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Motivation

I Not all sufficient statistics created equal...

I So far, we have mostly had a single sufficient statistic for one
parameter or two for two parameters (with some exceptions)

I Is it possible to find the minimal sufficient statistics when
further reduction in their number is impossible?

I Commonly, for k parameters one can get k minimal sufficient
statistics
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Example

I X1, . . . ,Xn ∼ Unif (θ − 1, θ + 1) so that

f (x ; θ) =
1

2
I(θ−1,θ+1)(x)

where −∞ < θ <∞
I The joint pdf is

2−n
{

I(θ−1,θ+1)(min xi )
}{

I(θ−1,θ+1)(max xi )
}

I It is intuitively clear that Y1 = min xi and Y2 = max xi are
joint minimal sufficient statistics
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Occasional relationship between MLE’s and minimal
sufficient statistics

I Earlier, we noted that the MLE θ̂ is a function of one or more
sufficient statistics, when the latter exists

I If θ̂ is itself a sufficient statistic, then it is a function of
others...and so it may be a sufficient statistic

I E.g. the MLE θ̂ = X̄ of θ in N(θ, σ2), σ2 is known, is a
minimal sufficient statistic for θ

I The MLE θ̂ of θ in a P(θ) is a minimal sufficient statistic for θ

I The MLE θ̂ = Y(n) = max1≤i≤n Xi of θ in a Unif (0, θ) is a
minimal sufficient statistic for θ

I θ̂1 = X̄ and θ̂2 = n−1
n S2 of θ1 and θ2 in N(θ1, θ2) are joint

minimal sufficient statistics for θ1 and θ2
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Formal definition

I A sufficient statistic T (X1, . . . ,Xn) is called a minimal
sufficient statistic if it is a function of any other sufficient
statistic
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When MLE and minimal sufficient statistics have nothing
in common with each other: Example I

I Take again X1, . . . ,Xn ∼ Unif (θ − 1, θ + 1)

I Clearly, θ − 1 < Y1 < Yn < θ + 1, or

Yn − 1 < θ < Y1 + 1

I To achieve the maximum possible value of the likelihood
function

(
1
2

)n
, choose any θ between Yn − 1 and Y1 + 1; a

common choice as MLE is the average of two endpoints

θ̂ =
Y1 + Yn

2

I Note that the resulting θ̂ is not even a sufficient statistic...and,
therefore, cannot be a minimal sufficient statistic
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A more general location family setting I

I The above example is a location family Xi = θ + Wi where
Wi ∼ Unif (−1, 1)

I Take a general location family with Wi having a pdf f (w) and
cdf F (w)

I We know that the order statistics Y1 < Y2 < · · · < Yn form a
set of sufficient statistics in this case...Can we do better?

I If f (w) is a N(0, 1) pdf, X̄ is both the MVUE and MLE of θ;
moreover, X̄ is a minimal sufficient statistic

I Take f (w) = e−w for w > 0 and zero elsewhere; here, Y1 is a
sufficient statistic and the MLE - so Y1 is a minimal sufficient
statistic
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A more general location family setting II

I On the contrary, for the logistic location family, the MLE of θ
exists and is easy to compute...nevertheless, the order
statistics are minimal sufficient in this case

I If f (w) is a Laplace pdf with the location parameter θ, the
median Q2 is an MLE; however, yet again, the order statistics
are minimal sufficient in this case

I This latter situation is, in general, more common for location
models
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Minimal sufficiency and completeness

I In general, if the minimal sufficient statistic exists (and it
almost always does), any complete sufficient statistic is also a
minimal sufficient statistic

I The converse is not true, however; from the uniform example,
note that

E
[

Yn − Y1

2
− n − 1

n + 1

]
= 0

for all θ
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Ancillary statistics

I A quick example - for X1, . . . ,Xn ∼ N(θ, 1) the distribution of
S2 does not depend on θ

I Alternatively, take X1,X2 ∼ Γ(α, θ) where α > 0 is known and
recall that Z = X1

X1+X2
has a beta distribution that does not

depend on θ...Thus, Z is an ancillary statistic for this sample
size 2 w.r.t θ

I In general, select a location family Xi = θ + Wi , i = 1, . . . , n,
where −∞ < θ <∞ is a parameter and W1, . . . ,Wn ∼ f (w)
that doesn’t depend on θ

I The common pdf of Xi is f (x − θ)...any location-invariant
statistic Z = u(X1, . . . ,Xn) s.t.
Z = u(W1 + θ, . . . ,Wn + θ) = u(W1, . . . ,Wn) for all θ is an
ancillary statistic

I Sample variance is one such statistic...Sample range
R = max Xi −min Xi is another...Finally, the absolute mean
deviation from the sample median

1

n

n∑
i=1

|Xi −med(Xi )|

is also in this group
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Basu’s theorem

I Let X1, . . . ,Xn ∼ f (x ; θ) where θ ∈ Ω and Ω is an interval.
Let Y1 be a complete and sufficient statistic for θ

I Z = u(X1, . . . ,Xn) is another statistic

I Distribution of Y1 doesn’t depend on θ → Z is independent of
Y1
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Main Ideas of Basu’s Theorem

I If Y1 is a sufficient statistic and is independent of Z →
distribution of Z doesn’t depend on θ

I If Y1 is a sufficient and a complete statistic, distribution of Z
doesn’t depend on θ → Y1 and Z are independent

I The second case is very easily satisfied for regular exponential
families
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Example

I X1, . . . ,Xn ∼ N(µ, σ2)

I X̄ is a sufficient statistic for µ while S2 is ancillary for µ
(location-invariant)

I Thus, X̄ and S2 are independent
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Example

I X1, . . . ,Xn ∼ e−(x−θ) for θ < x <∞
I Y1 = min1≤i≤n Xi is a complete sufficient statistic for θ

I Any location invariant statistic, e.g. S2 or the sample range
are independent of Y1
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Example

I X1,X2 ∼ f (x ; θ) = 1
θe−x/θ

I Y1 = X1 + X2 is a complete sufficient statistic for θ

I Y1 is independent of the scale invariant statistic X1
X1+X2

that is
beta distributed

Levine STAT 517:Sufficiency



Example

I X1, . . . ,Xn ∼ N(θ1, θ2)

I X̄ and S2 are joint sufficient statistics for θ1 and θ2
I Thus, the location and scale invariant statistic

Z =

∑n
i=1(Xi+1 − Xi )

2∑n
i=1(Xi − X̄ )2

is independent of both X̄ and S2
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When a sufficient statistic is not complete

I An incomplete sufficient statistic may still contain some
information about the parameter

I X1, . . . ,Xn ∼ 1
2 I(θ−1,θ+1)(x)

I Let Y1 = min Xi and Yn = max Xi ; T1 = Y1+Yn
2 is an MLE of

θ

I T2 = Yn − Y1 is an ancillary statistic...however

Var(T1|t2) =
(2− t2)2

12

and so the distribution of T2 has some information about θ
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