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Discrete Random Variable Examples

I Geometric Random Variable

I Binomial Random Variable

I In general, each discrete random variable is described by its
pmf

pX (x) = P[X = x ]

for any x ∈ D
I pX (x) always satisfies

1. 0 ≤ pX (x) ≤ 1
2.
∑

x∈D pX (x) = 1

I A support of a discrete random variable is a set of all points
in D such that pX (x) > 0
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Hypergeometric Random Variable

I Each of N individuals can be characterized as a success (S) or
failure (F), and there are M successes in the population

I A sample of n individuals is selected without replacement in
such a way that each subset of size n is equally likely to be
chosen.

I Let X be the number of Ss in a random sample of size n
drawn from a population consisting of M Ss and N −M F s.

I The probability distribution of X , called the hypergeometric
distribution, is given by

P(X = x) = h(x ; n,M,N) =

(M
x

)(N−M
n−x

)(N
n

)
I In the above, max(0, n − N + M) ≤ x ≤ min(n,M)
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Capture-recapture model

I 5 individuals from an animal population thought to be near
extinction in a certain region have been caught, tagged and
released.

I Afterwards, a sample of 10 animals is selected. Let X be the
number of tagged animals in the second sample.

I The parameter values are n = 10, M = 5 and N = 25
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Capture-Recapture Models

I Denote X the number of tagged animals in the recapture
sample.

I The pmf of X is

h(x ; 10, 5, 25) =

(5
x

)( 20
10−x

)(25
10

)
P(X = 2) = h(2; 10, 5, 25) =

(5
2

)(20
8

)(25
10

) = .385

P(X ≤ 2) =
2∑

x=0

h(x ; 10, 5, 25) = .699
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Computation

I To compute P(X = 2) use dhyper(2,m = 5, n = 20, k = 10)

I To compute P(X ≤ 2), use phyper(2,m = 5, n = 20, k = 10)
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One-to-one Transformations

I For X with DX consider Y = g(X )

I Y has the range DY = {g(x) : x ∈ DX}
I The pmf of Y is

pY (y) = pX (g−1(y))
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Example

I For a geometric random variable X consider Y = X − 1

I If X is the flip number on which the first head appears,
pX (x) = p(1− p)x−1

I Y is the number of failures before the first success

I pY (y) = pX (g−1(y)) = pX (y + 1) = p(1− p)x
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Example

I For X ∼ Bin
(
3, 23 ,

)
define Y = X 2

I DX = {x : x = 0, 1, 2, 3} and DY = {y : y = 0, 1, 4, 9}
I The inverse transformation is g−1(y) =

√
y which is a

one-to-one in this case

I pY (y) = pX (
√
y)
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Other transformations

I For a geometric random variable X , consider 1 unit gain when
betting on odds and −1 when on evens

I The new variable is Y with DY = {1,−1}
I Assume 1

2 ;

p(X = 1, 3, 5, . . .) =
∞∑
x=1

(
1

2

)2x−1
=

2

3

I Thus, pY (1) = 2
3 and pY (−1) = 1

3
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Expectation

I We define µ = EX =
∑

i xip(xi ) if
∑

i |xi |p(xi ) <∞
I If the sample space is finite or countably infinite,

µ =
∑
x

xp(x) =
∑
ω

X (ω)P(ω)

where P(ω) is the probability of a sample point ω
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Expectation of a function of several random variables

I Let X1, . . . ,Xn be n discrete random variables on a common
sample space Ω with a finite or a countably infinite number of
sample points

I Assume that
∑

ω |g(X1(ω),X2(ω), . . . ,Xn(ω)|P(ω) <∞
I Define

E [g(X1,X2, . . . ,Xn) =
∑
ω

g(X1(ω),X2(ω), . . . ,Xn(ω))P(ω)
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Example

I Consider two rolls of a fair die. Let X be the number of ones
and Y the number of sixes obtained

I Define g(X ,Y ) = XY ; note that
Ω = {11, 12, 13, . . . , 64, 65, 66} and P(ω) = 1

36

I

E (XY ) = 0× 1

36
+ · · · =

2

36
=

1

18
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Basic properties of expectations

I For a finite constant c s.t. P(X = c) = 1 we have EX = c

I For X and Y on the same sample space Ω with finite
expectations, if P(X ≤ Y ) = 1, we have EX ≤ EY

I If X has a finite expectation, and P(X ≥ c) = 1 , EX ≥ c ; if
P(X ≤ c) = 1, EX ≤ c
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Linearity of expectations; expectation of a function

I Let X1, . . . ,Xn defined on the same Ω and c1, . . . , ck are any
real valued constants. Then

E

(
k∑

i=1

ciXi

)
=

k∑
i=1

ciE (Xi )

I If X is defined on Ω and Y = g(X ), and if EY exists,

E (Y ) =
∑
ω

Y (ω)P(ω) =
∑
x

g(x)p(x)
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Expectation of independent random variables

I Let X1, . . . ,Xk be independent random variables; if each
expectation exists, we have

E (X1X2 . . .Xk) = E (X1)E (X2) · · ·E (Xk)
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Example

I Let X be the sum of two rolls when a fair die is rolled twice

I Check that pmf of X is p(2) = p(12) = 1
36 ;

p(3) = p(11) = 2
36 etc.

I EX = 2 1
36 + 3 2

36 + · · · = 7

I Alternatively, define X1 the face on the first roll, X2 the face
on the second roll, then

EX = E (X1 + X2) = EX1 + EX2 = 3.5 + 3.5 = 7
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Example

I Let a fair die be rolled 10 times and X be the sum of these
rolls

I The pmf is hard to write down exactly; but if Xi be the face
on ith roll,

EX = E (X1 + X2 + · · ·+ X10)

= E (X1) + E (X2) + · · ·+ E (X10) = 3.5× 10 = 35
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Use of indicator variables to compute expectations of
discrete random variables

I Let c1, . . . , cm be constants and A1, . . . ,Am some events

I Let X be an integer valued random variable X =
∑m

i=1 ci IAi
;

then

EX =
m∑
i=1

ciP(Ai )

I Coin tosses - let a fair coin be tossed n times with the
probability of success p

I The number of successes is X =
∑n

i=1 IAi
for obvious Ai

I EX =
∑m

i=1 P(Ai ) = np

Levine STAT 516: Discrete Random Variables



Example

I The matching problem: let the number at location i be p(i);
define X as the number of locations such that p(i) = i

I Again, define obvious Ai and X =
∑n

i=1 IAi

I For any i , P(Ai ) = (n−1)!
n! = 1

n

I Thus, EX =
∑n

i=1 P(Ai ) = 1
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Example

I Let a fair die be rolled n times; X is the number of faces that
never show up in these n rolls

I Let Ai be the event that ith face is missing; X =
∑6

i=1 IAi

I For any i , P(Ai ) =
(
5
6

)n
I EX =

∑6
i=1 P(Ai ) = 6×

(
5
6

)n
I If n = 10, this is about 0.97
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Tail sum method

I Let X take values 0, 1, 2, . . .. Then,

EX =
∞∑
n=0

P(X > n)

I Let p be the probability of success in a Bernoulli trial; how
long do we wait on average for the first success?

I If X is the number of trials needed than X > n means that
the first n trials all resulted in tails

I EX =
∑∞

n=0 P(X > n) =
∑∞

n=0(1− p)n = 1
p
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Example

I Suppose a couple will have children until they have one child
of each sex. How many children can they expect to have?

I Let X be the childbirth at which they have a child of each sex
for the first time

I If the births are independent, the probability that a childbirth
is a boy is p, we have

P(X > n) = pn + (1− p)n

I Therefore,

EX = 2+
∞∑
n=2

[pn+(1−p)n] = 2+
p2

1− p
+

(1− p)2

p
=

1

p(1− p)
−1
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Variance of discrete random variables

I Variance of X is
σ2 = E [(X − µ)2]

I The standard deviation is σ = +
√
σ2

I Possible alternative is E |X − µ|...can show that σ ≥ |X − µ|
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Basic properties

I Var (cX ) = c2var (X )

I Var (X + k) = Var (X ) for any real k

I Var (X ) ≥ 0; Var (X ) = 0 iff X = µ w.p.1

I Var (X ) = E (X 2)− µ2
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Moments of a discrete random variable X

I For a positive integer k ≥ 1 we call E (X k) a kth moment of
X

I E (X−k) is a kth inverse moment of X

I If E [|X |3] <∞ , the skewness of X is

β =
E [(X − µ)3]

σ3

I The skewness measures how symmetric the distribution if X
is; e.g. for X ∼ N(0, 1), β = 0

I If E [X 4] <∞, the kurtosis of X is

γ =
E [(X − µ)4]

σ4
− 3

I The kurtosis is always ≥ −2 and is equal to zero for a normal
distribution; it measures how “spiky” the distribution is
around its mean
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Example

I Let X be the sum of two independent rolls of a fair die. We
know that E (X ) = 7

I E (X 2) = 329
6 and

Var (X ) = E (X 2)− µ2 = 329
6 − 49 = 35

6 = 5.83
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Example: Variance in the Matching Problem

I Let X be the number of locations where match occurs when n
numbers are rearranged in a random order

I We know that E (X ) = 1 for any n; moreover, recall
representation X =

∑n
i=1 IAi

I Now,

E (X 2) =
n∑

i=1

P(Ai ) + 2
∑

1≤i<j≤n
P(Ai ∩ Aj)

= n × 1

n
+ 2

(
n

2

)
(n − 2)!

n!
= 1 + 1 = 2

I Thus, Var (X ) = 2− 1 = 1 for any n

I Think of which distribution might approximate well the
number of matches...
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Variance of a sum of independent random variables

I Let X1, . . . ,Xn be independent random variables;

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi )

I As a corollary (and a very important one!), if X̄ =
∑n

i=1 Xi

n ,
and σ2 = Var Xi <∞,

Var (X̄ ) =
σ2

n
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Chebyshev’s and Markov’s inequalities

I (Chebyshev’s inequality) Let EX = µ and Var X = σ2 be
finite. For any positive number k we have

P(|X − µ| ≥ kσ) ≤ 1

k2

I (Markov’s inequality) Suppose X takes only nonnegative
values and EX = µ is finite. If c is any positive number,

P(X ≥ c) ≤ µ

c

I Chebyshev’s inequality is a direct consequence of Markov’s
inequality
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Example

I Chebyshev’s and Markov’s inequalities are rather conservative

I X be the sum of two rolls of a fair die. Recall that µ = 7 and
σ = 2.415

I Choose k = 2 in the Chebyshev’s inequality; direct calculation
gives

P(|X − 7| ≥ 4.830) =
1

18
= 0.056

I Chebyshev’s inequality gives the lower bound of 1
4 = 0.25
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Weak law of large numbers

I WLLN is a direct consequence of Chebyshev’s inequality

I Let X1, . . . ,Xn be iid RV’s with EXi = µ and
Var Xi = σ2 <∞.

I For any ε > 0,
P(|X̄ − µ| > ε)→ 0

as n→∞
I A stronger version is the strong law of large numbers (SLLN)

that says that
P( lim

n→∞
X̄ = µ) = 1

I The only conditions needed is that E |Xi | be finite
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Truncated Distributions

I Examples: planet observations; reported car accidents

I Let X be a discrete random variable with pmf p(x); let A be a
fixed subset of its values

I The distribution of X truncated to A has the pmf

pA(y) =
p(y)

P(X ∈ A)

for any y ∈ A and 0 if y /∈ A

I The mean of a truncated distribution is

µA =

∑
y∈A yp(y)∑
y∈A p(y)
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Example

I Let P(X = n) = 1
2n for n = 1, 2, . . .; we only observe X if

X ≤ 5

I The truncation set is A = {1, 2, 3, 4, 5} and

pA(y) =
(1/2)y∑5
y=1(1/2)y

=
25−y

31

for y = 1, 2, . . . , 5

I Check that its mean is 1.71 which is less than∑∞
n=1 n ×

1
2n = 2

I (Chow-Studden inequality). For any RV X and finite real
constants a and b, let U = min(X , a) and V = max(X , b).
Then,

Var (U) ≤ Var (X );Var (V ) ≤ Var (X )
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