11.

a. 07 .
b. $.15+.10+.05=.30$.
c. Let $A=$ the selected individual owns shares in a stock fund. Then $P(A)=.18+.25=.43$. The desired probability, that a selected customer does not shares in a stock fund, equals $P\left(A^{\prime}\right)=1-P(A)=1-.43$ $=.57$. This could also be calculated by adding the probabilities for all the funds that are not stocks.
15.
a. Let E be the event that at most one purchases an electric dryer. Then E^{\prime} is the event that at least two purchase electric dryers, and $P\left(E^{\prime}\right)=1-P(E)=1-.428=.572$.
b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric. All other possible outcomes are those in which at least one of each type of clothes dryer is purchased. Thus, the desired probability is $1-[P(A)-P(B)]=$ $1-[.116+.005]=.879$.

The desired probabllity should be 1- $[P(A)+P(B)]$

33.

a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, etc. are different positions), the number of possibilities is $P_{9,15}=(15)(14) \ldots(7)$ or $15!/(15-9)!=$ $1,816,214,440$.
b. For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer from (a) by 9 ! to get $(1,816,214,440)(362,880)=659,067,881,472,000$.
c. Order still matters: There are $P_{3,5}=60$ ways to choose three left-handers for the outfield and $P_{6,10}=$ 151,200 ways to choose six right-handers for the other positions. The total number of possibilities is $=$ $(60)(151,200)=9,072,000$.
45.
a. $P(A)=.106+.141+.200=.447, P(C)=.215+.200+.065+.020=.500$, and $P(A \cap C)=.200$.
b. $P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{.200}{.500}=.400$. If we know that the individual came from ethnic group 3 , the probability that he has Type A blood is $.40 . P(C \mid A)=\frac{P(A \cap C)}{P(A)}=\frac{.200}{.447}=.447$. If a person has Type A blood, the probability that he is from ethnic group 3 is .447 .
c. Define $D=$ "ethnic group 1 selected." We are asked for $P\left(D \mid B^{\prime}\right)$. From the table, $P\left(D \cap B^{\prime}\right)=.082+$ $.106+.004=.192$ and $P\left(B^{\prime}\right)=1-P(B)=1-[.008+.018+.065]=.909$. So, the desired probability is $P\left(D \mid B^{\prime}\right)=\frac{P\left(D \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{.192}{.909}=.211$.
46. Let A be that the individual is more than 6 feet tall. Let B be that the individual is a professional basketball player. Then $P(A \mid B)=$ the probability of the individual being more than 6 feet tall, knowing that the individual is a professional basketball player, while $P(B \mid A)=$ the probability of the individual being a professional basketball player, knowing that the individual is more than 6 feet tall. $P(A \mid B)$ will be larger. Most professional basketball players are tall, so the probability of an individual in that reduced sample space being more than 6 feet tall is very large. On the other hand, the number of individuals that are pro basketball players is small in relation to the number of males more than 6 feet tall.

