<u>STAT 525</u>

Chapter 20 Two-Factor Studies with One Case per Treatment

Dr. Qifan Song

One Observation Per Cell

- Do not have enough information to estimate **both** the interaction effect and error variance
- With interaction, error degrees of freedom is ab(n-1) = 0
- Common to assume there is no interaction (i.e., pooling)
 - $-SSE^* = SSAB + 0$
 - $df_E^* = df_{AB} + 0$
- Can also test for less general type of interaction that requires fewer degrees of freedom

Tukey's Test for Additivity

- Consider special type of interaction
- Assume following model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \theta \alpha_i \beta_j + \varepsilon_{ij}$$

- Uses up only one degree of freedom
- Other variations possible (e.g., $\theta_i\beta_j$)
- Want to test $H_0: \theta = 0$

- Will use regression after estimating factor effects to test θ , i.e., $Y_{ij} = \mu + \alpha_i + \beta_j + \theta \hat{\alpha}_i \hat{\beta}_j + \varepsilon_{ij}$.
- It is equivalent to model $Y_{ij} = \mu + \alpha'_i + \beta'_j + \theta(\hat{Y}_{ij})^2 + \varepsilon_{ij}$.

Example (Page 882)

- Y is the premium for auto insurance
- Factor A is the size of the city

-a = 3: small, medium, large

• Factor B is the region

-b=2: east, west

• Only one city per cell was observed

```
data a1; infile 'u:\.www\datasets525\CH20TA02.txt';
    input premium size region;
    if size=1 then sizea='1_small ';
    if size=2 then sizea='2_medium';
    if size=3 then sizea='3_large ';
    symbol1 v='E' i=join c=black; symbol2 v='W' i=join c=black;
    proc gplot data=a1;
        plot premium*sizea=region/frame;
    run; quit;
```



```
proc glm data=a1;
      class size region;
      model premium=size region ;
    output out=diag P=yhat;
run;
```

```
proc glm data=diag;
      class size region;
      model premium=size region yhat*yhat;
run;
```

				Sum of				
Source	Ι	OF	ç	Squares	Me	an Square	F Value	e Pr > F
Model		4	10737	7.09677	2	684.27419	208.03	3 0.0519
Error		1	12	2.90323		12.90323		
Corrected	Total	5	10750	0.00000				
R-Square	Coet	ff V	Var	Root	MSE	premiu	n Mean	
0.998800	2.0)526	532	3.592	2106	17	5.0000	
Source	Ι	ΟF	Тур	pe I SS	Me	an Square	F Value	e Pr > F
size		2	9300	.000000	46	50.000000	360.37	0.0372
region		1	1350	.000000	13	50.000000	104.62	2 0.0620
yhat*yhat		1	87	.096774	:	87.096774	6.75	5 0.2339

We fail to reject the additive hypothesis.

One Quantitative Factor

- Similar to regression with one indicator or categorical variable
- Plot the means vs the quantitative factor for each level of the categorical factor
- Based on this plot,
 - Consider linear/quadratic relationships for the quantitative factor
 - Consider different slopes for the different levels of the categorical factor
 - Can perform lack of fit analysis
- If two quantitative variables, can consider linear and quadratic terms. Interactions modeled as the direct product. Lack of fit test very useful. Again very similar to linear regression models.

Chapter Review

- Two-Factor Studies with $n_{ij} = 1$
 - No degrees of freedom for interaction
 - Tukey's test for additivity
 - * Use only one degree of freedom
 - * Can be generalized to use more degrees of freedom
- One or both factors are quantitative
 - A test for interactions effects can be obtained by regression methods
 - * Include interactions by taking direct products