$$\overline{x}=.6, \sum_i (x_i-\overline{x})^2=3.6, n=10$$

$$H_0\colon \theta_1=0, H_a\colon \theta_1\neq 0$$
 Reject when $|T|=\frac{\sqrt{n}\,(\overline{x})}{\sqrt{\sum(x_i-\overline{x})^2/(n-1)}}>t_{0.025,9}=2.262$ So we reject H0 after we plug in everything.

$$6.5.4 \ \lambda = \frac{\left\{\frac{1}{(2\pi)\left[\left(\sum x_i^2 + \sum y_i^2\right)/(n+m)\right]}\right\}^{(n+m)/2}}{\left[\frac{1}{(2\pi)\left(\sum x_i^2/n\right)}\right]^{n/2}\left[\frac{1}{(2\pi)\left(\sum y_i^2/m\right)}\right]^{m/2}} \le k,$$

which is equivalent to $F \leq c_1$ or $F \geq c_2$, where $F = \frac{\sum X_i^2/n}{\sum Y_i^2/m}$ has an $F(r_1 = n, r_2 = m)$ distribution when $\theta_1 = \theta_2$.

6.5.6 Note $\hat{\theta}_i = \max\{-1\text{st order statistic}, n\text{th order statistic}\}$, where $n = n_1 = n_2$. Hence, in a notation that seems clear, we have

$$\lambda = \frac{1/[2 \max(\hat{\theta}_X, \hat{\theta}_Y)]^{2n}}{[1/(2\hat{\theta}_X)^n][1/(2\hat{\theta}_Y)^n]} = \left[\frac{\min(\hat{\theta}_X, \hat{\theta}_Y)}{\max(\hat{\theta}_X, \hat{\theta}_Y)}\right]^n.$$

If $U = \min(\hat{\theta}_X, \hat{\theta}_Y)$ and $V = \max(\hat{\theta}_X, \hat{\theta}_Y)$, the joint pdf is

$$g(u, v) = 2n^2 u^{n-1} v^{n-1} / \theta^{2n}, \ 0 < u < v < \theta.$$

So the distribution function of λ is

$$H(z) = P(U \le z^{1/n}V), \quad 0 \le z \le 1,$$

$$= \int_0^\theta \int_0^{z^{1/n}v} g(u, v) \, du \, dv$$

$$= \int_0^\theta 2nz v^{2n-1}/\theta^{2n} \, dv$$

$$= z, \quad 0 \le z \le 1,$$

which is uniform (0, 1). Thus $-2 \log \lambda$ is $\chi^2(2)$, where the degrees of freedom = 2 = 2 (dimension of Ω – dimension of ω). Note that this is a nonregular case

6.5.11 Under H_0 , $p_1 = p_2 = p$. Thus both \overline{X} and \overline{Y} are consistent estimators of p.

$$\hat{p} = \frac{n_1}{n}\overline{X} + \frac{n_2}{n}\overline{Y}$$

$$\stackrel{P}{\longrightarrow} \lambda_1 p + \lambda_2 p = p.$$

- 7.1.1 $E\overline{x} = \theta$ and $var(\overline{x}) = \theta^2/n$
- 7.1.4 K2=2/3 and K1=1/3 can minimize $3k_2^2 4k_2 + 2$, which can minimize the variance.

7.1.6 We have that $E(Y) = n\theta$, $var(Y) = n\theta$. Thus

$$E[(\theta - b - Y/n)^2] = (y - b - \theta)^2 + (n\theta)(1/n)^2 = b^2 + \theta^2/n.$$

Thus take b=0 and us $\delta(y)=y/n$. Clearly $\max(\theta^2/n)$ does not exist.