STAT 517 Noncentral χ^2 and *F*-distributions

Prof. Michael Levine

April 12, 2016

æ

< ≣ >

Definition

• Let
$$X_1, \ldots, X_n \sim N(\mu_i, \sigma^2)$$
, $i = 1, \ldots, n$

• Need to find the distribution of the quadratic form $Y = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$

Direct integration suggests that the mgf of this distribution is

$$M(t) = \frac{1}{(1-2t)^{n/2}} \exp\left[\frac{t \sum_{i=1}^{n} \mu_i^2}{\sigma^2 (1-2t)}\right]$$

for any $t < \frac{1}{2}$

▶ In general, a random variable with an mgf $M(t) = \frac{1}{(1-2t)^{r/2}} e^{t\theta/(1-2t)}$ is said to have a **noncentral chi-squared distribution** with *r* df and a noncentrality parameter θ

個 と く ヨ と く ヨ と …

- If $\theta = 0$, the mgf is $M(t) = \frac{1}{(1-2t)^{r/2}}$ and we are back to χ^2_r
- We will use the notation $\chi^2_r(\theta)$ for the noncentral chi-squared
- Conclude that the quadratic form $Y = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2 \sim \chi_n^2 (\sum_{i=1}^n \mu_i^2 / \sigma^2).$

• If each
$$\mu_i = 0$$
, $Y \sim \chi_n^2$

Remarks about non-centrality parameter

- ► Note that for $Y = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$ its non-centrality parameter can be computed by replacing each X_i in the quadratic form by its mean.
- ► This is not a random occurence; let Q = Q(X₁,...,X_n) be a quadratic form in normally distributed variables s.t. Q/σ² ~ χ²_r(θ)
- ▶ Then, its noncentrality parameter is $\theta = Q(\mu_1, \dots, \mu_n)/\sigma^2$
- Moreover, if Q/σ² is a chi-square variable (central or non-central) for a set of values μ₁,..., μ_n, it is chi-square for all real values of these means
- Finally, Hogg-Craig's theorem is valid for both central and non-cenral chi-square variables

イロン イ部ン イヨン イヨン 三日

▶ Recall that for independent $U \sim \chi^2_{r_1}$, $V \sim \chi^2_{r_2}$, the ratio

$$F = \frac{r_2 U}{r_1 V} \sim F_{r_1, r_2}$$

▶ Now, take $U \sim \chi^2_{r_1}(\theta)$, $V \sim \chi^2_{r_2}$, U and V are independent

The ratio

$$F=\frac{r_2 U}{r_1 V}\sim F_{r_1,r_2}(\theta)$$

is a **noncentral F** with noncentrality parameter θ

・ロト ・回ト ・ヨト ・ヨト

3

Introduction to multiple comparisons

- Consider random variables X₁,..., X_b ~ N(μ_j, σ²) and independent
- For known real constants k₁,..., k_b want to find a confidence interval for ∑^b_{i=1} k_jµ_j
- ► Take a random sample size $A X_{1j}, X_{2j}, \ldots, X_{aj}$ from $N(\mu_j, \sigma^2)$
- Clearly, $\bar{X}_{.j} = \frac{\sum_{i=1}^{a} X_{ij}}{a} \sim N(\mu_j, \sigma^2/a)$; also $\sum_{i=1}^{a} (X_{ij} \bar{X}_{.j})^2 / \sigma^2 \sim \chi^2(a-1)$ and the two are independent
- Moreover, all of the 2*b* random variables $\bar{X}_{.j}$, $\sum_{i=1}^{a} (X_{ij} - \bar{X}_{.j})^2 / \sigma^2$ are independent
- ► Also, all X
 ₁, X
 ₂, X
 _b and
 ∑
 ^b_{j=1} ∑
 ^a_{i=1} (X_{ij}-X
 _j)²/
 σ² are independent; the latter is
 χ
 ²_{b(a-1)}

Introduction to multiple comparisons

• Define $X - \sum_{j=1}^{b} k_j \bar{X}_{,j}$; clearly, Z is normal with mean $\sum_{j=1}^{b} k_j \mu_j$ and variance $\left(\sum_{j=1}^{b} k_j^2\right) \sigma^2 / a$

Also, Z is independent of

$$V = rac{1}{b(a-1)}\sum_{j=1}^{b}\sum_{i=1}^{a}(X_{ij}-ar{X}_{.j})^2$$

Verify that

$$T = \frac{\sum_{j=1}^{b} k_j \bar{X}_{.j} - \sum_{j=1}^{b} k_j \mu_j}{\sqrt{(V/a) \sum_{j=1}^{b} k_j^2}}$$

has $t_{b(a-1)}$ distribution

Introduction to multiple comparisons

• With probability $1 - \alpha$,

$$\sum_{j=1}^{b} k_j \bar{X}_j - c \sqrt{\left(\sum_{j=1}^{b} k_j^2\right) \frac{V}{a}}$$
$$\leq \sum_{j=1}^{b} k_j \mu_j \leq \sum_{j=1}^{b} k_j \bar{X}_j + c \sqrt{\left(\sum_{j=1}^{b} k_j^2\right) \frac{V}{a}}$$

- ▶ Do we need to derive this procedure for all possible linear combinations of means, e.g. μ₂ − μ₁, μ₃ − μ_{1+μ₂/2 etc}
- Or is it possible to have a simultaneous confidence interval for all of them?

Scheffe's multiple comparison procedure

 The following confidence interval works simultaneously for all linear combinations

$$\sum_{j=1}^{b} k_j \bar{X}_{,j} - \sqrt{bd\left(\sum_{j=1}^{b} k_j^2\right) \frac{V}{a}}$$
$$\leq \sum_{j=1}^{b} k_j \mu_j \leq \sum_{j=1}^{b} k_j \bar{X}_{,j} + \sqrt{bd\left(\sum_{j=1}^{b} k_j^2\right) \frac{V}{a}}$$

where $d = F_{\alpha,b,b(a-1)}$ is the α percentile of the respective F-distribution

It is typically very conservative