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Maximum Likelihood Estimation

» The model: pdf f(x,8) with 6 € Q

» Information: X = (Xi,...,X,) where each X; ~ f(x;6) and
independent

> The likelihood: .
= H f(xi;0)
i=1
> The log-likelihood:

1(6) = log L(0 Z log f(x;; 6

» Important - no loss of information occurs this way!
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Regularity conditions

> Identifiability: if 0 # 6, f(x;0) # f(x;0)
» Pdfs have common support for all 6

» The true value fg is an interior point in
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This is why the MLE makes sense!

> If the identifiability and common support assumptions are
true, for all 6 # 6

lim Pg[L(80, X) = L(6,X)] = 1

> Interpretation: in sufficiently large samples, the likelihood
achieves its maximum at g

» = A(X) is a maximum likelihood estimator (mle) of 6 if
0 = ArgmaxL(6; X)
» The most common estimating equation is

o1(60) _
20 0
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Example |

» The birth data: X;,i =1,...,n, pis the probability of a
newborn girl

» Check that L(p; X) = p2i=1%(1 — p)"— 2= X

» The resulting MLE is p = X which is a rather natural
estimator
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Example Il

» Let now Xi,..., X, ~ Unif[0, 0] for unknown 6 > 0
» The uniform density is fo(x) = §, 0 < x < 6; 0 otherwise
> The likelihood is

L(6; X) = ei

for all & > maxx; and 0 elsewhere

» The likelihood function is strictly decreasing when 6 > max x;
and so 6 = maxi<j<p X; is the MLE

» Note that you cannot differentiate the likelihood function here
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Example Ill: non-uniqueness of MLE

v

Let Xi,..., X, ~ Unif[6,0 + 1]
We have the pdf fy(x) =1, if <y <6+ 1 and 0 elsewhere
Clearly, L(8; X) = 1 if maxx; —1 < # < min x; and 0 elsewhere

The MLE is then an entire interval
(maxlg,-g,, X,' — 1, minlg,-g,, X,')

v

v

v
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More complicated examples

» Specific examples:
» Double exponential (Laplace) distribution: f(x;6) = Je=x~*
> Verify that § = med(xy, . . ., x,)

e ~(x=0)
» Logistic distribution: f(x;6) = m
» Can't express in the closed form but can be shown to exist and

be unique
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Functions of MLE's

» If 0 is the MLE of 0, then g(0) is the MLE of n = g(6)

» An example: if the variance of X ~ b(n, p) is np(1 — p), the
estimated variance is equal to np(1 — p).
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Consistency of MLE

> Let all three regularity conditions be satisfied, f(x;6) is
differentiable w.r.t 6 in Q

» There exists an MLE 0A,, 20
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Unbiased estimation |

» For an estimator 6 of a parameter 6, the bias is E) — 0
> It is usually impossible to have both low variance and low bias
at the same time

» A trivial estimator § = 0y for some constant 6y has variance 0
but may have a very large bias if 0y is very different from 6
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Unbiased estimation |l

» An estimator  is unbiased if E§ = 0 for all possible values of 0
> Classical examples:

» X as an estimator of the mean p
» 62 =L 3" (X; — X)? as an estimator of o2
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Unbiased estimation IlI

» An unbiased estimator may not exist at all

» Take X = (X1,...,X,) where X; ~ b(1, p)
> Need to estimate 6 = {2 (odds ratio)

» Suppose there exists § = O(X) s.t. Ef = =

—p
» There are 2" different combinations of 0 and 1; thus, for jth
vector X;,

B = Y 6(X;)p>Fs(1 - p)'

» One cannot expand a function r”p into a finite Taylor series!
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Fisher information

» Two additional regularity conditions are needed”

1. The pdf f(x; ) is twice differentiable as a function of 6
2. The integral [ f(x; ) dx can be differentiated twice under the
integral sign as a function of

» Then, two equivalent representations of the Fisher

information are:
dlog f(x;0)\ >
00

02 log f(x; 0)
06?

10) =E

or

1(0) = —E [
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Interpretation

> 6‘Iog87f9(x;@ is the score function

» Can think of the mle & as the solution of
lzn: Olog f(x;;0) 0
n 00 N

» The Fisher information is the variance of the score function:

1) = var (Z°ER)
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» For X ~ b(1,6)
1

=519

» The Fisher information is larger for probabilities 6 that are
close to zero or one

> Another example: consider a random sample
X,' =0+ €

» If e; ~ f(x) and independent X; ~ fx(x;0) = f(x — 0)
» Verify that

’ 2 , 2
[ f(x—10) > [ f(2)
1(0) :/_OO (f(x—@)) f(x—0) dX:/—oo (f(z)) f(z)dz

does not depend on 6
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> If X ~ N(p,?) with known o2 - it is a location family
» Check that the Fisher information for p is

and so does not depend on u

» More information about p is available if the variance is
smaller!
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Rao-Cramér lower bound

» For a sample size n, the information is

. <6IogaL§0;X)> —l®)

> Let Xi,...,X, ~ f(x;0) and independent
» Let Y = u(Xi,...,X,) be a statistics with EY = k(6)
» Then,
[ (0)
>
Var (Y) > n1(0)
» An important special case: if Y = u(Xq,...,X,) is an

unbiased estimator of 0, t.i. k(0) =6,

Var (Y) > I (0)
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v

Y is an efficient estimator of @ iff the variance of Y attains
the Rao-Cramér lower bound

The ratio of the Rao-Cramér lower bound to the actual
variance of any unbiased estimator is called the efficiency of
that estimator

1 0(1-0)
nl(0) n

Example: for b(1,0) the Fisher information is
The MLE of 6 is X with the variance 029 _ this estimator is
efficient!

X as an estimator of the Poisson arrival rate is also efficient -
can check directly
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Let X1,..., X, ~ f(x;0) where f(x;0) =0x’1 for0 < x < 1
which is beta(6,1)

Check that /1(#) = 62

The MLE of 0 is

v

v

v

n
n
i1 log xi

How to find the variance of §7?

0=—

v
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>

Verify that Y, = log X; ~ T (1, %) and
W:E:":l\/i”\“r(”7%)
Not hard to find that E Wk = (iHk=D! 54

gk (n—1)!
A n
E[0] =6
0] =0——
Analogously,
2
A n
Var() =6>——
O = =)
and the variance of the unbiased estimator [21] 0 is n‘ng

For efficiency to be true, it should have been % and so
efficiency is
n—2

n

n—1
n

The estimator [2-1] § is asymptotically efficient
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Asymptotic normality and efficiency

» Two additional regularity conditions:

1. f(x;8) is thrice differentiable as a function of . Moreover, for
all @ € Q, there is a constant ¢ and a function M(x) s.t.

0
’803|ogfxﬁ)’<M X)
with E|[M(X)| < oo forall g —c <0 <6y +c

> If the Fisher information 0 < /(6p) < oo, any consistent
sequence of solutions for the mle equations satisfies

V(@ —00) B N <o, /éo))
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Asymptotic efficiency and asymptotic relative efficiency

> If \/n(f1, — 6o) 2 N(O, 09%1 ), the asymptotic efficiency of
é\ln is
e(c91,,) = 3

o4
0O1n

» The estimator 01, is asymptotically efficient if the above
ratio is 1

> If \/n(62, — 6o) 2 N(O, 032 ), the asymptotic relative
efficiency (ARE) of the two estimators is

Levine STAT 516: Multivariate Distributions



Sample mean vs. sample median

» For the location model X; = 0 + e; where ¢; has the Laplace
distribution

» Can show that the median @5 is asymptotically normal with
mean 0 and variance %

» By CLT, the variance of X is ‘7—”2 where 62 = Var ¢

» Thus, the asymptotic relative efficiency ARE(Q2, X) = 2 =2

> Verify that if ¢ ~ N(0,1) ARE(Qy, X) = 2 = 0.636; thus,

- ™

asymptotically, X is 1.57 times more efficient than @, in the
normal case
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Large sample confidence intervals based on MLE

» Since /(f) is a continuous function of #, we have

> Thus, for specified 0 < o < 1, we have an approximate
100(1 — )% confidence interval
A 1

O+ 2y
nl(6n)

» Clearly, for any continuous function g(x) s.t. g (6g) # 0

A D g (6o)?
Vi(g(6n) ~ (60)) > N (o, (60) )
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Numerical methods to obtain an MLE

» Typically, Newton's method is used...Let 6 is an initial value
(guess)
» The next point is the intercept of the tangent line to the
curve /'(0) at the point (6, /'(A())
» Thus,
s _ oy (0
1"(6(0)

and the process is repeated a number of times

Levine STAT 516: Multivariate Distributions



