(b) Test by means of an F test whether or not there is a linear association between the hardness of the plastic and the elapsed time. Use a = .01. State the alternatives, decision rule, and conclusion.

Testing H₀: $\beta_1 = 0$ vs H_a: $\beta_1 \neq 0$. Reject H₀ if P-value < 0.01. Since P-value < 0.0001, we reject H₀ and conclude that there is a significant linear relationship between hardness and time.

(d) Calculate r^2 and r.

The values of r^2 and r can be obtained from the SAS output: $r^2 = 0.9731$ and so r = 0.9865. (Choose the positive square root because $b_1 > 0$).

Root MSE	3.23403	R-9	Square	<mark>0.97</mark>	<mark>31</mark>
Dependent Mean	225.562	50	Adj R-S	q	0.9712
Coeff Var	1.43376				

2. Problem 2.31

a)

Source	SS	ďf	МS
Regression	93,462,942	1	93,462,942
Error	455,273,165	82	5,552,112
Total	548,736,107	83	

b). $H_0: \ \ \beta_1 = 0, \ \ H_a: \ \ \beta_1 = 0. \ \ F^* = 93,462,942/5,552,112 = 16.8338, \ \ F(.99;1,82) = 6.9544.$ If $F^* \le 6.9544$ conclude H_0 , otherwise H_a . Conclude H_a . $(t^*)^2 = (-4.102895)^2 = 16.8338 = F$ *. $[t(.995;82)]^2 = (2.63712)^2 = 6.9544 = F(.99;1,82)$

so the two tests are, indeed, equivalent

c) SSR = 93, 462, 942 which is 17.03% or 0.1703

d) -0.4127

7. Describe the distribution of the explanatory variable. Show the plots and output that were helpful in learning about this variable.

Using PROC UNIVARIATE we see there are 20 observations ranging between 3.9 and 6.3 with a mean of 5 and median of 4.85; their standard deviation is 0.69. There are no extreme observations (i.e., ones far away from the others) as shown in the histogram plot below. The

distribution appears to be reasonably symmetric but not completely so; it has a slight skew to the right.

The UNIVARIATE Procedure					
	Variable: testscore				
N	Moments 20 Sum Weights 20				20
Mean		5	Sum Observat	100	
<mark>Std Deviatio</mark>	n 0.69	<mark>282032</mark>	Variance		0.48
Skewness	0.49	9695171	Kurtosis		-0.595083
Uncorrected S	SS	509.12	Corrected SS		9.12
Coeff Variat:	ion 13.8	3564065	Std Error Me	an	0.15491933
	Basi	lc Statist	tical Measures		
Loca	ation		Variabil	ity	
Mean	5.000000	Std [Deviation		0.69282
<mark>Median</mark>	<mark>4.85</mark> 0000	Varia	ance		0.48000
Mode	4.700000	Range	9		2.40000
Interquartile Range 0.90000 Extreme Observations					0.90000
	Lowes	st	Highe	st	
	Value	Obs	Value	0bs	
	<mark>3.9</mark>	4	5.5	1	
	4.1	19	5.9	18	
	4.3	16	6.0	7	
	4.3	10	6.2	6	
	4.5	5	<mark>6.3</mark>	14	
Stem	Leaf		#		Boxplot
6	023		3		I
5	59		2		I
5	0024		4		++
4	5677789		7		**
4	133		3		I
3	9		1		I

- - - + - - - + - - - + - - - +

8. Run the linear regression to predict GPA from the entrance test score and obtain the residuals (do not include a list of the residuals in your solution).

a. Verify that the sum of the residuals is zero by running PROC UNIVARIATE with the output from the regression.

```
The UNIVARIATE Procedure
Variable: resid (Residual)
```

```
Moments
```

| Ν | 20 | Sum Weights | 20 |
|-----------------|------------|------------------|------------|
| Mean | 0 | Sum Observations | 0 |
| Std Deviation | 0.4234117 | Variance | 0.17927747 |
| Skewness | 0.05677081 | Kurtosis | -1.0342174 |
| Uncorrected SS | 3.40627193 | Corrected SS | 3.40627193 |
| Coeff Variation | | Std Error Mean | 0.09467773 |

b. Plot the residuals versus the explanatory variable and briefly describe the plot noting any unusual patterns or points.

There does not appear to be any obvious pattern or outlier in this residual plot. It looks like a random scatter of points and the variance is reasonably constant.

c. Plot the residuals versus the order in which the data appear in the data file and briefly describe the plot noting any unusual patterns or points.

There is some suggestion that the residuals may become more negative over time but it does not appear to be a big problem.

