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Matrix|

Collection of elements arranged in rows and columns

Elements will be numbers or symbols

For example:

A=F 2]

2 6

Rows denoted with the ¢ subscript
Columns denoted with the 5 subscript
The element in row 1 col 2 is 3

The element in row 3 col 1is 2
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Elements often expressed using symbols

aiil ai2 a1z
a a a
A = .21 22 '23

Matrix A has r rows and ¢ columns
Said to be of dimension r X c
Element a;; is in ith row and jth col
A matrix is square if r = ¢

Called a column vector if c=1

Called a row vector if r=1

aic
ac




Matrix Operationsl

e [ranspose

— Denoted as A’

Row 1 becomes Column 1, Row r becomes Column r
J
Column 1 becomes Row 1, Column ¢ becomes Row ¢
—If A= [aij] then A’ = [aji]

— IfAisrxcthen Alisecxr

e Addition and Subtraction

— Matrices must have the same dimension

— Addition/subtraction done on element by element basis

a11 +bi1 ai2+biz - aic+ bic
A+B= : : : :
ar1 + br1 ar2 + by Tt are + bre
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e Multiplication

— If scalar then AA = [Aayj]
— If multiplying two matrices (C = AB)

* Cij = ), Gikbr;
* Columns of A must equal Rows of B

* Resulting matrix of dimension Rows(A) x Columns(B)

— Elements obtained by taking cross products of rows of A with columns

of B
19 6 6 3
[4 1] [‘1* g H:[n 10 5]
3 3 15 12 6
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Regression Matricesl

e Consider example with n =4

e Consider expressing observations:

e X is called the design matrix

Bo + B1X1
Bo + B1X>
Bo + B1X3
Bo + B1Xa

[ Bo + B1X1 ]
Bo + B1X>
Bo + B1X3

| Bo + B1X4 _

o e
>
N
1
™
o

+e1
+e2
+e3
+ea

€1

4+ | =2

€3

| €4 ]

€1

+ | =2

€3

€4
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Special Regression Examples

e Using multiplication and transpose

YY = Y v?
XX = |_" ZX;]
Xy 22X
X/Y — _ ZYZ ]
|2 XY

o Will use these to compute B etc.
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Special Types of Matricesl

e Symmetric matrix

— When A = A’
— Requires A to be square
— Example: X'X

e Diagonal matrix

— Square matrix with off-diagonals equal to zero

— Important example: Identity matrix

I =

OoOrOOo
= OOO

0
1
0
0

oNeoNGN

— JA=AI=A



Linear Dependencel

Consider the matrix
5 3 10
Q= [1 2 2 ]

1 1 2
the columns of Q are vectors.
5 3 10
Ci=|1 Co= 12 Cz3=| 2
1 1 2

If there is a relationship between the columns of a matrix
such that

MCi+...+2C.=0
and not all Aj’s are 0, then the set of column vectors are
linearly dependent.

— For the above example, —2C1 + 0C> 4+ 1C3 = 0.

If such a relationship does not exist then the set of columns
are linearly independent.

— Columns of an identity matrix are linearly indpendent.

Similarly consider rows
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Rank of a Matrix]|

The rank of a matrix is the maximum number of linear in-

dependent columns (or rows)
Rank of a matrix cannot exceed min(r, c)

Full Rank = all columns are linearly independent

Example:
5 3 107
Q=1 2 2
11 2

— The rank of Q is 2

Rank of matrix can be connected to the d.f.
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Inverse of a Matrix

Inverse similar to the reciprocal of a scalar

Inverse defined for square matrix of full rank

Want to find the inverse of S, such that

S.Ss 1 =1

Easy example: Diagonal matrix

—LetS=[

2 0
0 4] then
) 1
1|32
S [O

INIEN®

inverse of each element
on the diagonal
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e General procedure for 2 x 2 matrix

e Consider:

1. Calculate the determinant D = a-d—0b-c
If D = 0 then the matrix has no inverse.
2. In A1, switch a and d; make ¢ and b negative; multiply each element
by £
ALl = i d —=b| _ % _fb
pl-e a]”|% 3}
— Steps work only for a 2 x 2 matrix.

— Algorithm for 3 x 3 given in book

5-11



Use of Inverse

e Consider equation 2x =3 — . = 3 X %

e Inverse similar to using reciprocal of a scalar

e Pertains to a set of equations

A X= C
(rxr) (rx1) (rx1)

e Assuming A has an inverse:

A"TAX
X

> P>
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'Random Vectors and Matrices|

Contain elements that are random variables

Can compute expectation and (co)variance

In regression set up, Y = X3 + ¢, both € and Y are random

vectors

Expectation vector: E(Y) = [E(Y;)]

Covariance matrix: symmetric

o?(Y) =

[ o2(Y1)  o(Y1,Y2)
O-(Y2'> Yl) 02 (YQ)

_O’(Yn,Yl) U(YH7Y2)

o(Y1,Y,)]
o(Y>,Y,)

02(}%) i
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Basic Theorems|

Consider random vector Y
Consider constant matrix A

Suppose W = AY

— W is also a random vector
— E(W)=Ax E(Y)

— 02(W) =A xo2(Y) x A/

If Y is a multivariate normal, then W = AY is multivariate

normal as well.
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'Regression Matrices|

e Can express observations
Y= XB8 +e¢

e Both Y and € are random vectors

E(Y)= XB +E(e)
= X3
oc?(Y)= 0 Ho?(e)
= 21
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'Least Squares|

e EXpress quantity @

Q = (Y-XB)(Y-XpB)
= Y'Y - 3X'Y - Y'XB+ BX'X3
= Y'Y - 28X'Y + @X'X3
- (XB) = B'X’

e Taking derivative — —2X'Y 4+ 2X'X3 =0
- XY =X'Y
— ZB'X'XB = 2X'X3

e This means b = (X’X)"1X'Y
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Fitted Values|

The fitted values Y = Xb = X(X'X)1X'Y
Matrix H = X(X'X)~1X’ is called the hat matrix

— H is symmetric, i.e., H =H

— H is idempotent, i.e., HH=H
Equivalently write Y = HY

Matrix H used in diagnostics (Chapter 9)
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e Residual matrix

e ¢ iS a random vector

E(e)

o (e)

RCSidUE\lSI

Y-Y
Y - HY
(I-H)Y

(I—H) x E(Y)

(I-H)X3
XB—-XpB
o)

(I-H) xo?(Y) x I-H)
(I-H)s’I(I - HY
(I-H)o?
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ANOVAI

e Quadratic form defined as

YAY = 30 Y vy,
(A
where A is symmetric n X n matrix

e Sums of squares can be shown to be quadratic forms (page
207)

e Quadratic forms play a significant role in the theory of linear
models when errors are normally distributed
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Inference|

e Vector b= (X’X)"1X'Y = AY

e [ he mean and variance are

E(b) (X'X)"1X'E(Y)
(X'X)"1X'X33

B

o?(b) A xo?(Y) x A
A x 0’ x A/
o?AA’
o2(X'X)~1

e Thus, b is multivariate Normal(3, ¢2(X'X)~1)
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e Consider X/ =[1 X}]
e Mean response Y;, = X/ b

E(Y,) =X,

Var(V},) = X}, x a2(b) x X, = 02X} (X'X)~1X,,
e Prediction of new observation

o?{pred} = o?(1 4+ X} (X'X)"1X})

s?{pred} = MSE(1 + X} (X'X)"1X})
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Chapter Reviewl

e Review of Matrices
e Regression Model in Matrix Form

e Calculations Using Matrices
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