STAT 517:Sufficiency

Sufficient statistics

Prof. Michael Levine

January 6, 2015

A⊒ ▶ ∢ ∃

-≣->

- Suppose you have $X_1, \ldots, X_n \sim f(x; \theta)$
- ► What if you were only given X
 and S² how much do you know about the data?
- What about an arbitrary statistic $Y = u(X_1, \ldots, X_n)$?

• We are looking for $Y_1 = u_1(X_1, \ldots, X_n)$ such that, given

$$(X_1,\ldots,X_n) \in \{(x_1,\ldots,x_n) : u_1(x_1,\ldots,x_n) = y_1\}$$

the conditional probability of X_1, \ldots, X_n does not depend on θ

- Thus, when Y₁ = y₁ is fixed, the distribution of any other Y₂ = u₂(X₁,...,X_n) does not depend on θ
- It is impossible to use Y₂ given Y₁ = y₁, to make any inference about θ...Y₁ exhausts the information about θ that is contained in the sample

個 と く ヨ と く ヨ と …

- Let X_1, \ldots, X_n be Bernoulli with the parameter $0 < \theta < 1$
- The pmf is f(x; θ) = θ^x(1 − θ)^{1−x} when x = 0, 1 and zero otherwise

•
$$Y_1 = \sum_{i=1}^n X_i$$
 is $Bin(n, \theta)$

► Its pdf is $f_{Y_1}(y_1; \theta) = {n \choose y_1} \theta^{y_1} (1 - \theta)^{n-y_1}$ if $y_1 = 0, 1, ..., n$ and zero otherwise

同 と く き と く き と

Example

- Clearly, $P(X_1 = x_1, ..., X_n = x_n | Y_1 = y_1) = P(A|B)$ is zero if $y_1 \neq \sum_{i=1}^n x_i$
- Otherwise, $A \subset B$ and P(A|B) = P(A)/P(B)
- Thus, P(A|B) becomes

$$\frac{\theta^{x_1}(1-\theta)^{1-x_1}\cdots\theta^{x_n}(1-\theta)^{1-x_n}}{\binom{n}{y_1}\theta^{y_1}(1-\theta)^{n-y_1}} = \frac{1}{\binom{n}{\sum_{i=1}^n x_i}}$$

 Thus, the ratio above (conditional probability) does not depend on θ

米部 シネヨシネヨシ 三日

- $X_1, \ldots, X_n \sim f(x; \theta)$ where $f(x; \theta)$ is either pdf or pmf
- $Y_1 = u_1(X_1, \ldots, X_n)$ has the distribution $f_{Y_1}(y_1; \theta)$
- Y_1 is a sufficient statistic for θ iff

$$\frac{\prod_{i=1}^n f(x_i;\theta)}{f_{Y_1}[u_1(x_1,\ldots,x_n);\theta]} = H(x_1,\ldots,x_n)$$

does not depend on θ

- In the pmf case, this clearly implies that the conditional distribution of X₁ = x₁,..., X_n = x_n given Y₁ = y₁ does not depend on θ
- In the continuous case, we still use the definition regardless

白 と く ヨ と く ヨ と …

- ► Note that the definition of a sufficient statistic does not require that X₁,..., X_n be independent
- ▶ In general, $Y_1 = u_1(X_1, ..., X_n)$ is a sufficient statistic iff

$$\frac{f(x_1,\ldots,x_n;\theta)}{f_{Y_1}[u_1(x_1,\ldots,x_n);\theta]}=H(x_1,\ldots,x_n)$$

does not depend upon $\boldsymbol{\theta}$

► Here, f(x₁,...,x_n; θ) is simply the joint pdf or pmf of X₁,...,X_n

個人 くほん くほん しき

Example

► Y₁ < Y₂ < ... < Y_n the order statistics of a sample size n from the shifted exponential distribution

$$f(x;\theta) = e^{-(x-\theta)}I_{(\theta,\infty)}(x)$$

• The pdf of
$$Y_1 = \min_i X_i$$
 is

$$f_{Y_1}(y_1;\theta) = ne^{-n(y_1-\theta)}I_{(\theta,\infty)}(y_1)$$

The ratio is

$$\frac{\prod_{i=1}^{n} e^{-(x_i-\theta)} I_{\theta,\infty}(x_i)}{n e^{-n(\min x_i-\theta)} I_{(\theta,\infty)}(\min x_i)}$$
$$= \frac{e^{-x_1-x_2-\cdots-x_n}}{n e^{-n\min x_i}}$$

• Clearly, Y_1 is a sufficient statistic for θ

|田・ (日) (日)

æ

□ > 《 E > 《 E >

æ

Example

- ► Let $X_1, ..., X_n \sim N(\theta, \sigma^2)$, $-\infty < \theta < \infty$, with the known $\sigma^2 > 0$
- Verify that $\sum_{i=1}^{n} (x_i \theta)^2 = n(\bar{x} \theta)^2 + \sum_{i=1}^{n} (x_i \bar{x})^2$
- Factorize the joint pdf to find out that

$$f(x_1,\ldots,x_n;\theta)=e^{[-n(\bar{x}-\theta)^2/2\sigma^2]}\times k_2(x_1,\ldots,x_n)$$

where $k_2(x_1, \ldots, x_n)$ does not depend on θ

- Thus, \bar{X} is a sufficient statistic for θ
- ► Note that we could have used the definition of a sufficient statistic directly here since we know that X̄ ~ N(θ, σ²/n)

白 と く ヨ と く ヨ と …

- Now, the definition is not useful at all...let X₁,...,X_n ~ f(x; θ) with f(x; θ) = θx^{θ−1} 0 < x < 1, and zero otherwise, with θ > 0
- The distribution above is a beta distribution with one parameter fixed...
- The joint pdf is

$$f(x_1,\ldots,x_n;\theta) = \left[\theta^n\left(\prod_{i=1}^n x_i\right)^\theta\right]\left(\frac{1}{\prod_{i=1}^n x_i}\right)$$

• By factorization theorem, $\prod_{i=1}^{n} X_i$ is a sufficient statistic for θ

▲圖 → ▲ 国 → ▲ 国 →