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The idea of data summary

I Suppose you have X1, . . . ,Xn ∼ f (x ; θ)

I What if you were only given X̄ and S2 - how much do you
know about the data?

I What about an arbitrary statistic Y = u(X1, . . . ,Xn)?
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The idea

I We are looking for Y1 = u1(X1, . . . ,Xn) such that, given

(X1, . . . ,Xn) ∈ {(x1, . . . , xn) : u1(x1, . . . , xn) = y1}

the conditional probability of X1, . . . ,Xn does not depend on θ

I Thus, when Y1 = y1 is fixed, the distribution of any other
Y2 = u2(X1, . . . ,Xn) does not depend on θ

I It is impossible to use Y2 given Y1 = y1, to make any
inference about θ...Y1 exhausts the information about θ that
is contained in the sample
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Example

I Let X1, . . . ,Xn be Bernoulli with the parameter 0 < θ < 1

I The pmf is f (x ; θ) = θx(1− θ)1−x when x = 0, 1 and zero
otherwise

I Y1 =
∑n

i=1 Xi is Bin(n, θ)

I Its pdf is fY1(y1; θ) =
( n
y1

)
θy1(1− θ)n−y1 if y1 = 0, 1, . . . , n

and zero otherwise
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Example

I Clearly, P(X1 = x1, . . . ,Xn = xn|Y1 = y1) = P(A|B) is zero if
y1 6=

∑n
i=1 xi

I Otherwise, A ⊂ B and P(A|B) = P(A)/P(B)

I Thus, P(A|B) becomes

θx1(1− θ)1−x1 · · · θxn(1− θ)1−xn( n
y1

)
θy1(1− θ)n−y1

=
1( n∑n
i=1 xi

)
I Thus, the ratio above (conditional probability) does not

depend on θ
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More formal definition

I X1, . . . ,Xn ∼ f (x ; θ) where f (x ; θ) is either pdf or pmf

I Y1 = u1(X1, . . . ,Xn) has the distribution fY1(y1; θ)

I Y1 is a sufficient statistic for θ iff∏n
i=1 f (xi ; θ)

fY1 [u1(x1, . . . , xn); θ]
= H(x1, . . . , xn)

does not depend on θ

I In the pmf case, this clearly implies that the conditional
distribution of X1 = x1, . . . ,Xn = xn given Y1 = y1 does not
depend on θ

I In the continuous case, we still use the definition regardless
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Remark

I Note that the definition of a sufficient statistic does not
require that X1, . . . ,Xn be independent

I In general, Y1 = u1(X1, . . . ,Xn) is a sufficient statistic iff

f (x1, . . . , xn; θ)

fY1 [u1(x1, . . . , xn); θ]
= H(x1, . . . , xn)

does not depend upon θ

I Here, f (x1, . . . , xn; θ) is simply the joint pdf or pmf of
X1, . . . ,Xn
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Example

I Y1 < Y2 < . . . < Yn the order statistics of a sample size n
from the shifted exponential distribution

f (x ; θ) = e−(x−θ)I(θ,∞)(x)

I The pdf of Y1 = mini Xi is

fY1(y1; θ) = ne−n(y1−θ)I(θ,∞)(y1)

I The ratio is ∏n
i=1 e

−(xi−θ)Iθ,∞(xi )

ne−n(min xi−θ)I(θ,∞)(min xi )

=
e−x1−x2−···−xn

ne−n min xi

I Clearly, Y1 is a sufficient statistic for θ
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Factorization Theorem - due to J. Neyman

I Let X1, . . . ,Xn ∼ f (x ; θ)

I Y1 = u1(X1, . . . ,Xn) is a sufficient statistic for θ iff

f (x1; θ)f (x2; θ) · · · f (xn; θ) = k1[u1(x1, x2, . . . , xn); θ]k2(x1, . . . , xn)

where k2(x1, . . . , xn) does not depend on θ
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Example

I Let X1, . . . ,Xn ∼ N(θ, σ2), −∞ < θ <∞, with the known
σ2 > 0

I Verify that
∑n

i=1(xi − θ)2 = n(x̄ − θ)2 +
∑n

i=1(xi − x̄)2

I Factorize the joint pdf to find out that

f (x1, . . . , xn; θ) = e [−n(x̄−θ)2/2σ2] × k2(x1, . . . , xn)

where k2(x1, . . . , xn) does not depend on θ

I Thus, X̄ is a sufficient statistic for θ

I Note that we could have used the definition of a sufficient
statistic directly here since we know that X̄ ∼ N

(
θ, σ

2

n

)
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Example

I Now, the definition is not useful at all...let
X1, . . . ,Xn ∼ f (x ; θ) with f (x ; θ) = θxθ−1 0 < x < 1, and
zero otherwise, with θ > 0

I The distribution above is a beta distribution with one
parameter fixed...

I The joint pdf is

f (x1, . . . , xn; θ) =

θn( n∏
i=1

xi

)θ( 1∏n
i=1 xi

)

I By factorization theorem,
∏n

i=1 Xi is a sufficient statistic for θ
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