STAT 517:Sufficiency Uniformly most powerful tests (UMP) and likelihood ratio tests

Prof. Michael Levine

March 29, 2016

Levine STAT 517:Sufficiency

- Typically, it is important to handle the case where the alternative hypothesis may be a composite one
- ► It is desirable to have the best critical region for testing H₀ against each simple hypothesis in H₁
- The critical region C is uniformly most powerful (UMP) of size α against H₁ if it is so against each simple hypothesis in H₁
- A test defined by such a regions is a uniformly most powerful(UMP) test.
- Such a test does not always exist

- $\blacktriangleright X_1,\ldots,X_n \sim N(0,\theta)$
- $H_0: \theta = \theta'$ vs. $H_1: \theta > \theta'$
- Note that the likelihood is

$$L(\theta; x_1, \ldots, x_n) = \left(\frac{1}{2\pi\theta}\right)^{n/2} \exp\left\{-\frac{1}{2\theta}\sum_{i=1}^n x_i^2\right\}$$

- Verify that the critical region C : {x : ∑_{i=1}ⁿ x_i² ≥ c} is the best critical region for such a test
- ► To find the critical value of *c*, recall that $\sum_{i=1}^{n} X_i^2 / \theta' \sim \chi_n^2$

Example

- ▶ If $X_1, ..., X_n \sim N(\theta, 1)$ and we test $H_0 : \theta = \theta'$ vs. $H_1 : \theta \neq \theta'$ there is no UMP
- Verify that there are two rejection regions:

$$\sum_{i=1}^{n} x_i \geq \frac{n}{2} (\theta^{''} - \theta^{'}) - \frac{\log k}{\theta^{''} - \theta^{'}}$$

$$\text{if } \boldsymbol{\theta}^{\prime\prime} > \boldsymbol{\theta}^{\prime} \, \, \text{and} \, \,$$

$$\sum_{i=1}^n x_i \leq \frac{n}{2}(\theta^{\prime\prime} - \theta^{\prime}) - \frac{\log k}{\theta^{\prime\prime} - \theta^{\prime}}$$

 $\text{if } \boldsymbol{\theta}^{''} < \boldsymbol{\theta}^{'}$

If the alternative H₁ : θ > θ' or H₁ : θ < θ', the UMP does exist</p>

コマン くほう くほう

Example: a UMP test for Poisson means

- ► Take $X_1, \ldots, X_n \sim P(\theta)$, $H_0: \theta = 0.1$ vs. $H_1: \theta > 0.1$
- The alternative $\theta'' > 0.1$ the likelihood ratio can be represented as

$$\left(rac{0.1}{ heta''}
ight)^{\sum x_i} e^{-10(1- heta'')} \leq k$$

The equivalent form is

$$\sum_{i=1}^n x_i \geq \frac{\log k + 10 - 10\theta''}{\log 0.1 - \log \theta''}$$

► The best critical region has the form ∑_{i=1}ⁿ x_i ≥ c for a constant c

□ ► < E ► < E ►</p>

▶ If $X_1, ..., X_n \sim f(x; \theta)$, $Y = u(X_1, ..., X_n)$ is a sufficient statistic for θ , the ratio

$$\frac{L(\theta'; x_1, \ldots, x_n)}{L(\theta''; x_1, \ldots, x_n)} = \frac{k_1[u(x_1, \ldots, x_n); \theta']}{k_1[u(x_1, \ldots, x_n); \theta'']}$$

by factorization theorem

 If a best test or a UMP test is desired, only functions of sufficient statistics should be considered

白 ト く ヨ ト く ヨ ト

General form of uniformly most powerful tests

- Take a general one-sided hypothesis: H₀ : θ ≤ θ' vs. H₁ : θ > θ'
- The level of the test is

 $\max_{\theta \leq \theta'} \gamma(\theta)$

the maximum probability of Type I error

The general likelihood function is

$$L(\theta, \mathbf{x}) = \prod_{i=1}^{n} f(x_i; \theta)$$

► The likelihood L(θ; x) has the monotone likelihood ratio in statistic y = u(x) for θ₁ < θ₂ if

$$\frac{L(\theta_1; \mathbf{x})}{L(\theta_2; \mathbf{x})}$$

is a monotone function of $y = u(\mathbf{x})$

If our likelihood L(θ; x) has a monotone decreasing likelihood ratio in y = u(x), the test "Reject H₀ if Y ≥ c_Y" is the UMP

• Here,
$$\alpha = P_{\theta'}[Y \ge c_Y]$$

白 ト イヨト イヨト

• Take
$$X_1, \ldots, X_n \sim b(1, \theta)$$
, $0 < \theta < 1$.

• For $\theta' < \theta''$, the likelihood ratio is

$$\left[\frac{\theta^{'}(1-\theta^{''})}{\theta^{''}(1-\theta^{'})}\right]^{\sum x_{i}} \left(\frac{1-\theta^{'}}{1-\theta^{''}}\right)^{n}$$

• $\frac{\theta'(1-\theta'')}{\theta''(1-\theta')} < 1$ and so the ratio is a decreasing function of $y = \sum x_i$

• We have the MLR in $Y = \sum X_i$

▲御▶ ★ 理≯ ★ 理≯

The conclusion: the UMP level α decision rule to test H₀ vs. H₁ is: reject H₀ when

$$Y = \sum_{i=1}^n X_i \ge c$$

• Here, c is s. t. $\alpha = P_{\theta'}(Y \ge c)$

回 と く ヨ と く ヨ と

æ

General UMP for regular exponential families

The regular family pdf is

$$f(x; \theta) = \exp[p(\theta)K(x) + H(x) + q(\theta)]$$

The likelihood ratio is

$$\frac{L(\theta')}{L(\theta'')} = \exp\left\{\left[p(\theta') - p(\theta'')\right]\sum_{i=1}^{n} K(x_i) + n[q(\theta') - q(\theta'')]\right\}$$

- If p(θ) is an increasing function of θ, the ratio is a decreasing function of y = ∑ⁿ_{i=1} K(x_i)
- ► For $H_0: \theta \le \theta''$ vs. $H_1: \theta > \theta'$, the UMP level α decision rule is to reject H_0 if

$$Y = \sum_{i=1}^n K(X_i) \ge c$$

• Here c is s.t. $\alpha = P_{\theta'}(Y \ge c)$

- Now, let $H_0: \theta \ge \theta'$ vs. $H_1: \theta < \theta'$
- The UMP level α decision rule is (again, if p(θ) is an increasing function) to reject H₀ if

$$Y = \sum_{i=1}^n K(X_i) \le c$$

• Here, c is s. t. $\alpha = P_{\theta'}(Y \leq c)$

- If $H_0: \theta = \theta'$ and $H_1: \theta > \theta'$, $\sum_{i=1}^n K(x_i) \ge c$ is a UMP critical region
- ▶ All of the regions considered earlier: $\sum_{i=1}^{n} x_i^2 \ge c$, $\sum_{i=1}^{n} x_i \ge c$ etc. are UMP for testing H_0 vs H_1

- What if $H_0: \boldsymbol{\theta} \in \omega$ and $H_1: \boldsymbol{\theta} \in \Omega \cap \omega'$?
- Recall testing the normal mean with unknown variance

•
$$X_1,\ldots,X_n\sim \mathcal{N}(heta_1, heta_2)$$
 , $oldsymbol{ heta}=(heta_1, heta_2)$

 $\blacktriangleright \ \Omega = \{ \boldsymbol{\theta} : -\infty < \theta_1 < \infty, \theta_2 > 0 \}, \ \omega = \{ \boldsymbol{\theta} : \theta_1 = \theta_1', \theta_2 > 0 \}$

- If θ_2 is known, we found earlier that there is no UMP test
- It is possible to construct a theory of best tests if unbiasedness is required
- A specific critical region will be

$$C_2 = \left\{ |\bar{X} - \theta_1'| > \sqrt{\frac{\theta_2}{n}} z_{\alpha/2} \right\}$$

• C_2 is unbiased and provides a UMP unbiased test of level α

$$\blacktriangleright X_1,\ldots,X_n \sim N(\theta_1,\theta_3), Y_1,\ldots,Y_n \sim N(\theta_2,\theta_3)$$

All of the parameters are unknown

$$\bullet \ H_0: \theta_1 = \theta_2$$

► Then, $\Omega = \{(\theta_1, \theta_2, \theta_3) : -\infty < \theta_1, \theta_2 < \infty, \theta_3 > 0\}$

$$\blacktriangleright \omega = \{(\theta_1, \theta_2, \theta_3) : \theta_1 = \theta_2, \theta_3 > 0\}$$

通 と く ヨ と く ヨ と

MLE

 $L(\omega) = \left(\frac{1}{2\pi\theta_3}\right)^{(n+m)/2} \times \\ \exp\left\{-\frac{1}{2\theta_3}\left[\sum_{i=1}^n (x_i - \theta_1)^2 + \sum_{i=1}^m (y_i - \theta_1)^2\right]\right\}$

$$L(\Omega) = \left(\frac{1}{2\pi\theta_3}\right)^{(n+m)/2} \times \\ \exp\left\{-\frac{1}{2\theta_3}\left[\sum_{i=1}^n (x_i - \theta_1)^2 + \sum_{i=1}^m (y_i - \theta_2)^2\right]\right\}$$

- (回) (三) (三) (三) (三)

- \blacktriangleright Let ω and $\omega^{'}$ be the MLE solutions for the variance parameter θ_{3}
- The likelihood ratio is

$$\Lambda = \left(\frac{\omega}{\omega}\right)^{(n+m)/2}$$

We can transform the above to find that

$$\Lambda^{2/(n+m)} = \frac{n+m-2}{(n+m-2)+T^2}$$

where $T \sim t_{n+m-2}$ under the null hypothesis The significance level of this test is

$$\alpha = P_{H_0}[\Lambda(X_1,\ldots,X_n,Y_1,\ldots,Y_n) \leq \lambda_0]$$

• The above inequality is equivalent to $|T| \ge c$ so

$$\alpha = P(|T| \ge c; H_0)$$

- Let $W \sim N(\delta, 1)$, $V \sim \chi^2_r$, W and V are independent
- The quotient

$$T = \frac{W}{\sqrt{V/r}}$$

has a **non-central** t distribution with r df and **noncentrality** parameter δ

• The usual t distribution is a special case with $\delta = 0$

白 ト く ヨ ト く ヨ ト

æ

t-test for the mean and its power

▶ Let
$$X_1, ..., X_n \sim N(\theta, \sigma^2)$$
; test $H_0 : \theta = \theta_0$ vs. $H_1 : \theta \neq \theta_0$
▶ Recall

$$t(X_1,\ldots,X_n)=\frac{\sqrt{n}\bar{X}}{\sqrt{\sum_{i=1}^n(X_i-\bar{X})^2/(n-1)}}$$

Clearly,

$$t(X_1,...,X_n) = \frac{\sqrt{n}\bar{X}/\sigma}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2/[\sigma^2(n-1)]}} = \frac{W_1}{\sqrt{V_1/(n-1)}}$$

with $W_1 = \sqrt{n} \bar{X} / \sigma$, $V_1 = \sum_{i=1}^n (X_i - \bar{X})^2 / \sigma^2$

- $W_1 \sim N(\sqrt{n} heta_1/\sigma,1)$, $V_1 \sim \chi^2_{n-1}$, W_1 and V_1 are independent
- ▶ If the alternative $\theta_1 \neq 0$, $t(X_1, ..., X_n)$ has the non-central $t_{n-1}(\delta_1)$ with

$$\delta_1 = \sqrt{n}\theta_1/\sigma$$

• Recall that we have $X_1, \ldots, X_n \sim N(\theta_1, \theta_3)$ and $Y_1, \ldots, Y_m \sim N(\theta_2, \theta_3)$

•
$$H_0: \theta_1 = \theta_2$$
 vs. $H_1: \theta_1 \neq \theta_2$

▶ The *T*-statistic mentioned in this example can be written as

$$T = \frac{W_2}{\sqrt{V_2/(n+m-2)}}$$

t-test for comparison of two means

Here. $W_2 = \sqrt{\frac{nm}{n+m}(\bar{X}-\bar{Y})/\sigma}$ $V_2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{i=1}^{m} (Y_i - \bar{Y})^2}{-2}$ • Clearly, $W_2 \sim N\left(\sqrt{nm/(n+m)}(\theta_1 - \theta_2, 1)\right)$, $V_2 \sim \chi^2_{n+m-2}$ and they are independent...so • When $\theta_1 \neq \theta_2$, $T \sim t_{n+m-2}(\delta_2)$ and $\delta_2 = \sqrt{nm/(n+m-2)(\theta_1-\theta_2)/\sigma}$

回 と く ヨ と く ヨ と

Robustness of t-tests to violation of normality

- ► One-sample *t*-test: X₁,..., X_n ~ L(θ₁, σ²) with L some distribution *law*
- Test $H_0: \theta_1 = \theta_1'$ vs. $H_1: \theta_1 \neq \theta_1'$
- The t-test statistic is

$$T_n = rac{\sqrt{n}(ar{X} - heta_1')}{S_n}$$

and the critical region is $C_1 = \{|T_n| \ge t_{\alpha/2,n-1}\}$

• $S_n \rightarrow \sigma$ in probability; by CLT,

$$T_n = \frac{\sigma}{S_n} \frac{\sqrt{n}(\bar{X} - \theta_1')}{\sigma} \xrightarrow{D} Z$$

with $Z \sim N(0,1)$

- In practice we will use a more conservative critical region C₁ and not C₂ = {T_n| ≥ z_{α/2}}
- The *t*-test possesses robustness of validity but may not possess robustness of power

• •

►
$$X_1, \ldots, X_n \sim N(\theta_1, \theta_3)$$
 and $Y_1, \ldots, Y_m \sim N(\theta_2, \theta_4)$
► $\Omega = \{(\theta_1, \theta_2, \theta_3, \theta_4) : -\infty < \theta_1, \theta_2 < \infty, 0 < \theta_3, \theta_4 < \infty\}$
► $H_0 : \theta_3 = \theta_4$ vs. a general alternative
► $\omega = \{(\theta_1, \theta_2, \theta_3, \theta_4) : -\infty < \theta_1, \theta_2 < \infty, 0 < \theta_3 = \theta_4 < \infty\}$

- ▲ 문 ▶ - ▲ 문

æ

Test for equality of variances

The likelihood ratio statistic is

$$\Lambda = \frac{L(\hat{\omega})}{L(\hat{\Omega})}$$

is a function of

$$F = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 / (n-1)}{\sum_{i=1}^{m} (Y_i - \bar{Y})^2 / (m-1)}$$

- ▶ Under H_0 , $F \sim F_{n-1,m-1}$; reject H_0 if $F \leq c_1$ or $F \geq c_2$
- Typically, if $\theta_3 = \theta_4$, we select c_1 and c_2 s.t.

$$P(F \leq c_1) = P(F \geq c_2) = \frac{\alpha_1}{2}$$

通 と く ヨ と く