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Definition

I X ∼ P(m) if

p(x) =
mxe−m

x!

for x = 0, 1, 2 . . .

I Easy to verify that p(x) is a pmf

I Unlike the other discrete distributions cannot be described
using a simple algorithm
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Poisson assumptions

I Let g(x ,w) be the probability of x changes in an interval of
length w

I The following are Poisson postulates:

1. g(1, h) = λh + o(h) for a positive λ
2.

∑∞
x=2 g(x , h) = o(h)

3. Numbers of changes in non-overlapping intervals are
independent

I A process satisfying these assumptions is known as a Poisson
process
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Interpretation

1. The probability of one change is proportional to the length of
an interval

2. The probability of more than two changes is very small

3. Self-explanatory
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Heuristic derivation I

I The probability of no events in an interval of length w + h is

g(0,w + h) = g(0,w)[1− λh − o(h)]

I Rearrange to obtain

g(0,w + h)− g(0,w)

h
= −λg(0,w)− o(h)g(0,w)

h

I Letting h→ 0 obtain g
′
(0,w) = −λg(0,w)

I Since g(0, 0) = 1 the solution is

g(0,w) = e−λw
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Heuristic derivation II

I For x > 0,

g(x ,w+h) = [g(x ,w)][1−λh−o(h)]+[g(x−1,w)][λh+o(h)]+o(h)

I Rearranging terms, we have

g(x ,w + h)− g(x ,w)

h
= −λg(x ,w) + λg(x , 1− w) +

o(h)

h

I As h→ 0, we have g
′
w (x ,w) = −λg(x ,w) + λg(x − 1,w)

I By mathematical induction with the initial condition
g(x , 0) = 0,

g(x ,w) =
(λw)xe−λw

x!

for x = 0, 1, 2, . . .

I The number of changes in an interval of length w is
X ∼ P(λw)
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Moment generating function, mean and variance of the
Poisson

I Easily computed:
M(t) = em(et−1)

I Verify that for X ∼ P(m) EX = Var X = m - the mean is
equal to the variance

I Due to the above, a common notation is X ∼ P(µ)

Levine STAT 516: Some discrete distributions



Example

I April receives on average three phone calls per day at her
home. What is the percentage of days on which she receives
no phone calls?

I Clearly, if Poisson model is true, P(X = 0) = e−3 = 0.0498

I What is the percentage of days she receives more than five
phone calls?

I Again, under the Poisson assumption,
P(X > 5) = 1− P(X ≤ 5) = 1−

∑5
x=0 e

−33x/x! = 0.0839

I If using R, use dpois(0,3) in the first case and 1-ppois(5,3) in
the second

I Keep in mind that the Poisson model is not the only one
possible!

Levine STAT 516: Some discrete distributions



Example

I Lengths of an electronic tape contain, on average, 1 defect
per 100 ft. What is the probability that the 50 ft long tape
will be defect free?

I Assuming the homogeneous Poisson process, we model it as
X ∼ P(0.5)

I Thus, P(X = 0) = e−.5 = .6065
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Additive property

I For independent X1, . . . ,Xn ∼ P(mi )
Y =

∑n
i=1 Xi ∼ P(

∑n
i=1mi )

I Can prove in one line using the moment generating function
of X but can also be done directly

I Recall other distributions with the additive property - binomial
and negative binomial
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Example

I The probability of a blemish in 1 foot of wire is about 0.001
while the probability of two or more blemishes is infinitesimally
small

I If X is the number of blemishes in 3000 feet of wire, model it
as X ∼ P(3000 ∗ 0.001) = P(3)

I Now select three bails of wire at random...what is the
probability that the mean number of blemishes is at least 5?

I Clearly, Ȳ =
∑3

i=1 Xi ∼ P(9)

I Thus,

P(X̄ ≥ 5) = P(Y ≥ 15) = 1− P(Y ≤ 14) = 0.041
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