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Uniform Distribution

I Let X have the pdf f (x) = 1
b−a for any a ≤ x ≤ b and 0

elsewhere. We say that X ∼ U[a, b] - uniformly distributed on
[a, b]

I Main properties:

1. If X ∼ U[0, 1], then a + (b − a)X ∼ U[a, b]; if X ∼ U[a, b],
then X−a

b−a ∼ U[0, 1]

2. The CDF of U[a, b] is F (x) = x−a
b−a for any a ≤ x ≤ b, equal to

zero if x < 0 and equal to 1 if x > 1.

3. The mgf of U[a, b] is ψ(t) = etb−eta

(b−a)t

4. The mean and the variance of the U[a, b] are

µ =
a + b

2
; σ2 =

(b − a)2

12
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Example

I The diameters (measured in centimeters) of circular strips
made by a machine are uniform in the interval [0, 2]. Strips
with an area larger than 3.1 cm2 cannot be used. Suppose
that 200 strips are made in one shift.

I The are of a circular strip of a radius r is πr2. If r ∼ U[0, 1]
we have

p = P(πr2 > 3.1) = P(r2 > 3.1/π) = P(r2 > .9868)

= P(r > .9934) = .0066

I Thus, the number of strips among 200 that cannot be used
have the Bin(200, 0.0066) distribution

I Their expected number is 200 ∗ 0.0066 = 1.32
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Exponential Distribution

I A nonnegative random variable X has the exponential
distribution with parameter λ > 0 if its pdf f (x) = 1

λe
−x/λ for

x > 0.

I We write X ∼ Exp(λ).

I The case λ = 1 is called the standard exponential density
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Exponential Distribution: Main Properties

I For X ∼ Exp(λ)

1. X
λ ∼ Exp(1)

2. The CDF is F (x) = 1− e−x/λ for x > 0
3. E (X n) = λnn! for n ≥ 1
4. The mgf is ψ(t) = 1

1−λt defined for t < 1
λ
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Example I

I For X ∼ Exp(4) find P(X > 4)

I Since X
4 ∼ Exp(1)

P(X > 4) =

∫ ∞
1

e−x dx = e−1 = 0.3679

I Thus EX 6= µ̃(X ) = 4 log 2
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Example II

I Let X ∼ Exp(λ) and s, t > 0. Then, one can show directly
that

P(X > s + t|X > s) = P(X > t)

I Thus, the exponential distribution is the continuous analog of
the geometric distribution
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Gamma distribution

I A generalization of the exponential distribution with a mode
usually at some m > 0 is the Gamma distribution

I X ∼ G (α, λ) if its pdf

f (x |α, λ) =
e−x/λxα−1

λαΓ(α)

for any x > 0 and α, λ > 0

I When α = 1 we have the exponential distribution as a special
case
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Main Properties

1. The CDF of X ∼ G (α, λ) is

F (x) =
γ(α, x/λ)

Γ(α)

where γ(α, x) =
∫ x
0 e−ttα−1 dt is the incomplete Gamma

function

2. The nth moment is

E (X n) = λn
Γ(α + n)

γ(α)

for any n ≥ 1

3. The MGF is
ψ(t) = (1− λt)−α

for any t < 1
λ

4. The mean and the variance are

E (X ) = αλ; σ2 = αλ2
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Corollary

I Let X1, . . . ,Xn be independent Exp(λ) variables. Then,
X1 + · · ·+ Xn ∼ G (n, λ)

I The proof follows by calculating the mgf of the sum:

E (et(X1+···+Xn)) = E (etX1etX2 · · · etXn) = (1− λt)−n

Levine STAT 516: Some Special Continuous Distributions



Example I

I 40 people have been invited to a party. The amount of diet
soda each guest receives is distributed as Exp(8) (in ounces).

I Two bottles of soda with of 200 oz each are available

I What is the probability that the supply will fall short of the
demand?
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Example I

I Let n = 40 and Xi the amount consumed by ith guest.

I Then, X1 + · · ·+Xn ∼ G (n, 8) and so the needed probability is

P(X1 + · · ·+ Xn > 400) = 1− P(X1 + · · ·+ Xn ≤ 400)

= 1− γ(40, 400/8)

Γ(40)
= 0.065
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Example II

I If X1, . . . ,Xm are m independent N(0, 1), then
T =

∑m
i=1 X

2
i ∼ G

(
m
2 , 2
)

with the pdf

fm(t) =
e−t/2tm/2−1

2m/2Γ
(
m
2

)
for any t > 0

I This is the χ2-density with m degrees of freedom: T ∼ χ2
m.

I Clearly, the mean of this distribution is m and the variance is
2m
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Sample variance for iid normal observations

I If X1, . . . ,Xn are independent with the same variance σ2, we
have the sample variance

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

I S2 is the unbiased estimator of σ2 :

E (S2) = σ2

I Indeed, just note that

n∑
i=1

(Xi − X̄ )2 =
n∑

i=1

X 2
i − nX̄ 2

I Then,

E (S2) =
1

n − 1
[n(σ2 + µ2)− n(σ2/n + µ2)] = σ2
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χ2 distribution and the sample variance

I Let X1, . . . ,Xn ∼ N(µ, σ2). Then,∑n
i=1(Xi − X̄ )2

σ2
∼ χ2

n−1
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The inverse Gamma distribution

I Heavily used as a prior in Bayesian statistics and in reliability
theory

I If X ∼ G (α, λ) then 1
X has the inverse Gamma distribution

I g(X ) = 1
X is a strictly monotone function for positive X

I Its inverse function is g−1(y) = 1
y and g

′
(x) = − 1

x2

I Thus, Y has the density

fY (y) =
f
(

1
y

)
|g ′
(

1
y

)
|

=
e−1/(λy)y−1−α

λαΓ(α)

for any positive y
I This density is heavily skewed for small α
I The right tail is very heavy: there is no finite mean when
α < 1
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Example: simulating a Gamma variable

I Note that the CDF of a Gamma random variable does not
have a closed form expression

I Nevertheless, when the first parameter is an integer, say
α = n, it is easy to generate values from it

I Consider Exp(1) random variable X . Its CDF is
F (x) = 1− e−x .

I Thus, its inverse is the quantile function

F−1(p) = − log(1− p)

for any 0 < p < 1
I Therefore, for any U ∼ U[0, 1] we have
− log(1− U) ∼ Exp(1) and

Y = −
n∑

i=1

log(1− Ui ) = − log
n∏

i=1

(1− Ui ) ∼ G (n, 1)

I Finally, if the second parameter needed is λ 6= 1, the answer is
Y

′
= λY
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Beta distribution

I Beta distribution arose as a generalization of the uniform
distribution

I It is also defined on a closed interval but can be either
decreasing or increasing, symmetric and unimodal or unimodal
and assymetric etc.

I In other words, it is capable of taking a wide variety of shapes
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Definition and basic properties

I We say that X ∼ Be(α, β) if its pdf is

f (x) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) =
∫ 1
0 xα−1(1− x)β−1 dx and the parameters

α > 0, β > 0.
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Definition and basic properties

I The beta function B(α, β) can also be represented as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

I The CDF is

F (x) =
Bx(α, β)

B(α, β)

and Bx(α, β) =
∫ x
0 tα−1(1− t)β−1 dt is an incomplete beta

function
I The nth moment is

E (X n) =
Γ(α + n)Γ(α + β)

Γ(α + β + n)Γ(α)

I The mean and variance are

µ =
α

α + β
σ2 =

αβ

(α + β)2(α + β + 1)
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Remarks

I Note that the specific case α = 1, β = 1 results in a uniform
density on [0, 1]

I Proof of the CDF formula is just a restatement of the
definition of the incomplete beta function

I To prove the nth moment formula, one has simply to note that

B(α + n, β) =

∫ 1

0
xα+n−1(1− x)β−1 dx
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Example

I Suppose a standardized one hour exam takes 45 min on
average to finish and the standard deviation of the finishing
times is 10 min. What percentage of examinees finish in less
than 40 min?

I If we assume Beta distribution for the finishing time, we can
use formulas for the mean and the variance

I Thus,
α

α + β
=

3

4

and
αβ

(α + β)2(α + β + 1)
=

1

36
I The result is α = 4.32 and β = 1.44
I Finally, the answer is given by

P

(
X <

2

3

)
=

∫ 2/3
0 x3.32(1− x).44 dx

B(4.32, 1.44)
= 0.281
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Mixture of two beta densities

I It is, unfortunately, impossible for a beta distribution to be
bimodal in [0, 1] for any values of α and β

I To circumvent this, we can use a suitable mixture of two
Betan densities

I Consider
f (x) = 0.5f1(x) + 0.5f2(x)

where f1(x) and f2(x) are densities of Be(6, 2) and Be(2, 6),
respectively

I Note that f (x) is clearly a density;

f (x) = 21x(1− x)[x4 + (1− x)4]

for 0 ≤ x ≤ 1

I Verify that this density is bimodal
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