STAT 517:Maximum Likelihood Methods Lecture 9: Multiparameter case: Testing

Prof. Michael Levine

March 24, 2015

Levine STAT 517:Maximum Likelihood Methods

-

Framework

- $X_1, \ldots, X_n \sim f(x; \theta)$ for $\theta \subset \Omega \in \mathbb{R}^p$
- The hypotheses of interest are: H₀ : θ ∈ ω vs. H₁ : θ ∈ Ω ∩ ω^c
- In the above, ω ∈ Ω is defined in terms of 0 < q ≤ p independent constraints of the form g₁(θ) = a₁, ..., g_q(θ) = a_q. Moreover, the functions g₁,..., g_q must be continuously differentiable
- For a p-q-dimensional space ω , we define the likelihood ratio

$$\Lambda = \frac{\max_{\boldsymbol{\theta} \in \omega} L(\boldsymbol{\theta})}{\max_{\boldsymbol{\theta} \in \Omega} L(\boldsymbol{\theta})}$$

- ► As before, large (close to 1) values of A suggest that H₀ is true while small ones are the evidence in favor of H₁
- For the significance level α the decision rule is to reject H₀ if Λ ≤ c where c is the solution of α = max_{θ∈ω} P_θ[Λ ≤ c]

- ▶ Let $\hat{\theta}$ be the MLE estimator of θ over Ω and $\hat{\theta_0}$ the MLE over ω
- Define $L(\hat{\Omega}) = L(\hat{\theta})$ and $L(\hat{\omega}) = L(\hat{\theta}_0)$
- The likelihood ratio test (LRT) statistic is

$$\Lambda = \frac{L(\hat{\omega})}{L(\hat{\Omega})}$$

• The MLE's are $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

- (日) (三) (三) (三) (三)

- Possible country of origin: UK or France
- Choice of alcohol: beer, brandy/cognac, whisky, wine

	The distribution is	State	beer	brandy	whisky	wine
		France	10%	20%	10%	60%
		UK	50%	10%	20%	20%

• H_0 : France vs H_1 : UK with $\alpha = 0.25$

• There are four parameters $\theta_1 = P(beer)$, $\theta_2 = P(brandy)$ etc.

• E •

- Thus, the hypotheses are: $H_0: \theta_1 = 0.1, \theta_2 = 0.2, \theta_3 = 0.1, \theta_4 = 0.6$ vs. $H_1: \theta_1 = 0.5, \theta_2 = 0.1, \theta_3 = 0.2, \theta_4 = 0.2$
- Possible values of the likelihood ratio statistic are 5 for beer, 0.5 for brandy, 2 for whiskey, and 1/3 for wine

通 とう ほう うちょう

Example

Confirm that the LRT statistic is

$$\Lambda = \left(\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (X_i - \mu_0)^2}\right)^{n/2}$$

• $\Lambda \leq c$ is equivalent to $\Lambda^{-n/2} \geq c'$; so we have

$$1 + \frac{n(\bar{X} - \mu_0)^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \ge c'$$

or

$$\left\{\frac{\sqrt{n}(\bar{X}-\mu_{0})}{\sqrt{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}/(n-1)}}\right\}^{2} = T^{2} \geq c^{''} = (c^{'}-1)(n-1)$$

▶ The usual decision rule is, then, reject H_0 if $|T| \ge c^*$ where $\alpha = P_{H_0}[|T| \ge c^*]$; this is the two-sided version of the *t*-test