STAT 516

Multivariate case: multinomial distribution

Prof. Michael Levine

April 20, 2020

Definition

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be the discrete random variables defined on a common sample space Ω.
- Each X_{i} takes values in some countable set \aleph_{i}
- The joint pmf of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is defined as

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

whenever $x_{i} \in \aleph_{i}$ and 0 otherwise

Requirements of joint pmf

1.

$$
p\left(x_{1}, \ldots, x_{n}\right) \geq 0
$$

for any $x_{1}, \ldots, x_{n} \in R$
2.

$$
\sum_{=\aleph_{1}, \ldots, x_{n} \in \aleph_{n}} p\left(x_{1}, \ldots, x_{n}\right)=1
$$

Multinomial distribution

- Let n balls be distributed to k cells independently
- Each ball has the probability p_{i} of being dropped into the i th cell
- We consider $X_{i}, i=1, \ldots, k$ as the number of balls that gets dropped into the i th cell
- Their joint pmf with parameters n, p_{1}, \ldots, p_{k} is

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

where $x_{i} \geq 0, \sum_{i=1}^{k} x_{i}=n, p_{i} \geq 0$ and $\sum_{i=1}^{k} p_{i}=1$

- We write $\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Mult}\left(n, p_{1}, \ldots, p_{k}\right)$ - a random vector with a multinomial distribution

Example I

1. Suppose a fair die is rolled 30 times
2. We have $\left(X_{1}, \ldots, X_{6}\right) \sim \operatorname{Mult}\left(30, p_{1}, \ldots, p_{6}\right)$ where each $p_{i}=\frac{1}{6}$
3. The probability

$$
\begin{aligned}
& P\left(X_{1}=5, \ldots, X_{6}=5\right)=\frac{30!}{(5!)^{6}}\left(\frac{1}{6}\right)^{5} \cdots\left(\frac{1}{6}\right)^{5} \\
& =0.0004
\end{aligned}
$$

Example I

1. Note that each of the thirty rolls is either six or not
2. The probability of getting 6 on each roll is $\frac{1}{6}$ and the rolls are independent
3. Since $X_{6} \sim \operatorname{Bin}(30,1 / 6)$,

$$
\begin{aligned}
& P\left(X_{6} \geq 5\right)=1-P\left(X_{6} \leq 4\right)=1-\sum_{x=0}^{4}\binom{30}{x}\left(\frac{1}{6}\right)^{x}\left(\frac{5}{6}\right)^{30-x} \\
& =.5757
\end{aligned}
$$

Basic properties of the multinomial distribution

- Let $\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Mult}\left(n, p_{1}, \ldots, p_{k}\right)$. Then

1. $E\left(X_{i}\right)=n p_{i} ; \operatorname{Var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right)$
2. For any $i, X_{i} \sim \operatorname{Bin}\left(n, p_{i}\right)$
3. $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$ for any $i \neq j$
4. $\rho_{X_{i}, X_{j}}=-\sqrt{\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}}$ for any $i \neq j$
5. For any m such that $1 \leq m \leq k$ the conditional distribution

$$
\begin{aligned}
& \left(X_{1}, \ldots, X_{m}\right) \mid\left(X_{m+1}+X_{m+2}+\cdots+X_{k}\right)=s \sim \operatorname{Mult}\left(n-s, \theta_{1}, \ldots, \theta_{m}\right) \\
& \text { where } \theta_{i}=\frac{p_{i}}{p_{1}+\cdots+p_{m}}
\end{aligned}
$$

Basic properties of the multinomial distribution

- (1) Denote $W_{i r}$ as the indicator of the event that r th ball lands in the i th cell
- For given i, variables $W_{\text {ir }}$ are independent; thus, $X_{i}=\sum_{r=1}^{n} W_{i r}$
- Therefore, $E\left(X_{i}\right)=E\left(\sum_{r=1}^{n} W_{i r}\right)=n p_{i}$ and $\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(\sum_{r=1}^{n} W_{i r}\right)=n p_{i}\left(1-p_{i}\right)$
- (2) follows from the definition of a multinomial experiment

