STAT 516: Multivariate Distributions

Expectation of Functions

Prof. Michael Levine

April 27, 2020

Definition

- Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ have a joint density function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Let $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a real-valued function of $x_{1}, x_{2}, \ldots, x_{n}$.
- The expectation of $g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ exists if

$$
\int_{R^{n}}\left|g\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right| f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}<\infty
$$

- Then, the expected value of $g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is

$$
E\left[g\left(X_{1}, \ldots, X_{n}\right)\right]=\int_{R^{n}} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

Remark

- The expectation of each individual X_{i} can be obtained by either

1. interpreting X_{i} as a function of the full vector $\left(X_{1}, \ldots, X_{i}\right)$

$$
E\left(X_{i}\right)=\int_{R^{n}} x_{i} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

or by
2. simply using the marginal density function $f_{i}(x)$ of X_{i}

$$
E\left(X_{i}\right)=\int_{-\infty}^{\infty} x f_{i}(x) d x
$$

- Also, all of the earlier established expectation properties are still applicable. Thus, linearity implies that

$$
\begin{aligned}
& E\left[a g\left(X_{1}, \ldots, X_{n}\right)+b h\left(X_{1}, \ldots, X_{n}\right)\right] \\
& =a E\left[g\left(X_{1}, \ldots, X_{n}\right)\right]+b E\left[h\left(X_{1}, \ldots, X_{n}\right)\right]
\end{aligned}
$$

Examples

- Bivariate Uniform on $[0,1]^{2}$
- The expected distance between the two coordinates is

$$
\begin{aligned}
& E(|X-Y|)=\int_{0}^{1} \int_{0}^{1}|x-y| d x d y \\
& =\int_{0}^{1}\left[\int_{0}^{y}(y-x) d x+\int_{y}^{1}(x-y) d x\right] d y \\
& =\int_{0}^{1}\left[\left(y^{2}-\frac{y^{2}}{2}\right)+\left(\frac{1-y^{2}}{2}-y(1-y)\right)\right] d y \\
& =\int_{0}^{1}\left[\frac{1}{2}-y+y^{2}\right] d y \\
& =\frac{1}{2}-\frac{1}{2}+\frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

Example: uniform in a triangle

- The uniform density on a triangle $x, y \geq 0$ and $x+y \leq 1$ is $f(x, y)=2$ - recall a previous example
- The marginal density of X is $f(x)=2(1-x)$ for $0 \leq x \leq 1$. Thus,

$$
E(X)=\int_{0}^{1} 2 x(1-x) d x=\frac{1}{3}
$$

- Due to symmetry of X and Y the marginal density of Y is the same...as well as its marginal expectation
- Next,

$$
E\left(X^{2}\right)=\int_{0}^{1} 2 x^{2}(1-x) d x=\frac{1}{6}
$$

and so $\operatorname{Var}(X)=\frac{1}{6}-\frac{1}{9}=\frac{1}{18} \ldots$ Once again, $\operatorname{Var}(Y)$ is the same

Example: uniform in a triangle

- Also,

$$
E(X Y)=2 \int_{0}^{1} \int_{0}^{1-y} x y d x d y=\frac{1}{12}
$$

- Therefore,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=-\frac{1}{36}
$$

and

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{-\frac{1}{36}}{\frac{1}{18}}=-\frac{1}{2}
$$

