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Unequal Error Variancesl

e Consider Y = X8 4+ ¢ where o2(¢) = W1
— Potentially correlated errors and unequal variances
e Special case: W = diag{wi,ws, -, wn}

— Heterogeneous variance or heteroscedasticity

— Homogeneous variance or homoscedasticity if wy = wp =
ces = wWp = 1/02

— Least square estimation still yvields unbiased estimation,
but is no longer optimal, and gives wrong uncertainty
quantification

e Transformation of X or Y (e.g. Box-CoX) alone may unduly
affect the relationship between X and Y

e Error variance is often a function of X or E[Y]
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Transformation Approach

e Consider a transformation based on a known W

W1/2Y — W1/2X,8+W1/2€

Yy = Xw,8+€w

e Can show E(ey) =0 and o2(ey) =1

e Generalized least squares: apply the least squares method to
Yy = Xw,B + ew

— It reduces to weighted least squares when W is a diagonal
matrix

— The transformation only requires that we know W up to
some constant
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Weighted Least Squares

e [ he least squares method minimizes
Quw = (Yw — Xwﬁ),(Yw — Xwﬁ) — (Y — XB)/W(Y — X/B)

— When W = dia,g{l/a%, 1/0%, JLIE 1/07%},

no1
Qu =3 —5(¥i- X!3)?

=1 "1
e By taking a derivative of )y, obtain normal equations:

X'\ Xu)b=X,Yy — (XWX)b=XWY

e Solution of the normal equations:
(X' X)X Yy — b= XWX)"IX'WY

— Can also be viewed as maximum likelihood estimator (MLE).

11-3



Weighted Least Squares (Continued)

e Easy to do in SAS using the weight option
e Must determine optimal weights

e Optimal weights « 1/variance

e Methods to determine weights, if no prior information of
variance

— Find relationship between the absolute residual and another variable
and use this as a model for the standard deviation

— Instead of the absolute residual, use the squared residual and find
function for the variance

— Use grouped data or approximately grouped data to estimate the
variance
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Example Page 427

e Interested in the relationship between diastolic blood pressure
and age

e Have measurements on 54 adult women

e Age range is 20 to 60 years old
e Issue:

— Variability increases as the mean increases
— Appears to be nice linear relationship

— Don’'t want to transform X or Y and lose this

data al;
infile ’U:\.www\datasets525\ch11ta0l.txt’;
input age diast;

run; quit;
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/* Scatter Plot */
proc sort data=al; by age;
symbol v=circle i=sm70;
proc gplot data=al;

plot diast*age/frame;
run;
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/* Fit a Regular Regression */
proc reg data=al;

model diast=age;

output out=a2 r=resid;

run;
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 1 2374.96833 2374.96833 35.79
Error 52 3450.36501 66.35317

Corrected Total 53 5825.33333

Root MSE 8.14575 R-Square 0.4077
Dependent Mean 79.11111 Adj R-Sq 0.3963
Coeff Var 10.29659

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t
Intercept 1 56.15693 3.99367 14.06 <.0001
age 1 0.58003 0.09695 5.98 <.0001

Pr > F
<.0001

11-7



/* Residual Plot */
proc gplot data=a2;

plot resid*age;
run; quit;
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/* Find Pattern of Residuals vs Age */

data a2;
set a2;
absr=abs(resid);
sqrr=resid*resid;

proc gplot data=a2;
plot (resid absr sqrr)*age;

run;

abs(Residual) vs. Age

“R66

Residual? vs.
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Construction of Weights

e Assume abs(res) is linearly related to age

e Fit least squares model and estimate o;

proc reg data=a2;
model absr=age;
output out=a3 p=shat;
run;

e Take Weight as w; = 1/57
data a3; set a3;
wt=1/(shat*shat) ;

proc reg data=a3;
model diast=age / clb;
weight wt;

run; quit;
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Source DF
Model 1
Error 52
Corrected Total 53
Root MSE
Dependent Mean
Coeff Var

Parameter S
Variable DF Estimate
Intercept 1 55.56577
age 1 0.59634

Analysis of Variance

Sum of Mean
Squares Square F Value Pr > F
83.34082 83.34082 56.64 <.0001
76.51351 1.47141
159.85432
1.21302 R-Square 0.5214
73.55134 Adj R-Sq 0.5122
1.64921
Parameter Estimates

tandard

Error
2.52092
0.07924

t Value Pr > |t]|
22.04 <.0001
7.53 <.0001

95% Confidence Limits
50.50718 60.62436
0.43734 0.75534

e Not much difference in the estimates but a slight reduction in the stan-
dard deviations. Should not interpret R? in this situation.
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Ridge Regression as Multicollinearity Remedy

Modification of least squares that overcomes multicollinearity
problem

Recall least squares suffers because (X'X) is almost singular
thereby resulting in highly unstable parameter estimates

Ridge regression results in biased but more stable estimates

After standardizing data, we consider the correlation trans-
formation so the normal equations are given by rxxb = ryx.
Since ry x difficult to invert, we add a bias constant, c.

b = (rxx + ) 'ryx

We then tranform it back to coefficient estimators for the
orignal data.
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Choice of ¢

e Key to approach is choice of ¢

e Common to use the ridge trace and VIF's

— Ridge trace: simultaneous plot of p — 1 parameter estimates for dif-
ferent values of ¢ > 0. Curves may fluctuate widely when ¢ close to

zero but eventually stabilize and slowly converge to O.

— VIF's tend to fall quickly as ¢ moves away from zero and then change
only moderately after that

e Choose ¢ where things tend to ‘‘stabilize”

e MODEL statement of PROC REG has option ridge=c

11-13



SAS Commands

data al;
infile ’U:\.www\datasets525\chO07ta0l.txt’;
input skinfold thigh midarm fat;

/* ridge estimation are stored in the dataset designated by outest option */
proc reg data=al outest=b;

model fat=skinfold thigh midarm /ridge=0 to .1 by .001;
run;

symboll v=’’ i=smb 1=1;
symbol2 v=’’ i=smb 1=2;
symbol3 v=’’ i=smb 1=3;
proc gplot;
plot (skinfold thigh midarm)*_ridge_ / overlay vref=0;
run; quit;
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Ridge Trace
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/* Another Way to get the Ridge Trace Plot */

proc reg data=al outest=Db;
model fat=skinfold thigh midarm /ridge=0 to .1 by .001;
plot / ridgeplot vref=0;

run;
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Robust Regression with Influential Casesl

Want procedure that is not sensitive to outliers

Focus on parameters which minimizes

— sum of absolute values of residuals (LAR: Least Absolute Residuals)

— median of the squares of residuals (LMS: Least Median of Squares)

Could also consider iterating through weighted LS where the
residual value is used to determine the weight (IRLS)

See pages 439-449 for more details

Both robust and ridge regression are limited by more difficult
assessments of precision (i.e., standard errors). Bootstrap-
ping is often used.
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Iteratively Reweighted Least Squares Using PROC NLIN

e PROC NLIN allows to define weights as a function

/* NOHALV: removes the restriction that the objective value must
decrease at every iteration */
PROC NLIN DATA=al NOHALV;
PARMS b0=0 b1=0;
MODEL diast = bO+bl*age;
resid = diast-MODEL.diast;
_WEIGHT_ = 1/(residx**2);
RUN; QUIT;

The NLIN Procedure

Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Model 1 1.877E23 1.877E23 1.81E23 <.0001
Error 52 54.0000 1.0385

Corrected Total 53 1.877E23

Approx
Parameter Estimate Std Error Approximate 957 Confidence Limits
b0 56.8462 3.8E-11 56.8462 56.8462
bl 0.5385 1.27E-12 0.5385 0.5385

Approximate Correlation Matrix

b0 bl
b0 1.0000000 -0.9999964
bl -0.9999964 1.0000000
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Nonparametric Regressionl

Helpful in exploring the nature of the response function
i=sm##£ is one such approach (Spline)

All version have some sort of smoothing, via local averaging
or global smooth basis functions

See pages 449-453 for more details

Interesting theory but confidence intervals and significant
tests not fully developed
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\Machine Learning aIgorithms'

Flexible modeling with few inference tools. Usually requires iter-
ative optimization algorithms.

Regression Trees

e Piecewise constant regression function

e Basically partition the X space into rectangles

e Predicted value is mean of responses in rectangle

e Minimize SSE via greedy search (sequentially partitioning)

e Trade off between minimizing SSE and complexity
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Neural Networks

e y=PBjoocoByoo...Bphox

e Combination of nonlinear activation function o and linear
mapping B;'s.

e Estimate B;'s via minimizing squared loss
e Highly non-convex optimization task

e Foundation of deep learning
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Evaluating Precision in Nonstandard Situationsl

e Standard methods for evaluating the precision of sample es-
timates may not be available or may only be approximately
applicable when the sample size is large

— Ridge regression

— Robust regression

e Bootstrapping provides estimates of the precision of sample
estimates

— Very important theoretical development that has had a
major impact on applied statistics

— Resampling idea: use the sample to generate a “popu-
lation” and generate new ‘“samples”’ from such “popula-
tion”

— Use the pool of estimates from new “samples” to profile
sample estimates (i.e., parameters of “population’)
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Resampling Residuals (Fixed X sampling)

e Take the residuals {eq1,eo, -, en} as the “population” of error
term e
— Sample € from {ej,eo,---,en}

— Let Y;* = bg + 01 X; + e,z-k
— In the new “sample”, the i-th observation is (X;,Y.*)
— Assume constant error variances

e Useful when

— errors have unknown distribution (but constant variance),
and/or

— want to preserve predictors
e Examples of use:
— Ridge regression

e May sample €* from a “parametric population” of residuals
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Resampling Pairs (Random X Sampling)

e Useful when

— Doubt about the adequacy of the regression function be-
ing fitted

— Unequal error variances

— Predictor variables cannot be regarded as fixed
e Take {(X;,Y;) :i=1,2,---,n} as the “population” of (X,Y)

— For the new “sample”, the -th observation (X[, Y*) is
sampled from the “population” {(X;,Y;):i=1,2,---,n}

e Examples of use:

— Weighted regression
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Bootstrap Inference

e A total of B new “samples” can be generated, with each
new ‘“sample’ providing an estimate of the parameter, say
bgk) for 81 from k-th new “sample”

— Use {bgk)  k=1,2,---,B} to understand the population
property of by

e Bias

Bias = E{b1} — 1 == Biasy,,; = b} — by
_ B
where Bt = > b§)/B
k=1
e Variance

Var = E{(bl — E{bl})z} — \7a\rb00t —
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Bootstrap Confidence intervals

e CI for 81 with unbiased estimator by
(b1(er/2),01(1 — a/2))
— b7 (a/2) is the (a/2)x 100 percentile of {bgk) k=1,2,---,B}

— bj(1 —a/2) is the (1 — a/2) x 100 percentile of {bgk) k=
1,2,---,B}

e Reflection Method:. CI for 51 with biased estimator b1

(b1 —dp, by +dq)
— dp = b1 — b3 (/2)
— dp = bi(1 — a/2) — by
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Example: Typographical Errors (4.12 on Page 173)

options nocenter; goptions colors=(none);

/* ———-Read in initial data set and fit the model----%/
data al;

infile ’U:\.www\datasets525\CHO4PR12.txt’;

input y x;
proc reg;

model y=x / noint clb;
output out=a2 p=pred r=res;
run;

Output from Proc Reg

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
X 1 18.02830 0.07948 226.82 <.0001
Variable DF 95% Confidence Limits
X 1 17.85336 18.20325
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/* Resample Residuals */

/* Create a data set that contains 1000 copies of the predictor
variable and associated fitted value from the regression */
data pred; set a2;
do sample=1 to 1000;
output;
keep sample x pred;
end;
proc sort; by sample;
run;

/* Randomly sample (with replacement) the residuals => 1000 copies */

/* PROC SURVEYSELECT: Selecting random samples */

/* METHOD=URS: Select with equal probability & with replacement */

/* SAMPSIZE: Specifies the sample size */

/* REP: Number of samples (i.e., datasets) */

/* OUTHITS: Includes a separate observation in the output dataset for each
selection when the same unit is selected more than once */

/* ID: variables to be included in the output dataset, all by default */

proc surveyselect data=a2 method=urs sampsize=12 rep=1000 outhits out=res;

id res;
run;
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/* Merge the fitted values and the residuals, and generate new y */
data new;

merge pred res;

ynew = pred + res;
run;

/* Perform regression on each new sample and store parameter estimate
results in a dataset called parm */
/* The ods listing turns off the output going into the output window */
ods listing close;
proc reg data=new;
model ynew=x / noint;
by sample;
ods output ParameterEstimates=parm;
ods listing;

/* Generate histogram and approximate the density */
/* PCTLPRE: Specifies prefixes to create variables names for PCTLPTS */
/* PCTLPTS: Specifies percentiles to compute */
proc univariate noprint data=parm;
var Estimate;
histogram Estimate / kernel ;
output out=a4 mean=bmean std=bsterr pctlpre=perc_ pctlpts=2.5,5,95,97.5;

proc print data=a4; run; quit;
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Results from Bootstrapping

Obs  bmean bsterr perc_2_5 perc_b5 perc_95 perc_97_5
1 18.0348 0.076574 17.9038 17.9200 18.1747 18.1986

Bias = 18.0348-18.0283 = 0.0065 (quite small)

Percentile : (17.9038, 18.1986)
Reflection : (17.8580, 18.1475)
\
7 >~

T T T T T T T
17.77500 17.8B6500 17.95500 18.04500 18.13500 18.22500 18.31500
Parameter Estimate

Histogram of {b{") : k = 1,2,-.-,1000}
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e [ he way to resample in the example is the easiest to imple-
ment

e But it is not a computationally efficient way to do resampling
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Chapter Reviewl

Weighted least squares for unequal error variances
Ridge regression for multicollinearity problem
Robust regression for outliers / influential points

Regression tree for nonparametric regression

Evaluating precision in nonstandard situations using boot-

strapping
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