STAT 517

Minimax and Classification Procedures

Prof. Michael Levine

March 31, 2016

Levine STAT 517

æ

< ≣ >

- Now is the time to consider decision theory as it is used in testing...
- Task: to find a minimax procedure that yields a best test of H₀ vs. H₁
- Let $X_1, \ldots, X_n \sim f(x; \theta)$ with the likelihood $L(\theta)$
- ► The hypotheses are simple: $H_0 : \theta = \theta'$ vs. $\theta = \theta''$...so $\Omega = \{\theta : \theta = \theta', \theta''\}$
- A decision function is $\delta : \delta = \theta'$ or $\delta = \theta''$

- ► The loss function is $\mathcal{L}(\theta, \delta)$ is defined so that $\mathcal{L}(\theta', \theta') = \mathcal{L}(\theta'', \theta'') = 0$
- On the contrary, $\mathcal{L}(\theta^{'}, \theta^{''}) > 0$ and $\mathcal{L}(\theta^{'}, \theta^{''}) > 0$
- ► Think in terms of choosing a subset *C* of the sample space s.t. if $\mathbf{x} \in C$, we decide $\delta = \theta^{"}$ and if $\mathbf{x} \in C'$, we decide that $\delta = \theta^{"}$

- Need to find a critical region C s. t. max[R(θ', C), R(θ'', C)] is minimized
- Remember the "best of the worst" adage...
- The solution is the region

$$C = \left\{ (x_1, \ldots, x_n) : \frac{L(\theta'; x_1, \ldots, x_n)}{L(\theta'; x_1, \ldots, x_n)} \le k \right\}$$

• k > 0 is selected so that $R(\theta', C) = R(\theta'', C)$

Define

$$R(\theta, C) = R(\theta, \delta) = \int_{C \cup C'} \mathcal{L}(\theta, \delta) L(\theta)$$

Note that this is the same as

$$R(heta, C) = \int_{C} \mathcal{L}(heta, heta^{''}) L(heta) + \int_{C'} \mathcal{L}(heta, heta^{'}) L(heta)$$

Simple algebra suggests that

$$R(\theta', C) = \mathcal{L}(\theta', \theta'') \alpha$$

and

$$R(\theta^{"}, C) = \mathcal{L}(\theta^{"}, \theta^{'})\beta$$

A 1

-≣->

Example

- Take $X_1, \ldots, X_{100} \sim N(heta, 100)$
- Test $H_0: \theta = 75$ vs. $H_1: \theta = 78$
- Find the minimax solution with $\mathcal{L}(75,78) = 3$ and $\mathcal{L}(78,75) = 1$
- $L(75)/L(78) \le k$ is the same as $\bar{x} \ge c$...so find c and k s.t.

$$3P(\bar{X} \ge c; \theta = 75) = P(\bar{X} < c; \theta = 78)$$

• Given that $ar{X} \sim {\it N}(heta,1)$ the equivalent is

$$3[1 - \Phi(c - 75)] = \Phi(c - 78)$$

▲□→ ▲ □→ ▲ □→

- classification problem is having to place an item into one of several categories
- ► The decision is made based on several measurements on the item; assume just two, X and Y, for simplicity
- The joint pdf is f(x, y; θ) with two values H₀ : θ = θ' vs. H_a : θ = θ"
- By Neyman-Pearson, a best decision rule is to reject H_0 if

$$\frac{f(x, y; \theta')}{f(x, y; \theta'')} \leq k$$

- If π is the probability of the first choice and π["] is that of a second, we have π['] + π["] = 1
- Can be shown that the optimal classification rule is to choose $k = \frac{\pi}{\pi'}$
- In practice, the common choice is k = 1

- ► Take (X, Y) to be bivariate normal with parameters μ₁, μ₂, σ²₁, σ²₂, ρ
- Assume σ_1^2, σ_2^2 , and ρ are known; the decision is between $(\mu_1^{'}, \mu_2^{'})$ and $(\mu_1^{''}, \mu_2^{''})$
- The decision rule is linear: if

$$ax + by \leq c$$

for some a, b, and c