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General Linear Test

• Comparison of a full model and reduced model that involves

a subset of full model predictors (i.e., hierarchical structure)

• Involves a comparison of unexplained SS

• Consider a full model with k predictors and reduced model

with l predictors (l < k)

• Can show that under null hypothesis

F ⋆ =
(SSE(R)− SSE(F))/(k − l)

SSE(F)/(n− k − 1)
∼ F distribution

• Degrees of freedom for F ∗ are the number of extra variables

and the error degrees of freedom for the full model
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• Testing the Null hypothesis that the regression coefficients

for the extra variables are all zero.

• Examples:

– X1, X2, X3, X4 vs X1, X2 −→ H0 : β3 = β4 = 0 if we are sure that β5, . . .
are exactly 0’s

– X1, X2, X4 vs X1 −→ H0 : β2 = β4 = 0 if we are sure that β3, β5, . . . are
exactly 0’s

– X1, X2, X3, X4 vs X1 −→ H0 : β2 = β3 = β4 = 0 if we are sure that
β5, . . . are exactly 0’s

• Because SSM+SSE=SSTO, can also compare using explained

SS (SSM)
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Extra SS and Notation

• Consider H0 : X1, X3 vs Ha : X1, X2, X3, X4

• Null can also be written H0 : β2 = β4 = 0

• Write SSE(F) as SSE(X1, X2, X3, X4)

• Write SSE(R) as SSE(X1, X3)

• Difference in SSE’s is the extra SS

• Write as

SSE(X2, X4|X1, X3) = SSE(X1, X3)− SSE(X1, X2, X3, X4)

• Recall SSM can also be used

SSM(X2, X4|X1, X3) = SSM(X1, X2, X3, X4)− SSM(X1, X3) =⇒
SSM(X1, X2, X3, X4) = SSM(X1, X3) + SSM(X2, X4|X1, X3)
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General Linear Test in Terms of Extra SS

• Can rewrite F test as

F ⋆ =
SSE(X2, X4|X1, X3)/(4− 2)

SSE(X1, X2, X3, X4)/(n− 5)

• Under H0, F ∗ ∼ F (2, n − 5); under H1, F ∗ ∼ noncentral

F (2, n− 5)

• If reject, conclude either X2 or X4 or both contain additional

useful information to predict Y in a linear model with X1 and

X3

• Example: Consider predicting GPA with HS grades, do SAT

scores add any useful information?

• If neither H0 nor H1 is correct, p-value has no rigorous statistical meaning,

but still serves as a comparison tool.
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Special Cases

• Consider testing individual predictor Xi based on

SSE(Xi|X1, ..., Xi−1, Xi+1, ....Xp−1)

– These are related to SAS’s indiv parameter t-tests

F (1, n− p) = t2(n− p)

• Can decompose SSM variety of ways

– Decomposition of SSM(X1, X2, X3)

= SSM(X1) + SSM(X2|X1) + SSM(X3|X2, X1)
= SSM(X2) + SSM(X1|X2) + SSM(X3|X2, X1)
= SSM(X3) + SSM(X2|X3) + SSM(X1|X2, X3)

– Stepwise sum of squares called Type I SS
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Type I SS and Type II SS

• Type I and Type II are very different

– Type I is sequential, so it depends on model statement

– Type II is conditional on all others, so it does not depend

on model statement

• For example, model y = x1 x2 x3 yields

Type I Type II
SSM(X1) SSM(X1|X2, X3)
SSM(X2|X1) SSM(X2|X1, X3)
SSM(X3|X1, X2) SSM(X3|X1, X2)

• Could variables be explaining same SS and “canceling” each

other out, such that we need to cautions about testing re-

sults?
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Example: Body Fat (p.256)

• Twenty healthy female subjects

• Y is body fat via underwater weighing

• Underwater weighing is expensive/difficult

• X1 is triceps skinfold thickness

• X2 is thigh circumference

• X3 is midarm circumference

7-7



• Investigate the model with all three predictors:

data a1;
infile ’U:\Ch07ta01.txt’;
input skinfold thigh midarm fat;

proc reg data=a1;
model fat=skinfold thigh midarm /ss1 ss2;

run;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 396.98461 132.32820 21.52 <.0001
Error 16 98.40489 6.15031
Corrected Total 19 495.38950

Root MSE 2.47998 R-Square 0.8014
Dependent Mean 20.19500 Adj R-Sq 0.7641
Coeff Var 12.28017

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 117.08469 99.78240 1.17 0.2578
skinfold 1 4.33409 3.01551 1.44 0.1699
thigh 1 -2.85685 2.58202 -1.11 0.2849
midarm 1 -2.18606 1.59550 -1.37 0.1896
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Conclusions

• Set of three variables helpful in predicting body fat (P <

0.0001)

• None of the individual parameters is significant

– Addition of each predictor to a model containing the other two is not
helpful

– Example of multicollinearity

– Will discuss more in next topic

• Will now focus on extra SS
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• Output Using SS1 & SS2 gives an addtional two columns

Parameter Estimates

Parameter

Variable DF Estimate Type I SS Type II SS

Intercept 1 117.08469 8156.76050 8.46816

skinfold 1 4.33409 352.26980 12.70489

thigh 1 -2.85685 33.16891 7.52928

midarm 1 -2.18606 11.54590 11.54590

More than 90% of Type I SS of skinfold can also be explained

by thigh and midarm
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• Investigate the model via general linear tests: fat=skinfold

proc reg data=a1;
model fat=skinfold;

run;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 1 352.26980 352.26980 44.30 <.0001
Error 18 143.11970 7.95109
Corrected Total 19 495.38950

Root MSE 2.81977 R-Square 0.7111
Dependent Mean 20.19500 Adj R-Sq 0.6950
Coeff Var 13.96271

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -1.49610 3.31923 -0.45 0.6576
skinfold 1 0.85719 0.12878 6.66 <.0001

• Skinfold now helpful. Note the change in coefficient estimate and stan-
dard error compared to the full model.
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• Does this variable alone do the job?

• Perform general linear test

proc reg data=a1;
model fat=skinfold thigh midarm;
thimid: test thigh, midarm;

run; quit;

Test thimid Results for Dependent Variable fat

Mean
Source DF Square F Value Pr > F
Numerator 2 22.35741 3.64 0.0500
Denominator 16 6.15031

• Appears there is additional information in the variables. Per-

haps the addition of one more variable would be helpful.
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Partial Correlations

• Measures the strength of a linear relation between two vari-

ables taking into account other variables or after adjusting for

other variables, while marginal t-test measure the existence

of such a linear realtionship

• Procedure for Xi vs Y

– Predict Y using other X’s

– Predict Xi using other X’s

• Each residual represents what is not explained by the other
variables

– The correlation between residuals is the partial correlation

– The regression coefficient residuals is the regression coefficient of Xi

in the full model

– The test of association is the marginal t test in the full model

• Looking for additional information in Xi that better explains

Y
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Example: Body Fat

proc reg data=a1;

model fat=skinfold thigh midarm / pcorr2;

run;

Parameter Estimates

Squared
Parameter Standard Partial

Variable DF Estimate Error t Value Pr > |t| Corr Type II
Intercept 1 117.08469 99.78240 1.17 0.2578 .
skinfold 1 4.33409 3.01551 1.44 0.1699 0.11435
thigh 1 -2.85685 2.58202 -1.11 0.2849 0.07108
midarm 1 -2.18606 1.59550 -1.37 0.1896 0.10501

• Squared partial correlation is also called coefficient of partial determina-
tion. Has similar interpretation to coefficient of multiple determination.

• Squared partial correlation = Type II SS/ (Type II SS + SSE).

• In this case, variables only explain approximately 10% of the remaining
variation after the other two variables are fit.
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Standardized Regression Model

• Can reduce round-off errors in calculations

• Standardization

Ỹi =
1√

n− 1

(
Yi − Y

sY

)
and X̃ik =

1√
n− 1

(
Xik −Xi

sXi

)
• Puts regression coefficients in common units, such that they can be

compared fairly

• A one SD change in Xi corresponds to β̃i SD increase in Y

• Can show

βi =

(
sY

sXi

)
β̃i
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Example: Body Fat

proc reg data=a1;

model fat=skinfold thigh midarm / stb;

run;

Parameter Estimates

Parameter Standard Standardized
Variable DF Estimate Error t Value Pr > |t| Estimate
Intercept 1 117.08469 99.78240 1.17 0.2578 0
skinfold 1 4.33409 3.01551 1.44 0.1699 4.26370
thigh 1 -2.85685 2.58202 -1.11 0.2849 -2.92870
midarm 1 -2.18606 1.59550 -1.37 0.1896 -1.56142

**Skinfold has highest standardized coefficient. Midarm does not appear to
be as important a predictor. Perhaps best model includes skinfold and thigh.
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Multicollinearity

• Numerical analysis problem is that the matrix X′X is almost

singular (linear dependent columns)

– Makes it difficult to take the inverse

– Generally handled with current algorithms

• Statistical problem: too much correlation among predictors

– The coefficient estimation lacks interpretability.

– Difficult to determine regression coefficients −→ Increased

standard error

– May not affect prediction accuracy if the testing samples

follow similar multicollinear correlation.

• Want to refine model to remove redundancy in the predictors
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Example

• Consider a two-predictor model

Yi = β0 + β1Xi1 + β2Xi2 + εi

• What is the estimate of β1?

• Can show

b1 =

b̃1 −
√

s2Y
s2X1

r12rY 2

1− r212

where b̃1 is the estimate fitting Y vs X1
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Extreme Cases

• Consider X1 and X2 are uncorrelated

– r12=0

– b1 = b̃1 (fitting Y vs X1)

– Estimator b1 does not depend on X2

– Type I SS and Type II SS are the same

– In other words, the contribution of each predictor is the same regard-
less of whether or not the other predictor is in the model

• Consider X1 = a+ bX2

– r12 = ±1

– Estimator b1 does not exist

– Type II SS are zero

– In other words, there is no contribution of the predictor if the other
predictor is already in the model
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Extreme Case in SAS

• Consider the following data set

data a1;
input case x1 x2 y;
cards;
1 3 3 5
2 4 5 8
3 1 -1 7
4 6 9 15

;

• Notice x2 = 2x1 − 3

• Will generate 3-D plot and run regression
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/* Generate 3-D Scatterplot */
proc g3d data=a1;

scatter x2*x1=y / rotate=30;
run;
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proc reg data=a1;
model y=x2 x1;

run; quit;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 1 55.59211 55.59211 96.02 0.0103
Error 2 1.15789 0.57895
Corrected Total 3 56.75000

Root MSE 0.76089 R-Square 0.9796
Dependent Mean 8.75000 Adj R-Sq 0.9694
Coeff Var 8.69584

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or B
means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

x1 = 1.5 * Intercept + 0.5 * x2

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept B -0.65789 1.03271 -0.64 0.5893
x2 B 1.71053 0.17456 9.80 0.0103
x1 0 0 . . .
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• In this example, no inverse exists so X1 dropped

• In practice, we are concerned with less extremal cases

• General results still hold

– Regression coefficients are not well estimated

– Regression coefficients may be scientifically meaningless

– Type I SS and II SS will differ substantially

– R2 and predicted values are usually ok
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Prelim Diagnose: Pairwise Correlations

• Assesses “pairwise collinearity” but not complicated multi-
collinearity

• Consider our body fat example

proc reg data=a1 corr;
var skinfold thigh midarm fat;
model midarm = skinfold thigh;

run; quit;

Correlation

Variable skinfold thigh midarm fat
skinfold 1.0000 0.9238 0.4578 0.8433
thigh 0.9238 1.0000 0.0847 0.8781
midarm 0.4578 0.0847 1.0000 0.1424
fat 0.8433 0.8781 0.1424 1.0000

– relatively strong correlation between thigh and skinfold.

• “MODEL midarm = skinfold thigh” reported R2 = 0.9904

– All three → r =
√
0.9904 = .995

– Should not use model with all three predictors
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Coefficient Estimation

• Page 284 summarizes coefficients

Variables in Model b1 b2
skinfold 0.8572 -
thigh - 0.8565

skinfold, thigh 0.2224 0.6594
skinfold, thigh, midarm 4.3340 -2.857

• skinfold and thigh similar info, hence are exchangeable.

• Coeffs change when both are included (sum ≈ 0.86)

• Very dramatic change when midarm is in (but this change is

still dominated by the multicollinearity)

• Reflected in std errors too
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Chapter Review

• Extra Sums of Squares

• Partial correlations

• Standardized regression coefficients

• Multicollinearity

– Effects

– Remedies
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