Maximum Likelihood Estimation

- The model: pdf $f(x, \theta)$ with $\theta \in \Omega$
- Information: $X = (X_1, \ldots, X_n)'$ where each $X_i \sim f(x; \theta)$ and independent
- The likelihood:
 $$L(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta)$$
- The log-likelihood:
 $$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$$
- Important - no loss of information occurs this way!
Regularity conditions

- Identifiability: if $\theta \neq \theta'$, $f(x; \theta) \neq f(x; \theta')$
- Pdfs have common support for all θ
- The true value θ_0 is an interior point in Ω
This is why the MLE makes sense!

- If the identifiability and common support assumptions are true, for all $\theta \neq \theta_0$

$$\lim_{n \to \infty} P_{\theta_0}[L(\theta_0, X) \geq L(\theta, X)] = 1$$

- Interpretation: in sufficiently large samples, the likelihood achieves its maximum at θ_0

- $\hat{\theta} = \hat{\theta}(X)$ is a maximum likelihood estimator (mle) of θ if

$$\hat{\theta} = \text{Argmax} L(\theta; X)$$

- The most common estimating equation is

$$\frac{\partial l(\theta)}{\partial \theta} = 0$$
Example 1

- The birth data: $X_i, i = 1, \ldots, n$, p is the probability of a newborn girl
- Check that $L(p; X) = p^{\sum_{i=1}^{n} x_i} (1 - p)^{n - \sum_{i=1}^{n} x_i}$
- The resulting MLE is $\hat{p} = \bar{X}$ which is a rather natural estimator
Example II

- Let now $X_1, \ldots, X_n \sim \text{Unif}[0, \theta]$ for unknown $\theta > 0$
- The uniform density is $f_\theta(x) = \frac{1}{\theta}$, $0 \leq x \leq \theta$; 0 otherwise
- The likelihood is
 \[
 L(\theta; X) = \frac{1}{\theta^n}
 \]
 for all $\theta \geq \max x_i$ and 0 elsewhere
- The likelihood function is strictly decreasing when $\theta \geq \max x_i$ and so $\hat{\theta} = \max_{1 \leq i \leq n} x_i$ is the MLE
- Note that you cannot differentiate the likelihood function here
Example III: non-uniqueness of MLE

Let $X_1, \ldots, X_n \sim Unif[\theta, \theta + 1]$

We have the pdf $f_\theta(x) = 1$, if $\theta \leq y \leq \theta + 1$ and 0 elsewhere

Clearly, $L(\theta; X) = 1$ if $\max x_i - 1 \leq \theta \leq \min x_i$ and 0 elsewhere

The MLE is then an *entire interval*
$(\max_{1 \leq i \leq n} X_i - 1, \min_{1 \leq i \leq n} X_i)$
More complicated examples

Specific examples:

- Double exponential (Laplace) distribution: $f(x; \theta) = \frac{1}{2} e^{-|x-\theta|}$
- Verify that $\hat{\theta} = \text{med}(x_1, \ldots, x_n)$
- Logistic distribution: $f(x; \theta) = \frac{e^{-(x-\theta)}}{(1 + e^{-(x-\theta)})^2}$
- Can't express in the closed form but can be shown to exist and be unique
Functions of MLE’s

- If $\hat{\theta}$ is the MLE of θ, then $g(\hat{\theta})$ is the MLE of $\eta = g(\theta)$
- An example: if the variance of $X \sim b(n, p)$ is $np(1 - p)$, the estimated variance is equal to $n\hat{p}(1 - \hat{p})$.
Consistency of MLE

Let all three regularity conditions be satisfied, $f(x; \theta)$ is differentiable w.r.t θ in Ω

There exists an MLE $\hat{\theta}_n \xrightarrow{p} 0$
For an estimator $\hat{\theta}$ of a parameter θ, the bias is $E[\hat{\theta}] - \theta$

It is usually impossible to have both low variance and low bias at the same time.

A trivial estimator $\hat{\theta} = \theta_0$ for some constant θ_0 has variance 0 but may have a very large bias if θ_0 is very different from θ.
Unbiased estimation II

- An estimator $\hat{\theta}$ is unbiased if $E\hat{\theta} = 0$ for all possible values of θ
- Classical examples:
 - \bar{X} as an estimator of the mean μ
 - $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ as an estimator of σ^2
Unbiased estimation III

- An unbiased estimator may not exist at all
- Take $X = (X_1, \ldots, X_n)'$ where $X_i \sim b(1, p)$
- Need to estimate $\theta = \frac{p}{1-p}$ (odds ratio)
- Suppose there exists $\hat{\theta} = \hat{\theta}(X)$ s.t. $E\hat{\theta} = \frac{p}{1-p}$
- There are 2^n different combinations of 0 and 1; thus, for jth vector X_j,

$$E\hat{\theta} = \sum_{j=0}^{2^n} \hat{\theta}(X_j) p \sum_{i=1}^{n} x_{ji} (1 - p)^{n-\sum_{j=1}^{n} x_{ji}}$$

- One cannot expand a function $\frac{p}{1-p}$ into a finite Taylor series!
Fisher information

Two additional regularity conditions are needed:

1. The pdf \(f(x; \theta) \) is twice differentiable as a function of \(\theta \)
2. The integral \(\int f(x; \theta) \, dx \) can be differentiated twice under the integral sign as a function of \(\theta \)

Then, two equivalent representations of the Fisher information are:

\[
I(\theta) = \mathbb{E} \left[\left(\frac{\partial \log f(x; \theta)}{\partial \theta} \right)^2 \right]
\]

or

\[
I(\theta) = -\mathbb{E} \left[\frac{\partial^2 \log f(x; \theta)}{\partial \theta^2} \right]
\]
Interpretation

- $\frac{\partial \log f(x;\theta)}{\partial \theta}$ is the **score function**
- Can think of the mle $\hat{\theta}$ as the solution of

 $$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0$$

- The Fisher information is the variance of the score function:

 $$I(\theta) = Var \left(\frac{\partial \log f(x; \theta)}{\partial \theta} \right)$$
Examples

For $X \sim b(1, \theta)$

$$I(\theta) = \frac{1}{\theta(1 - \theta)}$$

The Fisher information is larger for probabilities θ that are close to zero or one.

Another example: consider a random sample

$$X_i = \theta + e_i$$

If $e_i \sim f(x)$ and independent $X_i \sim f_X(x; \theta) = f(x - \theta)$

Verify that

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{f'(x - \theta)}{f(x - \theta)} \right)^2 f(x - \theta) \, dx = \int_{-\infty}^{\infty} \left(\frac{f'(z)}{f(z)} \right)^2 f(z) \, dz$$

does not depend on θ
Examples

- If $X \sim N(\mu, \sigma^2)$ with known σ^2 - it is a location family
- Check that the Fisher information for μ is

$$I_X(\mu) = \frac{n}{\sigma^2}$$

and so does not depend on μ
- More information about μ is available if the variance is smaller!
Rao-Cramér lower bound

For a sample size n, the information is

$$\text{Var} \left(\frac{\partial \log L(\theta; X)}{\partial \theta} \right) = n I(\theta)$$

Let $X_1, \ldots, X_n \sim f(x; \theta)$ and independent

Let $Y = u(X_1, \ldots, X_n)$ be a statistics with $\mathbb{E} Y = k(\theta)$

Then,

$$\text{Var} (Y) \geq \frac{[k'(\theta)]^2}{n I(\theta)}$$

An important special case: if $Y = u(X_1, \ldots, X_n)$ is an unbiased estimator of θ, t.i. $k(\theta) = \theta$,

$$\text{Var} (Y) \geq \frac{1}{n I(\theta)}$$
Efficiency

- \(Y \) is an **efficient estimator** of \(\theta \) iff the variance of \(Y \) attains the Rao-Cramér lower bound.

- The ratio of the Rao-Cramér lower bound to the actual variance of any unbiased estimator is called the **efficiency** of that estimator.

- Example: for \(b(1, \theta) \) the Fisher information is
 \[
 \frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}
 \]

- The MLE of \(\theta \) is \(\bar{X} \) with the variance \(\frac{\theta(1-\theta)}{n} \) - this estimator is efficient!

- \(\bar{X} \) as an estimator of the Poisson arrival rate is also efficient - can check directly.
Example

Let $X_1, \ldots, X_n \sim f(x; \theta)$ where $f(x; \theta) = \theta x^{\theta-1}$ for $0 < x < 1$ which is $\text{beta}(\theta, 1)$

Check that $I(\theta) = \theta^{-2}$

The MLE of θ is

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log x_i}$$

How to find the variance of $\hat{\theta}$?
Example

- Verify that \(Y_u = \log X_i \sim \Gamma (1, \frac{1}{\theta}) \) and \(W = \sum_{i=1}^{n} Y_i \sim \Gamma (n, \frac{1}{\theta}) \).

- Not hard to find that \(\mathbb{E} W^k = \frac{(n+k-1)!}{\theta^k(n-1)!} \) and

\[
\mathbb{E} [\hat{\theta}] = \theta \frac{n}{n-1}
\]

- Analogously,

\[
\text{Var} (\hat{\theta}) = \theta^2 \frac{n^2}{(n-1)^2(n-2)}
\]

and the variance of the unbiased estimator \(\left[\frac{n-1}{n} \right] \hat{\theta} \) is \(\frac{\theta^2}{n-2} \).

- For efficiency to be true, it should have been \(\frac{\theta^2}{n} \) and so efficiency is

\[
\frac{n-2}{n}
\]

- The estimator \(\left[\frac{n-1}{n} \right] \hat{\theta} \) is asymptotically efficient.
Two additional regularity conditions:

1. \(f(x; \theta) \) is thrice differentiable as a function of \(\theta \). Moreover, for all \(\theta \in \Omega \), there is a constant \(c \) and a function \(M(x) \) s.t.

\[
\left| \frac{\partial^3}{\partial \theta^3} \log f(x; \theta) \right| \leq M(x)
\]

with \(\mathbb{E}|M(X)| < \infty \) for all \(\theta_0 - c < \theta < \theta_0 + c \)

- If the Fisher information \(0 < I(\theta_0) < \infty \), any consistent sequence of solutions for the mle equations satisfies

\[
\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{D} N\left(0, \frac{1}{I(\theta_0)}\right)
\]
Asymptotic efficiency and asymptotic relative efficiency

- If $\sqrt{n}(\hat{\theta}_{1n} - \theta_0) \xrightarrow{D} N(0, \sigma^2_{\hat{\theta}_{1n}})$, the asymptotic efficiency of $\hat{\theta}_{1n}$ is
 \[e(\hat{\theta}_{1n}) = \frac{1}{\sigma^2_{\hat{\theta}_{1n}}} \]

- The estimator $\hat{\theta}_{1n}$ is asymptotically efficient if the above ratio is 1

- If $\sqrt{n}(\hat{\theta}_{2n} - \theta_0) \xrightarrow{D} N(0, \sigma^2_{\hat{\theta}_{2n}})$, the asymptotic relative efficiency (ARE) of the two estimators is
 \[e(\hat{\theta}_{1n}, \hat{\theta}_{2n}) = \frac{\sigma^2_{\hat{\theta}_{2n}}}{\sigma^2_{\hat{\theta}_{1n}}} \]
Sample mean vs. sample median

- For the location model $X_i = \theta + e_i$ where e_i has the Laplace distribution
- Can show that the median Q_2 is asymptotically normal with mean 0 and variance $\frac{1}{n}$
- By CLT, the variance of \bar{X} is $\frac{\sigma^2}{n}$ where $\sigma^2 = \text{Var } e_i$
- Thus, the asymptotic relative efficiency $\text{ARE}(Q_2, \bar{X}) = \frac{2}{1} = 2$
- Verify that if $e_i \sim N(0, 1)$ $\text{ARE}(Q_2, \bar{X}) = \frac{2}{\pi} = 0.636$; thus, asymptotically, \bar{X} is 1.57 times more efficient than Q_2 in the normal case
Large sample confidence intervals based on MLE

- Since $I(θ)$ is a continuous function of $θ$, we have

$$I(\hat{θ}_n) \xrightarrow{p} I(θ_0)$$

- Thus, for specified $0 < α < 1$, we have an approximate $100(1 - α)\%$ confidence interval

$$\hat{θ}_n \pm z_{α/2} \frac{1}{\sqrt{nI(\hat{θ}_n)}}$$

- Clearly, for any continuous function $g(x)$ s.t. $g'(θ_0) \neq 0$

$$\sqrt{n}(g(\hat{θ}_n) - g(θ_0)) \xrightarrow{D} N\left(0, \frac{g'(θ_0)^2}{I(θ_0)}\right)$$
Numerical methods to obtain an MLE

- Typically, Newton's method is used... Let \(\hat{\theta}^{(0)} \) is an initial value (guess)
- The next point is the intercept of the tangent line to the curve \(l'(\theta) \) at the point \((\hat{\theta}^{(0)}, l'(\hat{\theta}^{(0)}) \)
- Thus,

\[
\hat{\theta}^{(1)} = \hat{\theta}^{(0)} - \frac{l'(\hat{\theta}^{(0)})}{l''(\hat{\theta}^{(0)})}
\]

and the process is repeated a number of times