STAT 516
 Central Limit Theorem

Prof. Michael Levine

April 7, 2020

Motivation

- Consider a binomial random variable $X \sim B(n, p)$ with $p=0.1$ and different values of n
- It is easy to realize that a histogram of X starts rather skewed when e.g. $n=10$ but is already more symmetric when $n=20$
- Check additional values of $n=50$ and $n=100$ using the Java applet at https://www.stat.berkeley.edu/~stark/ Java/Html/BinHist.htm
- This happens as the skewness coefficient of $X \sim B(n, p)$ is $\frac{1-2 p}{\sqrt{n p(1-p)}}$ that goes to zero as $n \rightarrow \infty$
- Thus, in general, $B(n, p)$ can be well approximated by $N(n p, n p(1-p))$ for any fixed p when n is large
- Recall that $\operatorname{Bin}(n, p)$ is a sum of $n \operatorname{Ber}(p)$ random variables

Central Limit Theorem

- For $n \geq 1$ let X_{1}, \ldots, X_{n} be n independent random variables
- All of X_{i} have the same distribution with mean μ and the finite variance σ^{2}
- Let $S_{n}=X_{1}+\cdots+X_{n}$ and $\bar{X}=\frac{S_{n}}{n}$.
- Then, as $n \rightarrow \infty$,

1.

$$
P\left(\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}} \leq x\right) \rightarrow \Phi(x) \forall x \in R
$$

2.

$$
P\left(\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq x\right) \rightarrow \Phi(x) \forall x \in R
$$

- In word, for large $n, S_{n} \approx N\left(n \mu, n \sigma^{2}\right)$ and $\bar{X} \approx N\left(\mu, \frac{\sigma^{2}}{n}\right)$

Normal approximation to Binomial:de Moivre-Laplace Central Limit Theorem

- Let $X=X_{n} \sim \operatorname{Bin}(n, p)$. Then, for any fixed p and real-valued x

$$
P\left(\frac{X-n p}{\sqrt{n p(1-p)}} \leq x\right) \rightarrow \Phi(x)
$$

as $n \rightarrow \infty$

- Thus, for any $X \sim \operatorname{Bin}(n, p)$ we approximate $P(X \leq k)$ with $\Phi\left(\frac{k-n p}{\sqrt{n p(1-p)}}\right)$

Continuity Correction

- In practice, the quality of approximation improves greatly if we interpret an event $X=x$ as $x-\frac{1}{2} \leq X \leq x+\frac{1}{2}$
- This corresponds to approximating $P(X \leq k)$ as

$$
P(X \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-n p}{\sqrt{n p(1-p)}}\right)
$$

- Moreover, we also approximate

$$
P(m \leq X \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{m-\frac{1}{2}-n p}{\sqrt{n p(1-p)}}\right)
$$

Example: coin tossing

- Suppose a fair coin is tossed 100 times. What is the probability that we obtain between 45 and 55 heads?
- The number of heads is $X \sim \operatorname{Bin}(n, p)$ with $n=100$ and $p=0.5$
- Thus,

$$
\begin{aligned}
& P(45 \leq X \leq 55) \approx \Phi\left(\frac{55.5-50}{\sqrt{12.5}}\right)-\Phi\left(\frac{44.5-50}{\sqrt{12.5}}\right) \\
& =\Phi(1.56)-\Phi(-1.56)=0.8812
\end{aligned}
$$

Example: coin tossing

- How many times do we need to toss a fair coin to be 99% sure that the percentage of heads is between 45% and 55% ?
- In other words, when is the number of heads between . $45 n$ and $.55 n$?
- Thus,

$$
.99=\Phi\left(\frac{.55 n+0.5-.5 n}{\sqrt{.25 n}}\right)-\Phi\left(\frac{.45 n-0.5-.5 n}{\sqrt{.25 n}}\right)
$$

- This is equivalent to

$$
.99=2 \Phi\left(\frac{.55 n+0.5-.5 n}{\sqrt{.25 n}}\right)-1
$$

since $\Phi(x)-\Phi(-x)=2 \Phi(x)-1$

Example: coin tossing

$$
\Phi\left(\frac{.05 n+0.5}{\sqrt{.25 n}}\right)=0.995
$$

- Since $\Phi(2.575)=0.995$, we end up with a quadratic equation in \sqrt{n} :

$$
0.05 n-1.2875 \sqrt{n}+0.5=0
$$

- The needed solution is $n=661.04 \approx 662$

General CLT example I

- Suppose a fair die is rolled n times; let $X_{i}, 1 \leq i \leq n$ be the individual rolls
- Let $S_{n}=\sum_{i=1}^{n} X_{i}$; recall that, for each X_{i} the mean $\mu=3.5$ and $\sigma^{2}=2.92$
- Therefore,

$$
S_{n} \approx N(3.5 n, 2.92 n)
$$

General CLT example I

- For $n=100$ the probability

$$
\begin{aligned}
& P\left(S_{n} \geq 300\right)=1-P\left(S_{n} \leq 299\right)=1-\Phi\left(\frac{299.5-3.5 * 100}{\sqrt{2.92 * 100}}\right) \\
& =1-\Phi(-2.96)=\Phi(2.96)=.9985
\end{aligned}
$$

General CLT example II

- Let n positive numbers be rounded up to their nearest integers
- The rounding error $e_{i} \sim U[-0.5,0.5]$
- E.g. a tax agency rounds off the exact refund amount to the nearest integer
- Then, the total error is the agency's loss or profit due to the rounding process

General CLT example II

- Recall that $E e_{i}=0$ and $V\left(e_{i}\right)=\frac{1}{12}$
- By the CLT, the total error

$$
S_{n}=\sum_{i=1}^{n} e_{i} \sim N\left(0, \frac{n}{12}\right)
$$

- E.g. when $n=1000$

$$
\begin{aligned}
& P\left(\left|S_{n}\right| \leq 20\right)=P\left(S_{n} \leq 20\right)-P\left(S_{n} \leq-20\right) \\
& =P\left(\left(\frac{S_{n}}{\sqrt{\frac{n}{12}}} \leq \frac{20}{\sqrt{\frac{n}{12}}}\right)-P\left(\left(\frac{S_{n}}{\sqrt{\frac{n}{12}}} \leq \frac{-20}{\sqrt{\frac{n}{12}}}\right)\right.\right. \\
& \approx \Phi(2.19)-\Phi(-2.19)=.9714
\end{aligned}
$$

- Due to cancellations of positive and negative errors the tax agency is unlikely to lose or gain much money from rounding

