STAT 517: Maximum Likelihood Methods Lecture 9: Multiparameter case: Testing

Prof. Michael Levine

February 9, 2016

Levine STAT 517:Maximum Likelihood Methods

Framework

•
$$X_1, \ldots, X_n \sim f(x; \boldsymbol{ heta})$$
 for $\boldsymbol{ heta} \subset \Omega \in \mathbb{R}^p$

The likelihood function is

$$L(\boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \boldsymbol{\theta})$$

The log-likelihood function is

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$$

- ► As before, with probability going to 1, $L(\theta)$ is maximized at the true value of θ
- An MLE $\hat{\theta}$ is a maximizer of $L(\theta)$ or a solution of the normal equation

$$\frac{\partial I(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

• Again, as before, the MLE of $\eta = g(heta)$ is $\hat{ heta} = g(\hat{ heta})$

Example

- ► Take $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with $\theta = (\mu, \sigma^2)'$ and $\Omega = (-\infty, \infty) \times (0, \infty)$
- The system of estimating equations is now

$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

and

$$\frac{\partial I}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

- Solutions are μ̂ = X̄ and σ̂ = √(1/n)∑_{i=1}ⁿ(X_i − X̄)²; Moreover, the MLE of σ² is 1/n)∑_{i=1}ⁿ(X_i − X̄)²
- These estimators are both consistent with μ being unbiased and ô² being asymptotically unbiased

- Laplace family $F_X(x) = \frac{1}{2b} e^{\{-|x-a|/b\}}$ for $-\infty < x < \infty$
- The parameter space is Ω = {(a, b) : −∞ < a < ∞, b > 0}
- The estimating equation for a is

$$rac{\partial l(a,b)}{\partial a} = rac{1}{b} sgn\{x_i - a\}$$

and the MLE of a is $Q_2 = med\{X_1, \ldots, X_n\}$ regardless of the value of b

Simultaneous solution of *both* equations produces also the MLE of *b* as b̂ = 1/n ∑_{i=1}ⁿ |x_i − a|

向下 イヨト イヨト

The score function is the gradient ∇ log f(x; θ) while the Fisher information is now a p × p matrix

$$I(\theta) = Cov\left(\nabla \log f(X; \theta)\right)$$

Using regularity conditions, it is easy to verify that

$$I_{jk} = \mathbb{E}\left[\frac{\partial}{\partial \theta_j} \log f(X; \boldsymbol{\theta})\right] = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(X; \boldsymbol{\theta})\right]$$

Image: A image: A

Rao-Cramer lower bound

For a sample
$$X_1, \ldots, X_n$$
 the gradient is
 $\nabla \log L(\theta; \mathbf{X}) = \sum_{i=1}^n \nabla \log f(X_i; \theta)$ and the
 $Cov \ (\nabla \log L(\theta; \mathbf{X})) = nI(\theta)$

• The diagonal entries of $I(\theta)$ are

$$I_{ii}(\boldsymbol{\theta}) = Var\left[\frac{\partial \log f(\mathbf{X}; \boldsymbol{\theta})}{\partial \theta_i}\right] = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta_i^2} \log f(X; \boldsymbol{\theta})\right]$$

• If $Y_j = u_j(X_1, \ldots, X_n)$ is an unbiased estimator of θ_j ,

Var
$$Y_j \geq rac{1}{n}[I^{-1}(oldsymbol{ heta})]_{jj}$$

 The estimator is efficient if its variance attains this lower bound

回 と く ヨ と く ヨ と

- $X \sim \textit{N}(\mu, \sigma^2)$ with both μ and σ^2 unknown
- Second partial derivatives produce $I_{11} = \frac{1}{\sigma^2}$
- ► On the other hand, the MLE of µ is X
 and so X
 is an efficient estimator of µ for finite samples
- ▶ Note that the Fisher's information for μ does not depend on $\mu!$

Image: A image: A

Location-Scale Family

- ► Let $X_1, ..., X_n$ with pdf $f_X(x) = \frac{1}{b}f\left(\frac{x-a}{b}\right)$ where $(a, b) \in \Omega$ with $\Omega = \{(a, b) : -\infty < a < \infty, b > 0\}$
- It is not hard to realize that

$$X_i = a + be_i$$

where e_i are iid with pdf f(z)

Verify that

$$I_{11} = \frac{1}{b^2} \int_{-\infty}^{\infty} \left[\frac{f'(z)}{f(z)} \right]^2 f(z) dz$$

and so the information on the location parameter *never* depends on the value of the parameter *a* itself

Verify that the off-diagonal entries of the information matrix are 0 if f(z) is symmetric around 0

伺下 イヨト イヨト

Multi(tri)nomial case example

- Snake's head flower is a very nice garden flower grown in many European countries...it comes in three color morphs: violet, white, pink
- Let the total number of flowers observed be n, with n_i in each of the three categories; respective probabilities are p_i, i = 1, 2, 3
- The trinomial likelihood is

$$I(\theta) = n_1 \log p_1 + n_2 \log p_2 + (n - n_1 - n_2) \log(1 - (p_1 + p_2))$$

The score vector is

$$\left(\frac{n_1}{p_1} - \frac{n - n_1 - n_2}{1 - p_1 - p_2}, \frac{n_2}{p_2} - \frac{n - n_1 - n_2}{1 - p_1 - p_2}\right)'$$

Since each marginal N_j ∼ b(n, p_j) it is easy to verify that the expectation of the score vector is (0, 0)'

Verify that

$$I(\theta)_{jj} = rac{np_j}{p_j^2} + rac{n(1-p_1-p_2)}{(1-p_1-p_2)^2}$$

and

$$I(\theta)_{12} = \frac{n(1-p_1-p_2)}{(1-p_1-p_2)^2}$$

The information matrix is

$$\left(\begin{array}{ccc} \frac{1}{p_1} + \frac{1}{p_3} & \frac{1}{p_3} \\ \frac{1}{p_3} & \frac{1}{p_1} + \frac{1}{p_3} \end{array}\right)$$

★ E ► ★ E ►

æ

- Let x_{ij} be the record of *i*th observation, i = 1, ..., n
- ▶ Verify that MLE $\hat{p}_h = \frac{\sum_{i=1}^n x_{ij}}{n}$ with variances $np_h(1 p_h)$, h = 1, ..., k 1 MLE's are efficient in this case

Consistency and asymptotic normality of MLE

- Let X₁,..., X_n be iid with pdf f(x; θ) for θ ∈ Ω. All of the regularity conditions hold Then,
 - 1. The likelihood equation

$$\frac{\partial}{\partial \boldsymbol{\theta}} I(\boldsymbol{\theta}) = 0$$

has a solution $\hat{\theta}_n$ s.t. $\hat{\theta}_n \xrightarrow{p} \theta$ 2. For any sequence that satisfies (1),

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \stackrel{D}{\rightarrow} N_p(\mathbf{0}, I^{-1}(\boldsymbol{\theta}))$$

 $\blacktriangleright \ \hat{\boldsymbol{\theta}}_n$ are asymptotically efficient estimators in the sense that for $j=1,\ldots,p$

$$\sqrt{n}(\hat{\theta}_{n,j}-\theta_j) \stackrel{D}{\rightarrow} N(0, [I^{-1}(\theta)]_{jj})$$

回 と く ヨ と く ヨ と

æ