STAT 512 HW #6 Solutions

- 7.1. (1) 1 (2) 1 (3) 2 (4) 3
- 7.3. a. $SSR(X_1) = 1,566.45, SSR(X_2|X_1) = 306.25, SSE(X_1,X_2) = 94.30, df$: 1, 1, 13.
 - b. H_0 : $\beta_2 = 0$, H_a : $\beta_2 \neq 0$. $SSR(X_2|X_1) = 306.25$, $SSE(X_1, X_2) = 94.30$, $F^* = (306.25/1) \div (94.30/13) = 42.219$, F(.99; 1, 13) = 9.07. If $F^* \leq 9.07$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+.
- 7.7. a. $SSR(X_4) = 40.5033$, $SSR(X_1|X_4) = 42.2746$, $SSR(X_2|X_1, X_4) = 27.8575$, $SSR(X_3|X_1, X_2, X_4) = 0.4195$, $SSE(X_1, X_2, X_3, X_4) = 98.2306$, df: 1, 1, 1, 1, 76.
 - b. H_0 : $\beta_3 = 0$, H_a : $\beta_3 \neq 0$. $F^* = (0.42/1) \div (98.2306/76) = 0.3249$, F(.99; 1, 76) = 6.9806. If $F^* \leq 6.9806$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .5704.
- 7.16. a. $\hat{Y}^* = .89239X_1^* + .39458X_2^*$
 - c. $s_Y = 11.45135$, $s_1 = 2.30940$, $s_2 = 1.03280$, $b_1 = \frac{11.45135}{2.30940}(.89239) = 4.425$, $b_2 = \frac{11.45135}{1.03280}(.39458) = 4.375$, $b_0 = 81.7500 4.425(7) 4.375(3) = 37.650$.
- 8.4. a. $\hat{Y} = 82.9357 1.18396x + .0148405x^2$, $R^2 = .76317$
 - b. H_0 : $\beta_1 = \beta_{11} = 0$, H_a : not both β_1 and $\beta_{11} = 0$. MSR = 5915.31, MSE = 64.409, $F^* = 5915.31/64.409 = 91.8398$, F(.95; 2, 57) = 3.15884. If $F^* \leq 3.15884$ conclude H_0 , otherwise H_a . Conclude H_a .
 - c. $\hat{Y}_h = 99.2546$, $s\{\hat{Y}_h\} = 1.4833$, t(.975;57) = 2.00247, $99.2546 \pm 2.00247(1.4833)$, $96.2843 \le E\{Y_h\} \le 102.2249$
 - d. $s\{\text{pred}\} = 8.16144, 99.2546 \pm 2.00247(8.16144), 82.91156 \le Y_{h(\text{new})} \le 115.5976$
 - e. H_0 : $\beta_{11}=0$, H_a : $\beta_{11}\neq 0$. $s\{b_{11}\}=.00836$, $t^*=.0148405/.00836=1.7759$, t(.975;57)=2.00247. If $|t^*|\leq 2.00247$ conclude H_0 , otherwise H_a . Conclude H_0 . Alternatively, $SSR(x^2|x)=203.1$, $SSE(x,x^2)=3671.31$, $F^*=(203.1/1)\div(3671.31/57)=3.15329$, F(.95;1,57)=4.00987. If $F^*\leq 4.00987$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - f. $\hat{Y} = 207.350 2.96432X + .0148405X^2$
 - g. $r_{XX^2} = .9961, r_{xx^2} = -.0384$