7.8.2

(a)

$$\prod_{i=1}^{n} \left(\frac{1}{2\theta}\right) I_{[-\theta,\theta]}(x_i) = \left(\frac{1}{2\theta}\right)^n I_{[-\theta,y_n]}(y_1) I_{[y_1,\theta]}(y_n);$$

by the factorization theorem, the pair (Y_1, Y_n) is sufficient for θ .

- (b) $L = \left(\frac{1}{2\theta}\right)^n$, provided $-\theta \le y_1$ and $y_n \le \theta$. That is, $-y_1 \le \theta$ and $y_n \le \theta$. We want to make θ as small as possible and satisfy these two restrictions; hence $\hat{\theta} = \max(-Y_1, Y_n)$.
- (c) It is easy to show from the joint pdf Y_1 and Y_n that the pdf of $\hat{\theta}$ is $g(z; \theta) = nz^{n-1}/\theta^n, 0 \le z \le \theta$, zero elsewhere. Hence

$$L/g(z;\theta) = \frac{1}{2^n(nz^{n-1})}, -z = -\hat{\theta} \le x_i \le \hat{\theta} = z,$$

which is free of θ .

- 7.8.5 it will be easy to check scale invariant property.
 - 7.8.4 For illustration $Y_{n-2} Y_3$, $\min(-Y_1, Y_n)/\max(Y_1, Y_n)$ and $(Y_2 Y_1)/\sum(Y_i Y_1)$, respectively.
 - 7.9.3 From previous results (Chapter 3), we know that Z and Y have a bivariate normal distribution. Thus they are independent if and only if their covariance is equal to zero; that is

$$\sum_{i=1}^{n} a_i \sigma^2 = 0 \text{ or, equivalently, } \sum_{i=1}^{n} a_i = 0.$$

If $\sum a_i = 0$, note that $\sum a_i X_i$ is location-invariant because $\sum a_i (x_i + d) = \sum a_i x_i$.

7.9.5 Of course, R is a scale-invariant statistic, and thus R and the complete sufficient statistic $\sum_{i=1}^{n} Y_i$ for θ are independent. Since $M_1(t) = E[\exp(tnY_1)] = (1 - \theta t)^{-1}$ for $t < 1/\theta$, and $M_2(t) = E[\exp(t\sum_{i=1}^{n} Y_i)] = (1 - \theta t)^{-n}$ we have

$$M_1^{(k)}(0)=\theta^k\Gamma(k+1)$$
 and $M_2^{(k)}(0)=\theta^k\Gamma(n+k)/\Gamma(n).$

According to the result of Exercise 7.9.4 we now have $E(R^k) = M_1^{(k)}(0)/M_2^{(k)}(0) = \Gamma(k+1)\Gamma(n)/\Gamma(n+k)$. These are the moments of a beta distribution with $\alpha = 1$ and $\beta = n-1$.

7.9.7 The two ratios are location- and scale-invariant statistics and thus are independent of the joint complete and sufficient statistic for the location and scale parameters, namely \bar{X} and S^2 .

7.9.9

- (a) Here R is a scale-invariant statistic and hence independent of the complete and sufficient statistic, $\sum X_i^2$, for θ , the scale parameter.
- (b) While the numerator, divided by θ , is $\chi^2(2)$ and the denominator, divided by θ , is $\chi^2(5)$, they are not independent and hence 5R/2 does not have an F-distribution.
- (c) It is easy to get the moment of the numerator and denominator and thus the quotient of the corresponding moments to show that R has a beta distribution.