STAT 516: Multivariate Distributions Lecture 8: Maximum Likelihood Estimation, Consistency and the Cramer-Rao Lower Bound

Prof. Michael Levine

February 9, 2016

Levine STAT 516: Multivariate Distributions

Maximum Likelihood Estimation

- The model: pdf $f(x, \theta)$ with $\theta \in \Omega$
- Information: $\mathbf{X} = (X_1, \dots, X_n)'$ where each $X_i \sim f(x; \theta)$ and independent
- The likelihood:

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(x_i; \theta)$$

The log-likelihood:

$$I(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$$

Important - no loss of information occurs this way!

A B M A B M

- Identifiability: if $\theta \neq \theta'$, $f(x; \theta) \neq f(x; \theta')$
- Pdfs have common support for all θ
- The true value θ_0 is an interior point in Ω

< ∃ >

This is why the MLE makes sense!

▶ If the identifiability and common support assumptions are true, for all $\theta \neq \theta_0$

$$\lim_{n\to\infty} P_{\theta_0}[L(\theta_0, \mathbf{X}) \ge L(\theta, \mathbf{X})] = 1$$

- \blacktriangleright Interpretation: in sufficiently large samples, the likelihood achieves its maximum at θ_0
- $\hat{\theta} = \hat{\theta}(\mathbf{X})$ is a maximum likelihood estimator (mle) of θ if

$$\hat{\theta} = ArgmaxL(\theta; \mathbf{X})$$

The most common estimating equation is

$$\frac{\partial I(\theta)}{\partial \theta} = 0$$

- The birth data: X_i, i = 1, ..., n, p is the probability of a newborn girl
- Check that $L(p; \mathbf{X}) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$
- The resulting MLE is $\hat{p} = \bar{X}$ which is a rather natural estimator

伺下 イヨト イヨト

æ

- Let now $X_1, \ldots, X_n \sim Unif[0, \theta]$ for unknown $\theta > 0$
- The uniform density is $f_{\theta}(x) = \frac{1}{\theta}$, $0 \le x \le \theta$; 0 otherwise
- The likelihood is

$$L(heta; \mathbf{X}) = \frac{1}{\theta^n}$$

for all $\theta \geq \max x_i$ and 0 elsewhere

- ► The likelihood function is strictly decreasing when θ ≥ max x_i and so θ̂ = max_{1≤i≤n} x_i is the MLE
- Note that you cannot differentiate the likelihood function here

A + + 3 + + 3 + - 3

- Let $X_1, \ldots, X_n \sim Unif[\theta, \theta + 1]$
- ▶ We have the pdf $f_{\theta}(x) = 1$, if $\theta \le y \le \theta + 1$ and 0 elsewhere
- Clearly, $L(\theta; \mathbf{X}) = 1$ if max $x_i 1 \le \theta \le \min x_i$ and 0 elsewhere
- ► The MLE is then an *entire interval* (max_{1≤i≤n} X_i − 1, min_{1≤i≤n} X_i)

프 🖌 🛪 프 🛌

- Specific examples:
 - ▶ Double exponential (Laplace) distribution: $f(x; \theta) = \frac{1}{2}e^{-|x-\theta|}$
 - Verify that $\hat{\theta} = med(x_1, \dots, x_n)$
 - Logistic distribution: $f(x; \theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}$
 - Can't express in the closed form but can be shown to exist and be unique

- ▶ If $\hat{\theta}$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $\eta = g(\theta)$
- An example: if the variance of X ∼ b(n, p) is np(1 − p), the estimated variance is equal to np̂(1 − p̂).

- Let all three regularity conditions be satisfied, f(x; θ) is differentiable w.r.t θ in Ω
- There exists an MLE $\hat{\theta}_n \xrightarrow{p} 0$

白 と く ヨ と く ヨ と …

- For an estimator $\hat{\theta}$ of a parameter θ , the bias is $\mathbb{E}\hat{\theta} \theta$
- It is usually impossible to have both low variance and low bias at the same time
- A trivial estimator θ̂ = θ₀ for some constant θ₀ has variance 0 but may have a very large bias if θ₀ is very different from θ

- An estimator $\hat{\theta}$ is unbiased if $\mathbb{E}\hat{\theta} = 0$ for all possible values of θ
- Classical examples:
 - \bar{X} as an estimator of the mean μ
 - $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ as an estimator of σ^2

Unbiased estimation III

- An unbiased estimator may not exist at all
- Take $\mathbf{X} = (X_1, \dots, X_n)'$ where $X_i \sim b(1, p)$
- Need to estimate $\theta = \frac{p}{1-p}$ (odds ratio)
- Suppose there exists $\hat{\theta} = \hat{\theta}(\mathbf{X})$ s.t. $\mathbb{E}\hat{\theta} = \frac{p}{1-p}$
- There are 2ⁿ different combinations of 0 and 1; thus, for jth vector X_j,

$$\mathbb{E}\hat{ heta} = \sum_{j=0}^{2^n} \hat{ heta}(\mathbf{X}_j) p^{\sum_{i=1}^n x_{ji}} (1-p)^{n-\sum_{j=1}^n x_{ji}}$$

• One cannot expand a function $\frac{p}{1-p}$ into a finite Taylor series!

コマ くほう くほう

Fisher information

- Two additional regularity conditions are needed"
 - 1. The pdf $f(x; \theta)$ is twice differentiable as a function of θ
 - 2. The integral $\int f(x; \theta) dx$ can be differentiated twice under the integral sign as a function of θ
- Then, two equivalent representations of the Fisher information are:

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial \log f(x;\theta)}{\partial \theta}\right)^2\right]$$

or

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log f(x;\theta)}{\partial \theta^2}\right]$$

•
$$\frac{\partial \log f(x;\theta)}{\partial \theta}$$
 is the score function

• Can think of the mle $\hat{\theta}$ as the solution of

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\log f(x_{i};\theta)}{\partial\theta}=0$$

The Fisher information is the variance of the score function:

$$I(\theta) = Var\left(\frac{\partial \log f(x;\theta)}{\partial \theta}\right)$$

- 17

물에 귀로에 드

æ

Examples

For
$$X \sim b(1, \theta)$$

$$I(heta) = rac{1}{ heta(1- heta)}$$

- The Fisher information is larger for probabilities θ that are close to zero or one
- Another example: consider a random sample

$$X_i = \theta + e_i$$

- If $e_i \sim f(x)$ and independent $X_i \sim f_X(x; \theta) = f(x \theta)$
- Verify that

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{f'(x-\theta)}{f(x-\theta)}\right)^2 f(x-\theta) \, dx = \int_{-\infty}^{\infty} \left(\frac{f'(z)}{f(z)}\right)^2 f(z) \, dz$$

does not depend on θ

• E •

- If $X \sim N(\mu, \sigma^2)$ with known σ^2 it is a location family
- Check that the Fisher information for μ is

$$I_X(\mu) = \frac{n}{\sigma^2}$$

and so does not depend on $\boldsymbol{\mu}$

More information about µ is available if the variance is smaller!

白 と く ヨ と く ヨ と …

Rao-Cramér lower bound

For a sample size n, the information is

$$Var\left(\frac{\partial \log L(\theta; \mathbf{X})}{\partial \theta}\right) = nI(\theta)$$

- Let $X_1, \ldots, X_n \sim f(x; \theta)$ and independent
- Let Y = u(X₁,...,X_n) be a statistics with E Y = k(θ)
 Then.

$$Var\left(Y
ight)\geqrac{[k^{'}(heta)]^{2}}{nI(heta)}$$

An important special case: if Y = u(X₁,...,X_n) is an unbiased estimator of θ, t.i. k(θ) = θ,

$$Var(Y) \geq \frac{1}{nI(\theta)}$$

伺い イヨト イヨト

- Y is an efficient estimator of θ iff the variance of Y attains the Rao-Cramér lower bound
- The ratio of the Rao-Cramér lower bound to the actual variance of any unbiased estimator is called the efficiency of that estimator
- Example: for $b(1,\theta)$ the Fisher information is $\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$
- The MLE of θ is \bar{X} with the variance $\frac{\theta(1-\theta)}{n}$ this estimator is efficient!
- ► X
 as an estimator of the Poisson arrival rate is also efficient can check directly

- ► Let $X_1, ..., X_n \sim f(x; \theta)$ where $f(x; \theta) = \theta x^{\theta-1}$ for 0 < x < 1 which is $beta(\theta, 1)$
- Check that $I(\theta) = \theta^{-2}$
- The MLE of θ is

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log x_i}$$

• How to find the variance of $\hat{\theta}$?

• 3 >

Example

► Verify that
$$Y_u = \log X_i \sim \Gamma(1, \frac{1}{\theta})$$
 and $W = \sum_{i=1}^n Y_i \sim \Gamma(n, \frac{1}{\theta})$

▶ Not hard to find that $\mathbb{E} W^k = \frac{(n+k-1)!}{\theta^k (n-1)!}$ and

$$\mathbb{E}\left[\hat{\theta}\right] = \theta \frac{n}{n-1}$$

Analogously,

$$Var\left(\hat{ heta}
ight)= heta^2rac{n^2}{(n-1)^2(n-2)}$$

and the variance of the unbiased estimator $\left[\frac{n-1}{n}\right]\hat{\theta}$ is $\frac{\theta^2}{n-2}$

For efficiency to be true, it should have been $\frac{\theta^2}{n}$ and so efficiency is

$$\frac{n-2}{n}$$

• The estimator $\left[\frac{n-1}{n}\right]\hat{\theta}$ is asymptotically efficient

Asymptotic normality and efficiency

Two additional regularity conditions:

1. $f(x; \theta)$ is thrice differentiable as a function of θ . Moreover, for all $\theta \in \Omega$, there is a constant *c* and a function M(x) s.t.

$$\left|\frac{\partial^3}{\partial\theta^3}\log f(x;\theta)\right| \le M(x)$$

with $\mathbb{E} \left| M(X) \right| < \infty$ for all $heta_0 - c < heta < heta_0 + c$

► If the Fisher information 0 < I(θ₀) < ∞, any consistent sequence of solutions for the mle equations satisfies</p>

$$\sqrt{n}(\hat{\theta}-\theta_0) \stackrel{D}{\rightarrow} N\left(0, \frac{1}{I(\theta_0)}\right)$$

Asymptotic efficiency and asymptotic relative efficiency

► If
$$\sqrt{n}(\hat{\theta}_{1n} - \theta_0) \xrightarrow{D} N(0, \sigma_{\hat{\theta}_{1n}}^2)$$
, the asymptotic efficiency of $\hat{\theta}_{1n}$ is
$$e(\hat{\theta}_{1n}) = \frac{1/I(\theta_0)}{\sigma_{\hat{\theta}_{1n}}^2}$$

- The estimator \(\heta_{1n}\) is asymptotically efficient if the above ratio is 1
- ► If $\sqrt{n}(\hat{\theta}_{2n} \theta_0) \xrightarrow{D} N(0, \sigma^2_{\hat{\theta}_{2n}})$, the asymptotic relative efficiency (ARE) of the two estimators is

$$e(\hat{\theta}_{1n},\hat{\theta}_{2n})=\frac{\sigma_{\hat{\theta}_{2n}}^2}{\sigma_{\hat{\theta}_{1n}}^2}$$

- ► For the location model X_i = θ + e_i where e_i has the Laplace distribution
- ► Can show that the median Q₂ is asymptotically normal with mean 0 and variance ¹/_n
- By CLT, the variance of \bar{X} is $\frac{\sigma^2}{n}$ where $\sigma^2 = Var e_i$
- Thus, the asymptotic relative efficiency $ARE(Q_2, \bar{X}) = \frac{2}{1} = 2$
- Verify that if e_i ~ N(0,1) ARE(Q₂, X̄) = ²/_π = 0.636; thus, asymptotically, X̄ is 1.57 times more efficient than Q₂ in the normal case

Large sample confidence intervals based on MLE

• Since $I(\theta)$ is a continuous function of θ , we have

$$I(\hat{\theta}_n) \stackrel{p}{\to} I(\theta_0)$$

► Thus, for specified 0 < α < 1, we have an approximate 100(1 − α)% confidence interval</p>

$$\hat{ heta}_n \pm z_{\alpha/2} rac{1}{\sqrt{nI(\hat{ heta}_n)}}$$

• Clearly, for any continuous function g(x) s.t. $g'(\theta_0) \neq 0$

$$\sqrt{n}(g(\hat{\theta}_n) - g(\theta_0)) \stackrel{D}{\rightarrow} N\left(0, \frac{g'(\theta_0)^2}{I(\theta_0)}\right)$$

- ► Typically, Newton's method is used...Let \(\heta^{(0)}\) is an initial value (guess)
- The next point is the intercept of the tangent line to the curve l'(θ) at the point (θ̂⁽⁰⁾, l'(θ̂⁽⁰⁾)

Thus,

$$\hat{ heta}^{(1)} = \hat{ heta}^{(0)} - rac{l'(\hat{ heta}^{(0)})}{l''(\hat{ heta}^{(0)})}$$

and the process is repeated a number of times