STAT 517:Sufficiency

Minimal sufficiency and Ancillary Statistics. Sufficiency, Completeness, and Independence

Prof. Michael Levine

March 1, 2016

Levine STAT 517:Sufficiency

- Not all sufficient statistics created equal...
- So far, we have mostly had a single sufficient statistic for one parameter or two for two parameters (with some exceptions)
- Is it possible to find the minimal sufficient statistics when further reduction in their number is impossible?
- Commonly, for k parameters one can get k minimal sufficient statistics

•
$$X_1, \ldots, X_n \sim Unif(\theta - 1, \theta + 1)$$
 so that

$$f(x;\theta) = \frac{1}{2}I_{(\theta-1,\theta+1)}(x)$$

where $-\infty < \theta < \infty$

The joint pdf is

$$2^{-n}\left\{I_{(\theta-1,\theta+1)}(\min x_i)\right\}\left\{I_{(\theta-1,\theta+1)}(\max x_i)\right\}$$

It is intuitively clear that Y₁ = min x_i and Y₂ = max x_i are joint minimal sufficient statistics

→ 御 → → 注 → → 注 →

æ

Occasional relationship between MLE's and minimal sufficient statistics

- Earlier, we noted that the MLE $\hat{\theta}$ is a function of one or more sufficient statistics, when the latter exists
- If θ̂ is itself a sufficient statistic, then it is a function of others...and so it may be a sufficient statistic
- ► E.g. the MLE $\hat{\theta} = \bar{X}$ of θ in $N(\theta, \sigma^2)$, σ^2 is known, is a minimal sufficient statistic for θ
- The MLE $\hat{\theta}$ of θ in a $P(\theta)$ is a minimal sufficient statistic for θ
- The MLE θ̂ = Y_(n) = max_{1≤i≤n} X_i of θ in a Unif(0, θ) is a minimal sufficient statistic for θ
- ▶ $\hat{\theta}_1 = \bar{X}$ and $\hat{\theta}_2 = \frac{n-1}{n}S^2$ of θ_1 and θ_2 in $N(\theta_1, \theta_2)$ are joint minimal sufficient statistics for θ_1 and θ_2

□ > < E > < E > < E</p>

► A sufficient statistic T(X₁,...,X_n) is called a minimal sufficient statistic if it is a function of any other sufficient statistic

- 4 回 2 - 4 □ 2 - 4 □

æ

When MLE and minimal sufficient statistics have nothing in common with each other: Example I

- Take again $X_1, \ldots, X_n \sim Unif(\theta 1, \theta + 1)$
- Clearly, $\theta 1 < Y_1 < Y_n < \theta + 1$, or

$$Y_n - 1 < \theta < Y_1 + 1$$

► To achieve the maximum possible value of the likelihood function (¹/₂)ⁿ, choose any θ between Y_n − 1 and Y₁ + 1; a common choice as MLE is the average of two endpoints

$$\hat{\theta} = \frac{Y_1 + Y_n}{2}$$

▶ Note that the resulting $\hat{\theta}$ is not even a sufficient statistic...and, therefore, cannot be a minimal sufficient statistic

A more general location family setting I

- The above example is a location family X_i = θ + W_i where W_i ∼ Unif(-1, 1)
- ► Take a general location family with W_i having a pdf f(w) and cdf F(w)
- ► We know that the order statistics Y₁ < Y₂ < ··· < Y_n form a set of sufficient statistics in this case...Can we do better?
- If f(w) is a N(0,1) pdf, X̄ is both the MVUE and MLE of θ; moreover, X̄ is a minimal sufficient statistic
- ► Take f(w) = e^{-w} for w > 0 and zero elsewhere; here, Y₁ is a sufficient statistic and the MLE so Y₁ is a minimal sufficient statistic

▲圖 → ▲ 国 → ▲ 国 →

- On the contrary, for the logistic location family, the MLE of θ exists and is easy to compute...nevertheless, the order statistics are *minimal sufficient* in this case
- If f(w) is a Laplace pdf with the location parameter θ, the median Q₂ is an MLE; however, yet again, the order statistics are *minimal sufficient* in this case
- This latter situation is, in general, more common for location models

- In general, if the minimal sufficient statistic exists (and it almost always does), any complete sufficient statistic is also a minimal sufficient statistic
- The converse is not true, however; from the uniform example, note that

$$\mathbb{E}\left[\frac{Y_n-Y_1}{2}-\frac{n-1}{n+1}\right]=0$$

for all θ

Ancillary statistics

- A quick example for X₁,..., X_n ~ N(θ, 1) the distribution of S² does not depend on θ
- Alternatively, take $X_1, X_2 \sim \Gamma(\alpha, \theta)$ where $\alpha > 0$ is known and recall that $Z = \frac{X_1}{X_1 + X_2}$ has a beta distribution that does not depend on θ ...Thus, Z is an **ancillary** statistic for this sample size 2 w.r.t θ
- In general, select a location family X_i = θ + W_i, i = 1,..., n, where −∞ < θ < ∞ is a parameter and W₁,..., W_n ~ f(w) that doesn't depend on θ
- The common pdf of X_i is f(x − θ)...any location-invariant statistic Z = u(X₁,...,X_n) s.t. Z = u(W₁ + θ,...,W_n + θ) = u(W₁,...,W_n) for all θ is an ancillary statistic
- Sample variance is one such statistic...Sample range R = max X_i - min X_i is another...Finally, the absolute mean deviation from the sample median

- Let X₁,..., X_n ~ f(x; θ) where θ ∈ Ω and Ω is an interval.
 Let Y₁ be a complete and sufficient statistic for θ
- $Z = u(X_1, \ldots, X_n)$ is another statistic
- \blacktriangleright Distribution of Y_1 doesn't depend on $\theta \to Z$ is independent of Y_1

- ▶ If Y_1 is a sufficient statistic and is independent of $Z \rightarrow$ distribution of Z doesn't depend on θ
- If Y₁ is a sufficient and a *complete* statistic, distribution of Z doesn't depend on θ → Y₁ and Z are independent
- The second case is very easily satisfied for regular exponential families

- $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$
- X
 is a sufficient statistic for μ while S² is ancillary for μ (location-invariant)
- Thus, \bar{X} and S^2 are independent

→ 御 → → 注 → → 注 →

- $X_1, \ldots, X_n \sim e^{-(x-\theta)}$ for $\theta < x < \infty$
- $Y_1 = \min_{1 \le i \le n} X_i$ is a complete sufficient statistic for θ
- ► Any location invariant statistic, e.g. S² or the sample range are independent of Y₁

★御★ ★注★ ★注★

- $X_1, X_2 \sim f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}$
- $Y_1 = X_1 + X_2$ is a complete sufficient statistic for θ
- ► Y₁ is independent of the scale invariant statistic X₁/X₁+X₂ that is beta distributed

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- $X_1,\ldots,X_n \sim N(\theta_1,\theta_2)$
- \bar{X} and S^2 are joint sufficient statistics for $heta_1$ and $heta_2$
- Thus, the location and scale invariant statistic

$$Z = \frac{\sum_{i=1}^{n} (X_{i+1} - X_i)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

is independent of both \bar{X} and S^2

同 ト イヨ ト イヨト

When a sufficient statistic is not complete

- An incomplete sufficient statistic may still contain some information about the parameter
- $X_1,\ldots,X_n \sim \frac{1}{2}I_{(\theta-1,\theta+1)}(x)$
- Let $Y_1 = \min X_i$ and $Y_n = \max X_i$; $T_1 = \frac{Y_1 + Y_n}{2}$ is an MLE of θ
- $T_2 = Y_n Y_1$ is an ancillary statistic...however

$$Var(T_1|t_2) = rac{(2-t_2)^2}{12}$$

and so the distribution of T_2 has some information about θ

白 と く ヨ と く ヨ と …