STAT 517: Statistical Inference Lecture 8: Maximum Likelihood Tests

Prof. Michael Levine

March 5, 2015

Levine STAT 517: Statistical Inference

∢ ≣ ≯

- ► The model: observations $X_1, \ldots, X_n \sim f(x, \theta)$ with $\theta \in \Omega$
- Hypotheses: $H_0: \theta = \theta_0$ vs. $H_a: \theta \neq \theta_0$
- The likelihood function is L(θ) = Πⁿ_{i=1} f(X_i; θ) and the log-likelihood is I(θ) = Σⁿ_{i=1} log f(X_i; θ)
- Keep in mind that asymptotically L(θ₀) is the maximum value of L(θ)

▲圖▶ ▲屋▶ ▲屋▶ ---

Observe that the ratio

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})}$$

- A is always less than 1 but close to it if H_0 is true...
- ► Decision rule: reject H₀ at the level of significance α if Λ ≤ c where

$$\alpha = P_{\theta_0}[\Lambda \le c]$$

The resulting test is called the likelihood ratio test or LRT

向下 イヨト イヨト

Example

- Take $f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}$ an exponential pdf, $0 < \theta < \infty$
- We know that $\hat{ heta} = \bar{X}$ is the MLE and $L(heta) = heta^{-n} e^{-rac{n}{ heta} \bar{X}}$
- ▶ The likelihood ratio has the form (up to e^n) of $g(t) = t^n e^{-nt}$ where $t = \frac{\bar{X}}{\theta_0} > 0$
- ► Easy to verify that g'(1) = 0 and t = 1 is an actual maximum; thus, g(t) ≤ c iff t < c₁ or t ≥ c₂
- Under H_0 , $\frac{2}{\theta_0} \sum_{i=1}^n X_i \sim \chi^2_{2n}$ and so the decision rule is to reject H_0 if

$$\frac{2}{\theta_0}\sum_{i=1}^n X_i \le \chi^2_{2n,1-\alpha/2}$$

or

$$\frac{2}{\theta_0}\sum_{i=1}^n X_i \ge \chi^2_{2n,\alpha/2}$$

白 と く ヨ と く ヨ と …

- ▶ Now, take $f(x; \theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\theta)^2/2\sigma^2}$ with known $\sigma^2 > 0$
- Hypotheses: $H_0: \theta = \theta_0$ vs. $H_a: \theta \neq \theta_0$
- Observe that the MLE $\hat{\theta} = \bar{X}$ and the likelihood ratio is

$$L(\theta) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \theta)^2} \\ = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \bar{x})^2} e^{-\frac{1}{2\sigma^2}n(\bar{x} - \theta)^2}$$

コマン くほう くほう

The likelihood ratio is

$$\Lambda = e^{-\frac{1}{2\sigma^2}n(\bar{x}-\theta_0)^2}$$

▶ $\Lambda \leq c$ is equivalent to $-2 \log \Lambda \geq -2 \log c$ where

$$-2\log\Lambda = \left(\frac{\bar{X} - \theta_0}{\sigma\sqrt{n}}\right)^2 \sim \chi_1^2$$

under H_0

► The decision rule: reject H_0 if $-2 \log \Lambda = \left(\frac{\bar{X} - \theta_0}{\sigma \sqrt{n}}\right)^2 \ge \chi^2_{1,\alpha}$

▲御≯ ▲注≯ ▲注≯

2

► Under the regularity conditions needed for asymptotic efficiency of MLE, under $H_0: \theta = \theta_0$ we have

$$-2\log\Lambda \stackrel{D}{\rightarrow} \chi_1^2$$

- ► This, of course, suggests the decision rule "Reject H_0 if $\chi_L^2 \ge \chi_{1,\alpha}^2$
- \blacktriangleright The resulting test has the asymptotic level of significance α

 \blacktriangleright A natural test statistic based on the asymptotic distribution of $\hat{\theta}$

$$\chi_W^2 = \left\{ \sqrt{nI(\hat{\theta})}(\hat{\theta} - \theta_0) \right\}^2$$

- ► $I(\hat{\theta}) \xrightarrow{p} I(\theta_0)$ under H_0 because $I(\theta)$ is a continuous function
- ▶ Thus, under H_0 , $\chi^2_W \sim \chi^2_1$ asymptotically; the decision rule is "reject H_0 if $\chi^2_W \ge \chi^2_{1,\alpha}$
- This test has asymptotic level α ; moreover, one can show that

$$\chi^2_W - \chi^2_L \stackrel{p}{\to} 0$$

The score vector is

$$S(\theta) = \left\{ \frac{\partial \log f(X_i; \theta)}{\partial \theta} \right\}^{\prime}$$

► Note that
$$\frac{1}{\sqrt{n}}I'(\theta_0) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \frac{\partial \log f(X_i;\theta_0)}{\partial \theta}$$
 and define the statistic

$$\chi_R^2 = \left(\frac{l'(\theta_0)}{\sqrt{nI(\theta_0)}}\right)^2$$

Can show that

$$\chi_R^2 = \chi_W^2 + R_{0n}$$

where $R_{0n} \xrightarrow{p} 0$ The decision rule is "reject H_0 if $\chi^2_R \ge \chi^2_{1,\alpha}$ "

回 と くほ と くほ とう

Example

- ▶ Take a beta $X \sim (heta, 1)$ with the pdf $f(x) = heta x^{ heta 1}$, 0 < x < 1
- ▶ Test $H_0: \theta = 1$ (meaning $X \sim Unif[0,1]$) vs. $H_a: \theta \neq 1$
- Recall that the MLE of θ is $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log X_i}$
- Observe that

$$L(\hat{\theta}) = \left(-\sum_{i=1}^{n} \log X_i\right)^{-n} \exp\left\{-\sum_{i=1}^{n} \log X_i\right\} \exp\left\{n(\log n - 1)\right\}$$

and L(1) = 1

► Therefore, the likelihood ratio is A = ¹/_{L(θ)} and the test statistic is

$$\chi_L^2 = -2\log\Lambda$$

= $2\left\{-\sum_{i=1}^n \log X_i - n\log\left(-\sum_{i=1}^n \log X_i\right) - n + n\log n\right\}$

Example

- ▶ Recall that $I(\theta) = \theta^{-2}$ that can be estimated consistently by $\hat{\theta}^{-2}$
- The Wald-type test statistic is

$$\chi_W^2 = \left(\sqrt{\frac{n}{\hat{\theta}^2}} \left(\hat{\theta} - 1\right)\right)^2 = n \left\{1 - \frac{1}{\hat{\theta}}\right\}^2$$

To obtain the scores type test note that

$$I'(1) = \sum_{i=1}^n \log X_i + n$$

The test statistic is

$$\chi_R^2 = \left\{\frac{\sum_{i=1}^n \log X_i + n}{\sqrt{n}}\right\}^2$$

• Note that in this particular case $\chi^2_L = \chi^2_R$