The joint pmf of X_1 and X_2 is presented below. Each joint probability is calculated using the independence of X_1 and X_2 ; e.g., $p(25, 25) = P(X_1 = 25) \cdot P(X_2 = 25) = (.2)(.2) = .04$.

			x_1		
	$p(x_1, x_2)$	25	40	65	
	25	.04	.10	.06	.2
<i>x</i> ₂	40	.10	.25	.15	.5
	65	.06	.15	.09	.3
		.2	.5	.3	

a. For each coordinate in the table above, calculate \overline{x} . The six possible resulting \overline{x} values and their corresponding probabilities appear in the accompanying pmf table.

\overline{x}	25	32.5	40	45	52.5	65	
$p(\overline{x})$.04	.20	.25	.12	.30	.09	

From the table, $E(\overline{X}) = (25)(.04) + 32.5(.20) + ... + 65(.09) = 44.5$. From the original pmf, $\mu = 25(.2) + 40(.5) + 65(.3) = 44.5$. So, $E(\overline{X}) = \mu$.

b. For each coordinate in the joint pmf table above, calculate $s^2 = \frac{1}{2-1} \sum_{i=1}^{2} (x_i - \overline{x})^2$. The four possible resulting s^2 values and their corresponding probabilities appear in the accompanying pmf table.

From the table, $E(S^2) = 0(.38) + ... + 800(.12) = 212.25$. From the original pmf, $\sigma^2 = (25 - 44.5)^2(.2) + (40 - 44.5)^2(.5) + (65 - 44.5)^2(.3) = 212.25$. So, $E(S^2) = \sigma^2$.

- 48.
- **a.** No, it doesn't seem plausible that waist size distribution is approximately normal. The normal distribution is symmetric; however, for this data the mean is 86.3 cm and the median is 81.3 cm (these should be nearly equal). Likewise, for a symmetric distribution the lower and upper quartiles should be equidistant from the mean (or median); that isn't the case here.

If anything, since the upper percentiles stretch much farther than the lower percentiles do from the median, we might suspect a right-skewed distribution, such as the exponential distribution (or gamma or Weibull or ...) is appropriate.

b. Irrespective of the population distribution's shape, the Central Limit Theorem tells us that \overline{X} is (approximately) normal, with a mean equal to $\mu = 85$ cm and a standard deviation equal to $\sigma / \sqrt{n} = 15 / \sqrt{277} = .9$ cm. Thus,

$$P(\overline{X} \ge 86.3) = P\left(Z \ge \frac{86.3 - 85}{.9}\right) = 1 - \Phi(1.44) = .0749$$

c. Replace 85 with 82 in (b):

$$P(\overline{X} \ge 86.3) = P\left(Z \ge \frac{86.3 - 82}{.9}\right) = 1 - \Phi(4.77) \approx 1 - 1 = 0$$

That is, if the population mean waist size is 82 cm, there would be almost no chance of observing a sample mean waist size of 86.3 cm (or higher) in a random sample if 277 men. Since a sample mean of 86.3 was actually observed, it seems incredibly implausible that μ would equal 82 cm.

49.

a. 11 P.M.
$$-6:50$$
 P.M. $=250$ minutes. With $T_o = X_1 + ... + X_{40} =$ total grading time, $\mu_{T_o} = n\mu = (40)(6) = 240$ and $\sigma_{T_o} = \sigma \cdot \sqrt{n} = 37.95$, so $P(T_o \le 250) \approx P\left(Z \le \frac{250 - 240}{37.95}\right) = P\left(Z \le .26\right) = .6026$.

b. The sports report begins 260 minutes after he begins grading papers.

$$P(T_0 > 260) = P(Z > \frac{260 - 240}{37.95}) = P(Z > .53) = .2981.$$

58.

a.
$$E(27X_1 + 125X_2 + 512X_3) = 27E(X_1) + 125E(X_2) + 512E(X_3)$$

= $27(200) + 125(250) + 512(100) = 87,850$.
 $V(27X_1 + 125X_2 + 512X_3) = 27^2 V(X_1) + 125^2 V(X_2) + 512^2 V(X_3)$
= $27^2 (10)^2 + 125^2 (12)^2 + 512^2 (8)^2 = 19,100,116$.

b. The expected value is still correct, but the variance is not because the covariances now also contribute to the variance.

59.

a.
$$E(X_1 + X_2 + X_3) = 180$$
, $V(X_1 + X_2 + X_3) = 45$, $SD(X_1 + X_2 + X_3) = \sqrt{45} = 6.708$.
 $P(X_1 + X_2 + X_3 \le 200) = P\left(Z \le \frac{200 - 180}{6.708}\right) = P(Z \le 2.98) = .9986$.
 $P(150 \le X_1 + X_2 + X_3 \le 200) = P(-4.47 \le Z \le 2.98) \approx .9986$.

b.
$$\mu_{\overline{X}} = \mu = 60 \text{ and } \sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{\sqrt{15}}{\sqrt{3}} = 2.236 \text{ , so}$$

$$P(\overline{X} \ge 55) = P\left(Z \ge \frac{55 - 60}{2.236}\right) = P(Z \ge -2.236) = .9875 \text{ and}$$

$$P(58 \le \overline{X} \le 62) = P(-.89 \le Z \le .89) = .6266.$$

c.
$$E(X_1 - .5X_2 - .5X_3) = \mu - .5 \ \mu - .5 \ \mu = 0$$
, while $V(X_1 - .5X_2 - .5X_3) = \sigma_1^2 + .25\sigma_2^2 + .25\sigma_3^2 = 22.5 \Rightarrow SD(X_1 - .5X_2 - .5X_3) = 4.7434$. Thus, $P(-10 \le X_1 - .5X_2 - .5X_3 \le 5) = P\left(\frac{-10 - 0}{4.7434} \le Z \le \frac{5 - 0}{4.7434}\right) = P\left(-2.11 \le Z \le 1.05\right) = .8531 - .0174 = .8357$.

d.
$$E(X_1 + X_2 + X_3) = 150$$
, $V(X_1 + X_2 + X_3) = 36 \Rightarrow SD(X_1 + X_2 + X_3) = 6$, so $P(X_1 + X_2 + X_3 \le 200) = P\left(Z \le \frac{160 - 150}{6}\right) = P(Z \le 1.67) = .9525$.
Next, we want $P(X_1 + X_2 \ge 2X_3)$, or, written another way, $P(X_1 + X_2 - 2X_3 \ge 0)$. $E(X_1 + X_2 - 2X_3) = 40 + 50 - 2(60) = -30$ and $V(X_1 + X_2 - 2X_3) = \sigma_1^2 + \sigma_2^2 + 4\sigma_3^2 = 78 \Rightarrow SD(X_1 + X_2 - 2X_3) = 8.832$, so $P(X_1 + X_2 - 2X_3 \ge 0) = P\left(Z \ge \frac{0 - (-30)}{8.832}\right) = P(Z \ge 3.40) = .0003$.