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1. Proof of Theorem 2.1

Proof. Let M = supθ∈Θ max{‖h(θ)‖, |v(θ)|} and Vε = {θ : d(θ,L) ≤ ε}.
Applying Taylor’s expansion formula (Folland, 1990), we have

v(θt+1) = v(θt) + γn+1vh(θt+1) +Rt+1, t ≥ 0,

which implies that
t∑

i=0

γi+1vh(θi) = v(θt+1)− v(θ0)−
t∑

i=0

Ri+1 ≥ −2M −
t∑

i=0

Ri+1.

Since
∑t

i=0Ri+1 converges (owing to Lemma A.2),
∑t

i=0 γi+1vh(θi) also con-

verges. Furthermore,

v(θt) = v(θ0) +
t−1∑

i=0

γi+1vh(θi) +
t−1∑

i=0

Ri+1, t ≥ 0,

{v(θt)}t≥0 also converges. On the other hand, conditions (A1) and (A2) imply

limt→∞ d(θt,L) = 0. Otherwise, there exists ε > 0 and n0 such that d(θt,L) ≥
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ε, t ≥ n0; as
∑∞

t=1 γt = ∞ and p = sup{vh(θ) : θ ∈ Vc
ε} < 0, it is obtained that

∑∞
t=n0

γt+1vh(θt) ≤ p
∑∞

t=1 γt+1 = −∞.

Suppose that limt→∞ d(θt,L) > 0. Then, there exists ε > 0 such that

limt→∞ d(θt,L) ≥ 2ε. Let t0 = inf{t ≥ 0 : d(θt,L) ≥ 2ε}, while t′k = inf{t ≥
tk : d(θt,L) ≤ ε} and tk+1 = inf{t ≥ t′k : d(θt,L) ≥ 2ε}, k ≥ 0. Obviously,

tk < tk′ < tk+1, k ≥ 0, and

d(θtk
,L) ≥ 2ε, d(θt′k ,L) ≤ ε, and d(θt,L) ≥ ε, tk ≤ t < t′k, k ≥ 0.

Let q = sup{vh(θ) : θ ∈ Vc
ε}. Then

q
∞∑

k=0

t′k−1∑

i=tk

γi+1 ≥
∞∑

k=0

t′k−1∑

i=tk

γi+1vh(θi) ≥
∞∑

t=0

γt+1vh(θt) > −∞.

Therefore,
∑∞

k=0

∑t′k−1
i=tk

γi+1 < ∞, and consequently, limk→∞
∑t′k−1

i=tk
γi+1 = 0.

Since
∑∞

t=1 γtξt converges (owing to Lemma A.2), we have

ε ≤ ‖θt′k − θtk
‖ ≤M

t′k−1∑

i=tk

γi+1 +

∥∥∥∥∥∥

t′k−1∑

i=tk

γi+1ξi+1

∥∥∥∥∥∥
−→ 0,

as k →∞. This contradicts with our assumption ε > 0. Hence, limt→∞ d(θt,L)

> 0 does not hold. Therefore, limt→∞ d(θt,L) = 0 almost surely.

2. Proofs of Theorems for Pop-SAMC

In order to study the convergence of the Pop-SAMC algorithm, we introduce

an equivalent variation of the Pop-SAMC algorithm. Without loss of generality,

we assume that E1, . . . ,Em0 are nonempty subregions, and Em0+1, . . . , Em are

all empty.

1. (Population sampling) The sampling step is the same as described in

Section 3.2 of the main text.

2’. (Weight updating) Set

θt+1 = θt + γt+1H̃(θt,xt+1), (1)
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where H̃(θt,xt+1) =
∑κ

i=1 H̃(θt, x
(i)
t+1)/κ, and H̃(θt, x

(i)
t+1) = zt+1 − π −

(I(x(i)
t+1 ∈ Em0)− πm0)1. where zt+1 and π are as specified in the SAMC

algorithm, and 1 denotes a vector of 1s.

The difference of this variational Pop-SAMC algorithm is that it adds a

constant vector −γt+1
∑κ

i=1(I(x
(i)
t+1 ∈ Em0) − πm0)1/κ to the estimate of θ of

the original algorithm and thus keeps θ(m0) unchanged, say θ(m0)
t ≡ 0. Hence,

below we only need to prove that Theorem 3.1 and Theorem 3.2 are true for

this variational Pop-SAMC algorithm.

2.1. Proof of Theorem 3.1

Since Em0+1, . . . , Em are empty, θm0+1, . . . , θm are auxiliary variable, which

do not affect the updating of (θi)m0−1
i=1 and sampling step at all. Therefore,

we can view the algorithm as of it is only update θ = (θ1, . . . , θm0−1)T with

function (H̃
(1)
, . . . , H̃

(m0−1)
)T . Once we prove that for i = 1, . . . ,m0 − 1,

θ
(i)
t → log

(∫

Ei

ψ(x)dx
)
− log(πi + ν)− log

(∫

Em0

ψ(x)dx

)
+ log(πm0 + ν),

almost surely, then it is trivial to see that θ(i)
t → −∞ for i > m0. (Because

∑t
j=1 I(x

(k)
j ∈ Em0)/t → πm0 + ν, and θ

(i)
t = −tπi −

∑κ
k=1

∑t
j=1 I(x

(k)
j ∈

Em0)/κ+ tπm0 for any i > m0.)

To prove the convergence of θ(i)
t for i < m0, it follows from Theorem 2.1 that

we only need to verify that Pop-SAMC satisfies the conditions (A1), (A3) and

(A4). This is done as follows.

(A1) This condition can be verified as in Liang et al. (2007). Since a part of

the proof will be used in proving Theorem 3.2, we re-produce the proof

below. Since the invariant distribution of the kernel P θt
(x,y) is fθt

(x),

for any fixed value of θ, we have

E(H̃
(i)

(θ,x)) =

∫
Ei
ψ(x)dx/eθi − ∫

Em0
ψ(x)dx/eθm0

∑m
k=1[

∫
Ek
ψ(x)dx/eθk ]

− πi + πm0

=
Si − Sm0

S
− πi + πm0 , i = 1, . . . ,m0 − 1, (2)
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where H̃
(i)

(θ,x) denotes the ith component of H̃(θ,x), Si =
∫
Ei
ψ(x)dx/eθi

and S =
∑m0

k=1 Sk. Thus,

h(θ) =
∫

X
H(θ,x)f(dx) =

(
S1

S
− π1, . . . ,

Sm0−1

S
− πm0−1

)T

−Sm0

S
+πm0 .

It follows from (2) that h(θ) is a continuous function of θ. Let

v(θ) =
1
2

m0∑

k=1

(
Sk

S
− πk

)2

,

which, as shown below, has continuous partial derivatives of the first order.

Solving the system of equations formed by (2), we have

L =
{

(θ1, . . . , θm0−1) : θi = C + log
(∫

Ei

ψ(x)dx
)
− log(πi + ν), θ ∈ Θ

}
,

where constant C = log(πm0 + ν)− log
∫
Em0

ψ(x)dx. It is obvious that L
is nonempty and v(θ) = 0 for every θ ∈ L.

To verify the conditions related to ∇v(θ), we have the following calcula-

tions:

∂S

∂θi
=
∂Si

∂θi
= −Si,

∂Si

∂θj
=
∂Sj

∂θi
= 0,

∂
(

Si

S

)

∂θi
= −Si

S
(1− Si

S
),

∂
(

Si

S

)

∂θj
=
∂
(Sj

S

)

∂θi
=
SiSj

S2
,

(3)

for i, j = 1, . . . ,m0 − 1 and i 6= j.

∂v(θ)
∂θi

=
1
2

m0∑

k=1

∂(Sk

S − πk)2

∂θi

=
m0∑

j=1

(
Sj

S
− πj)

SiSj

S2
− (

Si

S
− πi)

Si

S

= µη∗
Si

S
− (

Si

S
− πi)

Si

S
,

(4)
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for i = 1, . . . ,m0 − 1, where µη∗ =
∑m0

j=1(
Sj

S − πj)
Sj

S . Thus,

vh(θ) = 〈∇v(θ), h(θ)〉

=µη∗

m0−1∑

i=1

(
Si

S
− πi)

Si

S
−

m0−1∑

i=1

(
Si

S
− πi)2

Si

S

−
m0−1∑

i=1

(
µη∗

Si

S
− (

Si

S
− πi)

Si

S

)(
Sm0

S
− πm0

)

=− { m0∑

i=1

(
Si

S
− πi)2

Si

S
− µ2

η∗}

=− σ2
η∗ ≤ 0,

(5)

where σ2
η∗ denotes the variance of the discrete distribution defined in the

following table,

State (η∗) S1
S − π1 · · · Sm0

S − πm

Prob. S1
S · · · Sm0

S

If θ ∈ L, vh(θ) = 0. Otherwise, vh(θ) < 0 and for any compact set K ⊂ Lc,

supθ∈L vh(θ) < 0.

(A3) Let xt+1 = (x(1)
t+1, . . . , x

(κ)
t+1), which is a sample produced by κ independent

Markov chains on the product space X = X × · · · × X with the transition

kernel

P θt
(x,y) = Pθt

(x(1), y(1))Pθt
(x(2), y(2)) · · ·Pθt

(x(κ), y(κ)),

where Pθt
(x, y) denotes a one-step MH kernel at a given value of θt.

Under the assumptions that both Θ and X are compact and the proposal

distribution is local positive, it has been shown in Liang et al. (2007) that

Pθ(x, y) satisfies the drift condition (A3). In what follows, we will show

that P θ(x,y) also satisfies (A3), given that Pθ(x, y) satisfies (A3).

To simplify notations, in what follows we will drop the subscript t, denot-

ing xt by x, xt by x, and θt = (θt1, . . . , θtm) by θ = (θ1, . . . , θm). Roberts

and Tweedie (1996) (Theorem 2) show that if the target distribution is
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bounded away from 0 and ∞ on every compact set of X , then the MH

chain with a proposal distribution satisfying the local positive condition

is irreducible and aperiodic, and every nonempty compact set is small. It

follows from this result that Pθ(x, y) is irreducible and aperiodic, and thus

P θ(x, y) is also irreducible and aperiodic.

If X is compact, and furthermore f(x) is bounded away from 0 and ∞,

by equation (20) of the main text, fθ(x) is uniformly bounded away from

0 and ∞ since Θ is compact. By Roberts and Tweedie’s arguments, these

imply that X is a small set and the minorization condition uniformly holds

on X for all kernel Pθ(x, y), θ ∈ Θ; i.e., there exist a constant δ and a

probability measure ν ′(·) such that

Pθ(x,A) ≥ δ′ν ′(A), ∀x ∈ X , ∀A ∈ BX .

Therefore,

P θ(x,A) ≥ δν(A), ∀x ∈ X, ∀A ∈ BX,

where A = A1 ×A2 × . . .× Aκ, δ = (δ′)κ, and ν(A) = ν ′(A1)× ν ′(A2)×
. . .× ν ′(Aκ). Hence, (A3-i) is satisfied.

For Pop-SAMC, we have H(θ,x) =
∑κ

i=1H(θ, x(i))/κ. Since each com-

ponent of H(θ,x) takes a value between 0 and 1, there exists a constant

c1 =
√
m such that for any θ ∈ Θ and all x ∈ X,

‖H(θ,x)‖ ≤ c1. (6)

Also, H(θ,x) does not depend on θ for a given sample x. Hence, H(θ,x)−
H(θ′,x) = 0 for all (θ, θ′) ∈ Θ×Θ, and the following condition holds,

‖H(θ,x)−H(θ′,x)‖ ≤ c1‖θ − θ′‖, (7)

for all (θ, θ′) ∈ Θ×Θ. Equations (6) and (7) imply that (A3-ii) is satisfied.

In Liang et al. (2007), it has been shown for the single-chain MH kernel

that there exists a constant c2 such that

|Pθ(x,A)− Pθ′(x,A)| ≤ c2‖θ − θ′‖, (8)
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for any measurable set A ⊂ X . Therefore, there exists a constant c3 such

that

|P θ(x,A)− P θ′(x,A)|

=
∣∣
∫

A1

· · ·
∫

Aκ

[
Pθ(x(1), y(1))Pθ(x(2), y(2)) · · ·Pθ(x(κ), y(κ))

− Pθ′(x(1), y(1))Pθ′(x(2), y(2)) · · ·Pθ′(x(κ), y(κ))
]
dy(1) · · · dy(κ)

∣∣

≤
κ∑

i=1

∫

X
· · ·

∫

X

∫

Ai

∫

X
· · ·

∫

X
Pθ′(x(1), y(1)) · · ·Pθ′(x(i−1), y(i−1))

×
∣∣∣Pθ(x(i), y(i))− Pθ′(x(i), y(i))

∣∣∣

× Pθ(x(i+1), y(i+1)) · · ·Pθ(x(κ), y(κ))dy(1) · · · dy(κ)

≤ c3‖θ − θ′‖,
which implies A3-(iii) is satisfied.

(A4) This condition is automatically satisfied by the choice of {γt}.

2.2. Proof of Theorem 3.2.

Following from Theorem 2.2 and Theorem 3.1, this theorem can be proved by

verifying that SAMC and Pop-SAMC satisfy (A2). To verify (A2), we first show

that h(θ) has bounded first and second derivatives. Continuing the calculation

in (3), we have

∂2(Si

S )
∂(θ(i))2

=
Si

S
(1− Si

S
)(1− 2Si

S
),

∂2(Si

S )
∂θ(j)∂θ(i)

= −SiSj

S2
(1− 2Si

S
), (9)

where S and Si are as defined in (2). This implies that the first and second

derivatives of h(θ) are uniformly bounded by noting the inequality 0 < Si

S < 1.

Hence, h(θ) is differentiable and its derivative is Lipschitz continuous.

Let F = ∂h(θ)/∂θ. From (3) and (9), we have F = (11T + I)F0, where

F0 =




−S1
S (1− S1

S ) S1S2
S2 · · · S1Sm0−1

S2

S2S1
S2 −S2

S (1− S2
S ) · · · S2Sm0−1

S2

...
. . .

...
...

Sm0−1S1

S2 · · · · · · −Sm0−1

S (1− Sm0−1

S )



.
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Thus, for any nonzero vector z = (z1, . . . , zm0−1)T ,

zTF0z = −
[ m0∑

i=1

z2
i

Si

S
−

(
m0∑

i=1

zi
Si

S

)2 ]
= − var(Z) < 0, (10)

where zm0 = 0, and var(Z) denotes the variance of the discrete distribution

defined by the following table (note that var(Z) is strict positive here):

State (Z) z1 · · · zm0

Prob. S1
S · · · Sm0

S

Thus, the matrix F0 is negative definite, 11T +I is positive definite, by Duan

and Patton (1998), F is stable. Applying Taylor expansion to h(θ) at a point

θ∗, we have

‖h(θ)− F (θ − θ∗)‖ ≤ c‖θ − θ∗‖2,

for some value c > 0. Therefore, (A2) is satisfied by both SAMC and Pop-

SAMC.
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