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Framework

I X1, . . . ,Xn ∼ f (x ;θ) for θ ⊂ Ω ∈ Rp

I The likelihood function is

L(θ) =
n∏

i=1

f (xi ;θ)

I The log-likelihood function is

l(θ) = log L(θ) =
n∑

i=1

log f (xi ;θ)

I As before, with probability going to 1, L(θ) is maximized at
the true value of θ

I An MLE θ̂ is a maximizer of L(θ) or a solution of the normal
equation

∂l(θ)

∂θ
= 0

I Again, as before, the MLE of η = g(θ) is θ̂ = g(θ̂)
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Example

I Take X1, . . . ,Xn ∼ N(µ, σ2) with θ = (µ, σ2)
′

and
Ω = (−∞,∞)× (0,∞)

I The system of estimating equations is now

∂l

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0

and
∂l

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0

I Solutions are µ̂ = X̄ and σ̂ =
√

1
n

∑n
i=1(Xi − X̄ )2; Moreover,

the MLE of σ2 is 1
n

∑n
i=1(Xi − X̄ )2

I These estimators are both consistent with µ being unbiased
and σ̂2 being asymptotically unbiased
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Example

I Laplace family FX (x) = 1
2be
{−|x−a|/b} for −∞ < x <∞

I The parameter space is Ω = {(a, b) : −∞ < a <∞, b > 0}
I The estimating equation for a is

∂l(a, b)

∂a
=

1

b
sgn{xi − a}

and the MLE of a is Q2 = med{X1, . . . ,Xn} regardless of the
value of b

I Simultaneous solution of both equations produces also the
MLE of b as b̂ = 1

n

∑n
i=1 |xi − a|
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Fisher information

I The score function is the gradient ∇ log f (x ;θ) while the
Fisher information is now a p × p matrix

I (θ) = Cov (∇ log f (X ;θ))

I Using regularity conditions, it is easy to verify that

Ijk = E
[
∂

∂θj
log f (X ;θ)

]
= −E

[
∂2

∂θj∂θk
log f (X ;θ)

]
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Rao-Cramer lower bound

I For a sample X1, . . . ,Xn the gradient is
∇ log L(θ; X) =

∑n
i=1∇ log f (Xi ;θ) and the

Cov (∇ log L(θ; X)) = nI (θ)

I The diagonal entries of I (θ) are

Iii (θ) = Var

[
∂ log f (X;θ)

∂θi

]
= −E

[
∂2

∂θ2i
log f (X ;θ)

]
I If Yj = uj(X1, . . . ,Xn) is an unbiased estimator of θj ,

Var Yj ≥
1

n
[I−1(θ)]jj

I The estimator is efficient if its variance attains this lower
bound
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Example

I X ∼ N(µ, σ2) with both µ and σ2 unknown

I Second partial derivatives produce I11 = 1
σ2

I On the other hand, the MLE of µ is X̄ and so X̄ is an efficient
estimator of µ for finite samples

I Note that the Fisher’s information for µ does not depend on
µ!
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Location-Scale Family

I Let X1, . . . ,Xn with pdf fX (x) = 1
b f
(
x−a
b

)
where (a, b) ∈ Ω

with Ω = {(a, b) : −∞ < a <∞, b > 0}
I It is not hard to realize that

Xi = a + bei

where ei are iid with pdf f (z)

I Verify that

I11 =
1

b2

∫ ∞
−∞

[
f
′
(z)

f (z)

]2
f (z) dz

and so the information on the location parameter never
depends on the value of the parameter a itself

I Verify that the off-diagonal entries of the information matrix
are 0 if f (z) is symmetric around 0
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Multi(tri)nomial case example

I Snake’s head flower is a very nice garden flower grown in
many European countries...it comes in three color morphs:
violet, white, pink

I Let the total number of flowers observed be n, with ni in each
of the three categories; respective probabilities are pi ,
i = 1, 2, 3

I The trinomial likelihood is

l(θ) = n1 log p1 + n2 log p2 + (n − n1 − n2) log(1− (p1 + p2)

I The score vector is(
n1
p1
− n − n1 − n2

1− p1 − p2
,
n2
p2
− n − n1 − n2

1− p1 − p2

)′

I Since each marginal Nj ∼ b(n, pj) it is easy to verify that the
expectation of the score vector is (0, 0)

′
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Multi(tri)nomial case example

I Verify that

I (θ)jj =
npj
p2j

+
n(1− p1 − p2)

(1− p1 − p2)2

and

I (θ)12 =
n(1− p1 − p2)

(1− p1 − p2)2

I The information matrix is(
1
p1

+ 1
p3

1
p3

1
p3

1
p1

+ 1
p3

)
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Multi(tri)nomial case example

I Let xij be the record of ith observation, i = 1, . . . , n

I Verify that MLE p̂h =
∑n

i=1 xij
n with variances nph(1− ph),

h = 1, . . . , k − 1 - MLE’s are efficient in this case
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Consistency and asymptotic normality of MLE

I Let X1, . . . ,Xn be iid with pdf f (x ;θ) for θ ∈ Ω. All of the
regularity conditions hold Then,

1. The likelihood equation

∂

∂θ
l(θ) = 0

has a solution θ̂n s.t. θ̂n
p→ θ

2. For any sequence that satisfies (1),

√
n(θ̂n − θ)

D→ Np(0, I−1(θ))
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Practical corollary

I θ̂n are asymptotically efficient estimators in the sense that for
j = 1, . . . , p

√
n(θ̂n,j − θj)

D→ N(0, [I−1(θ)]jj)
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