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The Data and Model

• Still have single response variable Y

• Now have multiple explanatory variables

• Examples:

– Blood Pressure vs Age, Weight, Diet, Fitness Level

– Traffic Count vs Time, Location, Population, Month

• Goal: There is a total amount of variation in Y (SSTO). We

want to explain as much of this variation as possible using a

linear model and our explanatory variables

Yi = β0 + β1Xi1 + · · · + βp−1Xi,p−1 + εi

• Have p− 1 predictors −→ p coefficients
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First Order Model with Two Predictors

Yi = β0 + β1Xi1 + β2Xi2 + εi; i = 1, . . . , n

• β0 is the intercept and β1 and β2 are the regression coeffi-

cients

• Meaning of regression coefficients

– β1 describes change in mean response per unit increase in

X1 when X2 is held constant

– β2 describes change in mean response per unit increase in

X2 when X1 is held constant

• Variables X1 and X2 are additive. Value of X1 does not

affect the change due to X2. There is no interaction.

• The response surface is a plane.
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Additive Response Surface

Ŷi = −2.79 + 2.14Xi1 + 1.21Xi2
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Interaction Model

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

• Meaning of parameters:

– Change in X1 when X2 = x2

∆E[Y ] = {β0 + β1(X1 + 1) + β2x2 + β3(X1 + 1)x2}
−{β0 + β1X1 + β2x2 + β3X1x2}

= β1 + β3x2

– Change in X2 when X1 = x1

∆E[Y ] = β2 + β3x1

• Rate of change due to one variable affected by the other
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Interaction Response Surface

Ŷi = 1.5 + 3.2Xi1 + 1.2Xi2 − .75Xi1Xi2
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Qualitative Predictors

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

where Y is a senior student’s GPA, X1 is the SAT score.

• Let X2 = 1 if case from Purdue, and X2 = 0 if from IU

• Meaning of parameters:

– Case from Purdue (X2 = 1):

E[Y ] = β0 + β1X1 + β21 + β3X1(1)

= (β0 + β2) + (β1 + β3)X1

– Case from other location (X2 = 0)

E[Y ] = β0 + β1X1 + β20 + β3X1(0) = β0 + β1X1

• Have two regression lines

– β2 quantify the difference between intercepts

– β3 quantify the difference between slops
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Polynomial Regression and Transformations

• Polynomial regression:

Yi = β0 + β1Xi + β2X
2
i + εi

= β0 + β1Xi1 + β2Xi2 + εi

where Xi2 = X2
i .

– this is a linear model because it is a linear function of

parameters β

• Transformations

Yi =
1

β0 + β1Xi1 + β2Xi2 + εi

⇐⇒
1

Yi
= β0 + β1Xi1 + β2Xi2 + εi

log(Yi) = β0 + β1Xi1 + β2Xi2 + εi

– the last one is a linear model on the log(Yi) scale
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General Linear Regression In Matrix Terms

• After transformation and re-organization, a linear model (“lin-
ear” w.r.t. unknown coefficient, not to actual predictors) is
obtained

Yi = β0 + β1Xi1 + · · · + βp−1Xi,p−1 + εi

• As an arrayY1

Y2...
Yn

 =

1 X11 X12 · · · X1 p−1

1 X21 X22 · · · X2 p−1
... ... ... ... ...
1 Xn1 Xn2 · · · Xn p−1



β0

β1

β2...
βp−1

 +

 ε1

ε2...
εn



• In matrix notation

Y = Xβ +ε

• Distributional assumptions:

ε ∼ N(0, σ2I) −→ Y ∼ N(Xβ, σ2I)
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Estimation of Regression Coefficients

• Least squares estimates

– find b to minimize (Y −Xb)′(Y −Xb)

– b = (X′X)−1X′Y

• Fitted values define a (hyper)plane

– Ŷ = X(X′X)−1X′Y = HY

– HY forms a response surface

• Residuals

– e = Y − Ŷ = (I−H)Y
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The Distribution of Residuals

• e = Y − Ŷ = (I−H)Y

– I−H is symmetric and idempotent

• Expected value E(e) = 0

• Covariance Matrix

σ2(e) = σ2(I−H)(I−H)′

= σ2(I−H)

– Var(ei) = σ2(1− hii) where hii = X′i(X
′X)−1Xi

– Residuals are usually correlated, i.e., cov(ei, ej) = −σ2hij, i 6= j

• Will use this information to look for outliers
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Estimation of σ2

• Similar approach as before

• Estimate it from e, since e has nothing to do with βi’s.

• Now p model parameters

s2 =
e′e

n− p

=
(Y −Xb)′(Y −Xb)

n− p

=
SSE

n− p

= MSE
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ANOVA TABLE

Source of
Variation df SS MS F Value
Regression p− 1 SSR MSR=SSR/(p− 1) MSR/MSE

(Model)
Error n− p SSE MSE=SSE/(n− p)

Total n− 1 SSTO

• F Test: Tests if the predictors collectively help explain the

variation in Y

– H0 : β1 = β2 = . . . = βp−1 = 0

– Ha : at least one βk 6= 0, 1 ≤ k ≤ p− 1

– F ∗ = SSR/(p−1)
SSE/(n−p)

H0∼ F (p− 1, n− p)

– Reject H0 if F ∗ > F (1− α, p− 1, n− p)

• No conclusions possible regarding individual predictors
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Testing Individual Predictor

t-Test

• Have already shown that b ∼ N
(
β, σ2(X′X)−1

)
– This implies bk ∼ N(βk, σ

2(bk))

• Perform t test

– H0 : βk = 0 vs Ha : βk 6= 0

– bk−βk
s(bk) ∼ tn−p so t∗ = bk

s(bk) ∼ tn−p under H0

– Reject H0 if |t∗| > t(1− α/2, n− p)

• Confidence interval for βk

– bk ± t(1− α/2, n− p)s{bk}
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General Linear Test

• H0 : βk = 0 vs Ha : βk 6= 0

– Full Model :

Yi = β0 +
p−1∑
j=1

βjXji + εi

– Reduced Model :

Yi = β0 +
k−1∑
j=1

βjXji +
p−1∑

j=k+1

βjXji + εi

– F ? = (SSE(R)−SSE(F))/1
SSE(F)/(n−p)

– Reject H0 if F ∗ > F (1− α,1, n− p)
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Equivalence of t-Test and General Linear Test

• Can show that F ∗ = (t∗)2

– both tests result in the same conclusion

• Both tests investigate significance of a predictor given the

other variables are already in the model

– i.e. significance of the variable which is fitted last
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Coefficient of Multiple Determination

• Coefficient of Determination R2 describes proportionate re-

duction in total variation associated with the full set of X

variables

R2 = SSR
SSTO = 1− SSE

SSTO, 0 ≤ R2 ≤ 1

• R2 usually increases with the increasing p

– Adjusted R2
a attempts to account for p

R2
a = 1− SSE/(n−p)

SSTO/(n−1), 0 ≤ R2
a ≤ 1

– The adustment is often insufficient
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Example: Purdue Computer Science Students

• Computer Science majors at Purdue have a large drop-out

rate

• Goal: Find predictors of success (defined as high GPA)

• Predictors must be available at time of entry into program.

These are:

– GPA: grade points average after three semesters

– HSM: high-school math grades

– HSS: high-school science grades

– HSE: high-school english grades

– SATM: SAT Math

– SATV: SAT Verbal

• Data available on n = 224 students
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• Now investigate the model: GPA = HSM HSS HSE

options nocenter linesize=72;

goptions colors=(’none’);

data a1;

infile ’U:\.www\datasets525\csdata.dat’;

input id gpa hsm hss hse satm satv;

proc reg data=a1;

model gpa=hsm hss hse;

run;
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Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 27.71233 9.23744 18.86 <.0001
Error 220 107.75046 0.48977
Corrected Total 223 135.46279

Root MSE 0.69984 R-Square 0.2046
Dependent Mean 2.63522 Adj R-Sq 0.1937
Coeff Var 26.55711

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 0.58988 0.29424 2.00 0.0462
hsm 1 0.16857 0.03549 4.75 <.0001
hss 1 0.03432 0.03756 0.91 0.3619
hse 1 0.04510 0.03870 1.17 0.2451
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Estimation of Mean Response E(Yh)

• We are interested in predictors Xh

– Can show Ŷh ∼ N
(
X′hβ, σ

2X′h(X′X)−1Xh

)
• Individual CI for Xh

– Ŷh ± t(1− α/2, n− p)s{Ŷh}

• Bonferroni CI for g vectors Xh

– Ŷh ± t(1− α/(2g), n− p)s{Ŷh}

• Working-Hotelling confidence band for the whole regression

line

– Ŷh ±
√
pF (1− α, p, n− p) s{Ŷh}

• Be careful to be only in range of X’s
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Predict New Observation

• Yh(new) = E(Yh) + ε

– s2(pred) = s2(Ŷh) + MSE

– Ŷh + ε ∼ N
(
X′hβ, σ

2(1 + X′h(X′X)−1Xh)
)

• Individual CI of Yh(new)

– Ŷh ± t(1− α/2, n− p)s{pred}

• Bonferroni CI for g vectors Xh

– Ŷh ± t(1− α/(2g), n− p)s{pred}

• Simultaneous Scheffé prediction limits for g vectors Xh

– Ŷh ±
√
gF (1− α, g, n− p) s{pred}
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Diagnostics

• Diagnostics play a key role in both the development and

assessment of multiple regression models

• Most previous diagnostics carry over to multiple regression

• Given more than one predictor, must also consider relation-

ship between predictors

• Specialized diagnostics discussed later in Chapters 9 and 10
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Scatterplot Matrix

• Scatterplot matrix organizes all bivariate scatterplot, between
Y and Xj as well as between Xj and Xk (j, k = 1,2, ..., p−1),
in a matrix.

– Nature of bivariate relationships

– Strength of bivariate relationships

– Detection of outliers

– Range spanned by X’s

• Can be generated within SAS

proc sgscatter data=cs;

matrix gpa hsm hss hse;

run;
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Correlation Matrix

• Complementary summary

• Displays all numerical pairwise correlations

• Must be wary of

– Nonlinear relationships

– Outliers

– Influential observations
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Example: Purdue Computer Science Student

• Univaraite Descriptive Statistics (e.g., PROC MEANS or

PROC UNIVARIATE): preliminary check for outliers/unusual ob-

servations.

proc means data=cs maxdec=2;
var gpa hsm hss hse satm satv;

run;

The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
-------------------------------------------------------------
gpa 224 2.64 0.78 0.12 4.00
hsm 224 8.32 1.64 2.00 10.00
hss 224 8.09 1.70 3.00 10.00
hse 224 8.09 1.51 3.00 10.00
satm 224 595.29 86.40 300.00 800.00
satv 224 504.55 92.61 285.00 760.00
-------------------------------------------------------------

• maxdec = 2 sets the number of decimal places in the output

to 2.
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proc univariate data=cs noprint;
var gpa hsm hss hse satm satv;
histogram gpa hsm hss hse satm satv /normal;

run;

Top Left: GPA Top Right: HSM Bottom Left: HSS Bottom Right:
HSE

6-26



Upper – SATM Lower – SATV
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• Uses PROC CORR to report correlation values;

• Use NOPROB statement to get rid of those p-values.

[1] proc corr data=a1; [3] proc corr data=a1;
var hsm hss hse; var hsm hss hse satm satv;

with gpa;
hsm hss hse

hsm 1.00 0.57 0.44 hsm hss hse
<.0001 <.0001 gpa 0.43 0.32 0.28

hss 0.57 1.00 0.57 <.0001 <.0001 <.0001
<.0001 <.0001

hse 0.44 0.57 1.00 satm satv
<.0001 <.0001 gpa 0.25 0.11

0.0001 0.0873
[2] proc corr data=a1 noprob;

var satm satv;

satm satv
satm 1.00 0.46
satv 0.46 1.00
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Residual Plots

• Used for similar assessment of assumptions

– Model is correct

– Normality

– Constant Variance

– Independence

• Plot e vs Ŷ (overall)

• Plot e vs Xj (with respect to Xj)

• Plot e vs missing variable (e.g., XjXk)
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Tests

• Univariate graphical summaries of e are still preferred

• NORMAL option in PROC UNIVARIATE test normality

• Modified Levene’s and Breusch-Pagan for constant variance

• Lack of fit test: need repeated observations where all X fixed

at same levels
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Lack of Fit Test

• Compare

– (reduced) linear model

H0 : E(Yi) = β0 + β1Xi1 + · · · + βp−1Xi,p−1

– (full) model where Y has c means (i.e. c combinations of

Xi)

Ha : E(Yi) 6= β0 + β1Xi1 + · · · + βp−1Xi,p−1

• F ∗ = {SSE(R)−SSE(F )}/{(n−p)−(n−c)}
SSE(F )/(n−c) ∼ F (c− p, n− c) under

H0

• Reject H0 if F ∗ > F (1− α, c− p, n− c)

• If reject H0, conclude that a more complex relationship be-

tween Y and X1, . . . , Xp−1 is needed
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Calculate SSE(F) in SAS

* Analysis of Variance - Full Model

proc glm;

class x1 x2;

model y=x1*x2;

run;

• CLASS and MODEL specify that every combination of levels of

X1 and X2 has their own mean

• Plug the SSE of this model into the lack of fit test
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Example: Purdue Computer Science Student

• Investigate the model: GPA = HSM HSS HSE

– PROC REG reports SSE(R) = 107.75046 with df(SSE) = 220.

proc glm data=a1;
class hsm hss hse;
model gpa=hsm*hss*hse;

run; quit;

Class Level Information

Class Levels Values
hsm 9 2 3 4 5 6 7 8 9 10
hss 8 3 4 5 6 7 8 9 10
hse 8 3 4 5 6 7 8 9 10

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 99 85.0469697 0.8590603 2.11 <.0001
Error 124 50.4158191 0.4065792
Corrected Total 223 135.4627888

• F ∗ = {SSE(R)−SSE(F )}/{(n−p)−(n−c)}
SSE(F )/(n−c) = {107.75046−50.4158191}/{220−124}

50.4158191/124
= 1.4689 >

1.3688 = F−1
96,124(0.95).
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Chapter Review

• Data and Notation

• Model in Matrix Terms

• Parameter Estimation

• ANOVA F-test

• Estimation of Mean Responses

• Prediction of New Observations

• Diagnostics
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