STAT 516

Using conditioning to evaluate mean and variance

Prof. Michael Levine

April 14, 2020

Motivation

- The following approach often helps to find an expectation with respect to a complicated joint pmf:

1. Condition X on the value y of a suitable random variable Y
2. Compute the conditional expectation $E(X \mid y)$
3. Average the resulting conditional expectation over y

- The choice of Y is crucial

The law of iterated expectations

- Let X and Y be random variables on the same probability space Ω.
- Suppose $E(X)$ and $E(X \mid Y=y)$ exist for each y.
- Then,

$$
E(X)=E_{Y}[E(X \mid Y=y)]
$$

- In the discrete case, this amounts to

$$
E(X)=\sum_{y} \mu_{X}(y) p_{Y}(y)
$$

Proof

- The discrete case is very simple: by definition,

$$
\mu_{X}(y)=\frac{\sum_{x} x p(x, y)}{p_{Y}(y)}
$$

- Thus,

$$
\begin{aligned}
& \sum_{y} \mu_{X}(y) p_{Y}(y)=\sum_{y} \sum_{x} x p(x, y)=\sum_{x} \sum_{y} x p(x, y) \\
& =\sum_{x} x \sum_{y} p(x, y)=\sum_{x} x p_{X}(x)=E(X)
\end{aligned}
$$

Iterated Variance formula

- Let X and Y be random variables defined on the same probability space Ω
- Suppose $\operatorname{Var}(X)$ and $\operatorname{Var}(X \mid Y=y)$ exist for each y.
- Then,

$$
\operatorname{Var}(X)=E_{Y}[\operatorname{Var}(X \mid Y=y)]+\operatorname{Var}[E(X \mid Y=y)]
$$

- This formula is valid for all types of variables (not just continuous ones)

Some simple implications of the iterated variance formula

$$
\begin{gathered}
\operatorname{Var}(g(X) \mid X=x)=0 \\
\operatorname{Var}(g(X) h(Y) \mid Y=y)=h^{2}(y) \operatorname{Var}(g(X) \mid Y=y)
\end{gathered}
$$

Example I: a two-stage experiment

- Suppose n fair dice are rolled. Those that show a six are rolled again
- What are the mean and the variance of the number of sixes obtained in the second round of this experiment?
- Suppose Y is the number of dice in the first round that show a six
- Let X be the number of dice in the second round that show a six

Example I: a two-stage experiment

- Given $Y=y, X \sim \operatorname{Bin}\left(y, \frac{1}{6}\right)$
- Also, $Y \sim \operatorname{Bin}\left(n, \frac{1}{6}\right)$
- Therefore,

$$
E(X)=E[E(X \mid Y=y)]=E_{Y}\left[\frac{y}{6}\right]=\frac{n}{36}
$$

Example I: a two-stage experiment

- Moreover,

$$
\begin{aligned}
& \operatorname{Var}(X)=E_{Y}[\operatorname{Var}(X \mid Y=y)]+\operatorname{Var}_{Y}[E(X \mid Y=y)] \\
& =E_{Y}\left[y \frac{1}{6} \frac{5}{6}\right]+\operatorname{Var}_{Y}\left[\frac{y}{6}\right] \\
& =\frac{5}{36} \frac{n}{6}+\frac{1}{36} n \frac{1}{6} \frac{5}{6} \\
& =\frac{35 n}{1296}
\end{aligned}
$$

