STAT 516

Bivariate Joint Distributions and Expectations of Functions

Prof. Michael Levine

April 12, 2020

Motivation

- Consider the experiment of tossing ξ of tossing a fair coin three times.
- Let X be the number of heads among the first two tosses and Y the number of heads among the last two tosses
- We cannot consider X and Y as two independent $\operatorname{Bin}(2,0.5)$ random variables; indeed, if $X=2$, then $Y \geq 1$

Motivation

- The combination of all possible values of (X, Y) are: $(0,0),(0,1),(1,0),(0,2),(2,0),(1,1),(1,2),(2,1)$.
- The joint probability mass function can be described as

Y				
X	0	1	2	
0	$\frac{1}{8}$	$\frac{1}{8}$	0	
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	
2	0	$\frac{1}{8}$	$\frac{1}{8}$	

Definition

- Let (X, Y) be two discrete random variables with sets of values x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots on a common sample space Ω.
- The joint pmf of (X, Y) is the function $p\left(x_{i}, y_{j}\right)=P\left(X=x_{i}, Y=y_{j}\right)$ for $i, j \geq 1$ and $p(x, y)=0$ on any other point (x, y)
- The requirements:

1. $p(x, y) \geq 0 \forall(x, y)$
2. $\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right)=1$

Definition

- Let $p(x, y)$ be the joint pmf of (X, Y). The marginal pmf of a function $Z=g(X, Y)$ is

$$
p_{Z}(z)=\sum_{(x, y): g(x, y)=z} p(x, y)
$$

- In particular,

$$
p_{X}(x)=\sum_{y} p(x, y)
$$

and

$$
p_{Y}(y)=\sum_{x} p(x, y)
$$

- Moreover, for any event A

$$
P(A)=\sum_{(x, y) \in A} p(x, y)
$$

Example I

- Let X be the number of aces in the hands of Player 1 and Y the number of aces in the hands of Player 2 in a bridge game
- Then, $X, Y \geq 0$ and $X+Y \leq 4$
- If Player 1 gets x aces, Player 2 can get y aces in $\binom{4-x}{y}$ ways
- Player 1 also has to get $13-x$ non-ace cards and Player 2 13 - y non-ace cards

Example I

- Thus, the pmf is

$$
p(x, y)=\frac{\binom{4}{x}\binom{48}{13-x}\binom{4-x}{y}\binom{35+x}{13-y}}{\binom{52}{13}\binom{39}{13}}
$$

where $x \geq 0, y \geq 0$, and $x+y \leq 4$

- For example, $p(1,0)=.1249, p(1,1)=.0974$, $p(1,2)=0.974, p(1,3)=.0137$, and $p(1,4)=0$
- Summing, we get

$$
P(X=1)=\sum_{y} p(1, y)=.4389
$$

which can also be obtained from the direct formula for the pmf of X :

$$
P(X=1)=\frac{\binom{4}{1}\binom{48}{12}}{\binom{52}{13}}=.4389
$$

Example I

- Let $A: X+Y=2$ be the event of interest

$$
P(A)=\sum_{(x, y) \in A} p(x, y)=p(0,2)+p(1,1)+p(2,0)=.3901
$$

- Note that this probability cannot be computed using only marginal distributions of X and Y

Example II

- Let

$$
p(x, y)=c(x+y)
$$

for $1 \leq x, y \leq n$

- To find the constant c we need to equate

$$
\sum_{x=1}^{n} \sum_{y=1}^{n} p(x, y)=1
$$

- This results in

$$
c \sum_{x=1}^{n}\left[n x+\frac{n(n+1)}{2}\right]=1
$$

and, finally,

$$
c=\frac{1}{n^{2}(n+1)}
$$

Example II

- Note that this joint pmf is symmetric because $x+y=y+x \ldots$ and, so, $p(x, y)=p(y, x)$
- That implies, in turn, that X and Y have the same marginal pmf
- E.g.

$$
\begin{aligned}
& p_{X}(x)=\sum_{y=1}^{n} p(x, y)=\frac{1}{n^{2}(n+1)} \sum_{y=1}^{n}(x+y) \\
& =\frac{x}{n(n+1)}+\frac{1}{2 n}
\end{aligned}
$$

for any $1 \leq x \leq n$

Example II

- How to compute $P(X>Y)$
- By symmetry, $P(X>Y)=P(Y>X)$ and so

$$
P(X>Y)+P(Y>X)+P(X=Y)=1
$$

- Denote $P(X<Y)=P(Y<X)=p$; thus,

$$
2 p+P(X=Y)=1 \text { and } p=\frac{1-P(X=Y)}{2}
$$

- Now,

$$
P(X=Y)=\sum_{x=1}^{n} p(x, x)=c \times \sum_{x=1}^{n} 2 x=\frac{1}{n^{2}(n+1)} n(n+1)=\frac{1}{n}
$$

- Finally, $P(X>Y)=p=\frac{n-1}{2 n} \approx \frac{1}{2}$ for large n

Definition

- Let (X, Y) have the joint pmf $p(x, y)$ and let $g(X, Y)$ be a function of (X, Y).
- The expectation of $g(X, Y)$ exists if $\sum_{x} \sum_{y}|g(x, y)| p(x, y)<\infty$, in which case

$$
E] g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p(x, y)
$$

