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Minimum variance unbiased estimators(MVUE)

I So far, we considered consistency and unbiasedness

I Recall that MLE’s are not always unbiased although they tend
to be asymptotically unbiased under a set of regularity
conditions

I The model :X1, . . . ,Xn ∼ f (x ; θ) for θ ∈ Ω

I For a given n > 0, Y = u(X1, . . . ,Xn) is a minimum
variance unbiased estimator (MVUE) of θ if Y is unbiased
and the variance of Y is less than or equal to the variance of
every other unbiased estimator of θ
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Example

I Let X1, . . . ,Xn ∼ N(θ, σ2)

I Since X̄ ∼ N
(
θ, σ

2

n

)
X̄ is an unbiased estimator of θ...but so

it X1

I Clearly, Var X̄ < Var X1 for any n > 1...but X̄ is not a
minimum variance unbiased estimator!!
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Decision rules and loss functions

I Any function δ(Y ) is a decision function or a decision rule

I A specific values δ(y) is a decision

I To measure how different δ(y) is from θ, use the loss
function L(θ, δ(y))

I The loss function is random...better to use the risk function

R(θ, δ) = E {L(θ, δ(y))} =

∫ ∞
−∞

L(θ, δ(y))fY (y ; θ) dy

I Problem: uniform minimization of risk function over all
possible θ may be impossible
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Example

I Model: X1, . . . ,Xn ∼ N(θ, 1) and let Y = X̄

I Choose the mean squared error loss L(θ, δ(y)) = [θ− δ(y)]2

I How to choose between δ(y) = y and δ2(y) = 0? The risk
functions are

R(θ, δ1) = E [(θ − Y )]2 =
1

n

and
R(θ, δ1) = E [(θ − 0)2] = θ2
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Example

I If θ = 0, then the 2nd choice is better...but if θ is far from
zero, δ2 = 0 is a bad choice!

I If considering only δ(y) : E [(δ(Y )] = 0, then δ2 is not allowed

I Under the latter restriction, we are looking for an MVUE
which is, actually, X̄ ( to be shown later)

I Yet another possible alternative is to use the minimax
criterion: δ0(y) is a minimax decision function if, for all
θ ∈ Θ,

max
θ

R[θ, δ0(y)] ≤ max
θ

R[θ, δ(y)]

for any other decision function δ(y)

I Note R(θ, δ2) = θ2 which is unbounded if −∞ < θ <∞ and
so has to be excluded according to the minimax criterion

I Actually ( not proven by us here..) δ1 is the best choice
according to the minimax decision function
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Remarks

I Another possibility is simply to define δ(X1, . . . ,Xn) without
using a statistic Y - will not do it here

I Besides the squared error loss function, can also consider e.g.
the absolute-error loss function

L(θ, δ) =

{
0 |θ − δ| ≤ a
b |θ − δ| > a

for some a, b > 0

I This is sometimes called the goalpost loss function
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Likelihood principle

I A scientist A observes 10 independent trials with prob. of
success 0 < θ < 1 and has only 1 success

I A scientist B observes all trials until the first success which
happens to be the 10th

I First model: Y ∼ B(10, θ) with observed number of successes
y = 1; the second model is g(z) = (1− θ)z−1θ with z = 10

I A sensible estimate in both cases is the relative frequency:
θ̂ = y

n = 1
z = 1

10

I θ̂ is unbiased in the first case but not in the second!
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Likelihood principle

I The first likelihood is

L1(θ) =

(
10

y

)
θy (1− θ)10−y

I The second likelihood is

L2(θ) = (1− θ)z−1θ

I When z = 10 and y = 1, both are proportional to
(1− θ)9θ...and both give the same answer θ̂ = 1

10

I To a true believer in the likelihood principle the fact that
one of them is unbiased does not matter!
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