STAT 517: Optimal tests of hypotheses Most powerful tests

Prof. Michael Levine

March 3, 2016

Levine STAT 517: Optimal tests of hypotheses

 -

- $X \sim f(x; \theta)$ where $\theta \in \Omega$
- For two disjoint ω_0 and $\omega_1 \ \Omega = \omega_0 \cup \omega_1$
- Hypotheses: $H_0: \theta \in \omega_0$ vs. $H_1: \theta \in \omega_1$
- ► H₀ is the null hypothesis and H₁ is the alternative hypothesis
- ► The test is based on a sample X = (X₁,...,X_n)' from the distribution of X; x = (x₁,...,x_n)' are the values of this sample

伺 と く き と く き と

- A **test** of H_0 vs. H_1 is based on the subset of the support of $\mathbf{X}' \ C \subset S$
- ▶ The set *C* is the **critical region** if the decision rule is
 - Reject H_0 if $\mathbf{X} \in C$
 - Don't reject H_0 if $\mathbf{X} \in C'$

向下 イヨト イヨト

- A **Type I** error occurs if H_0 is rejected while it is true
- ► A **Type II** error occurs of *H*₀ isn't rejected while an alternative is true
- The size or significance level of the test is the probability of Type I error:

$$\alpha = \max_{\theta \in \omega_0} P_{\theta}(X \in C)$$

The power function of the test is

$$\gamma_{C}(\theta) = P_{\theta}(X \in C)$$

Subject to test having size α select tests that minimize the probability of Type II error

伺下 イヨト イヨト

- When testing H₀ : θ = θ' vs. H₁ : θ = θ'' the best critical region of size α is defined as C s.t.
 - $P_{\theta'}(X \in C) = \alpha$
 - ► For every subset *A* of the sample space

$$P_{ heta'}(X \in A)
ightarrow P_{ heta''}(X \in C) \ge P_{ heta''}(X \in A)$$

向下 イヨト イヨト

• $X_1, \ldots, X_n \sim f(x; \theta)$ and the likelihood ois

$$L(\theta;\mathbf{x}) = \prod_{i=1}^{n} f(x_i;\theta)$$

- The parameter space $\Omega = \{ heta', heta''\}$, some k > 0
- C is a subset of the sample space s.t.

• Then, C is the best critical region of size α

A test with the critical region C and level α is called unbiased if

1

$$\mathsf{P}_{\theta}(X \in \mathsf{C}) \geq \alpha$$

for all $\theta \in \omega_1$

- C is the critical region of the best test of H₀ : θ = θ' vs. H₁ : θ = θ''
- $\gamma_{\mathcal{C}}(\theta'')$ is the power of the test
- Then $\alpha \leq \gamma_{\mathcal{C}}(\theta'')$

• • = • • = •

► Note that inequality $\frac{L(\theta';\mathbf{x})}{L(\theta'';\mathbf{x})} \le k$ can often be expressed as $u_1(\mathbf{x}; \theta', \theta'') \le c_1$

or

$$u_2(\mathbf{x}; heta', heta'') \geq c_2$$

If the distribution of this new statistic can be found, we determine c₁ from

$$\alpha = P_{H_0}(u_1(\mathbf{X}; \theta', \theta'') \leq c_1)$$

伺 とう ヨン うちょう