The implicit hypotheses are H_0 : $\mu = 30$ and H_a : $\mu \neq 30$ ("whether μ differs from the target value"). So, in each case, the *P*-value is $2 \cdot P(Z \ge |z|) = 2 \cdot [1 - \Phi(|z|)]$.

a.
$$P$$
-value = $2 \cdot [1 - \Phi(|2.10|)] = .0358$.

b.
$$P$$
-value = $2 \cdot [1 - \Phi(|-1.75|)] = .0802$.

c. P-value =
$$2 \cdot [1 - \Phi(|-0.55|)] = .5824$$
.

d. P-value =
$$2 \cdot [1 - \Phi(|1.41|)] = .1586$$
.

e.
$$P$$
-value = $2 \cdot [1 - \Phi(|-5.3|)] \approx 0$.

19.

a. Since the alternative hypothesis is two-sided, P-value = $2 \cdot \left[1 - \Phi \left(\frac{94.32 - 95}{1.20 / \sqrt{16}} \right) \right] = 2 \cdot \left[1 - \Phi(2.27) \right] = 2(.0116) = .0232$. Since $.0232 > \alpha = .01$, we do not reject H_0 at the .01 significance level.

b.
$$z_{\alpha/2} = z_{.005} = 2.58$$
, so $\beta(94) = \Phi\left(2.58 + \frac{95 - 94}{1.20 / \sqrt{16}}\right) - \Phi\left(-2.58 + \frac{95 - 94}{1.20 / \sqrt{16}}\right) = \Phi(5.91) - \Phi(0.75) = .2266$.

c.
$$z_{\beta} = z_{.1} = 1.28$$
. Hence, $n = \left[\frac{1.20(2.58 + 1.28)}{95 - 94} \right]^2 = 21.46$, so use $n = 22$.

- 21. The hypotheses are H_0 : $\mu = 5.5$ v. H_a : $\mu \neq 5.5$.
 - **a.** The *P*-value is $2 \cdot \left[1 \Phi\left(\frac{5.25 5.5}{.3/\sqrt{16}}\right)\right] = 2 \cdot [1 \Phi(3.33)] = .0008$. Since the *P*-value is smaller than any reasonable significance level (.1, .05, .01, .001), we reject H_0 .
 - **b.** The chance of <u>detecting</u> that H_0 is false is the complement of the chance of a type II error. With $z_{\alpha/2} = z_{.005} = 2.58$, $1 \beta(5.6) = 1 \left[\Phi\left(2.58 + \frac{5.5 5.6}{.3/\sqrt{16}}\right) \Phi\left(-2.58 + \frac{5.5 5.6}{.3/\sqrt{16}}\right)\right] = 1 \Phi(1.25) + \Phi(3.91) = .1056$.
 - **c.** $n = \left[\frac{.3(2.58 + 2.33)}{5.5 5.6} \right]^2 = 216.97$, so use n = 217.

- 30. The hypotheses are H_0 : $\mu = 7.0$ versus H_a : $\mu < 7.0$. In each case, we want the one-tail area to the left of the observed test statistic.
 - **a.** $n = 6 \Rightarrow \text{df} = 6 1 = 5$. From Table A.8, $P(T \le -2.3 \text{ when } T \sim t_5) = P(T \ge 2.3 \text{ when } T \sim t_5) = .035$. Since $.035 \le .05$, we reject H_0 at the $\alpha = .05$ level.
 - **b.** Similarly, *P*-value = $P(T \ge 3.1 \text{ when } T \sim t_{14}) = .004$. Since .004 < .01, reject H_0 .
 - c. Similarly, P-value = $P(T \ge 1.3 \text{ when } T \sim t_{11}) = .110$. Since .110 \ge .05, do not reject H_0 .
 - **d.** Here, P-value = $P(T \le .7 \text{ when } T \sim t_5)$ because it's a lower tailed test, and this is $1 P(T > .7 \text{ when } T \sim t_5) = 1 .258 = .742$. Since .742 > .05, do not reject H_0 . (Note: since the sign of the t-statistic contradicted H_a , we know immediately not to reject H_0 .)
 - **e.** The observed value of the test statistic is $t = \frac{\overline{x} \mu_0}{s / \sqrt{n}} = \frac{6.68 7.0}{.0820} = -3.90$. From this, similar to parts (a)-(c), P-value = $P(T \ge 3.90$ when $T \sim t_5$) = .006 according to Table A.8. We would reject H_0 for any significance level at or above .006.

35.

- a. The hypotheses are H_0 : $\mu = 200$ versus H_a : $\mu > 200$. With the data provided, $t = \frac{\overline{x} \mu_0}{s / \sqrt{n}} = \frac{249.7 200}{145.1 / \sqrt{12}} = 1.2$; at df = 12 1 = 11, *P*-value = .128. Since .128 > .05, H_0 is not rejected at the $\alpha = .05$ level. We have insufficient evidence to conclude that the true average repair time exceeds 200 minutes.
- **b.** With $d = \frac{|\mu_0 \mu|}{\sigma} = \frac{|200 300|}{150} = 0.67$, df = 11, and $\alpha = .05$, software calculates power $\approx .70$, so $\beta(300) \approx .30$.
- 38. μ = the true average percentage of organic matter in this type of soil, and the hypotheses are H_0 : μ = 3 versus H_a : $\mu \neq 3$. With n = 30, and assuming normality, we use the t test:

versus
$$H_a$$
: $\mu \neq 3$. With $n = 30$, and assuming normality, we use the t test:

$$t = \frac{\overline{x} - 3}{s / \sqrt{n}} = \frac{2.481 - 3}{.295} = \frac{-.519}{.295} = -1.759$$
. At df = 30 - 1 = 29, P -value = 2 $P(T > 1.759) = 2(.041) = .082$.

At significance level .10, since .082 \leq .10, we would reject H_0 and conclude that the true average percentage of organic matter in this type of soil is something other than 3. At significance level .05, we would not have rejected H_0 .