Var( ) ( ) ( )Y m Y m= = −θ θ θ1  (12.3)

Since m is known, both the mean and variance are determined by θ only. 
Both assumptions of constant θ and of independence are required for the 
binomial distribution to apply to the number of successes in m trials. For 
example, in a survey of family members about their view on a particular politi-
cal issue, the number in favor of the issue will likely not be binomially distrib-
uted because the views of members of the same family are unlikely to be 
independent.

12.1.3  Poisson Distribution

Whereas the binomial distribution concerns the distribution of the number of 
successes in a fixed number m of trials, the Poisson distribution2 is the number 
of events of a specific type that occur in a fixed time or space. A Poisson vari-
able Y can take the value of any nonnegative integer {0, 1, 2, . . .}. For example, 
if customers to an ice cream store arrive independently, at random but at a 
constant rate, then the number of customers arriving in any fixed period of 
time will follow a Poisson distribution.

We will say Y has a Poisson distribution with rate λ, Y ∼ Po(λ) if

 Pr( ) exp( ) / ! , ,Y y y yy= = − =λ λ 0 1…  (12.4)

2Named for Siméon Denis Poisson, 1781–1840.
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Using Appendix A.2, it is not hard to show that

 E Var( ) ( )Y Y= =λ λ  (12.5)

so the mean and variance of a Poisson variable are equal.
In the ice cream store arrival example, the count Y depends on both the 

assumption of independence of customers and constant arrival rate. The rate 
could vary with time of day or outdoor temperature, and so a Poisson assump-
tion may be appropriate for short time intervals but not for longer intervals. 
Arrivals could be correlated if customers arrive in groups, for example, at the 
end of a high school sports event, again suggesting that the number of arrivals 
may not follow a Poisson distribution.

There are many interesting and useful relationships between the Poisson 
and the binomial that suggest that regression models for both types of responses 
should be studied together. In particular, suppose that Y1 ∼ Po(λ1) and 
Y2 ∼ Po(λ2), and suppose Y1 and Y2 are independent. Y1 could be the number 
of ice cream customers who arrive and buy an ice cream cone, and Y2 
could be the number who arrive and buy a yogurt cone. Then the sum 
(Y1 + Y2) ∼ Po(λ1 + λ2) is the number of customers who arrive in the time 
period and buy a cone of either type. The conditional distribution of Y1 
given the total number of customers arriving is binomial, Y1|(Y1 + Y2) ∼ 
Bin(Y1 + Y2, λ1/(λ1 + λ2)).

12.2  REGRESSION MODELS FOR COUNTS

The big idea is that the parameter for the counted distribution, θ for the bino-
mial or λ for the Poisson, can depend on the values of predictors.

12.2.1  Binomial Regression

We consider the binomial case first. We assume that θ(x) depends on the values 
x of the regressors only through a linear combination β′x for some unknown 
β. We can write θ(x) as a function of β′x,

 θ( ) ( )x x= ′m b  (12.6)

The quantity β′x is called the linear predictor. As in nonlinear models, the 
function m is called a kernel mean function. Because the left side of (12.6) 
is a probability, m(β′x) must map β′x, which can take any possible value in 
(−∞, ∞), into the range (0, 1). The most frequently used kernel mean function 
for binomial regression, and the only one we discuss in this book, is the logistic 
function,
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 θ( ) ( )
exp( )

exp( ) exp( )
x x

x
x x

= ′ = ′
+ ′

=
+ − ′

m b b
b b1

1
1

 (12.7)

The last two forms are equivalent representations for the same function. A 
graph of the logistic function is shown in Figure 12.1.

Most presentations of logistic regression work with the link function, which 
is the inverse of the kernel mean function. Solving (12.7) for β′x, we find

 log
( )

( )
θ

θ
x

x
x

1−






= ′b  (12.8)

The left side of (12.8) is called a logit or log-odds and the right side is the linear 
predictor β′x. If we were to draw a graph of log{θ(x)/[1 − θ(x)]} versus β′x, we 
would get a straight line.

The ratio θ(x)/[1 − θ(x)] is the odds of success. For example, if the probabil-
ity of success is 0.25, the odds of success are 0.25/(1 − 0.25) = 1/3, one success 
to each three failures. If the probability of success is 0.8, then the odds of 
success are 0.8/0.2 = 4, or four successes to one failure. Whereas probabilities 
are bounded between 0 and 1, odds can be any nonnegative number. The logit 
is the logarithm of the odds. According to Equation (12.8), the logit is equal 
to a linear combination of the regressors.

The data for logistic regression for the ith observation consist of the 
observed number of successes yi, the observed number of trials mi, and a vector 
xi of regressors computed from the predictors in the problem, as in Chapters 
4 and 5. The three components of the logistic regression model are the 
following:

Distribution  The distribution of (Yi|Xi = xi) ∼ Bin(mi, θ(xi)). Both the mean 
and the variance of Yi depend only on the known mi and on θ(xi).

Linear predictor  The parameter θ(xi) depends on xi only through the linear 
predictor β′xi for some unknown parameter vector β.

Figure 12.1  The logistic kernel mean function.
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Link function  There is a link function, or equivalently its inverse the kernel 
mean function, that specifies the connection between θ(xi) and the lin-
early related regressors β′xi, such as the logit link at (12.8).

Logistic regression models are not fit with ols. Rather, maximum likelihood 
estimation is used, based on the binomial distribution; see Appendix A.11.2. 
Most statistics packages will make fitting logistic models easy, and the results 
will look just like the results for fitting ols.

Blowdown
On July 4, 1999, a storm with winds exceeding 90 miles per hour hit the Bound-
ary Waters Canoe Area Wilderness in northeastern Minnesota, causing serious 
damage to the forest. Rich et al. (2007) studied the effects of this storm using 
a very extensive ground survey of the area, determining status, either alive or 
dead, of more than 3600 trees. Suppose θ(x) is the probability of death by 
blowdown for a tree with characteristics given by the regressors x.

We start with one predictor, and consider the dependence of the probability 
of blowdown on the diameter d of the tree, measured to the nearest 0.5 cm, 
for black spruce trees only. We will use log(d) as the single regressor beyond 
the intercept. The data file BlowBS contains d, the number of trees m of that 
diameter that were measured, and died, the number of trees that died in 
the blowdown. We view m as fixed, and model died given m as a binomial 
response, with regressors for the intercept and log(d). The data file has n = 35 
rows, corresponding to the 35 unique values of d. It represents a total of 
∑ =m 659 trees, with m ranging from 1 tree for some of the larger diameters 
to 91 for d = 6 cm.

As usual, we begin by graphing the data in Figure 12.2, with the blowdown 
fraction died/m on the vertical axis and the regressor log(d) on the horizontal 
axis. Since the samples sizes m are highly variable in this example, points in the 
graph are drawn with area proportional to m. Larger points with more trees 
are more important in fitting. Concentrating on the the larger points, the prob-
ability of blowdown increases with log(d). The points based on few trees are 
further from a trend, as should be expected. For example, if m = 3, the value 
of died/m could only equal 0, 1/2, or 1, and all these values are likely to be far 
from any fitted regression line.

The results fitting the logistic model are summarized in Table 12.1. The 
coefficient summary is similar to the output for simple regression, giving the 

Table 12.1  Logistic Regression Summary for the Black Spruce Blowdown Data

Estimate Std. Error z-Value Pr(>|z|)

(Intercept) −7.8925 0.6325 −12.48 0.0000
log(d) 3.2643 0.2761 11.82 0.0000

Residual deviance = 49.891 (33 df). Null deviance = 250.856 (34 df).
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name of the regressor, its coefficient estimate, and standard error. The ratio of 
the estimate to its standard error is called a z-value rather than a t-value. Since 
logistic regression does not have a variance parameter, the t-distribution is not 
appropriate, and the large sample normal approximation is used to get the 
significance levels in the last column. Also included in the output is the devi-
ance, which is analogous to the residual sum of squares in linear regression 
and is described in Section 12.2.2.

The very small p-values suggest that both the intercept and the coefficient 
for log(d) are unlikely to be equal to 0. Since the logistic model is in the scale 
of the logarithm of the odds, we can use Section 4.1.6 on responses in log scale 
to interpret coefficients. From (4.5), if the diameter d is increased by 10%, 
then the odds of death by blowdown are multiplied by exp[log(1.1) × 
3.264] ≈ 1.34.

The fitted curve, with equation 1/{1 + exp[−(−7.8925 + 3.2643 × log(d))]} is 
shown on Figure 12.2. The agreement of the line to the points with larger m is 
encouraging.

To account for the place-to-place variation in storm intensity that is likely 
to change the probability of death by blowdown, a measure s of local severity 
of the storm was computed as the fraction of the total basal area of trees of 
four major species that died near the measured tree. The data file Blowdown 
includes d, s, and a factor spp for species with 9 levels for all n = 3666 trees, 
with one row in the file for each tree that was measured. The variable y equals 
1 if a particular tree died as a result of the blowdown, and 0 if it survived. The 
data on black spruce trees used previously are included and require 659 rows, 
one for each of the trees.

Figure 12.2  Plot of the the blowdown fraction versus d, with the horizontal axis in log scale. The 
plotted points have area proportional to the sample size for that point. The solid line is the fitted 
logistic regression.
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The Wilkinson–Rogers notation for specifying a model was designed for 
linear models, but it often used for logistic, Poisson, and other generalized 
linear models. The model we consider is y ∼ log(d) + s + log(d):s, 
allowing for an interaction between s and log(d). The “∼” should be read as 
“is modeled using,” since the response depends on the regressors only through 
the dependence of the log-odds on the regressors.

The regression summary using the data in Blowdown with spp equal to 
black spruce, and therefore ignoring trees of all other species, is given in 
Table 12.2. Since an interaction is included, the z-tests for main effects are 
relevant only if the test for the interaction suggests the interaction is not 
needed. The tiny p-value for the interaction suggests all the terms should be 
maintained, even though the z-value for the main effect of log(d) is small.

The effects plot is shown in Figure 12.3. The model returns fitted values  
in the logit scale, and these were transformed first to fitted odds by  

Table 12.2  Black Spruce Blowdown Data

Estimate Std. Error z-Value Pr(>|z|)

(Intercept) −3.678 1.425 −2.58 0.010
log(d) 0.578 0.633 0.91 0.361
s −11.205 3.638 −3.08 0.002
log(d):s 7.085 1.645 4.31 0.000

Residual deviance = 541.7 (655 df). Null deviance = 856.2 (658 df).

Figure  12.3  Effects plot for black spruce trees in the blowdown data with both d and s as 
predictors.
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exponentiating, and then to the fitted probabilities shown on the plot. The 
horizontal axis is the diameter d. Because of the interaction, the dependence 
of the probability of blowdown on d will be different for each value of s. Three 
curves are shown in Figure 12.3, corresponding roughly to the 25%, 50%, and 
75% points of the distribution of s for the black spruce trees. The effect of d 
increases fastest for the highest quartile and slowest for the lowest quartile. 
This plot could be drawn with many variations, including using log(d) on the 
horizontal axis, using odds or log-odds on the vertical axis, and reversing  
the roles of d and s in the plot, but the presentation here seems to catch the 
essence of the solution.

12.2.2  Deviance

In multiple linear regression (Chapter 6), the residual sum of squares provides 
the basis for tests for comparing mean functions. In logistic and Poisson regres-
sion, the residual sum of squares is replaced by the deviance, which is often 
called G2. The deviance is defined for logistic regression to be

 G y
y
y

m y
m y
m y

i
i

i
i i

i i

i ii
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=

log log
ˆ

( )
ˆ∑∑  (12.9)

where ˆ ˆ( )y mi i i= θ x  are the fitted number of successes in mi trials. The df associ-
ated with the deviance is equal to the number of cases n used in the calculation 
minus the number of elements of β that were estimated; for the black spruce 
data fit in Table 12.2, df = 659 − 4 = 655.

Methodology for comparing models parallels the results in Section 6.1. 
Write ′ = ′ + ′b b bx x x1 1 2 2 , and consider testing

NH

AH

: ( ) ( )

: ( ) ( )

θ
θ

x x

x x x

= ′
= ′ + ′
m

m

b
b b

1 1

1 1 2 2

Obtain the deviance GNH
2  and degrees of freedom dfNH under the null hypoth-

esis, and then obtain GAH
2  and dfAH under the alternative hypothesis. As with 

linear models, we will have evidence against the null hypothesis if G GNH AH
2 2−  

is too large. To get a p-value, we compare the difference G GNH AH
2 2−  with the 

χ2 distribution with df = dfNH − dfAH, not with an F-distribution as was done 
for linear models.

The NH that the probability of blowdown is constant versus AH that the 
probability depends on a set of regressors is equivalent to the overall test in 
linear models, and it is based on the difference between the null deviance and 
the residual deviance. For the model summarized in Table 12.1, this is 
G2 = 250.86 − 49.89 = 200.97, which is compared with the χ2 distribution with 
34 − 33 = 1 df. The significance level is very tiny, suggesting the hypothesis of 
probability of blowdown independent of d is firmly rejected. Similarly, the 
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overall test for the model summarized in Table 12.2 is G2 = 856.2 − 541.7 = 314.5, 
which is compared with the χ2 distribution with 658 − 655 = 3 df. Once again 
the significance level is very small, providing evidence that the probability of 
blowdown is not constant.

For the next example, we consider testing NH: y  ∼  log(d) versus AH: 
y ∼ log(d) + s + log(d):s. The NH model was fit in Table 12.1 using 
the group of trees with the same diameter as the unit of analysis, while the 
AH model was fit using each tree as the unit of analysis. We need to refit the 
NH model using the tree as the unit of analysis, with the data file Blowdown. 
Estimates and standard errors are the same fitting using the grouped binomial 
data or the individual Bernoulli data, but the deviance is different. Fitting to 
the individual trees, the residual deviance is 655.24 with 657 df, and the test is 
G2 = 113.50 with 2 df. Once again, the significance level is very small, and the 
NH firmly rejected.

Tests with logistic models, and with the Poisson models to be introduced 
later, are often summarized in an Analysis of Deviance table that is directly 
analogous to the Analysis of Variance table used to study linear models. As 
an example, we consider a third model for blowdown probability that uses all 
the data, adding a factor with nine levels for species, and allowing each species 
to have its own log(d) : s interaction. This corresponds to fitting with main 
effects, all two-factor interactions, and a three-factor interaction. The results 
may be summarized in the Analysis of Deviance table in Table 12.3. This is a 
Type II table, as in Section 6.2, and is interpreted and used in the same way. 
Starting at the bottom of the table, the three-factor interaction test is consid-
ered first. Testing stops because it has a very small significance level, as lower-
order effects are not tested when higher-order effects in the same predictors 
are nonzero.

Figure 12.4 is a summary effects plot for the blowdown data. The model fit 
suggests that effects of s and d are needed for most tree species. We see there 
are interesting differences between species. For red pine, the probability of 
blowdown appears to decrease with d, while for jack pine, the probability of 
blowdown may be independent of d. Cedar trees were relatively immune 
to blowdown except in areas of very high severity. Further analysis of these 

Table 12.3  Analysis of Deviance for Blowdown

df G2 Pr(>χ2)

log(d) 1 227.8 0.0000
S 1 594.0 0.0000
Spp 8 509.5 0.0000
log(d):s 1 41.6 0.0000
log(d):spp 8 71.9 0.0000
s:spp 8 36.5 0.0000
log(d):s:spp 8 20.4 0.0088
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data would require more work, and quite likely a separate analysis for each 
species separately could be enlightening.

12.3  POISSON REGRESSION

When the data are to be modeled as if they are Poisson counts, the rate param-
eter is assumed to depend on the regressors with linear predictor β′x through 
the link function

 log[ ( )]λ ′ = ′b bx x  (12.10)

Figure 12.4  Effects plots in the blowdown data with both d and s as predictors.
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Poisson regression models are often called log-linear models.
The data for Poisson regression for the ith observation consist of the 

observed number of events yi, and the values of the regressors. The three 
components of the Poisson regression model are as follows:

Distribution  The distribution of (Yi|Xi = xi) ∼ Po[λ(xi)].
Linear predictor  The parameter λ(xi) depends on xi only through the linear 

predictor β′xi for some unknown parameter vector β.
Link function  The link function is the log-link (12.10).

Maximum likelihood estimation is the usual method used to fit Poisson 
regression models. The deviance for Poisson regression is given by

 G y y y yi i i i

i

n
2

1

2= ( ) − −( )[ ]
=
∑ log / ˆ ˆ  (12.11)

where ŷi  is the fitted value exp ′( )b̂ xi .

Mathematical Sciences PhDs
The data in Table 12.4 gives the number of PhD degrees awarded in the math-
ematical sciences in the United States in 2008–2009 (Phipps et al., 2009). The 
rows of the table correspond to the factor type, with six levels. The first four 
rows correspond to mathematics departments grouped into Type I public and 
private for the largest universities, and Types II and III for smaller universities. 
Type IV corresponds to programs in biostatistics or statistics in any university. 
Type Va is for applied mathematics in any university. Columns subdivide the 
counts further by sex and citizenship of the PhD recipient. We can view each 
of the cell counts as a Poisson random variable with possibly different rates. 
The data are in the file AMSsurvey in a format that is suitable for fitting with 
Poisson regression. The data file has one row for each cell in the table, so there 
are n = 24 rows. Columns are given for type, sex, and citizen. An addi-
tional column called count gives the cell counts shown in the table.

Table 12.4  American Mathematics Society PhD Survey, 2008–2009

Level

Non-U.S. U.S.

Female Male Female Male

I(Pu) 29 130 35 132
I(Pr) 25 79 20 87
II 50 89 47 96
III 39 53 32 47
IV 105 122 54 71
Va 12 28 14 34
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Table 12.5 gives the Type II Analysis of Deviance table for the fit of  
log-linear Poisson model with all main effects, two-factor interactions, and  
the three-factor interaction. Starting as usual at the bottom, both the 
type:sex:citizen and the sex:citizen interactions have large p-values 
and appear to be negligible. The remaining two-factor interactions have small 
p-values and are not negligible. Before further summarization, we fit the 
Poisson model including only the important two-factor interactions.

The regression summary is provided in Table 12.6. As is true with any 
regression model with interactions present, interpretation of coefficient esti-
mates is challenging because the parameters depend on the choice of regres-
sors used to represent the factors. The interaction parameters are the most 
easily interpretable. For example, the coefficient for U.S. citizens at type IV 
institutions is −0.6251, and this describes the difference between citizens and 

Table 12.5  Analysis of Deviance for Mathematical Sciences PhDs

df G2 Pr(>χ2)

Type 5 233.3 0.0000
Sex 1 183.0 0.0000
Citizen 1 5.9 0.0149
type:sex 5 69.1 0.0000
type:citizen 5 24.0 0.0002
sex:citizen 1 0.5 0.4635
Type:sex:citizen 5 1.4 0.9222

Table 12.6  Poisson Regression Summary for the Mathematical Sciences PhDs

Estimate Std. Error z-Value Pr(>|z|)

(Intercept) 3.0992 0.1646 18.83 0.0000
typeI(Pu) 0.3417 0.2143 1.59 0.1109
typeII 0.7681 0.2026 3.79 0.0002
typeIII 0.5436 0.2150 2.53 0.0114
typeIV 1.5310 0.1870 8.19 0.0000
typeVa −0.6296 0.2814 −2.24 0.0253
sexMale 1.3053 0.1681 7.77 0.0000
citizenUS 0.0284 0.1377 0.21 0.8364
typeI(Pu):sexMale 0.1041 0.2184 0.48 0.6335
typeII:sexMale −0.6597 0.2097 −3.15 0.0017
typeIII:sexMale −0.9628 0.2288 −4.21 0.0000
typeIV:sexMale −1.1115 0.1993 −5.58 0.0000
typeVa:sexMale −0.4363 0.2878 −1.52 0.1296
typeI(Pu):citizenUS 0.0207 0.1767 0.12 0.9070
typeII:citizenUS −0.0001 0.1821 −0.00 0.9997
typeIII:citizenUS −0.1808 0.2061 −0.88 0.3805
typeIV:citizenUS −0.6251 0.1771 −3.53 0.0004
typeVa:citizenUS 0.1539 0.2545 0.60 0.5455

Residual deviance = 1.957 (6 df). Null deviance = 521.444 (23 df).
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Figure 12.5  Effects plots for Mathematical Sciences PhDs.
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noncitizens. Since the Poisson model uses a log-link, the expected number of 
U.S. citizen PhDs is exp(−0.6251) ≈ 0.5 times the expected non-U.S. citizens. 
The coefficients for the main effects are not easily interpretable. The difference 
between Male and Female is not reflected by the coefficient for Sex because 
this difference depends on the value of type.

A better way to understand the fitted model is to get estimated cell counts 
for each of the 24 cells based on the model, and then view them in the effects 
plots shown in Figure 12.5, one for each of the two-factor interactions. In both 
plots, the horizontal axis is levels of type. The levels have been ordered 
according to the total number PhD awards granted, as this makes the graphs 
easier to read. The vertical axis is the fitted number of PhDs. The Poisson 
model used a log-link, so an alternative of plotting log-fitted values on the 
vertical axis could have been used. The lines joining the points in the plot are 
just visual aids, as fitted values are available only at the points shown. The 
error bars are 95% confidence intervals, without adjusting for multiple infer-
ences, for the estimated number of PhDs awarded.

Figure 12.5a is for the type:citizen interaction. The number of PhDs 
for citizens and noncitizens are essentially the same for all types of institutions 
except for Type IV, statistics and biostatistics programs, which have many more 
noncitizen PhDs awarded, although this difference is exaggerated because the 
vertical axis is not in log scale. The picture for the type:sex interaction is a 
little more complicated. Males outnumber females at all levels of type, except 
perhaps for Type IV. The sex differences vary by type, and are largest in the 
Type I public and private universities.

12.3.1  Goodness of Fit Tests

If a Poisson mean function is correctly specified, the residual deviance G2 will 
be distributed as a χ2(n − p′) random variable, where n is the number of cells 
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and p′ is the number of regressors fit. If the mean function is not correctly 
specified, or if the Poisson assumption is wrong, then G2 will generally be too 
large, and so a lack of fit test can be obtained by comparing the value of G2 
to the relevant χ2 distribution. For the model summarized in Table 12.6, the 
deviance is G2 = 1.96, and when compared with the χ2(6) distribution, we get 
a signficance level of 0.92, suggesting no lack of fit of the model used.

The same idea can be used for binomial regression when the sample sizes 
mi are larger than 1. For Table 12.1, we have G2 = 49.89 with 33 df, correspond-
ing to a p-value of 0.03, providing modest evidence of lack of fit. Since we 
found that adding s to that model improved the fit, finding that the initial 
model is inadequate is not surprising.

An alternative to using G2 for lack of fit testing is to use Pearson’s X 2 for 
testing, given by the familiar formula

 X
y y

y
i i

ii

n
2

2

1

=
−( )

=
∑ ˆ

ˆ
 (12.12)

Like G2, X 2 is compared with χ2(n − p′) to get significance levels. In large 
samples, the two tests will give the same inference, but in smaller samples χ2 
is generally more powerful.

In binomial regression with all or nearly all the mi = 1, neither G2 nor X 2 
provides a lack of fit test.

12.4  TRANSFERRING WHAT YOU KNOW ABOUT  
LINEAR MODELS

Most of the methodology developed in this book transfers to problems with 
binomial or Poisson responses. In this section, important connections are 
briefly summarized.

12.4.1  Scatterplots and Regression

Graphing data, Chapter 1, is just as important in binomial and Poisson regres-
sion as it is in linear regression. In problems with a binary response, plots of 
the response versus predictors or regressors are generally not very helpful 
because the response only has two values. Smoothers, however, can help look 
at these plots as well. Plots of predictors with color used to indicate the level 
of the response can also be helpful.

12.4.2  Simple and Multiple Regression

The general ideas in Chapters 2 and 3 apply to binomial and Poisson models, 
even if the details differ. With the counted data models, estimates b̂  and 
Var |b̂ X( ) are computed using the appropriate maximum likelihood methods, 
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not with the formulas in these chapters. Once these are found, they can be 
used in the formulas and methods given the text. For example, a point estimate 
and standard error for a linear combination of the elements of β is given by 
(3.26), but with σ̂ 2 set equal to 1, and (X′X)−1 replaced by the covariance 
matrix of b̂  from the binomial or Poisson fit. Confidence intervals and tests 
use the standard normal rather than a t-distribution.

12.4.3  Model Building

Chapters 4 and 5 apply with modest modification in binomial and Poisson 
regression. Since both binomial and Poisson models use logarithms in their 
link functions, the results of Section 4.1.7 can be useful.

12.4.4  Testing and Analysis of Deviance

The t-tests discussed in Chapters 2, 3, and 6 are replaced by z-tests for binomial 
and Poisson models. The F-tests in Chapter 6 are replaced by χ2 tests based 
on changes in deviance. The marginality principle, Section 6.2, is the guiding 
principle for testing with counted responses.

In linear models, the t-tests and F-tests for the same hypothesis have the 
same value, and so they are identical. With binomial and Poisson responses, 
the tests are identical only for very large samples, and in small samples they 
can give conflicting summaries. The G2 tests are generally preferred.

12.4.5  Variances

Failure of the assumptions needed for binomial or Poisson fitting may be 
reflected in overdispersion, meaning that the variation between observations 
given the predictors is larger than the value required by the model. One 
general approach to overdispersion is to fit models that allow for it, such as 
the binomial or Poisson mixed models similar to those in Section 7.4. Other 
models, for example, using negative binomial distributions rather than bino-
mial (Hilbe, 2011), can account for overdispersion. Alternatively, variance 
corrections like those in Section 7.2.1 are also available, and some software 
packages including Stata offer them as “robust” standard errors.

12.4.6  Transformations

Transformation of the response is not relevant with binomial and Poisson 
models. Transformation of predictors is relevant, however, and all the meth-
odology in Chapter 8 can be used.

12.4.7  Regression Diagnostics

Many diagnostic methods depend on residuals. In binomial and Poisson 
models, the variance depends on the mean, and any useful residuals must be 



12.6  problems  285

scaled to account for variance. A generalization of the Pearson residuals 
defined in Section 9.1.3, is appropriate for most purposes. Fox and Weisberg 
(2011, chapter 6) provide examples of applying diagnostic methods for bino-
mial and Poisson models.

12.4.8  Variable Selection

All the ideas discussed in Chapter 10 carry over to binomial and Poisson 
models.

12.5  GENERALIZED LINEAR MODELS

The multiple linear regression, logistic, and Poisson log-linear models are 
particular instances of generalized linear models. They share three basic 
characteristics:

1.  The conditional distribution of the response Y|X is distributed according 
to an exponential family distribution. The important members of this class 
include the normal, binomial, Poisson, and gamma distributions.

2.  The response Y depends on the regressors only through the linear com-
bination of terms β′x.

3.  The mean E(Y|X = x) = m(β′x) for some kernel mean function m. For the 
multiple linear regression model, m is the identity function, and for logis-
tic regression it is the logistic function. The Poisson was specified using 
the log link, so its m is the inverse of the log, or the exponential function. 
Other choices of the kernel mean function are possible but are used less 
often in practice.

These three components are enough to specify completely a regression 
problem along with methods for computing estimates and making inferences. 
The methodology for these models generally builds on the methods in this 
book, usually with only minor modification. Generalized linear models were 
first suggested by Nelder and Wedderburn (1972) and are discussed at length 
by McCullagh and Nelder (1989). Some statistical packages use common soft-
ware to fit all generalized linear models, including the multiple linear regres-
sion model.

12.6  PROBLEMS

12.1 (Data file: Blowdown)
12.1.1  Create a table that gives then number of trees that survived and 

the number that died of each of the nine species.
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12.1.2  Select the rows from the data file with spp equal to black 
spruce to get the data on the balsam fir trees only. Draw the 
graph of status y versus log(d), and add a smoother. Does the 
graph support fitting a logistic model?

12.1.3  Fit the same model as is used in Table 12.1, but fit the Bernoulli 
regression model by fitting to the individual trees. Show that the 
estimates and standard errors are identical to those in Table 12.1, 
but the deviance and df are different.

12.1.4  Add (log(d))2 to the mean function to allow for a possible decline 
in the probability of blowdown for the largest trees. Obtain the 
z-test that the coefficient for the quadratic term is 0, and also 
obtain the G2 test for the same hypothesis. Show that these two 
tests are not identical, that is G2 ≠ z2, and state the conclusions 
from the tests. Draw the effects plot for d; does the quadratic 
model allow for declining probabilities?

12.2 Professor ratings (Data file: Rateprof) Problem 6.10 concerned learn-
ing about quality rating as a function of several other predictors. In 
this problem, take as the response variable pepper with values yes and 
no, where yes means that the consensus of the raters is that the instructor 
is physically attractive. The predictors are gender, discipline, 
quality, easiness, and raterInterst. Find a set of regressors that 
appears to model the probability that pepper = yes, and summarize your 
results. (Hint: In some computer programs you may need to convert the 
values no and yes to 0 and 1. R will do this automatically, ordering the 
levels alphabetically.)

12.3 Downer  data (Data file: Downer) For unknown reasons, dairy cows 
sometimes become recumbent—they lay down. Called downers, these 
cows may have a serious illness that may lead to their death. These  
data are from a study of blood samples of over 400 downer cows studied 
at the Ruakura New Zealand Animal Health Laboratory during 1983–
1984. A variety of blood tests were performed, and for many of the 
animals, the outcome (survived, died) was determined. The goal is to  
see if survival can be predicted from the blood measurements. The vari-
ables in the data file are described in Table 12.7. These data were  
collected from veterinary records, and not all variables were recorded for 
all cows.
12.3.1  Consider first predicting outcome from myopathy. Find the frac-

tion of surviving cows of myopathy = 0 and for myopathy = 1.
12.3.2  Fit the logistic regression outcome  ∼ myopathy. Write a sen-

tence that explains the meaning of each of the coefficient  
estimates, and provide 95% confidence intervals. Obtain the esti-
mated probability of survival when myopathy = 0 and when 
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myopathy = 1, and compare with the observed survival fractions 
in Problem 12.3.1.

12.3.3  Next, consider the regression problem with only ck as a predictor. 
Since ck is observed more often than is myopathy, this regression 
will be based on more cases than were used in the first two parts 
of this problem. Fit the logistic regression mean function with 
log(ck) as the only regressor beyond the intercept. Summarize 
results.

12.3.4  Fit the logistic mean function y  ∼ myopathy  + log(ck)  + 
myopathy:log(ck). Obtain a Type II Analysis of Deviance 
table and summarize the results. Draw and interpret an effects 
plot, assuming the interaction is significant.

12.4 Starting with (12.7), derive (12.8).

12.5 Donner party (Data file: Donner) In the winter of 1846–1847, about 90 
wagon train emigrants in the Donner party were unable to cross the 
Sierra Nevada Mountains of California before winter, and almost half of 
them starved to death. The data in file Donner from Johnson (1996) 
include some information about each of the members of the party. The 
variables include age, the age of the person; sex, whether male or 
female; status, whether the person was a member of a family group, a 
hired worker for one of the family groups, or a single individual who did 
not appear to be a hired worker or a member of any of the larger family 
groups; and y, a factor with levels died and survived.
12.5.1  How many men and women were in the Donner Party? What was 

the survival rate for each sex? Obtain a test that the survival rates 
were the same against the alternative that they were different. 
What do you conclude?

Table 12.7  The Downer Data

Variable n Description

ast 429 Serum asparate amino transferase (U/L at 30°C)
calving 431 Factor with levels before and after calving
ck 413 Serum creatine phosphokinase (U/L at 30°C)
daysrec 432 Days recumbent when measurements were done
inflamat 136 Is inflammation present? no or yes
myopathy 222 Is muscle disorder present? a factor with levels 

absent and present
pcv 175 Packed cell volume (hematocrit), percentage
urea 266 Serum urea (mmol/l)
outcome 435 survived or died

Source: Clark et al. (1987).
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12.5.2  Fit the logistic regression model y ∼ age, and provide an inter-
pretation for the fitted coefficient for age.

12.5.3  Use your computer package to draw a scatterplot of the Pearson 
residuals from the model fit in Section 12.5 versus age. The resid-
ual plot will consist of two curves, with the curve of all positive 
values corresponding to survivors and the negative curve for 
deaths. As in Chapter 9, residual plots can be used to diagnose 
curvature, but this is quite hard without the aid of a smoother 
added to the plot.

12.5.4  Fit the logistic regression model y ∼ age + age∧2 + sex + 
status and summarize results.

12.6 Challenger (Data file: Challeng) These data from Dalal et al. (1989) 
records performance of O-rings for the 23 U.S. space shuttle missions 
prior to the Challenger disaster of January 20, 1986. For each of the previ-
ous missions, the temperature at takeoff and the pressure of a prelaunch 
test were recorded, along with the number of O-rings that failed out  
of 6.

Use these data to try to understand the probability of failure as a 
function of temperature, and of temperature and pressure. Use your 
fitted model to estimate the probability of failure of an O-ring when the 
temperature was 31°F, the launch temperature on January 20, 1986.

12.7 Titanic (Data file: Whitestar) The Titanic was a British luxury pas-
senger liner that sank when it struck an iceberg about 640 km south of 
Newfoundland on April 14–15, 1912, on its maiden voyage to New York 
City from Southampton, England. Of 2201 known passengers and crew, 
only 711 are reported to have survived. These data from Dawson (1995) 
classify the people on board the ship according to their sex as male or 
female; age, either child or adult; and class, either first, second, third, 
or crew. Not all combinations of the three-factors occur in the data, since 
no children were members of the crew. For each age/sex/class combina-
tion, the number of people m and the number surviving Surv are also 
reported. The data are shown in Table 12.8.
12.7.1  Fit a logistic regression model with terms for factors sex, age, 

and class. On the basis of examination of the data in Table 12.8, 
explain why you expect that this mean function will be inadequate 
to explain these data.

12.7.2  Fit a logistic regression model that includes all the terms of the 
last part, plus all the two-factor interactions. Use appropriate 
testing procedures to decide if any of the two-factor interactions 
can be eliminated. Assuming that the mean function you have 
obtained matches the data well, summarize the results you have 
obtained by interpreting the parameters to describe different  
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survival rates for various factor combinations. (Hint: How does 
the survival of the crew differ from the passengers? First class 
from third class? Males from females? Children versus adults? 
Did children in first class survive more often than children in third 
class?)

12.8 More Blowdown (Data file: Blowdown)
12.8.1  For the blowdown example, fit the model y ∼ log(d) + s + 

log(d):s for spp = paper birch and summarize results.
12.8.2  Repeat for spp = aspen.

12.9 (Data file: AMSsurvey)
12.9.1  The example discussed in Section 12.3 concerns 2008–2009 PhDs 

in the mathematical sciences. Also included in the data file is an 
additional variable count11 that gives the number of mathemati-
cal sciences PhDs in 2011–2012. Analyze these data to parallel the 
analysis in the text and summarize your results.

12.9.2  View these data as a four-dimensional table, with the dimensions 
type, sex, citizen, and year, where year is either 2008–2009 
or 2011–2012. Fit models to this four-factor problem, and sum-
marize results. (Hint: This will require that you reform the data 
file to have 48 rows. For example, in R, the user-unfriendly reshape 
function can do this.

> AMS1 <- reshape(AMSsurvey,
  varying=c(“count”, “count11”),
  v.names=“y”, times=c(“2008-09”, “2011-12”),
  timevar=“year”, direction=“long”)
> AMS1$year <- factor(AMS1$year)
The variable year is now a factor and y is the count of PhDs.)

Table 12.8  Data from the Titanic Disaster of 1912. Each Cell Gives Surv/m, the 
Number of Survivors, and the Number Number of People in the Cell

Class

Female Male

Adult Child Adult Child

Crew 20/23 192/862
First 140/144 1/1 57/175 5/5
Second 80/93 13/13 14/168 11/11
Third 76/165 14/31 75/462 13/48
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Appendix

A.1  WEBSITE

The web address for this book is http://z.umn.edu/alr4ed.
The website includes information about using R with this book, a descrip-

tion of an R package called alr4 that includes all the data files described, and 
solutions to odd-numbered problems.

A.2  MEANS, VARIANCES, COVARIANCES, AND CORRELATIONS

Suppose we let u1, u2, . . . , un be n random variables.1 Also let a0, a1, . . . , an be 
n + 1 known constants.

A.2.1  The Population Mean and E Notation

The symbol E(ui) is read as the expected value of the random variable ui. The 
phrase “expected value” is the same as the phrase “mean value.” Informally, 
the expected value of ui is the average value of a very large sample drawn 
from the distribution of ui. If E(ui) = 0, then the average value we would get 
for ui if we sampled its distribution repeatedly is 0. Since ui is a random vari-
able, any particular realization of ui is likely to be nonzero.

The expected value is a linear operator, which means

 
E E

E E

( ) ( )

( )

a a u a a u

a a u a a ui i i i

0 1 1 0 1 1

0 0

+ = +

+( ) = +∑ ∑  (A.1)

1Formally, we have random variables U1, . . . , Un and u1, . . . , un that are realizations of the Ui, but 
we ignore here the distinction between a random variable and its realization.

http://z.umn.edu/alr4ed
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For example, suppose all the ui have the same expected value and we write 
E(ui) = μ, i = 1, . . . , n. The sample mean of the ui is u u n n ui i= ∑ = ∑/ (1/ ) , and 
the expected value of the sample mean is

E E E( )
1 1 1

u
n

u
n

u
n

ni i= 



 = = =∑ ∑ ( ) ( )µ µ

We say that ū is an unbiased estimate of the population mean μ, since its 
expected value is μ.

A.2.2  Variance and Var Notation

The symbol Var(ui) is for the variance of ui. The variance is defined by the 
equation Var(ui) = E[ui − E(ui)]2, the expected squared difference between an 
observed value for ui and its mean value. The larger Var(ui), the more variable 
observed values for ui are likely to be. The symbol σ2 is often used for a vari-
ance, or σu

2 might be used for the variance of the identically distributed ui if 
several variances are being discussed. The square root of a variance, often σ 
or σu, is the standard deviation, and is in the same units as the units of the 
random variable ui. For example, if the ui are heights in centimeters, then units 
of σu are also centimeters. The units of σu

2 are cm2, which can be much harder 
to interpret.

The general rule for the variance of a sum of uncorrelated random 
variables is

 Var Vara a u a ui i i i0
2 ( )+( ) =∑ ∑  (A.2)

The a0 term vanishes because the variance of a constant is 0. Assuming that 
Var(ui) = σ2, we can find the variance of the sample mean of independently, 
identically distributed ui:

Var Var Var( )
1 1
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1

2 2
2

2
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n
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n

n
n

i i= 



 = = =∑ ∑ ( )σ σ

The standard deviation of a sum is found by computing the variance of the 
sum and then taking a square root.

A.2.3  Covariance and Correlation

The symbol Cov(ui, uj) is read as the covariance between the random variables 
ui and uj and is also an expected value defined by the equation

Cov E E E Cov( , ) ( ) ( ) ( , )u u u u u u u ui j i i j j j i= −[ ] −[ ]{ } =
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The covariance describes the way two random variables vary jointly. If the  
two variables are independent, then Cov(ui, uj) = 0, but zero correlation does 
not imply independence. The variance is a special case of covariance, since 
Cov(ui, ui) = Var(ui).

When covariance is nonzero, common language is to say that two variables 
are correlated. Formally, the correlation coefficient is defined by

ρ( , )
( , )

( ) ( )
u u

u u

u u
i j

i j

i j

=
Cov

Var Var

The correlation does not depend on units of measurement and has a value 
between −1 and 1, with ρ(ui, uj) = 0 only if Cov(ui, uj) = 0.

The rule for covariances is

Cov Cov( , ) ( , )a a u a a u a a u u0 1 1 3 2 2 1 2 1 2+ + =

It is left as an exercise to show that

ρ ρ( , ) ( , )a a u a a u u u0 1 1 3 2 2 1 2+ + =

so the unit-free correlation coefficient does not change if the random variables 
are rescaled or centered.

The general form for the variance of a linear combination of random vari-
ables is

 Var Var Cova a u a u a a u ui i i i

i

n

i j i j

j i

n

i

n

0
2

1 11

1

( ) 2 ( , )+( ) = +∑ ∑ ∑
= = +=

−

∑∑  (A.3)

A.2.4  Conditional Moments

Throughout the book, we use notation like E(Y|X) or E(Y|X = x) to denote 
the mean of the random variable Y in the population for which the value of X 
is fixed. Similarly, Var(Y|X) or Var(Y|X = x) is the variance of the random 
variable Y in the population for which X is fixed.

There are simple relationships between the conditional mean and variance 
of Y given X and the unconditional mean and variances (Casella and Berger, 
2001):

 E E E |( ) ( )Y Y X= [ ]  (A.4)

 Var E Var | Var E |( ) ( ) ( )Y Y X Y X= [ ]+ [ ]  (A.5)

For example, suppose that when we condition on the predictor X we 
have a simple linear regression mean function with constant variance, 
E(Y|X = x) = β0 + β1x, Var(Y|X = x) = σ2. In addition, suppose the unconditional 
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moments of the predictor are E(X) = μx and Var( ) 2X x= τ . Then for the uncon-
ditional random variable Y,

E E E |

E

( ) ( )Y Y X x

x

x

= =[ ]
= +[ ]
= +

β β
β β µ

0 1

0 1

Var E Var | Var E |

E Var

( ) ( ) ( )

[ ] [ ]

Y Y X x Y X x

x

= =[ ] + =[ ]
= + +
= +

σ β β
σ β

2
0 1

2
1
22 2τ x

The expected value of the unconditional variable Y is obtained by substituting 
the expected value of the unconditional variable X into the conditional 
expected value formula, and the unconditional variance of Y equals the 
conditional variance plus an additional quantity that depends on both β1

2 and 
on τ x

2.

A.3  LEAST SQUARES FOR SIMPLE REGRESSION

The ols estimates of β0 and β1 in simple regression are the values that minimize 
the residual sum of squares function,

 RSS( ,0 1 0 1
2

1

β β β β) = − −( )
=
∑ y xi i

i

n

 (A.6)

One method of finding the minimizer is to differentiate with respect to β0 and 
β1, set the derivatives equal to 0, and solve

∂ = − − − =
=
∑RSS( , )

( )
β β

β
β β0 1

0
0 1

1

2 0y xi i

i

n

∂ = − − − =
=
∑RSS( , )

( )
β β

β
β β0 1

1
0 1

1

2 0x y xi i i

i

n

Upon rearranging terms, we get

 
β β

β β

0 1

0 1
2

n x y

x x x y

i i

i i i i

+ =

+ =

∑ ∑
∑ ∑ ∑

 (A.7)

Equations (A.7) are called the normal equations for the simple linear regres-
sion model (2.1). The normal equations depend on the data only through the 
sufficient statistics ∑xi , ∑yi, ∑xi

2, and ∑x yi i . Using the formulas
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SXX

SXY

= − = −

= − − = −

∑ ∑
∑ ∑

( )

( )( )

2 2 2x x x nx

x x y y x y nxy

i i

i i i i

 (A.8)

equivalent and numerically more stable sufficient statistics are given by  
x , y, SXX, and SXY. Solving (A.7), we get

 ˆ ˆ ˆβ β β0 1 1= − =y x
SXY
SXX

 (A.9)

A.4  MEANS AND VARIANCES OF LEAST 
SQUARES ESTIMATES

The least squares estimates are linear combinations of the observed values  
y1, . . . , yn of the response, so we can apply the results of Appendix A.2 to the 
estimates found in Appendix A.3 to get the means, variances, and covariances 
of the estimates. Assume the simple regression model (2.1) is correct. The 
estimator β̂1 given at (A.9) can be written as β̂1 = ∑c yi i , where for each i, 
c x xi i= −( )/SXX. Since we are conditioning on the values of X, the ci are fixed 
numbers. By (A.1),

E( | ) E | E( | )

( )

1

0 1

0 1

β̂

β β

β β

X c y X x c y X x

c x

c

i i i i i i

i i

i

= =( ) = =

= +

= +

∑ ∑
∑

∑ cc xi i∑
By direct summation, ∑ =ci 0 and ∑ =c xi i 1, giving

E |( )1 1β̂ βX =

which shows that β̂1 is unbiased for β1. A similar computation will show that 
β̂0 is an unbiased estimate of β0.

Since the yi are assumed independent, the variance of β̂1 is found by an 
application of (A.2),

Var | Var |

Var |

( )

( )

/

1

2

2 2

2

β̂

σ

σ

X c y X x

c y X x

c

i i i

i i i

i

= =( )
= =

=

=

∑
∑

∑
SXX
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This computation also used ∑ = ∑ − =c x xi i
2 2 2 1( ) / /SXX SXX. Computing the 

variance of β̂0  requires an application of (A.3). We write

 
Var( | ) Var( | )

Var( | ) Var( | ) 2 Cov( ,

0 1

2
1 1

ˆ ˆ

ˆ ˆ
β β

β β

X y x X

y X x X x y

= −

= + − || )X
 

(A.10)

To complete this computation, we need to compute the covariance,

Cov( , | ) Cov
1

, |

1
Cov( , | )

1
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y X
n

y c y X

n
c y y X

n
c

i i i

i i j

β̂
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= 





=

=

∑ ∑
∑

ii∑
= 0

because the yi are independent and ∑ =ci 0. Substituting into (A.10) and 
simplifying,
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Further application of these results gives the variance of a fitted value, 
ˆ ˆ ˆy x= +β β0 1 :
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(A.11)
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A prediction ỹ* at the future value x* is just ˆ ˆβ β0 1 *+ x . The variance of a 
prediction consists of the variance of the fitted value at x* given by (A.11) plus 
σ2, the variance of the error that will be attached to the future value,

Var |(
1 ( )

*
2 *

2
2�y X x

n
x x= = + −





+*) σ σ
SXX

as given by (2.16).

A.5  ESTIMATING E(Y|X) USING A SMOOTHER

For a 2D scatterplot of Y versus X, a scatterplot smoother provides an estimate 
of the mean function E(Y|X = x) as x varies, without making parametric 
assumptions about the mean function. Many smoothing methods are used, and 
the smoother we use most often in this book is the simplest case of the loess 
smoother, Cleveland (1979); see also the first step in Algorithm 6.1.1 in Härdle 
(1990, p. 192). This smoother estimates E(Y|X = xg) by ỹg via a weighted least 
squares (wls) simple regression, giving more weight to points close to xg than 
to points distant from xg. Here is the method:

1.  Select a value for a smoothing parameter f, a number between 0 and 1. 
Values of f close to 1 will give curves that are too smooth and will be 
close to a straight line, while small values of f give curves that are too 
rough and match all the wiggles in the data. The value of f must be chosen 
to balance the bias of oversmoothing with the variability of under-
smoothing. Remarkably, for many problems f ≈ 2/3 is a good choice. 
There is a substantial literature on the appropriate ways to estimate a 
smoothing parameter for loess and for other smoothing methods, but 
for the purposes of using a smoother to help us look at a graph, optimal 
choice of a smoothing parameter is not critical.

2.  Find the fn closest points to xg. For example, if n = 100, and f = 0.6, then 
find the fn = 60 closest points to xg. Every time the value of xg is changed, 
the points selected may change.

3.  Among these fn nearest neighbors to xg, compute the wls estimates for 
the simple regression of Y ∼ X, with weights determined so that points 
close to xg have the highest weight, and the weights decline toward 0 for 
points farther from xg. We use a triangular weight function that gives 
maximum weight to data at xg, and weights that decrease linearly to 0 at 
the edge of the neighborhood. If a different weight function is used, 
answers are somewhat different.

4.  The value of ỹg is the fitted value at xg from the wls regression using 
the nearest neighbors found at step 2 as the data, and the weights from  
step 3.
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5.  Repeat steps 1–4 for many values of xg that form a grid of points that 
cover the interval on the x-axis of interest. Join the points.

Figure A.1 shows a plot of Height versus Diameter for western cedar 
trees in the Upper Flat Creek data, along with four smoothers. The first 
smoother is the ols simple regression line, which does not match the 
data well because the mean function for the data in this figure is probably 
curved, not straight. The loess smooth with f = 0.1 is as expected very 
wiggly, matching the local variation rather than the mean. The line for  
f = 2/3 seems to match the data very well, while the loess fit for f = .95 
is nearly the same as for f = 2/3, but it tends toward oversmoothing and 
attempts to match the ols line. We would conclude from this graph that a 
straight-line mean function is likely to be inadequate because it does not 
match the data very well. Loader (2004) presents a bootstrap based lack-of-fit 
test based on comparing parametric and nonparametric estimates of the  
mean function.

The loess smoother is an example of a nearest neighbor smoother. Local 
polynomial regression smoothers and kernel smoothers are similar to loess, 
except they give positive weight to all cases within a fixed distance of the point 
of interest rather than a fixed number of points. There is a large literature on 
nonparametric regression, for which scatterplot smoothing is a primary tool. 
Recent reference on this subject include Simonoff (1996), Bowman and Azza-
lini (1997), and Loader (1999).

Figure A.1  Three choices of the smoothing parameter for a loess smooth. The data used in this 
plot are discussed in Section 8.1.2.
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A.6  A BRIEF INTRODUCTION TO MATRICES AND VECTORS

We provide only a brief introduction to matrices and vectors. More complete 
references include Seber (2008), Schott (2005), or any good linear algebra 
book.

Boldface type is used to indicate matrices and vectors. We will say that X 
is an r × c matrix if it is an array of numbers with r rows and c columns. A 
specific 4 × 3 matrix X is

 X =



















=

1 2 1

1 1 5

1 3 4

1 8 6

11 12 13

21 22 23

31 32 33

41

x x x

x x x

x x x

x x442 43x

xij



















= ( )  (A.12)

The element xij of X is the number in the ith row and the jth column. For 
example, in the preceding matrix, x32 = 3.

A vector is a matrix with just one column. A specific 4 × 1 matrix y, which 
is a vector of length 4, is given by

y =
−



















=



















2

3

2

0

1

2

3

4

y

y

y

y

The elements of a vector are generally singly subscripted; thus, y3 = −2. A row 
vector is a matrix with one row. We do not use row vectors in this book. If a 
vector is needed to represent a row, a transpose of a column vector will be 
used, Appendix A.6.4.

A square matrix has the same number of rows and columns, so r = c. A 
square matrix Z is symmetric if zij = zji for all i and j. A square matrix is diago-
nal if all elements off the main diagonal are 0, zij = 0, unless i = j. The matrices 
C and D below are symmetric and diagonal, respectively:

C D=
−

−



















=














7 3 2 1

3 4 1 1

2 1 6 3

1 1 3 8

7 0 0 0

0 4 0 0

0 0 6 0

0 0 0 8






The diagonal matrix with all elements on the diagonal equal to 1 is  
called the identity matrix, for which the symbol I is used. The 4 × 4 identity 
matrix is
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I =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

A scalar is a 1 × 1 matrix, an ordinary number.

A.6.1  Addition and Subtraction

Two matrices can be added or subtracted only if they have the same number 
of rows and columns. The sum C = A + B of r × c matrices is also r × c. Addi-
tion is done elementwise:

C A B= + =














+












a a

a a

a a

b b

b b

b b

11 12

21 22

31 32

11 12

21 22

31 32


=

+ +
+ +
+ +















a b a b

a b a b

a b a b

11 11 12 12

21 21 22 22

31 31 32 32

Subtraction works the same way, with the “+” signs changed to “−” signs. The 
usual rules for addition of numbers apply to addition of matrices, namely com-
mutativity, A + B = B + A, and associativity, (A + B) + C = A + (B + C).

A.6.2  Multiplication by a Scalar

If k is a number and A is an r × c matrix with elements (aij), then kA is an 
r × c matrix with elements (kaij). For example, the matrix σ2I has all diagonal 
elements equal to σ2 and all off-diagonal elements equal to 0.

A.6.3  Matrix Multiplication

Multiplication of matrices follows rules that are more complicated than are 
the rules for addition and subtraction. For two matrices to be multiplied 
together in the order AB, the number of columns of A must equal the number 
of rows of B. For example, if A is r × c, and B is c × q, then C = AB is r × q. 
If the elements of A are (aij) and the elements of B are (bij), then the elements 
of C = (cij) are given by the formula

c a bij ik kj

k

c

=
=

∑
1

This formula says that cij is formed by taking the ith row of A and the jth 
column of B, multiplying the first element of the specified row in A by the first 
element in the specified column in B, multiplying second elements, and so on, 
and then adding the products together.
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If A is 1 × c and B is c × 1, then the product AB is 1 × 1, an ordinary number. 
For example, if A and B are

A B= − =
−



















( )1 3 2 1

2

1

2

4

then the product AB is

AB = × + × + × − + − × = −( ) ( ) ( ) ( )1 2 3 1 2 2 1 4 3

AB is not the same as BA. For the preceding matrices, the product BA will 
be a 4 × 4 matrix:

BA =

−
−

− − −
−



















2 6 4 2

1 3 2 1

2 6 4 2

4 12 8 4

The following small example illustrates what happens when all the dimen-
sions are bigger than 1. A 3 × 2 matrix A times a 2 × 2 matrix B is given as

a a

a a

a a

b b

b b

a b a b11 12

21 22

31 32

11 12

21 22

11 11 12 21



















=
+ aa b a b

a b a b a b a b

a b a b a b

11 12 12 22

21 11 22 21 21 12 22 22

31 11 32 21 31 1

+
+ +
+ 22 32 22+















a b

Using numbers, an example of multiplication of two matrices is

3 1

1 0

2 2

5 1

0 4

15 0 3 4

5 0 1 0

10 0 2 8

1

−




















=
+ +

− + − +
+ +















=
55 4

5 1

10 10

− −














In this example, BA is not defined because the number of columns of B is not 
equal to the number of rows of A. However, the associative law holds: If A is 
r × c, B is c × q, and C is q × p, then A(BC) = (AB)C, and the result is an r × p 
matrix.

A.6.4  Transpose of a Matrix

The transpose of an r × c matrix X is a c × r matrix called X′ such that if the 
elements of X are (xij), then the elements of X′ are (xji). For the matrix X given 
at (A.12),
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′ =














X

1 1 1 1

2 1 3 8

1 5 4 6

The transpose of a column vector is a row vector. The transpose of a product 
(AB)′ is the product of the transposes, in opposite order, so (AB)′ = B′A′.

Suppose that a is an r × 1 vector with elements a1, . . . , ar. Then the product 
a′a will be a 1 × 1 matrix or scalar, given by

 ′ = + + + =
=
∑a a a a a ar i

i

r

1
2

2
2 2 2

1

�  (A.13)

Thus, a′a provides a compact notation for the sum of the squares of the ele-
ments of a vector a. The square root of this quantity (a′a)1/2 is called the norm 
or length of the vector a. Similarly, if a and b are both r × 1 vectors, then we 
obtain

′ = + + + = = = ′
= =
∑ ∑a b b aa b a b a b a b b an n i i

i

r

i i

i

r

1 1 2 2

1 1

�

The fact that a′b = b′a is often quite useful in manipulating the vectors used 
in regression calculations.

Another useful formula in regression calculations is obtained by applying 
the distributive law

 ( ) ( ) 2a b a b a a b b a b− ′ − = ′ + ′ − ′  (A.14)

A.6.5  Inverse of a Matrix

For any real number c ≠ 0, there is another number called the inverse of c, say 
d, such that the product cd = 1. For example, if c = 3, then d = 1/c = 1/3, and 
the inverse of 3 is 1/3. Similarly, the inverse of 1/3 is 3. The number 0 does not 
have an inverse because there is no other number d such that 0 × d = 1.

Square matrices can also have an inverse. We will say that the inverse of a 
matrix C is another matrix D, such that CD = I, and we write D = C−1. Not all 
square matrices have an inverse. The collection of matrices that have an 
inverse are called full rank, invertible, or nonsingular. A square matrix that is 
not invertible is of less than full rank, or singular. If a matrix has an inverse, 
it has a unique inverse.

The inverse is easy to compute only in special cases, and its computation in 
general can require a very tedious calculation that is best done on a computer. 
High-level matrix and statistical languages such as Matlab, Maple, Mathe-
matica and R include functions for inverting matrices, or returning an appro-
priate message if the inverse does not exist.
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The identity matrix I is its own inverse. If C is a diagonal matrix, say

C =
−



















3 0 0 0

0 1 0 0

0 0 4 0

0 0 0 1

then C−1 is the diagonal matrix

C =
−























1
3

0 0 0

0 1 0 0

0 0
1
4

0

0 0 0 1

as can be verified by direct multiplication. For any diagonal matrix with 
nonzero diagonal elements, the inverse is obtained by inverting the diagonal 
elements. If any of the diagonal elements are 0, then no inverse exists.

A.6.6  Orthogonality

Two vectors a and b of the same length are orthogonal if a′b = 0. An r × c 
matrix Q has orthonormal columns if its columns, viewed as a set of c ≤ r dif-
ferent r × 1 vectors, are orthogonal and in addition have length 1. This is 
equivalent to requiring that Q′Q = I, the r × r identity matrix. A square matrix 
A is orthogonal if A′A = AA′ = I, and so A−1 = A′. For example, the matrix

A = −

−























1

3

1

2

1

6
1

3
0

2

6
1

3

1

2

1

6

can be shown to be orthogonal by showing that A′A = I, and therefore

A A− = ′ = −

−























1

1

3

1

3

1

3
1

2
0

1

2
1

6

2

6

1

6
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A.6.7  Linear Dependence and Rank of a Matrix

Suppose we have a n × p matrix X with columns given by the vectors x1, . . . , 
xp; we consider only the case p ≤ n. We will say that x1, . . . , xp are linearly 
dependent if we can find multipliers a1, . . . , ap, not all of which are 0, such that

 ai i

i

p

x 0
=
∑ =

1

 (A.15)

If no such multipliers exist, then we say that the vectors are linearly indepen-
dent, and the matrix is full rank. In general, the rank of a matrix is the 
maximum number of xi that form a linearly independent set.

For example, the matrix X given at (A.12) can be shown to have linearly 
independent columns because no ai not all equal to zero can be found that 
satisfy (A.15). On the other hand, the matrix

 X x x x=



















=

1 2 5

1 1 4

1 3 6

1 8 11

( , , )1 2 3  (A.16)

has linearly dependent columns and is singular because x3 = 3x1 + x2. The matrix 
has rank 2, because the linearly independent subset of the columns with the 
most elements has two elements.

The matrix X′X is a p × p matrix. If X has rank p, so does X′X. Full-rank 
square matrices always have an inverse. Square matrices of less than full rank 
never have an inverse.

A.7  RANDOM VECTORS

An n × 1 vector Y is a random vector if each of its elements is a random vari-
able. The mean of an n × 1 random vector Y is also an n × 1 vector whose 
elements are the means of the elements of Y. The variance of an n × 1 vector 
Y is an n × n square symmetric matrix, often called a covariance matrix, written 
Var(Y) with Var(yi) as its (i, i) element and Cov(yi, yj) = Cov(yj, yi) as both the 
(i, j) and (j, i) element.

The rules for means and variances of random vectors are matrix equivalents 
of the scalar versions in Appendix A.2. If a0 is a vector of constants, and A is 
a matrix of constants,

 E E( ) ( )0 0a AY a A Y+ = +  (A.17)

 Var Var( ) ( )0a AY A Y A+ = ′  (A.18)
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A.8  LEAST SQUARES USING MATRICES

The multiple linear regression model can be written as

E | Var |( ) ( ) 2Y X Y X= = ′ = =x x xb σ

The matrix version is

E | Var |( ) ( ) 2Y X X Y X I= =b σ

where Y is the n × 1 vector of response values and X is a n × p′ matrix. If the 
mean function includes an intercept, then the first column of X is a vector of 
ones, and p′ = p + 1. If the mean function does not include an intercept, then 
the column of one is not included in X and p′ = p. The ith row of the n × p′ 
matrix X is ′xi , β is a p′ × 1 vector of parameters for the mean function.

The ols estimator b̂  of β is given by the arguments that minimize the 
residual sum of squares function,

RSS( ) ( ) ( )b b b= − ′ −Y X Y X

Using (A.14)

 RSS( ) ( ) 2b b b b= ′ + ′ ′ − ′Y Y X X Y X  (A.19)

RSS(β) depends on only three functions of the data: Y′Y, X′X, and Y′X. Any 
two data sets that have the same values of these three quantities will have the 
same least squares estimates. Using (A.8), the information in these quantities 
is equivalent to the information contained in the sample means of the regres-
sors plus the sample covariances of the regressors and the response.

To minimize (A.19), differentiate with respect to β and set the result equal 
to 0. This leads to the matrix version of the normal equations,

 ′ = ′X X X Yb  (A.20)

The ols estimates are any solution to these equations. If the inverse of (X′X) 
exists, as it will if the columns of X are linearly independent, the ols estimates 
are unique and are given by

 b̂ = ′ ′−( ) 1X X X Y  (A.21)

If the inverse does not exist, then the matrix (X′X) is of less than full rank, 
and the ols estimate is not unique. In this case, most computer programs 
will use a linearly independent subset of the columns of X in fitting the model, 
so that the reduced model matrix does have full rank. This is discussed in 
Section 4.1.4.
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A.8.1  Properties of Estimates

Using the rules for means and variances of random vectors, (A.17) and (A.18), 
we find

 

E | E |

E |

( ) ( )

( ) ( )

( )

1

1

1

b̂

b
b

X X X X Y X

X X X Y X

X X X X

= ′ ′[ ]
= ′ ′[ ]
= ′ ′
=

−

−

−
 

(A.22)

so b̂  is unbiased for β, as long as the mean function that was fit is the true 
mean function. The variance of b̂  is

 

Var | Var |

Var |

( ) ( )

( ) ( ) ( )

(

1

1 1

b̂ X X X X Y X

X X X Y X X X X

= ′ ′[ ]
= ′ ′[ ] ′
= ′

−

− −

XX X X I X X X

X X X X X X

X X

) ( )

( ) ( )

( )

1 2 1

2 1 1

2 1

− −

− −

−

′[ ] ′

= ′ ′ ′
= ′

σ

σ
σ

 

(A.23)

The variances and covariances are compactly determined as σ2 times a matrix 
whose elements are determined only by X and not by Y.

A.8.2  The Residual Sum of Squares

Let ˆ ˆY X= b  be the n × 1 vector of fitted values corresponding to the n cases 
in the data, and ê = Y − Ŷ is the vector of residuals. One representation of the 
residual sum of squares, which is the residual sum of squares function evalu-
ated at b̂ , is

RSS = − ′ − = ′ =
=
∑( ) ( ) 2

1

Y Y Y Y e eˆ ˆ ˆ ˆ êi

i

n

which suggests that the residual sum of squares can be computed by squaring 
the residuals and adding them up. In multiple linear regression, it can also be 
computed more efficiently on the basis of summary statistics. Using (A.19) and 
the summary statistics X′X, X′Y, and Y′Y, we write

RSS RSS= = ′ + ′ ′ − ′( ) 2ˆ ˆ ˆ ˆb b b bY Y X X Y X

We will first show that ˆ ˆ ˆ′ ′ = ′b b bX X Y X . Substituting for one of the b̂s, 
we get

ˆ ˆ ˆ′ ′ ′ ′ = ′ ′ = ′−b b bX X X X X Y X Y Y X( ) 1



306 appendix

The last result follows because taking the transpose of a 1 × 1 matrix does 
not change its value. The residual sum of squares function can now be rewrit-
ten as

RSS = ′ − ′ ′

= ′ − ′

Y Y X X

Y Y Y Y

ˆ ˆ

ˆ ˆ
b b

where ˆ ˆY X= b  are the fitted values. The residual sum of squares is the differ-
ence in the squares of the lengths of the two vectors Y and Ŷ. Another useful 
form for the residual sum of squares is

RSS SYY= −(1 )2R

where R2 is the square of the sample correlation between Ŷ and Y.

A.8.3  Estimate of Variance

Under the assumption of constant variance, the estimate of σ2 is

 σ̂ 2 = RSS
d

 (A.24)

with d df, where d is equal to the number of cases n minus the number of 
regressors with estimated coefficients in the model. If the matrix X is of full 
rank, then d = n − p′, where p′ = p for mean functions without an intercept, 
and p′ = p + 1 for mean functions with an intercept. The number of estimated 
coefficients will be less than p′ if X is not of full rank.

A.8.4  Weighted Least Squares

From Section 7.1, the wls model can be written in matrix notation as

 E | Var |( ) ( ) 2 1Y X X Y X W= = −b σ  (A.25)

To distinguish ols and wls results, we will use a subscript W on several quanti-
ties. In practice, there is no need to distinguish between ols and wls, and this 
subscript is dropped elsewhere in the book.

• The wls estimator b̂W  of β is given by the arguments that minimize the 
residual sum of squares function,

RSSW ( ) ( ) ( )

( ) 2

b b b
b b b

= − ′ −
= ′ + ′ ′ − ′

Y X W Y X

Y WY X WX Y WX
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• The wls estimator solves the weighted normal equations

′ = ′X WX X WYb

• The wls estimate is

 b̂W = ′ ′−( ) 1X WX X WY  (A.26)

• b̂W  is unbiased:

 

E | E |

E |

( ) ( )

( ) ( )

( )

1

1

1
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b

W X X WX X WY X

X WX X W Y X

X WX X WX
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= ′ ′
= ′ ′

−

−

−
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(A.27)

• The variance of b̂  is

 

Var | Var |

Var |

( ) (( ) )

( ) ( ) (

1

1

b̂W X X WX X WY X

X WX X W Y X WX X W

= ′ ′
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−
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X X X W W WX X X
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)

( ) ( )

( )

1

1 2 1 1

2 1

−

− − −

−

= ′ ′ [ ] ′
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σ

σ

 

(A.28)

• The RSSW can be computed from

RSSW = ′ − ′ ′Y WY X WXˆ ˆb b

• The estimated variance is

 σ̂ 2 = RSSW

d
 (A.29)

with d df, where d is equal to the number of cases n minus the number 
of regressors with estimated coefficients in the model.

• Confidence intervals are the same for both ols and wls as long as (A.28) 
and (A.29) are used. Testing procedures in Chapter 6 are the same with 
ols and wls subject to the changes described here. In particular, stan-
dard computer programs produce output that will look the same with 
ols and wls and the output can be interpreted similarly.

A.9  THE QR FACTORIZATION

Most of the formulas given in this book are convenient for derivations but can 
be inaccurate when used on a computer because inverting a matrix such as 
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(X′X) leaves open the possibility of introducing significant rounding errors 
into calculations. Most statistical packages will use better methods of comput-
ing, and understanding how they work is useful.

We start with the basic n × p′ matrix X of regressors. Suppose we could find 
an n × p′ matrix Q and a p′ × p′ matrix R such that (1) X = QR; (2) Q has 
orthonormal columns, meaning that Q′Q = Ip′; and (3) R is an upper triangular 
matrix, meaning that all the entries in R below the diagonal are equal to 0, 
but those on or above the diagonal can be nonzero.

Using the basic properties of matrices, we can write

 

X QR

X X QR QR R R

X X R R R R

=
′ = ′ = ′

′ = ′ = ′− − − −

( ) ( )

( ) ( ) ( )1 1 1 1

 

(A.30)

 b̂ = ′ ′ = ′− −( ) ( )1 1X X X Y R Q Y  (A.31)

 H X X X X QQ= ′ ′ = ′−( ) 1  (A.32)

Equation (A.30) follows because R is a square matrix, and the inverse of the 
product of square matrices is the product of the inverses in opposite order. 
From (A.31), to compute b̂ , first compute Q′Y, which is a p′ × 1 vector, and 
multiply on the left by R to get

 R Q Yb̂ = ′  (A.33)

This last equation is very easy to solve because R is a triangular matrix and 
so we can use backsolving. For example, to solve the equations

7 4 2

0 2 1

0 0 1

3

2

1















=














b̂

first solve the last equation, so β̂3 1= , substitute into the equation above 
it, so 2β2 + 1 = 2, so ˆ /β2 1 2= . Finally, the first equation is 7 2 2 31β̂ + + = , so 
ˆ /β3 1 7= − .

Equation (A.32) shows how the elements of the n × n hat matrix H can be 
computed without inverting a matrix, and without using all the storage needed 
to save H in full. If qi is the ith column of Q, then an element hij of the H 
matrix is simply computed as hij i j= ′q q .

Golub and Van Loan (1996) provide a complete treatment on computing 
and using the QR factorization. Very high-quality computer code for comput-
ing this and related quantities for statistics is provided in the publicly available 
Lapack package, described on the internet at http://www.netlib.org/
lapack/lug/. This code is also used in many standard statistical packages.

http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
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A.10  SPECTRAL DECOMPOSITION

The spectral decomposition provides a very useful representation of a square 
symmetric matrix (Schott, 2005; Christensen, 2011; Golub and Van Loan, 1996). 
Suppose S is a p × p symmetric matrix. Then the spectral theorem says that 
there exists a matrix U that is p × p and orthogonal, so U′U = UU′ = I, and a 
diagonal matrix D with diagonal elements d1 ≥ d2 ≥ ··· ≥ dp ≥ 0 such that

 S UDU= ′  (A.34)

The dj are called the eigenvalues of S, and the columns ( , , )1′ ′u u… p  of U are 
called the corresponding eigenvectors. The eigenvectors are unique if all the 
eigenvalues are unequal. The number of nonzero eigenvalues of S is equal to 
the rank of S. If all the eigenvalues are positive, then

S U D U− −= ′1 1( )

This is particularly useful in computations because inverting S requires only 
inverting a diagonal matrix D.

Equation (A.34) can be rewritten in scalar form as

S u u= ′
=

∑dj j j

j

p

1

For any vector a with a′a = 1,

′ = ′ ′ = ′
= =

∑ ∑a Sa a u u a a ud dj j j

j

p

j j

j

p

( )( ) ( )
1

2

1

Now for each j, (a′uj)2 is bounded between 0 and 1. If we set a = u1, then 
( ) ( ) 11 1 1′ = ′ =a u u u , and ( ) ( ) 01′ = ′ =a u u uj j  for all j > 1 because U is an orthogo-
nal matrix. For this case the sum in the last equation is equal to d1, and this is 
the largest possible value of a′Sa.

A.11  MAXIMUM LIKELIHOOD ESTIMATES

A.11.1  Linear Models

Maximum likelihood estimation is probably the most frequently used method 
of deriving estimates in statistics. A general treatment is given by Casella and 
Berger (2001, section 7.2.2); here we derive the maximum likelihood estimates 
for the linear regression model assuming normality, without proof or much 
explanation. Our goal is to establish notation and define quantities that will 
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be used in the discussion of Box–Cox transformations, and estimation for 
generalized linear models in Chapter 12.

The normal multiple linear regression model specifies for the ith observa-
tion that

( ) ( , )2yi i i| Nx x~ ′b σ

Given this model, the density for the ith observation yi is the normal density 
function,

f y
y

y i i
i i

i ( , , )
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2
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2

2
2

2
|x

xb bσ
πσ σ

= − − ′





exp

Assuming the observations are independent, the likelihood function is just the 
product of the densities for each of the n observations, viewed as a function 
of the parameters with the data fixed rather than a function of the data with 
the parameters fixed:
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The maximum likelihood estimates are simply the values of β and σ2 that 
maximize the likelihood function.

The values that maximize the likelihood will also maximize the logarithm 
of the likelihood

 log log logL Y
n n

yi i

i

n

( , )
2

(2 )
2

( )
1

2
( )2 2

2
2

1

b bσ π σ
σ

|[ ] = − − − − ′
=
∑ x  (A.35)

The log-likelihood function (A.35) is a sum of three terms. Since β is included 
only in the third term and this term has a negative sign in front of it, we rec-
ognize that maximizing the log-likelihood over β is the same as minimizing 
the third term, which, apart from constants, is the same as the residual sum of 
squares function (see Section 3.4.3). We have just shown that the maximum 
likelihood estimate of β for the normal linear regression problem is the same 
as the ols estimator. Fixing β at the ols estimator b̂ , (A.35) becomes

 log ( , | )
2

log(2 )
2

log( )
1

2
2 2

2
L Y

n nb̂ σ π σ
σ

  = − − − RSS  (A.36)
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and differentiating (A.36) with respect to σ2 and setting the result to 0 gives 
the maximum likelihood estimator for σ2 as RSS/n, the same estimate we have 
been using, apart from division by n rather than n − p′.

Maximum likelihood estimation has many important properties that make 
them useful. These estimates are approximately normally distributed in large 
samples, and the large sample variance achieves the lower bound for the vari-
ance of all unbiased estimates.

A.11.2  Logistic Regression

In logistic regression we have (y1, . . . , yn) independent with yi ∼ Bin(mi, θ(x)). 
The likelihood based on (y1, . . . , yn) is obtained by multiplying the likelihood 
for each observation,

L
m

y
i

i
i

y
i

m y

i

n

i
y

i

i i i

i

= 





−

∝ −

−

=
∏ ( ( )) (1 ( ))

( ( )) (1 ( )

1

θ θ

θ θ

x x

x x ))
1

m y

i

n

i i−

=
∏

In the last expression, we have dropped the binomial coefficients 
m

y
i
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because they do not depend on parameters. After minor rearranging, the log-
likelihood is
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Next, we substitute for θ(xi) using Equation (12.8) to get

 log log exp( ( )) ( ) (1 ( ))
1

L y mi i i i

i

n

b b b= ′ − + ′[ ]
=
∑ x x  (A.37)

The log-likelihood depends on the regression parameters β explicitly, and we 
can maximize (A.37) to get estimates. An iterative procedure is required. Most 
computer packages use the Fisher scoring algorithm for the computing, which 
amounts to a sequence to weighted least squares computations with the 
weights depending on the estimates (Fox and Weisberg, 2011, section 5.12). 
The more general Newton–Raphson algorithm can also be used. Details of the 
computational method are provided by McCullagh and Nelder (1989, section 
2.5), Collett (2003, section 3.12), Hosmer et al. (2013), and Agresti (2013), 
among others.
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The estimated covariance matrix of the estimates is given by

Var( ) ( ) 1ˆ ˆb = ′ −X WX

where Ŵ is a diagonal matrix with entries mi i i
ˆ ˆθ θ( )(1 ( ))x x− , and X is a matrix 

with ith row x′.

A.12  THE BOX–COX METHOD FOR TRANSFORMATIONS

A.12.1  Univariate Case

Box and Cox (1964) derived the Box–Cox method for selecting a transforma-
tion using a likelihood-like method. They supposed that, for some value of λ, 
ψM(Y, λ) given by (8.5) in Section 8.1.3, is normally distributed. With n inde-
pendent observations, therefore, the log-likelihood function for (β, σ2, λ) is 
given by (A.35), but with yi replaced by ψM(Y, λ),2

log( ( , , | ))
2

log(2 )
2

log( )
1

2
( ( , ) )2 2

2
L Y

n n
yM i ib̂ bσ λ π σ

σ
ψ λ= − − − − ′x 22

1i

n

=
∑

 (A.38)

For a fixed value of λ, (A.38) is the same as (A.35), and so the maximum likeli-
hood estimates for β and σ2 are obtained from the regression of ψM(Y, λ) on 
X, and the value of the log-likelihood evaluated at these estimates is

 log( ) log logL Y
n n

n
n

( ( ), ( ), )
2

(2 )
2

( ( )/ )
2

2b λ σ λ λ π λ| = − − −RSS  (A.39)

where RSS(λ) is the residual sum of squares in the regression of ψM(Y, λ) on 
X, as defined in Section 8.1.3. Only the second term in (A.39) involves data, 
and so the global maximum likelihood estimate of λ minimizes RSS(λ).

Standard likelihood theory can be applied to get a (1 − α) × 100% confi-
dence interval for λ to be the set

λ λ σ λ λ λ σ λ λ χ|2 log( ( ( ), ( ), | )) log( ( ( ), ( ), | ))2 2 2L Y L Yb bˆ ˆ ˆ −  < ((1, 1 )−{ }α

Or, setting α = .05 so χ2(1, .95) = 3.84, and using (A.39)

 λ λ λ|( 2)(log( ( )) log( ( )) 1.92n/ RSS RSS− <{ }ˆ  (A.40)

2As λ is varied, the units of ψM(Y, λ) can change, and so the joint density of the transformed data 
should require a Jacobian term; see Casella and Berger (2001, section 4.3). The modified power 
transformations are defined so the Jacobian of the transformation is always equal to 1, and it can 
therefore be ignored.
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Many statistical packages will have routines that will provide a graph of 
RSS(λ) versus λ, or of (n/2) log(RSS(λ)) versus λ as shown in Figure 8.7, for 
the highway accident data. Equation (A.40) shows that the confidence interval 
for λ includes all values of λ for which the log-likelihood is within 1.92 units 
of the maximum value of the log-likelihood, or between the two vertical lines 
in the figure.

A.12.2  Multivariate Case

Although the material in this section uses more mathematical statistics than 
most of this book, it is included because the details of computing the multivari-
ate extension of Box–Cox transformations are not published elsewhere. The 
basic idea was proposed by Velilla (1993).

Suppose X is a set of p variables we wish to transform and define

ψ ψ λ ψ λM M M k kX X X( , ) ( ( , ), , ( , ))1 1l = …

We have used the modified power transformations (8.5) for each element of 
X, but the same general idea can be applied using other transformations such 
as the Yeo–Johnson family introduced in Section 8.4. In analogy to the univari-
ate case, we assume that for some λ, we will have

ψ M X( , ) ( , )l m~ N V

where V is an unknown positive definite symmetric matrix that needs to be 
estimated. If xi is the observed value of X for the ith observation, then the 
likelihood function is given by
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(A.41)

where |V| is the determinant.3 After rearranging terms, the log-likelihood is 
given by
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(A.42)

3The determinant is defined in any linear algebra textbook.
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If we fix λ, then (A.42) is the standard log-likelihood for the multivariate 
normal distribution. The values of V and μ that maximize (A.42) are the 
sample mean and sample covariance matrix, the latter with divisor n rather 
than n − 1,

m l l( )
1
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1

=
=
∑n

M i

i

n

ψ x

V x x( )
1

( ( , ) ( ))( ( , ) ( ))
1
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=
∑n

M i M i

i

n

ψ ψ

Substituting these estimates into (A.42) gives the profile log-likelihood  
for λ,

 log log log( ( ( ), ( ), ))
2

(2 )
2

( )
2

L X
n n nm l l l lV V| = − − ( ) −π  (A.43)

This equation will be maximized by minimizing the determinant of V(λ) over 
values of λ. This is a numerical problem for which there is no closed-form 
solution, but it can be solved using a general-purpose function minimizer.

Standard theory for maximum likelihood estimates can provide tests con-
cerning λ and standard errors for the elements of λ. To test the hypothesis that 
λ = λ0 against a general alternative, compute

G L L2
0 0 02 log( ( ( ), ( ), )) log( ( ( ), ( ), ))= − m l l l m l l lˆ ˆ ˆV V

and compare G2 with a chi-squared distribution with p df. The standard error 
of l̂  is obtained from the inverse of the expected information matrix evaluated 
at l̂ . The expected information for l̂  is just the matrix of second derivatives 
of (A.43) with respect to λ evaluated at l̂ . Many optimization routines, such 
as optim in R, will return the matrix of estimated second derivatives if 
requested; all that is required is inverting this matrix, and then the square roots 
of the diagonal elements are the estimated standard errors.

A.13  CASE DELETION IN LINEAR REGRESSION

Suppose X is the n × p′ matrix of regressors with linearly independent columns. 
We use the subscript “(i)” to mean “without case i,” so that X(i) is an (n − 1) × p′ 
matrix. We can compute ( )( ) ( )

1′ −X Xi i  from the remarkable formula

 ( ) ( )
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( ) ( )

1 1
1 1
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X X X X
X X x x X X

i i
i i

iih
 (A.44)
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where hii i i= ′ ′ −x X X x( ) 1  is the ith leverage value, a diagonal value from the hat 
matrix. This formula was used by Gauss (1821); a history of it and many varia-
tions is given by Henderson and Searle (1981). It can be applied to give all the 
results that one would want relating multiple linear regression with and 
without the ith case. For example,

 ˆ ˆ ˆ
b b( )

1( )
1

i
i i

ii

e
h

= − ′
−

−X X x
 (A.45)

Writing r e hi i ii= −ˆ ˆ/ 1σ , the estimate of variance is
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 (A.46)

and the studentized residual ti is

 t r
n p
n p r
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1
2

1 2/

 (A.47)

The diagnostic statistics examined in this book were first thought to be 
practical because of simple formulas used to obtain various statistics when 
cases are deleted that avoided recomputing estimates. Advances in computing 
in the last 30 years have made the computational burden of recomputing 
without a case much less onerous, and so diagnostic methods equivalent to 
those discussed here can be applied to problems other than linear regression 
where the updating formulas are not available.
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Box–Cox transformations, 191
Poisson and binomial regression, 284
simple linear regression, 30–34

Constant variance, test for, 164–167
Construction set, variable selection, 247
Cook’s distance, 220–225
Correlation, 23, 284

matrix, 58, 119,
partial, 54, 68
relation to t-test, 46
sample, 174

Counted response models, 270
distributions, 270–272
regression models, 272–279
simple and multiple regression, 283–284

Covariance
matrix, 295, 302
multiple linear regression, 66
sample, 59
simple linear regression, 29

Credit scoring, 246
Cross-sectional data, 8
Cross-validation, variable selection, 247
Curvature testing, 212–213

Data mining, 235
Data sets
AMSsurvey, 280, 289
anscombe, 12
baeskel, 199
BGSall, 70, 129
BGSboys, 70, 250
BGSgirls, 70, 93
BigMac2003, 41, 202

BlowBS, 274
Blowdown, 275, 276, 278, 285, 289
brains, 186
cakes, 111, 126, 152, 183
cathedral, 45, 129
caution, 210
Challeng, 288
cloud, 231
domedata, 131
domedata1, 132
Donner, 287
Downer, 286
drugcost, 232
dwaste, 250
florida, 230
Forbes, 5, 24, 42, 129
ftcollinssnow, 8, 41
ftcollinstemp, 41
fuel2001, 15, 57, 151, 183, 203, 229
galapagos, 250
galtonpeas, 181
Heights, 2, 46
Highway, 191, 249, 269
Hooker, 42, 129
Htwt, 38
jevons, 182
lakes, 239
landrent, 231
lathe, 230
lathe1, 128
mantel, 249
mile, 183
MinnLand, 119, 123, 127, 128, 153, 

154
MinnWater, 79, 97, 249
Mitchell, 18
MWwords, 48
oldfaith, 18, 49
physics, 157
physics1, 180
pipeline, 237
prodscore, 155
rat, 221
Rateprof, 19, 117, 152, 159, 286
Rpdata, 226
salary, 130, 136
salarygov, 126, 153, 180, 201
segreg, 263
sleep1, 265
snake, 48
sniffer, 164
Stevens, 169
stopping, 181, 200
swan96, 268

Coefficient of determination (R2) (continued)
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Transact, 94, 184
turk0, 257
turkey, 9, 261
twins, 153
UBSprices, 39, 40, 41
ufcwc, 189
UN11, 17, 47, 51, 69, 95, 123, 150, 151, 183, 

249
walleye, 268
water, 19, 71, 200, 228
wblake, 7, 18, 47
Whitestar, 288
wm1, 49, 184
wm2, 154
Wool, 108, 131, 153, 203

Degrees of freedom, 26
Delta method, 172–174
Dependent variable. See Response variable
Deviance, logistic, and Poisson regression, 

277–279
Discovery, variable selection, 237–245

information criteria, 238–239
regularized methods, 244–245
stepwise regression, 239–244
subset selection, 245

Discovery probability, hypothesis testing, 
147–148

Dummy variables, 56–57, 100–102
nonlinear regression, 260–262
outlier testing, 215–216

Ecological regression, 160–162
Effects plots, 74–75, 105–108, 111–113, 

141–142, 278–279
Eigenvectors and eigenvalues, 118–119, 309
Elastic net, 244–245
Epworth sleepiness scale, 245–246
Errors e

assumptions, 21
multiple linear regression, 61
regression diagnostic residuals, 205–206

Estimated variances, simple linear 
regression, 29–30

Examples
Alaska pipeline, 227
Anscombe, 12–13
Berkeley Guidance study, 75–78, 119, 149, 

250
blowdown, 274–279
brain weight, 187–188
cakes, 111–113, 138
California water, 19, 200, 228
cathedrals, 129–130
caution, 210

Challenger, 288
cloud seeding, 281
credit scoring, 246
Donner party, 287
downer, 286–287
drug costs, 232
electrical energy consumption, 263–265
Epworth sleepiness scale, 245–246
feedlots, 87–89
Florida election in 2000, 230
Forbes’s data, 5-7, 11-12, 24-27, 30-38, 

135-138
Ft. Collins snowfall, 8, 11, 31, 41, 136
Ft. Collins temperature, 41
fuel consumption, 15–17, 57–59, 63–66, 

73–79, 211–212
Galápagos Island data, 250–251
Galton’s peas, 181
Government salary, 126–127, 153, 180, 201
height inheritance, 2–5, 10–12, 14–15, 36–37, 

91–93
Hooker, 44, 129
Jevon’s gold coins, 182
lake diversity, 229
Lake Mary, 267
land rent, 231
land valuation, 155
lathe, 128, 230
mammal species, 186
Mantel, 249
mathematical sciences PhDs, 280–283
metrodome, 131
mile run, 183
Minnesota agricultural land sales, 119–122, 

144–145
Minnesota highway accidents, 191–196, 

240–245
Minnesota water use, 79–81
Old Faithful Geyser, 18–19, 49, 113–116
Oxygen uptake, 250
professor ratings, 117–119, 159–162,  

247–248
rat data, 221–225
segmented regression, 263
sex discrimination, 130
sleep in mammals, 267
smallmouth bass, 7–8, 10–12, 14–15
Snake River, 48
sniffer data, 164–167
Stefanski, 226–227
stopping distances, 181
strong interaction, 157–159
surface tension, 199
Swan Lake black crappies, 268
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Titanic, 288
transactions, 94, 175–178, 184, 226, 227
turkey growth, 9–10, 252–259
twin study, 153
UBS prices, 39
United Nations, 51–55, 98–108, 137–138, 

140, 149, 207–208, 212–214,  
219–225

Upper Flat creek, 189–191
walleye growth, 268
weather prediction, 8–9, 246–247
weight gain, 260–262
Whitestar, 288
windmills, 49, 154–155, 184
wool, 108–109, 136–138, 141–142
Zipf’s law, 48

Expected information matrix, 314
Experimentation vs. observation, 86–89
Exponential family distribution, 285

Factors, 56, 98–109
nonlinear regression, 260–262

False discovery, 147–148, 150
Family-wise error rate, 150
FICO score, 246
File drawer effects, 150
Finite population approach to sample 

surveys, 162
Fisher scoring, 311
Fitted mean function

multiple regression model, 55
nonlinear regression, 259–262

Fitted values
inverse fitted value plot, 196–198
multiple linear regression, 68–69
simple linear regression

confidence intervals, 33–34
estimation of, 32–34
ordinary least squares, 22–24

Fixed-significance level, p-value 
interpretation, 147

Focal predictors, variable selection, 235–237
Forward selection, predictor variable 

discovery, 240–242
F-tests, 133–138

analysis of variance, 139–142
interpretation, 146–150
overall test, 135–138
power and non-null distributions, 144–145
Wald tests, 145–146

Gauss–Markov theorem, 28–29
Gauss–Newton algorithm, 255–256

General correlation structure, 168–169
General likelihood ratio tests, 138
General linear hypothesis, Wald tests, 146
Generalized least squares (gls),

autoregressive, 168
block diagonal, 168-168
compound symmetry, 168

Generalized linear models, 285
Geometric mean, 190–191
Goodness of fit tests, Poisson regression, 

282–283

Hat matrix, 205–208
Hawthorne effect, 150
HC3 estimates, misspecified variances, 

163–167
Hessian matrix, nonlinear regression, 

254–256
Hierarchical regression, mixed models, 171
Hot deck, missing data, 122
Hyperplane, multiple regression model, 55
Hypothesis testing

analysis of variance and, 133–150
counted response, 284
false results, 147–148
file drawer effects, 150
general linear hypothesis, 146
goodness of fit, 282
Hawthorne effect, 150
interpreting p-values, 146–150
likelihood ratio tests, 138, 146, 195
logistic regression, 277–279
marginality principle, 139
multiple testing, 150
nonadditivity, 212
one coefficient, 67–68
Poisson regression, 279–281
population vs. sampling, 149
power, 143–145
reported significance levels, 149
t-tests, 30–34, 67–68
types, analysis of variance, 135–136
unbalanced, 135

Imputation, missing data, 122
Inclusion probability, sample surveys, 

161–162
Independent variable. See Predictor 

variables
Influence, 204, 218–225

Cook’s distance, 220–224
Information criteria, 238–239
Interactions, 56, 104–106, 139–142,  

211–213

Examples (continued)
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Intercept, 21–22, 56, 100–102
confidence interval, 30–34

Interquartile range (IQR), 99–102
Invariance, 43
Inverse fitted value plot, 196–198
Inverse regression, 183
Inverse response plot, 198, 202, 203

Jittering scatterplots, 3–5

Kernel mean function, 253, 272–277

Lack-of-fit testing, 211–212
Lasso, 244–245
Leaps and bounds algorithm,  

239–245
Least squares estimates. See Ordinary least 

squares
Level means comparison, factor models, 

102–103
Leverage values, 204

residuals, 207–209
scatterplots, 4–5

Li–Duan theorem, 194–195
Likelihood ratio tests, 134

transformations, automatic predictor 
selection, 195–196

Wald tests comparison, 146
Linear dependence, 78–79
Linear independence, 78–79
Linear predictor

binomial regression, 272–277
Poisson regression, 280–283

Linear regression
basic properties, 1–2
coefficients, 133
F-tests, 134–138
mean functions, 10–12
multiple linear regression, 51–69
scatterplots, 2–10
simple linear regression, 21–38
summary graph, 12–13
variable selection, 235–237

Linearly related regressors, 194–195
Link function

binomial regression, 273–277
Poisson regression, 279–283

loess smoother, 14–15
Log rule, power transformations,  

188
Logarithms

base, 24
power transformations, 187–188
regressors in, 81–82

response in, 82–83
variance stabilization, 172

Logistic regression, 272–277
deviance, 277–279
goodness of fit tests, 282–283

Logit function, 273–277
Log-likelihood profile, Box–Cox method, 

196–198
Log-odds, 273–277
Longitudinal studies, 8
Lsmeans, 103, 108, 153
Lurking variables, 88–89

Machine learning, 235, 247–248
Main effects interpretation, 73–93

analysis of variance, 139–142
experimentation vs. observation, 86–89
factor models

continuous predictors, 104–106
one-factor model, 106–108

multiple factors, 109
normal population sampling, 89–91
parameter estimates, 73–83
regressor omission, 84–86

Marginal plot, 52–55
Marginality principle, analysis of variance, 

139–142
Matrices, 290–309

inverse, 301
multiple linear regression, 60–61
partitioned matrix, 71–72
QR factorization, 307–308
rank, 76–81, 301
scatterplot matrices, 15–17
simple regression, 63–66
spectral decomposition, 309

Maximum likelihood estimates, 309–313
Poisson regression, 280–283
regression parameters, 90–91

Mean functions
additive model transformation, 199
Box–Cox transformation, 190–191
F-tests, 135–138
main effects109
multiple linear regression, 58–59
nonlinear regression, 252–256
one-factor models, 100–102
outlier models, 214–218
parameter estimation, 75–78
parameter regressors, omission, 84–86
polynomial regression, 109–113
quadratic regression, 109–113
rank deficient and overparameterized mean 

functions, 78–79



336 subject index 

regression, 10–12
scaled power transformations, 189–190
simple linear regression, 21–22

least squares estimates, 29
regressor addition, 51–55

smoothers, 14–15
Mean shift outlier model, regression 

diagnostics, 214–218
Mean square, 26, 134–138
Means comparison

analysis of variance, 142
level means, 102–103

Measure, correlate, predict method, 154–155
Missing data, 119–122

missing at random (MAR), 121–122
multiple imputation, 122

Misspecified variance, 162–167
accommodation, 163–164
constant variance test, 164–167

Mixed models, 169–171
Model averaging, 247
Multilevel and hierarchical models, 171
Multiple comparisons, 102, 108
Multiple correlation coefficient. See 

Coefficient of determination
Multiple linear regression, 51–69

coefficient of determination (R2) , 66–67, 
92–93

collinearity, 79–81
delta method, 173–174
factors, 98–108
model, 55
ordinary least squares, 58–68
overall F-test, 136
predictions, fitted values, and linear 

combinations, 68–69
regressors, 51–58
residual plots, 210
transformations, 193–196

Multiple testing, 150
Multiplicative error, 187–188
Multistage sample surveys, 161–162
Multivariate normality, 89–91

Natural logarithms. See Logarithms
Neural networks, 247
Newton–Raphson algorithm, 311
Noncentrality parameter, power  

and non-null distributions, 143–145
Nonconstant variance

regression diagnostics, 213–214
tests for, 164–167

Nonlinear regression, 252–269
bootstrap inference, 262–265
large sample inference, 256–257
literature sources, 265
mean function estimation, 253–256
starting values, 257–262

Non-null distributions, analysis of variance, 
143–145

Nonparametric estimation, mean functions, 
10–12

Nonpositive variables, transformation, 
198–199

Normal distribution
multivariate, 89–91
sampling from, 89–91

Normal equations, 293
Normal probability plot, 225–226
Normality

Box–Cox transformation to, 191
power transformations to, 195–196

Normality assumption, regression 
diagnostics, 225–226

Notation
aic, 238
anova, 139
bic, 239
case, 2
correlation ρ, 292
covariance, Cov, 291
df, 26
expectation E, 290
gls, 168
hats, 22
hii, 207
NID, 29
ols, 22
p′, 64
predictor, 16
RY X,

2 , 236
regressor, 16
RSS, 24
rxy, 23
SD, 23
se, 28
SSreg, 35
SXX, 23
sxy, 23
SXY, 23
SYY, 23
typewriter font, 2
variance VAR, 291
wls, 156
x , 23

Mean functions (continued)
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Null plot
characteristics, 14
simple linear regression, 36–38

Observational data, 75
Odds of success, binomial regression, 

273–277
Offset, 249
One-dimensional estimation,  

linearly related regressors, 194–195
One-factor model, one-way anova, 

99–102
Ordinary least squares (ols) estimation, 22, 

24–26, 58–68
computing formulas, 61
matrix version, 304
misspecified variances, 163–167
nonlinear regression, 258–259
properties, 27–29, 305–307

Orthogonal factors, 141–142
Orthogonal polynomials, 112–113
Orthogonal projection, 206–208
Outliers, 214–218

scatterplots, 4–5, 13
Overall F-test

multiple regression, 136
simple regression, 135–136

Overparameterized mean function
one-factor models, 100–102
parameter estimates, 78–79

Pairwise comparisons, 102–103
Parameters, 73–93, 95–114

aliased, 78
collinearity, 79–81
F-tests, 138
intercept, 10, 21
multiple regression model, 55
not the same as estimates, 24
partial slope, 73
rank deficient or overparameterized mean 

functions, 78–79
signs of estimates, 75
simple linear regression, 21–22
slope, 10, 21
variable selection and assessment of, 

235–237
Partial R2, 236
Partial slope, 73
Pearson residuals, 208

Poisson and binomial regression,  
284–285

Pearson’s χ2, 283

Per-test error rate, 150
Poisson distribution, 271–272

generalized linear models, 283–285
variance stabilizing transformations, 

171–172
Poisson regression, 270–289

deviance, 277–279
goodness of fit tests, 282–283

Polynomial regressors, 109–113
multiple predictors, 111–112
multiple regression model, 56
numerical issues, 112–113

Power calculators, 144
Power family

modified power family, 190–191
scaled power transformations,  

188–190
transformations, 186–188

Power of the test, analysis of variance, 
143–145

Predicted residual (PRESS residual),  
230

Prediction, 32–34
weighted least squares, 159

Predictor variables. See also Regressors
active vs. inactive, 235
complex regressors, 98–122

principal components, 117–119
discovery, 238–245
experimentation vs. observation, 

86–89
multiple linear regression, 55–58, 68–69
one-factor models, 100–102
polynomial regression, 109–113
scatterplots, 2–5

matrix, 16–17
selection methods, 234–251
single variable transformation, 188–190
transformations, 193–196

automatic selection, 195–196
Principal component analysis

complex regressors, 116–119
multiple regression model, predictors and 

regressors, 57
Probability plot, 225–226
p-value

hypothesis testing, 133
interpretation, 146–147
means comparison, 103
outlier tests, 217–218
power and non-null distributions,  

144–145
Wald tests, 145–146
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QR factorization, 228, 307–308
Quadratic regression, 109–113

curvature testing with, 212–213
delta method for a maximum or minimum, 

174

R packages
alr4, ii, 290
car, 140
effects, 108, 153
lsmeans, 153
nlme, 168

R2. See Coefficient of determination
Random coefficients model, 170–171
Random forests, 247
Random vectors, 303
Range rule, power transformations, 188
Rank deficient mean function, 78–79
Regression coefficients

complex models, 98-113
interpretation, 73-91

Regression diagnostics, 204–233
hat matrix, 205

weighted hat matrix, 208
influential cases, 218–225

added-variable plots, 224–225
Cook’s distance, 220–221

nonconstant variance, 213–214
normality assumption, 225–226
outliers, 214–218

level significance, 217–218
methodology, 218
test, 215–216
weighted least squares, 216

Poisson and binomial regression, 284–285
residuals, 204–212

curvature testing, 212–213
error vectors, 205–206
hat matrix, 206–208
plots of, 209–210
weighted hat matrix, 208

Regression through the origin, 93
Regressors, 16, 51, 55–58

class variable, 101
colinear, 79
dropping, 84
dummy variables, 56, 100
effects coding, 125
factors, 98–109
intercept, 56
linearly dependent, 78
linearly related, 194–195
polynomial, 56, 109–113
principal component, 116–119

splines, 113–116
transformed predictors, 56

Regularized methods, 244–245
Reliability of hypothesis testing, 148
Repeated measures, 171
Reported significance levels, 149
Research findings, test interpretation, 

147–148
Residual mean square, 26–27
Residual plots, 166, 209–226
Residual sampling, bootstrap analysis, 179
Residual variance, 90–91
Residuals, 23, 25, 35–38, 204–218

Pearson, 208
predicted, 230
standardized, 216
studentized, 216
supernormality, 225–226
weighted, 156

Response variable
logarithmic scale, 82–83
scatterplots, 2–5
transformations, 196–198

Sample surveys, 161–162
Sampling weight, 162
Sandwich estimator, 163–167
Scad, 244
Scaled power transformations, 189–190

Box–Cox method, 191
Scatterplot, 2
Scatterplot matrix, 15–17
Score test, nonconstant variance, 166–167
Score vector, 254–256
Second-order mean function

analysis of variance, 141–142
polynomial regressors, 111–113

Segmented regression, 263–265
Separated points, scatterplots, 4–5
Sequential analysis of variance (Type I), 

140–141
Signs of parameter estimates, 75
Single coefficient hypotheses, 133

multiple linear regression, 68–69
Wald tests, 145–146

Single linear combination, Wald tests, 146
Size, scatterplots, 14
Slices, scatterplots, 4–5
Slope parameter

estimates, 73–83
simple linear regression, 21–22

Smoothers
loess, 14, 296–298
splines, 113–116
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Sparcity principle, 244–245
Spectral decomposition, 309
Splines, 113-116
Square-root transformation, variance 

stabilization, 172
Stacking the deck, hypothesis testing, 

149–150
Standard deviation, simple linear regression, 

29–30
Standard error of prediction, 33, 68, 159

bootstrap analysis, 176–179
delta method, 172–174

Standard error of regression, 29–30, 61
Starting values, nonlinear regression, 

257–262
Statistical error, 21–22
Stepwise regression, 238, 239–245
Stratified random sample, sample surveys, 

161–162
Summary graph, 12–14
Sums of squares

regression, 35, 63, 134
residual, 22, 24, 63
total, 35

Superpopulation, sample surveys, 162
Symbols, definitions table, 23

Taylor series approximation, 254–256
Test interpretation, 146–150

bootstrap analysis, 179
Poisson and binomial regression, 284
regression diagnostics, outliers, 215–218

Term. See Regressors
Test statistics, power transformations, 

automatic predictor selection,  
195–196

Third-order mean function, 109
Transformation family, 186–188
Transformations, 56, 185–203

additive models, 199
automatic predictor selection,  

195–196
basic power transformation, 186
basic principles, 185–186
Box–Cox method, 190–191, 194–199, 

312–314
linearly related regressors, 194–195
log rule, 188
modified power, 190
methodology and examples, 191–196
multivariate, 195
nonpositive variables, 198–199
power transformations, 186–188
range rule, 188

response, 196–198
scaled power, 189, 252
scatterplots, 14
single predictor variable, 188–190
variance stabilization, 171–172
Yeo–Johnson, 198–199

True discovery, hypothesis testing, 147–148
t-Tests

misspecified variances, 163–167
multiple linear regression, 68
one-factor models, 102

main effects model, 107–108
Poisson and binomial regression, 284
regression diagnostics, outliers, 217–218
simple linear regression, 30–34
two sample, 44

Tukey’s test for nonadditivity, 212–213
Type II analysis of variance, 140–141

Uncorrected sums of squares, 61–62
Uncorrelated data, scatterplots, 8–9
Unexplained variation

multiple linear regression, coefficient of 
determination (R2), 67–68

simple linear regression, coefficient of 
determination (R2), 35–36

Univariate summary statistics
multiple regression, 57–58
simple linear regression, 23–24

Validation set, variables selection, 247
Variable selection, 234–251

discovery, 237–245
information criteria, 238–239
regularized methods, 244–245
stepwise regression, 239–244
subset selection, 245

parameter assessment, 235–237
Poisson and binomial regression,  

285
prediction, model selection for, 245–248

cross-validation, 247
professor ratings, 247–248

Variance estimation
bootstrap method, 174–179

nonlinear parameter functions, 178
regression inference, no normality, 

175–178
residual bootstrap, 179

delta method, 174
multiple linear regression, 66
nonlinear regression, 253–256
simple linear regression, 26–27
tests, 179
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Variance inflation factor, 249
Variances

general correlation structures,  
168–169

misspecified variance, 162–167
accommodation, 163–164
constant variance test, 164–167

mixed models, 169–171
multiple linear regression, 58–59
overview, 156–179
Poisson and binomial regression, 284
scatterplots, 12–14
simple linear regression, 21–22
stabilizing transformations, 171–172
weighted least squares, 156–162

Wald tests, 133, 145–146
likelihood ratio test comparison, 146
single coefficient hypotheses, 145–146

Weighted least squares (wls)
constant variance test, 166–167
regression diagnostics

outliers, 216
weighted hat matrix, residuals, 208

variances, 156–162
group means weighting, 159–161
sample surveys, 161–162

Wilkinson–Rogers notation, 101, 106–109, 
139, 151, 259

binomial regression, 276–277
Working residual, nonlinear mean function 

estimation, 255
W statistic, regression diagnostics, 226

Yeo–Johnson transformation, nonpositive 
variables, 198–199

Zipf’s law, 48
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