STAT 517 HW7 SOLUTION:

8.1.2
{x1, x2 : x1 + x2 >= c} is the best critical region.
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8.2.6 If @ > ', then we want to use a critical region of the from Y z? > ¢. If 6 < ¢/,
the critical region is like Y>2? < ¢. That is, we cannot find one test which
will be best for each type of alternative.
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8.2.9 Let X1, Xo,..., X, be arandom sample with the common Bernoulli pmf with
parameter as given in the problem. Based on Example 8.2.5, the UMP test
rejects Hy if Y > ¢, Y = 51" | X;. In general, Y has a binomial(n, 6) distri-
bution. To determine n we solve two simultaneous equations, one involving
level and the other power. The level equation is
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where by the Central Limit Theorem Z has a standard normal distribution.
Hence, we get the equation
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Likewise from the desired power v(1/10) = 0.90, we obtain the equation
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Solving (8.0.1) and (8.0.2) simultaneously, gives the solution n = 122.




