Historic Curiosity

- The article Toothpaste Detergents: A Potential Source of Oral Soft Tissue Damage" (Intl. J. of Dental Hygiene, 2008: 193198) contains the following statement:
- "Because the sample number for each experiment (replication) was limited to three wells per treatment type, the data were assumed to be normally distributed."
- As justification for this leap of faith, the authors wrote that "Descriptive statistics showed standard deviations that suggested a normal distribution to be highly likely. Note: This argument is not very persuasive.

Sample percentiles

- The basis for our construction is a comparison between percentiles of the sample data and the corresponding percentiles of the distribution under consideration.
- We know that the (100p)th percentile of a continuous distribution with $\operatorname{cdf} F(\cdot)$ is the number $\eta(p)$ that satisfies $F(\eta(p))=p$. That is, $\eta(p)$ is the number on the measurement scale such that the area under the density curve to the left of $\eta(p)$ is p.

Sample percentiles

- The 50 th-sample percentile should separate the smallest 50% of the sample from the largest 50%, the 90 th percentile should be such that 90% of the sample lies below that value and 10% lies above, and so on.
- Unfortunately, we run into problems when we actually try to compute the sample percentiles for a particular sample of n observations. If, for example, $\mathrm{n}=10$ we can split off 20% of these values or 30% of the data, but there is no value that will split off exactly 23% of these ten observations

Sample percentiles

- Order n observations in the ascending order. Then, the i th smallest observation is $[100(i-.5) / n]$ sample percentile
- Sample percentiles corresponding to intermediate percentages can be obtained by linear interpolation.
- For example, if $\mathrm{n}=10$, the percentages corresponding to the ordered sample observations are $100(1.5) / 10=5 \%$, $100(2.5) / 10=15 \%, 25 \%$, and $100(10.5) / 10=95 \%$. The 10th percentile is then halfway between the 5th percentile (smallest sample observation) and the 15th percentile (second-smallest observation).
- For our purposes, such interpolation is not necessary because a probability plot will be based only on the percentages $100(i .5) / n$ corresponding to the n sample observations

Example

- The value of a certain physical constant is known to an experimenter. The experimenter makes $n=10$ independent measurements of this value using a particular measurement device and records the resulting measurement errors (error = observed value true value). These observations appear in the accompanying table

Figure :

Figure :

Figure :

Normal probability plot

- A plot of n pairs $([(100-0.5) / n]$ th percentile, i th smallest observation) is called the normal probability plot
- If the sample observations $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ the plot should resemble a straight line with the intercept μ and slope σ

