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Maximum Likelihood Estimation

I The model: pdf f (x , θ) with θ ∈ Ω

I Information: X = (X1, . . . ,Xn)
′

where each Xi ∼ f (x ; θ) and
independent

I The likelihood:

L(θ; x) =
n∏

i=1

f (xi ; θ)

I The log-likelihood:

l(θ) = log L(θ) =
n∑

i=1

log f (xi ; θ)

I Important - no loss of information occurs this way!
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Regularity conditions

I Identifiability: if θ 6= θ
′
, f (x ; θ) 6= f (x ; θ

′
)

I Pdfs have common support for all θ

I The true value θ0 is an interior point in Ω
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This is why the MLE makes sense!

I If the identifiability and common support assumptions are
true, for all θ 6= θ0

lim
n→∞

Pθ0 [L(θ0,X) ≥ L(θ,X)] = 1

I Interpretation: in sufficiently large samples, the likelihood
achieves its maximum at θ0

I θ̂ = θ̂(X) is a maximum likelihood estimator (mle) of θ if

θ̂ = ArgmaxL(θ; X)

I The most common estimating equation is

∂l(θ)

∂θ
= 0
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Example I

I The birth data: Xi ,i = 1, . . . , n, p is the probability of a
newborn girl

I Check that L(p; X) = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi

I The resulting MLE is p̂ = X̄ which is a rather natural
estimator
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Example II

I Let now X1, . . . ,Xn ∼ Unif [0, θ] for unknown θ > 0

I The uniform density is fθ(x) = 1
θ , 0 ≤ x ≤ θ; 0 otherwise

I The likelihood is

L(θ; X) =
1

θn

for all θ ≥ max xi and 0 elsewhere

I The likelihood function is strictly decreasing when θ ≥ max xi
and so θ̂ = max1≤i≤n xi is the MLE

I Note that you cannot differentiate the likelihood function here
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Example III: non-uniqueness of MLE

I Let X1, . . . ,Xn ∼ Unif [θ, θ + 1]

I We have the pdf fθ(x) = 1, if θ ≤ y ≤ θ + 1 and 0 elsewhere

I Clearly, L(θ; X) = 1 if max xi − 1 ≤ θ ≤ min xi and 0 elsewhere

I The MLE is then an entire interval
(max1≤i≤n Xi − 1,min1≤i≤n Xi )
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More complicated examples

I Specific examples:
I Double exponential (Laplace) distribution: f (x ; θ) = 1

2e
−|x−θ|

I Verify that θ̂ = med(x1, . . . , xn)

I Logistic distribution: f (x ; θ) = e−(x−θ)

(1+e−(x−θ))2

I Can’t express in the closed form but can be shown to exist and
be unique
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Functions of MLE’s

I If θ̂ is the MLE of θ, then g(θ̂) is the MLE of η = g(θ)

I An example: if the variance of X ∼ b(n, p) is np(1− p), the
estimated variance is equal to np̂(1− p̂).
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Consistency of MLE

I Let all three regularity conditions be satisfied, f (x ; θ) is
differentiable w.r.t θ in Ω

I There exists an MLE θ̂n
p→ 0
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Unbiased estimation I

I For an estimator θ̂ of a parameter θ, the bias is Eθ̂ − θ
I It is usually impossible to have both low variance and low bias

at the same time

I A trivial estimator θ̂ = θ0 for some constant θ0 has variance 0
but may have a very large bias if θ0 is very different from θ
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Unbiased estimation II

I An estimator θ̂ is unbiased if Eθ̂ = 0 for all possible values of θ
I Classical examples:

I X̄ as an estimator of the mean µ
I σ̂2 = 1

n−1
∑n

i=1(Xi − X̄ )2 as an estimator of σ2
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Unbiased estimation III

I An unbiased estimator may not exist at all

I Take X = (X1, . . . ,Xn)
′

where Xi ∼ b(1, p)

I Need to estimate θ = p
1−p (odds ratio)

I Suppose there exists θ̂ = θ̂(X) s.t. Eθ̂ = p
1−p

I There are 2n different combinations of 0 and 1; thus, for jth
vector Xj ,

Eθ̂ =
2n∑
j=0

θ̂(Xj)p
∑n

i=1 xji (1− p)n−
∑n

j=1 xji

I One cannot expand a function p
1−p into a finite Taylor series!

Levine STAT 516: Multivariate Distributions



Fisher information

I Two additional regularity conditions are needed”

1. The pdf f (x ; θ) is twice differentiable as a function of θ
2. The integral

∫
f (x ; θ) dx can be differentiated twice under the

integral sign as a function of θ

I Then, two equivalent representations of the Fisher
information are:

I (θ) = E

[(
∂ log f (x ; θ)

∂θ

)2
]

or

I (θ) = −E
[
∂2 log f (x ; θ)

∂θ2

]
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Interpretation

I ∂ log f (x ;θ)
∂θ is the score function

I Can think of the mle θ̂ as the solution of

1

n

n∑
i=1

∂ log f (xi ; θ)

∂θ
= 0

I The Fisher information is the variance of the score function:

I (θ) = Var

(
∂ log f (x ; θ)

∂θ

)
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Examples

I For X ∼ b(1, θ)

I (θ) =
1

θ(1− θ)

I The Fisher information is larger for probabilities θ that are
close to zero or one

I Another example: consider a random sample

Xi = θ + ei

I If ei ∼ f (x) and independent Xi ∼ fX (x ; θ) = f (x − θ)

I Verify that

I (θ) =

∫ ∞
−∞

(
f
′
(x − θ)

f (x − θ)

)2

f (x−θ) dx =

∫ ∞
−∞

(
f
′
(z)

f (z)

)2

f (z) dz

does not depend on θ
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Examples

I If X ∼ N(µ, σ2) with known σ2 - it is a location family

I Check that the Fisher information for µ is

IX (µ) =
n

σ2

and so does not depend on µ

I More information about µ is available if the variance is
smaller!
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Rao-Cramér lower bound

I For a sample size n, the information is

Var

(
∂ log L(θ; X)

∂θ

)
= nI (θ)

I Let X1, . . . ,Xn ∼ f (x ; θ) and independent

I Let Y = u(X1, . . . ,Xn) be a statistics with EY = k(θ)

I Then,

Var (Y ) ≥ [k
′
(θ)]2

nI (θ)

I An important special case: if Y = u(X1, . . . ,Xn) is an
unbiased estimator of θ, t.i. k(θ) = θ,

Var (Y ) ≥ 1

nI (θ)
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Efficiency

I Y is an efficient estimator of θ iff the variance of Y attains
the Rao-Cramér lower bound

I The ratio of the Rao-Cramér lower bound to the actual
variance of any unbiased estimator is called the efficiency of
that estimator

I Example: for b(1, θ) the Fisher information is 1
nI (θ) = θ(1−θ)

n

I The MLE of θ is X̄ with the variance θ(1−θ)
n - this estimator is

efficient!

I X̄ as an estimator of the Poisson arrival rate is also efficient -
can check directly

Levine STAT 516: Multivariate Distributions



Example

I Let X1, . . . ,Xn ∼ f (x ; θ) where f (x ; θ) = θxθ−1 for 0 < x < 1
which is beta(θ, 1)

I Check that I (θ) = θ−2

I The MLE of θ is
θ̂ = − n∑n

i=1 log xi

I How to find the variance of θ̂?
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Example

I Verify that Yu = logXi ∼ Γ
(
1, 1θ
)

and
W =

∑n
i=1 Yi ∼ Γ

(
n, 1θ

)
I Not hard to find that EW k = (n+k−1)!

θk (n−1)! and

E [θ̂] = θ
n

n − 1

I Analogously,

Var (θ̂) = θ2
n2

(n − 1)2(n − 2)

and the variance of the unbiased estimator
[
n−1
n

]
θ̂ is θ2

n−2
I For efficiency to be true, it should have been θ2

n and so
efficiency is

n − 2

n

I The estimator
[
n−1
n

]
θ̂ is asymptotically efficient
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Asymptotic normality and efficiency

I Two additional regularity conditions:

1. f (x ; θ) is thrice differentiable as a function of θ. Moreover, for
all θ ∈ Ω, there is a constant c and a function M(x) s.t.∣∣∣∣ ∂3∂θ3 log f (x ; θ)

∣∣∣∣ ≤ M(x)

with E |M(X )| <∞ for all θ0 − c < θ < θ0 + c

I If the Fisher information 0 < I (θ0) <∞, any consistent
sequence of solutions for the mle equations satisfies

√
n(θ̂ − θ0)

D→ N

(
0,

1

I (θ0)

)
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Asymptotic efficiency and asymptotic relative efficiency

I If
√
n(θ̂1n − θ0)

D→ N(0, σ2
θ̂1n

), the asymptotic efficiency of

θ̂1n is

e(θ̂1n) =
1/I (θ0)

σ2
θ̂1n

I The estimator θ̂1n is asymptotically efficient if the above
ratio is 1

I If
√
n(θ̂2n − θ0)

D→ N(0, σ2
θ̂2n

), the asymptotic relative

efficiency (ARE) of the two estimators is

e(θ̂1n, θ̂2n) =
σ2
θ̂2n

σ2
θ̂1n
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Sample mean vs. sample median

I For the location model Xi = θ + ei where ei has the Laplace
distribution

I Can show that the median Q2 is asymptotically normal with
mean 0 and variance 1

n

I By CLT, the variance of X̄ is σ2

n where σ2 = Var ei
I Thus, the asymptotic relative efficiency ARE(Q2, X̄ ) = 2

1 = 2

I Verify that if ei ∼ N(0, 1) ARE(Q2, X̄ ) = 2
π = 0.636; thus,

asymptotically, X̄ is 1.57 times more efficient than Q2 in the
normal case
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Large sample confidence intervals based on MLE

I Since I (θ) is a continuous function of θ, we have

I (θ̂n)
p→ I (θ0)

I Thus, for specified 0 < α < 1, we have an approximate
100(1− α)% confidence interval

θ̂n ± zα/2
1√

nI (θ̂n)

I Clearly, for any continuous function g(x) s.t. g
′
(θ0) 6= 0

√
n(g(θ̂n)− g(θ0))

D→ N

(
0,

g
′
(θ0)2

I (θ0)

)
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Numerical methods to obtain an MLE

I Typically, Newton’s method is used...Let θ̂(0) is an initial value
(guess)

I The next point is the intercept of the tangent line to the
curve l

′
(θ) at the point (θ̂(0), l

′
(θ̂(0))

I Thus,

θ̂(1) = θ̂(0) − l
′
(θ̂(0)

l ′′(θ̂(0))

and the process is repeated a number of times
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