STAT 516
 Lecture 8: Normal distribution

Prof. Michael Levine

April 3, 2020

Introduction

- Most empirical data that seem to be unimodal and not strongly skewed are commonly modeled using the normal distribution
- When a new methodology is presented, it is typically tested on the normal distribution first
- The best-known procedures in statistics have their exact inferential optimality properties when the data come from the normal distribution

Definition

- $X \sim N\left(\mu, \sigma^{2}\right)$ when its pdf is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

for any $-\infty<x<\infty$

- In this definition, μ can be any real number and $\sigma>0$.
- The case $X \sim N(0,1)$ is called a standard normal random variable

Definition

- The density of the standard normal random variable is denoted as $\phi(x)$ and is

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

for any $-\infty<x<\infty$

- $\phi(x)$ is symmetric and unimodal about zero. The general $N\left(\mu, \sigma^{2}\right)$ is symmetric and unimodal around μ

Definition

- By definition, the CDF of the standard normal distribution is

$$
\Phi(x)=\int_{-\infty}^{x} \phi(z) d z
$$

- Due to the symmetry of the standard normal distribution around zero

$$
\Phi(-x)=1-\Phi(x)
$$

- The change of μ results in the shift of the distribution to the new center
- The increase of σ^{2} results in the new distribution being more spread out

Standard Normal CDF at Selected Values

x	$\Phi(x)$
-4	0.0003
-3	0.00135
-2	0.02275
-1	0.15866
0	0.5
1	0.84134
2	0.97725
3	0.99865
4	0.99997

Basic properties

- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$; if $Z \sim N(0,1)$, then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
P(X \leq x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

In particular, $P(X \leq \mu)=P(Z \leq 0)=0.5$ i.e. μ is the median of X

- Every moment of any normal distribution exists; for any k, $E\left[(X-\mu)^{2 k+1}\right]=0$

Basic properties

- If $Z \sim N(0,1)$, then

$$
E\left(Z^{2 k}\right)=\frac{(2 k)!}{2^{k} k!}
$$

for any $k \geq 1$

- The MGF of $N\left(\mu, \sigma^{2}\right)$ exists for all real t and is

$$
\psi(t)=e^{t \mu+\frac{t^{2} \sigma^{2}}{2}}
$$

Corollary

- Let $X \sim N\left(\mu, \sigma^{2}\right)$ and $0<\alpha<1$.
- Let $Z \sim N(0,1)$ and denote x_{α} the $(1-\alpha)$ th quantile of X
- Finally, let z_{α} is the $(1-\alpha)$ th percentile of Z. Then,

$$
x_{\alpha}=\mu+\sigma z_{\alpha}
$$

Basic Example I

- By using a standard normal CDF table, we can easily find 75th, 90th, 97.5th, 99th, and 99.5th percentiles of the standard normal distribution

α	$1-\alpha$	z_{α}
0.25	0.75	0.675
0.1	0.9	1.282
0.05	0.95	1.645
0.025	0.975	1.960
0.01	0.99	2.326
0.005	0.995	2.576

Basic Example II

- The age of the subscribers to a newspaper has a normal distribution with mean 50 years and standard deviation 5 years. Compare the percentage of subscribers who are less than 40 years old and the percentage who are between 40 and 60 years old.
- $X \sim N\left(\mu, \sigma^{2}\right)$ with $\mu=50$ and $\sigma=5$ is the age of a subscriber. Then,

$$
P(X<40)=\Phi\left(\frac{40-50}{5}\right)=\Phi(-2)=0.02275
$$

and

$$
\begin{aligned}
& P(40 \leq X \leq 60)=P(X \leq 60)-P(X \leq 40) \\
& =\Phi(2)-\Phi(-2)=0.9545
\end{aligned}
$$

Example I

- Let X denote the length of time (in minutes) an auto battery will continue to crank an engine. Assume that $X \sim N(10,4)$.
- What is the probability that the battery will crank the engine longer than $10+x$ minutes given that it is still cranking in 10 minutes?

$$
\begin{aligned}
& P(X>10+x \mid X>10)=\frac{P(X>10+x)}{P(X>10)}=\frac{P(Z>x / 2)}{1 / 2} \\
& =2\left[1-\Phi\left(\frac{x}{2}\right)\right]
\end{aligned}
$$

- Note that the resulting function is decreasing in x.
- This is different from the exponential distribution with the same mean $\mu=10$

Example II

- Let the thermostat be set at d degrees Celsius.
- The actual temperature of a certain room is $N\left(d, \sigma^{2}\right)$ with $\sigma=0.5$
- If the thermostat is set at 75 degrees, what is the probability that the actual temperature is below 74 degrees?
$P(X<74)=P(Z<(74-75) / 0.5)=P(Z<-2)=0.02275$

Example II

- What is the lowest setting of the thermostat that will maintain a temperature of at least 72 degrees with probability of 0.99 ?
- We need to find the value of d such that $P(X \geq 72)=0.99$, or equiv. $P(X<72)=0.01$
- Note that $P(Z<-2.36)=0.01$ (e.g. see the normal distribution table or use the software)
- Thus, need to find d such that $d+\sigma(-2.326)=72$ which results in $d=73.16$ degrees

Sums of independent normal variables

- Let X_{1}, \ldots, X_{n} for $n \geq 2$ be independent random variables $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$.
- Also, let $S_{n}=\sum_{i=1}^{n} X_{i}$.
- Then,

$$
S_{n} \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

- A sum of any number of independent normal random variables is exactly normally distributed
- Note that a more general statement is also true: for any set of constants a_{1}, \ldots, a_{n}

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

Proof

- The mgf of S_{n} is

$$
\begin{aligned}
& \psi_{S_{n}}(t)=E\left(e^{t S_{n}}\right)=E\left(e^{t X_{1}} \cdots e^{t X_{n}}\right)=\prod_{i=1}^{n} E\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} e^{t \mu_{i}+t^{2} \sigma_{i}^{2} / 2}=e^{t\left(\sum_{i=1}^{n} \mu_{i}\right)+\left(t^{2} / 2\right)\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)}
\end{aligned}
$$

- The last expression is the mgf of $N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$

Corollary

- Suppose $X_{i}, 1 \leq i \leq n$ are independent and each is distributed as $N\left(\mu, \sigma^{2}\right)$.
- Then, $\bar{X}=\frac{S_{n}}{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$.
- Thus, the distribution of \bar{X} becomes more concentrated around the true mean μ as the sample size grows.
- Therefore, \bar{X} becomes better and better as an estimator of μ.

Example I

- Suppose $X \sim N(-1,4), Y \sim N(1,5)$ and they are independent.
- What is the CDF of $X+Y$ and $X-Y$?
- First, $X+Y \sim N(0,9)$ and $X-Y \sim N(-2,9)$
- Therefore, $P(X+Y \leq x)=\Phi\left(\frac{x}{3}\right)$ and $P(X-Y \leq x)=\Phi\left(\frac{x+2}{3}\right)$

Example II

- Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ are independent (they are iid)
- Therefore, $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ and

$$
\begin{aligned}
& P(\bar{X}-1.96 \sigma / \sqrt{n} \leq \mu \leq \bar{X}-1.96 \sigma / \sqrt{n}) \\
& =P(-1.96 \sigma / \sqrt{n} \leq \bar{X}-\mu \leq 1.96 \sigma / \sqrt{n}) \\
& =P\left(-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq 1.96\right)=\Phi(1.96)-\Phi(-1.96)=0.95
\end{aligned}
$$

- Thus, with probability 95% for any n we have that the true mean μ is between $\bar{X}-1.96 \sigma / \sqrt{n}$ and $\bar{X}+1.96 \sigma / \sqrt{n}$
- We obtained a simple 95% confidence interval for μ with the margin of error $1.96 \sigma / \sqrt{n}$.

