<u>STAT 525</u>

Chapter 18 ANOVA Diagnostics and Remedies

Dr. Qifan Song

Overview

- General assumptions
 - Normally distributed error terms
 - Independent observations
 - Constant variance
- Will adapt diagnostics and remedial measures from linear regression
- Many are the same but others require slight modifications
- Key difference to linear regression: for ANOVA, data are grouped in their covariate values.

Residuals

• Predicted values are the cell means

$$\widehat{\mu}_i = \overline{Y}_{i.}$$

 Residuals are the difference between the observed and predicted

$$e_{ij} = Y_{ij} - \overline{Y}_{i.}$$

- Properties:
 - Same least squares properties

$$-\sum_{j}e_{ij}=0$$

Basic Plots

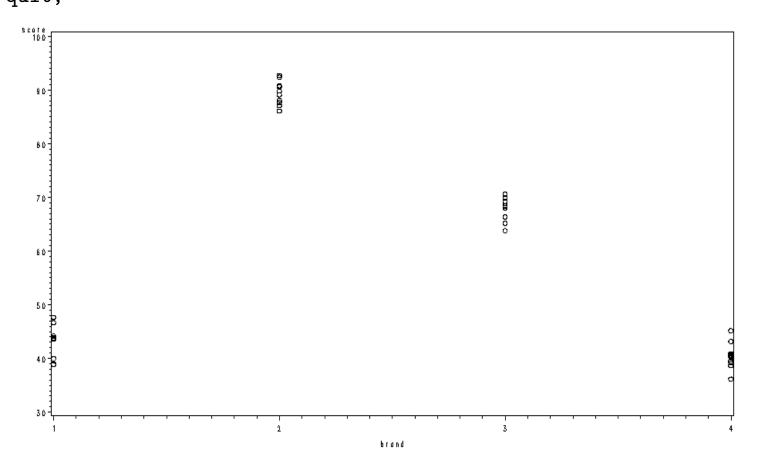
- Plot the data vs the factor levels
- Plot the residuals vs the factor levels
- Plot the residuals vs the fitted values
- Histogram of the residuals
- QQplot of the residuals

Example (Page 777)

- Experiment designed to study the effectiveness of four rust inhibitors
- Forty units were used in the experiment
- Units randomly and equally assigned to rust inhibitors ($n_i = 10$)
- Each unit exposed to severe weather conditions
- Y coded score (higher means less rust)
- X brand of rust inhibitor
 - -i = 1, 2, 3, 4
 - -j = 1, 2, .., 10

Scatterplot

```
options nocenter; goptions colors=('none');
data a1;
    infile 'u:\.www\datasets525\CH17TA02.txt';
    input score brand;
```

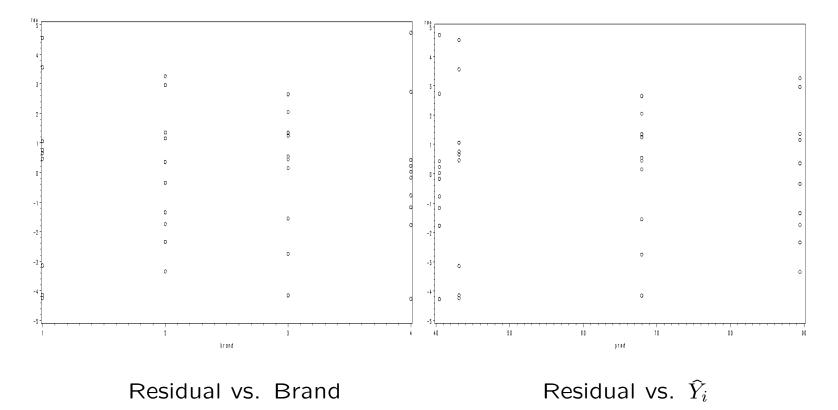


Residual Plots

```
proc glm data=a1;
   class brand;
   model score=brand;
   output out=a2 r=res p=pred;
```

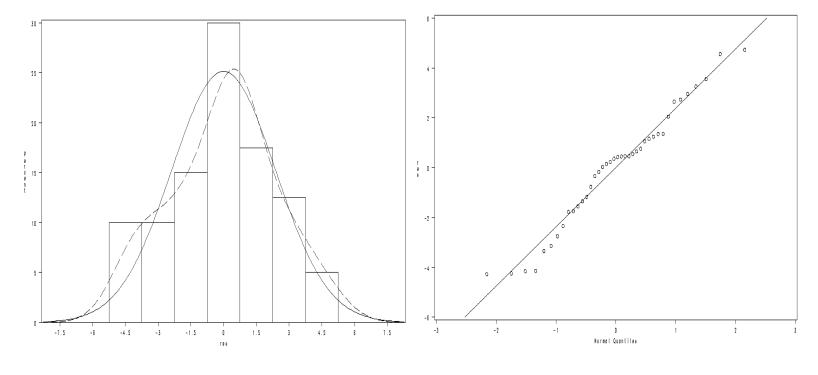
proc gplot; plot res*(brand pred);

```
run; quit;
```



Histogram & QQPlot

```
proc univariate noprint data=a2;
    histogram res / normal kernel(L=2);
    qqplot res / normal (L=1 mu=est sigma=est);
run; quit;
```



Histogram of Residuals

QQPlot of Residuals

Summary

- Look for
 - Outliers
 - Non-constant variance
 - Non-normal errors
- Can plot residuals vs time or other variables if available
 - Independent observations

Formal Tests

- Normality
 - Wilk-Shapiro
 - Anderson-Darling
 - Kolmogorov-Smirnov
- Homogeneity of Variance
 - Hartley test
 - Modified Levene test (aka Brown-Forsythe test in SAS)
 - Bartlett's

Homogeneity of Variance: Hartley Test

- It requires equal sample sizes across factor levels, i.e., $n_i = n$
- Hartley statistic,

$$H^* = \frac{\max(s_i^2)}{\min(s_i^2)} \sim H(r, n-1), \text{ under } H_0$$

• Percentiles of H(r,df) are shown in Table B.10 (p. 1336).

Homogeneity of Variance: Modified Levene Test

- Called Brown-Forsythe test in SAS
- Test statistic,
 - Define $d_{ij} = |Y_{ij} \tilde{Y}_i|$, with \tilde{Y}_i the median at factor level *i*
 - Calculate $\bar{d}_{i\cdot} = \sum_j d_{ij}/n_i$, $\bar{d}_{\cdot\cdot} = \sum_i \sum_j d_{ij}/n_T$
 - Calculate

$$MSTR = \sum_{i} n_{i} (\bar{d}_{i} - \bar{d}_{..})^{2} / (r - 1),$$

$$MSE = \sum_{i} \sum_{j} (d_{ij} - \bar{d}_{i})^{2} / (n_{T} - r)$$

-
$$F_{BF}^* = MSTR/MSE \stackrel{approx}{\sim} F(r-1, n_T - r)$$
 under H_0

- Modified Levene test is often the best choice
 - Unlike the Hartley test, it is robust against departures from normality
 - It does not require equal sample sizes
- IN PROC GLM, Use option HOVTEST=BF for MEANS statement

Example (Page 783)

- Experiment designed to assess the strength of five types of flux used in soldering wire boards
- Forty units were used in the experiment
- Units randomly and equally assigned to five types of flux $(n_i = 8)$
- Y strength
- X type of flux

```
data a1;
    infile 'u:\.www\datasets525\CH18TA02.DAT';
    input strength type;
```

```
/* Scatterplot */
proc gplot data=a1;
    plot strength*type;
run; quit;
```



```
/* Modified Levene Test */
proc glm data=a1;
    class type;
    model strength=type;
    means type / hovtest=bf clm;
run; quit;
```

Brown and Forsythe's Test for Homogeneity of strength Variance ANOVA of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
type	4	9.3477	2.3369	2.94	0.0341
Error	35	27.8606	0.7960		

Level of		strength		
type	Ν	Mean	Std Dev	
1	8	15.4200000	1.23713956	
2	8	18.5275000	1.25297076	
3	8	15.0037500	2.48664397	
4	8	9.7412500	0.81660337	
5	8	12.3400000	0.76941536	

Remedies

- Delete potential outliers
 - Is their removal important?
- Use weighted regression
- Box-Cox Transformation
- Non-parametric procedures

Variance Stabilization Transformations

- Consider response Y with $E(Y) = \mu_x$ and $Var(Y) = \sigma_x^2 = g(\mu_x)$ - σ_x^2 depends on μ_x
- Want to find $\tilde{Y} = f(Y)$ such that $Var(\tilde{Y}) \approx c$
 - What are the mean and var of \tilde{Y} ?

Delta Method

Consider
$$f(Y)$$
 where $f'(\mu_x) \neq 0$
 $f(Y) \approx f(\mu_x) + (Y - \mu_x)f'(\mu_x)$

$$\mathsf{E}(\tilde{Y}) = \mathsf{E}(f(Y)) \approx \mathsf{E}(f(\mu_x)) + \mathsf{E}((Y - \mu_x)f'(\mu_x)) = f(\mu_x)$$
$$\mathsf{Var}(\tilde{Y}) \approx [f'(\mu_x)]^2 \mathsf{Var}(Y) = [f'(\mu_x)]^2 \sigma_x^2$$

• Want to choose f such that $[f'(\mu_x)]^2 g(\mu_x) \approx c$

Examples

$$\begin{array}{ll} g(\mu) = \mu & (\text{Poisson}) & f(\mu) = \int \frac{1}{\sqrt{\mu}} d\mu \to f(Y) = \sqrt{Y} \\ g(\mu) = \mu(1-\mu) & (\text{Binomial}) & f(\mu) = \int \frac{1}{\sqrt{\mu(1-\mu)}} d\mu \to f(X) = \arcsin(\sqrt{Y}) \\ g(\mu) = \mu^{2\beta} & (\text{Box-Cox}) & f(\mu) = \int \mu^{-\beta} d\mu \to f(Y) = Y^{1-\beta} \\ g(\mu) = \mu^2 & (\text{Box-Cox}) & f(\mu) = \int \frac{1}{\mu} d\mu \to f(Y) = \log X \end{array}$$

Transformation Guides

- Regress $\log(s_i)$ vs $\log(\overline{Y_{i.}}) \rightarrow \hat{\lambda} = 1$ -slope for $\tilde{Y} = Y^{\lambda}$
 - $-f(\mu) = \mu^{\lambda} \Longrightarrow \log \sqrt{g(\mu)} = -\log \lambda + (1-\lambda)\log \mu$
 - When $\sigma_i^2 \propto \mu_i$ use $\sqrt{-}$
 - When $\sigma_i \propto \mu_i$ use log
 - When $\sigma_i \propto \mu_i^2$ use 1/Y
- For proportions, use $\operatorname{arcsin}(\sqrt{})$
 - Use arsin(sqrt(Y)) in SAS data step

Example (Page 783)

```
proc transreg data=a1;
    model boxcox(strength)=class(type);
run; quit;
```

Lambda	R-Square	Log Like
-1.50	0.86	-15.3143
-1.25	0.86	-14.2378 *
-1.00	0.86	-13.4223 *
-0.75	0.86	-12.8608 *
-0.50	0.85	-12.5428 *
-0.25	0.85	-12.4549 <
0.00 -	+ 0.85	-12.5819 *
0.25	0.84	-12.9078 *
0.50	0.84	-13.4163 *
0.75	0.83	-14.0919 *
1.00	0.83	-14.9199
1.25	0.82	-15.8868
1.50	0.81	-16.9807

- < Best Lambda
- * Confidence Interval
- + Convenient Lambda
 - Log-transformation is suggested here.
 - May also explore the relationship between s_i vs \overline{Y}_{i} as shown on P.790-791.

Nonparametric Approach

- Based on ranking the observations and using the ranks
 - Rank Y_{ij} in ascending order from 1 to n_T , i.e., R_{ij}
 - Specify the score $d_{ij} = d(R_{ij})$
 - Apply One-Way ANOVA to d_{ij} , $1 \leq j \leq n_i$, $1 \leq i \leq r$
- Wilcoxon Scores, $d(R_{ij}) = R_{ij}$
 - Produces the Kruskal-Wallis test in the one-way ANOVA
 - Produces the Man-Whitney-Wilcoxon test for two-sample data (r = 2)
- Median scores, $d(R_{ij}) = 1[R_{ij} > (n_T + 1)/2]$
 - Produces the Brown-Mood test in the one-way ANOVA
 - Produces the median test for two-sample data (r = 2)
- SAS procedure PROC NPAR1WAY

Example (Page 783)

proc npar1way data=a1 median wilcoxon; class type; var strength; run; quit;

Wilcoxon Scores (Rank Sums) for Variable strength Classified by Variable type

type	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
1 2 3 4	8 8 8 8 8	201.0 282.0 190.0 36.0	164.0 164.0 164.0 164.0	29.573377 29.573377 29.573377 29.573377 29.573377	25.1250 35.2500 23.7500 4.5000
5	8	111.0	164.0	29.573377	13.8750

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	32.1634
DF	4
Pr > Chi-Square	<.0001

Median Scores (Number of Points Above Median) for Variable strength Classified by Variable type

		Sum of	Expected	Std Dev	Mean
type	Ν	Scores	Under HO	Under HO	Score
1	8	7.0	4.0	1.281025	0.8750
2	8	8.0	4.0	1.281025	1.0000
3	8	5.0	4.0	1.281025	0.6250
4	8	0.0	4.0	1.281025	0.0000
5	8	0.0	4.0	1.281025	0.0000

Average scores were used for ties.

Median One-Way Analysis

Chi-Square	28.2750
DF	4
Pr > Chi-Square	<.0001

- χ^2 -distributions, instead of *F*-distributions, are used due to the fact that the error variances are known in theory.
- Exact tests can be taken using the statement EXACT MEDIAN WILCOXON;
 - Recommended for small, sparse, skewed, or heavily tied dataset.

Chapter Review

- Diagnostics
 - Plots
 - Residual checks
 - Formal Tests
- Remedial Measures