## STAT 511

Lecture 13: Additional Confidence Intervals' Related Topics Devore: Section 7.3-7.4

Prof. Michael Levine

October 24, 2018

## t-confidence intervals

- Large-sample confidence intervals are based on the fact that, for $n$ large enough,

$$
Z=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

is approximately normally distributed

- But what if $n<40$ ?
- For small $n$, this test statistic is denoted

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

to stress the fact it is no longer normally distributed

## t Distribution

- A $t$ distribution is governed by one parameter $\nu$ which is called the number of degrees of freedom (df)
- Properties:

1. $t_{\nu}$ curve is bell-shaped and centered at 0
2. It has heavier tails than normal distribution (more spread out)
3. As $\nu \rightarrow \infty$, the $t_{\nu}$ density curve approaches the normal curve

- Let $t_{\alpha, \nu}$ be the number on the horizontal axis such that the area to the left of it under $t_{\nu}$ curve is $\alpha ; t_{\alpha, \nu}$ is a $t$ critical value.
- For fixed $\nu, t_{\alpha, \nu}$ increases as $\alpha$ decreases
- For fixed $\alpha$, as $\nu$ increases, the value $t_{\alpha, \nu}$ decreases. The process slows down as $\nu$ increases; that is why the table values are shown in increments of 2 between 30 df and 40 df , but then jump to $\nu=50, \nu=60$ etc.
- $z_{\alpha}$ is the last row of the table since $t_{\infty}$ is the standard normal distribution

Figure :


8007 ThusnhHghr Etudion

## One-sample t confidence interval

- The number of df for $T$ is $n-1$ since $S$ is based on deviations $X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}$ that add up to zero
- By definition of $t$ critical value, we have

$$
P\left(-t_{\alpha / 2, n-1}<T<t_{\alpha / 2, n-1}\right)=1-\alpha
$$

- It is easy to show that $100(1-\alpha) \%$ confidence interval for $\mu$ is

$$
\left(\bar{x}-t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}\right)
$$

- The alternative, more compact notation is

$$
\bar{x} \pm t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}
$$

## Example

- Sweetgum lumber is quite valuable but there's a general shortage of high-quality sweetgum today. Because of this, composite beams that are designed to add value to low-grade sweetgum lumber are commonly used.
- The sample consists of 30 observations on the modulus of rapture in psi

Figure:


## Calculations

- Take a confidence level of $95 \%$.
- The Cl is based on $\mathrm{n} 1=29$ degrees of freedom, so the necessary $t$ critical value is 2.045

$$
\bar{x} \pm t_{0.25,29} \frac{s}{\sqrt{n}}=7203.191 \pm(2.045) \frac{543.5400}{\sqrt{30}}=(7000.253,7406.129)
$$

## Prediction interval

- Consider a random sample $X_{1}, \ldots, X_{n}$ from a normal population distribution. Suppose you want to predict $X_{n+1}$.
- A point predictor is $\bar{X}$; clearly, $E\left(\bar{X}-X_{n+1}\right)=\mu-\mu=0$ and

$$
V\left(\bar{X}-X_{n+1}\right)=V(\bar{X})+V\left(X_{n+1}\right)=\sigma^{2}+\frac{\sigma^{2}}{n}=\sigma^{2}\left(1+\frac{1}{n}\right)
$$

- The prediction error is normally distributed and, therefore,

$$
Z=\frac{\bar{X}-X_{n+1}}{\sqrt{\sigma^{2}\left(1+\frac{1}{n}\right)}}
$$

has a standard normal distribution

- It is possible to show that

$$
T=\frac{\bar{X}-X_{n+1}}{S \sqrt{1+\frac{1}{n}}}
$$

has $t$ distribution with $n-1 \mathrm{df}$

- Consequently, the prediction interval for $X_{n+1}$ is

$$
\bar{x} \pm t_{\alpha / 2, n-1} \cdot s \sqrt{1+\frac{1}{n}}
$$

- Note the obvious difference with the t confidence interval for the mean $\mu \ldots$ Why is the prediction interval wider?
- Note that the estimation error $\bar{X}-\mu$ is the deviation from the fixed value while the prediction error $\bar{X}-X_{n+1}$ is a difference between two random variables. The second has much more variability in it than the first...
- Even when $n \rightarrow \infty$, the PI approaches $\mu \pm z_{\alpha / 2} \cdot \sigma$. This means that there is uncertainty about the true value $X$ even when the infinite amount of information is available.


## Example

- A meat inspector has randomly measured 30 packs of $95 \%$ lean beef. The sample resulted in the mean $96.2 \%$ with the sample standard deviation of $0.8 \%$. Find a $99 \%$ prediction interval for a new pack. Assume normality
- For $\nu=29 \mathrm{df}$, we have the critical value $t_{0.005}=2.756$. Hence a $99 \%$ prediction interval for a new observation $x_{0}$ is
$96.2-(2.756)(0.8) \sqrt{1+\frac{1}{30}}<x_{0}<96.2-(2.756)(0.8) \sqrt{1+\frac{1}{30}}$
which reduces to (93.96, 98.44).


## Bootstrap:The Introduction

- Suppose you have some distribution with the density $f(x ; \theta)$ where $\theta$ is an unknown parameter
- Given a sample $x_{1}, \ldots, x_{n}$ from this distribution, you can obtain a point estimate $\hat{\theta}$; as an example, if you have normal distribution with mean $\mu$, you can always estimate it by $\bar{x}$.
- If $\theta$ is the only unknown parameter, you can say that the (unknown) pdf $f(x ; \theta)$ can be estimated by $f(x ; \hat{\theta})$. Now you can generate multiple samples from $f(x ; \hat{\theta})$ distribution to get

$$
\begin{equation*}
x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*} \tag{1}
\end{equation*}
$$

- With $B$ bootstrap samples at our disposal, we can have the bootstrap estimate of $\theta \hat{\theta}^{*}$. For example, if the parameter in question is the mean $\mu$, we have $\hat{\mu}^{*}=B^{-1} \sum x_{i}^{*}$.
- Why do we need bootstrap? An important issue is estimating the precision of the estimator $\hat{\theta}$; if $\theta=\sigma^{2}$, it is difficult to estimate the variance $\sigma_{\hat{\theta}}$.
- Using the bootstrap samples, we can estimate it as

$$
S_{\hat{\theta}}=\sqrt{\frac{1}{B-1} \sum\left(\hat{\theta}_{i}^{*}-\bar{\theta}^{*}\right)^{2}}
$$

## Example

- Let $X$ be the time to breakdown of an insulating fluid between electrodes at some voltage and assume it is exponentially distributed $f(x)=\lambda e^{-\lambda x}$
- A random sample of $n=1$ breakdown times ( min ) is 41.53, $18,73,2.99,30.34,12.33,117.52,73.02,223.63,4.00,26.78$
- A reasonable estimate of the distribution parameter is

$$
\lambda=\frac{1}{\bar{x}}=1 / 55.087=0.018153
$$

- Generate $B=100$ samples, each of size 10 , from $f(x ; 0.018153)$
- Determine the value of $\hat{\lambda}_{i}^{*}$ for each $i=1, \ldots, B$ and find $\bar{\lambda}^{*}=0.02153$ and $s_{\hat{\lambda}}=0.0091$; that last value can be used to construct a confidence interval for $\lambda$


## Bootstrap Confidence Intervals

- Consider estimating the mean $\mu$ of a normal distribution with $\sigma=1$.
- If $\bar{X}$ is used to estimate $\mu, 1.96 / \sqrt{n}$ is the $97.5 \%$ percentile of the distribution of $\hat{\mu}-\mu$ since $P(\bar{X}-\mu<1.96 / \sqrt{n})=P(Z<1.96)=.9750$. Similarly, $-1.96 / \sqrt{n}$ is the $2.5 \%$ percentile. Hence, we have $P(\hat{\mu}-2.5 \%$ percentile $>\mu>\hat{\mu}-97.5 \%$ percentile).
- The above percentiles can be estimated using the bootstrap. If we have $B=1000$ samples, we have 1000 differences $\hat{\theta}_{1}^{*}-\bar{\theta}^{*}, \ldots, \hat{\theta}_{1000}^{*}-\bar{\theta}^{*}$ from which we can compute the necessary percentiles.


# Confidence Intervals for the Variance and Standard Deviation of a Normal Population 

- Let $X_{1}, \ldots, X_{n}$ be a random sample from a normal distribution with mean $\mu$ and variance $\sigma^{2}$. Then, the RV

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}
$$

has the so-called $\chi_{n-1}^{2}$ distribution.

- The colloquial name of this distribution is chi-squared with $n-1 \mathrm{df}$.


## Chi-squared distribution

- $\chi_{\nu}^{2}$ is a continuous distribution with one parameter $\nu$ that is called the number of df. $\nu$ can be any positive integer.
- Here are the graphs $\chi_{\nu}^{2}$ pdf with various df

Figure :


## Some additional facts about $\chi_{\nu}^{2}$

- $\chi_{\nu}^{2}$ is a special case of gamma distribution with $\alpha=\nu / 2$ and $\beta=2$
- A very useful representation of $\chi_{\nu}^{2}$ distribution is as follows: 1. Suppose we are given $n$ iid standard normal random variables $Z_{1}, \ldots, Z_{n}$.

2. Then, $\sum_{i=1}^{n} Z_{i}^{2}$ has a chi-squared distributions with $\nu=n$ degrees of freedom

## Chi-squared confidence interval

- Chi-squared critical value $\chi_{\alpha, \nu}^{2}$ is a number on the measurement axis such that the area under the curve to the right of $\chi_{\alpha, \nu}^{2}$ is equal to $\alpha$
- Note that $\chi_{\nu}^{2}$ is not a symmetric distribution so extensive tabulation is needed for $\alpha$ from 0 to 1 .
- Clearly,

$$
P\left(\chi_{1-\alpha / 2, n-1}^{2}<\frac{(n-1) S^{2}}{\sigma^{2}}<\chi_{\alpha / 2, n-1}^{2}\right)=1-\alpha
$$

- Thus, we have

$$
\frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}
$$

- We can conclude that $100(1-\alpha) \%$ confidence interval for the variance $\sigma^{2}$ of a normal population has a lower limit

$$
\frac{(n-1) s^{2}}{\chi_{\alpha / 2, n-1}^{2}}
$$

and the upper limit

$$
\frac{(n-1) s^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}
$$

## $\chi^{2}$ critical values illustrated

Figure :


## Example

- For a sample of 17 breakdown voltage measurements of electrically stressed circuits, the normal probability plot gives support to the normality assumption
- We can compute the sample variance $s^{2}=137,324.3$ which we use to estimate the true variance $\sigma^{2}$. For 15 df , the respective percentiles are $\chi_{.975,16}^{2}=6.908$ and

$$
\chi_{0.025,16}^{2}=28.845
$$

- The interval is

$$
\left(\frac{16(137,324.3)}{28.845}, \frac{16(137,324.3)}{6.908}\right)=(76,172.3,318,064.4)
$$

