
STAT 511
Lecture 18: Inferences Based on Two Samples Devore: Section

9.1-9.3

Prof. Michael Levine

March 29, 2019

Levine STAT 511



z Tests and Confidence Intervals for a Difference Between
Two Population Means

I An example of such hypothesis would be µ1 − µ2 = 0 or
σ1 > σ2. It may also be appropriate to estimate µ1 − µ2 and
compute its 100(1− α)% confidence interval

I Assumptions

1. X1, . . . ,Xm is a random sample from a population with mean
µ1 and variance σ2

1

2. Y1, . . . ,Yn is a random sample from a population with mean
µ2 and variance σ2

2

3. The X and Y samples are independent of one another
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I The natural estimator of µ1 − µ2 is X̄ − Ȳ . To standardize
this estimator, we need to find E (X̄ − Ȳ ) and V (X̄ − Ȳ ).

I E (X̄ − Ȳ ) = µ1 − µ2, so X̄ − Ȳ is an unbiased estimator of
µ1 − µ2.

I The proof is elementary:
E (X̄ − Ȳ ) = E (X̄ )− E (Ȳ ) = µ1 − µ2
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I The standard deviation of X̄ − Ȳ is σX̄−Ȳ =

√
σ2

1
m +

σ2
2
n

I The proof is also elementary:

V (X̄ − Ȳ ) = V (X̄ ) + V (Ȳ ) =
σ2

1

m
+
σ2

2

n

The standard deviation is the root of the above expression
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The Case of Normal Populations with Known Variances

I As before, this assumption is a simplification.

I Under this assumption,

Z =
X̄ − Ȳ − (µ1 − µ2)√

σ2
1
m +

σ2
2
n

(1)

has a standard normal distribution

I The null hypothesis µ1 − µ2 = 0 is a special case of the more
general µ1 − µ2 = ∆0. Replacing µ1 − µ2 in (1) with ∆0

gives us a test statistic.
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I The following summary considers all possible types of
alternatives:

1. Ha : µ1 − µ2 > ∆0 has the P-value 1− Φ(z)
2. Ha : µ1 − µ2 < ∆0 has the P-value Φ(z)
3. Ha : µ1 − µ2 6= ∆0 has the P-value equal to twice the area

under the standard normal curve to the right of |z |.
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Example I

I Analysis of a random sample of m = 20 specimens of
cold-rolled steel gives the sample average yield strength
x̄ = 29.8 ksi Another sample of n = 25 specimens of
two-sided galvanized steel gives us ȳ = 34.7 ksi. The two
variances are σ1 = 4.0 and σ2 = 5.0 Note that m 6= n...it is
not important now but will be later...

I The normality suggestion is based on some exploratory data
analysis

I The hypotheses are H0 : µ1 − µ2 = 0 and Ha : µ1 − µ2 6= 0
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Example I

I The test statistic is

z =
x̄ − ȳ√
σ2

1
m +

σ2
2
n

= −3.66

I The corresponding P-value is 2[1− Φ(3.66)] ≈ 0 which
implies rejection at any reasonable level.
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Type II Error and the Choice of the Sample Size

I Consider the case of an upper-tailed alternative hypothesis
Ha : µ1 − µ2 > ∆0.

I The rejection region is x̄ − ȳ ≥ ∆0 + zασX̄−Ȳ . Therefore,

P( Type II Error ) = P(X̄−Ȳ < ∆0+zασX̄−Ȳ when µ1−µ2 = ∆
′
)

I Since X̄ − Ȳ is normally distributed under the alternative
µ1 − µ2 = ∆

′
with mean ∆

′
and standard deviation

σX̄−Ȳ =

√
σ2

1
m +

σ2
2
n , we have

β(∆
′
) = Φ

(
zα −

∆
′ −∆0

σ

)
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I Similar results can be easily obtained for the other two
possible alternatives. In particular, if Ha : µ1 − µ2 < ∆0, we
have

β(∆
′
) = 1− Φ

(
−zα −

∆
′ −∆0

σ

)
I If µ1 − µ2 6= ∆0, the probability of Type II Error is

Φ

(
zα/2 −

∆
′ −∆0

σ

)
− Φ

(
−zα/2 −

∆
′ −∆0

σ

)
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Example

I Again, consider the steel data. Suppose that the probability of
detecting a difference 5 between the two means should be .90.
Can the .01 level test with m = 20 and n = 25 support this?

I For a two-sample test we have

β(5) = Φ

(
2.58− 5− 0

1.34

)
− Φ

(
−2.58− 5− 0

1.34

)
= .1251

I Because the rejection region is symmetric, we have
β(−5) = β(5), and, therefore, the probability of detecting a
difference of 5 is 1− β(5) = .8749.

I We can conclude that slightly larger sample sizes are needed.
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I To determine a sample size that satisfies
P( Type II Error when µ1 − µ2 = ∆

′
) = β we need to solve

σ2
1

m
+
σ2

2

n
=

(∆
′ −∆0)2

(zα + zβ)2

I For two equal sample sizes this yields

m = n =
(σ2

1 + σ2
2)(zα + zβ)2

(∆′ −∆0)2
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Large-Sample Tests

I In this case, the assumption of normality for the data is
unnecessary and variances σ2

1, σ2
2 need not be known

I This is because for large n the variable

Z =
X̄ − Ȳ − (µ1 − µ2)√

S2
1
m +

S2
2
n

is approximately standard normal
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I Then, if the null hypothesis is µ1 − µ2 = ∆0, the test statistic

Z =
X̄ − Ȳ −∆0√

S2
1
m +

S2
2
n

is approximately standard normal under the null hypothesis

I This test is usually appropriate if both m > 40 and n > 40
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Example

I A company claims that its light bulbs are superior to those of
its main competitor. If a study showed that a sample of
n1 = 40 of its bulbs has a mean lifetime of 647 hours of
continuous use with a standard deviation of 27 hours , while a
sample of n2 = 40 bulbs made by its main competitor had a
mean lifetime of 638 hours of continuous use with a standard
deviation of 31 hours, does this substantiate the claim at the
0.05 level of significance?
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I H0 : µ1 − µ2 = 0 and Ha : µ1 − µ2 > 0

I Calculations:

z =
647− 638√

272

40 + 312

40

= 1.38

I Decision: H0 cannot be rejected at α = 0.05; the p-value is
0.0838
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Confidence intervals for µ1 − µ2

I Since the test statistic Z that we just described is exactly
normal when σ2

1 and σ2
2 are known,

P

−zα/2 < Z =
X̄ − Ȳ − (µ1 − µ2)√

σ2
1
m +

σ2
2
n

< zα/2

 = 1− α

I The 100(1− α)% CI is easy to derive from this probability
statement; it is

x̄ − ȳ ± zα/2σX̄−Ȳ

where σX̄−Ȳ is a square root expression.
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I If both m and n are large, CLT implies that the normality
assumption is not necessary and substitution of s2

i for σ2
i ,

i = 1, 2 will produce an approximately 100(1− α)% CI

I More precisely, such an interval is

x̄ − ȳ ± zα/2

√
s2

1

m
+

s2
2

n

I Again, this result should be used only if both m and n exceed
40

I Note that this CI has a standard form of θ̂ ± zα/2σθ̂
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Example

I An experiment was conducted in which two types of engines,
A and B, were compared. Gas mileage, in miles per gallon,
was measured. 50 experiments were conducted using engine
type A and 75 were done for engine type B. The gasoline
used and other conditions were held constant. The average
mileage for engine A was 36 mpg and the average for machine
B was 42 mpg. Find an approximate 96% CI on µB − µA,
where µA and µB are population mean gas mileage for
machines A and B, respectively. Sample standard deviation
are 6 and 8 for machines A and B, respectively.
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I The point estimate of µB − µA is x̄B − x̄A = 42− 36 = 6. For
α = 0.04, we find the critical value z.02 = 2.05.

I Thus, the confidence interval is

6± 2.05

√
36

50
+

64

75
= (3.43, 8.57)
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The Two-Sample t-test

I Assumptions:

Both populations are normal, so that X1, . . . ,Xm is a random
sample from a normal distribution and so is Y1, . . . ,Yn.

The plausibility of these assumptions can be judged by
constructing a normal probability plot of the xi s and another
of the yi s.
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I When the population distributions are both normal, the
standardized variable

T =
X̄ − Ȳ − (µ1 − µ2)√

S2
1
m +

S2
2
n

has approximately t distribution with ν df

I ν can be estimated from data as

ν =

(
s2

1
m +

s2
2
n

)2

(s2
1/m)2

m−1 +
(s2

2/n)2

n−1

I ν has to be rounded down to the nearest integer...why not up?
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I The two-sample confidence interval for µ1 − µ2 with
confidence level 100(1− α)% is

x̄ − ȳ ± tα/2,ν

√
s2

1

m
+

s2
2

n

A one-sided confidence bound can also be calculated as
described earlier.

I The two-sample t-test for testing H0 : µ1 − µ2 = ∆0 is
conducted using the test statistic

t =
x̄ − ȳ −∆0√

s2
1
m +

s2
2
n
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Alternative hypothesis P-values for approximate level α test

Ha : µ1 − µ2 > ∆0 Area under tν curve to the right of t
Ha : µ1 − µ2 < ∆0 Area under the tν curve to the left of t
Ha : µ1 − µ2 6= ∆0 Twice the area under tν curve to the right of |t|
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Example

I The void volume within a textile fabric affects comfort
flammability and insulation properties. The following is the
summary information on air permeability for two different
fabric types:

Fabric Type Sample Size Sample Mean Sample Standard Deviation

Cotton 10 51.71 .79
Triacetate 10 126.14 3.59
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I We assume that porosity distributions for both types of fabric
are normal; then, the two-sample t-test(CI) can be used. Note
that we do not assume anything about variances of the two
populations concerned...

I The number of df is

ν =

(
.6241

10 + 12.881
10

)2

(.6241/10)2

9 + (12.881/10)2

9

= 9.87

and we use ν = 9
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I The resulting CI is

51.71−136.14±(2.262)

√
.6241

10
+

12.8881

10
= (−87.06,−81.80)

I Conclusion...
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Pooled t test

I A simpler alternative test is available when it is known that
σ2

1 = σ2
2.

I In this case, standardizing X̄ − Ȳ we have

Z =
X̄ − Ȳ − (µ1 − µ2)√

σ2
1
m +

σ2
2
n

which has a standard normal distribution
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I Instead of unknown σ2
1 = σ2

2 we use the weighted average

S2
p =

m − 1

m + n − 2
S2

1 +
n − 1

m + n − 2
S2

2

In this case, both samples contribute equally to the common
variance estimate.

I Substituting S2
p instead of σ2

2 gives us a t distribution with
m + n − 2 degrees of freedom. This can serve as a basis for
CI’s and tests analogous to the one we described in the
previous section.
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Remarks

I Traditionally, this test has been recommended as the first to
use when comparing two different means. It has a number of
advantages over the two-sample t test: it is a likelihood ratio
test, it is an exact test and it is easier to use!

I However, this test has a major problem: it is not robust to the
violation of equality of variance assumption. When σ2

1 = σ2
2,

its gains in power are small when compared to the two-sample
t-test. That is why today it is often recommended to use the
two-sample t test in most cases. It is especially true when the
sample sizes are different.
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I It may seem to be a plausible idea that one could first test a
hypothesis H0 : σ2

1 = σ2
2 and then choose the type of the t

test based on the outcome.

I Unfortunately, the most common type of test used for this
purpose ( we will consider it at the very end of the course) is
very sensitive to the violation of normality assumption and
often not very reliable as a result.

I Yet another warning concerns normality of the data. If the
distribution of the data is strongly asymmetric, both of these
tests will prove unreliable. The alternative is to use a special
class of tests that do not use any distribution assumptions at
all (so-called nonparametric tests).
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Analysis of Paired Data

I The data consists of n independently selected pairs (X1,Y1),
(X2,Y2),..., (Xn,Yn) with E Xi = µ1 and E Xi = µ2. The
differences Di = Xi − Yi are assumed to be normally
distributed with mean value µD = µ1 − µ2 and variance σ2

D .
The last requirement is usually the consequence of X ’s and
Y ’s being normally distributed themselves
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Example

I Trace metals in drinking water affect the water flavor;
moreover, the high concentrations can be a health hazard. Six
river locations in South India were selected and the
concentration of zinc in mg/L determined for both surface
water and bottom water at each location. Presumably, there
is some connection between surface water and bottom water
concentrations...
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The Paired t test

I The test considered is H0 : µD = ∆0 where D = X − Y

I The test statistic is

t =
d̄ −∆0

sD/
√

n

where d̄ and sD are the sample mean and standard deviation
of di ’s

I Note that the old method of computing the variance of the
difference does not work anymore since X and Y are NOT
independent
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I The differences themselves are independent. Thus,
hypotheses about µD = µ1 − µ2 can be tested using a
one-sample t-test with Di ’s as data

I I H0 : µD = ∆0

I Test statistic value is

t =
d̄ −∆0

sD/
√

n

where d̄ and sD are the sample mean and standard deviation of
the di ’s.
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I Possible alternatives are Ha : µD > ∆0, Ha : µD < ∆0 and
Ha : µD 6= ∆0.

I Their corresponding P-values are the area under tn−1 curve to
the right of t, the area under tn−1 curve to the left of t, and
twice the area under the tn−1 curve to the right of |t|
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Example

I Musculoskeletal neck-and-shoulder disorders are common
among people who perform repetitive tasks using visual
display units. A sample of n = 16 subjects is used to obtain
data on whether more varied work conditions would have any
impact on arm movement.

I Each observation is the amount of time (proportion of the
total time observed) spent with the arm elevation below 30
degrees. The two measurements from each subject were
obtained 19 months apart. Work conditions changed during
this period. Does the data suggest that the true average time
spent with arm elevation below 30 degrees differs after the
change?

I The formal hypothesis is H0 : µD = 0 vs. Ha : µD 6= 0.
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Example

I The normal probability plot is

I The boxplot suggests that, perhaps, µD > 0.

I The value of the test statistic is

t =
d̄ − 0

sd/
√

n
=

6.75

8.234/
√

16
= 3.28

I The P-value for a t curve with 15 df is .004
I Note that for this sample size the normality assumption is

important
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A confidence interval for µD

I The paired t confidence interval for µD is

d̄ ± tα/2,n−1 · sD/
√

n

I Note that for large n this interval is valid without any
restrictions on the distribution of differences. The same is not
true if n is relatively small
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Example

I Adding computerized medical images to a database is
potentially useful for physicians but the issue of efficiency of
access needs to be investigated. The time to retrieve an
image from a library of slides vs. retrieving the same image
from a computer database for 13 computer-proficient medical
professionals has been recorded.

I The normal probability plot

The sample
size is n = 13 so this is important.
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Example

I The needed d̄ = 20.5 sec and sD = 11.96 while the number of
df is n − 1 = 12.

I The 95% confidence interval is

d̄ ± tα/2,n−1 ·
sD√

n
= 20.5± (2.179) · 11.96√

13
= (13.3, 27, 7)

I The confidence interval is rather large - the consequence of
large standard deviation. However, 0 lies outside the
confidence interval suggesting µD > 0.
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Paired Data and Two-Sample t Procedures

I The main difference between the paired data t test and the
standard t test lies in how we estimate V (X̄ − Ȳ ). In the
independent case we have V (X̄ − Ȳ ) = V (X̄ ) + V (Ȳ ) but...

I In the paired data case

V (X̄ − Ȳ ) = V

(
1

n

∑
Di

)
=

V (Di )

n
=
σ2

1 + σ2
2 − 2ρσ1σ2

n
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I In the above,
ρ = Corr(X ,Y ) = Cov(X ,Y )/[

√
V (X ) · V (Y )]; in general,

V (X ± Y ) = σ2
1 + σ2

2 ± 2ρσ1σ2

In the independence case, ρ = 0 and, therefore,
V (X ± Y ) = V (X ) + V (Y ).

I Thus, using a regular t-test in paired data means
overestimating the variance of X̄ − Ȳ , and consequently,
underestimating the significance of the data
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Pros and Cons of Pairing

I For great heterogeneity and large correlation within
experimental units, the loss in degrees of freedom will be
compensated for by an increased precision associated with
pairing (use pairing).

I If the units are relatively homogeneous and the correlation
within pairs is not large, the gain in precision due to pairing
will be outweighed by the decrease in degrees of freedom (use
independent samples).
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