STAT 516

Conditional Distributions and Conditional Expectations

Prof. Michael Levine

April 12, 2020

Motivation

- Let (X, Y) have the joint pmf $f(x, y)$.
- The conditional distribution of X given $Y=y$ is defined to be

$$
p(x \mid y)=P(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

- The conditional expectation of X given $Y=y$ is defined ot be

$$
E(X \mid Y=y)=\sum_{x} x p(x \mid y)=\frac{\sum_{x} x p(x, y)}{p_{Y}(y)}=\frac{\sum_{x} x p(x, y)}{\sum_{x} p(x, y)}
$$

Basic properties of conditional expectation

- Often, $E(X \mid y)$ is used a shorthand for $E(X \mid Y=y)$
- Let X and Y be random variables defined on a common sample space Ω. Then,

1.

$$
E(g(Y) \mid Y=y)=g(y)
$$

for any function g
2.

$$
E(X g(Y) \mid Y=y)=g(y) E(X \mid Y=y)
$$

for any y and any function g

Independence of two discrete random variables

- The following are several equivalent definitions that can be used

$$
\begin{aligned}
& \text { 1. } p(x \mid y)=p_{X}(x) \text { for any } x, y \text { such that } p_{Y}(y)>0 \\
& \text { 2. } p(y \mid x)=p_{Y}(y) \text { for any } x, y \text { such that } p_{X}(x)>0 \\
& \text { 3. } p(x, y)=p_{X}(x) p_{Y}(y) \text { for any } x, y \\
& \text { 4. } P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y) \text { for any } x, y
\end{aligned}
$$

- The version (3) is usually the most convenient
- Suppose X and Y are independent random variables. Then, for any appropriate function $g(X)$ and any y,

$$
E[g(X) \mid Y=y]=E[g(X)]
$$

Example I

- Consider the joint distribution of (X, Y) where X is the larger and Y is the smaller of the two dice rolls
- By definition,

$$
P(Y=1 \mid X=2)=\frac{P(Y=1, X=2)}{P(X=2)}=\frac{1 / 18}{1 / 18+1 / 36}=\frac{2}{3}
$$

- In the same way,

$$
P(Y=2 \mid X=2)=\frac{P(Y=2, X=2)}{P(X=2)}=\frac{1 / 36}{1 / 18+1 / 36}=\frac{1}{3}
$$

- In an automatic way, $P(Y=1 \mid X=1)=1$

Example II

- Suppose X and Y are the binary variables, each taking only values 0 and 1
- The joint distribution is

Y		
X	0	1
0	s	t
1	u	v

Example II

- By definition,

$$
\begin{aligned}
& E(X \mid Y=0)=\frac{0 \times p(0,0)+1 \times p(1,0)}{p(0,0)+p(1,0)}=\frac{u}{s+u} \\
& E(X \mid Y=1)=\frac{0 \times p(0,1)+1 \times p(1,1)}{p(0,1)+p(1,1)}=\frac{v}{t+v}
\end{aligned}
$$

- Therefore,

$$
E(X \mid Y=1)-E(X \mid Y=0)=\frac{v}{t+v}-\frac{u}{s+u}=\frac{v s-u t}{(t+v)(s+u)}
$$

- The above implies the single formula:

$$
E(X \mid Y=y)=\frac{u}{s+u}+\frac{v s-u t}{(t+v)(s+u)} y
$$

- Whenever X and Y are both binary variables, $E(X \mid Y=y)$ is linear in y

Conditional variance

- Let (X, Y) have the joint pmf $p(x, y)$. Let $\mu_{X}(y)=E(X \mid Y=y)$. The conditional variance of X given $Y=y$ is

$$
\operatorname{Var}(X \mid Y=y)=E\left[\left(X-\mu_{X}\right)^{2} \mid Y=y\right]=\sum_{x}\left(x-\mu_{X}(y)\right)^{2} p(x \mid y)
$$

- The usual shorthand for $\operatorname{Var}(X \mid Y=y)$ is $\operatorname{Var}(X \mid y)$.

Example

- Again, let X be the max and Y be the min of two rolls of a die.
- For example, if $y=3$, then one can compute

$$
\mu_{X}(y)=E(X \mid Y=y)=E(X \mid Y=3)=4.71
$$

- Therefore,

$$
\begin{aligned}
& \operatorname{Var}(X \mid y)=\sum_{x}(x-4.71)^{2} p(x \mid 3) \\
& =\frac{(3-4.71)^{2} \times \frac{1}{36}+(4-4.71)^{2} \times \frac{1}{18}}{\frac{1}{36}+\frac{1}{18}+\frac{1}{18}+\frac{1}{18}} \\
& +\frac{(5-4.71)^{2} \times \frac{1}{18}+(6-4.71)^{2} \times \frac{1}{18}}{\frac{1}{36}+\frac{1}{18}+\frac{1}{18}+\frac{1}{18}} \\
& =1.06
\end{aligned}
$$

Poisson conditional distribution

- Let X and Y be the independent Poisson random variables with means λ and μ.
- The conditional distribution of X given $X+Y=t$ is $\operatorname{Bin}(t, p)$ where $p=\frac{\lambda}{\lambda+\mu}$
- This result is very important in many applications

Proof

- Clearly, $P(X=x \mid X+Y=t)=0$ if $x>t$
- For any $x \leq t$,

$$
\begin{aligned}
& P(X=x \mid X+Y=t)=\frac{P(X=x, X+Y=t)}{P(X+Y=t)} \\
& =\frac{P(X=x, Y=t-x)}{P(X+Y=t)} \\
& =\frac{e^{-\lambda} \lambda^{x}}{x!} \frac{e^{-\mu} \mu^{t-x}}{(t-x)!} \frac{t!}{e^{-(\lambda+\mu)}(\lambda+\mu)!} \\
& =\frac{t!}{x!(t-x)!} \frac{\lambda^{x} \mu^{t-x}}{(\lambda+\mu)!} \\
& =\binom{t}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(\frac{\mu}{\lambda+\mu}\right)^{t-x}
\end{aligned}
$$

- In the above, we used the fact that $X+Y \sim \operatorname{Poi}(\lambda+\mu)$

