<u>STAT 525</u>

Chapter 4 Miscellaneous Topics

Dr. Qifan Song

Simultaneous Inference

- Consider a collection of CIs / hypothesis tests
- Each interval has (1α) % confidence level
- What about the overall confidence level?
 - Level of confidence that all constructed intervals contain their true parameter values
 - Often much lower than individual (1α) % level
- Require to adjust individual confidence levels
- Recall confidence band \longrightarrow widened individual intervals

Bonferroni Adjustment

- Want simultaneous CIs for θ_1 and θ_2
- Let A_1 denote event that CI excludes θ_1
- Let A_2 denote event that CI excludes θ_2
- We choose individual confidence level as $Pr(A_i) = \alpha_i$
- What is the probability that both events don't occur?

$$\Pr(\overline{A}_{1} \cap \overline{A}_{2}) = 1 - \Pr(A_{1} \cup A_{2})$$

$$\Pr(A_{1} \cup A_{2}) = \Pr(A_{1}) + \Pr(A_{2}) - \Pr(A_{1} \cap A_{2})$$

$$\leq \Pr(A_{1}) + \Pr(A_{2})$$

$$\downarrow$$

$$\Pr(\overline{A}_{1} \cap \overline{A}_{2}) \geq 1 - (\Pr(A_{1}) + \Pr(A_{2}))$$

• If $\alpha_1 + \alpha_2 = .05$, then $Pr(\overline{A}_1 \cap \overline{A}_2) \ge 0.95$

- Want to have family confidence level 1α
- Consider g CIs each using $\alpha_i \equiv \alpha^*$

$$\Pr\left(\bigcap_{i=1}^{g} \overline{A}_{i}\right) \geq 1 - g\alpha^{*}$$

- Use level $1 \alpha/g$ for each test $(\alpha^* = \alpha/g)$
- Provides lower bound for confidence level
- Increasingly conservative as g increases
- True confidence level often higher than $1-\alpha$, so larger familywise can be α used
- A universal method regardless of dependency

Joint Estimation of β_0 and β_1

- Joint confidence Intervals = rectangular confidence region of (β_0, β_1)
- If CIs were independent
 - Overall confidence level of rectangle is $(1 \alpha_0)(1 \alpha_1)$
 - Could set equal to 0.95 and solve for α
- Estimates (b_0, b_1) are not independent and MSE is shared by both CIs.
- Bonferroni Adjustment: $\alpha_0 = \alpha_1 = \alpha/2$
- Given normal error terms, can show (b_0, b_1) multivariate normal, thus can show natural (i.e., smallest) confidence region defined by an ellipse (STAT 524)

Mean Response CIs

- Could apply Bonferroni correction
 - Want to know E(Y|X) for g X's
 - Construct CIs using $\alpha^* = \alpha/g$
 - Reasonable approach when g small

$$\widehat{Y}_h \pm B imes s(\widehat{Y}_h)$$
 where $B = t(1 - lpha/(2g), n-2)$

- Previously discussed Working-Hotelling
 - Uses F distribution instead of t distribution
 - Coefficient W does not change as g increases

$$\widehat{Y}_h \pm W imes s(\widehat{Y}_h)$$
 where $W^2 = 2F(1-lpha,2,n-2)$

Prediction Intervals

- Could apply Bonferroni correction
 - Want to know $Y_{h(new)}$ for g X's
 - Construct PIs using $\alpha^* = \alpha/g$
 - Reasonable approach when g small

$$\widehat{Y}_h \pm B imes s$$
(pred) where $B = t(1 - lpha/(2g), n - 2)$

- Can also use Scheffé procedure
 - Uses F distribution instead of t distribution
 - Coefficient S increases as g increases

$$\widehat{Y}_h \pm S \times s(\text{pred})$$
 where $S^2 = gF(1 - \alpha, g, n - 2)$

Regression through the Origin

- Many instances where the line is known to go through the origin
- Statistical model is

$$Y_i = \beta_1 X_i + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, \sigma^2)$

- Can show
$$b_1 = \sum X_i Y_i / \sum X_i^2$$
, and $se(b_1) = MSE / \sum X_i^2$

- Can fit using option NOINT for MODEL in PROC REG
- Degrees of freedoms for some statistics are changed! $MSE = \sum (Y_i - \hat{Y}_i)^2 / (n - 1)$
- Problems with R^2
- If the line does go through the origin, little is lost fitting a line with both intercept and slope

Measurement Error

- Measurement Error in Y
 - Generally not a problem if the measurement error is random, independent with mean zero
 - Error term in model represents unexplained variation which is often a combination of many factors not considered
- Measurement Error in X
 - Does cause problems
 - Often results in biased estimators
 - Tends to reduce strength of association
 - $Y = \beta_0 + X\beta_1 + \epsilon = \beta_0 + (X^* \delta)\beta_1 + \epsilon = \beta_0 + X^*\beta_1 + (\epsilon \delta\beta_1) := \beta_0 + X^*\beta_1 + \epsilon^*$, where X^* and ϵ^* are correlated in general, unless X^* is fixed (Berkson model)

Inverse Predictions

- Given Y_h , predict X, such that $Y_h = X_h\beta_1 + \beta_0 + \epsilon$
- Given fitted equation this is

$$\widehat{X}_h = \frac{Y_h - b_0}{b_1} \qquad b_1 \neq 0$$

- This is the MLE (i.e., function of b_0 , b_1)
- Approximate CI can be constructed using inverse mapping of CI for new observation Y_h : Given a known X_h ,

$$b_{0}+b_{1}X_{h}-t(1-\alpha/2,n-2)s\{pred\} \leq Y_{h} \leq b_{0}+b_{1}X_{h}+t(1-\alpha/2,n-2)s\{pred\}$$
$$Y_{h}-t(1-\alpha/2,n-2)s\{pred\} \leq b_{0}+b_{1}X_{h} \leq Y_{h}+t(1-\alpha/2,n-2)s\{pred\}$$
$$\implies X_{h} \in \hat{X}_{h} \pm t(1-\alpha/2,n-2)s\{pred\}/b_{1}$$

Note: $s\{pred\}$ requires true X_h , and we can plug in \hat{X}_h for an approximation.

Chapter Review

- Simultaneous Inference / Multiplicity
- Regression through the origin
- Measurement Error
- Inverse predictions