1. Suppose that in a certain population 30% of couples have one child, 50% have two children, and 20% have three children. One family is picked at random from this population. What is the expected number of boys in the family? Assume that the probability of a childbirth resulting in a boy is 0.5.

Solution: let Y be the number of children in the family that was picked, and let X be the number of boys it has. Making the usual assumption of a childbirth being equally likely to be a boy or a girl,

$$E(X) = E_Y[E(X|Y=y)] = .3 \times .5 + .5 \times 1 + .2 \times 1.5 = .95$$

- 2. Let the random variables X and Y have the joint pmf
 - (a) $p(x,y) = \frac{1}{3}$ for (x,y) = (0,0), (1,1), (2,2) and zero elsewhere
 - (b) $p(x,y) = \frac{1}{3}$ for (x,y) = (0,2), (1,1), (2,0) and zero elsewhere

Find the correlation $\rho_{X,Y}$ in both cases. Solution: as an example, consider (2a). To solve this question, we simply use the definition of the covariance as Cov(X,Y) = E(XY) - E(X)E(Y). Recall that, in order to find e.g. E(X) you should find the marginal pmf of X first. Since $p_X(x) = \sum_y p(x,y)$ we have $p_X(0) = p_X(1) = p_X(3) = \frac{1}{3}$ and so E(X) = 1. Due to the symmetry of the joint distribution, the marginal distribution of Y is the same and so E(Y) = E(X) = 1. Using the joint distribution, one finds $E(XY) = \frac{1}{3} + 4 \times \frac{1}{3} = \frac{5}{3}$. Thus, $Cov(X,Y) = \frac{5}{3} - 1 = \frac{2}{3}$. Next, $Var(X) = E(X^2) - (EX)^2 = \frac{5}{3} - 1 = \frac{2}{3}$ and the same is true for Var(Y) due to symmetry. By definition, $\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = 1$. Following exactly the same steps, one finds that in (2b) $\rho_{XY} = -1$.

3. Let U and V be two random variables with common mean and common variance. Let X = U + V and Y = U - V. Show that X and Y are uncorrelated.

Solution: by definition, $Cov(X, Y) = E(U + V)(U - V) - E(U + V)E(U - V) = EU^2 - EV^2 - E(U + V)E(U - V) = 0$

4. Consider the trinomial distribution with pmf

$$P(X = x, Y = y) = \frac{n!}{x! y! (n - x - y)!} p_1^x p_2^y p_3^{n - x - y}$$

where x, y are non-negative integers such that $x + y \le n$. Of course, $p_1, p_2, p_3 \ge 0$ and $p_1 + p_2 + p_3 = 1$.

- (a) Find the conditional distribution P(Y = y | X = x)
- (b) What is E(Y|X = x)? Can you find E(X|Y = y) without any additional computations?

Solution: the marginal $P(X = x) = \binom{n}{x} p_1^x (1 - p_1)^{n-x}$ f or $x = 0, 1, 2, \dots, n$. Therefore,

$$P(Y = y | X = x) = \frac{(n-x)!}{y!(n-x-y)!} \left(\frac{p_2}{1-p_1}\right)^y \left(\frac{p_3}{1-p_1}\right)^{n-x-y}$$

for any y = 0, 1, 2, ..., n - x and 0 otherwise. In other words, $Y|X = x \sim Bin(n-x, p_2/(1-p_1))$. Thus, $E(Y|X = x) = (n-x)\frac{p_2}{1-p_1}$. By symmetry, we have $E(X|Y = y) = (n-y)\frac{p_1}{1-p_2}$.