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» Consider a binomial random variable X ~ B(n, p) with
p = 0.1 and different values of n

P It is easy to realize that a histogram of X starts rather skewed
when e.g. n = 10 but is already more symmetric when n =20

» Check additional values of n =50 and n = 100 using the Java
applet at https://www.stat.berkeley.edu/~stark/
Java/Html/BinHist.htm

» This happens as the skewness coefficient of X ~ B(n, p) is
1-2p
———=E_ that goes to zero as n — oo
v/np(1—p) &

» Thus, in general, B(n, p) can be well approximated by
N(np, np(1 — p)) for any fixed p when n is large

» Recall that Bin(n, p) is a sum of n Ber(p) random variables
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Central Limit Theorem

» Forn>1let Xi,...,X, be nindependent random variables

» All of X; have the same distribution with mean u and the
finite variance o2

> Let S, =Xy + -+ X, and X = 2.

» Then, as n — oo,

: p<5:/;7’;“ gx) S d(x)¥x € R
: p <ﬁ();ﬂ) < X> S O(Vx € R

» In word, for large n, S, ~ N(nu, no?) and X~N (,u, "—;)
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Normal approximation to Binomial:de Moivre-Laplace

Central Limit Theorem

» Let X = X, ~ Bin(n, p). Then, for any fixed p and real-valued

X
X —
P _2-P < x| = d(x)
np(1 — p)
as n — oo
» Thus, for any X ~ Bin(n, p) we approximate P(X < k) with

o k—np
v/ np(1—p)
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Continuity Correction

» In practice, the quality of approximation improves greatly if
we interpret an eventX:xasx—% §X§x+%

» This corresponds to approximating P(X < k) as

k+é—np>

HXSH%¢< )

> Moreover, we also approximate

ngxgmz¢<k+5‘w>_¢<m—5—W>
np(1 - p) np(1 — p)
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Example: coin tossing

» Suppose a fair coin is tossed 100 times. What is the
probability that we obtain between 45 and 55 heads?

» The number of heads is X ~ Bin(n, p) with n =100 and

p=0.>5
» Thus,
5 445 —
P(45§X§55)zq><55550> _¢<550>
V125 V125

= $(1.56) — ¢(—1.56) = 0.8812
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Example: coin tossing

| 2

>

How many times do we need to toss a fair coin to be 99%
sure that the percentage of heads is between 45% and 55%7?

In other words, when is the number of heads between .45n
and .55n7

Thus,

99— ¢ (.55n+0.5— .5n> @ (.45n—0.5— .5n>
.25n .25n

This is equivalent to

.55n+ 0.5 — .5n> 1

.99 =2¢ (
.25n

since (x) — d(—x) =2d(x) — 1
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Example: coin tossing

® <.05n +0.5
.25n

» Since ®(2.575) = 0.995, we end up with a quadratic equation

in \/n:

> =0.995

0.05n — 1.2875y/n+05=0
» The needed solution is n = 661.04 ~ 662
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General CLT example |

» Suppose a fair die is rolled n times; let X;, 1 < i < n be the
individual rolls

> Let S, = > " ; Xi; recall that, for each X; the mean = 3.5
and 02 = 2.92

» Therefore,
Sp &~ N(3.5n,2.92n)
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General CLT example |

» For n =100 the probability

2995 -35%1
P(5n2300)—1—P(5n§299)—1—q><995 35+ 00)

V/2.92 100
=1— &(—2.96) = B(2.96) = .9985
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General CLT example Il

» Let n positive numbers be rounded up to their nearest integers
The rounding error ¢; ~ U[—0.5,0.5]

> E.g. a tax agency rounds off the exact refund amount to the
nearest integer

v

» Then, the total error is the agency’s loss or profit due to the
rounding process
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General CLT example Il

> Recall that Ee; =0 and V(&) = &
» By the CLT, the total error

u n
Sn—gei'\‘ N<0,E)
> E.g. when n = 1000

P(|Sn| < 20) = P(S5 < 20) — P(S, < —20
Sn 20 S, —20

=P\ —=<—7]|—-P <
(<@ - f) ((@— f)

~ ©(2.19) — d(—2.19) = .0714

~—

» Due to cancellations of positive and negative errors the tax
agency is unlikely to lose or gain much money from rounding
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