### <u>STAT 525</u>

# Chapter 16 Single-Factor Studies

Dr. Qifan Song

# One-Way ANOVA

- Response variable Y is again continuous
- Explanatory variable is *categorical* 
  - Often called a factor
  - The possible values are its <u>levels</u>
- A generalization of the independent two-sample t-test (i.e., can be used when there are more than two levels)

### **ANOVA** vs. Regression

- One-way ANOVA a special case of regression using indicator variables
- Recall in comparing regression lines, indicator variables were used to describe differences in intercepts (i.e, means)
- Consider the linear model  $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$  involving three groups where  $X_1$  is the indicator for group 1 and  $X_2$  is the indicator for group 2
  - Group 1 :  $Y_i = \beta_0 + \beta_1 + \varepsilon_i = \mu_1 + \varepsilon_i$
  - Group 2 :  $Y_i = \beta_0 + \beta_2 + \varepsilon_i = \mu_2 + \varepsilon_i$
  - Group 3 :  $Y_i = \beta_0 + \varepsilon_i = \mu_3 + \varepsilon_i$
- Indicators remove "linear" structure among means

### The Data / Notation

- Y is the response variable
- X is the factor with r levels. These levels are often called groups or treatments.
- Let  $Y_{ij}$  be the
  - $-j^{\text{th}}$  observation  $(j = 1, 2, ..., n_i)$
  - in the  $i^{\text{th}}$  group (i = 1, 2, ..., r)

# Example (Page 685)

- Kenton Food Company wants to test four different package designs for a new breakfast cereal
- Twenty "similar" stores were selected to be part of the experiment
- Package designs randomly and equally assigned to stores.
   Fire hit one store so it was dropped
- $\bullet~Y$  is the number of cases sold
- X is the package design with r = 4 levels
  - -i=1,2,3,4
  - $j = 1, 2, ..., n_i$  where  $n_i = 5, 5, 4, 5$  respectively
  - will use n when  $n_i$  constant

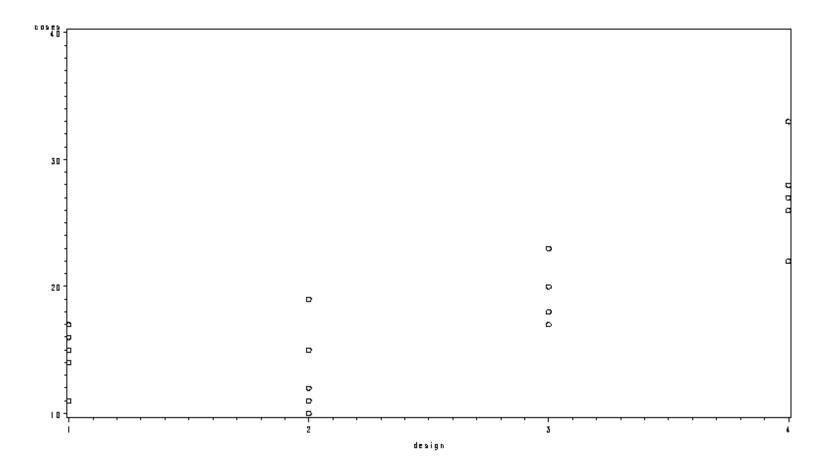
### The Data

data a1; infile 'u:\.www\datasets525\CH16TA01.TXT'; input cases design store; proc print; run; quit;

| Obs | cases | design | store |
|-----|-------|--------|-------|
| 1   | 11    | 1      | 1     |
| 2   | 17    | 1      | 2     |
| 3   | 16    | 1      | 3     |
| 4   | 14    | 1      | 4     |
| 5   | 15    | 1      | 5     |
| 6   | 12    | 2      | 1     |
| 7   | 10    | 2      | 2     |
| 8   | 15    | 2      | 3     |
| 9   | 19    | 2      | 4     |
| 10  | 11    | 2      | 5     |
| 11  | 23    | 3      | 1     |
| 12  | 20    | 3      | 2     |
| 13  | 18    | 3      | 3     |
| 14  | 17    | 3      | 4     |
| 15  | 27    | 4      | 1     |
| 16  | 33    | 4      | 2     |
| 17  | 22    | 4      | 3     |
| 18  | 26    | 4      | 4     |
| 19  | 28    | 4      | 5     |

# **Scatterplot**

```
symbol1 v=circle i=none;
proc gplot data=a1;
    plot cases*design/frame;
run; quit;
```



X-axis has no numerical meaning.

# The Model

- Same assumptions as regression except for the linear relationship between X and Y
- All observations are assumed independent
- All observations are normally distributed with
  - means which may depend on the levels of the factors
  - constant variance
- Often presented in terms of cell means or factor effects

# The Cell Means Model

• Expressed numerically

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where  $\mu_i$  is the theoretical mean of all observations at level i (or in cell i)

- The  $\varepsilon_{ij}$  are iid  $N(0, \sigma^2)$  which implies the  $Y_{ij}$  are independent  $N(\mu_i, \sigma^2)$
- Parameters

$$- \mu_1, \mu_2, ..., \mu_r$$

### **Primary Question**

- Does the explanatory variable X help explain Y?
- Since the factor levels only affect the cell means we can similarly ask ...
- Does  $\mu_i$  depend on *i*?
  - $H_0: \mu_1 = \mu_2 = \dots = \mu_r = \mu$
  - $H_a$ : at least one  $\mu_i$  different

### **Estimates / Inference**

- Derive the following result via matrix form of linear regression
- Estimate  $\mu_i$  by the sample mean of the observations at level i

$$\hat{\mu}_i = \overline{Y}_i$$

• For each level *i*, also estimate of the variance

$$s_i^2 = \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 / (n_i - 1)$$

- These  $s_i^2$  are combined to estimate  $\sigma^2$ 
  - If  $n_i$  were constant, could compute  $s^2$  by averaging the  $s_i^2$ 's
  - More general formula pools  $s_i^2$  using weights proportional to sample size (i.e., df)

$$s^{2} = \frac{\sum_{i=1}^{r} (n_{i} - 1)s_{i}^{2}}{\sum_{i=1}^{r} (n_{i} - 1)} = \frac{\sum_{i=1}^{r} (n_{i} - 1)s_{i}^{2}}{n_{T} - r}$$

where  $n_T$  is the total number of obs

### ANOVA Table

- Similar ANOVA table construction
- Plug in  $\overline{Y}_{i.}$  as fitted value

| Source of<br>Variation | df        | SS                                                           |
|------------------------|-----------|--------------------------------------------------------------|
| Model                  | r-1       | $\sum_{i=1}^{r} n_i (\overline{Y}_{i.} - \overline{Y}_{})^2$ |
| Error                  | $n_T - r$ | $\sum_{i=1}^{r}\sum_{j=1}^{n_i}(Y_{ij}-\overline{Y}_{i.})^2$ |
| Total                  | $n_T - 1$ | $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2$  |

• Note that

$$\overline{Y}_{..} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} Y_{ij}/n_T \qquad \overline{Y}_{i.} = \sum_{j=1}^{n_i} Y_{ij}/n_i$$

- SSM = SS(B), aka the between-group variation;
- SSE = SS(W), aka the within-group variation.

# Expected Mean Squares (EMS)

- All means squares are random variables
- Can show  $E(MSE) = \sigma^2$  (page 696)
- Can also show (page 697)

$$E(MSR) = \sigma^2 + \frac{\sum n_i (\mu_i - \mu_.)^2}{r - 1}$$

where  $\mu_{\cdot} = \frac{\sum n_i \mu_i}{n_T}$ 

- If  $H_0$  true, MSR unbiased estimate of  $\sigma^2$ . More specifically,  $SSE/\sigma^2$  and  $SSR/\sigma^2$  are independent  $\chi^2$  distribution
- In more complicated ANOVA models, EMS (Hasse diagram; STAT 514) guides us how to construct F tests

# Example (Page 685) - Use PROC GLM in SAS

```
/* GLM: Uses least squares method to fit general linear models, and */
/* provides regression, ANOVA, ANCOVA, MANCOVA, partial correlation */
/* Automatically create indicator variable by class statement */
proc glm data=a1;
    class design;
    model cases=design;
    means design;
    lsmeans design / stderr;
run; quit;
```

| Source<br>Model<br>Error<br>Corrected | DF<br>3<br>15<br>Total 18 | Sum of<br>Squares<br>588.2210526<br>158.2000000<br>746.4210526 | Mean Square<br>196.0736842<br>10.5466667 | F Value<br>18.59 | Pr > F<br><.0001 |
|---------------------------------------|---------------------------|----------------------------------------------------------------|------------------------------------------|------------------|------------------|
| R-Square<br>0.788055                  | Coeff Va<br>17.4304       |                                                                |                                          |                  |                  |
| Source                                | DF                        | <i>v</i> <b>1</b>                                              | Mean Square                              | F Value          | Pr > F           |
| design                                | 3                         |                                                                | 196.0736842                              | 18.59            | <.0001           |
| Source                                | DF                        | Type III SS                                                    | Mean Square                              | F Value          | Pr > F           |
| design                                | 3                         | 588.2210526                                                    | 196.0736842                              | 18.59            | <.0001           |

#### The GLM Procedure

| Level of |          |          | cases-                |            |
|----------|----------|----------|-----------------------|------------|
| design   | Ν        |          | Mean                  | Std Dev    |
| 1        | 5        | 14.60    | 00000                 | 2.30217289 |
| 2        | 5        | 13.40    | 00000                 | 3.64691651 |
| 3        | 4        | 19.50    | 00000                 | 2.64575131 |
| 4        | 5        | 27.20    | 00000                 | 3.96232255 |
|          | L        | east Squ | ares Means<br>Standar | د.         |
| dogion   |          | MT. A NI |                       |            |
| design   | cases LS |          | Erro                  | • • •      |
| 1        | 14.600   | 0000     | 1.452354              | 4 <.0001   |
| 2        | 13.400   | 0000     | 1.452354              | 4 <.0001   |
| 3        | 19.500   | 0000     | 1.623781              | 6 <.0001   |
| 4        | 27.200   | 0000     | 1.452354              | 4 <.0001   |

plus some plots.

- MEANS only uses the observations from a specific group
  - $4 \times 2.30^2 + 4 \times 3.65^2 + 3 \times 2.65^2 + 4 \times 3.96^2 = 158.24$ . Except for rounding, this is equal to SSE.
  - -19-4=15, which is the df error in the ANOVA table.
- LSMEANS uses all the observations and least squares method

 $- SE_i = \sqrt{MSE/n_i}.$ 

### Example (Page 685) - Use PROC MIXED in SAS

/\* MIXED: generalizes the linear models in PROC GLM & fits linear mixed models \*/
proc mixed data=a1;
 class design;
 model cases=design;
 lsmeans design;
run; quit;

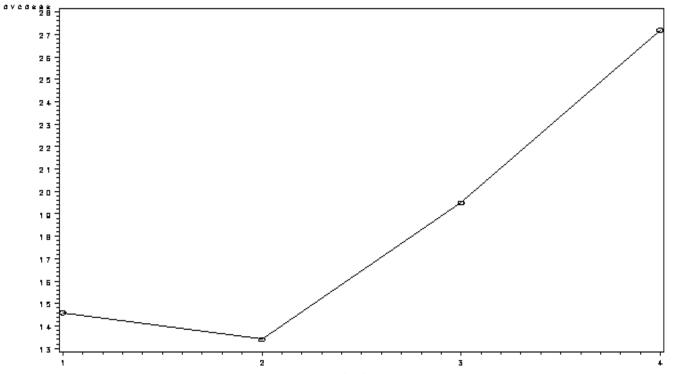
|        | Type 3 Test | s of Fix | ed Effects |        |
|--------|-------------|----------|------------|--------|
|        | Num         | Den      |            |        |
| Effect | DF          | DF       | F Value    | Pr > F |
| design | 3           | 15       | 18.59      | <.0001 |

|        | Least    | : Squares Mea | ns |         |         |
|--------|----------|---------------|----|---------|---------|
|        |          | Standard      |    |         |         |
| design | Estimate | Error         | DF | t Value | Pr >  t |
| 1      | 14.6000  | 1.4524        | 15 | 10.05   | <.0001  |
| 2      | 13.4000  | 1.4524        | 15 | 9.23    | <.0001  |
| 3      | 19.5000  | 1.6238        | 15 | 12.01   | <.0001  |
| 4      | 27.2000  | 1.4524        | 15 | 18.73   | <.0001  |

# **Scatterplot of Means**

Generated by lsmeans design/plot=meanplot(join); in glm procedure, or manually:

```
proc means data=a1;
    var cases; by design;
    output out=a2 mean=avcases;
symbol1 v=circle i=join;
proc gplot data=a2;
    plot avcases*design/frame;
run; quit;
```





# The Factor Effects Model

- A reparameterization of the cell means model
- A very useful way of looking at more complicated ANOVA models (i.e., more than one factor)
- Null hypotheses are easier to state
- Expressed numerically

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

• Parameters

$$-\tau_1, \tau_2, ..., \tau_r$$
$$-\mu, \sigma^2$$

• Factor effects model has r+2 parameters while the cell means model has r+1 parameters

### Model Identifiability

• Consider r = 3 with  $\mu_1 = 10, \mu_2 = 0$ , and  $\mu_3 = 20$ 

$$- \mu = 0, \tau_1 = 10, \tau_2 = 0, \tau_3 = 20$$

$$- \mu = 10, \tau_1 = 0, \tau_2 = -10, \tau_3 = 10$$

- $\mu = 100, \tau_1 = -90, \tau_2 = -100, \tau_3 = -80$
- Factor effects model has non-unique solution
- Solution: put constraints on  $\tau_i$ 's to reduce the parameters number by 1
- Examples of constraints

 $-\tau_r = 0$  (SAS approach)

- $-\sum \tau_i = 0$  (conceptual approach)
- Constraints get a bit more complicated when  $n_i$  not constant (pages 709-710) but with same concept

# **Consequences of Constraints**

• Consider r = 3 with  $n_i = n$ 

• Factor effects model with  $\sum \tau_i = 0$ 

$$E(\overline{Y}_{..}) = \frac{3\mu + \sum \tau_i}{3} = \mu$$
$$E(\overline{Y}_{i.}) = \mu + \tau_i$$

–  $\mu$  is the grand mean

- $-\tau_i$  is the effect of the  $i^{th}$  factor
- Factor effects model with  $\tau_r = 0$

$$E(\overline{Y}_{3.}) = \mu$$
$$E(\overline{Y}_{1.} - \overline{Y}_{3.}) = \mu + \tau_1 - \mu = \tau_1$$

- $\mu$  is the mean of the  $r^{\rm th}$  group
- $\tau_i$  is the difference between the means of group i and group r

- Different constraints result in different parameter / parameter estimates
- Many estimates, however, are the same regardless of constraint
  - $-\hat{\mu}+\hat{\tau}_1 = \text{trt 1 mean}$
  - $-\hat{\mu}+\hat{\tau}_3 = \text{trt 3 mean}$
  - $\hat{\tau}_1 \hat{\tau}_3$  = difference in trt 1 and trt 3

 $-\hat{\tau}_1 - \hat{\tau}_2 =$ difference in trt 1 and trt 2

• These are primarily the ones of interest

### Hypotheses

$$H_0: \mu_1 = \mu_2 = \dots = \mu_r = \mu$$

 $H_a$  : at least one  $\mu_i$  different

is translated into

 $H_0: \tau_1 = \tau_2 = \dots = \tau_r = 0$ 

 $H_a$ : at least one  $\tau_i \neq 0$ 

# **Regression Approach**

• We can use multiple regression to produce results based on the factor effects model

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- Consider the restriction  $\sum \tau_i = 0$
- Because of this restriction, effectively there are r-1 regression coefficients /parameters

 $\sum \tau_i = 0 \rightarrow \tau_r = -\tau_1 - \tau_2 - \dots - \tau_{r-1}$ 

• Define k-th indicator variable  $(k = 1, 2, \dots, r-1)$ 

$$X_{ijk} = \begin{cases} 1, & \text{factor level at } k, \text{ i.e., } i = k \\ -1, & \text{factor level at } r, \text{ i.e., } i = r \\ 0, & \text{otherwise} \end{cases}$$

• Multiple regression model

$$Y_{ij} = \beta_0 + \beta_1 X_{ij1} + \beta_2 X_{ij2} + \dots + \beta_{r-1} X_{ij,r-1} + \varepsilon_{ij}$$

- For level i  $(1 \le i \le r-1)$ 

$$Y_{ij} = \beta_0 + \beta_i + \varepsilon_{ij}$$

- For level r

$$Y_{ij} = \beta_0 - \beta_1 - \beta_2 - \dots - \beta_{r-1} + \varepsilon_{ij}$$

- Perfectly match  $\mu = \beta_0$  and  $\tau_i = \beta_i$   $(1 \le i \le r-1)$
- Solve all  $\beta_i$  via the multiple linear regression approach.
- $\hat{\mu} = b_0 = \sum_{i=1}^r \overline{Y}_{i.}/r$  (if  $n_i$ 's are not constant, then  $b_0 \neq \overline{Y}_{..}$ ),  $\hat{\tau}_i = b_i = \overline{Y}_{i.} - b_0$ .

```
/* Code Indicator Variables */
data a1; set a1;
    x1=(design eq 1)-(design eq 4);
    x2=(design eq 2)-(design eq 4);
    x3=(design eq 3)-(design eq 4);
proc print data=a1; run; quit;
```

| Obs | cases | design | store | x1 | x2 | хЗ |
|-----|-------|--------|-------|----|----|----|
| 1   | 11    | 1      | 1     | 1  | 0  | 0  |
| 2   | 17    | 1      | 2     | 1  | 0  | 0  |
| 3   | 16    | 1      | 3     | 1  | 0  | 0  |
| 4   | 14    | 1      | 4     | 1  | 0  | 0  |
| 5   | 15    | 1      | 5     | 1  | 0  | 0  |
| 6   | 12    | 2      | 1     | 0  | 1  | 0  |
| 7   | 10    | 2      | 2     | 0  | 1  | 0  |
| 8   | 15    | 2      | 3     | 0  | 1  | 0  |
| 9   | 19    | 2      | 4     | 0  | 1  | 0  |
| 10  | 11    | 2      | 5     | 0  | 1  | 0  |
| 11  | 23    | 3      | 1     | 0  | 0  | 1  |
| 12  | 20    | 3      | 2     | 0  | 0  | 1  |
| 13  | 18    | 3      | 3     | 0  | 0  | 1  |
| 14  | 17    | 3      | 4     | 0  | 0  | 1  |
| 15  | 27    | 4      | 1     | -1 | -1 | -1 |
| 16  | 33    | 4      | 2     | -1 | -1 | -1 |
| 17  | 22    | 4      | 3     | -1 | -1 | -1 |
| 18  | 26    | 4      | 4     | -1 | -1 | -1 |
| 19  | 28    | 4      | 5     | -1 | -1 | -1 |

```
proc reg data=a1;
   model cases=x1 x2 x3;
run; quit;
```

| Analysis of Variance |    |           |           |   |        |        |
|----------------------|----|-----------|-----------|---|--------|--------|
|                      |    | Sum of    | Mean      |   |        |        |
| Source               | DF | Squares   | Square    | F | Value  | Pr > F |
| Model                | 3  | 588.22105 | 196.07368 |   | 18.59  | <.0001 |
| Error                | 15 | 158.20000 | 10.54667  |   |        |        |
| Corrected Total      | 18 | 746.42105 |           |   |        |        |
| Root MSE             |    | 3.24756   | R-Square  |   | 0.7881 |        |
| Dependent Mean       |    | 18.63158  | Adj R-Sq  |   | 0.7457 |        |
| Coeff Var            |    | 17.43042  |           |   |        |        |
|                      |    |           |           |   |        |        |

#### Parameter Estimates

|    | Parameter              | Standard                                              |                                                                 |                                                                                       |  |  |
|----|------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| DF | Estimate               | Error                                                 | t Value                                                         | Pr >  t                                                                               |  |  |
| 1  | 18.67500               | 0.74853                                               | 24.95                                                           | <.0001                                                                                |  |  |
| 1  | -4.07500               | 1.27081                                               | -3.21                                                           | 0.0059                                                                                |  |  |
| 1  | -5.27500               | 1.27081                                               | -4.15                                                           | 0.0009                                                                                |  |  |
| 1  | 0.82500                | 1.37063                                               | 0.60                                                            | 0.5562                                                                                |  |  |
|    | DF<br>1<br>1<br>1<br>1 | DF Estimate<br>1 18.67500<br>1 -4.07500<br>1 -5.27500 | DFEstimateError118.675000.748531-4.075001.270811-5.275001.27081 | DFEstimateErrort Value118.675000.7485324.951-4.075001.27081-3.211-5.275001.27081-4.15 |  |  |

- The mean of the means is 18.675
- The treatment means are 18.675 4.075 = 14.6, 18.675 5.275 = 13.4, 18.675 + 0.825 = 19.5, and 18.675 + 4.075 + 5.275 0.825 = 27.2
- The same output as from PROC GLM before

• class statement constructs the following r indicator variables

$$X_{ijk} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$$

• Because of the intercept (column of 1's) there is complete dependence (X'X doesn't have an inverse)

$$1 = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_r$$

- SAS computes *generalized inverse* in its place. (Generalized inverse of A,  $A^-$ , satisfies  $AA^-A = A$ )
- $b = (X'X)^{-}(XY)$  satisfies  $(X'X)b = (X'X)(X'X)^{-}(XY) = (X'X)(X'X)^{-}(X'X)\tilde{\beta} = (X'X)\tilde{\beta} = XY$ , for some  $\tilde{\beta}$ .
- Generalized inverse is not unique, and SAS choose the a particular one such that  $\hat{\tau}_r = 0$ .

### Example (Page 685)

proc glm data=a1; class design; model cases=design / xpx inverse solution; run; quit;

#### The X'X Matrix

|       | Int | d1 | d2 | d3 | d4  | cases |
|-------|-----|----|----|----|-----|-------|
| Int   | 19  | 5  | 5  | 4  | 5   | 354   |
| d1    | 5   | 5  | 0  | 0  | 0   | 73    |
| d2    | 5   | 0  | 5  | 0  | 0   | 67    |
| d3    | 4   | 0  | 0  | 4  | 0   | 78    |
| d4    | 5   | 0  | 0  | 0  | 5   | 136   |
| cases | 354 | 73 | 67 | 78 | 136 | 7342  |

X'X Generalized Inverse (g2)

|       | ${\tt Int}$ | d1    | d2    | d3   | d4 | cases |
|-------|-------------|-------|-------|------|----|-------|
| Int   | 0.2         | -0.2  | -0.2  | -0.2 | 0  | 27.2  |
| d1    | -0.2        | 0.4   | 0.2   | 0.2  | 0  | -12.6 |
| d2    | -0.2        | 0.2   | 0.4   | 0.2  | 0  | -13.8 |
| d3    | -0.2        | 0.2   | 0.2   | 0.45 | 0  | -7.7  |
| d4    | 0           | 0     | 0     | 0    | 0  | 0     |
| cases | 27.2        | -12.6 | -13.8 | -7.7 | 0  | 158.2 |

| Source<br>Model<br>Error<br>Corrected | DF<br>3<br>15<br>Total 18 | Sum of<br>Squares<br>588.2210526<br>158.2000000<br>746.4210526 |              | F Value<br>18.59 | Pr > F<br><.0001 |
|---------------------------------------|---------------------------|----------------------------------------------------------------|--------------|------------------|------------------|
| R-Square                              | Coeff Va                  | ar Root M                                                      | ISE cases M  | ean              |                  |
| 0.788055                              | 17.4304                   |                                                                |              |                  |                  |
|                                       |                           |                                                                |              |                  |                  |
| Source                                | DF                        | Type I SS                                                      | Mean Square  | F Value          | Pr > F           |
| design                                | 3                         | 588.2210526                                                    | 196.0736842  | 18.59            | <.0001           |
| ~                                     | 5.5                       |                                                                | N G          |                  |                  |
| Source                                | DF                        | Type III SS                                                    | -            | F Value          | Pr > F           |
| design                                | 3                         | 588.2210526                                                    | 196.0736842  | 18.59            | <.0001           |
|                                       |                           | Star                                                           | ndard        |                  |                  |
| Parameter                             | Estin                     |                                                                | Error t Valu | e Pr>            | [±]              |
| Intercept                             | 27.20000                  |                                                                |              |                  | 001              |
| design                                | 1 -12.60000               |                                                                |              |                  | 001              |
| design                                | 2 -13.80000               |                                                                |              |                  | 001              |
| design                                | 3 -7.70000                |                                                                |              |                  | 030              |
| design                                | 4 0.00000                 |                                                                |              |                  |                  |
| 9                                     |                           |                                                                |              |                  |                  |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

### Interpretation

• Generalized Inverse Matrix of the form

$$\begin{bmatrix} (X'X)^- & (X'X)^-X'Y \\ Y'X(X'X)^- & Y'Y - Y'X(X'X)^-X'Y \end{bmatrix}$$

- Parameter estimates in upper right corner and SSE in lower right corner
- The intercept in the parameter estimation is actually the mean estimator for the last group.

# **Chapter Review**

- One Way ANOVA
  - Cell means model
  - Factor effects model
- Regression Approach to ANOVA