STAT 516

Multivariate case: multinomial distribution

Prof. Michael Levine

April 20, 2020

æ

< ≣ ▶

- Let X₁, X₂,..., X_n be the discrete random variables defined on a common sample space Ω.
- Each X_i takes values in some countable set \aleph_i
- The joint pmf of (X_1, X_2, \ldots, X_n) is defined as

$$p(x_1, x_2, \ldots, x_n) = P(X_1 = x_1, \ldots, X_n = x_n)$$

whenever $x_i \in \aleph_i$ and 0 otherwise

1. $p(x_1, \dots, x_n) \ge 0$ for any $x_1, \dots, x_n \in R$ 2. $\sum_{x_1 \in \aleph_1, \dots, x_n \in \aleph_n} p(x_1, \dots, x_n) = 1$

・ 同 ト ・ ヨ ト ・ ヨ ト

Multinomial distribution

- Let n balls be distributed to k cells independently
- Each ball has the probability p_i of being dropped into the *i*th cell
- We consider X_i, i = 1,..., k as the number of balls that gets dropped into the *i*th cell
- Their joint pmf with parameters n, p_1, \ldots, p_k is

$$P(X_1 = x_1, \ldots, X_k = x_k) = \frac{n!}{x_1! \ldots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

where $x_i \ge 0$, $\sum_{i=1}^k x_i = n$, $p_i \ge 0$ and $\sum_{i=1}^k p_i = 1$

▶ We write (X₁,...,X_k) ~ Mult(n, p₁,..., p_k) - a random vector with a multinomial distribution

- 1. Suppose a fair die is rolled 30 times
- 2. We have $(X_1, \ldots, X_6) \sim Mult(30, p_1, \ldots, p_6)$ where each $p_i = \frac{1}{6}$
- 3. The probability

$$P(X_1 = 5, \dots, X_6 = 5) = \frac{30!}{(5!)^6} \left(\frac{1}{6}\right)^5 \cdots \left(\frac{1}{6}\right)^5$$

= 0.0004

- 1. Note that each of the thirty rolls is either six or not
- 2. The probability of getting 6 on each roll is $\frac{1}{6}$ and the rolls are independent
- 3. Since $X_6 \sim Bin(30, 1/6)$,

$$P(X_6 \ge 5) = 1 - P(X_6 \le 4) = 1 - \sum_{x=0}^{4} {30 \choose x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{30-x}$$

= .5757

Basic properties of the multinomial distribution

► Let
$$(X_1, ..., X_k) \sim Mult(n, p_1, ..., p_k)$$
. Then
1. $E(X_i) = np_i; Var(X_i) = np_i(1 - p_i)$
2. For any $i, X_i \sim Bin(n, p_i)$
3. $Cov(X_i, X_j) = -np_ip_j$ for any $i \neq j$
4. $\rho_{X_i, X_j} = -\sqrt{\frac{p_i p_j}{(1 - p_i)(1 - p_j)}}$ for any $i \neq j$
5. For any m such that $1 \leq m \leq k$ the conditional distribution

$$(X_1,\ldots,X_m)|(X_{m+1}+X_{m+2}+\cdots+X_k)=s\sim Mult(n-s,\theta_1,\ldots,\theta_m)$$

≣ >

where
$$\theta_i = \frac{p_i}{p_1 + \dots + p_m}$$

- (1) Denote W_{ir} as the indicator of the event that rth ball lands in the *i*th cell
- For given *i*, variables W_{ir} are independent; thus, $X_i = \sum_{r=1}^{n} W_{ir}$
- ► Therefore, $E(X_i) = E(\sum_{r=1}^n W_{ir}) = np_i$ and $Var(X_i) = Var(\sum_{r=1}^n W_{ir}) = np_i(1 - p_i)$
- ▶ (2) follows from the definition of a multinomial experiment